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Preface
Models can reduce the number of experiments; thereby reducing time and expenses and

providing process optimization, predictive capability, improved process automation, and control

possibilities. A physics-based model can also provide insight into a process for which

experimentation may not be practical. Food and bioproducts go through complex physical,

chemical, and biological changes during their processing and storage, making modeling an

important tool in understanding and controlling these changes. With the advancement of computers,

the use of models has become integral to most studies in food science and engineering.

In addition to modeling techniques popular in the past, newer ones have become commonplace

due to the enhanced ease of their development using computers. As the choices in modeling

techniques have increased, user awareness of alternatives has become increasingly important.

Although books are available on any one modeling technique, a user is faced with the daunting task

of combing through a number of these books to decide on the most appropriate model. Our goal for

this handbook is to aid this process by providing, in one volume, succinct descriptions of a large

number of modeling techniques, followed by examples of applications in the food context. This

presentation differs from the many theoretical details of a model that the reader can follow-up in

texts on individual modeling techniques. The chapters in this handbook are structured, generally, to

begin with a short introduction to the modeling technique followed by details on how that technique

can be utilized in specific food and bioprocess applications.

The concise introduction and the context of food for many different models alone make this

handbook unique. Having access to many models at once, the reader can see at a glance which

models have been most successful in specific applications. By collecting the various modeling

possibilities into one volume, the book can lead someone unfamiliar with modeling to look into the

benefits of this useful tool. The book allows the reader to conveniently shop for the model that best

suits, not only the application in question, but also his or her own technical expertise. Including both

physics- and observation-based models provides a unique perspective to the user, in terms of both

modeling alternatives and ways to combine various types of models to describe the same process.

The book emphasizes problem formulation, particularly in the case of physics-based models, from

an application point of view and thereby makes it more accessible to the end user.

This handbook is intended as a reference book for food and bioprocess researchers in academia

and also for professionals engaged in process and product development in the food and bioprocess

industries. It is also quite appropriate as a text or reference for courses on modeling for graduate or

upper level undergraduate students in engineering related to food and bioprocesses (chemical,

biological, agricultural, and food engineering) and some food science disciplines. The highly

international (fifteen countries) authorship and reviews of the book ensure both the quality of

individual chapters and their usefulness around the globe.

This book is the work of its contributing authors. The editors would like to thank them for their

willingness, time, and effort as the manuscripts went through many revisions. The editors also

gratefully acknowledge the reviews and insightful comments by the many individuals from 14

countries that greatly improved the quality of the book. These individuals include: José M. Aguilera

(Universidad Católica de Chile, Chile), Ioannis Arvanitoyannis (University of Thessaly, Greece),

Julio R. Banga (Spanish Council for Scientific Research, Spain), Pilar Buera (Facultad de Ciencias

Exactas y Naturales, Argentina), Fred Eisenberg (Eisenberg Research, USA), Hao Feng (University

of Illinois, USA), Amit Halder (Cornell University, USA), Ashish Dhall (Cornell University, USA),

James P. Gleeson (University College Cork, Ireland), Lihan Huang (USDA Eastern Regional

Research Center, USA), V. K. Jindal (Asian Institute of Technology, Thailand), Elena Maestri

(University of Parma, Italy), S. Nakai (University of British Columbia, Canada), Bart Nicolai

(Catholic University of Leuven, Belgium), John Nieber (University of Minnesota at Twin Cities,

USA), Jitendra Paliwal (University of Manitoba, Canada), Vineet Rakesh (Cornell University,
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USA), H. S. Ramaswamy (McGill University, Canada), Ajay K. Ray (National University of

Singapore, Singapore), Phil Richardson (Campden & Chorleywood Food Research Association,

UK), Arnab Sarkar (Masterfoods, USA), Bhaskar Sen Gupta (Queen’s University, Belfast, UK),

Christian Trägårdh (Lund University, Sweden), Gilles Trystram (ENSIA, France), Rolf Verberg

(University of Pittsburgh, USA), and Weibiao Zhou (National University of Singapore, Singapore).

We thank the editors at Taylor & Francis for their support and help. We also wish to express our

gratitude to our respective universities for giving us the opportunity and the facilities to complete

such an important project.

Shyam S. Sablani, Ashim K. Datta,
Mohammad Shafiur Rahman, and Arun S. Mujumdar
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HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES2
1.1 MATHEMATICAL MODELING

A model is an analog of a physical reality, typically simpler and idealized. Models can be

physical or mathematical and are created with the goal to gain insight into the reality in a more

convenient way. A physical model can be a miniature, such as a benchtop version of an industrial

scale piece of equipment. A mathematical model is a mathematical analog of the physical reality,

describing the properties and features of a real system in terms of mathematical variables and

operations. The phenomenal growth in the computing power and its associated user-friendliness
Need for  
understanding
the detailed 
mechanisms 

Availability of time 
and resources, depending 
on the state of a-priori
knowledge of the physics 

Use fundamental 
laws to develop
physics-based model

Obtain experimental data
to develop 
observation-based model 

Validate model
against experimental 
data

Possibly validate 
against additional
experimental data

Extract knowledge 
from the model 
using sensitivity analysis

Use model in 
optimization and control 

Not really necessary

Strong need

Constrained 

Available

Figure 1.1 A simple overview of model development and use.
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MATHEMATICAL MODELING TECHNIQUES IN FOOD AND BIOPROCESSES: AN OVERVIEW 3
have allowed models to be more realistic and have fueled rapid growth in the use of models in

product, process, and equipment design and research. Many advantages of a model include (1)

reduction of the number of experiments, thus reducing time and expenses; (2) providing great

insight into the process (in case of a physics-based model) that may not even be possible with

experimentation; (3) process optimization; (4) predictive capability, i.e., ways of performing “what

if” scenarios; and (5) providing improved process automation and control capabilities.

Mathematical models can be classified somewhat loosely depending on the starting point in

making a model. In observation-based models, the starting point is the experimental data from

which a model is built. It is primarily empirical in nature. In contrast, the starting point for physics-

based models is the universal physical laws that should describe the presumed physical phenomena.

Physics-based models are also validated against experimental data, but in physics-based models the

experimental data do not have to exist before the model. The decision on whether to build an

observation-based or a physics-based model depends on a number of factors, including the need and

available resources, as shown in Figure 1.1. After a model is built, its parameters can be varied to

see their effects—this process is termed parametric sensitivity analysis. A model can also be used to

control a process. These conceptual steps are also shown in Figure 1.1.
1.2 CLASSIFICATION OF MATHEMATICAL MODELING TECHNIQUES

Classification of mathematical models can be in many different dimensions (Gershenfeld 1999),

as shown in Figure 1.2. As implied in this figure, there is a continuum between the two extremes

for any particular dimension noted in this figure. For example, it can be argued that even a model

that is obviously physics-based, such as a fluid flow in a porous media, has permeability as a

parameter that is experimentally measured and is made up of many different parameters character-

izing the porous matrix and the fluid. It is possible to use a lattice Boltzmann simulation for the

same physical process that will not need most of these matrix and fluid parameters and, therefore,

can be perceived as more fundamental.

The chapters in this text cover much of the range shown in Figure 1.2 for any particular

dimension. Physics-based (first-principle-based) vs. data-driven models is the primary dimension

along which the chapters are grouped. Scale of models is another dimension covered here. The

lattice Boltzmann simulation in Chapter 2, for example, is at a smaller scale than the macroscale
First-principle 
based 

Data-driven 

Microscale

Macroscale 

Deterministic 

Stochastic 

Analytical

Numerical 

Figure 1.2 Various dimensions of a model. This is not an exhaustive list.
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HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES4
continuum models in Chapter 3 through Chapter 6. Another dimension is deterministic vs.

stochastic. For example, the deterministic models in Chapter 3 through Chapter 6 can be made

stochastic by following the discussion in Chapter 7. Analytical vs. numerical method of solution is

another dimension of models. Numerical models have major advantages over analytical solution

techniques in terms of being able to model more realistic situations. Thus, Chapter 2 through

Chapter 5 cover mostly numerical solutions, although some references to analytical solutions are

provided as well.
1.3 SCOPE OF THE HANDBOOK

Each chapter in this book describes a particular modeling technique in the context of food and

bioprocessing applications. Entire books have been written on each of the chapters in this hand-

book. However, these books are frequently not with food and bioprocess as the main focus. Also, no

one book covers the breadth of modeling techniques included here. The motivation behind this

handbook was to bring many different modeling techniques, as varied as physics-based and obser-

vation-based models, under one umbrella with food and bioprocess applications as the focus.

Because the end goal of even very different modeling approaches, such as physics-based and

observation-based models, can be the same (e.g., to understand and optimize the system), any

two modeling techniques can be conceptually thought of as competing alternatives. This is more

so in food and bioprocess applications in which the processes are complex enough that the super-

iority of any one type of modeling technique in an industrial scenario that demands quick answer is

far from obvious. Another reason for discussing various models under one roof is that different

types of models can be pooled to obtain models that combine the respective advantages. Succinct

discussion of each model in the same context of food and bioprocess can help trigger such possi-

bilities. The modeling techniques selected in the handbook are either already being used or have a

great potential in food and bioprocess applications. Emphasis has been placed on how to formulate

food and bioprocess problems using a particular modeling technique, away from the theory behind

the technique. Thus, the chapters are generally structured to have a short introduction to the

modeling technique, followed by the details on how that technique can be used in specific food

and bioprocess applications. Although optimization is often one of the major goals in modeling,

optimization itself is a broad topic that could not be included (with the exception of linear program-

ming) in this text because of its extensive coverage of modeling, and the reader is referred to the

excellent article by Banga et al. (2003).
1.4 SHORT OVERVIEW OF MODELS PRESENTED IN THIS HANDBOOK

A short description of each type of model presented in this handbook is presented in this section.

There is no such thing as the best model because the choice of a model depends on a number of

factors, the most obvious ones being the goal (whether to know the detailed physics), the modeler’s

background (statistics vs. engineering or physics), and the time available (physics-based models

typically take longer). Some of this is also noted in the schematic in Figure 1.1.
1.4.1 Physics-Based Models (Chapter 2 through Chapter 8)

Physics-based models follow from fundamental physical laws such as conservation of mass and

energy and Newton’s laws of motion; however, empirical (but fairly universal) rate laws are needed

to apply the conservation laws at the macroscopic scale. For example, to obtain temperatures using

a physics-based model, combine conservation of energy with Fourier’s law (which is empirical)
q 2006 by Taylor & Francis Group, LLC



MATHEMATICAL MODELING TECHNIQUES IN FOOD AND BIOPROCESSES: AN OVERVIEW 5
of heat conduction. The biggest advantages of physics-based models are that they provide insight

into the physical process in a manner that is more precise and more trustable (because we start from

universal conservation laws), and the parameters in such models are measurable, often using

available techniques.

Physics-based models can be divided into three scales: molecular, macro, and meso (between

molecular and macro). An example of a model at the molecular scale is the molecular dynamic

model discussed later. Models such as the lattice Boltzmann model discussed in this book are in the

mesoscale. Macroscopic models are the most common among physics-based models in food.

Examples of macroscopic models are the commonly used continuum models of fluid flow, heat

transfer, and mass transfer. As we expand food and biological applications at micro- or nanoscale,

such as in detection of microorganisms in a microfluidic biosensor, scales will be approached where

the continuum models in Chapter 2 through Chapter 5 will break down (Gad-el-Hak 2005). Simi-

larly, in very short time scales, continuum assumption breaks down, and mesoscale or molecular

scale models become necessary (Mitra et al. 1995). General discussion of models when continuum

assumption breaks down can be seen in Tien et al. (1998).

Physics-based models today are less common in food and bioprocessing product, process, and

equipment design than in some manufacturing, such as automobile and aerospace. This can be

primarily attributed to variability in biomaterials and the complexities of transformations that

food and biomaterials undergo during processing; however, this scenario is changing as the appro-

priate computational tools are being developed. In fact, the physics-based model (such as

computational fluid dynamics, or CFD) is one of the areas in food process engineering experiencing

rapid growth.
1.4.1.1 Molecular Dynamic Models

Molecular dynamic (MD) models are physics-based models at the smallest scale. In its most

rudimentary version, repelling force between pairs of atoms at close range and attractive force

between them over a range of separations are represented in a potential function (such as Lennard–

Jones), for which there are many choices (Rapaport 2004). The spatial derivative of this potential

function provides the corresponding force. Forces between one atom and a number of its neighbors

are then added to obtain the combined force, and Newton’s second law of motion is then used to

obtain the acceleration from the force. This acceleration is then numerically integrated to obtain the

trajectory describing the way the molecule would move. Physical properties of the system can be

calculated as the appropriate time average over the trajectory, if it is of sufficient length. Although

applications of molecular dynamics relevant to food processing (such as protein functionality and

solution properties of carbohydrates) have been reported (Schmidt et al. 1994; Ueda et al. 1998),

there appears to be very little ongoing work in applying MD to systems of direct relevance to food

processing. Thus, MD has been excluded from this handbook.
1.4.1.2 Lattice Boltzmann Models (Chapter 2)

The lattice Boltzmann (LB) method is physics-based, but at an intermediate scale (referred to as

mesoscale) between the molecular dynamic model mentioned above that is at the microscale and

continuum models mentioned below that are at the macroscale, where physical quantities are

assumed to be continuous. LB is based on kinetic theory describing the dynamics of a large

system of particles. The continuum assumption breaks down at some point going from the macro-

scale toward the microscale. Examples of such systems can be colloidal suspensions, polymer

solutions, and flow-through porous media. This is where the lattice Boltzmann model is useful

and is currently being pursued in relation to food processes.
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HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES6
Other mesoscale simulations are also being used in food. For example, in Pugnaloni et al.

(2005), large compression and expansion of viscoelastic protein films are studied in relation to

stability of foams and emulsions during formation and storage.
1.4.1.3 Continuum Models (Chapter 3 through Chapter 6)

Continuum models presented in Chapter 3 through Chapter 6 primarily deal with transport

phenomena, i.e., fluid flow, heat transfer, and mass transfer. These physics-based models are

based on fundamental physical laws. Typically, these models consist of a governing equation that

describes the physics of the process along with equations that describe the condition at the boundary

of the system. The conditions at the boundary determine how the system interacts with the surround-

ings. Mathematically, they are needed to obtain particular solutions of the governing equation. The

solution of the combined governing equation-boundary condition system can be made as exact an

analog of the physical system as desired by including as much detail of the physical processes

as necessary.

Physics-based models have several advantages over observation-based models: (1) they can be

exact analogs of the physical process; (2) they allow in-depth understanding of the physical process

as opposed to treating it as a black box; (3) they allow us to see the effect of changing parameters

more easily; and (4) models of two different processes can share the same basic parameter (such

as mass diffusivity and permeability measured for one process can be useful for other processes).

The disadvantages of a physics-based model are as follows: (1) high level of specialized technical

background is required; (2) generally more work is required to apply to real-life problems; and (3)

often longer development time and more resources are needed.

In the past 10 years or so, physics-based continuum models have really picked up because of

the available powerful and user-friendly software. These software programs do have limitations,

however, that apply to food related problems because of complexities in the process and significant

changes in the material due to processing. For example, rapid evaporation, as is true in baking,

frying, and some drying operations, is hard to implement in most of these software. Also, these

continuum models rely heavily on properties data that are only sparsely available for food systems.

There are other physics-based continuum models for which more details could not be included

because of the scope of this handbook. For example, electromagnetic heating of food such as

microwave and radio frequency heating is modeled using the governing Maxwell’s equations,

some details of which are provided in Chapter 3. Likewise, solid mechanics problems in food,

such as during chewing, puffing, texture development, etc., are governed by the equations of solid

mechanics, which also are not included in the book.
1.4.1.4 Kinetic Models (Chapter 7)

Kinetic models mathematically describe rates of chemical or microbiological reactions. They

generally can be considered to be physics-based. However, in complex chemical and microbiolo-

gical processes, as is true for food and bioprocesses, the mechanisms are generally hard to obtain

and are not always available. The kinetic models for such systems are more data-driven than

fundamental (as could be true for simple systems).
1.4.1.5 Stochastic Models (Chapter 8)

The physics-based continuum models have material properties that are typically measured.

These models are often treated as deterministic ones, i.e., the parameter values are considered

fixed. However, due to biological and other sources of variability, these measured parameters can

have random variations. For example, viscosity of a sample can have random variation because of
q 2006 by Taylor & Francis Group, LLC
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its biological variability. In a fluid flow model that uses viscosity, the final answer of interest, such

as pressure drop, would also have the random fluctuations corresponding to the random variations

in viscosity. Inclusion of such random variations makes the physics-based models more realistic.

Techniques to include such uncertainty are presented in Chapter 6 and Chapter 8.
1.4.2 Observation-Based Models (Chapter 9 through Chapter 15)

The physics-based modeling process described in part I assumes that a model is known, which is

frequently difficult to achieve in complex processes. Although a physics-based model may also be

adjusted based on measured data, observation-based models (see Figure 1.3) are inferred primarily

from measured data. Observational models are black box models to different degrees in relation to

the physics of the process. The classical statistical models can have a model in mind (often based on

some understanding of the process) before obtaining the measured data. This makes them less of a

black box than models such as neural network or genetic algorithm that are frequently completely

data driven; no prior assumption is made about the model and no attempt is made to physically

interpret the model parameters once the model is built. Loosely speaking, though, all observational

models are referred to as data-driven models. For this handbook (Figure 1.3), we separate the

classical statistical models from the rest of the observation-based models and refer to the rest as

data-driven models.

There are many practical situations in which time and resources do not permit a complete

physics-based understanding of a process. Physics-based models often require more specialized

training and/or longer development time. In some applications, detailed understanding provided by

the physics-based model may not be necessary. For example, in process control, detailed physics-

based models often are not needed, and observation-based models can suffice. Observation-based

models can be extremely powerful in providing a practical, useful relationship between input and

output parameters for complex processes. The types of data available and the purpose of modeling

usually influence the kind of observation models to be used. General information on how to choose

a model for a particular situation is hard to locate. An excellent Internet source guiding data-driven

model choice and development can be seen in NIST (2005). Because observation-based models are

built from data without necessarily considering the physics involved, use of such models beyond

the range of data used (extrapolation) is more difficult than in the case of physics-based models.
1.4.2.1 Response Surface Methodology (Chapter 9)

This is a statistical technique that uses regression analysis to develop a relationship between the

input and output parameters by treating it as an optimization problem. The principle of experi-

mental design is used to plan the experiments to obtain information in the most efficient manner.

Using experimental design, the most significant factors are found before doing the response surface

and finding the optimum. This method is quite popular in food applications. It is important to note

that finding the optimum using response surface is not limited to experimental data. Physics-based

models can also be used to generate data that can be optimized using the response surface method-

ology similar to the method for experimental data (Qian and Zhang 2005).
1.4.2.2 Multivariate Analysis (Chapter 10)

Multivariate analysis (MVA) is a collection of statistical procedures that involve observation

and analysis of multiple measurements made on one or several samples of items. MVA techniques

are classified in two categories: dependence and interdependence methods. In a dependence tech-

nique, the dependent variable is predicted or explained by independent variables. Interdependence

methods are not used for prediction purposes and are aimed at interpreting the analysis output to opt
q 2006 by Taylor & Francis Group, LLC
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MATHEMATICAL MODELING TECHNIQUES IN FOOD AND BIOPROCESSES: AN OVERVIEW 9
for the best and most representative model. MVA is likely to be used in situations when one is not

sure of the significant factors and how they interact in a complex process. It is also a popular

modeling process in food.

1.4.2.3 Data Mining (Chapter 11)

Data mining refers to automatic searching of large volumes of data to establish relationships and

identify patterns. To do this, data mining uses statistical techniques and other computing method-

ology such as machine learning and pattern recognition. Data mining techniques can also include

neural network analysis and genetic algorithms. Thus, it can be seen as a meta tool that can combine

a number of modeling tools.

1.4.2.4 Neural Network (Chapter 12)

An artificial neural network model (as opposed to a biological neural network) is an intercon-

nected group of functions (equivalent to neurons or nerve cells in a biological system) that can

represent complex input–output relationships. The power of neural networks lies in their ability to

represent both linear and nonlinear relationships and in their ability to learn these relationships

directly from the modeled data. Generally, large amounts of data are needed in the learning process.

1.4.2.5 Genetic Algorithms (Chapter 13)

Genetic algorithms are search algorithms in a combinational optimization problem that mimick

the mechanics of the biological evolution process based on genetic operators. Unlike other optimi-

zation techniques such as linear programming, genetic algorithms require little knowledge of the

process itself.

1.4.2.6 Fractal Analysis (Chapter 14)

Fractal analysis uses the concepts from fractal geometry. It has been primarily used to charac-

terize surface microstructure (such as roughness) in foods and to relate properties such as texture,

oil absorption in frying, or the Darcy permeability of a gel to the microstructure. Although fractal

analysis may use some concepts from physics, the models developed are not first principle-based.

Processes governed by nonlinear dynamics can exhibit a chaotic behavior that can also be modeled

by this procedure. Applications to food have been only sporadic.

1.4.2.7 Fuzzy Logic (Chapter 15)

Fuzzy logic is derived from the fuzzy set theory that permits the gradual assessment of the

membership of elements in relation to a set in contrast to the classical situation where an element

strictly belongs or does not belong to a set. It seems to be most successful for the following: (1)

complex models where understanding is strictly limited or quite judgmental; and (2) processes in

which human reasoning and perception are involved. In food processing, the applications have been

in computer vision to evaluate food quality, in process control, and in equipment selection.
1.4.3 Some Generic Modeling Techniques (Chapter 16 through Chapter 18)

Included in this part of the book are three generic modeling techniques that are somewhat

universal and can be used in either physics-based or observation-based model building or for

optimization once a model is built.
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1.4.3.1 Monte-Carlo Technique (Chapter 16)

Monte Carlo refers to a generic approach whereby a probabilistic analog is set up for a math-

ematical problem, and the analog is solved by stochastic sampling. Chapter 7 shows the application

of this technique to physics-based models.
1.4.3.2 Dimensional Analysis (Chapter 17)

This is typically an intermediate step before developing mostly physics-based (but can be data-

driven) models that is used to reduce the number of variables in a complex problem. This can

reduce the computational or experimental complexity of a problem.
1.4.3.3 Linear Programming (Chapter 18)

This is a well-known technique that is used for the optimization of linear models. It can be used

in the context of a physics-based or a data-driven model.
1.4.4 Combining Models

Various modeling approaches can be combined to develop models that are even closer to reality

and that have greater predictive power. For example, a physics-based model can be combined

with an observation-based model by treating the output from the physics-based model as analogous

to experimental data. See, for example, Eisenberg (2001) or work in a different application

(Sudharsan and Ng 2000). Such a combined model is useful when only a portion of the system

can be represented using a physics-based model or when the parameters in the physics-based model

are uncertain. Two or more observation-based modeling techniques can also be combined (e.g.,

Panigrahi 1998), which is sometimes referred to as a hybrid model. A challenge, however, is to

combine diverse methods in a seamless manner to provide a model that is easy to use.
1.5 CHARACTERISTICS OF FOOD AND BIOPROCESSES

Some characteristics of food and bioprocesses are as follows: (1) they often involve drastic

physical, chemical, and biological transformation of the material, during processing. Many of these

transformations have not been characterized, primarily because of the following: (1) such a large

variety of possible materials; (2) their biological origin, variabilities are significant, even in the

same material; (3) because the material contains large amounts of water, unless temperatures are

low, there is always evaporation in the food matrix. This evaporation is hard to handle in physics-

based models and increases complexity of the process; and (4) many food processes involve

coupling of different physics (e.g., microwave heating involves heat transfer and electromagnetics),

thus compounding complexities. As novel processing technologies are introduced and combination

technologies such as hurdle technology become more popular, complexities will only increase in

the future.

The industry in this area is characterized by a lower profit level and less room for drastic

changes, than, for instance, automotive and aerospace industries. This translates to lower invest-

ment in research and development, which in turn leads to the generally lower level of technical

sophistication as compared to other industries. Modeling, particularly physics-based modeling,

often requires time and resources that are not available in the food industry. Consequently, with

the exception of a handful of large multinational companies, modeling in general and physics-based

modeling in particular are viewed as less critical and somewhat esoteric. It is expected that as the
q 2006 by Taylor & Francis Group, LLC
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computer technology continues to advance, modeling (particularly physics-based modeling) will

become easier and perhaps more of a viable alternative in the industry.
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2.1 INTRODUCTION

The lattice Boltzmann method is a recently developed computer modeling methodology that is

gaining attention in the academic world, especially for the simulation of complex fluid phenomena

at the mesoscopic scale.1,2 The mesoscop ic scale lies between the molecular (micro) scale, and the

macroscopic scale, where physical quantities are assumed to be continuous. Somewhere between

the micro and macroscale, the continuum approach breaks down and some parts of physical systems

cannot be assumed to be continuous. Examples of these mesoscale systems are emulsions, colloidal

suspensions, flow in porous media, and polymer solutions.
15
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Many processed foods can be viewed as such complex fluids. Often during processing, one

wants to control the mesoscale structure of the foods because it significantly influences the texture

of the food. Lattice Boltzmann is a powerful simulation tool to probe microstructural development

during processing. This chapter will discuss (1) the basics of lattice Boltzmann, (2) the principles of

lattice Boltzmann models for complex fluids as emulsions and suspensions, and (3) applications of

these models in research projects in our lab, focusing on the use of microtechnology to control food

microstructure.3–5
2.2 THE BASICS OF LATTICE BOLTZMANN

2.2.1 Discretising Kinetic Theory

The lattice Boltzmann method started as a novel modeling methodology for the description of

physical transport phenomena such as fluid flow6 and (convection) diffusion,7,8 the domain of

traditional finite-volume or finite-element modeling methods. These traditional methods are

based on the continuum approach, and can be viewed as the discretization of partial differential

equations such as the Navier–Stokes equation or the Fourier equation. In contrast, the lattice

Boltzmann method is based on kinetic theory—the physical theory describing the dynamics of

large systems of particles.

In principle, all equations governing physical transport phenomena at the macroscopic

(continuum) scale can be derived from classical kinetic theory. However, if applied to real-sized

molecules, the classical kinetic theory can only be applied to small-sized systems. Currently,

computing power is still insufficient to investigate problems at the process engineering scale.

However, by taking a discrete version of kinetic theory (and in particular the Boltzmann equation)

the lattice Boltzmann method has been proven to be capable of simulating physical transport

phenomena at the macroscale, even with moderate computing power.

The lattice Boltzmann method discretizes kinetic theory as follows:

† (Fluid) mass is collected in discrete (lattice-gas) particles.
† Particles are located on points of a regular lattice.
† Particles move according to a finite, discrete set of velocities, taking them to adjacent

lattice points in discrete time steps.

Therefore, in the world of lattice Boltzmann space, time and particle velocity are discrete

variables. Particles encountering each other at a lattice point will collide with each other, after

which they will propagate to an adjacent lattice site. This two-step process of streaming and

collision is depicted in Figure 2.1. This very simple view of physics can model real physical

phenomena, if one adheres to physical conservation laws and if the lattice has sufficient symmetry.

In analogy with the Boltzmann equation of the classical kinetic theory, the system of particles is

described by a particle velocity distribution functions f(x,ci,t)Zfi(x,t), which represents the mass

density of lattice gas particles located at lattice point x at time t and moving with velocity ci. At a

lattice site, particles can have different velocities that are chosen from a finite set {ci}. These are

such that the particles move to adjacent lattice sites in exactly one time step.

The connection of this particle view to the macroscopic view of continuous fields is obtained by

taking “moments” of the particle velocity distribution function. The total mass density of particles

at lattice point x, r(x,t), is obtained by summing over all directions i:

rðx;tÞZ
X

i

fiðx;tÞ: (2.1)
q 2006 by Taylor & Francis Group, LLC



Post-collision t=t *+1
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Figure 2.1 Lattice gas particles moving and colliding on a hexagonal lattice.
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This is the zeroth order moment of the particle distribution function. In the case of lattice

Boltzmann schemes for fluid flow, the average fluid velocity u is obtained from the first-order

moment of the particle distribution function. Therefore, the particle momenta are summed over all

directions i:

rðx;tÞuðx;tÞZ
X

i

cifiðx;tÞ: (2.2)

Note that the average fluid velocity, which in kinetic theory is called the drift velocity, is the net

result of particles moving in various directions. On average, the particles are moving in a certain

direction, which becomes the fluid flow direction.

As lattice Boltzmann originates from the field of statistical physics, most of the scientific

literature assumes a physics background.2 In general, food engineers lack a sound training in

statistical physics. In this section, the basics of the lattice Boltzmann method are reviewed with

the assumption that the readers have only an engineering background. First, kinetic theory is

introduced using a lattice Boltzmann scheme for the simplest physical transport phenomenon:

one-dimensional diffusion. To demystify the statistical mechanics picture of lattice Boltzmann,

the equivalence of a special type of lattice Boltzmann scheme with finite-volume schemes is shown

for one-dimensional convection-diffusion. This section is concluded with the description of lattice

Boltzmann for fluid flow, and its related boundary conditions.
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2.2.2 1-D Diffusion

The basics of the lattice Boltzmann scheme are best illustrated with the simplest phenomenon it

can describe: one-dimensional (1-D) diffusion. At the macroscopic (or continuum) scale, 1-D

diffusion is described by the following partial differential equation:

vr

vt
Z D

v2r

vx2
(2.3)

In this simple case, it is sufficient to assume that the lattice gas particles have either positive

(c1ZCc) or negative velocity (c2ZKc), moving them either to the right or left neighboring lattice

points (see Figure 2.2). Their respective particle mass densities are denoted as f1 and f2. The

magnitude of their velocities, c, is such that cZDx/Dt, where Dx is the lattice spacing and Dt is

the time step. This type of lattice is denoted as D1Q2. In the following sections, lattice types will be

denoted as DdQq,6 where d is the dimension and q is the number of velocities in the velocity set

{ci}.

During collision, a fraction (a) of the lattice gas particles collides and reverses velocity. One

should imagine that the collisions occur with a background fluid in which the diffusing particles are

dissolved. The background fluid does not need to be modeled explicitly. Using the above defined

scattering rate a, the collision rules can be written to express the post-collision distribution func-

tions f 0i in terms of the pre-collision ones (fi):

f 01 Z ð1KaÞf1 Caf2;

f 02 Z ð1KaÞf2 Caf1:
(2.4)
f1 f2

x x+Δxx-Δx

a f1 a f2

(1−a) f1(1−a) f2

time=t

time=t '

f1'f2'
time=t+Δt

Figure 2.2 Collision and streaming on a D1Q2 lattice.
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Note that this collision conserves the number of particles: f1 C f2Z f 01C f 02; this is a prerequisite

for diffusion phenomena.

The collision rules can also be written in matrix notation, where L represents the scattering

matrix:

f 0i ðx;tÞZ
X

j

Lijfjðx;tÞ: (2.5)

Here, LijZ1Ka for iZj, whereas LijZa for isj.

The velocity distribution that is invariant under collision, is by definition the equilibrium

velocity distribution f
eq
i :

f
eq
i Z

X

j

Lijf
eq
j : (2.6)

For the D1Q2 lattice, the equilibrium distribution function is simply a weighted function of the

density:

f
eq
i Z

1

2
r Z

1

2
ðf1 C f2Þ; (2.7)

where rZSi fi is the density of lattice gas particles at the corresponding lattice point.

As the equilibrium distribution is invariant under collision, it is an eigenvector of the scattering

matrix Lij with eigenvalue l0Z1. For the general case, it holds that in lattice Boltzmann schemes

the distribution functions can always be decomposed in a linear combination of eigenvectors of Lij.

The number of eigenvectors is always equal to the number of velocities in the set {ci}. Hence, for

the simple case of diffusion on a D1Q2 lattice, the distribution function fi may be decomposed into

an equilibrium distribution, f
eq
i , and a nonequilibrium component, f

neq
i :

fiðx;tÞZ f
eq
i ðx;tÞC f

neq
i ðx;tÞ; (2.8)

where the nonequilibrium distribution function is given by:

f
neq
i Z

1

2c
ðf1 Kf2Þci ZG

1

2
ðf1Kf2Þ: (2.9)

Multiplication of the nonequilibrium distribution with the scattering matrix shows that it is

indeed an eigenvector:
X

j

Lijf
neq
j Z ð1K2aÞf

neq
i ; (2.10)

with an eigenvalue of l1Z(1K2a). The fact that the absolute value (jl1j) is smaller than unity

shows that the collision process tends to decrease the perturbations from equilibrium; in other

words, the process tends to drive the system towards equilibrium.

After the collision step, the particles propagate (stream) to the neighbouring lattice points:

fiðx CDxi;t CDtÞZ f 0i ðx;tÞ: (2.11)

Here, the lattice spacing is linked to the particle velocity: DxiZciDt.

The two-step process of collision and propagation can be combined into a single equation:

fiðx CDxi;t CDtÞZ
X

j

Lijfjðx;tÞ: (2.12)
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Normally the governing equation of the lattice Boltzmann scheme is written in another form.

First, the pre-collision distribution is split into equilibrium and nonequilibrium components. Using

the fact that the equilibrium is invariant under collision (see Equation 2.6),

fiðx CDxi;t CDtÞZ f
eq
i ðx;tÞC

X

j

Lijf
neq
j ðx;tÞ: (2.13)

Second, the scattering matrix is replaced by the operator: UZIKL, i.e., UijZdijKLij. Here, dij

is the Kronecker delta, with dijZ1 for iZj, and dijZ0 for isj. The governing equation of the lattice

Boltzmann scheme then becomes:

fiðx CDxi;t CDtÞKfiðx;tÞZK
X

j

Uijf
neq
j ðx;tÞ: (2.14)

Linear algebra states that the eigenvectors of Lij are also eigenvectors of Uij, with eigenvalues

unZ1Kln Note that the eigenvalue of the equilibrium distribution function becomes u0Z0,

whereas that of the nonequilibrium part of the distribution function becomes u1Z2aZu Hence,

the scheme can simply be described by

fiðx CDxi;t CDtÞKfiðx;tÞZKuf
neq
i ðx;tÞ (2.15)

This last equation has a form similar to the governing equation of the classical kinetic theory—

the Boltzmann equation—hence the name lattice Boltzmann method. Equation 2.15 is consequently

called the lattice Boltzmann equation.

Not only for the simple case of 1-D diffusion, but also for the more general cases, one finds that

the governing equations of the lattice Boltzmann method are discretized versions of the corre-

sponding continuum Boltzmann equations. This is made evident by comparing the above lattice

Boltzmann equation with a special (single relaxation-time) approximation of the classical Boltz-

mann equation:

vf ðx;tÞ

vt
Cc$Vf ZKu½f ðx;tÞKf eqðx;tÞ�: (2.16)

This approximation is due to Bhatnagar, Groos, and Krook, and the lattice Boltzmann

equivalent is named the lattice BGK equation:

fiðx CDxi;t CDtÞKfiðx;tÞZKu½fiðx;tÞKf
eq
i ðx;tÞ�: (2.17)

The left-hand side of the lattice BGK equation is a discretization of the left-hand side of the

Boltzmann equation using Euler forward time discretization and upwind spatial discretization.

In classical kinetic theory, the equilibrium distribution function (of an ideal gas) is the well-

known Maxwell–Boltzmann distribution:

f eqðcÞZ
r

2pc2
s

� �D=2
exp K

ðcKuÞ2

2c2
s

� �
(2.18)

where D the dimension of the system.

Notice that this is a Gaussian distribution of the particle velocities, with average velocity u, and

with variance cs, which has the physical meaning of the speed of sound of an ideal gas and relates

pressure to density: pZrc2
s ; (the ideal gas law). The Maxwell–Boltzmann distribution is

normalized such that the total density of particles is equal to r.

As in kinetic theory, the resulting physics in the lattice Boltzmann method is governed by the

relaxation parameters Uij (determining the values of the transport coefficients like diffusivity or

viscosity), and by the explicit form of the equilibrium distribution (determining the type of transport

phenomenon). It is shown,9 that the lattice Boltzmann method describes the proper physics if the
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moments of the equilibrium distribution equal those of the classical Maxwell–Boltzmann distri-

bution (up to a certain order).

Theory shows that, for (convection) diffusion, the moments up to second order must be

satisfied.10,7,8 In 1-D, these moments are

M0 Z
X

i

f
eq
i Z

ð
f eqðcÞdc Z r;

M1 Z
X

i

cif
eq
i Z

ð
cf eqðcÞdc Z ru; (2.19)

M2 Z
X

i

c2
i f

eq
i Z

ð
c2f eqðcÞdc Z rc2

s Cru2:

For diffusion, the average velocity, u, is zero, and the variance of the equilibrium distribution is

cs. For convection diffusion, u is externally imposed. For (convection) diffusion, the variance, cs,

does not have any physical meaning, and can be used as a free parameter to optimize lattice

Boltzmann schemes. For fluid dynamics, it has the meaning of the speed of sound.

Using the formalism of matching the moments of the equilibrium distribution, f
eq
i , to those of

the Maxwell–Boltzmann distribution, one can take a very natural and gradual build-up of

complexity of physical transport phenonema to be modelled with lattice Boltzmann. The

example discussed here started with diffusion; the next step is convection-diffusion. For convection

diffusion, moments up to second order must be satisfied, but now they are also velocity dependent.

From convection diffusion, it is a small step towards fluid flow. Then, in addition to the second-

order moments that are identical to those of convection-diffusion, the third-order moments must

also be satisfied.

The relations for the transport coefficients (i.e., diffusivity or viscosity) are derived using the

Chapman–Enskog expansion,2,8 which is an advanced mathematical procedure originating from

kinetic theory. For the simple case of diffusion, the diffusivity is

D Z c2
s

1

u
K

1

2

� �
Dt: (2.20)

For fluid flow (see Section 2.4), the expression for the kinematic viscosity is very similar:

hZc2
s

1
u

K1
2

� �
Dt:
2.2.3 Equivalence with Finite-Volume Schemes

The lattice Boltzmann method can also be viewed as a special kind of finite-volume

scheme.11–13 For fluid flow, this perspective does not follow quite immediately. However, for

more simple phenomena such as diffusion and convection diffusion, this relation is very

evident.12,13 Here, this is illustrated for a lattice Boltzmann scheme for convection diffusion.

Instead of the D1Q2 lattice introduced above, the D1Q3 lattice—a 1-D lattice with rest particle

particles in addition to particles moving to the right or left—is now needed. Therefore, the velocity

set is ciZ{0,C1,K1}. Rest particles will be indicated with index iZ0.

One finds a straightforward equivalence with a finite-volume scheme for a special choice of the

relaxation parameter: uZ1. This value is inserted into the lattice BGK scheme:

fiðx CDxi;t CDtÞZ f
eq
i ðx;tÞ: (2.21)

The equilibrium distribution follows directly from the above constraints on its moments

(Equation 2.19), giving
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f
eq
i Z wir 1 C

ciu

c2
s

C
u2

c2
s

� �
; (2.22)

where wi Zc2
s =2c2 for iZ1, 2, and w0Z1Kw1Kw2. Note that the equilibrium distribution for only

diffusion is obtained by setting uZ0.

By applying the Gauss theorem, a finite-difference equation is derived for the mass density that

may be compared to traditional discretization schemes. The Gauss theorem relates the change in

mass over time to the net mass flux, integrated over the surface of the volume element (i.e., the

lattice cell) that is being considered. Hence, it is a formulation of the mass balance:

rðx;tÞKrðx;tKDtÞZ f
eq
2 ðx CDx;tÞKf

eq
1 ðx;tÞC f

eq
1 ðxKDx;tÞKf

eq
2 ðx;tÞ: (2.23)

Here, DxZcDt has been used.

Substitution of the expression for the local equilibrium distribution function results in

rðx;tÞKrðx;tKDtÞZ w1½rðx CDx;tÞKrðx;tÞCrðxKDx;tÞKrðx;tÞ�Kw1

cu

c2
s

½rðx CDx;tÞ

KrðxKDx;tÞ�Cw1

u2

c2
s

½rðx CDx;tÞKrðx;tÞCrðxKDx;tÞKrðx;tÞ�: (2.24)

Recognize the finite difference stencils in the above equation, for the Euler forward time

derivative, Dtrðx;tÞ, and the first- and second-order spatial derivatives following central differen-

cing, Dxrðx;tÞ and D2
xrðx;tÞ. They read:

Dtrðx;tÞZ
rðx;tÞKrðx;tKDtÞ

Dt
(2.25)

Dxrðx;tÞZ
rðx CDx;tÞKrðxKDx;tÞ

2Dx
(2.26)

D2
xrðx;tÞZ

rðx CDx;tÞCrðxKDx;tÞK2rðx;tÞ

Dx2
: (2.27)

Using w1Zc2
s =2c2 and cZDx/Dt, DZc2

s Dt=2 results in:

Dtrðx;tÞCuDxrðx;tÞZ D C
u2

2

� �
D2

xrðx;tÞ: (2.28)

It follows that the above finite-difference equation for the evolution of the density, Equation

2.28, is identical to the Lax–Wendroff finite-volume scheme.12 This scheme is obtained by central

differencing of first- and second-order spatial derivatives, and a second order Taylor expansion of

the Euler forward time derivative. In this expansion, the second-order time derivative is replaced

with second-order spatial derivatives (as follows from the convection-diffusion equation), thereby

eliminating numerical diffusion. Without this correction of the time derivative, the finite-volume

scheme would be overly dispersive, leading to significant, and even unstable, numerical oscil-

lations. Evidently, the lattice Boltzmann scheme automatically corrects for numerical diffusion

as a consequence of the constraints for the equilibrium distribution, Equation 2.19.

In the more general case of uO1, the Chapman–Enskog expansion shows that the nonequili-

brium component of the distribution function is related to the density gradient, vr/vx.10,8 From a

finite-volume viewpoint, one can state that in the lattice Boltzmann method, the density gradient is

added as an extra state variable at a grid cell, in addition to the density, which is normally the only
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state variable that is used in traditional finite-volume methods. It is probable that lattice Boltzmann

is related to a special finite-volume scheme that uses Hermite interpolation. However, such finite-

volume schemes are very rare. Finite-volume schemes are usually based on

Lagrangian interpolation.

The use of gradients as state variables makes lattice Boltzmann effectively a higher-order

scheme. For uO1 and c2
s Zc2=3, the lattice Boltzmann scheme for convection-diffusion is third-

order accurate in spatial dimensions. Furthermore, it is virtually without numerical diffusion or

dispersion (which plague either upwind or Lax–Wendroff finite-volume schemes), and is stable

even for high grid-Peclet numbers (Pe*z1000, provided that density gradients are moderate).
2.2.4 Fluid Flow

The lattice Boltzmann scheme for fluid flow also follows from the constraint that the moments

of the equilibrium distribution are equal to those of the classical Maxwell–Boltzmann distribution

for an ideal gas.9 Lattice Boltzmann normally operates in the weakly-compressible limit

(simulating incompressible flow with an ideal gas at low Mach numbers, MaZu=cs/1), and

the moments must be satisfied up to third order. The constraints on the moments are:9

X

i

f
eq
i Z r;

X

i

ci;af
eq
i Z rua;

X

i

ci;aci;bf
eq
i Z rc2

s dab Cruaub; (2.29)

X

i

ci;aci;bci;yf
eq
i Z ruaubug Crc2

s ðuadbg Cubdag CugdabÞ:

Here, a, b, and g indicate the Cartesian components of the particle velocities, ci, and the fluid

flow velocity, u.

Note that the zeroth-order moment is the density, r, the first-order moments are the components

of the momentum density, rua, and the second-order moments are the components of the

momentum flux tensor, rc2
s dab Cruaub; with the pressure proportional to the density as stated in

the ideal gas law: pZrc2
s : Here, cs is the speed of sound in the lattice gas. The Kronecker delta, dab,

again indicates the components of the unit tensor. The third-order moments are related to the

(kinetic) energy fluxes. Third-order moments only have to be satisfied for fluid flow. However,

in most lattice Boltzmann schemes, the third-order term in the velocity, ruaubug is omitted, as the

scheme is operated at low Mach numbers and the third-order term is negligible. Further note that the

constraints for (convection)-diffusion are a subset of the constraints for fluid flow.

The equilibrium distribution satisfying the above constraints, Equation 2.29, can be expressed

(using the Einstein convention of summation over repeated indices) as:6

f
eq
i Z wir 1 C

ci;aua

c2
s

C
ðci;auaÞ

2

2c4
s

K
uaua

2c2
s

� �
: (2.30)

The D2Q9 and D3Q19 lattices are most commonly used; their velocity sets are depicted in

Figure 2.3. From the isotropy of viscosity, it follows that the speed of sound should be equal to

c2
s Zc2=3. Note that for fluid flow, particles propagating to next-nearest neighbor sites are also

needed. The weight factors are listed in Table 2.1. Note that the value of the weight factors only

depends on the magnitude of the particle velocity, kcik.
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Figure 2.3 2-D and 3-D lattices commonly used for fluid flow.
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2.2.5 Boundary Conditions

Fluid flow can be driven either by (1) moving boundaries, or (2) pressure differences. The fluid

flow can also meet stationary (nonmoving) boundaries, for which the no-slip boundary condition

must be applied. The implementation of these boundary conditions for the case of a D2Q9 lattice

will be briefly discussed.

Pressure Boundary Conditions. In the case of a system with one inlet and outlet, both of the

same size, it is very convenient to apply pressure-periodic boundary conditions, as introduced by

Inamuro.14 Contrary to pure periodic boundary conditions, a fraction of the lattice gas particles will

be reflected, thereby creating a pressure difference DpZDrc2
s . For a problem with the inlet and

outlet at xZ1 and xZNX, respectively, the boundary conditions are:

f1ðx Z 1;t CDtÞ Z f 01ðx Z NX;tÞCw1Dr

f5ðx Z 1;t CDtÞ Z f 05ðx Z NX;tÞCw5Dr

f8ðx Z 1;t CDtÞ Z f 08ðx Z NX;tÞCw8Dr

f3ðx Z NX;t CDtÞ Z f 03ðx Z 1;tÞKw3Dr

f6ðx Z NX;t CDtÞ Z f 06ðx Z 1;tÞKw6Dr

f7ðx Z NX;t CDtÞ Z f 07ðx Z 1;tÞKw7Dr:

(2.31)
Table 2.1 Weight Factors, wi, for D2Q9 and D3Q19 Lattices

kcik
2 D2Q9 D3Q19

0 4/9 1/3

1 1/9 1/18

2 1/36 1/36
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For systems that are not periodic, other types of pressure boundary conditions must be formu-

lated. Such conditions are developed by Zou and He.15

As the pressure boundary condition is a Dirichlet boundary condition, it is more convenient to

prescibe it at the lattice site. Where the density and the momentum density are always fully

determined, i.e.,

r Z
X

i

fi;

rux Z
X

i

fici;x; (2.32)

rux Z
X

i

fici;x;

the inlet and outlet pressures are given via the boundary conditions, and determine the respective

densities r0 and r1. Furthermore, a zero vertical-velocity component at inlet and outlet must

be enforced.

At the inlet, f1, f5, and f8 are unknown. The velocity can be obtained from the known particle

distribution functions by elimination of f1Cf5Cf8 from Equation 2.32:

r0ux Z r0cxKcxðf0 C f2 C f4 C2ðf3 C f6 C f7ÞÞ: (2.33)

Note that f6 and f7 contain information on the viscous stress tensor, SabZv(vaubCvbua), which

should be preserved. The particle distribution normal to the inlet does not contain that information.

Therefore,

f1Kf3 Z
2w1cx

c2
s

r0ux (2.34)

may be applied. Now the unknown populations are fully defined. Using the values of wi gives

f1 Z f3 C
2r0ux

3c
;

f5 Z f7Kðf2Kf4Þ=2 C
r0ux

6c
;

f8 Z f6 C ðf2Kf4Þ=2 C
r0ux

6c
:

(2.35)

At the outlet, the followed may be obtained in a similar fashion:

f3 Z f1K
2r1ux

3c
;

f6 Z f8Kðf2Kf4Þ=2 C
r1ux

6c
;

f7 Z f5 C ðf2Kf4Þ=2 C
r1ux

6c
:

(2.36)

Velocity Boundary Conditions at Inlet and Outlet. Prescribing a velocity at the inlet or outlet is

quite similar to prescribing the pressure at the boundary. The inlet and outlet are again thought to be

located at the lattice sites, and the velocity field at inlet or outlet has only a horizontal component.

Therefore, as in the case of pressure boundary conditions, three constraints are observed:

rZ
P

ifi; rux Z
P

ificix; ruy Z
P

ificiyZ0. However, now the density, r, is unknown, and ux

is known from the prescribed velocity profile (a parabolic one in the case of Poisseuille flow). As for

the pressure boundary conditions, the above constraints are not sufficient to close the set of
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equations. Consequently, the density is also taken to be equal to the standard (or average) density,

r0, because we work in the weakly compressible limit. At the inlet, the boundary conditions again

become:

f1 Z f3 C
2r0ux

3c
;

f5 Z f7Kðf2Kf4Þ=2 C
r0ux

6c
;

f8 Z f6 C ðf2Kf4Þ=2 C
r0ux

6c
:

(2.37)

At the outlet, the boundary conditions are identical to Equation 2.36.

No-Slip Boundary Conditions. Following the same line of reasoning, no-slip boundary con-

ditions at (moving) walls, as introduced by Ladd,16 may be derived. Consider Couette flow, with top

and bottom walls moving at velocity Gux. In lattice Boltzmann, a natural boundary between fluid

and solid is halfway lattice sites, coinciding with the boundary of the Wigner–Seitz cell of the

lattice. In the example of Couette flow, no-slip boundary conditions should be enforced at halfway

lattice sites at top and bottom. At the top wall, after propagation, f2, f5, and f6 have left the fluid

node, and via the boundary condition, f4, f7, and f8 have to be injected into the fluid node. The

constraint of zero mass flux through the wall demands that

f2 C f5 C f6 Z f4 C f7 C f8: (2.38)

The moving wall adds momentum to the ejected particles. To obtain a wall velocity uwall, one

needs

cðf5 C f8ÞKcðf6 C f7ÞZ
ruwall

6
: (2.39)

Again, assuming bounce-back for a particle propagating normal to the wall, then f2Zf4. Conse-

quently, the boundary conditions at the top wall become:

f4 Z f2;

f7 Z f5K
r0uwall

6c
;

f8 Z f6 C
r0uwall

6c
:

(2.40)

In the case of uwallZ0, the wall is not moving, and the boundary conditions are therefore:

f4 Z f2; f7 Z f5; f8 Z f6: (2.41)

These boundary conditions are the often-used “bounce-back” boundary conditions, that impose

the no-slip boundary conditions for stationary walls.2
2.2.6 What Makes Lattice Boltzmann Special?

Despite the fact that the lattice Boltzmann scheme has been derived by discretization of kinetic

theory, it does not seem significantly different from traditional finite-volume schemes. However, as
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demonstrated above, the lattice Boltzmann can be distinguished from traditional finite volumes by a

number of favorable attributes. In summary:

† In the case of uO1, the lattice Boltzmann schemes make use of gradients in conserved

quantities, i.e., density gradient or the symmetric part of the deformation rate tensor, as

state variables, making it effectively a higher-order scheme.
† Fluid flow is solved in the weakly compressible limit using the ideal gas equation of state.

This makes it possible to model fluid flow through complex geometries with relatively

coarse grids. Traditional schemes based on incompressible fluids have to solve the

Poisson equation for the pressure, requiring refined meshes that result in longer compu-

tation times. The weakly compressible limit, however, does imply that the use of lattice

Boltzmann schemes should be limited to low-Mach-number flows, u=cs/1 (or rather

low Courant numbers, u=c/1).
† Lattice Boltzmann schemes are implemented in a stream-and-collide fashion, where the

most demanding computations (collision step) needs only local information. This makes

it very simple to code and, above all, ideal for parallel computing. Practice shows that the

performance scales almost linearly with the number of processors. Consequently, numer-

ous implementations of lattice Boltzmann schemes are found on PC clusters, parallel-

computing architectures, or even grid environments.
† Via its link to kinetic theory, it is relatively simple to extend the lattice Boltzmann to

complex fluids that are often described on a thermodynamic basis or on a particulate

basis. Examples of these complex fluids to which lattice Boltzmann has been applied are

immiscible fluids, surfactant stabilised emulsions, polymer melts, microemulsions,

and suspensions.
2.3 LATTICE BOLTZMANN SCHEMES FOR COMPLEX FLUIDS

The last property mentioned in the previous paragraph makes lattice Boltzmann very attractive

to foods, which are one of the most notorious complex fluids. This “notorious complexity” can be

probed using the “simplicity” of lattice Boltzmann and the “ease” with which models from the field

of soft condensed matter can be incorporated. Soft condensed matter is a relatively new field in

physics. It has been recognized as being of highly significant value by major food manufacturers for

designing new food products with innovative textures and functional ingredients.18

Below, the principles of lattice Boltzmann schemes for complex fluids will be described. As in

the field of soft condensed matter, the microstructure of complex fluids can be represented in two

fundamentally different ways: (1) continuous fields of order parameters, governed by free-energy

functionals, and (2) in a particulate sense, governed by a force model entering Newton’s law.

Among the methods that follow the first approach are self-consistent field theory,19 density

functional theory,20 and phase field theory.26,25 Among those following the second approach are

Brownian dynamics, molecular dynamics, Stokesian dynamics,21 and stochastic rotation

dynamics.22 Lattice Boltzmann schemes for complex fluids mostly follow either one of the

approaches, although there are a few examples where the methods are combined.

Two cases are presented below: (1) a lattice Boltzmann scheme for emulsions, based on

the free-energy functional approach, and (2) a lattice Boltzmann scheme for suspension, with the

dispersed phase represented by particles moving on a fixed lattice.
2.3.1 Lattice Boltzmann Scheme for Emulsions

Lattice Boltzmann schemes for emulsions (or immiscible fluids, in general) use the diffuse-

interface concept, where the dispersed or continuous phase is indicated with a color function or
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order parameter.23,28 At the interface, the order parameter changes value in a region of several grid

spacings, hence the term diffuse interface. Gradients in the color function or order parameter give

rise to a capillary pressure that is incorporated as a body force in the Navier–Stokes equation. The

color function evolves more or less as a passive scalar that is transported by the fluid flow.

Consequently, the interface does not have to be tracked explicitly. Therefore, there is no need

for adaptive grid refinements at interfaces as is required in finite-element and boundary-element

methods. In many CFD packages, one finds a diffuse-interface method based on volume of

fluid.24,33 The disadvantage of the VOF method is that it is not based on a physical theory,

making it difficult to incorporate complex physical processes such as surfactant adsorption.

Another numerical method based on the diffuse interface is the phase field method, which is

based on the Cahn–Hilliard theory of phase separation in fluids.25–28 The Cahn–Hilliard theory is

based on a free-energy functional of the order parameter. From the functional, two thermodynamic

quantities are derived: (1) the chemical potential driving the diffusion of the order parameter, and

(2) the pressure tensor to be inserted in the Navier–Stokes equation. The latter describes the

velocity field in both the dispersed and continuous phases. The capillary pressure due to the inter-

face is incorporated into the pressure tensor and is related to gradients in the order parameter. The

use of the Cahn–Hilliard theory in the context of lattice Boltzmann schemes is pioneered by Julia

Yeomans and coworkers,28 and among other multiphase flow phenomena, it has been shown to

accurately describe droplet breakup.29 Recently, we have extended the model of Yeomans and

coworkers with surfactant adsorption.32 Below, the main concepts of the Cahn–Hilliard theory, as

used in the context of lattice Boltzmann, are described.

For a homogeneous immiscible binary fluid (e.g., an oil–water mixture) with phase densities ra

and rb, the bulk free-energy density, F0, is given by regular solution theory:

F0 Z kT½ra ln ra Crb ln rb Ccabrarb�: (2.42)

Instead of densities ra and rb, the free energy can also be described by the total density, r0Z
raCrb, and the density difference, fZ(raKrb)/r, also known as the order parameter. A frequently

used approximation of the regular solution free energy (under the assumption of a constant density

r0) is

F0 zK
A

2
f

2 C
B

4
f

4: (2.43)

For an inhomogeneous fluid (having interfaces between the immiscible phases), a gradient term

must be included in the free energy in the spirit of van der Waals, cf.:28

F Z F0 C
k

2
ðVfÞ2; (2.44)

where k is a parameter that is linked to the surface tension.

The chemical potential is then:

m Z
dF

df
ZKAf CBf3KkV2f: (2.45)

This is the driving force for diffusion of the order parameter.

In addition to the chemical potential, the capillary pressure tensor must be defined to be inserted

in the Navier–Stokes equation. The scalar part of the stress tensor (the hydrostatic pressure), p0,

follows from its thermodynamic definition:30

p0 Z fmKF: (2.46)
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Substitution of the expressions of the free-energy density and chemical potential then gives:

p0 Z rc2
s K

A

2
f2 C

3B

4
f4KkfV2fK

k

2
ðVfÞ2: (2.47)

For the complete pressure tensor, Pab, one must ensure that it obeys the condition of mechanical

equilibrium, specifically that it is divergence-free: vbPabZ0. A suitable choice is28

Pab Z p0dab CkðvafÞðvbfÞ: (2.48)

The evolution of the momentum density, r0u, and the order parameter, f, are described,

respectively, by the Navier–Stokes Equation (with the capillary stress tensor) and the convec-

tion-diffusion Equation (with the diffusive flux proportional to the gradient in the chemical

potential):

vtf Cvafua Z vaMvam; (2.49)

vtrua Cvbruaub Z vbPab Cvarnvaua; (2.50)

where n is the local viscosity of the fluid, which can be made dependent on f in case of viscosity

differences between the fluid phases, and M is the mobility.

The total density, r, and the order parameter, f, are modelled with two particle velocity

distribution functions, fi and gi, respectively. Both distributions evolve according to the lattice

Boltzmann equation:

fiðx CDxi;t CDtÞKfiðx;tÞZKuf ½fiðx;tÞKf
eq
i ðx;tÞ�;

giðx CDxi;t CDtÞKgiðx;tÞZKug½giðx;tÞKg
eq
i ðx;tÞ�:

(2.51)

To obtain the correct governing physics, the moments of equilibrium distributions must follow:28

P
f

eq
i Z r;

P
ci;af

eq
i Z rua;

P
i ci;aci;bf

eq
i Z Pab Cruaub;

P
i ci;aci;bci;gf

i eq Z rc2
s ðuadbg Cubdag CugdabÞ:

(2.52)

and
P

i g
eq
i Z f;

P
i ci;ag

eq
i Z fua;

P
i ci;aci;bg

eq
i Z Gmdab Cfuaub;

(2.53)

where G is a parameter involved in the definition of the mobility: MZG(1/ugK1/2)Dt.

Figure 2.4 shows an example of the application of this model to droplet breakup in shear flow.

The D2Q9 lattice with Reynolds number ReZ1.0 and capillary number CaZ1.0 have been

used here.
2.3.2 Lattice Boltzmann Scheme for Suspensions

Lattice Boltzmann schemes simulate particle suspensions by mapping the suspended particles

onto a fixed grid on which the Navier–Stokes equation is solved.16 The interaction between the fluid

and the particles is by special fluid–solid boundary conditions (see below). These boundary
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conditions prescribe the velocity on the fluid–solid boundary. They also determine the force and

torque exerted by the fluid on the particle. The dynamics of the colloidal particles are solved by a

separate algorithm that solves Newton’s equation of motion using the forces and torques as

obtained from the fluid–solid boundary conditions. To solve the particle dynamics, one can use

efficient schemes that are developed in the field of molecular dynamics.

Particles having a defined radius, R, are mapped onto the lattice by simple digitization. Lattice

sites with a distance to the particle’s center that is smaller than the radius are marked as solid. All

other unoccupied sites are consequently fluid. For conservation of mass, the solid lattice sites are

occupied with lattice gas particles to which the collision and propagation steps are applied. Via

application of the boundary conditions, this fluid remains inside the particle and flows according to

the translational and angular velocities.

Such a digitized particle is shown in Figure 2.5. Observe that via digitization the round shape of

the particle is transformed to a staircase representation. The arrows indicate lattice gas particles

from the external fluid that are bounced back to the fluid after having collided with the suspended

particle. Via this bounce-back process, the appropriate (no-slip) boundary conditions are applied on

the surface of the particle.

As described in Section 2.5, the no-slip boundary conditions are imposed halfway between the

solid lattice site (located at x) and the fluid lattice site (located at xCciDt). The fluid velocity, ub, at

this position is given by

ub Z Up CUp ! x C
1

2
ciDtKXp

� �
: (2.54)

Here Up is the translational velocity, Up is the angular speed, and Xp is the location of the

particle’s center.

For moving solid–fluid boundaries, momentum must be exchanged between the incoming

particles from the solid and fluid sides of the boundary. The incoming distribution functions are
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Figure 2.5 Digitization of a suspended particle on the lattice. Here, arrows indicate lattice gas particles that
bounce back from the suspended particle.
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the post-collisional distribution functions f 0i ðx;tÞ and f 0i�ðxCDxi;tÞ, having defined ci*ZKci.

When the boundary conditions are applied, the reflected particles arrive back at the lattice site at

time tCDt, ready for the next collision step.

The following rule imposes the required no-slip boundary condition:16

fi�ðx;t CDtÞZ f 0i ðx;tÞCDf ;

fiðx CDxi;t CDtÞZ f 0i�ðx;tÞKDf ;

Df Z wir
ci$ub

c2
s

:

(2.55)

Notice that the no-slip boundary condition for flat moving walls, derived in the previous section,

is a subset of the one given above.

The exchanged momentum, Dfc, is proportional with rub, the velocity of the solid-fluid

boundary. The momentum exchange is given by

Dp x C
1

2
Dxi

� �
Z cifiðx CDxi;t CDtÞCci�fi�ðx;t CDtÞKcif

0
i ðx;tÞKci�f 0i�ðx;tÞ: (2.56)

This momentum exchange induces a local force,

DFp x C
1

2
Dxi

� �
ZK

Dp x C 1
2

Dxi

� �

Dt
; (2.57)
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Figure 2.6 Two disks passing each other in shear flow.
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and torque,

DTp x C
1

2
Dxi

� �
Z x C

1

2
Dxi

� �
!DF x C

1

2
Dxi

� �
; (2.58)

on the solid particle, indicated by the index p. The total force Fp and torque Tp on this colloidal

particle is obtained by summing the DFpðxC ð1=2ÞDxiÞ and DTpðxC ð1=2ÞDxiÞ over all lattice links

between fluid lattice sites and solid lattice sites corresponding to the current particle p.

After computing the total force and torque that is exerted on the particle, the kinematic proper-

ties of the suspended particle are updated by solving Newton’s law using the Verlett scheme:16
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upðt CDtÞZ upðtÞC
Fp

mp

Dt;

Xpðt CDtÞZ XpðtÞCupðt CDtÞDt C
1

2

Fp

mp

Dt2;

Upðt CDtÞZ UpðtÞC
Tp

Ip

Dt;

(2.59)

where mp and Ip are the mass and the inertia, respectively, of the suspended particle.

Figure 2.6 shows a typical example of flow computed with this type of scheme: two suspended

discs that pass each other in shear flow. Simulation is performed with the D2Q9 lattice, with particle

Reynolds number ReZ0.1.
2.4 APPLICATIONS

2.4.1 Emulsification in Microchannel T-Junctions

During the last decade, a large volume of research has been dedicated toward the manufacture

of monodisperse emulsions using membranes or microfluidic devices.33,34,39,37 These monodis-

perse emulsions have positive attributes as stability against Ostwald ripening and creaming. By

mixing monodisperse emulsions, food producers obtain full control over the textural properties of

emulsions. Furthermore, monodisperse emulsions are very advantageous as a pre-emulsion in the

process of making double emulsions.36

Despite ten years of research, the physics of droplet formation in confined systems, such as

membranes or microfluidic devices, is still far from understood. We have embarked on two projects

that focus on preparing monodisperse emulsions using microsieves. To obtain a better under-

standing of the governing physics, we have developed lattice Boltzmann schemes describing the

process of droplet formation in a confined geometry. Our model is based on the diffuse-interface

scheme as developed by Yeomans and coworkers28 that is explained in the previous section. Below,

results obtained from modelling droplet formation in microchannel T-junctions, which are thought

to act as a model system for membranes and microsieves, are presented.

Figure 2.7 shows snapshots of a droplet formed during an experiment and in simulation under

the same flow conditions. Comparing experimental and numerical data for droplet diameter shows

that our model accurate predicts the experimental data, without any parameter estimation.5 An

important phenomenon that is essential for droplet breakup is contact-line dynamics.41 This is

evident in both experiment and simulation by the intrusion of the continuous phase (water) into

the side branch, which is hydrophilic (as is the main channel). Wetting boundary conditions are
Figure 2.7 Comparison of experiment and simulation. (From van der Graaf, S., Nisisako, T., Schroën, C. G. P. H.,
van der Sman, R. G. M., and Boom, R. M., Langmuir, 22(9), 4144–4152, 2006.)
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implemented with the Cahn boundary condition,38,5 from which contact-line dynamics are an

emergent property.

After having validated the model against experimental data, we have performed a parameter

study on how the droplet’s volume, Vp, depends on the capillary number, Ca, and the dispersed flow

rate, fd (see Figure 2.8). Via this parameter study, we have obtained the following scaling rule:

Vp Z ðVp;0 Ct0fdÞCaK0:75; (2.60)

where Vp,0 and t0 are constants that depend on the geometry of the microfluidic device. This

relation holds for the regime Ca!0.1, where the droplet diameter is of comparable order or

smaller than the hydraulic diameter of the main channel. This scaling is quite different from the

scaling found in the regime Ca[0:1, where the confining walls have little influence and the

droplet breakup is governed by a balance between the shear force on the droplet and the surface

tension force.40,39

Recently, we have extended this model to encompass surfactants, which can diffuse and absorb

on the droplet interface and thereby lower the interfacial tension.32 Surfactants are important for

emulsion droplet stabilization and they also lower the interfacial tension. This allows the emulsi-

fication process to operate in the low-shear regime. Low shear rates are beneficial for the

conservation of energy and for protecting some shear-sensitive ingredients such as the internal

phase of double emulsions.36 The correct surfactant dynamics emerge from a free-energy functional

that is based on the original formulation by Diamant and Andelman,31 but converted from a sharp-

interface to a diffuse-interface formulation.32 The free-energy functional is simply added to the

Cahn–Hilliard free energy from which the chemical potential for surfactants and an extended

pressure tensor is derived.
2.4.2 Shear-Induced Diffusion in Microfiltration Processes

The above-mentioned microsieves are also very promising for fractionation of polydisperse

suspensions such as milk. A sieve designed for fractionation is depicted in Figure 2.9.
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Figure 2.9 Silicon–nitride microsieve with monodisperse pores of 1-mm diameter made with standard silicium
lithography technology. (From Kuiper, S., van Rijn, C. J. M., Nijdam, W., Krijnen. G. J. M., and
Elwenspoek, M. C., J. Membr. Sci., 180, 15–28, 2000.)
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The microsieve is operated as a microfiltration device. However, as is generally true for

filtration devices, microfiltration processes are hindered by fouling, i.e., the formation of a concen-

tration polarization layer or even a cake layer on top of the microsieve. This fouling layer must be

minimal for the microsieve to be successful in practice. For monodisperse emulsions in Stokes flow,

the physics behind fouling-layer formation, i.e., shear-induced diffusion, is well understood.21

However, for milk fractionation, one must deal with polydisperse suspensions and nonzero

Reynolds number flows. To understand shear-induced diffusion in these practical systems, we

have developed lattice Boltzmann schemes based on the scheme developed by Ladd,16 as discussed

in the previous section.

First, we have performed simulations of suspensions with fully resolved particles, having

diameters significantly larger than the lattice spacing. The results show significant deviations

from the monodisperse/Stokes flow case.42,44 For finite Re-number flows, we observed a higher

shear-induced diffusivity than in the case of Stokes flow, and in a bidisperse suspension, the shear

induced diffusivity of the smaller particles was largely determined by the larger particles

(Figure 2.10).

To perform process optimisation, we have also developed a continuum model describing

fouling-layer formation on a microsieve. This continuum model consists of a Navier–Stokes

equation coupled to a convection-diffusion equation.3 Here, the Navier–Stokes equation describes

the flow of the fluid as a whole, whereas the convection-diffusion equation describes the evolution

of the density of the suspended particles. The shear-induced diffusivity, Deff, that enters the convec-

tion-diffusion equation depends on the local shear-rate, g, which is directly obtained from the

Navier–Stokes equation. In the Navier–Stokes equation, the effective fluid viscosity, meff,

depends on the suspended particle density, f. Therefore, there is a two-way coupling between

the convection-diffusion and the Navier–Stokes equation. For this application, the continuum

model is based on the lattice Boltzmann scheme because it has favorable properties for the

simulation of convection-diffusion (because it shows little to no numerical diffusion or dispersion),

and because the shear rate can be directly obtained from the local nonequilibrium part of the

velocity distribution function.

The Navier–Stokes equation and the convection-diffusion equation are simulated with

two lattice gases with distributions fi and gi, with the macroscopic quantities represented by

hydrodynamic moments of the distribution functions: rZSifi is the density field of the fluid,
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Figure 2.10 Shear-induced diffusion phenomena in mondisperse and bidisperse suspensions in shear flow.
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Figure 2.11 Build up of the fouling layer above a microsieve membrane.
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ruZSifici is the momentum density of the fluid, pZrc2
s is the pressure field, and fZSigi is the

density field of the suspended particles. These macroscopic quantities are governed by the

following set of partial differential equations:

vtr CV$ru Z 0; (2.61)

vtru CV$ruu ZKVp CVmeffðVu CVuT ÞCFdrag; (2.62)

vtf CV$fu Z VDeffVf: (2.63)

For monodisperse suspensions in a Stokes-flow regime (ReZ0), analytical expressions are

available for the effective transport coefficients:45,3

meff Z m0 1 C1:5
f

ð1Kf=fmaxÞ

2

4

3

5
2

;

Deff Z 0:33ga2f2½1 C0:5 exp ð8:8fÞ�:

(2.64)

Our simulation results are in good agreement with an analytical theory of membrane fouling.45

Figure 2.11 shows some snapshots of the growth of the fouling layer on a microsieve membrane.3

For polydisperse suspensions and finite Reynolds-number flows (ReO0.1), other closure

relations for the effective transport coefficients are needed. Our simulations on fully resolved

particles42,44 provided a first insight in these closure relations, but more work is required.
2.5 CONCLUSIONS

In this chapter, we have introduced the basics of the lattice Boltzmann scheme. Due to its

simplicity, it is a powerful method for simulating macroscopic transport phenomena such as fluid

flow and convection-diffusion in complex geometries such as porous media.2 Due to the fact that

the collision step is performed locally at each lattice site, the technique is very efficient with respect

to parallel computing, showing almost linear scaling of the performance with the number

of processors.

With respect to food processing, the value of the lattice Boltzmann lies more in the fact that it

can very efficiently model complex fluids with fully resolved structural elements, such as emulsions

and suspensions. We have succesfully applied lattice Boltzmann to the modelling of emulsification

in microdevices and the fouling of microsieves in applications of microfiltration of

dairy suspensions.

In recent years, the lattice Boltzmann method has been applied to other complex fluids such as

foams,46 liquid crystals,47 polymer blends with nanofillers,48 and viscoelastic fluids.49 This demon-

strates that the lattice Boltzmann method has the potential to model many other structured foods.
REFERENCES

1. Benzi, R., Succi, S., and Vergassola, M., The lattice Boltzmann equation: Theory and applications,

Phys. Rep., 222(3), 145–197, 1992.

2. Chen, S. and Doolen, G. D., Lattice Boltzmann method for fluid flows, Ann. Rev. Fluid Mech., 30,

329–364, 1998.
q 2006 by Taylor & Francis Group, LLC



HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES38
3. Kromkamp, J., Bastiaanse, A., Swarts, J., Brans, G., van der Sman, R. G. M., and Boom, R. M.,

A suspension flow model for hydrodynamics and concentration polarisation in crossflow microfiltra-

tion, J. Membr. Sci., 253(1–2), 67–79, 2005.
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3.1 INTRODUCTION TO FLUID FLOW MODELING

As described in Chapter 1, fluid flow analysis is based on physics-based models frequently

encountered in many current engineering problems. It has a very wide range of application, and it

has many aspects such as the flow regime (laminar or turbulent), type of fluid (gas or liquid), and

interaction with its surroundings (heat transfer, moving boundaries, and mixtures). The fluid flow

problem is challenging enough, yet it is often combined with several other phenomena that are

tightly coupled to the fluid that makes solution of most fluid problems only possible through

complex numerical simulations or series of experiments. The flow phenomenon involves many

models with each being its own discipline, and many textbooks are written to cover the individual

disciplines in great lengths. It is impossible to cover all the details of every one of the sub-models of

fluid flow in one chapter. Yet, every engineer who has a fluid problem to solve needs to be aware of

these models in order to make correct decisions. The goal of this chapter is not to show all the

theories behind these physical models, but it is to give the reader a reference to the models and

terminologies frequently encountered as well as some useful tips on how to solve a fluid flow

problem, specifically targeting the food industry.
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Figure 3.1 Fluid volume under shear.
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Food processing operations involve several steps where engineering analysis or modeling can

be extremely helpful. A thorough application of physical principles will lead to a better design tool

that has the potential to change the dynamics of food engineering research toward right by design

rather than build and test. Numerical modeling can lead to virtual experimentation where initial

designs can be tested before a pilot plant testing or full industrial testing can take place.1–2

A brief review of some basic fundamentals of fluid dynamics and fluid flow is presented

followed by a discussion of the modeling of these processes. A fluid is a substance that continuously

deforms under shear forces, and fluid mechanics is the study of flow while it is at rest (fluid statics)

or in motion (fluid dynamics). A shearing stress (t in Figure 3.1), defined as shear force per unit

area, is created whenever a tangential force acts on a surface. The fluid parcel’s deformation rate

( _q
_
in Figure 3.1) is a function of this shearing stress.

Fluids such as liquids and gases keep deforming or flowing under this stress. Some fluids may

not deform unless this stress is greater than some yield stress. This yield stress plays an important

role in the physical properties for many substances in the food industry, as will be examined later in

Section 3.4.2.
3.2 DYNAMICS OF FLUIDS

The fluid motion is governed by physical laws that, when mathematically expressed, allow all

fluid parameters (e.g., pressure, temperature, velocity) to be determined at every point in space.

These physical laws are expressed in terms of complex non-linear partial differential equations.

Although the fundamental equations of fluid flow have been known for almost two centuries, their

solutions were limited to simplest flow problems until the advent of computers. With computers’

increasing powers and the continued development of new numerical methods in the past three

decades, these equations can now be solved for increasingly more complex and realistic

flow problems.

In most physical phenomena, the familiar reference frame (or the coordinate axes) is fixed in

space (stationary). This type of reference frame is called Eulerian frame. In this reference frame,

the fluid would flow through a stationary coordinate system. However, in fluid mechanics, there are

cases where it is desirable to have the reference frame move either with the fluid body or with a

particle moving inside the fluid. This moving frame of reference is called Lagrangian frame.

Because fluid dynamics involves fluid in motion, many equations have additional terms that

arise from the moving frame of reference. For simplicity, sometimes these terms are grouped

with the temporal derivative. This combined derivative term is defined as the operator

D

Dt
ð:Þh

vð:Þ

vt
C vx

v

vx
Cvy

v

vy
Cvz

v

vz

� �
ð:ÞZ

vð:Þ

vt
C ðv$VÞð:Þ; (3.1)
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where v is the velocity of the fluid or the reference frame in motion. The derivative notation in the

equation above is often called the Lagrangian Derivative, or material derivative, or substantial

derivative, or derivative following the fluid. The first term on the right-hand side is the ordinary time

derivative in fixed reference frame (Eulerian derivative), and the second term is the result of

changes because of a body in motion or the reference frame’s being in motion (Lagrangian

frame). These changes are referred to as advection, and the second term is often called the advective

term in the equation.
3.3 GOVERNING EQUATIONS

Physics-based models in fluid dynamics involve solving governing equations for fluid flow,

heat transfer, chemical species transport, and related phenomena. These fundamental equations are

based on conservation principles. In simple terms, this can be expressed as:

Rate Z rate of influxKrate of outfluxf gC rate of generationKrate of consumptionf g

There are three major laws of conservation. The first, conservation of mass, says that the mass is

neither created nor destroyed in the fluid parcel. The second, conservation of momentum, says that

the rate of momentum’s change is the sum of the forces acting on the fluid. Third, the conservation

of energy, says that the change in total energy is net heat transfer minus net work done by the fluid.

These equations can become highly nonlinear, and only a few simple problems have exact

solutions. The numerical techniques are used to obtain approximate solutions to these problems,

and this field is termed as the computational fluid dynamics (CFD) that is explained in more detail

in a later section of this chapter. Although fluid dynamics implies the study of the dynamics of

fluids, many applications not only deal with just the motion of fluids, but they also involve heat

transfer, mass transfer, and chemical reactions. They often involve solid parts as well. However,

this chapter will focus on the study of fluids. The heat and mass transfer are explained in their

respective chapters in this handbook.

The following sections describe the governing equations for these various phenomena. For

simplicity, the equations presented here are in Cartesian coordinates. Complete derivation of

these equations and expressions for other coordinate systems (cylindrical and spherical) can be

found in Bird et al.3
3.3.1 Conservation of Mass

The conservation of mass is expressed by the continuity equation that states that in a given

volume, mass can neither be created nor destroyed, and the net mass flow through all its surfaces

must be equal to the rate of accumulation

Dr

Dt
CrV$v Z 0: (3.2)

For incompressible fluids, as is the case in a majority of food applications, the density is

constant, and the above equation reduces to

V$v Z 0: (3.3)

that is referred to as the incompressibility constraint. This equation applies for single-fluid systems.

For multiple component systems, each individual component in the mixture must satisfy the

principle of mass conservation as well as the mixture itself as a whole. The mass conservation for
q 2006 by Taylor & Francis Group, LLC



FLUID FLOW AND ITS MODELING USING COMPUTATIONAL FLUID DYNAMICS 45
the individual component is given by

r
Dcn

Dt
CcnV$v

� �
ZKV$jðnÞCqcn

CRn; (3.4)

where cn is the mass fraction of specie n, j(n) is the diffusive mass flux of species n, Rn is the rate of

production of cn because of chemical reaction, and qcn
is a general source term. In principal, the

mass flux can have contributions from thermal gradients. However, in most cases, the diffusive

mass flux is assumed to be the result of only molecular diffusion (concentration gradient). In this

simplified case, the diffusive mass flux reduces to

jðnÞ ZKVðrancnÞ: (3.5)

Here, an is the mass diffusivity. This reduces the species equation to

r
Dcn

Dt
CcnV$v

� �
Z V$ðranVcnÞCqcn

CRn: (3.6)

Mass transport is discussed in more detail in Chapter 5 and Chapter 6 of this handbook.
Table 3.1 Simplified Forms of the Momentum Equation

Navier–Stokes equation without external forces: Momentum equation

for an incompressible fluid with constant viscosity and in the

absence of body forces or external forces. Typically used for

simple fluids in simple flow conditions driven by pressure gradients

and fluid inertia

r Dv
Dt ZKVP CmV2v

Euler equation: Momentum equation where viscous term is negligible

relative to inertial term (inviscid flows), neglecting body forces. This

is typically used in aerospace applications and is not encountered

in food industry but is given here for completeness

r Dv
Dt ZKVP

Stokes flow: Momentum equation where inertial forces are negligible

relative to viscous terms (highly viscous flows, creeping flows),

neglecting body forces. This is frequently encountered in very

viscous fluids (such as honey, peanut butter) that are subject to

very slow motion

VP ZmV2v

Bernoulli equation: Momentum equation when the flow is inviscid,

steady, incompressible, and with no heat transfer. Bernoulli

equation has many practical applications in fluid mechanics

(specifically, fluid statics) where the flow is strictly driven by

pressure gradient or gravity, and friction is negligible

P C1=2rv2 CrghZConstant

Poiseuille flow: Momentum equation for viscous, laminar, steady

state flows without any external forces. Such flows occur in circular

pipes or channels with constant cross-sections (pressure can only

change in the direction of flow). This equation can be integrated to

yield a parabolic velocity profile. f is the pressure drop per unit

length, and v is the velocity in the direction of flow

V2v Z f

Laplace equation: Simplest form of momentum equation. It assumes

a perfect fluid (no viscosity), no external forces, away from

boundaries (zero vorticity), and the flow is solely governed by

Reynolds number. The velocity can then be expressed as the

gradient of a scalar field (uZVf), and continuity (V$uZ0) yields

Laplace’s equation. The velocity field can be reconstructed from

the scalar quantity f

V2fZ0
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3.3.2 Conservation of Momentum

Conservation of momentum is derived from Newton’s second law, stating that the acceleration

of a body is equal to the sum of all external forces per unit mass

r
Dv

Dt
ZKVPKV$t Crg; (3.7)

where v is the velocity, t is the stress tensor, g is the acceleration due to gravity, and P is the

pressure. This is the most general form of the momentum equation. The full expression of the stress

tensor is outside the scope of this chapter, but its relationship to viscosity is briefly discussed in

Section 3.4.2. Assuming constant viscosity, the momentum equation reduces to

r
Dv

Dt
ZKVP CmV2v Crg: (3.8)

The term on the equation’s left side includes the temporal and the advection terms, and the right

side contains the pressure gradient, viscous diffusion, and gravitational force. Equation 3.8 is the

form most commonly referred to as the Navier–Stokes equation (along with the continuity

equation), though many articles in literature refer to either the full representation, using the

stress tensor or to further simplified versions of this equation. There are many other simplified

versions of this equation that have significant practical applications, and each has been individually

studied extensively in literature. Table 3.1 shows a few of these simplified versions of the equation.
3.3.3 Conservation of Energy

Although this chapter’s main focus is fluid motion, many food processes often involve heat

transfer, and many properties are a function of temperature that directly affect the fluid flow

problem. Therefore, the conservation of energy equation is often coupled with the Navier–

Stokes equation, and, for an incompressible fluid with constant conductivity, k, is given by

rcp

vT

vt
Cv$VT

� �
Z kðV2TÞCQ CF: (3.9)

In the above equations, T is temperature, cp is specific heat, Q is heat source, and F is the

mechanical or viscous dissipation term. The details of the energy equation are described in next

chapter of this book. However, as seen from the above equation, there is a tight coupling between

the velocity field and the temperature field. Therefore, coupling the energy equation with the

momentum equation is worth mentioning. When it comes to solving the energy equation (or

specie equation) along with momentum, there are four classes of flows:

† Isothermal Flows. In this case, there is no need to solve the energy equation at all as the

entire system is at a constant temperature, or the temperature variations are of no concern

(and have no affect on properties). Typically, these flows involve simple fluids such as air

and water, and they occur in neutral environment (e.g., room temperature) where the

focus is the flow itself.
† Advection–Diffusion Problems. This class of problems assumes the flow field is known,

constant in time, and completely independent of the energy field. Then the energy

equation can be solved independent from the momentum equation. One can obtain the

velocity field from the momentum equation and use these velocities in the energy

equation to obtain the full solution. This class of problems is often encountered when
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the fluid properties are independent of temperature, but one is interested in finding the

temperature variations (or more typically used for species concentration variations) as a

result of fluid flow. These types of flows also involve simple fluids that tend to have

properties independent of temperature (or changes are negligible for the problem at

hand).
† Weakly-Coupled Flows. In this model, the buoyancy term is ignored, leaving only the

convection terms as the coupling between the equations. This allows for solving of the

energy and the momentum equations decoupled from each other. Typically, the flow field

does not feel the presence of the temperature field because fluid density and viscosity are

not dependent on temperature, but the temperature field is dependent on the flow field

through the convective term (heat transfer properties can be a function of temperature).

These flows may also include shear heating as long as the flow properties are constant.
† Strongly-Coupled Flows. If buoyancy cannot be ignored in the flow (such as natural

convection flow) or if there are non-linear boundary conditions or temperature dependent

flow properties, then a full set of equations must be solved fully-coupled. If the fluid

viscosity is dependent on temperature, the flow and thermal equations are also strongly

coupled. This is a common case in many food applications where temperature is present

because most food properties are temperature dependent (besides the buoyancy effects of

temperature dependent density, temperature dependent viscosity often has dramatic

impact on the flow).

Depending on the particular problem being solved, other governing equations may be

considered. For example, high temperature problems will require the solution of the appropriate

equations for radiation heat transfer. Turbulent flows necessitate the solving of the turbulence

modeling equations (for example, the so-called k–3 model involves convection–diffusion equations

for the kinetic energy of turbulence, k, and the turbulent dissipation, 3). In addition to the governing

equations, an equation of state that relates the fluid density to the local temperature, pressure, and

composition is also required.
3.4 PHYSICAL PROPERTIES OF THE FLUID

Most of the complications with solving flow problems in foods are related to variability in

material properties. As a result, having either good property data or reliable property models for the

material is often mandatory for successful modeling. This chapter focuses on the flow process itself,

and as a result, this section concentrates on flow properties. Although they have significant impact

on fully coupled flows, heat and mass transfer material properties including thermal conductivity,

specific heat, and diffusivity are discussed in the respective chapters in this handbook.
3.4.1 Density

Density is defined as mass per unit volume and is one of the two most important physical

properties (the other being viscosity) in fluid flow analysis. The fluid’s density can be dependent on

temperature (e.g., buoyant flows) or pressure (e.g., compressible flows). Typically, the food

industry deals with incompressible fluids (except for high pressure processing of food) or fluids

that may only have temperature dependency. Therefore, the fluid’s compressibility is not

considered in this chapter. However, temperature or species dependency of the fluid properties

such as density, viscosity, conductivity, etc. often need to be considered.

The constant density assumption states that the density has no variation and can be expressed as

a constant, r0:
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r Z r0:

Substituting this into the Navier–Stokes equations would simplify them by eliminating vari-

ations on density. However, density’s temperature or species dependence results in buoyancy

effects that significantly alter the flow and need to be considered. This is often accomplished by

making use of the so-called Boussinesq approximation that assumes the density’s variations of

density only dependent on temperature or species, and they only affect the gravitational force term.

With this assumption, the density can be split into a constant r0 and a temperature (or species)

dependent term, r:

ðrKr0Þg;

where the temperature dependence of the density can be expressed by the relationship

vr

r
ZKavT ; (3.10)

where a is the thermal expansion coefficient. Substitution of this expression into the set of flow

equations will allow modeling of incompressible flows with variable density model.

While searching for density, two other definitions may be found: specific weight and specific

gravity. Specific weight is defined as weight per unit volume, whereas the density is defined as mass

per unit volume.

Specific weight Z r!g:

Specific gravity is slightly different. It is the ratio the fluid’s density to the density of water at the

standard temperature and pressure. At 48C, the density of water is 1000 kg/m3.
3.4.2 Viscosity

Along with the density, viscosity is an important property that characterizes the flow resistances

in fluid flow problems, and it is the property that determines the rheology of the material. Viscosity

relates the shear stress in the fluid to the rate of deformation of the fluid, and it often has a complex,

non-linear behavior.

A fluid with linear relationship between stress and rate of deformation is called Newtonian fluid,

and the rate of proportionality is referred to as viscosity. For a simple 1D case, the Newtonian law of

viscosity can be written as

t ZKm
du

dy
(3.11)

where t is the stress exerted by the fluid on the wall, du/dy is the velocity gradient perpendicular to

plane of shear, and m is the viscosity.

The ratio of absolute viscosity to density of fluid is referred to as kinematic viscosity, n,

n Z
m

r
: (3.12)

In the SI system, m has units of N s/m2 (or Pa s), and it includes a measure of force. Kinematic

viscosity has units of m2/s and does not have a dependence on force.

A fluid that does not obey the relationship in Equation 3.11 is called a non-Newtonian fluid. A

material that has a time-dependent stress response to both the strain applied and the strain rate at

which it was applied is called a viscoelastic material. There are many viscosity models, depending on
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whether the fluid is inelastic, elastic, or viscoelastic; shear rate dependent or temperature dependent,

etc. Most of these models are based on heuristic or empirical data and are applicable for only some

types offluid or some range of values. The success of a simulation involving complex fluids may often

depend on good selection of a model that describes its viscosity (often called the apparent viscosity).

Some commonly used non-Newtonian viscosity models for shear-rate dependent fluids are given in

Table 3.2. For many food materials, the rheology is unknown, and these models would only provide

an approximation. In most cases, the viscosity models need to be adjusted by selecting suitable

coefficients or a characteristic yield stress to determine the applicability of a model over the range

of operating conditions. These parameters are often obtained by trial and error from experiments or

from a series of simple numerical simulations that can be compared to some experiment. Time spent

obtaining reliable rheological data for the food material is extremely valuable for successful CFD

simulation and can, in some cases, be the bulk of the effort.

When temperature dependence is to be considered, it should be combined with the shear-rate

dependency of viscosity that is often expressed as
Table 3.2 Commonly Used Viscosity Models for Non-Newtonian Fluids

Viscosity Model Formulation

Power law : Commonly used for food

materials with high shear rates;

commonly used for shear thinning foods

mZK ð _gÞnK1

Bird–Carreau: Commonly used for low-

shear-rate dependency of viscosity such

as doughs

mZmNC ðm0 KmNÞð1Cl2 _g2ÞðnK1Þ=2

Carreau–Yasuda: A variation of Bird–

Carreau with an additional exponent

mZmNC ðm0 KmNÞ½1C ðl _g_Þa�ðnK1Þ=a

Cross law: Commonly used for low shear

rate dependency of viscosity (similar to

Bird–Carreau)

mZ m0

1Cðl _g_Þm

Bingham: Commonly used for food

materials such as yogurt where a

constant yield stress is required

(sometimes, these equations are written

in terms of yield stress rather than shear

rate)

mZ

m0 C
t0

g
_gR _gc

m0 Ct0

2K ð _g= _gcÞ
� �

_gc

_g! _gc

8
>>>><

>>>>:

Modified Bingham: An analytical form of

Bingham law that may be easier to

calculate and provide more stable

solutions in numerical computations

mZm0Ct0 1KexpðKm _gÞ= _g
� �

;

where mZ3= _gc; such that the standard and modified

Bingham laws exhibit the same behavior above the critical

shear rate, _gc

Herschel–Bulkley : Used for similar

materials as Bingham law but

incorporates shear-thinning behavior as

well

mZ

t0

g
CK

_g

_gc

0
@

1
A _gO _gc

t0 2K
_g

_gc

0
@

1
A

_gc

CK ð2KnÞC ðnK1Þ
_g

_gc

2
4

3
5 _g% _gc

8
>>>>>>>>><

>>>>>>>>>:

Log–Log: Purely empirical law

that sometimes provides

better fit for experimental data

mZm010a0Ca1 log _g= _gcð Þ½ �Ca11 log _g= _gcð Þ2
� �

, aiZthe

coefficients of the polynomial expression

m, viscosity; m0, zero-shear-rate viscosity; l, natural time (i.e., inverse of the shear rate where the fluid changes from
Newtonian to power-law behavior); g, shear rate; gC, critical shear rate; t0, yield stress; K, consistency; n, power-
law index.
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m Z HðTÞm0ð _gÞ; (3.13)

where H(T) is the Arrhenius law or other applicable laws describing temperature dependence, and

m0ð _gÞ is a shear-rate dependent viscosity (as described above) at some reference temperature.
3.4.3 Vapor Pressure

Vapor pressure is the pressure exerted by a substance’s vapor at equilibrium with its liquid and

solid phases at any given temperature. This is important when studying evaporation and conden-

sation from foods.
3.4.4 Surface Tension

A fluid’s surface is defined as the interface between the fluid body and its surroundings that can

be another immiscible fluid, a different phase of the fluid itself, or an open surface to atmosphere.

Surface tension is a force that exists on that interface and that causes that surface layer to act like a

film or sheet, wrapping around the volume and separating it from its surroundings. Although this

force is always in the tangential direction of the surface, its net influence is always in the normal

direction. It is an important property in flows with two or more immiscible fluids. Temperature

dependence of this property is an important factor in determining the shape of the interface or the

flow direction.
3.5 FLOW TYPES

Fluid flows can be classified in many different ways. Whereas some classifications are based on

the flow regime (e.g., laminar or turbulent), others are based on the number of phases present (e.g.,

mixture of immiscible fluids or solid, liquid, and gas phases). The flow type not only determines the

nature of the flow but also whether or not additional sets of equations are needed.
3.5.1 Flow Regime

The flow regime is determined by one of the most well-known nondimensional numbers in

engineering: the Reynolds number, Re. The Reynolds number relates the inertial forces to viscous

forces in the flow and is defined as

Re Z
ruL

m
Z

uL

n
; (3.14)

where L is characteristic dimension, and u is the characteristic velocity. For example, for a circular

pipe, L is the diameter, and u is the average velocity. For a noncircular pipe, a hydraulic diameter is

used as characteristic dimension and is given by

Hydraulic Diameter Z
4A

P
; (3.15)

where A is the cross section area of the pipe, and P is the wetted perimeter.

Very low values of Re (Re /1) characterizes flows with extremely small velocity or very high

viscosity. Such flows are referred to as creeping flows. In these flows, inertial effects can be ignored,

meaning that density will not be an important variable. If the Reynolds number is very large and

there are no wall effects, viscous effects can be ignored, and the flow is solved as nonviscous flow

(called inviscid flow). Moderately low levels of Re characterize laminar flows. For pipe flow, the
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laminar flow regime exists when Re is less than 2000–2200. As Reynolds number increases, the

flow goes through transitional into the turbulent regime. Turbulent flows require additional

modeling techniques or additional set of equations to be solved and coupled with the flow

equations. Turbulence has significant impacts on energy dissipation (both inertial and heat).

To successfully model turbulent flows, an adequate knowledge of such flows and of turbulence

models is needed to properly choose the appropriate turbulence model. Such knowledge is also

important to determine if computed results are realistic. The purpose of these models is to quantify

effects of turbulence to the flow. This is often done by calculating a new flow property, turbulent

viscosity. This turbulent viscosity is a calculated quantity. There are several models based on the

number of additional equations solved for this. However, invoking additional equations entails the

solution of additional transport equations that can significantly increase the CPU requirements of

the numerical solution. Several models are available, including mixing length model, standard k–3,

and k–u. In most food applications, the standard k–3 model will be satisfactory and is the default

model in most commercial software products.
3.5.2 Flows with Multiple Phases

There are three phases of matter: solid, liquid, and gas. However, in fluid flow, a much broader

definition is used to distinguish different materials as well as phases of the materials. Therefore,

there may be multiple liquids as well as solid, liquid, or gas phases of different materials coexisting

in the flow. Flows involving different phases of matter can be categorized in two major groups: the

so-called free-surface flows and multiphase flows. Free surface flows are those where there is a

clear and continuous interface between phases. In this type of flows, interface location and its

dynamics are of typical interest. However, there are many applications where the flow involves a

mixture of particulate matter with liquids or gases (as in slurries, food particles suspended in

liquids, cyclones, dryers) where the interface is not clearly defined or is of a much smaller scale

to be explicitly defined. Such flows are termed as multiphase flows and need a different kind of

formulation. In this type of flows, fluid particle interactions are of typical interest.

Most food products are essentially a mixture of multiple ingredients, including emulsions and

suspensions. These products have been simplified as homogeneous mixtures, and the behavior has

been captured in their rheology. New models such as population balance in conjunction with CFD

offer more tools to engineers to more accurately handle complex physics. The following sections

briefly describe various models related to fluid flow involving different phases of matter.
3.5.2.1 Free-Surface Flows

If the flow involves free surfaces or an interface between different fluids or different phases of

matter (such as filling processes, extrusion, bubbly flows, droplet laden gas flows, flows with

melting or freezing interface), good data on the surface tension of the fluid is needed. Surface

tension determines the behavior of the interface between the two phases and will have a great

impact in accurate prediction of the bubble’s or droplet’s size or shape or the filling’s behavior

(splashing, separation, or break up). The position or motion of the free surface is governed by the

balance of forces; in steady state flows, the net force on the interface must be zero. The forces that

act on the interface are the pressure and shear forces on either side of the interface and the surface

tension force. Surface tension is a force acting in the tangential direction of the interface, but its net

influence on the interface is in the normal direction (therefore, it defines the shape and motion of the

interface). There are various classes of free surface problems such as seen in Figure 3.2, each

requiring a different setup.
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Figure 3.2 Different types of free surface flows (FB indicates free-surface boundary and TC and TH refer to cold
and hot temperatures).
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3.5.2.2 Discrete Particle Model

The discrete particle model is often used when the dispersed phase is relatively low in

concentration relative to the main carrier fluid. A particle can be solid, droplet, or bubble in

liquid or gas phase. This is characterized by a low volume fraction of the particle phase (that may

have a high mass fraction relative to the fluid). In this limit, the particle–particle interactions can

be ignored, and the only interaction considered is the particle–fluid interaction. The particles

can exchange momentum, mass, and heat with the surrounding fluid. The model is based on

solving the equations of motion on individual particles in Lagrangian (moving) frame of refer-

ence, and the fluid is solved in the Eulerian (fixed) frame of reference. And at any point in time,

the conservation principles are applied for the transfer of momentum, mass, and heat between the

two phases.

The forces acting on a particle can be the sum of pressure forces, buoyancy, and external forces.

Once the forces are defined, the motion and trajectory of the particles can be predicted. Even for
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steady state flows, the particle trajectory needs to be integrated over time. If the particles are very

light relative to the fluid or the concentration of particles is very low, the presence of the particulate

phase will not disturb the flow, and the only interaction is from the fluid to the particulate phase. In

this case, the equations for the dispersed phase can be solved independent of the flow equations.

However, if the particles do impact the flow field, the equation of motion needs to be coupled with

the fluid equations.
3.5.2.3 Multiphase Models

If the concentration of the particulate phase is high and particle–particle interactions cannot be

ignored or if large volumes of immiscible fluids are present, the discrete particle model assumption

fails, and the multiphase model should be used. Multiphase flows can be categorized in four regimes.

† Gas–liquid or liquid–liquid flows (e.g., bubbly flow, droplets, slug flow, immiscible fluids

with clear interface)
† Gas–solid flows (e.g., particle laden gas flow, fluidized beds)
† Liquid–solid flows (e.g., soups, slurries, sedimentation, hydrotransport)
† Three phase flows (a combination of any of the above)

Three different models are commonly used to treat multiphase flows: the Volume Of Fluid

(VOF) model, the Mixture model, and the Eulerian multiphase model.

VOF Model. The VOF model is essentially a surface tracking technique that is used when the

shape of the interface between phases is important, yet the deformations of the interface are too

large to be tracked explicitly as in the Free-Surface model or if the interface breaks up or coalesces

that cannot be modeled by the Free Surface technique. VOF allows for break-ups, agglomerations,

and large displacements (such as in jet break up and deformations, filling process, sloshing). Instead

of tracking the exact interface, in VOF, the volume fraction of the secondary phase tracks and helps

analytically reconstitute the interface.

Mixture Model. This can be viewed as a simplified Eulerian model. It is used for two or more

phases where the momentum equation is solved for the mixture, and it prescribes the relative

velocities of the phases. It is applicable when the loading of the secondary phase is light such as

in bubbly flows, sedimentation, or cyclone separators. The mixture momentum equation is obtained

by summing up individual momentum equations whereby the physical properties and solution

parameters become mixture properties and mixture parameters.

Eulerian Model. In multiphase models, because the volume cannot be occupied by more than

one phase at a time, the concept of volume fraction for each phase is introduced. Each volume

fraction is assumed to be continuous in space and time, and they must all add up to one. Conserva-

tion principles are applied to each phase, and the equations are often closed by empirical

relationships between pressure and interface exchange coefficients, or in some cases, by kinetic

theory. In this model, each particulate phase is treated as a separate continuum with its own set of

continuum equations and associated properties. For this approximation to be realistic, the particles

in the continuum must behave similarly. Therefore, not only should they have the same physical

properties and composition, but the size of the particles must also be relatively similar so that they

will behave the same under a given force field. As a result, the particulate phase is typically broken

down into sets of similar material and size, each different size of the same material being treated as

a different material. This is the most complex and general model for the simulation of multiphase

flows, and it requires additional computational resources to solve the large set of partial differential

equations (PDEs) that result. Typical applications of this model include bubble columns and

particle suspension.
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3.6 TYPICAL BOUNDARY CONDITIONS

The solution of the governing equations requires appropriate boundary conditions and initial

conditions for the fluid domain. The equations are valid for most flows, and their unique solution

depends on the specification of flow conditions at the domain boundaries. The boundary conditions

can be thought of as operating conditions. Depending on the problem, either a degree of freedom

can be constrained (e.g., defined velocity component or pressure), or surface forces or fluxes can be

applied (e.g., mass flux) on any boundary. The former is also referred to as Dirichlet boundary

conditions and the latter as Neumann boundary condition. A third type of boundary condition is

called Robin boundary condition where a linear combination of the solution and its normal deriva-

tive is specified.

Pressure, often specified as a boundary condition at the inlet or outlet, is a critical flow par-

ameter that directly impacts the solution. Therefore, it is important to understand what is meant by

pressure when setting up a problem as it has more than one representation. Pressure is defined as the

normal force per unit area exerted on a surface immersed in a fluid. There are several ways this

pressure can be expressed:

† Atmospheric pressure (static pressure) is the pressure exerted at the surface of a body by

a column of air in the atmosphere. Standard pressure is the average atmospheric pressure

at sea level; it is defined as 1 atm on Earth, which is equal to 760 mm Hg or 101,325 Pa.
† Dynamic pressure is the pressure that represents the fluid kinetic energy,

Pdynamic h1=2rv2: (3.16)

† Total pressure is the sum of dynamic and static or hydrostatic pressure,

Ptotal Z Pstatic CPdynamic: (3.17)

When specifying pressure boundary condition, it is very important to understand which

definition is appropriate and is needed for the solution. Table 3.3 lists commonly used boundary

conditions. One should be careful not to over constrain the system of equations by specifying

too many boundary conditions (for example, specifying velocity at both inlet and outlet).
3.7 FLOW MODELING

The traditional engineering approach to process and equipment design is experimentation: build

laboratory scale prototypes; take samples or measurements; rely on heuristic or experimental data

available. These methodologies have inherent difficulties.
Table 3.3 Common Boundary Conditions

Boundary Zone Boundary Condition

Inlets/Outlets Velocity components (plug flow or constant viscosity or fully developed profile)

Pressure drop and flow direction

Scalar variables, e.g., temperature or species concentration

Kinetic energy and eddy dissipation for turbulent flows

Walls (solid surfaces) Fluid sticks to the walls (no-slip condition)

Moving walls

Flow through the walls (porous surface)

Surface reactions at wall boundary

Other Zones Symmetry where normal gradient is zero

Periodic where only part of the domain is modeled
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† Prototyping is expensive; therefore, the number of prototypes that built should

be limited.
† Laboratory-scale prototypes do not reflect the behavior of full-scale models; therefore,

scale-up models should also be performed.
† Building prototypes can also take a long time for a very short test.
† Collecting accurate and relevant data can be difficult. Often, the process of interest is

inaccessible for such intrusion and severely limits the amount of data that can

be collected.
† Taking measurements during the process can often alter the process itself thereby redu-

cing the reliability of the experiment.

It is almost impossible to test each and every scenario. Therefore, several techniques are used to

extend the experimental results to untested situations. Some of these techniques include similitude,

dimensional analysis, and modeling. As elucidated in the previous chapters, food processing

operations involve several steps where engineering analysis or modeling can be extremely

helpful. A thorough application of physical principles leads to a better design tool that has the

potential to change the dynamics of food engineering research toward right by design rather than

build and test. Modeling can lead to virtual experimentation where initial designs can be tested

before a pilot plant testing or full industrial testing can take place at the end.3–4 Software

simulations have many advantages over traditional methods:

† Time Saving. Typically, computer models can be built much faster than prototypes, and

they can be executed faster than running an experiment.
† Cost Saving. Computer software and the hardware necessary to run it typically costs far

less than building a prototype or running an experiment in the lab. By reducing the

number of actual prototypes, simulations can reduce the cost of research and develop-

ment for product design and improvement.
† Nonintrusive. Computer software deals with a virtual model and eliminates intrusion into

the process or any hazardous conditions that may exist.
† Extensive Information. The software will generate any data of interest throughout the

whole domain of interest. It is like putting thousands of thermocouples in the experi-

mental unit to measure the temperature.
† Parametric Study. With software, many “what-if” scenarios can be executed to gain

more insight about the design or the process at hand.

Software simulations have been extensively used in many computer-aided design (CAD) and

computer-aided engineering (CAE) applications in a wide range of industries. They have been

widely accepted in aerospace and automotive industries as a powerful engineering design tool and

are now finding their way into the food and beverage industry. Computational fluid dynamics

(CFD) is one of the tools used in this mix of computational tools available to today’s food

engineers. Realizing their benefits and returns on investment (ROI), many leading food companies

have been using these tools for many years for many kinds of industrial problems. The applications

range from aerodynamics of a potato chip in a dryer5 to oil flow in industry scale fryers to studying

the detailed flow and thermal field in a mixing tank. They can be used as aids to scale-up processes

from lab or pilot scale to full production. Troubleshooting the performance of existing equipment is

often carried out with the help of CFD. Determining how an existing piece of process equipment

will operate under new conditions or with new input materials is also a common task for CFD.

CFD is a form of numerical experiment that can elucidate flow and thermal fields in a manner

not achievable in a real food engineering experiment. Such numerical experiments carried out

parallel with the physical experiments can be used to help interpret these physical results and to

ascertain a basic physical and phenomenological aspect that is not evident or achievable in physical
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Table 3.4 Applications of CFD in Food and Beverage Industry

Process Associated Physics/Models

Aseptic processing Forced convection, nutrient retention, microbial kill,

voltage field, and joule heating for ohmic heating

Baking ovens Natural or forced convection and radiation

Beer and wine processes Settling tanks or mixing tanks with multiphase

Can and bottle filling Volume of fluids

Clean rooms, fume hoods, and ventilation Species transfer

Cold storage, refrigerators, freezers, cooling tunnels,

and food storage cabinets

Heat transfer and particle tracking

Candy making Solidification, free surfaces for coating and enrobing,

and VOF for dipping

Cyclone separators Discrete particle methods

Deep-fat frying Reactions

Dipping processes VOF

Dough sheeting Free surface

Drying Fluidized beds, forced convection, and moisture content

predictions

Equipment design (flow meters, heat exchangers,

pumps, fans, etc.)

Multiple physics

Extrusion (single or twin-screw) Complex geometry, viscous dissipation, complex

rheology, screw design, and die design

Ice cream freezing, thawing, and coating Solidification, freezing, and enrobing using VOF or free

surface

Mixers (draft tube mixing, static mixers, mixing tanks) Mixing tank and multiple phase

Packaging Thermoforming and blow molding models

Pasteurization Natural convection

Soda dispensers VOF, multiphase, and mixing

Sprays and spray drying Multiphase, spray models, forced convection, species

transport, and moisture content predictions

Sterilization and canning Natural convection, microbial kill, and nutrient retention
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experiments. CFD is only another tool in the design and analysis of the processes of interest. It is not

a substitute for measurements and experiments, but it complements other tools available to the

engineer. Its purpose is to supplement knowledge about the process, and it is a tool to see through

the walls and into the regions of interest without intrusion or where it may be impossible to reach by

physical means. It helps eliminate the repetitive task of prototyping and parametric studies, scale-

up, and the like. This is very important to understand as all CFD models are based rely on

experimentation, either to provide input values such as properties and conditions or to verify the

results of the simulation. CFD can be effectively used as a predictive tool if there is enough

confidence in the models that is based on some validation or previous experience.

It is important to understand the methodology by which the analysis process should be started to

prepare for simulations. This is specifically important in the food industry as in many cases, the

properties of the materials handled are unknown, or they consist of mixtures of various materials

and consistencies. The processes and the physics behind them may not be well understood and they

may rely on past experience or historical data.

Flow modeling is not a new concept. It has been used for several decades in many industries.

Engelman and Sani6 were the first to apply a general-purpose CFD code to a food application. In

this case, they successfully simulated natural convection profiles, including the pasteurization of

beer in glass bottles that, in fact, is a time-dependent problem as beer bottles travel through different

heating and cooling sections. Datta7 developed his own code for natural convection and conduction

heat transfer in a water-like food in a can undergoing sterilization. Kumar8 extended this work to
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thick and thin soups, obeying non-Newtonian rheology both for canning and for aseptic processing

while using the same code as Engelman and Sani.6

There are several review papers in the literature including those by Puri and Anantheswaran,9

Scott and Richardson,10 and Wang and Sun.11 Scott and Richardson10 outlined the trends in food

processes’ modeling. Flow modeling has been used in analyzing pasteurization of beer,6 thermal

processing,7,8,12–17 aseptic processing,18–21 dairy applications,22 extrusion,23,24 mixing,25 spray

drying,26 cooling and refrigeration,27,28 thin film UV reactor,29 and even sucrose crystallization.30

Table 3.4 lists some applications and associated physical models where CFD is either being used or

can be used in the industry. This list is not exhaustive as engineers are continuously simulating new

and challenging problems. In this section, a brief overview of CFD techniques is presented. Then

the power and utility of these techniques for solving practical problems, via a series of examples,

are illustrated.

CFD involves transforming the governing equations to a set of algebraic equations (called

discretization) and breaking up the solution domain into many small cells or elements (called

meshing) over which those algebraic equations can be numerically solved. The results are then

visualized in terms of graphical displays called post-processing. The following sections describe

these steps in more detail.

It is not necessary to write one’s own software program to solve the flow equations. In today’s

marketplace, several commercial CFD packages are available, including FLUENTe, FiDAPe,

POLYFLOWe, FloWizarde, and ANSYS-CFXe from ANSYS, Inc.; and STAR-CDe and

STAR-CCMCe from CD-Adapco. A complete and up-to-date list can be found at http://www.

cfd-online.com. These commercial software programs should give similar results for a given

problem provided the necessary capabilities are available in each. The following sections describe

the steps involved in setting up a CFD problem in more detail.
3.8 DISCRETIZATION

The full conservation equations’ numerical solution involves converting the continuous domain

of the set of partial differential equations (PDEs) to a system of algebraic equations. This is

accomplished by approximating the flow variables by simpler algebraic functions defined over a

small arbitrary volume, typically referred to as a control volume, and substituting these functions in

the original equations. This leads to a set of simultaneous equations where the unknowns are values

of the solution variables at discrete locations throughout the domain. The approximation method

used defines a specific discretization method such as finite difference, finite volume, finite element,

spectral element, and boundary element. In most commercial software packages, the discretization

method is transparent to the end user and is automatically done by the software; however, under-

standing the concept is still valuable for the engineer.

The main ingredients of the finite volume method will be briefly described here. First, the

domain of interest is divided into a number of small cells or volumes. The governing equations are

then integrated over each volume. The derivatives with respect to coordinates and time are replaced

with difference equations. The result is a series of simultaneous algebraic equations of the form

aPfP Z
X

anbfnb Cb; (3.18)

where fP is the value of the unknown quantity (e.g., velocity component, energy, or species

concentration) in cell P; fnb are the values in the neighboring cells; aP and anb are the coefficients;

and b is any source term. This approach yields a method that is inherently conservative.

Finite element or spectral methods differ in the formulation of the approximating functions and

are based on a variational principle. The unknown functions are expressed in terms of well-defined
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linear or higher-order polynomial functions, and they are integrated over a given volume. This

yields the unknowns as the coefficients of the approximating polynomials. The derivation of these

equations is somewhat involved and outside the scope of this chapter. The reader is referred to finite

element method reference books for further detail.31

The primary variables in most differencing techniques such as finite volume are evaluated at the

vertices, face center, or cell center. Whereas in the case of variational techniques, the variables are

obtained at integration points that lie somewhere within the volume. In variational techniques, the

solution is exact at integration points, and the values are interpolated to the vertices or nodes of the

element for post-processing and continuity purposes.

The algebraic equations obtained can then be solved on a computer directly or iteratively by use

of one or more of many well-established numerical solution methods, either by direct integration or

by iterative solution techniques. Direct solvers yield more accurate solutions; however, they require

very large memory. Iterative solvers require relatively small memory, but they may lead to conver-

gence and numerical stability issues for complex flows or complex rheologies of the fluid. The set

of equations can be solved in a fully coupled manner (if the variables are strongly dependent on

each other), completely decoupled (if the variables have negligible interdependency), or

partially coupled.
3.8.1 Meshing

Now that the PDEs are converted to a set of discretized algebraic equations, the locations where

the discrete values will be computed need to be defined. This requires subdividing the region of

interest into small, discrete volumes, and the approximation functions can be evaluated either at the

center of the volume or the vertices. This method of subdividing the original geometry into small

discrete volumes is commonly referred to as meshing. Meshing is one of the most important and

time consuming aspects of CFD modeling. Yet, steady advances in meshing technology and

modern software tools make this task easier and more transparent. The subdivision of the geo-

metrical domain into smaller volumes allows mapping the discretized equations to these small

domains. Therefore, the discretized equations are no longer applied to arbitrary volumes but to the

control volumes obtained by meshing technique as shown in Figure 3.3 below.

As shown in Figure 3.4, there are many ways of meshing a simple circle. They range from

mapped mesh (structured, curvilinear rows and columns of mesh) to completely paved mesh

(unstructured distribution of cells of various shapes and sizes) to a mesh with boundary layers to

resolve gradients near the wall. A mapped mesh gives more control to the user whereas an
Figure 3.3 Meshing of a pipe into control volumes.
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Figure 3.4 Different choices of meshes in a simple circular cross-section of a pipe.
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automatic paver creates the mesh based on the algorithm it is based on. The choice of meshing

technique depends on the problem and the physical properties at hand. Figure 3.5 illustrates the

application of multiblocked mapped mesh to a cyclone separator. The finer the mesh, the better the

approximation. However, the mesh’s density also directly correlates with the number of unknowns

to be solved and has a direct impact on the computational effort to solve the problem.

The challenge is to know the type and size of the mesh that are appropriate to capture the details

of the problem without exceeding the available time and computer resources. Furthermore, when

solving coupled phenomena such as flow and heat or mass transfer, it is very common for the

different phenomena to have different dimensional scales, requiring different mesh sizes, at

different locations of the domain. Ideally, the final solution should be independent of grid size,

meaning the solution should not change if mesh is further refined.
3.8.1.1 Modeling: Steps Involved in Setting Up a CFD Problem

One of the main goals of using CFD, as opposed to experimentation, is the time and cost savings

it provides. Yet, many food problems involve complex physics and complex geometries that require
Figure 3.5 Mesh for a cyclone separator.
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the solution of complex set of non-linear equations. Numerical solutions of non-linear partial

differential equations require an iterative solution approach. Such CFD problems are quite large

and require a substantial amount of computer time (they can vary anywhere from minutes to days of

simulation, depending on the complexity of the problem). To be successful with CFD, simple steps

must be taken starting with the simplest problem and then adding additional physics to build-up to

the complex model. Often the simple models provide enough engineering information to solve the

underlying problem as the full model. Therefore, simplification of either or both of the geometry

and the physics of the problem is an important first step of any CFD study. Some of these simpli-

fications are listed in Table 3.5 and also are elaborated in the case studies in Section 3.9.

Although it is not necessary to know the details used to solve the complex equations of CFD, it

is advantageous to be aware of the basic concepts involved when setting up a problem to be solved

with CFD software packages. When solving complex problems (problems with multiple physics

and fluids with complex properties), the techniques involved and their limitations to achieve

acceptable results must be considered. Many modern CFD software packages will hide most of

the complexity from the end user. As a result, it is easy to make mistakes because of many steps
Table 3.5 Some Possible Simplifications to Simulation Problems

Domain selection Isolate areas of interest and model them

Simulation goals Conceptual design to study basic flow and heat transfer final design for validation

Geometry CAD geometry vs. creating the model from scratch

Model simplification Full 3D model vs. 2D, axisymmetric, or periodicity even for a full 3D model, start with a

simple 2D or axisymmetric porous body instead of modeling tube banks, vents, and

filters

Physics simplification Transient vs. steady

Isothermal vs. non-isothermal (conduction, convection, radiation)

Laminar vs. turbulent

Turbulent methods—simple models such as mixing length to standard k–3 to a large eddy

simulation (LES)

Single species vs. multiple species

Single phase vs. multiphase

Single physics vs. multiple physics

Material properties Constant properties vs. complex models, describing their dependence on temperature,

pressure, etc.

If certain properties are unknown, one can still model it to find the operational window by

changing this property by G10% and performing parametric modeling

Mesh creation Generate mesh with own resources

Commercial mesh generation software

Simplified automated mesh generation tools

Mesh grading schemes

Mesh sensitivity analysis using simple 2D models

Solver selection Writing own code or commercial CFD code

Using wizard-based CFD tool

Full-featured CFD code

Postprocessing Commercial code’s built-in postprocessing tool

Creating eye-catching animations using rendering software such as Fieldviewe

(Intelligent Light, Inc.) or EnSighte (CEI, Inc.)

Parametric study, Parameterizing geometries and/or operating conditions and/or material properties

optimization, and Design optimization

validation Parametric study: cycling through the above steps

When to go to prototyping or lab modeling to verify the CFD predictions

Experimental validation

Analytical validation

Literature survey
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being automated by the software. This section will outline the steps involved in setting up, solving,

and analyzing the results for successful use of CFD in design and analysis of flow problems.

The solution of a flow problem using CFD involves the following steps:

† Geometry Creation—a geometric model of the simulation domain is built or transferred

from a suitable CAD system.
† Grid Generation—the solid model is divided into many small, finite volumes (also

referred to as grids, elements, or cells, depending on the discretization method).
† Problem Specification—the problem can be completely described by specifying which

equations need to be solved, operating conditions, and material properties.
† Solution—the governing equations are solved to obtain the desired flow parameters.
† Postprocessing—the results are visualized via color contours, velocity vectors, flow

pathlines, XY plots, and other qualitative and quantitative means.
† Validation—results are compared to available data, making sure that they are reasonable

and acceptable.

In the following sections, these steps will be discussed to show some of the important things to

watch for in each step.

Geometry Creation. The very first step in a CFD simulation process is identifying the geometry

to use. The CFD engineer not only needs to define the shape involved, but he or she also needs to

determine whether a two-dimensional approximation or symmetry along an axis (axisymmetric

model) assumption applies to the flow involved or if the problem has any periodicity (it is important

to distinguish the symmetry or periodicity of the geometry from that of the solution). Taking

advantage of any such symmetry property avoids building a full 3-dimensional solution domain

and reduces the model creation and computational time significantly. Some examples of geometric

simplification are illustrated in Figure 3.6.
Pipe flow Axi-symmetric model

4-blade impeller Quarter symmetry model

Heat exchanger Periodic model

Figure 3.6 Geometry simplifications.

q 2006 by Taylor & Francis Group, LLC



HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES62
Once that decision is made, there are typically two choices for creating a computer model of the

geometry available:

† Import drawings from a computer-aided design (CAD) program.
† Use the tools provided by the CFD application (or other preprocessor software) to build

the geometry from scratch.

If the CAD model is already available, it is advisable to use this CAD model rather than

recreating it in the preprocessing software. Whatever method is used to create the geometry, it is

important to keep the geometry clean, meaning all boundaries of the domain must be connected

with continuous lines. If there are regions in the domain that really do not significantly impact flow

field, the geometry should be simplified by excluding them. Many CAD packages will tolerate gaps

and holes in their model. Although those are acceptable for manufacturing purposes, CFD requires

well-defined and continuous air-tight boundaries for the discretization and mesh generation to

work, for boundary conditions to be applied accurately, and for continuity to be satisfied (undefined

or missing boundary segments are not allowed). The following are a few specific things to watch for

in defining the model geometry:

† Inlet and outlet surfaces must be defined along with all the boundaries of the domain, and

they cannot be left blank.
† One can specify fully developed velocity profile at the inlet boundary to reduce the size

of the computational domain rather than modeling a long pipe leading to the region

of interest.
† The outlet boundary must be located far away from the recirculation regions if zero stress

boundary condition is assumed at the outlet (see Figure 3.7).
† Solid regions of the geometry may or may not need to be included in the model,

depending on whether or not there is heat or mass transfer that involves the

solid material.
† Although, in some cases, the goal of numerical simulation is to understand the flow in a

given geometry; in many other cases, the goal is actually to come up with optimal

geometry for the process. In this case, the geometry (typically some specific part of

the domain) becomes part of the solution. This leads to a series of simulations, each

with a slightly different geometry, to better understand the process and change certain
Outflow
condition ill-
posed

Outflow
condition not
obeyed

Outflow
condition
obeyed

Outflow
condition
closely
obeyed

A B C D

Figure 3.7 Geometry selection.
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design parameters to achieve the optimal (or an improved) design. This is referred to as

design optimization by parametric study, and this is where CFD can be a powerful tool

because it typically requires a fraction of the cost of manufacturing the various design

options. For these types of applications, the ease of changing the geometry, typically

using parameters to define the boundary of interest, to allow for fast, easy modifications

to the model must be considered.

Another important consideration in identifying the geometry of interest is whether or not to

include all the details in the model at all. In some cases, the process involves intricate details that

would be prohibitively expensive to explicitly model such as a perforated plate or a bank of tubes or

a grill in a heat exchanger. In many cases, rather than explicitly defining the details of those

features, an approximation can be made by using the method called Porous Media. This technique

essentially replaces the complexity of the geometry with an effective permeability to emulate the

pressure drop across the obstacle in question. If the details of the flow through this domain (e.g., the

pores of the perforated plate or around the individual tubes of the heat exchanger bank) is not of

primary interest and an effective pressure drop or heat transfer through this domain is satisfactory,

then porous medium approximation is a very effective tool.

Mesh Generation. For simple to medium complexity problems, the automatic mesh generators

available with the CFD software will do an acceptable job. However, regardless of how the mesh is

created, the CFD user should have some understanding of the relationship of the mesh quality to the

problem being solved. Unfortunately, in most cases, the mesh quality is a subjective concept and

can only be acquired from experience on related flow simulations. However, there are guidelines

one can follow to minimize the impact of bad mesh on the results.

It is not necessarily how the mesh looks on the computer screen that matters or if all the cells are

nicely formed and rectangular in shape, but it is more of where the mesh density is, how it is

distributed or concentrated in the geometry, and how the mesh size relates to the physical properties

of the flow. For example, the flow field may be fairly regular and smooth; however, the conductivity

of the fluid may be very low, requiring much finer mesh near heat sources or sinks to resolve the

temperature field where the flow field would otherwise require a coarser mesh. Sometimes the

location of the sharp gradients in the flow field is the result of the solution itself such as the case for

shear-thinning fluids. In this case, it is difficult to predict the exact location of the high shear areas

until the flow field is obtained. Typically, one would either guess the location of high shear and

confirm from the solution or create fine mesh across the domain. The mesh size must be smaller

than the characteristic scale of the physics being solved, or one must be able to resolve the rate of

change of the solution variable. Determining where to refine the mesh is especially difficult for

fluids with variable and non-linear physical properties as the location of gradients would be

determined by the solution and can be difficult to predict.

There are two possible outcomes of bad mesh: a deformed mesh or an inappropriate mesh size

may lead to convergence difficulties, or the program will converge but to a wrong solution. This is

why it is wiser to err on the safe side and use as fine a mesh as can be afforded. Alternatively, one

can perform a series of simulations with increasingly finer mesh until the change in mesh density no

longer has an impact on the solution. This technique is called mesh sensitivity analysis. Some

commercial products also have the so-called adaptive meshing technique that means the software

will remesh the domain based on the solution, refining the mesh near high gradients.

In some cases, there is a choice of whether to use triangular mesh (triangles, tets, prisms) or

rectangular mesh (rectangles, bricks, hexagonal). Typically, triangular mesh is easier to generate,

but it is harder to control the number of cells generated. Rectangular mesh may be more difficult to

generate for complex geometries, but it gives better control on the size and quality of the mesh. For

complicated geometries, a hybrid scheme using both tetrahedra and hexahedra is good solution.

Many automatic mesh generation tools make this task somewhat transparent to the user. Some

sample elements or cell types are shown in Table 3.6.
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Table 3.6 Types of Basic Elements/Cells

Triangle Quadrilateral

(a) 2-dimensional element/cell types

Hexahedron Tetrahedron Prism or Wedge

(b) 3-dimensional element/cell types
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Problem Definition. Just as meshing is important for the accuracy of the numerical solution, the

definition of the problem is essential for the accuracy of the physical model. The solution can only

be as accurate, but not more so, than the problem definition. Problem definition includes definition

of boundary conditions, definition of physical properties, coupling with other phenomena (such as

heat transfer, electric or magnetic fields, body forces), and definition of other physical models to be

used. Typically, this stage of the modeling offers most options for simplification by making various

assumptions, and as a result, is the stage that requires most familiarity with the process and the

physics involved. Leaving out an important phenomenon from the simulation will yield completely

useless results. One must understand the physics and the implications of making certain assump-

tions or simplifications to the model, and one must be willing to accept the risks and the

consequences. For example, ignoring heat transfer computation for a fluid that has significant

temperature dependency of the viscosity or density will yield unrealistic flow patterns. One

needs to consider questions such as is the flow transient; is the flow turbulent, and if so, which

turbulence model is most appropriate; is there a mass transfer or chemical reaction that would

impact the flow; what viscosity model is most appropriate for the fluid; etc.

In the food industry, the most challenging part of setting up a fluid flow problem is probably

obtaining accurate physical properties and data for validation.32 Most fluids in the food industry

have either very complex rheology or unknown rheological properties. Furthermore, recipes in the

food industry and other fast moving consumer goods frequently change. Variability of material

properties is also very common (e.g., moisture content, fat content). Obtaining accurate data for the

material of interest if often challenging and requires its own study, simulation, or experimentation.

However, this is probably a very good investment in time if one wishes to get good results from the

flow simulation. The lack of physical data is typically addressed by performing a series of para-

metric studies called numerical experimentation. Similar to parametric experimentation for design,

parametric study of fluid properties (G10%) or physical models is a very common use of CFD to

better understand the process involved and to identify the process window.

Solution. The solution phase of CFD simulation is the most compute-intensive part. Once the

mesh is defined and the physical model is specified, the only control left is selection of numerical

solution options. Most commercial software will provide more than one solver, e.g., segregated

solver, direct solver, and coupled solver. Different physical models would benefit from different

solvers. The choice of solver is often dependent on the models being used in the simulation.

Therefore, the reader is referred to the documentation of the software being utilized.
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3.8.1.2 Postprocessing

This is the most rewarding part of a CFD simulation process. It should be mentioned that

although it is very easy to get colorful graphics or animations from CFD, it is imperative that

these results are realistic. This requires some knowledge of the process being studied. A careful

examination of certain flow behavior can give valuable insight into if the solution is realistic or not.

A CFD analysis provides tremendous information about the flow field. Graphical plots can be

obtained for numerous quantities, including velocity field, pressure distribution, temperature distri-

bution, heat flux calculation, shear rate or shear stress distribution, recirculation zones, trajectories

of massless particles (similar to injecting a dye in the model) or particles with mass, derived

quantities such as drag force, streamlines, etc.

In some cases, a quantity’s values at some specified locations are of primary interest. Possibly,

some experimental data are available at those specified locations that can be compared to the

simulation results. In most cases, especially in design work, it is not the value at a certain location,

but the overall flow pattern, pressure drop (relates to power savings for example), recirculation zones,

and similar global features that are of interest. This is where postprocessing becomes a powerful tool.

It lets one see inside the fluid and inside the walls—the invisible and the inaccessible. It is similar to an

MRI or CAT Scan of the system, yielding tremendous information for further analysis.
3.8.2 Modeling: Steps Involved in Engineering Analysis Using CFD

3.8.2.1 Data Collection

The very first step before attempting any simulation is to collect data about the materials of

interest. The results obtained out of a simulation are as good as the data put into it. It is crucial to

have good data about the process and the material properties before attempting the actual

simulation. Often, the information needed is not available, and one needs to actually run experi-

ments or simulations to obtain the data needed for the process simulation. Reliable physical

property data is essential for reliable results. If the property information is not readily available,

it can be obtained from experimental techniques. If experiments are not feasible, a series of simple

numerical simulations can be performed specifically for the purpose of predicting the behavior of

the fluid at hand.
3.8.2.2 Experimental Validation

The next step before starting a simulation is to define a process or an experiment to compare the

results against. This may involve defining a test case to experimentally reproduce the process as

well as by simulation. This test case helps verify the property data collected in step one, and it

increases confidence in the simulation (both the simulation software and the physical models

utilized). The validation could also be directly against the process being simulated. If specific,

reliable data can be collected from the process that can be compared directly to the simulation

results. This latter approach is typically preferred as it reduces the cost of intermediate steps, and it

verifies the simulation directly against the process. However, not all processes allow collection of

measurements or data, either because the data collection may significantly interfere with the

process, or the process environment can be hostile and may not allow access.
3.8.2.3 Refer to the Code’s Validation

Most commercial codes include validation examples. Some of these validation examples are

based on historical benchmarks that every CFD code has to perform. Other validations may be
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based on the experimental data. Unfortunately, most of the industrial data is proprietary. Most

companies perform their internal benchmarks to their own specifications before accepting the

results of a simulation. Without validation, the colorful results may look realistic, but they can

be inaccurate because of improper selection or oversimplification of geometry, physical models,

boundary conditions, or properties.
3.8.2.4 Parametric Studies and Design Optimization Using CFD

The next step is to start the simulation. Very few simulations will yield the result looked for in

one attempt. The purpose of doing the simulation is to better understand the system of interest, to

improve the process, or to study the different conditions it may operate under. All of these cases

suggest an iterative process. One would typically start with a base case scenario, compare the

results to existing conditions and verify, then start varying certain process parameters to see how a

change in them affects the end product. In most cases, there are numerous parameters available for

the designer to play with in different combinations. These parameters can be geometrical, physical

property, environmental operating conditions, and the like. This series of simulations to experiment

with various parameters is referred to as parametric study. Each parametric study has a range of

operating conditions that the process engineer is interested in that is called the process window.

Defining a good and focused process window will help reach the simulation goal much faster.

Therefore, good planning and good understanding of the process window is essential to

successful simulation.

The traditional way to optimize a given geometry is by trial and error. The same concept

extends to CFD: re-draw a component in CAD, then re-mesh and re-apply the various boundary

conditions required to solve the problem. This process is tedious and difficult to automate. New

tools are coming into the market where they integrate some of the optimization steps in the CFD,

and these tools work with CFD side-by-side. One such tool is Sculptore (Optimal Solutions Soft-

ware, LLC, Idaho Falls, Idaho) that allows parametric shape deformation of the CFD mesh, vastly

reducing the man-hours and computational requirements for design optimization. Some CFD soft-

ware includes some form of shape optimization. For example, inverse die design features can

compute the shape of the outlet of an extrusion die needed to produce the desired product shape

(therefore taking into account die swell effects).4 Because of the swelling of the material at the die

exit, the actual shape of the die can be quite different than the final extrudate shape. As a result,

estimating the actual die shape that yields the desired extrudate is often a challenging task. Such

inverse die design features in the CFD software can be a very useful tool in such applications.
3.8.2.5 Limitations

CFD has been around for the past few decades, and it is still in the process of evolving, adding

new physical models, being able to handle more complex geometries, and solving larger problems

thanks to the increased speed and capacity of modern computers. It can help the engineer solve

more problems with more physical models. The dynamics of fluids, coupled with heat transfer and

other complex phenomena such as particulate matter and electromagnetic heating, make modeling

of the whole process extremely complex, especially in the food industry. As with any numerical

modeling approach, CFD has certain inherent limitations. These are described next.
3.8.2.6 Assumptions

Certain assumptions about the process are needed to bring the problem at hand to a reasonable

size. The assumptions are typically simplifications to the model. For example, one may assume

constant property where the property may, in reality, change as a result of temperature, or one may
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assume the fluid is similar to a better known material that allows the use of its well-known proper-

ties. These assumptions are extremely important to get realistic results. With incorrect assumptions,

the solution will give wrong results accurately.
3.8.2.7 Accuracy of Property Data

Getting a good description of the material is the next important factor in the process. As

previously mentioned, the quality of the material property will determine how realistic the

simulation is. A model with good assumptions and bad property data is like driving a good car

with the wrong directions. It is important to spend the time doing research, experiments, or para-

metric studies to get data as realistic as possible. This builds confidence on the simulation.
3.8.2.8 Physical Models

Once the material is identified, the next steps are to identify what type of physics is involved and

to select the relevant physical models. Is there heat transfer? Is there more than one phase?

Are there chemical reactions or non-linear properties? Is the flow laminar or turbulent? If it is

turbulent, which turbulence model is appropriate? Note that the physics may be present in the

process; however, they may not be relevant in the simulation and can be excluded for the flow

phenomena.
3.9 STEP-BY-STEP CASE STUDIES

This section illustrates how one can solve industrial problems with CFD using the lessons

learned in the preceding sections. The first example illustrates the basic concepts of setting up a

CFD problem using a simple axisymmetric pipe flow, showing the various steps of the modeling.

Even for complicated geometries, it is often recommended to start with a simple two-dimensional

model with a simple physics and to gradually increase the complexity of the problem. This

approach will help an inexperienced engineer gain some insight into and build confidence in the

model and the tools available in the software before attempting the full model.

The second example illustrates the application of CFD by a small manufacturing company in

trouble shooting as well as developing recommendations for a new design that solves the problems

in the equipment.

The third example illustrates the use of CFD in understanding the flow of dough in an extrusion

die head. This example combines complex geometry and pertinent meshing techniques, as well as

physics to include heat transfer, viscous dissipation, and food rheology.
3.9.1 Case Study 1: Flow through a Pipe

3.9.1.1 Problem Description

This is a common application where liquid food such as soups flow in a tubular heat exchanger

for aseptic processing. The objectives of this case study are to apply recommendations from the

previous sections, make reasonable assumptions (refer to Table 3.5), postprocess the results, and

then validate these results against an analytical solution. Such a simplified model is often used

before starting a complex model, typically to validate the input data and physical models of the

software. Table 3.7 shows a representative checklist specific to this simulation. It is advised that the

engineer creates a similar checklist for new models.
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This case involves a viscous fluid (such as soup) flowing through an infinitely long pipe of circular

cross-section with radius, R. Initially, the fluid is at rest. At the instant tZ0, a constant pressure

gradient, dP/dz, is imposed along the pipe. The fluid begins to move under the influence of viscous

and inertia forces, and the velocity profile asymptotically approaches the parabolic profile of steady

Poiseuille flow. The same profile is also referred to as fully developed velocity profile. Instead of

applying a constant pressure gradient in the pipe, often a plug flow velocity (calculated from volu-

metric flow rate and cross-sectional area) is used to simplify the problem. After a certain axial

distance from the inlet, the flow becomes fully developed. To keep the analysis tractable, only

steady state analysis with constant inlet velocity will be carried out. Using the properties and

boundary conditions outlined in Figure 3.8 and in Figure 3.9, the computed Reynolds number is

88. Because it is well below the critical Reynolds number of 2200 for pipe flows, the flow is laminar.

One should always try to take advantage of any symmetry present in the model. If the pipe is

straight and horizontal, as is the case here, the gravity effects can be ignored. This assumption is

important as it leads to a major geometry simplification by solving only an axisymmetric case.

Mathematically, it is referred to as assuming rotational symmetry, i.e., the tangential and radial
Table 3.7 CFD Model Check List for Case Study One

Item Information Values

Geometry Overall dimensions x: 1 m (length), y: 0.02 m (radius), z: N/A

Dimensions Axisymmetric

Grid Number of cells 400

Types of cells 4-node quads

Time dependence Steady

Viscous models Laminar/turbulence Laminar

Wall functions None

Heat transfer Heat transfer models None

Radiation None

Species None

Materials Soup DensityZ1000 kg/m3, ViscosityZ0.01 Pa s

Steel pipe Not modeled

Body forces Gravity None as pipe is horizontal

Boundary conditions Velocity and pressure BCs Symmetry/axis (with unZ0)

Inlet: vxZ0.022 m/s and vyZ0.00 m/s

Outlet: pressure outlet with zero gauge pressure

Temperature Not modeled

Initial conditions Velocities Zero velocities

Under-relaxation factors Solver default PressureZ0.3, MomentumZ0.7

Solver Multigrid Default

Numerics Pressure velocity coupling SIMPLE

Pressure PRESTO

Momentum First order and then second-order upwind with

tighter convergence

Turbulence None

Species None

Monitors Convergence check on

Monitor axial velocity at the exit

Convergence criteria Allow residuals to level off

Ensure several orders of magnitude reduction

Additional checks Check material properties look okay (especially

density)

Post processing Plots Convergence

Grid

Velocity vectors

Line plots of velocities, pressure drop

Computations Maximum axial velocity at the exit
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Figure 3.8 Geometry simplification from 3D to axisymmetric.
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velocities are zero, and the velocity component parallel to flow direction (Z-axis) is a function of

radial direction, r, only. Now with this assumption, one can work with a simple 2D slice of the pipe

from the centerline to the outer wall that needs to be modeled (Figure 3.8). The main advantage of this

assumption is that a relatively small mesh in 2D is needed instead of resolving a full 3D field.

Furthermore, the velocities in the solids are zero, and one does not need to model the pipe wall.

The boundary condition on this pipe’s inner wall can be specified as zero to give the same effect

(Figure 3.9).

To summarize, the following assumptions have been made:

† Flow is steady, laminar, and isothermal
† Gravitational effects are ignored
† 2D axisymmetric case
† Properties of soup are constant (i.e., not dependent on temperature or shear)

3.9.1.2 Governing Equations

Rewriting the conservation equations from Section 3.3

Continuity :
Dr

Dt
CrV$v Z 0;

Momentum : r
Dv

Dt
ZKVP CmV2v:
Wall
vx = vy = 0

Inflow
vx = 0.022
vy = 0

Symmetry
vx = free, vy = 0

Outflow
P = 0Liquid soup

Figure 3.9 Entities and boundary conditions for the model.
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Or, in expanded form,

Continuity :
vr

vt
Cv$Vr CrV$v Z 0;

Momentum : r
vv

vt
Cv$Vv

0

@

1

AZKVP CmV2v:

With the assumptions listed in the previous section, one can rewrite the conservation of mass

and motion for this problem as follows:

Continuity : V$v Z 0;

Momentum : rv$Vv ZKVP CmV2v:

3.9.1.3 Boundary Conditions

Because an axisymmetric analysis is being performed, a symmetry boundary condition must be

applied at the pipe centerline—that is the radial velocity component is constrained to be zero while

the axial component of velocity is left free. At the pipe boundary, a no-slip velocity boundary

condition is applied.

Depending on the objective, one can specify a number of different boundary conditions at the

inlet (Table 3.3). The simplest boundary condition for the inlet is a plug flow or constant velocity at

the inlet. This can be computed from the volumetric flow rate and cross-sectional area. Other

choices include specifying inlet mass flow rate, volumetric flow rate, or pressure drop in the

system. In cases where the assumed inlet is located at the end of long pipe, one can specify the

fully developed profile. At the outer wall, a no-slip boundary condition is specified.
3.9.1.4 Geometry and Mesh Creation

Any commercial mesh generator can be used to create the mesh shown in Figure 3.10. The

domain is a rectangle with length equal to 25 times the diameter. One can always create a real fine

mesh in the entire domain. Please note that the mesh size directly translates to computing resources

needed. Even though this is a simple 2D case where one can afford to have a fine mesh, it is always a

good practice to use resources wisely. It is anticipated that this model will have two areas of high

velocity gradients. One is near the inlet as the flow changes from a constant velocity to a parabolic

profile, and the other is near the wall where the velocities will be reduced to zero. A proper mesh

with finer resolution near the inlet and the wall will yield a small mesh sufficient to resolve these

gradients. In this particular case, the model has been created using GAMBITe (ANSYS, Inc.,

canonsburg, PA), and it consists of 400 quadrilateral cells. It is also recommendes to keep the aspect

ratio (length divided by width of a cell) reasonable. In this mesh, it ranges from is about 2.5 near the

inlet to 50 near the outlet.
Figure 3.10 Mesh showing the grading near the wall and near the inlet.
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3.9.1.5 Results and Discussion

A number of different plots are presented to show the results of the simulation. First, one should

make sure that the solution is fully converged. The residual errors should be lower than the

predetermined criteria. In this case, the solution has been converged to a default convergence

criterion of 0.1% in 27 iterations (Figure 3.11). Then, to achieve further accuracy, a second-

order upwinding is used to get to much tighter tolerances. The final solution has residual errors

of less than 1!10K6. When a second-order upwinding is invoked, the residual errors initially shoot

up and then come down.

Figure 3.12 shows the axial velocity component at different distances from the inlet of the pipe

(xZ0.05 m, 0.10 m, 0.20 m, and outlet at xZ1.00 m). A plug flow velocity has been specified at the

inlet. As soon as the flow enters the pipe, the no slip condition at the wall of the pipe comes into

effect and viscosity or viscous forces impose on the flow. The flow adjacent to the wall continuously

decelerates until the boundary layer thickness reaches the full pipe radius. Once the flow is fully

developed, the velocity profile does not vary in the flow direction (Figure 3.13). In fact, in this

region, the pressure gradient and the shear stress in the flow are in balance. From Figure 3.12, it can

be adjudged that the entrance length for this flow is about 0.20–0.21 m.
3.9.1.6 Validation

This is a simple flow problem where an analytical solution is available. The length of the

pipe between the start and the point where the fully developed flow begins is called the entrance

length, Le. This length has been correlated with the Reynolds Number of the flow. For laminar flow,

this distance is approximately
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Figure 3.11 Residual monitors for Case Study 1.
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Figure 3.12 Axial velocity profiles at various distances from the inlet.
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Entrance Lengthz0:06!Re!diameter:

For this case, this comes out to be 0.21 m. It correlates very well with the Figure 3.12.

After the entrance length, the velocity profile asymptotically approaches the parabolic profile of

steady Poiseuille flow. The axial component at this point is given by Hagen–Poiseuille flow that is

given by

v ZK
1

4m

dP

dz
ðR2Kr2Þ:

The pressure drop calculated from the code is 5 Pa. But this includes the entrance region where

this equation is not valid. If one omits this section, the pressure drop in the remaining pipe is

3.508 Pa. Using this value, one can compute the axial velocity for the fully developed flow.

Table 3.8 shows an excellent agreement between the analytical steady state solution and numerical

solution obtained by the commercial CFD code used in this study. Just in case the match was not as

expected, it could be due to several factors, including incorrect units, physical dimensions in the

model, wrong material properties, incorrect boundary conditions, mesh’s being too coarse to

resolve the gradients, and inappropriate model selections (2D vs. axisymmetric vs. 3D; laminar

vs. turbulent).
3.9.1.7 Summary

This case study illustrated how to set up a simple pipe flow problem and validate it with the

analytical results. Jung and Fryer21 validated a similar problem for a shear-thinning liquid in a

tubular heat exchanger.
Figure 3.13 Velocity vectors near the outlet of the pipe.
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Table 3.8 Comparison of Analytical and Numerical Results

Axial Velocity, m/s

Radial Distance from Center, m Numerical Solution Analytical Solution

0.000000 0.043584 0.043858

0.003260 0.042494 0.042693

0.006145 0.039585 0.039717

0.008699 0.035485 0.035560

0.010960 0.030661 0.030688

0.012960 0.025454 0.025441

0.014731 0.020111 0.020064

0.016298 0.014806 0.014732

0.017686 0.009659 0.009563

0.018913 0.004752 0.004637

0.020000 0.001183 0.000000
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3.9.2 Case Study 2: Fluid Flow through an Industrial Scale French Fryer

3.9.2.1 Problem Description

This case study is courtesy of Gem Equipment that is based in Woodburn, Oregon. Gem is a

producer and designer of custom french fryers for all the food manufacturers. The fried potatoes and

hash browns sold in restaurants and fast-food places are typically precooked by the food processor in

order to sterilize the product and help it stay fresh longer. When the potatoes first enter the fryer, they

are heavier than oil so they sink onto the conveyor. But as they are heated by the oil, the water boils

off, the potatoes’ density drops below that of the oil, and the potatoes begin to float. At this point, the

flow of the oil through the fryer becomes very important. The ideal flow pattern is for the oil to move

in a continuous plug pattern in the same direction as the conveyor, maintaining a constant velocity

across any given section of the fryer. If there are areas of high and low velocity or if the flow moves

perpendicular to the conveyor, the potatoes could be pushed to one side of the fryer. This could cause

the potatoes to be unevenly cooked, and it also creates handling problems when the potatoes leave the

fryer. To obtain consistent product quality, it is important that all potato pieces are exposed to the

same conditions when in the fryer. Fryers are equipped with a number of devices that are used to

control these conditions. For example, because the oil temperature has a direct effect on the color and

textural characteristics of the finished product, temperature controls are used. By maintaining

different oil temperatures in separate zones of the fryer, products with different characteristics can

be simultaneously produced. Smooth oil flow in the fryer kettle is critical for uniform heat distri-

bution and first in, first out potato products without clumps (Figure 3.14).

One of their customers is complaining that some of the tater-tots and french fries are burning

during the frying process. Because the oil is extremely hot, it is very difficult to figure out why this

is happening. The oil enters from a header (that has also been designed using CFD to even out the

flow across the width of the fryer by optimizing a set of perforated plates) and leaves at the other

end. Because the fryer is about 10–15 m long (Figure 3.14 and Figure 3.15), some of the oil is

removed midstream and replenished. The engineer thinks this may be related to uneven oil flow

distribution in the fryer and some of the material’s getting trapped, recirculated, and burned. In a

typical scenario, the engineer would observe the fryer; try to visually determine where the problems

were occurring; then, based on experience, try different adjustments on the fryer until the problem

was solved. With a flow modeling tool (CFD), it is decided to study the flow inside the kettle

without any potatoes and to try alternate designs.

Flow is assumed to be steady, isothermal, and turbulent. The properties of oil at frying tempera-

ture are assumed to be constant.
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Figure 3.14 Industrial French fryer. (Courtesy of Gem Equipment.)
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Figure 3.15 Old and new designs of the oil frying kettle.
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3.9.2.2 Governing Equations

With the above assumptions, one can rewrite the conservation of mass and motion, in vector

notations, as follows:

Continuity : V$v Z 0

Momentum : rv$Vv ZKVP CmV2v:

Because the flow is turbulent, additional equations are needed to calculate turbulent viscosity.

To keep the simulation manageable, a simple mixing length model is used. This mixing length can

be thought of as the average length over which momentum is distributing in the channel.33
3.9.2.3 Boundary Conditions

For running the simulation, material properties such as density and viscosity are needed and so

are boundary conditions. In this case, one needs to specify the inlet velocity and outlet velocity at

the recirculation. At this time, it is needed to know if the flow is laminar or turbulent. This can be

calculated from Reynolds number at the inlet. Because the cross-section of the inlet is not circular,

hydraulic diameter needs to be used. The characteristic velocity can be calculated from the flow rate

and cross-sectional area. The top surface of oil can be approximated with a perfect slip by speci-

fying the normal component of velocity as zero and keeping tangential components free.
3.9.2.4 Geometry and Mesh Creation

A CAD drawing of the equipment may contain some small details like bolts and cross-bars

needed for strength. These details may not add anything significant to flow analysis, but they could

complicate mesh generation. At this point, one can either create the model in the preprocessor or

bring in the CAD model and delete unnecessary details.

In this case, only half the fryer is considered. Once the geometry is created, it is meshed. As

previously noted, the mesh has to be of an appropriate size with finer mesh where the gradients are

high. In a typical case with this sized fryer, a fine quality mesh can run into a few million cells.

Because of the complexity of the fryer geometry because of perforated plates, a tetrahedral mesh

was created using GAMBITe. The model contained 500,000 tetrahedral cells.
3.9.2.5 Results and Discussion

This particular model was solved using FiDAPe on a personal computer, and results were

postprocessed using the built-in postprocessor. It took overnight to get the converged results with

residuals reaching a default convergence criterion.

Because the model is large, it is sometimes difficult to visualize the results even with multiple

plane cuts to plot velocity vectors and speed contours. Whenever there is a problem with flow, it is a

recommended to compute pathlines of massless particle (or particle tracks with density effects) in

the domain. This is the line that one would get from a long exposure photograph, highlighting a

single fluid particle. Depending on the software, one can inject these massless traces anywhere in

the domain and study their behavior. These pathlines are extremely important in finding the areas of

vortex or even a dead zone. The particles trapped in these vortices or dead zones tend to get

overcooked and burned.

The first model of the new header clearly shows flow distribution problems (Figure 3.16), but it

provides engineers with complete information on the flow through the device. This information

helps to create possible solutions. In particular, engineers made changes to the model’s part that
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represents the perforations used to release oil from the header. They tried four or five different

designs on the computer, and they finally found one that works for a wide range of conditions. The

analysis showed a considerable improvement in flow patterns (Figure 3.17). These changes were

then implemented in the industrial fryer, and the original problem will burnout oil, and overcooked

material was alleviated.
3.9.2.6 Summary

The new design has demonstrated the ability to provide even flow distribution in every appli-

cation where it has been tried. Over the past few years when Gem Equipment has used this new

design, not a single header has required adjustment in the field. Gem engineers who were initially

skeptical of computer simulation’s ability to predict flow through the complex fryer geometry have

become believers. As a result, the company is now using CFD to optimize other elements of the

fryer design such as the oil return passageways.

Although the service engineers were able to solve the problem, the cost of the service calls and

the inconvenience to customers caused Gem to look at the simulating oil flow while designing these

headers. After validating it with actual data in the plant, a CFD analysis became a routine even

before building any new fryers. Unlike a physical prototype, the geometry of the CFD model can be

quickly changed on the computer and re-analyzed to explore different design options in project

design or operating conditions. Gem engineers began by modeling the oil flow through their

existing header design.

This case study illustrated several key aspects of the flow modeling: keeping the problem as

simple as possible to gain insight into the process and making design changes in the simulation

rather than physically build.
3.9.3 Case Study 3: Modeling Flows in Extrusion Dies

Food extrusion has rapidly developed over the last fifty years with applications being continu-

ally expanded to new areas of food processing. Among the many applications of food extruder are

continuous pasta presses, ready-to-eat (RTE) cereal products, expanded corn curls, texturized

puffed corn meal, soup and gravy bases, pet-foods, and cookies or cracker-type shapes. Several
Figure 3.16 (See color insert following page 178.) Unwanted vortex generated by improper geometry over fryer
pan return.
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Figure 3.17 (See color insert following page 178.) Vortex removed using FiDAPe to analyze new 3D geometry.
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designs of extruders including single-screw and twin-screws are widely employed in commercial

food production. With these developments, food engineers are faced with many challenges such as

† Increasing the productivity of an existing extrusion line
† Retrofitting an existing line for new products
† Designing an optimum extruder process and system
† Scaling up an extrusion process developed in the laboratory
† Specifying the control parameters for an extruder

In this process, the solid food material such as corn or soy flour with desired additives is conveyed

by a single screw or twin rotating screws inside a barrel. The friction from the interface between the

flowing material and the wall increases the temperature through a viscous heating process, locally

melting the corn meal. After the meal has melted and has completed its flow around the screw(s), the

pressure within the barrel increases because of a restriction at the discharge of the barrel. This

restriction is due to one or more orifices or shaped openings called a die. Discharge pressures can

be quite high as well and generally cause product to expand or swell with extensive flashing of

moisture. These openings can be quite simple, i.e., circular, annual or quite complex. The design of

such dies is complicated and difficult. Traditionally, dies have been designed using an expensive trial

and error procedure with possibly ten or twenty trials and modifications. The main reason for this

lengthy design process is that the flow patterns inside the extruder and dies are unknown. Flow

modeling is an ideal choice to supplement experiments. Instead of modeling the entire process, it

can be broken into several smaller studies including flow inside the extruder (depends on choices of

the co-rotating screw elements and barrel size), flow through the die (shape and number of holes), and

deformation of the extrudate. All these have been independently studied using CFD.23,24,34 One can

predict the shape of the extruded product and even start with the desired product shape by asking the

software program to compute the die lip shape required to produce that product. The result is a

considerable savings of time and expense because the amount of trial-and-error testing is reduced.

For illustration purposes, only flow through extrusion die is studied here.
3.9.3.1 Problem Description and Assumptions

Consider a food extrusion die with eight outlets (a production die generally has many more

holes) situated at the end of a twin-screw extruder. The flow of laminar, non-Newtonian dough,
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melts (such as corn meal) inside the die is affected by the heat transfer to the dough, temperature

sensitive transport properties (such as viscosity), the shear rate dependence of viscosity and viscous

heating.35 Viscous heating can significantly raise the temperature of the dough. This increase in

temperature lowers the viscosity resulting in lower pressure drop in the die head for a given flow

rate. The rheological properties of the dough can be defined using the Carreau model for its

dependence on shear rate and temperature.
3.9.3.2 Equations

The governing equations for a steady state laminar flow problem are as follows:

Continuity : V$v Z 0;

Momentum : rv$Vv ZKVP CV$ mð _g;TÞV!v
� �

;

Energy : rcpv$VT Z kðV2TÞCQ CF:

Because the viscosity of dough may depend on temperature as well as shear rate, heat transfer

needs to be included in the CFD model.
3.9.3.3 Boundary Conditions

The velocity profile and temperature field needs to be defined at the inlet as boundary con-

ditions. Because the flow is coming from the end of a twin screw extruder, the velocity field across

the cross-section is not readily available. Therefore, as an initial guess, a plug flow profile (constant

velocity) can be used. All the exterior walls at the die plate have natural convection boundary

conditions whereas the exterior walls near the inlet are assumed to adiabatic.
3.9.3.4 Geometry and Mesh Creation

In this case, a CAD model can directly be imported into a preprocessing package. Using the

symmetric nature of the geometry, only half of the model is modeled. The big advantage of this is

that the resulting mesh will be half the size. To simplify further, only the flow domain can be

modeled, ignoring the solid metal surrounding it. Therefore, the boundary conditions are directly

imposed on the fluid touching the metal surface. In some commercial codes, there is an option to

add metal thickness for thermal considerations.

Since viscous dissipation is important, a good quality mesh is needed to resolve the thermal

gradients near the walls. It is advisable to use hexahedral meshes for these problems. Unfortunately,

because of the complexity of the geometry, it is impossible to get all hex mesh in the domain of

interest. A good compromise is to put hexahedral mesh where it is possible with finer mesh near the

wall and then use tetrahedral mesh in the remaining areas. Boundary layers near the walls are used

to better capture gradients. A mesh created with GAMBITe contains about 1.63 million cells

(Figure 3.18 and Figure 3.19) with about 900,000 hexahedral, 521,000 tetrahedral, 170,000

prisms, and 28,000 pyramids. Going from a simple 2D model, as in Case Study 1 (Section 3.9.1)

with 400 cells, to a full 3D model with 1.63 million cells to resolve the flow patterns illustrates the

complexity of the simulation as well as a need for compute power for large models.
3.9.3.5 Results and Discussion

This simulation has been solved using a commercially available CFD package, FLUENTe. The

mesh created in GAMBITe is imported into the FLUENTe. All boundary and initial conditions,
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Figure 3.18 Geometry and mesh for an extrusion die (only half the domain is shown).
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dough properties (density, viscosity, thermal conductivity, and specific heat) are then defined in

FLUENTe. A nonstandard Carreau viscosity model is incorporated by writing a few lines of code

to describe the relationship of viscosity with temperature and shear rate. For added accuracy, a

double precision solution with second order is obtained. Because the mesh size is big, one can run

this simulation on two or more processors (called parallel processing) to cut down the simulation

time. This particular case took a few hours on a personal computer with 2 gigabytes of memory.

Again, the first thing is to check is whether the solution has been converged or not. When the

physics is complicated, default values of simulation controls (such as under-relaxation values,

multigrid options, pressure velocity coupling, discretization) may need to be adjusted to make

the solution stable. When dealing with highly nonlinear viscous flows, it is recommended to
Figure 3.19 Close-up view of the mesh.
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obtain the initial solution using a representative constant viscosity and to use this solution for an

initial guess for a full model. Viscous dissipation should be turned on only when the solution seems

to be stable. One can find these bells and whistles in the documentation of the code. In addition to

residuals, it is always advised to monitor intermediate solutions of certain variables (e.g., integrated

value of static pressure at the inlet).

Similar to the previous two cases, a number of different plots can be generated to visualize the

results of the simulation. Figure 3.20 shows velocity vectors on two planes, one on symmetry plane

and the other cutting through one of the die exits. As the flow enters the domain from the inlet, it

travels into a converging channel. Shortly after that, it gets split because of the presence of a

strategically placed cone. There is an area of lower velocity (blue color) near the ends of the

channel. This is potentially an area of concern for recirculation or is even a dead zone. The stagnant

flow in the dead spaces, if any, results in a comparatively lower temperature of the material. A plot

of massless pathlines from the inlet or any other place in the computation domain can also be used

to further study this recirculation. In addition to velocity vectors, one can plot velocity magnitude,

pressure contours, shear rate, temperature, and variable properties. Figure 3.21 shows the velocity

magnitude on one symmetry plane and non-Newtonian viscosity on the other plane. One can then

correlate the effect of velocity on the non-Newtonian viscosity. The areas of high velocity experi-

ence higher shear rate that, in turn, lowers the viscosity.

Significant pressure loss occurs in the narrow section of the die orifice. Because of the narrow

geometry at the die exit, the dough experiences high shear that causes a considerable rise in the

production temperature of the material. Figure 3.22 shows that the flow enters the domain at given

temperature (shown with green) and exits at higher temperature (shown with red). The temperature

increase is often referred to as the temperature rise because of viscous dissipation. In this particular

case, the viscous dissipation raises the temperature of the dough by about 408C. As noted in the

boundary conditions, the exterior walls are exposed to the room temperature and cools off the

material inside as shown by the blue color near the edges.

For food engineers, the die flow balance is an important area for die design. A well-designed die

usually exhibits uniform flow from all die openings. CFD modeling offers significant advantages

over the physical experiments and eliminates the need to build multiple die parts and to perform

time-consuming experiments.
Figure 3.20 (See color insert following page 178.) Plot of velocity vectors in the die.
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Figure 3.21 (See color insert following page 178.) Plots of velocity magnitude (right side) and non-Newtonian
viscosity (left side).
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3.9.3.6 Summary

This particular case study builds on the previous two case studies by modeling a more compli-

cated geometry, including non-Newtonian viscosity and solving energy equations. In this case, a

Carreau model has been used to describe the viscosity dependence on shear. Most foods exhibit

viscoelastic behavior that could have a significant effect on flow.23 CFD simulations such as shown

here are regularly used by the food industry to understand the pressure and temperature distribution

inside a die head and to optimize the extrusion process.
Y
X

Z

Figure 3.22 (See color insert following page 178.) Temperature profiles on the walls of die.
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3.10 CHAPTER SUMMARY

This chapter’s goal was to give the reader enough background into the fluid flow phenomenon so

that one can illustrate the power of numerical experimentation in the field of CFD. The examples

selected are designed to guide the reader to specific aspects of setting up a fluid flow problem. The

many physical models available for the fluid problem may be different, but the approach and chal-

lenges to fluid flow’s modeling is no different than in other physics-based modeling approaches such

as one discussed in the heat transfer chapter of this handbook. The key points of interest are essen-

tially the same, and they can be summarized as problem setup, simplification options, definition of

properties and boundary conditions, solution methodology, and presentation of results. Although the

physics involved in the food industry are fairly complex (either because of the complexity of

materials handled or the combination of physical phenomena involved), advances in both the soft-

ware industry as well as in computer hardware make it possible for these modeling techniques to be

applicable to more and more realistic processes that make them attractive in more application areas.

The numerical physics-based modeling offluid flow represents another powerful tool in the mix of all

other tools available to the food engineer (including experimental, analytical, and heuristic

approaches). As these tools become more applicable to more food processes, it is expected that

the use of these tools will continue to grow and present some challenges to food engineers in the

years to come.
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4.1 INTRODUCTION

Physics-based models for phenomena such as fluid flow (described in Chapter 3), heat transfer (this

chapter) and mass transfer (Chapter 5 and Chapter 6) are the workhorse of models used in many

process-engineering applications. These models are also known as continuum-based transport

models or simply transport models. Unlike the observation-based models discussed in Chapter 9–

Chapter 15 of this book, these physics-based models are based on fundamental physical laws. The

relative advantages and disadvantages of a physics-based model have been mentioned in Chapter 1.

Because these transport models are used extensively in engineering, every branch of transport modeling

is a discipline by itself. This is quite true for heat transfer, where many textbooks (e.g., Refs. 1,2) and

handbooks (e.g., Ref. 3) cover the models comprehensively. This knowledge cannot be reproduced in a

single chapter and there is no utility in attempting to do so. On the other hand, time and time again, the

primary difficulty of a newcomer in any physics-based modeling is in simplifying a physical situation

and choosing the most appropriate analysis among the many available in textbooks and handbooks.

Guidance geared specifically to the newcomer in food-process modeling, given in terms of general

approaches to developing heat transfer models or general classes of models that have worked in the past,

should be novel and uniquely helpful. This will not repeat the general information on heat transfer

available in the literature. This chapter will pursue such an approach.
4.2 DEVELOPMENT OF PHYSICS-BASED MODELS IN HEAT TRANSFER

A physics-based model of heat transfer uses two basic physical laws, as shown in Figure 4.1. The

first law is that of energy conservation which states that the total energy of a system is conserved—it can

only interconvert into a different form. This law of energy conservation is applied to the conservation of
Modes of
Heat Transfer  

Conduction
(described by
Fourier’s law)  

Radiation
(described by  
Planck’s law)  

with flow
(fluids) 

without flow
(solids) 

Laws describing
Energy 
Transport  

Law of
Energy
Conservation 

In 

In - Out + Generation = Storage 

Out Generation 

Storage 

Figure 4.1 The law of energy conservation and the laws describing energy transport via the fundamental
mechanisms of conduction and radiation together make up the foundation of a physics-based
model of heat transfer processes.
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thermal energy where conversion from another energy form to thermal energy is treated as a generation

(source) term. The second law (Figure 4.1) pertains to the two fundamental mechanisms of heat

transfer, conduction, and radiation. The law for conduction heat transfer is generalized from empirical

observations and states that the flux (amount per unit area per unit time) of thermal energy at a location

due to conduction in a material is proportional to the gradient in temperature at that location:

qx ZKk
dT

dx
: (4.1)

Here, T is temperature at location x and qx is the heat flux at x, along the positive x direction. The

coefficient, k, is the called the thermal conductivity of the material—it is a material property that is

almost always determined experimentally. This equation is also known as Fourier’s law of heat

conduction. The commonly known term of convection heat transfer typically refers to the addition

of flow (as in a fluid) to conduction heat transfer. For most of the discussions in this chapter, porous

media will not be considered, i.e., the discussions deal with either a pure solid or a pure liquid.

Transport of thermal energy has another fundamental mechanism besides conduction: through

electromagnetic radiation from a surface. A body at any temperature above absolute zero emits

radiation in all directions over a wide range of wavelengths. The quantity (amount) and quality

(spectral distribution) of energy emitted by this radiative heat transfer depends on the temperature.

The energy emitted by a body over all wavelengths and all directions is the radiative heat flux (Eb,

in W/m2) and is given by

Eb Z 3sT4 (4.2)

where T is the absolute temperature of the surface, 3 is a surface property called the emissivity, and s

is the Stefan–Boltzmann constant. Equation 4.2 is known as the Stefan–Boltzmann law that is

derived from the more general Planck’s law of radiation which provides the energy emitted as a

function of temperature and wavelength. Modeling of radiative heat transfer is described in more

detail in Section 4.10.
4.3 PROBLEM FORMULATION IN HEAT TRANSFER: CONDUCTION AND
CONVECTION

By applying the law of conservation of energy and the Fourier’s law of heat conduction on a

differential volume and taking the limiting case of this as volume goes to zero, one arrives at the

general equation for thermal energy transport. Such derivations can be found in a large number of

undergraduate and graduate textbooks on heat transfer (e.g., Ref. 4). A very general form of the heat

Equation (with constant thermal properties) is given by:
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(4.3)

Here, T is temperature at position (x, y, z), v is the velocity, and Q is a heat source (discussed later).

The terms k, r, Cp are thermal conductivity, density, and specific heat, respectively, that are called
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the thermal properties. The velocities vx, vy, and vz can be obtained from solving the Navier–Stokes

equation, as described in Chapter 2. The equation is given here in Cartesian coordinates and the

same equation in other coordinate systems can be found in other textbooks (e.g.,Ref. 4). The

equation is rarely solved with all the terms as noted. Important simplifications are made when

problems are reduced to 2D or 1D and terms representing various physical processes are dropped. A

common simplification is to drop the last term that represents viscous dissipation of heat. Dropping

this term leads to the more familiar heat equation
vT

vt
Cvx

vT

vx
Cvy

vT

vy
Cvz

vT

vz
Z a

v2T

vx2
C

v2T

vy2
C

v2T

vz2

� �
C

Q

rCp

(4.4)
where aZk/(rCp), called the thermal diffusivity, has been used.

One of the simplest situations occurs when the diffusional resistance to heat transfer from the

interior of the material to its boundary is lower than the resistance to heat transfer from the

boundary to the surroundings. Under this situation, the above equation may be reformulated into

what is called the lumped parameter analysis. This is further discussed in Section 4.7.3. When

formulating a heat-transfer problem for all other situations where diffusion needs to be considered,

several considerations are necessary, primarily to simplify the situation.
4.3.1 Solid, Fluid, or Conjugate Problem

One of the first steps in formulating a heat-transfer problem is to decide on the domain of

analysis. In a problem involving both solids and fluids, in some cases both the solid and fluid need to

be included in the analysis. For example, in a slow-freezing process involving a solid and colder

surrounding air, the temperature drop in the solid that is being frozen influences the air flow around

it; both the solid and surrounding air may need to be included in the analysis. Such a problem is

called a conjugate problem; it is discussed in Section 4.11. However, in most situations, the analysis

can involve either the solid or the fluid. When the analysis is carried out for the solid, the fluid is

replaced by a surface heat-transfer coefficient. When the analysis is carried out for the fluid, the

solid may be replaced by a surface temperature.
4.3.2 Transient

The transient term denotes rate of change of storage. Solutions to transient problems can be

computer time consuming and also numerically challenging. Therefore, it is important to decide

whether a transient solution is really necessary. The transient term should be retained in situations

such as

† When changes with time are likely to be significant and is of interest
† The timescale of interest is short enough that transient effects are important
† In some situations in numerical solution, even though steady state is of interest, where the

researcher may have to start from a transient simulation and run the simulation for long

enough time to reach steady state

Examples of some situations where the transient term may be ignored occur if one expects the

processes to reach steady state. This can happen in (1) heat transfer in a tube flow, or (2) heat loss

through the walls of a cold-storage container when outside and inside conditions are fairly constant.
q 2006 by Taylor & Francis Group, LLC



HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES90
4.3.3 Convection

This term represents the transport of energy or species due to bulk flow. It should be kept

† For a fluid, when movement (flow) is expected
† When it is likely to have a strong contribution in relation to diffusion, as determined by

the Peclet number (PeZuL/a, where L is the characteristic dimension)

The convection term can be ignored, for example, for a solid region that does not move (flow) or is

not subject to bulk flow (such as in a porous media).
4.3.4 Conduction

This term represents the contribution due to conduction or diffusion. It is needed when large

temperature gradients are expected in the system. The diffusion term may be ignored in situations

such as

† Uniform and rapid heat generation, such as in short-time microwave or ohmic heating
† When all of the thermal resistance is outside the material, given by the condition hL/k!

0.1; under this condition, a specialized, simpler, lumped parameter analysis (Section

4.7.3) may be carried out
4.3.5 Heat Source

This term represents the contribution due to volumetric generation or depletion of energy. More

details of source terms are provided later.

† It is needed when energy deposition needs to be considered due to volumetric heating

from electromagnetic, ultrasonic, or other sources (in heat transfer).
† It may be ignored when heat generation due to electromagnetic, pressure, or other modes

of heating are insignificant compared to conduction or other modes of heat transfer.
4.3.6 Coupling with Other Physics

In many situations, heat transfer is coupled with other physics. For example, in frying, heat

transfer is strongly coupled with moisture transport. In microwave heating, heat transfer is coupled

with electromagnetics. In processes such as drying or bread baking, where dimensional changes are

involved, heat transfer is coupled with solid mechanics. Again, inclusion of other physics to provide

more details should be balanced against complexities in computation that arise due to the inclusion

of such physics. This is further discussed in Section 4.11.
4.3.7 Uncertainty or Stochastic Variations

Equation 4.3 is deterministic in nature, i.e., there is no built-in uncertainty in either the proper-

ties or the other parameters. In reality, there are uncertainties in food properties (because food is a

biological material that can have natural variations) and in process parameters such as temperature

of the fluid being heated (because of the limitations of the process control system). Physics-based
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models can be made more realistic by the inclusion of such uncertainties. This is discussed at length

in Chapter 8. In the absence of such detailed formulation of the stochastic variations that are

unavailable in many commercial software programs, one can run the deterministic model

mentioned in this chapter for a range of input parameters (such as thermal conductivity) covering

the uncertainty and obtain a range of output parameters that would represent the extremities in cases

of parameter uncertainty.
4.4 SOLUTION TECHNIQUES FOR THE HEAT EQUATION

Until computers found widespread use, the primary mode of solving the equations in physics-

based models was analytical. Analytical solutions can provide simplicity and more insight into the

physical process and make it easier to obtain the dependence of a particular parameter, but they are

often restricted to rather simple situations. Numerical solutions, on the other hand, are extremely

flexible. Numerical methods generally work for arbitrary initial and boundary conditions, complex

geometries, thermal properties varying in space and time, etc. Thus, numerical solutions are well

suited for heat-transfer problems. Many books have been written on numerical solutions to heat-

transfer equations and these numerical methods have been incorporated in numerous commercial,

public-domain, and personally owned software. In the past, most of the research-level problem

solving in numerical heat transfer has been carried out through development of individual codes, a

trend that still continues to some extent today. As general-purpose commercial codes become more

powerful and easy to use, the use of these general-purpose codes is becoming more prevalent.

The use of commercial software to solve heat-transfer problems can be artificially divided into

three categories: (1) small-scale teaching software, (2) large-scale industrial and research software,

and (3) software that couples multiphysics. An example of small-scale teaching software is FEHT

(F-Chart Software, Madison, Wisconsin). Restricted versions of large-scale industrial software are

also available as a teaching tool, such as FlowLab (Fluent, Inc., New Hampshire). A number of

computational fluid dynamics (CFD) software programs are available at the large industrial and

research scales that can perform most of the (uncoupled) problems mentioned in this chapter. An

extensive list of such codes is available at “http://www-berkeley.ansys.com/cfd“; most of the

programs are commercial. Several examples of the use of CFD in food-processing problems are

provided in Chapter 2. At the time of this writing, two of the commercial software programs that

have substantial multiphysics capabilities are ANSYS (Canonsburg, Pennsylvania) and COMSOL

Multiphysics (COMSOL, Inc., Burlington, Massachusetts). Significant activities are underway

within the CFD community to couple the physics available in various standalone codes; conse-

quently, a substantial increase in multiphysics capabilities should be expected in the future.
4.5 THERMAL PROPERTIES

Thermal properties that are needed for heat-transfer modeling include properties related to heat

conduction (thermal conductivity, specific heat, and density), those related to thermal radiation

(reflectance, absorptance, transmittance, and emittance) and those related to fluid flow (viscosity)

when the material is flowing. Thermal properties, like other food properties, are often a strong

function of processing conditions such as temperature, moisture, and even their histories. It would

be especially useful if correlations of the needed properties were available that covered ranges of

temperature, moisture, and other states of the food during processing. Such detailed data, as

illustrated by the thermal conductivity data shown in Table 4.1, are generally unavailable. When

such detailed data is not available, sources of data can be (1) reference books on food properties

(e.g., Refs. 5,6,7), (2) computerized databases (e.g., Ref. 8), (3) individual research papers, and (4)

measurement. If these fail, the only choice is to think of the composition of the food in terms of air,
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http://www-berkeley.ansys.com/


Table 4.1 Thermal Conductivity of Individual Components, to Be Combined with Composition to Obtain
Thermal Conductivity of Food Materials

Component Conductivity Equation

Water 0:57109C1:762!10K3T K6:7036!10K6T 2

Ice 2:21960K6:2489!10K3T C1:0154!10K4T 2

Proteins 0:17881C1:1958!10K3T K2:7178!10K6T 2

Fats 0:18071K2:7604!10K3T K1:7749!10K7T 2

Carbohydrates 0:20141C1:3874!10K3T K4:3312!10K6T 2

Fibres 0:18331C1:2497!10K3T K3:1683!10K6T 2

Ash 0:32961C1:4011!10K3T K2:9069!10K6T 2

Air 0.025

Source: Nesvadba, P., Engineering Properties of Foods, Rao, M. A., Rizvi, S. S. H., and Datta, A. K., Eds., Boca
Raton, FL: Taylor & Francis, 2005.
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water, and ice, each having a distinct thermal conductivity value. Using an initial guess of the

property based on the composition, a sensitivity analysis of the heat-transfer model to thermal

property can be accomplished by running the model for a range of thermal property values. Such

sensitivity analysis will provide the likely range of the final parameter (such as temperature) from

the model. The sensitivity analysis can also serve as a guide to where more accurate data is needed

if computations show a process to be particularly sensitive to a given property.
4.6 INTERNAL HEATING AND SOURCE TERMS

4.6.1 What Is a Source Term?

As previously mentioned, the source or generation term, Q, in Equation 4.3 refers to an energy

source or energy generation that seems to appear out of nowhere. Because energy cannot really

come from nowhere, it is actually converted from other forms. The most common type of conver-

sion is from electromagnetic energy, a typical example being microwave heating of food, where the

energy of the microwaves is converted into heat inside the food material, thus appearing as a source

term in the energy equation.

Thus, the focus of this section is to obtain the source term, Q, necessary to solve Equation 4.3. In

general,

Q Z f
food

parameters
;

heating

parameters

� �
: (4.5)

An example of a heating parameter in microwave heating is the oven power level or the oven

geometry. The physical mechanism that leads to the heating will now be discussed for a number of

food heating situations, along with the formulation of Q. Note that the source term is volumetric,

i.e., Q is distributed in the material (not necessarily uniformly) and its units are W/m3.
4.6.2 Heat Source Term for Electromagnetic Heating: Microwaves

The effect of microwave heating is typically formulated as a heat source term in the heat

equation. Before presenting the heat source term for microwave heating, some detailed discussions

of the nature of microwave heating are now presented to provide the reader with some insight into

this important mode of heating. At the end of this section, a summary is provided of the heat source

term formulations for microwave heating. It is important to note that the modeling of microwave

heating described below is another example of physics-based modeling.
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Figure 4.2 The electromagnetic spectrum showing the regions of microwave and infrared (with its sub regions)
energy that are used to heat food materials. (From Datta, A. K. and Almeida, M., Engineering Proper-
ties of Foods, Rao, M. A., Rizvi, S. S. H., and Datta, A. K., Eds., Boca Raton, FL: Taylor & Francis,
2005.)
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Microwave heating of food refers to the heating of food using electromagnetic waves in the

microwave region (the electromagnetic spectrum is shown in Figure 4.2) in a resonant cavity,

usually at frequencies of 915 MHz and 2450 MHz. At these frequencies, water molecules as

dipoles and ions present in the food try to follow the alternating electric field of the microwaves

and generate frictional heat. The general form of the volumetric heat source term, Q, in microwave

heating is given by

Q Z 2pf 30300E2 W

m3
(4.6)

where f is the frequency of the microwaves, 3 00 is dielectric loss (a property of the food material),

and E is the strength of the electric field at any time t at a given location. The use of this equation to

model microwave heating is not straightforward. Section 4.6.2.6 will provide the precise formu-

lations of Q for various situations. However, to help the reader understand the reasoning behind

these formulations and to be able to use them properly, this section will provide physical insight

into the microwave heating process, including showing how to model the electric field, E.
4.6.2.1 Electromagnetic Interaction with a Food Material and Dielectric Properties

The two properties that determine a material’s interaction with microwaves are the dielectric

constant, 3 0, and dielectric loss, 3 00. Air in a microwave oven can absorb very little of the microwave

energy; only the food is heated by the electromagnetic waves. Dielectric properties of foods cover a

significant range, as shown in Figure 4.3.

Like many other food properties, first-principle-based prediction equations for dielectric prop-

erties as a function of temperature and composition are not available. Empirical or semiempirical

correlations are the only possibilities, but even these are scarce (e.g., see Ref. 11).

Dielectric properties of foods can vary strongly with temperature. As the ice in a frozen food

melts, absorption of microwaves increases tremendously. This leads to one of the sharpest changes

in dielectric properties. Such changes in dielectric properties can be described using procedures

such as those in.12 Above freezing, the dielectric constant decreases with temperature. The dielec-

tric loss of an unfrozen material decreases with temperature, except for materials with high salt

contents, where dielectric loss increases due to increased ionic activity at higher temperature. From

the few available correlations,11 an example of temperature variation of dielectric properties can be
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Figure 4.3 A scatter plot of some of the literature data for a variety of food materials showing some approximate
grouping. Most of the data are from a frequency range of 2400–2500 MHz. Temperature varies
between 58C and 658C for meats and meat juices, while the vegetable data is mostly at 238C.
(From Datta, A. K. and Almeida, M., Engineering Properties of Foods, Rao, M. A. Rizvi, S. S. H.,
and Datta, A. K., Eds., Boca Raton, FL: Taylor & Francis, 2005.)
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seen in the data for meats:

30meats Z mwaterð1:0707K0:0018485TÞCmashð4:7947ÞC8:542;

300meats Z mwaterð3:4472K0:01868T C0:000025T2ÞCmashðK57:093 C0:23109TÞK3:5985:

Some other correlations can be seen in Ref. 11.

Moisture content is one of the major determinants of food dielectric properties. Increases in the

dielectric constant and loss factor of food systems with moisture content have been shown in

various studies. However, few data or correlations are available for data as a function of moisture

content, especially for lower moisture contents. In simulations of microwave drying, for example,

moisture content variation is needed. In the absence of available data, approximate variations can

be developed based on composition and data on similar materials, followed by a sensitivity

analysis, as discussed under thermal properties.

During processing, both temperature and moisture of the food may change. Thus, to use

Equation 4.6, one needs both 3
00

and 3
0

(because E depends on it) as functions of temperature and

moisture. This couples electromagnetics and heat transfer (see Section 4.11.2 for details of such

modeling). The following two sections discuss how to solve for the electric field, E, thereby

allowing calculation of the heat source term.
4.6.2.2 Modeling of Microwave Heating: Solutions for Idealized Plane Wave

The shape and size of the food greatly affect its spatial distribution of microwave absorption.

Consider first the simplest situation of plane electromagnetic waves propagating in an infinite

medium, which is different from food heating in a cavity (discussed later). Maxwell’s equations

describing the electromagnetic wave propagation can be simplified, assuming electric field polar-

ization in the x direction, the magnetic field polarization in the y direction, and the wave

propagation in the z direction, as
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v2Ex

vx2
Kmse

vEx

vt
Km3

v2Ex

vt2
Z 0: (4.7)

Assuming that a solution to this 1D electromagnetic wave propagation equation is Exe
jut, then

the spatial variation given by Ex can be written as

Ex Z EC
x eKazeKjbz; (4.8)

where EC
x is the electric field at zZ0. From this expression, the magnitude of the electric field is

given by

Exj jZ EC
x eKaz: (4.9)

This shows that the electric field decays exponentially into the material from the surface. The

coefficients a and b are given by

a Z 2pf
ffiffiffiffiffi
m3
p 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 C ð300=3Þ2

p
K1

h i� �1=2

; (4.10)

b Z 2pf
ffiffiffiffiffi
m3
p 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 C ð300=3Þ2

p
C1

h i� �1=2

: (4.11)

The heat generation in the material is related to the electric field by Equation 4.6. Substituting

Equation 4.9 into Equation 4.6 gives

Q Z 2pf 303
00
eff Exj j

2 Z 2pf 303
00
effE

C2
x eK2az Z Q0eKz=d (4.12)

where Q0 is the rate of heat generation at the surface and dZ1/2a is the power penetration depth

that is often referred to as simply penetration depth. From Equation 4.10, penetration depth, d, is a

function of food properties. Typical ranges of penetration depths for various food groups are shown

in Figure 4.4.
Frozen foods
(−20 to −40˚C)
Also grains, oil

Fruits and Veg
(19−23˚C)

Meats
(1.2−65˚C)

Meat Juices
(5−65˚C)

0.3

Penetration Depth (cm)

Water (30˚C)

 30101

Figure 4.4 Typical ranges of penetration depths for various groups of food materials (the dielectric properties
correspond to those shown in Figure 4.3). Data are at frequencies near 2.45 GHz. (From Datta, A. K.,
Sumnu, G., and Raghavan, G. S. V., Engineering Properties of Foods, Rao, M. A., Rizvi, S. S. H., and
Datta, A. K., Eds., New York: Marcel Dekker, 2005.)
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4.6.2.3 Modeling of Microwave Heating: Solutions for Heating in an Oven (a Cavity)

A microwave oven is a 3D cavity, as illustrated in Figure 4.5, with a spherical food load inside

of it. The inside walls of the cavity reflect microwaves. Inside this cavity, the incoming electro-

magnetic waves from the magnetron (shown as excitation and waveguide) and the reflected waves

from the cavity walls form resonant patterns. The qualitative pattern, as well as the magnitude of

electric fields inside the food, are quite different from those in the air. In contrast to a plane wave

(Equation 4.9), there is no easy and universal solution to obtain the electric field inside a food

placed in such a cavity. Over the years, exponential decay inside a food has been used in many

oven-heating situations, but for most of the situations this is essentially a qualitative assumption and

can be completely wrong, depending on the size of the food and its dielectric properties. The proper

method of obtaining the electric field patterns inside a food is to solve the Maxwell’s equations of

electromagnetics for the oven and obtain the volumetric rate of heating as given by Equation 4.6.

This process is described below.

4.6.2.3.1 Governing Equations

The electromagnetic fields, such as those that are responsible for the heating of the food

material inside a microwave oven (Figure 4.5), are described by the Maxwell’s equations

V!E ZK
v

vt
ðmHÞ (4.13)

V!H Z
v

vt
ð3030EÞC300eff30uE (4.14)

V$ð3EÞZ 0 (4.15)
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Figure 4.5 Schematic of a microwave oven system (GE, Inc., Louisville, KY, Model number JE635WW03, rated
at 0.92 kW) with food placed at the center of the oven. (From Zhang, H. and Datta, A. K., Transactions
of the Institution of Chemical Engineers, 83, 14, 2005.)
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V$H Z 0; (4.16)

where E and H are the electric and magnetic field vectors, respectively. In food materials, heating is

carried out by the electric field, primarily through its interaction with water and ions, as noted

earlier. The complex permittivity, 3, is given by

3 Z 3
0C j300eff ; (4.17)

where the properties 3 0 and 300eff are functions of locations in the food due to temperature (and

moisture) variations. These properties also vary with the frequency of the microwaves; however, in

food applications, the microwave frequency is usually fixed. In the above equations, 30 is the

permittivity of free space (8.86!10K12 F/m) and uZ2pf is the angular frequency of the micro-

waves. For a short discussion of Maxwell’s equations and their solution in heating applications, see

Ref. 13. The Maxwell’s equations are to be solved to obtain the electric field, E, as a function of

position in the food and heating time. The rate of volumetric heat generation is calculated from this

electric field using Equation 4.6.

4.6.2.3.2 Boundary Conditions

Boundary conditions for the electromagnetic modeling of a cavity are set on the walls of the

cavity, which are considered perfect conductors. The entire cavity interior is treated as a dielectric,

with appropriate dielectric properties of air and food in the regions that they occupy. Note that in

modeling of the entire cavity, the food–air interface does not have to be treated in any special

manner by the modeler because this is built into Maxwell’s equations. In the interior of a perfect

electrical conductor, the electric field is zero. This condition, together with Maxwell’s equations,

leads to the boundary condition at the air–wall interface as

Et;air Z 0 (4.18)

Bn;air Z 0: (4.19)

Here, the subscripts t and n stand for tangential and normal directions, respectively. These con-

ditions are necessary to determine the solution. Input parameters needed for the solution are the

geometry of the food, inside geometry of the oven, the dielectric properties of the food material and

the magnitude of the excitation. In most cases, the magnitude of the excitation is obtained by

matching experimental data on temperature rise.

4.6.2.3.3 Numerical Solution and Experimental Verification

There are a number of commercial software programs based on various computational methods,

such as the finite difference time-domain method and the finite element method (see http://www.

emclab.umr.edu/csoft.html. Many of these codes are not particularly efficient for cavity-heating

applications where the electromagnetics must be solved for high frequencies and coupled with heat

transfer. Two of the codes that have such coupling capabilities for cavity-heating applications are

ANSYS and COMSOL. An example of using ANSYS in microwave heating of food can be seen in

Ref. 14. Direct experimental verification of the electric field is difficult because few, if any, sensors

are available for this purpose. Typically, the temperature measurements serve as indirect validation

of the electric field distributions.
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4.6.2.4 Factors Affecting Heat Generation: Food Volume

Because a complete solution of the electromagnetics in a cavity depends strongly on oven and

food parameters, only general trends are discussed here. In microwave heating, like conventional

heating, the total power absorbed increases with volume, eventually leveling off at a power that

depends primarily on the magnetron power level, and to a lesser extent on the dielectric properties

and geometry. Thus, total power absorption with load volume is typically described by a curve

similar to that shown in Figure 4.6. The curves in this figure show experimental data and numerical

computations for heating of water in a cylindrical container. This relationship is sometimes

described by an empirical equation of the form

qtotal Z að1KeKbV Þ; (4.20)

that can also be written as

qtotal

V
Z

a

V
ð1KeKbV Þ; (4.21)

where a and b are empirical constants. Thus, power absorption per unit volume decreases as load

volume increases. When the complete set of Maxwell’s equations are solved for a cavity, as

discussed above, this volume effect of the load is automatically taken into account. However, if

the modeling is to be based on other simplified formulations, as described below under various heat-

source formulations, the total power absorbed by a certain volume of load needs to be

experimentally measured.
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Figure 4.6 Magnitude of power absorbed in different volumes of water loads when full power of the oven is
applied, obtained from experiment and electromagnetic simulations. (From Zhang, H. and Datta, A.
K., Transactions of the Institution of Chemical Engineers, 81C, 257, 2003.)
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4.6.2.5 Factors Affecting Heat Generation: Food Shape

Food shape can significantly affect both the total power absorption as well as its spatial distri-

bution inside the food. One of the major problems in microwave heating is the high intensity of

electromagnetic fields at the edges and corners of the food. Another very significant feature of

microwave heating is the possibility of focusing due to curved shapes. Focusing is a function of the

dielectric properties of food and the food’s size, as illustrated in Figure 4.7. Such shape effects can

only be modeled by solving the Maxwell’s equations for the particular situation.
4.6.2.6 Summary of Heat Source Formulations for Microwave Heating

4.6.2.6.1 Constant Value of Heat Generation

For very thin or low-loss materials, where the penetration depth is expected to be very large

compared to the size of the food, sometimes a reasonable assumption can be constant volumetric

heat generation, i.e.,

Q Z constant: (4.22)

4.6.2.6.2 Exponentially Decaying Heat Generation from the Surface

This is the most used (and misused) expression for heat generation. This form actually origin-

ates from the plane electromagnetic waves propagating in an infinite media, as shown earlier, and is

given by

Q Z Q0eKz=d: (4.23)
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Figure 4.7 Concentration index (a measure of the intensity and the extent of focusing of energy) as a function of
radius for different spherical food materials heated in a microwave cavity, obtained from electro-
magnetic simulations. (From Zhang, H. and Datta, A. K., Handbook of Microwave Food
Technology, Datta A. K. and Anantheswaran, S., Eds., New York: Marcel Dekker, 2000.)
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This equation was shown18 to be valid for plane electromagnetic-wave heating offinite slabs where

the slab thickness is greater than 5.4d–0.08 cm, where d is in cm. For cavity heating, the use of Equation

4.23 is mostly empirical because no studies have proven the equation to be true for a cavity.

4.6.2.6.3 Detailed Electromagnetic Solution

A detailed electromagnetic solution is the right method to accurately obtain the heat generation

values. However, it is also a computationally challenging problem, as previously discussed. As

improved software becomes available, this approach should become easier. Here, the electric field

is computed from solving the Maxwell’s Equation (Section 4.6.2) and the heat generation is

computed from the electric field as

Q Z 2pf 30300eff jEj
2; (4.24)

where jEj is the magnitude of the electric field at any location. This equation can be used to

calculate heat generation for any situation where E is known.
4.6.3 Heat Source Term for Electromagnetic Heating: Infrared

4.6.3.1 Zero Penetration: Inclusion as a Boundary Condition

If the depth of penetration of infrared radiation is negligible, the heat flux at the surface, qjsurface,

computed from radiative transfer calculations, is used as a boundary condition:

Kk
vT

vx
Z qjsurface: (4.25)

Further discussion on heat-flux boundary condition can be seen in Section 4.10. Heat flux can be

measured experimentally14 or obtained from the radiative heat-transfer analysis mentioned in

Section 4.10.
4.6.3.2 Significant Penetration: Volumetric Heating with Exponential Decay

If the depth of penetration, d, as defined earlier, is significant, a different formulation is required.

Surface radiant heat flux at the boundary given by Equation 4.25 is no longer used; instead, radiant

heating is included as a volumetric heat source term given by

Q ZK
dq

dx
Z

qjsurface

d
eKx=d; (4.26)

where qjsurface is obtained from experiment or radiative heat transfer analysis, as discussed pre-

viously. Some values of penetration depth for food materials can be seen in Ref. 11. Although

penetration depth is a function of wavelength and moisture content, etc., such detailed information

is generally unavailable (representative information for potato can be seen in Ref.11).
4.6.4 Heat Source Term for Electromagnetic Heating: Ohmic

Before providing the heat source term for ohmic heating, a brief introduction is provided to

the physics of ohmic heating. A summary of the source term formulations is provided at the end of

this section.
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4.6.4.1 Electrical Conductivity of Foods and Interaction of Low-Frequency
Electric Fields with Food Material

Ohmic or resistive heating depends on the electrical conductivity of the material. Food formu-

lations with a moderate percentage of free water having dissolved ionic salts are reasonably good

conductors and can be heated by the process. Most pumpable foods with water content exceeding

30% conduct electricity sufficiently well for ohmic heating. Covalent, nonionized fluids such as

fats, oils, alcohols, and sugar syrups, and nonmetallic solids such as bone, cellulose, and crystalline

structures (including ice) cannot be directly ohmically heated. Conductivity of most electrolytic

solutions increases with temperature due to increased ionic mobility and decreasing viscosity.
4.6.4.2 Modeling of Ohmic Heating

The source term, Q, for ohmic heating is given by

Q Z seffE
2; (4.27)

where seff is the conductivity of the material and E is the magnitude of the electric field. Note that

Equation 4.27 and Equation 4.6 are equivalent because the effective dielectric loss can be related to

effective conductivity as

seff Z 2pf 30300eff : (4.28)

The volumetric heating term for ohmic heating can be written in terms of voltage as

Q Z
1

r

DV

DL

� �2

: (4.29)

Here, a voltage drop of DV occurs over a length DL for a material of resistivity r. Note that this

is the same as Equation 4.27 because EZDV/DL, and sZ1/r is the conductivity (units of

Siemens/m).

The voltage, V, is obtained from a simplified version of the Maxwell’s equation of electromagnetics

described previously under microwave heating. It is given by

V$ðsVVÞZ 0; (4.30)

which in 2D Cartesian coordinates is given by

v

vx
s

vV

vx

� �
C

v

vy
s

vV

vy

� �
Z 0 (4.31)

The voltage equation (Equation 4.31) is second-order in space. It therefore needs two boundary

conditions for each spatial dimension x and y. A common boundary condition would be to set the

voltage at one end as the applied voltage and the voltage at the other end as zero. The input

parameter to this equation is typically the conductivity, s, as a function of temperature. Notice

the similarity of Equation 4.31 to the steady-state diffusion equation:

v

vx
D

vc

vx

� �
C

v

vy
D

vc

vy

� �
Z 0: (4.32)

Thus, a common way to solve Equation 4.31 in the context of CFD software is to use the voltage

as a species. The value of s is input as the value of diffusivity for this species. This is how ohmic

heating is implemented in the software FIDAP, for example.
q 2006 by Taylor & Francis Group, LLC



HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES102
4.6.4.3 Summary of Heat Source Formulations for Ohmic Heating

4.6.4.3.1 Constant Value of Heat Generation

When the variation of electrical conductivity with temperature and composition can be ignored,

a constant value of heat generation can be used, i.e.,

Q Z constant: (4.33)

4.6.4.3.2 Spatial and Time Variation in Heat Generation

Electrical conductivity variation cannot often be ignored. For this situation, the heat generation

will be given by

Q Z seffE
2; (4.34)

where E is obtained from solving Equation 4.31.
4.6.5 Heat Source Term for High-Pressure Heating

In high-pressure processing, pressure buildup leads to volumetric heating from the work of

compression. This is a thermodynamic effect. The volumetric heating can be modeled as

Q Z bT
dP

dt

W

m3
; (4.35)

where b is the thermal volumetric expansion coefficient and T and P are temperature and pressure at

any time t, respectively. Some data on b values of food materials is becoming available.19
4.6.6 Heat Source Term for Respirative Heating

Respiration is the process by which stored organic materials (carbohydrates, proteins, and fats)

are broken into simple endproducts with a release of energy. This process uses oxygen and produces

carbon dioxide and water vapor. The respiration rate of a product determines its transit and post-

harvest life. Stored food reserves are lost during respiration, which means less food value, loss of

flavor, loss of saleable weight, and more rapid deterioration. Respiration rates of commodities are

directly related to product temperature; the higher the temperature, the higher the respiration rate.

Rapid cooling to the commodity’s safe temperature is most critical for those commodities with

inherently higher respiration rates. An example of a heat and mass transfer model that includes

respirative heating can be seen in Ref. 20. Typically, the heat source term is treated as a constant.
4.6.7 Heat Source Term for Ultrasonic Heating

In ultrasonic heating, mechanical energy carried by longitudinal waves is converted into

thermal energy by frictional losses. The associated frequencies are usually over 20 kHz, beyond

the range of human perception. It is not associated with the electromagnetic spectrum. Although an

exponential decay of energy levels from the surface into the material can sometimes be assumed,

there are significant complications.21 Modeling of ultrasonic heating in the food context is rare,

but studies from biomedical applications can be quite relevant.
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4.7 HEAT TRANSFER IN SOLIDS

The various approaches used to model heat transfer in food processes can be summarized

as shown in Figure 4.8, in order of complexity from left to right. Although the first four

situations (two resistance formulations, lumped parameter, and analytical solution to the heat

conduction equation) can frequently lend themselves to simpler analytical solutions, often a

real situation must be grossly simplified to achieve this. A numerical solution is the most

flexible method and can accommodate almost any conduction heating situation. Such numeri-

cal solutions and relevant software are discussed in Chapter 3. The conjugate or solid–fluid

coupled problems are generally much more complex and numerical solutions are usually

needed. The first four situations are discussed in this section, whereas the conjugate

problem is discussed under the fluids section.
4.7.1 Thermal Resistance Formulation: Steady State

Here, the discussion starts from the simplest possible situation for heat transfer that is

steady state and also one-dimensional. Figure 4.9 shows two such situations: one is a thin slab

where the heat transfer can be considered only along the thickness; the other is a long cylinder

where the heat transfer can be considered only in the radial direction. For no heat generation

and steady-state heat transfer, the general governing equation (Equation 4.3) for a slab

becomes

d2T

dx2
Z 0: (4.36)

For the simplest boundary condition where constant temperatures of T1 and T2 can be assumed

at the two surfaces given by T(xZ0)ZT1 and T(xZL)ZT2, the solution is given by

T Z
T2KT1

L
x CT1; (4.37)
Heat transfer 
in solids 
(Conduction heating) 

Lumped parameter
for change with time
when diffusional
resistance is small   

Resistance
formulation 

Solution to complete
heat equation in time
and space  

Analytical solutions
for simpler geometry,
constant property, etc. 

Numerical solutions
for
general situation  

Conjugate problem
with solid and fluid
(discussed under fluid)

Steady-state 

Increasing complexity 1-5 

1 2 

3 

4 5 

Pseudo steady-state

Figure 4.8 Approaches to solving a conduction heat transfer problem, with increasing complexity from the left to
the right.

q 2006 by Taylor & Francis Group, LLC



T2 

x = 0
x = L

T1

ro 

T2 

L ri 

T1 

(a) (b) 

Figure 4.9 Simple slab and cylindrical geometries.
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which shows a linear change in temperature from T1 to T2 at steady state. The heat flow in the

positive x direction is given by

qx ZKkA
dT

dx
Z

T1KT2

L=kA
Z

Temperature difference

Thermal resistance
: (4.38)

The term L/kA in the above equation is the thermal resistance for a slab. Similarly, heat

flow outward in the radial direction per unit length of a long cylindrical annulus (Figure 4.9b)

is written as

qr Z
T1KT2

ðlnðro=riÞÞ=2pk
; (4.39)

where ri and ro are the inner and outer radius of the cylinder, respectively.

In a manner similar to the steady-state slab and cylindrical annulus, the convective heat transfer

equation

qx Z hAðT KTNÞZ
T KTN

1=hA
(4.40)

can also be considered in terms of a (convective) thermal resistance 1/hA and a driving force of

TKTN.

In practice, two or more resistances are frequently present. For steady-state situations, such

resistances can be combined in a simple manner. For example, for a slab with convection on both

sides, the heat flux can be calculated by considering the thermal resistances in series (an analogy to

current flow):

qx Z
ThKTc

1

hhA|{z}
convective

C
L1

k1A|{z}
conductive

C
1

hcA|{z}
convective

Z
Temperature differenceP

Thermal resistance
: (4.41)
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Here, hh and hc are the heat transfer coefficients on the two sides of the slab, respectively.

Equation 4.41 or its variation is quite useful in modeling heat flux, for example, through a compo-

site wall (such as heat gained through the walls of a cold-storage building, heat loss through the

insulation of a heating pipe, etc.).
4.7.2 Thermal Resistance Analysis: Pseudo Steady State

The resistance formulation developed in the previous section for a steady state has been

extended to processes that are not, strictly speaking, at steady state, but are changing slowly

enough that they can be considered almost steady or “pseudo” steady state. Use of this approach

in modeling food processes, particularly those involving a phase change such as in freezing, has

been common. For example, a freezing process is described in Section 4.9.2. As illustrated in

Figure 4.10 for a freezing process, the boundary between frozen and unfrozen, or the freezing

front, moves slow enough that the frozen region can be considered at steady state. However, the

freezing front does move with time and therefore the process is not at a true steady state. This

analysis method was more popular before numerical computation became commonplace.
4.7.3 Lumped Parameter Analysis

In some special cases, temperature variation in all three spatial directions can be ignored. When

the temperature variations are ignored, the situation is considered lumped. Temperature would then

vary only with time. This lumped parameter condition is possible when the internal resistance in the

solid is small compared to the external resistance in the fluid (this is explained in greater detail

later). The governing equation for such heat transfer is given by

dT

dt
ZK

hA

mCp

ðT KTNÞ: (4.42)

It is possible (e.g., see Ref. 22) to start from the governing heat-transfer equation (Equation 4.4

without any heat generation or convection) and derive Equation 4.42. Because it is a first-order

equation, it needs one condition that, in this case, is the initial condition

Tðt Z 0ÞZ T i : (4.43)
Temperature 

Position 

Approximate steady-state
temperature profiles (linear)
at two different times   

Boundary at a later
time, showing an
unsteady problem  

Surface Boundary 

FrozenUnfrozen 

Freezing medium
flowing over surface  

Figure 4.10 Illustration of a pseudo-steady state process where the process changes slowly enough that it can be
considered to be at a steady state at any given time.
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Solving Equation 4.42 gives temperature as a function of time in lumped parameter heat

transfer as

T KTN

TiKTN

Z exp K
hA

mCp

t

� �
Z exp K

t

mCp=hA

� �
: (4.44)

Equation 4.44 shows that an infinite time is required to reach the steady state or the final

temperature of TN. As the temperature of the solid becomes close to fluid temperature, the rate

of heat transfer drops; consequently, the solid can never quite reach the fluid temperature, TN. This

example illustrates the power of analytical solutions in providing detailed physical insight for

simple heat-transfer situations. The validity of this analytical solution depends on the ratio of

internal to external resistance (also called the Biot number) being less than 0.1. For a slab, this

leads to (L/kA)/(1/hA)!0.1 or hL/k!0.1. For an arbitrary shape, the following must be satisfied for

a lumped parameter model to be used:

hðV =AÞ

k
!0:1; (4.45)

where V is the volume of the solid and A is the surface area. The error in temperature calculation is

less than 5% when Equation 4.44 is used and Equation 4.45 is satisfied. An example of the use of

lumped parameter analysis in food can be seen in Ref. 23.
4.7.4 Analytical Solution to the Heat Equation: Application to Canning

In a more complex model, when internal diffusional resistances cannot be ignored (i.e.,

h(V/A)/kR0.1), lumped parameter modeling is not possible and the complete governing equations

for heat transfer in a solid must be used. For example, the governing equation for symmetric heating

or cooling of an infinite slab without any heat generation can be simplified as

vT

vt
Z

k

rCp

v2T

vx2
: (4.46)

The boundary conditions are

vT

vx






xZ0;t

Z 0 ðfrom symmetryÞ (4.47)

TðL;tO0ÞZ Ts ðsurface temperature is specifiedÞ (4.48)

and the initial condition is

Tðx;t Z 0ÞZ Ti; (4.49)

where Ti is the constant initial temperature and Ts is the constant temperature at the two surfaces of

the slab at time tO0.

T KTs

TiKTs

Z
XN

nZ0

4ðK1Þn

ð2n C1Þp
cos
ð2n C1Þpx

2L
eKa

ð2nC1Þp
2Lð Þ

2
t; (4.50)

where a{Zk/rCp} is the thermal diffusivity. The terms in the series (nZ0,1,. in Equation 4.50)

drop off rapidly for large values of time and the solution can be written as
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T KTs

Ti KTs

Z
4

p
cos

px

2L|fflfflffl{zfflfflffl}
spatial

e
Ka

p

2L

� �2

t

|fflfflfflfflffl{zfflfflfflfflffl}
time

: (4.51)

This expression clearly shows that eventually (for times long after tZ0), the time-temperature

relationship is exponential at a given position (x value). This again shows the power of analytical

solutions. A volumetric average in temperature given by

Tav Z
1

L

ðL

0

Tdx (4.52)

can be calculated as

Tav KTs

Ti KTs

Z
8

p2
e
Ka

p

2L

� �2

t
: (4.53)

This implies that for a given change of average temperature (measured in terms of fractional change

of the total possible change TiKTs), the time required increases with the square of the thickness,

i.e., tfL2. This observation can be generalized for other geometries by saving the time required is

proportional to the square of the characteristic dimension. Expressions for temperatures as a func-

tion of position and time (such as Equation 4.50) can be developed for cylindrical, spherical, and

other coordinate systems.

It is extremely important to consider the limitations of the analytical solution described in this

section (Equation 4.50). These limitations include (1) uniform initial temperature; (2) constant

boundary temperature; (3) slab of uniform thickness; (4) slab is much wider in the other dimensions

compared to its thickness; and (5) constant thermal properties. When these conditions are not

satisfied, it is prudent to use a numerical solution instead.
4.7.4.1 Example: Canning of Solid Foods

Sterilization of food involves destruction of microorganisms carried in it so that the food can be

stored longer and be safe to consume. Canning, where a container is filled with food and then

sealed, is one of the oldest methods for food sterilization. Later, the sealed container is heated in a

closed vessel with steam or hot water long enough to kill the microorganisms and then it is cooled.

Heating the container more than the required amount of time would unnecessarily degrade the

food’s quality while wasting energy. However, insufficient heating could lead to serious public

health hazards.

Cylindrical cans are possibly the most common type of container used in the canning industry.

For solids packed into such a container, the heat conduction in the food is described by the heat

equation in the cylindrical geometry

vT

vt
Z a

v2T

vr2
C

1

r

vT

vr
C

v2T

vz2

� �
; (4.54)

with the initial condition of constant temperature and a boundary condition of convection at the

can surface. One assumption is that the thermal resistance of the metal wall is ignored in compari-

son to that of the food. The death of bacteria during the heating process is often considered to follow

first-order kinetics with a temperature dependency given by a Z value, where ZZ2:303RT2
0 =Ea is a

linearization of the Arrhenius kinetics with activation energy Ea around a reference temperature of

T0. A quantity called the F0 value is used in the food industry; F0 stands for the time of heating at
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a reference temperature of T0Z1218C that would lead to the same destruction of bacteria as in

a given process. Thus, F0 is defined as F0Z1/k0 ln (ci/c) where k0 is the rate of reaction at

temperature T0, and ci and c are the initial and final concentrations of bacteria, respectively, for

the given process. Heating continues until Fslowest
0 , calculated from

Fslowest
0 Z

ðt

0

10ðTKTRÞ=Zdt; (4.55)

where T is the temperature at the coldest point, is more than the desired value, i.e.,

Fslowest
0 RFdesired

0 ; (4.56)

where Fdesired
0 is the desired value that comes from industry practice and/or government regulations.

4.7.4.1.1 Analytical Solution: Ball’s Formula

The analytical solution to Equation 4.54 for constant initial temperature and convection at the

surface is given by

T KTm

TiKTm

Z
X

m

X

p

AmpeðKb2
mCh2

pÞatJ0ðbmrÞcosðhpzÞ (4.57)

where Amp depends on initial temperature and bm and hp depend on the boundary conditions. For a

convective boundary condition, the last two constants are given by

J 00ðbmRÞC
h

k
J0ðbmRÞZ 0; (4.58)

hptanðhpH=2ÞZ
h

k
: (4.59)

The previous simplification of the solution to the conduction equation in a slab (Equation 4.51)

is well suited for applications involving thermal heating of food to destroy bacteria. During the

initial times, the bacterial destruction is insignificant. Thus, it is only logical for researchers

considering food heating applications to be interested in later times; the temperature during

these times are given by

T KTm

TiKTm

Z AeðKb2Ch2ÞatJ0ðbrÞcosðhzÞ: (4.60)

Here, the temperatures at the geometric center of the can are of interest because this is the slowest

heating point in the can. Equation 4.60 can be rewritten as

T KTm

T0KTm

Z j10Kt=f ; (4.61)

where j and f are given in terms of position variable and heating parameters. Substituting tempera-

ture T from Equation 4.60 into the equation for F0 (Equation 4.55) yields

F0 Z

ðT

TmCjðT0KTmÞ

Kf 10
TK121

Z

� �

2:303ðT KTmÞ
dT ;

which can be written as
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1

f =u*
Z

ð
Tm KT

Z

KjðT0KTmÞ
Z

10Kx

2:303x
dx:

According to Ball and Olson (1957), it is only necessary to start from 448C (808F) below Tm to

achieve all the significant lethalities. Consequently, the integral above can be written as

1

f =u*
x

ð
Tm KT

Z

44
Z

10Kx

2:303x
dx:

In accordance with this expression, lethality calculations for the heating process in Ball and Olson

(1957) do not depend on initial temperature or the j value. Because this integral is difficult to

evaluate, it is tabulated for various values of f/u* vs. TmKT for various values of j and Z. Using

these graphs, the processing time for a particular bacterial reduction F0 is calculated in the food

industry. This procedure is general enough that the Balls’ formula is true for conduction heating of

foods in arbitrary shape and for forced convection heating. This is true, in part, because the solution

given by Equation 4.60 is true for arbitrary shaped domains, as was shown in.24
4.7.5 Numerical Solution to Heat Equation: Application to Canning

The heat conduction or diffusion Equation (Equation 4.46, or its more general form) is a

particularly common equation for which numerical software is ubiquitous. Any numerical software

typically accommodates arbitrary geometry, boundary and initial conditions, property variations

with temperature, etc. All of the formulations discussed earlier in this chapter can be routinely

solved using numerical software, as opposed to the analytical solutions already described. Although

most of the software can readily accommodate a heat source term, the software for solving heat

conduction equations are often not coupled with other physics such as electromagnetics. Examples

and issues in coupling of other physics with heat conduction are described in Section 4.11.

An example of using a numerical model in food applications is the modeling of the sterilization

of solid foods,25 where optimum time-temperature for sterilization was calculated by solving

Equation 4.54 together with Equation 4.55. This work has been extended to obtaining optimum

time-temperature for sterilization in other geometries and processing conditions.

A more comprehensive picture of the sterilization process, such as nutrient and bacterial profiles

inside the container, can be computed by sequentially solving Equation 4.54 and a species equation

for bacteria and/or other species equations for nutrients (see Section 4.11.3 for details of formu-

lating species equations for this purpose). As will be discussed, this procedure is general enough

that with appropriate replacement of the heat equation, it can be used in the case of

convective heating.
4.7.6 Optimization of Conductive Heating

Optimization of conductive heating of foods has been pursued for over 30 years.26 The factors

relevant to the optimization process are the geometry of the container, property variations due to

temperature or composition of the food, and the boundary (steam or hot water) temperature.
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4.8 HEAT TRANSFER IN LIQUIDS

Modeling heat transfer in liquids is more complicated because, at least conceptually, the flow

equations need to be solved in addition to the equation for energy transfer. Some unique aspects that

need to be considered in the study of heat transfer in liquids include the following:

Momentum Equation. When detailed velocity profiles are needed, the momentum (Navier–

Stokes) equation must be solved. This significantly increases the complexities over the

solution of heat transfer in conduction heating.

Type of Fluid. The Newtonian vs. the non-Newtonian nature of the fluid, as discussed in

Chapter 5, is important for heat transfer. The complexity of the model and difficulty of the

solutions increase with a non-Newtonian fluid.

Type of Flow. The nature of the physics can be quite different depending on laminar vs.

turbulent flow regimes. Computation of turbulent flow is more challenging compared to

laminar flow. Turbulent flow is generally desired. Mechanical agitation is one method of

achieving turbulent flow, such as in a scraped-surface heat exchanger or in an agitating retort.

In continuous flow, tube dimensions, flow rates, and liquid properties are adjusted to obtain a

Reynolds number in the turbulent range. Modeling the agitations is a challenging task. There

are times, however, when turbulent flow is uneconomical to achieve, as in the case of many

non-Newtonian liquids. These liquids exhibit high apparent viscosity, so the high pumping

pressures required to obtain fully turbulent conditions are not economical for production rates

of interest.27

Particles in the Fluid. When solid particles are present in the liquid, such as in a chunky

soup, a very complex heat-transfer system results whose modeling has been rare. In steriliza-

tion, for example, the particles in the liquid would need to be sterilized in addition to the

liquid itself. Conductive resistance for the inside of the solid food and convective resistance

between the solid food surface and the liquid carrying it are added, making the sterilization of

the food limited by the sterilization of the particles. The thermal resistance represented by the

surface heat-transfer coefficient between the solid particles and the fluid carrying it is difficult

to obtain experimentally or estimate from theoretical considerations.

Biochemical Reactions. When computing how temperature affects biochemical reactions in

a fluid being heated, it is important to note the conceptual distinction between the time-

temperature histories of location, as opposed to that of a liquid element.28 Time-temperature

history at a location in a moving liquid would not correspond to a single liquid element in

general. Instead, it would correspond to all elements passing through that point over time. In

a sterilization application, for example, depending on the nature of the flow, point steriliza-

tion can be different from element sterilization. From the standpoint of modeling food safety

and quality, this distinction is important, and different methodologies need to be applied as

compared to conduction heating, as detailed in Section 4.11.3.
4.8.1 Formulations of Convective Heat Transfer

Modeling of convective heat transfer can be divided into three different approaches, depending

on the level of details desired, as shown in Figure 4.11. In the most simple formulation, 1, only

the rate of heat transfer between a surface and a fluid is described, without detailed information on

the temperature profile in a fluid. In formulation 2, the detailed temperature profile in the fluid is

available at the expense of fairly intensive computations. In formulation 3, at the expense of a still

greater level of complex computations, details of the temperature profile are available not only for

the fluid, but also for its immediate surroundings (usually a solid).
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Figure 4.11 Formulations of convective heat transfer with increasing complexity from left to right.
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Partly because of the complications mentioned in the earlier section and partly due to the

availability of powerful CFD software, convection formulations 2 and 3 are primarily solved

numerically. For formulations 1 and 2, analytical solutions exist for simple situations. When a

food-processing situation can be simplified such that analytical solutions can be used, the analytical

solutions are generally encouraged because they can provide more insight into the problem with

less effort.

When particles are included with the food, it becomes essentially a conjugate problem. Very

few modeling studies exist for such situations. Formulation 1 has been used in sterilization to

estimate the heat transfer coefficient between food pieces and the fluid for still (unagitated)

heating of liquid with particulates (e.g., Ref. 29) and for agitated heating (e.g., Ref. 30,31).

Using the surface heat-transfer coefficient, the temperature in the solid can be calculated. Formu-

lation 3, with a semianalytical solution, was developed for an axially rotating canned food with

liquid particulate.32 Formulation 3 has also been developed for solid–liquid mixture flow in a

continuous heating situation.33
4.8.2 Modeling Using a Heat Transfer Coefficient

A great majority of practical convective heat-transfer situations can be modeled using this

methodology. The goal in this type of modelling is to develop a formula for the heat-transfer

coefficient, h, such that the standard equation for convective heat transfer

q Z hAðT KTNÞ (4.62)

can be used. For simpler and more idealized geometries and flows, a vast array of correlations exist.

An example of this is the case of fluid flow over a flat plate where the fluid temperature is different

from the plate temperature. Two sets of formulas are provided—one for laminar flow and one for

turbulent flow—because the heat transfer is quite different for the two situations:

Nux Z 0:332Re1=2
x Pr1=3 for laminar ðRex !2!105Þ (4.63)
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Figure 4.12 Schematic showing a solid with convective resistances on both sides.
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NuL Z 0:664Pr1=3Re1=2
L for laminar ðRex !2!105Þ (4.64)

Nux Z 0:0288Re4=5
x Pr1=3 for turbulent ðRexO3!106Þ (4.65)

NuL Z 0:360Re4=5
L Pr1=3 for turbulent ðRex O3!106Þ (4.66)

where NuxZhxx/k provides the local heat-transfer coefficient, hx, at a location x and NuLZhL/k

provides the average heat transfer coefficient, hL, over distance L. The quantity Pr is Prandtl

number, given by PrZmCp/k, where m is the viscosity, Cp is the specific heat, and k is the

thermal conductivity of the fluid.

In many practical situations, heat transfer can involve fluids on each side of a solid surface, as

illustrated in Figure 4.12. Here, heat transfer between fluids 1 and 2 can be written as

q Z UAðT1KT2Þ; (4.67)

where U is termed the overall heat transfer coefficient between the two fluids and is related to

individual heat-transfer coefficients as

1

U
Z

1

h1

C
DL

k
C

1

h2

; (4.68)

where DL is the thickness of the solid. This approach in modeling is particularly useful in complex

heat-transfer situations where spatial variation in temperature is either small or difficult to obtain.

Example 1: Sterilization with Agitation. An example of heat-transfer modeling using the

overall heat-transfer coefficient is the agitated batch (in-container) heating of liquids in a steriliza-

tion process, such as with canned foods. Agitation, such as that during axial rotation (see inset of

Figure 4.13), increases the rate of heat transfer, thus shortening processing time and improving

quality. This problem has been formulated as

mCpdT Z UAðTNKTÞdt; (4.69)

where m is the total mass of liquid that changes its temperature by dT in time dt. Note that the

definition of overall heat-transfer coefficient U uses the mass average temperature, T, as basis.

Here, TN is the heating-fluid temperature. Integrating this equation provides the time-temperature

history of the fluid:

T KTN

TiKTN

Z eKðUA=mCpÞt; (4.70)

were Ti is the initial temperature of the fluid.
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The value of U is obtained in practice from experiments performed to measure temperature T(t)

and fitting Equation 4.70 to experimental data. Correlations can be developed for U values in

particular physical situations, analogous to the equations for a plate discussed previously. For

example, for end-over-end (EOE) rotation in the presence of a headspace, the following dimension-

less correlation exists:35

Nu Z 2:9Re0:436Pr0:287 (4.71)

From the definition of Nusselt number, NuZhD/k, the heat-transfer coefficient, h, is found from

Equation 4.71 and is used to calculate temperatures from Equation 4.70. Note that only mean fluid

temperature is available in this procedure. To obtain the spatial variation of the temperature profile

inside the container, a more detailed analysis is required (formulation 2 of Figure 4.11), as

described in the next section.

Example 2: Sterilization Without Agitation. In modeling sterilization of a canned liquid

without agitation, Equation 4.61 has been used.36 The use of this equation, which resembles

Equation 4.70, for an unagitated fluid is an ad-hoc generalization without any mathematical or

physical basis.24 The f and j values needed for Equation 4.61 are found by fitting the equation to

experimental temperature–time data.

From the discussions of Example 1 and Example 2 above, it is apparent that the use of h (or U)

that is often obtained experimentally leads to models that are somewhere between an analytical

model and an observational (nonphysics-based) model, often closer to an observational model.

However, such models are very powerful in accommodating a variety of flow situations (laminar

and turbulent) and fluid types (Newtonian and non-Newtonian). The limitations of these models lie

in their inability to provide more details of the flow.
4.8.3 Modeling by Solving the Governing Equations of Fluid Flow Together with
Heat Transfer

If more details on temperature and velocity profiles are desired, or if obtaining h values is not

possible either from the simple formulas or from experimentation, then a complete solution to the
q 2006 by Taylor & Francis Group, LLC
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governing equations for fluid flow and heat transfer in a moving fluid is necessary. Before the

detailed governing equations are discussed, it is important to note that the two descriptions—use of

a heat-transfer coefficient or h value, as described earlier, and the use of conservation-based

governing equations and boundary conditions—are conceptually equivalent. The convective

heat-transfer coefficient, h, is a simplified description of the process, and is related to a more

detailed heat-transfer description by

Kkfluid

vT

vy







yZ0; in fluid

Z hðTsKTNÞ (4.72)

which is the defining equation for h; this can be simplified as

h Z
Kkfluid

vT
vy





yZ0; in fluid

TsKTN
: (4.73)

From detailed computations described below from which T(y) is obtained, Equation 4.73 can be

used to obtain h, if desired. Obtaining h, however, is not necessary because the rate of heat transfer

can be obtained from KkfvT/vyjyZ0 when T(y) is available. This approach of obtaining the

complete solution is becoming increasingly popular as powerful commercial CFD solvers are

able to easily solve for relatively complex situations (see Chapter 3 for examples). Note also

that CFD programs to calculate h can be used in a way analogous to experimentation and these

h values for different flow parameters can be combined to produce correlations such as Equation

4.71 that were previously developed only from experimental data.

Example 1: Sterilization Without Agitation. An example of a solution to the complete

governing equations is the modeling of a sterilization process that involves no agitation. Agitation

is sometimes avoided to maintain the product or package integrity or for economical reasons in

small production volumes. Without any agitation, liquid moves by natural convection due to the

buoyancy induced by the change in temperature. This couples the flow and temperature fields and

makes their computation a challenging task, as can be seen in a number of studies including

pasteurization of beer in bottles37, and sterilization of canned Newtonian38,39 and non-Newto-

nian40,41 fluids. The governing equations for the heating of a Newtonian fluid in a cylindrical

can are given by

vT

vt
Cv

vT

vr
Cu

vT

vz
Z

k

rCp

1

r

v

vr
r

vT

vr

� �
C

v2T

vz2

� �
(4.74)
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vu
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vz

� �
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1

r

v

vr
r

vT
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� �
C

v2u

vz2

� �
Crg (4.75)

r
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Cv

vv
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vz

� �
ZK

vp
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Cm

v
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1

r

vðrvÞ

vr

� �
C

v2v

vz2

� �
(4.76)

vc

vt
Cv

vc

vr
Cu

vc

vz
ZKkc: (4.77)

Density is treated as a constant, except in the term (in Equation 4.75) containing gravity, g, where
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Figure 4.14 Computed velocity vectors and temperature contours after 30 min in natural convection heating
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the following equation is used:

r Z r0ð1KbðT KT0ÞÞ: (4.78)

Here, r0 is the density at temperature T0 and b is the volumetric expansion coefficient.

The boundary condition for the thermal problem is constant temperature at all boundaries.

For the velocities, the boundary conditions are no-slip at all of the walls. Symmetry boundary

conditions (zero gradients) for velocity and temperature are used at the centerline. The additional

equation, Equation 4.77, is used to calculate the bacterial concentration, c, from which F0 can be

calculated at any position and time as F0Z1=k0logðci=cÞ, whose lowest value will provide Fslowest
0 .

This formulation can be readily solved in a CFD solver that includes the solution of the Navier–

Stokes equations. Major difficulties in solving this problem come from the large Rayleigh number

(e.g., see Ref. 38). Figure 4.14 shows the typical flow patterns and temperature profiles in such

nonagitated heating, starting from a fluid at rest at a uniform temperature. Its walls are raised to the

retort temperature. Heating of a liquid (carrot-orange soup) in a pouch was also modeled using 3D

rectangular Cartesian coordinate version of the above equations42. Starch gelatinization has been

included 41,43 using an apparent viscosity model that changed with the gelatinization phase. This

model could predict how the well-known broken heating curves (temperature–time curves with

drastic changes in slope) develop during heating of starch-containing products.

Microwave heating was included in the study of28 using a heat-generation term that decayed

from the surface to the center as

Q Z Q0 exp K
RKr

dp

� �
: (4.79)

Buoyancy-driven recirculating flows, as in conventional heating, can be seen in Figure 4.15.44,45
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Figure 4.15 Flow patterns during microwave heating of water in a microwave transparent cylindrical container
without any agitation and without any focussing effect of the microwaves due to the curved geometry
of the cylinder.
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The direction of circulation would depend on electric field variations inside the container. If

focusing effects (discussed in Section 4.6.2) are present, as might be true in a small-diameter

container, the flow pattern can be reversed, i.e., liquid can rise at the center.46 Such details can

be seen by obtaining the microwave field distribution from solving the complete electromagnetics

(Equation 4.13 through Equation 4.16), instead of Equation 4.79.

Example 2: Sterilization in Agitated Heating. Another example of detailed solutions of a

convective heat-transfer problem in foods is the work on axially rotating containers.47,48 In,48 the

governing energy equation, the momentum equation with the buoyancy term, and the continuity

equations are solved. The boundary conditions for the fluid were no-slip at the can boundary, given by

r Z R 08%q%3608 v Z UR; (4.80)

where R is the can radius, q is the angular position of the can in degrees, and U is the can angular velocity

(UZ2pN/60) and N is the can rotational speed, in rpm, which is an intermittent rotation for the

particular equipment (Steritorte), adapted from.47 Examples of temperature data obtained from this

study are shown in Figure 4.16. The figure shows that the heat-transfer rate at the slowest heating point

increased dramatically when the can was intermittently rotated. The F0 values can be found by solving

an equation similar to Equation 4.77.

Example 3: Sterilization in Continuous Flow. As an example of the continuous heating of

fluids, consider sterilization of a fluid in a tubular heat exchanger where the fluid flows through the
q 2006 by Taylor & Francis Group, LLC
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tube and the heating medium is outside the tube. Continuous sterilization is often used as part of an

aseptic processing system where the package is sterilized separately and the sterilized product is

filled and sealed in a sterile environment. Steam is generally used as the heating medium for most

continuous sterilizing systems, although microwaves and direct resistance heating have also

been used.

As an example of a detailed model for a continuous heating system for fluid, consider the study

of.49 They set up the problem using the governing equations of steady laminar flow in a tube,

steady-state heat transfer, and complex changes in viscosity during heating of a 4% waxy rice starch

dispersion that is captured using a temperature-dependent effective viscosity. Natural convection

effects are ignored in this problem. The resulting velocity, temperature, and viscosity profiles are

shown in Figure 4.17. Calculation of the nutrient and bacterial concentration in a sterilization

application can be readily added to the above formulation by having a species equation for each

of bacteria and nutrients (similar to Equation 4.77). For a given sterilization at the cold point, the

average concentration of nutrients increases with reduction in tube diameter due to a smaller spread

of temperature values.50
4.8.4 Modeling Conjugate Problems by Considering Both the Fluid and Solid

This is formulation 3 in Figure 4.11. When solid–fluid systems in contact have comparable

thermal resistances in solid and fluid phases, a conjugate heat-transfer analysis may be required

where both the fluid and the solid are to be considered simultaneously. Such a problem is obviously

more complex and should be considered only when necessary. The heat-transfer coefficient, used in

formulation 1, is not required here (as in formulation 2) because detailed spatial temperature

profiles are computed (see discussion surrounding Equation 4.73).

Example 1: Convective Freezing in Air. Consider a freezing scenario that involves natural

convection, as shown in Figure 4.18, where the imprecise knowledge of the heat-transfer coeffi-

cient, h, has been found to be the major error source in freezing-time prediction methods. Small

deviations in the convective heat-transfer coefficient were found to result in large deviations in the
q 2006 by Taylor & Francis Group, LLC
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core temperature of food that was chilled by air.51 Because the heat-transfer coefficient, h, changes

with time, one way of obtaining this result is to solve the conjugate problem.

Example 2: Continuous Heating of Solid–Liquid Mixtures. Another example of a conjugate

problem can be the continuous heating of solid–liquid mixture in aseptic processing of foods. A

model proposed by33 for continuous ohmic heating (Figure 4.19) is now described. In this formu-

lation, three-dimensional variation of temperature within the tube as well as inside the spherical

particles is considered. The solid–liquid mixture is considered homogeneous. The tube wall is

surrounded by air at constant temperature. The electric field is applied longitudinally along the

flow path with the tube being electrically nonconducting. The spherical particles are considered of

uniform shape and size. The temperature distribution in the spherical particles is formulated using
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rpCpp

vTp

vt
Z V$ðkpVTpÞC _up; (4.81)

where _up is the heat-source term for the particle that is calculated from the voltage gradient using

_up Z jVVj2sopð1 CmpTpÞ; (4.82)

where the voltage gradient itself is obtained by solving the voltage equation (Equation 4.30). Both
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axial and radial variations of the electric field are considered. The temperature distribution in the

fluid is given by

rfCpf �vzvff

vTf

vz
bðvffÞV$ðkfVTfÞKnpAphfpðTf KTpsÞC _ufvff ; (4.83)

where _uf is the heat-source term for the fluid that is calculated in a similar manner as for the particle

_uf Z jVVj2s0fð1 CmfTfÞ: (4.84)

The quantity vff is the volume fraction of the fluid and b(vff) is the fraction of conductive heat

transfer through the mixture in the fluid phase and is approximated as the area fraction of the fluid

phase, given by

bðvffÞZ 1Kð1KvffÞ
2=3: (4.85)

The velocity, vz, of fluid is taken to be that for a fully developed non-Newtonian flow in a tube,

given by

vz Z
3j C1

j C1

� �
vm 1K

r

R

� �jC1
� �

: (4.86)

Assumption of the velocity profile avoids solving for detailed fluid motion and the detailed

motion of the particles, including particle–fluid and particle–particle interactions. They considered

the use of fine particle models (that treat the particles as point sources of momentum) in the

literature to not be applicable because the solid particles in this study have significant dimensions.

Some approaches in literature for large particles that consider Stokes flow far from boundaries are

also considered to be inapplicable in this case because the solid pieces are large and confined close

to boundaries. At the high viscosity of liquids used here, solids are considered to be entrained in the

liquid; this allows the same average velocity for both phases and, therefore, makes it possible to

treat the flow as homogeneous. However, it is noted from experimental work that significant local

interphase relative velocity may exist between the solid and the liquid, even though the velocities

on the average are essentially equal. The effect of the local interphase relative velocity was included

by treating the heat-transfer coefficient between the fluid and the particle as an independent par-

ameter whose sensitivity was studied. The model provided particle and fluid temperatures.
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4.9 HEAT TRANSFER WITH CHANGE OF PHASE

Evaporation and freezing involve changes of phase. Evaporation is discussed in the context of

simultaneous heat and mass transfer in Chapter 4 and a very brief introduction is given in Section

4.11.1. Heat transfer during freezing in food systems has been modeled in two ways: using a simple

formula that is valid for freezing of a pure liquid such as water, and using a more comprehensive

apparent specific-heat formulation that takes care of freezing over a temperature range, as is true for

a food material. Before presenting these two models, the process of gradual freezing in food

materials is discussed.
4.9.1 Modeling of Ice Formation as It Relates to Temperature

The gradual freezing process in food materials can be described by the fraction f(T) of initial

water frozen at any temperature T. Property variation with respect to temperature can be obtained

from f(T). Because of large variations in food composition, there are no general formulas available

to describe f(T). Generally, there are two ways of obtaining f(T) and the apparent specific heat, Cpa

(see Equation 4.90 below)
4.9.1.1 Using the Freezing-Point Depression Equation

Most of the literature uses the procedure of Heldman (1974), which is to use the freezing-point

depression equation,

DHfMw

R

1

T0

K
1

T

� �
Z ln

ðxw KxbÞ=Mw

ðxw KxbÞ=Mw Cxs=Ms

� �
; (4.87)

f ðTÞZ 1K
xw

x0

; (4.88)

where x0 is the initial water content, xw is the water content at temperature T, xb is the bound water

content, xs is the amount of soluble solutes in the product, Ms is the effective molecular weight of

the solutes, and T0 is the melting point of pure water. To solve Equation 4.87, bound water xb and

moles of solute xs/Ms must be known. There is little knowledge of the amount of exact solutes

dissolved and often various guesses are made. The bound water, xb, must also be known to be able

to use Equation 4.87. There are approximate empirical equations to estimate bound water (Pham

1987). The apparent specific heat, Cpa, would relate to the ice fraction, f, as

Cpa Z w ð1Kf ÞCpu
C fCpi

C
vf

vT

� �
C ð1KwÞCps

: (4.89)

Note that Cpa relates to d f/dT, which is the rate of ice formation and is the latent heat contribution

to Cpa.
4.9.1.2 Using Measured Enthalpy Data

An alternative procedure for estimating f(T) is from enthalpy data, H(T), available either from

experiment or approximate calculations. Enthalpy data is related to an apparent specific heat as

Cpa Z
dH

dT
; (4.90)
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where this apparent specific heat includes latent heat, as well as various specific heats. It is related to

the fraction of water frozen f(T) by Equation 4.89. Knowing the amount of water, w, in the sample

before freezing, f(T), the fraction of water frozen at any temperature T can be calculated from

Equation 4.89. The equation needs one boundary condition that can be f(Tif)Z0, where Tif is the

initial freezing point. Although this procedure requires the Tif information, it uses measured or

calculated specific material data (Cpa) more directly and therefore is likely to provide

better accuracy.
4.9.2 Simple Model for Pure Materials: Pseudo Steady-State Formulation

Because the freezing process involves latent heat in addition to sensible heat, analysis of this

common process is rather complicated. A very simplified solution (known as the Plank’s solution)

that is used in practice and that preserves some of the essential physics of the process is described

below.22

Consider symmetric (both surfaces at TN) freezing of a slab of pure liquid, as illustrated in

Figure 4.20. The latent heat evolved at the interface of frozen and unfrozen regions is removed

through the frozen layer. Although the thermal conductivity of the frozen layer is higher than that of

the unfrozen layer, it is still small in absolute terms. The rate of heat transfer in the frozen layer is

slow enough to be regarded as in pseudo-steady-state condition (see discussion in Section 4.7.2).

Thus, although the temperature profile changes with time, this happens slowly enough that it closely

approaches a steady-state profile at any time. A common boundary condition is convection at the

surface. For this case, additional convective resistance 1/hA must be added to the conductive

resistance x/kA of the frozen layer, with the total temperature difference becoming TmKTN. The

heat flow can be written as

q Z
TmKTN

1=hA Cx=kA
:

This heat flow can also be written in terms of the rate at which latent heat is given off due to the
Frozen Unfrozen

∂T
∂x

= 0 

T∞
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at T∞
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Approx. Plank’s Solution

x

T

Figure 4.20 Freezing of a pure (stationary) slab of liquid showing two distinct regions, frozen and unfrozen.
Plank’s assumption of a linear temperature profile is compared with the “true” profile.
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movement of the interface between frozen and unfrozen regions:

q Z DHfAr
dx

dt
:

Equating the two heat flows:

Tm KTN
x

kA
C 1

hA

Z DHfrA
dx

dt
; (4.91)

where DHf is the latent heat of fusion (in J/kg) of the material per unit mass. Freezing of the slab is

complete when the freezing front reaches the midpoint:

tslab Z
DHfr

kðTm KTsÞ

L2

2
; (4.92)

where tslab is the time to freeze the slab.
4.9.3 Apparent Specific-Heat-Based Formulation for Gradual Freezing of Food
Materials

The previous calculation of freezing time is for a pure liquid that freezes at one temperature,

unlike the water in the food that has many solutes dissolved and therefore freezes over a tempera-

ture range. This gradual freezing can be successfully captured by following an alternative procedure

for calculating freezing time. To develop this, the heat equation is rewritten as

v

vx
k

vT

vx

� �
Z rCpa

vT

vt
; (4.93)

where Cpa is the apparent specific heat defined earlier. It is the sum of sensible and latent heats of a

material per unit mass. An example of experimental data for Cpa for beef muscle tissue is shown in

Figure 4.21. Equation 4.93 provides temperature as a function of time and therefore freezing time.

Note that Equation 4.93 automatically includes the phase change effects due to the use of the

apparent specific heat, Cpa.
4.9.4 Presence of Microwaves and Radio-Frequency Heating

Thawing and tempering (bringing the temperature up to a few degrees below complete thawing)

are some of the most effective uses of the microwave heating of food. However, thermal runaway

effects during phase changes can lead to severe nonuniformities. Thermal runaway refers to the

situation where some regions in the food that happen to thaw first, due to higher rates of heating in

these regions or composition nonuniformity there, absorbs increasing amount of energy, eventually

reaching boiling temperature while other regions remain frozen. Ideally, coupled solutions of

electromagnetics and energy transport should be considered (see Figure 4.30) for heating a

frozen food in a microwave cavity because the food can undergo very significant changes in

thermal and dielectric properties. This solution has not appeared in the literature. Thawing of

food in a microwave cavity has been modeled, but the studies generally assume an exponential

decay of energy from the surface (e.g., Ref. 53). An example of how thawing time varies with the

power level of the microwave oven is seen in Figure 4.22.
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4.9.5 Presence of High Pressure

Freezing and thawing under high pressure are being investigated for obtaining significantly

improved quality of frozen and thawed foods.54 The apparent specific-heat formulation (Equation

4.93) can be used to model such situations. The difficulty in applying this equation at high pressure

lies in the lack of information on the apparent specific heat, Cpa, and thermal conductivity, k, at high

pressures. The most logical step, used in,56 is to use analogous relationships as those in atmospheric

pressure but with adjustments for higher pressure. This is referred to as “shifting” in the work of.56

Thus, examination of Equation 4.89 for apparent specific heat reveals two parameters—latent heat,

l, and fraction frozen, f—that depend on the initial freezing point. It appears in56 that the shape of

the f curve was assumed to stay the same at any pressure. The initial freezing point is “shifted”

following the equation55

Tif ZK0:07142PK1:4795!10K4P2; (4.94)

where P is the pressure in MPa and Tif is the initial freezing point (in 8C). One may think of the

entire frozen fraction curve as being shifted to the new value of Tif that corresponds to a new

pressure. This is shown from the work of56 in Figure 4.23. The latent heat, l, is a function of the

state diagram. The thermal conductivity of the partially frozen material at various pressures is

calculated following the same equation as that for atmospheric pressure, but the frozen fraction

curve in its prediction is “shifted” according to the previous discussion.
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Figure 4.22 Computed thawing time for rectangular blocks (5 cm!5 cm!5 cm) of tylose (with % salt as noted),
as a function of microwave oven power levels. Thawing with conventional heat (0% power) at the
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chong, M. and Datta, A. K., Journal of Microwave Power and Electromagnetic Energy, 34, 9, 1999.)
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4.9.6 Presence of Ohmic Heating

The use of ohmic heating to thaw has been reported in the literature, but no modeling studies

exist. The electrical properties of foods are a strong function of the amount of frozen vs. unfrozen

water that exists in the system, coupling the ohmic heat generation equation with the heat equation.

The apparent specific-heat formulation (Equation 4.93) should work well for ohmic heating.
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4.10 PROBLEM FORMULATION IN HEAT TRANSFER: RADIATION

Thermal radiation is a part of electromagnetic radiation. In the context of food processing,

the entire range of infrared electromagnetic waves is typically further divided into near-infrared

(0.75–3 mm), mid-infrared (3–25 mm) and far-infrared (25–1000 mm) regions. Infrared heating of

foods is used in processes such as drying, baking, roasting, blanching, and surface pasteurization.

When electromagnetic radiation such as infrared strikes a surface, part of it is reflected, part of it is

absorbed, and the remaining, if any, is transmitted. Detailed property data for various food surfaces

are generally not available. Some of these data have been discussed in.10,57

The wavelength of radiation incident on the food depends on the emission characteristics of

the source of the radiation. Thus, it is important to know the characteristics of common sources

(emitters) used for thermal radiation. Infrared emitters can be made of various materials such as

quartz glass, ceramic, or metal. Figure 4.24 shows the typical spectral distribution of radiation from

such emitters. Solar radiation is superimposed on this figure for comparison because solar radiation

is also used in food processes such as drying. This spectral dependence of the source radiation is

needed when such dependence is considered in modeling.

Radiative heat transfer in foods can typically be formulated as radiative exchange at the surface

of the food combined with conduction or convection inside the food material. Thus, the modeling

of radiative heat transfer typically involves a surface heat-flux boundary condition that can be

written as
Kk
vT

vn
jZ hðT KTNÞ Kqr|{z}

Radiative flux

at surface

: (4.95)
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The term qr is a result of radiative exchange between the surface (e.g., of the food) and its

surroundings. The exchange of radiative energy between two or more bodies is often a complex

problem. Complexities arise from geometric issues (e.g., orientation of the bodies relative to each

other) as well as the fact that surface radiative properties such as emissivity can depend on the

wavelength range of interest and the direction of emission from the surface.

Modeling of radiative heat transfer can be grouped into three different approaches, as shown in

Figure 4.25. The complexity of modeling increases from 1 to 3 as more details of the solution

become available and with increasing accuracy. For food applications, detailed radiative heat-

exchange calculations, as mentioned in formulation 3 in Figure 4.25 have only recently been

reported. These formulations are now discussed.
4.10.1 Radiative Modeling in Simple Situations

In perhaps the simplest situation of radiative heat transfer, one surface is completely enclosed

by the other. An example of this is a small food object placed inside an oven such that the food is

completely enclosed in the oven; assume that the oven has a uniform surface temperature. The net

radiative exchange is given by

qr1K2
Z 31sA1ðT

4
1 KT4

2 Þ; (4.96)

where qr1K2
is the net radiative energy transfer between bodies 1 and 2 (in W), 31 is the emissivity of

the food surface, A1 is the surface area of the food and T1 and T2 are the temperatures of the food and

the oven surface, respectively. Here, emissivity is considered to be independent of direction

or wavelength (also called a gray surface). The flux qr1K2
calculated this way is to be used in

Equation 4.95. Other simple configurations that a food processing situation may be able to adapt

to can be seen in heat-transfer textbooks.

For the special case when the surface temperatures T1 and T2 are similar, Equation 4.96 can be

written as:

qr1K2
Z 31sA14T3

1 ðT1 KT2Þ (4.97)
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Z A1hrðT1KT2Þ; (4.98)

where hr, given by

hr Z 4sT3
1 31 (4.99)

can be termed as a radiative heat-transfer coefficient analogous to a convective heat-transfer

coefficient. Note that Equation 4.99 is only an approximation.

Experimental data are often collected such that several heat-transfer coefficients, such as

convective, radiative, and evaporative cooling, are lumped together into what can be termed an

effective heat-transfer coefficient, heff, and used as a boundary condition, replacing h in Equation

4.95. Of course, if heff already includes radiation effects, the qr term in Equation 4.95 must

be dropped.
4.10.2 Radiative Modeling Using Available Configuration Factors

In general, when two bodies exchange radiation, the radiative exchange also depends on their

size and shape, as well as the relative orientation of their respective surfaces. The size, shape, and

orientation factors are lumped in a parameter called the configuration factor or the view factor. In

terms of the view factors, net radiative exchange between two bodies is given by

qr1K2
Z 31sA1F1K2ðT

4
1 KT4

2 Þ (4.100)

where F1K2 is the view factor that stands for the fraction of radiation leaving surface 1 that is

intercepted by surface 2. For a large number of geometric configurations, F1K2 can be found from

either textbooks (e.g.,58) or other sources (“http://www.me.utexas.edu/howell/“). The quantity qr1K2

computed this way will be used in the boundary condition (Equation 4.95). When surface properties

depend on wavelength, Equation 4.100 can be used for small ranges of wavelength and added

together to obtain the total quantity, qr1K2
.

4.10.3 Numerical Solution for More Complex Geometries and for Spectrally
Dependent Properties: Using the Radiative Transport Equation

For a more general radiative exchange situation, the governing radiative heat-transfer equation

is obtained by combining the radiative surface energy balance and Kirchoff’s law, i.e., absorp-

tance equals the emissivity for zero transmittance. Consider a surface shown in Figure 4.26.

Writing in terms of the position vector, r, the total blackbody emission, E(r), depending on the

temperature at point r, the total radiation incident on the surface, irradiation, G(r), and radiosity,

J(r), are related by

JðrÞZ 3ðrÞEðrÞCrðrÞGðrÞ: (4.101)

Here, r is the reflectance of the surface. For an opaque surface, i.e., no energy passing through

the surface, the energy balance can be written as

qðrÞZ JðrÞKGðrÞZ 3ðrÞEðrÞKaðrÞGðrÞ: (4.102)

Here, q(r) is the radiative heat flux at r and a is the absorptance of the surface. The irradiation

G is now written in terms of radiosity over the total surface A, using the definition of view factor

FdA0KdA, as
q 2006 by Taylor & Francis Group, LLC
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Figure 4.26 Schematic showing radiative exchange over an infinitesimal surface.
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GðrÞdA Z

ð

A

Jðr0ÞdFdA0KdAdA0: (4.103)

Inserting Kirchoff’s law into Equation 4.102, solving for J, and substituting into Equation 4.103

results in the following integral equation that relates temperature and radiative heat flux, q, at each

location, r, in the enclosure:

qðrÞ

3ðrÞ
K

ð

A

1

3ðr0Þ
K1

� �
qðr0ÞdFdAKdA0 Z EðrÞK

ð

A

Eðr0ÞdFdAKdA0 : (4.104)

This integral equation is solved numerically to obtain heat flux on a food surface, q(r), and is

substituted for qr in Equation 4.95. A number of heat-transfer packages are available to solve

Equation 4.104, such as the software Fluent (Fluent, Inc., New Hampshire).

An example of a numerical computation of radiative heat transfer is now presented for radiation

exchange in an oven-food system (Figure 4.27). The commercial finite element package FIDAP is

used for this problem. The air in the oven is assumed transparent to the radiation. Heat conduction is

assumed in the entire oven (food and air) for the short duration. The quantity q(r) from Equation

4.104 is used as the boundary condition for the heat-conduction equation. Measured wavelength-

dependent emissivity values are used. The computed radiative heat flux and temperatures at the top

surface of the food in Figure 4.27 are shown in Figure 4.28.
4.10.4 Numerical Solution for More Complex Geometries and Spectrally Dependent
Properties: Using Monte Carlo

Monte Carlo is another approach to modeling radiative heat transfer; it is considered particu-

larly useful for complex configurations where this method may be the only reasonable way to attack

the problem. In food applications, Monte Carlo has been used in modeling surface heating of

strawberries for decontamination.61 In a Monte Carlo simulation of radiation heat transfer, the

energy emitted from a surface is simulated by the propagation of a large number of photons, which

are massless units of energy. The photon is followed as it proceeds from one interaction to another,

which are described as random events. This continues until the photon is absorbed or leaves

the computational domain. A large number of trajectories are required to ensure that the variation

due to random events is small, which can require relatively long running times. The results are used

to determine the fraction of energy that has been absorbed on each surface in the geometry. This
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Figure 4.27 Schematic of a radiation dominant problem. The geometry of the oven is rectangular, of size
0.470 m!0.356 m!0.215 m. The food inside the oven is a potato slab of geometry 0.0470 m!
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0.470 m!0.356 m oven surface. (From Almeida, M. F., Modeling infrared and combination infra-
red-microwave heating of foods in an oven. PhD diss., Cornell University, 2005).
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method is relatively easy to set up for complex problems that involve spectral effects and/or

directional surfaces. It is implemented in commercial software such as ANSYS CFX (ANSYS

Corporation Canonsburg, Pennsylvania) which also allows the radiation heat transfer to be coupled

with conduction and/or convection.
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Figure 4.28 Radiative flux and temperatures from radiative analysis inside the oven shown in Figure 4.27. The
computations are compared with experimental data. (From Almeida, M. F., Modeling infrared and
combination infrared-microwave heating of foods in an oven, PhD diss., Cornell University, 2005.)
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4.11 HEAT TRANSFER COUPLED WITH OTHER PHYSICS

Whether intended or unintended, temperature changes lead to other physical changes in the food

material. These changes, in turn, can affect heat transfer. Thus, heat transfer can be coupled with

other physics, as illustrated in Figure 4.29. One important aspect of coupling is whether the

coupling exists as one-way or both ways. Example of one-way coupling can be microwave

heating where the dielectric properties do not change with temperature. Whereas electromagnetic

heating leads to temperature changes and therefore is coupled with heat transfer, if the dielectric

properties are constant, temperature changes do not affect the electromagnetics. Another example

of one-way coupling can be biochemical and microbiological changes that are affected by tempera-

ture, but these changes do not influence the heat transfer process. On the other hand, in microwave

heating, if the dielectric properties change with temperature, the electromagnetics are affected and

the electromagnetic model may need to be re-solved, depending on the extent of the changes.

Another important decision to make in modeling a coupled process is whether the model

equations belonging to all of the physics need to be solved at every time step in a transient situation.

This obviously depends on how strongly the processes are coupled, i.e., how rapidly one process

changes the other. If one process does not change as rapidly as another one occurring simul-

taneously, the slower process does not have to be computed as often; this can provide major

savings in computation time. In case of coupled electromagnetics-heat-transfer modeling, of

course, the heat transfer changes the dielectric properties. But questions arise as to how much

the dielectric properties change and how significant these changes are to the electromagnetic
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Figure 4.29 Schematic showing coupling of different types of physics with heat transfer. The connecting solid
lines stand for coupling due to temperature itself whereas the dashed lines stand for additional
coupling that can arise in a heating process such as moisture loss.
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analysis. Answers to these questions for practical situations can be found realistically through trial

and error, i.e., by running the code for various degrees of coupling.

Solutions to coupled processes have been achieved in the past mostly by using custom-

developed codes. In recent years, coupled codes have become more available. An example of a

commercial software program that can do multiphysics is ANSYS. It combines structural, thermal,

CFD, acoustic and electromagnetic simulation capabilities. Likewise, another commercial product

with flexible multiphysics capability is COMSOL Multiphysics. Another approach to coupling is

the implementation of co-simulation using two different commercial software programs, such as

using FLUENT and ABAQUS together to obtain fluid-structure interactions. Combining two

commercial software packages may also be possible by the user, as was done for electromagnetics

and heat transfer,63 but this obviously requires more work. In the future, more software with

integrated multiphysics capabilities should be available with more seamless integration between

two separate commercial software programs.
4.11.1 Heat Transfer Coupled with Evaporation and Moisture Transport

Heating of food almost always is accompanied by the evaporation of water in it. Evaporation

changes the heat-transfer process quite significantly and requires significant reformulation that also

considers water and vapor transport. The presence of evaporation during heating and the resulting

moisture transport are discussed in detail in Chapter 4. To illustrate how evaporation can be

included in heat transfer, consider the following set of equations for energy, liquid water, and

vapor conservation:

rCp

vT

vt
Z

v

vx
k

vT

vx

� �
KlI|{z}

coupling with

evaporation

(4.105)

vW

vt
Z

v

vx
Dw

vW

vx

� �
KI (4.106)

vV

vt
Z

v

vx
Dv

vV

vx

� �
C I; (4.107)

where I denotes the rate of evaporation, W and V are liquid and vapor contents, and Dw and Dv are

liquid and vapor diffusivities, respectively. Here, I varies with position and time in the food and

couples heat transfer with moisture transfer. These equations are quite simplified and more complex

formulations that couple heat transfer with moisture transport are presented in Chapter 4.
4.11.2 Heat Transfer Coupled with Microwaves

Coupling of microwaves with heat transfer is becoming more common as microwaves are

introduced in newer processes, often in combination with other heating mechanisms. Two examples

are discussed here: microwave sterilization and microwave combination heating in domestic ovens.

The reader is referred to59 for additional applications.

Example 1: Microwave Sterilization. In sterilization, microwaves offer a unique opportunity to

raise the temperature quickly without heat diffusion limitations, thus lowering thermal destruction

of components during the come-up time. However, the nonuniformities in the spatial distribution of

energy deposition during microwave heating and the changes in distribution during the heating
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process can be distinctly different from conventional retort heating and can limit the implemen-

tation of a microwave sterilization process. Here, the heating of a cylindrical sample in a

pressurized microwave transparent container inside a laboratory microwave oven that is somewhat

similar to a domestic microwave oven is considered.62

This process is described by the transient heat equation:

rCp

vT

vt
Z V$ðkVTÞCQðr;TÞ (4.108)

where Q(r,T) is the spatially varying microwave heat generation obtained from the solution of

Maxwell’s equations describing microwave propagation (Equation 4.13 to Equation 4.16), given by

Qðr;TÞZ
1

2
u30300effE

2 (4.109)

Because dielectric properties of foods, specially the salty ones, can vary considerably with

temperature, Equation 4.108 and Equation 4.109 (with E coming from the Maxwell’s equations)

need to be coupled, as illustrated in Figure 4.30. In,63 the coupled governing equations were solved

using finite element methods. Two commercial FEM software packages were used: EMAS (Ansoft

Corporation, Pittsburgh, PA) for electromagnetic fields and NASTRAN (MacNeal–Schwendler

Corporation, Los Angeles, California) for temperature distributions. Coupling is not built into

the software, and system level codes were written in C language to develop the two-way coupling

as shown in Figure 4.30. Additional details of the coupling process can be seen in17.

The effect of nonuniformity in heating can be characterized using information on volume

fraction that reached a particular value of sterilization given by F0Z1/k0 ln (ci/c). This F0 value

can also be referred to as thermal time64. Figure 4.31 shows the volume fraction curve for thermal

time, where the vertical axis represents the volume fraction of material below a certain thermal time

or F0 value. For the low-loss material (0.7% salt ham samples), large volume fraction (about 60%)

of material falls in the low thermal-time range (below F0Z6 min), indicating that the material is
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Figure 4.30 Schematic of the coupling of electromagnetic and thermal calculations. (From Zhang, H., Datta, A. K.,
Taub, I. A., and Doona, C., American Institute of Chemical Engineers Journal, 47, 1957, 2001.)
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underheated, i.e., the thermal time is below the desired minimum of F0Z6 min. For a high-loss

material (ham with 3.5% salt content), over 40% of material exceeds 2000-s thermal time (above

F0Z33 min), representing significant overheating (i.e., thermal time much above the desired F0Z
6 min) in the outer ring. Intermediate lossy (ham with 1.6% salt) material gives a better thermal

time distribution and shows the smallest range of thermal time, even though the range, from 0.1 to

1200 s, is still quite large due to the nature of the cavity heating.
4.11.2.1 Need for Coupled Solutions

Because the dielectric properties are temperature sensitive, the distribution of electric fields,

defined as heating potential, changes with the heating time. The initial distribution of heating

potential, as shown in Figure 4.32a, changes as heating progresses (Figure 4.32b). The distribution

of initial heating potential is different from that during the later heating time. The focusing effect

(i.e., hotter locations are inside), which is initially present, is not significant after the material

reaches the sterilizing temperature (when the hotter locations move to the surface). This qualitative

and significant change in heating pattern is obtained by coupling the electromagnetics with energy

transfer in microwave sterilization.

Example 2: Combination Microwave and Infrared Heating in a Domestic Combination

Oven. Combination microwave and infrared heating has been modeled for a microwave-infrared

combination oven.14 In this study, microwaves in a cavity with food, radiative exchange between

food and oven, and conductive heat transfer inside the food are combined. Commercial modeling

software ANSYS is used to model the electromagnetics and obtain the spatial distribution of

microwave power deposition inside the food. The power deposition values are input as heat

sources to the commercial CFD software FIDAP. In FIDAP, the surface radiative flux for infrared

heating is also computed using radiative exchange analysis described under radiation heat transfer.

The microwave volumetric heat generation and the radiative surface heat fluxes are combined in the

governing equation and boundary condition as
q 2006 by Taylor & Francis Group, LLC
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Figure 4.32 Horizontal sections of the cylindrical food at equal vertical intervals showing the change in heating
potential from initial time to after 130 s of continuous heating. Lighter shades of gray represent
increased magnitude of heating potential. (From Zhang, H., Datta, A. K., Taub, I. A., and Doona,
C., American Institute of Chemical Engineers Journal, 47, 1957, 2001.)
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r0Cp

vT

vt
Z kV2T Cqgen; (4.110)

KkVT ZKqr ChcðT KTNÞ (4.111)

where qgen is microwave volumetric heating, qr is heat flux from infrared radiative heating and hc is

the surface convective heat-transfer coefficient for the surrounding air. Both ANSYS and FIDAP

are finite-element based; thus, heat source values for each Gaussian point from ANSYS were input

into FIDAP using a custom-developed subroutine. Example of computed surface temperature

profiles are shown in Figure 4.33.
4.11.3 Heat Transfer Coupled with Biochemical Reactions: Modeling
of Safety and Quality

Heat transfer is generally a prelude to the calculation of quality and safety. If kinetics of the

biochemical reactions that relate to microbiological and chemical safety of a food process or

the quality resulting from the food process are known, it is a relatively simple matter to couple

the reaction kinetics with temperature calculated from the heat-transfer model. Such coupling is

illustrated in Figure 4.34 as a one-way coupling of heat transfer with the kinetics of biochemical

changes during processing of food.

The main idea in modeling quality and safety is to consider the relevant biochemical reaction in

the context of a transport equation. For example, if species A is being generated from a first-order
q 2006 by Taylor & Francis Group, LLC
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Figure 4.33 (See color insert following page 178.) Computed temperature contours showing the food surface for
(a) infrared only, (b) microwave only, and (c) combined microwave and infrared heating.
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reaction given by

DcA

Dt
ZKkcA; (4.112)

where k is temperature dependent, given typically by the Arrhenius equation

k Z k0eðKEa=RTÞ: (4.113)

Equation 4.112 can be expanded to obtain the species-transport Equation (see Chapter 4), as

vcA

vt
C

v

vx
ðcAuÞZ Kk0eðKEa=RTÞ

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
coupling with

heat transfer

cA: (4.114)

Equation 4.114 shows the coupling the species cA resulting from the biochemical reaction with

temperature. If the convective term is kept in the above equation, it can be used to accurately

calculate the concentration field, cA, even in a flowing system. Note that an arbitrary reaction can be

included in place of Equation 4.112 to accommodate many different types of reactions and their

temperature dependencies. Equation 4.114 being a transport equation, its solution is straight-

forward in a commercial solver. Because the equation corresponds to a diffusivity value of zero

in a transport equation and a zero diffusivity may not be allowed in some computational software,

a small enough value of diffusivity can be assumed that does not change the final computations of

concentration values cA.

A typical transient distribution of sterilization (F0 values) in a cylindrical container39 is shown

in Figure 4.35. This was calculated by implicitly following the liquid elements28 throughout the
Conduction
heat transfer model
provides temperatures

Species mass transfer
model predicts
biochemical changes

Temperature changes
the kinetics of
biochemical processes,
providing the coupling

Figure 4.34 Schematic of one way coupling in modeling biochemical and physical changes that relate to quality
and safety.

q 2006 by Taylor & Francis Group, LLC



0 2 4 6 8

2

4

6

8

10

Slowest
particle
3.40  

Mass 
average
4.02

Slowest
point
2.05

D
en

si
ty

 fu
nc

tio
n 

fo
r 

vo
lu

m
e 

fr
ac

tio
n

F0 (minutes)
10

0

Figure 4.35 Computed distribution of sterilization (F0 values) in liquid for the conditions in Figure 4.14 after 10 min
of heating.
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duration of heating and solving Equation 4.114. The volume-average (or mass-average) steriliza-

tion lies within the range of the distribution, as expected. However, the sterilization calculated

based on the temperature at the slowest heating point lies completely outside the distribution. This

is because all physical fluid particles stay only some of the time in the slowest heating zone and no

particle stays all of the time in the slowest heating zone. Thus, all particles in the system obtain a

sterilization more than what is calculated based on the slowest heating zone. Because sterilization at

the slowest heating zone is easily measured by a thermocouple, this is the temperature used in

practice to calculate sterilization. The slowest-point value in Figure 4.35 demonstrates that use of

such slowest-heating thermocouple data provides additional overprocessing (and safety) beyond

the true least sterilization of a fluid. It is interesting to note that physics-based modeling makes it

easy to obtain such insight.
4.11.4 Heat Transfer Coupled with Mechanics: Thermomechanics

Temperature (and moisture) changes can lead to dimensional changes in the food and, therefore,

mechanical stress. Modeling such a process involves coupling of heat (and moisture) transfer with

solid mechanics.65,66 As an example, modeling of how a material can crack during a rapid freezing

process66 is now presented using a one-way coupling of heat transfer with phase change and solid

mechanics, as illustrated in Figure 4.36. In this example, coupling is a one-way heat transfer leading

to mechanical changes. Water in a food material expands during the phase change process from

water to ice and the amount of expansion at a location in the food depends on the extent of ice

formation at that location, which in turn depends on temperature. The temperature from the thermal

model is coupled with stress analysis in the material due to the expansion. A quasi-static, continuum

formulation is developed where the output from the thermal model is input to the model for

mechanical stress analysis. A long cylindrical geometry is used with axisymmetric freezing,

making the temperatures vary only in the radial direction while the stresses vary in radial and

circumferential directions.

Heat-transfer analysis of the phase-change problem will use Equation 4.93 described earlier.

The boundary and initial conditions are

T surface Z TN;j (4.115)

T Z Ti (4.116)
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Figure 4.36 Schematic of one way coupling in studying thermal stresses and cracking during a rapid freezing
process.
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where TN is the constant bulk temperature of the fluid being used for freezing, and Ti is the constant

initial temperature of the material being frozen.

The thermal stress analysis portion is formulated as a quasi-static, linear, axisymmetric, plane-

strain problem. The equilibrium equation is

sij; j CFi Z 0 (4.117)

where the sij is the stress tensor, Fi is the body force per unit volume, and the comma in sij,j denotes

the derivative with respect to the spatial variable corresponding to direction j. The range of indices

is r and q for this two-dimensional problem. The compatibility conditions are given by:

3ij;kl C3kl;ij K3lj;kiK3ki;lj Z 0; (4.118)

where 3ij,kl denotes the second derivative of 3ij with respect to the two spatial variables.

It is assumed here that each component of the strain tensor can be additively decomposed into a

viscoelastic strain 3
ðvÞ
ij and a thermal strain, 3

ðTÞ
ij i.e.,

3ij Z 3
ðvÞ
ij C3

ðTÞ
ij ; (4.119)

where the thermal strain is given by

3
ðTÞ
ij Z dij

ðT

TR

adT ; (4.120)

where a is the temperature-dependent coefficient of linear thermal expansion, dij is the Kronecker

delta, and TR is a reference temperature at which thermal strains are zero. For this study, TR was set

equal to the initial temperature Ti.

The hereditary integral formulation for linear viscoelasticity,

sij Z dij

ðt

0

lðtKtÞ
v3
ðvÞ
kk

vt
dt C2

ðt

0

GðtKtÞ
v3
ðvÞ
ij

vt
dt; (4.121)

in terms of the Lamé function, l(t), and the shear modulus function, G(t), of the material. The strain

deviator, eðvÞij , and bulk modulus, K(t), are given, respectively, by
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eðvÞij Z 3
ðvÞ
ij Kdij3

ðvÞ
kk =3; (4.122)

KðtÞZ lðtÞC
2

3
GðtÞ: (4.123)

An unconstrained boundary condition has been used at the surface. This is given by

sijnj Z 0; (4.124)

where nj denotes components of the unit vector normal to the surface. The governing equations

were solved using the finite-element computer code ABAQUS (ABAQUS, Inc., Providence, Rhode

Island). The variations in thermal and mechanical properties with temperature make both the

energy and mechanics equations nonlinear.

The cooling rate was varied by changing the boundary temperature. Figure 4.37 shows the effect

of the cooling rate on the maximum principal tensile stress. Two major factors influence the

maximum principal stress developed: the thermal expansion with temperature and the time avail-

able for viscous decay of mechanical properties.

The most significant effect of lowering the boundary temperature in the phase change range

of 08C to K408C is through the thermal expansion. Inside this temperature range, a decrease in

temperature causes increased thermal expansion due to an increase of the frozen fraction. This

increases the maximum tensile principal stress almost linearly (Figure 4.37). The second effect on

the maximum principal tensile stress comes from the time available for the decay of viscoelastic

properties. The faster the freezing, the less time is available for decay of properties, effectively

making the material behave as a harder material (higher values of modulus).

As shown in Figure 4.37, the maximum tensile principal stresses during the phase-change

period increase as the boundary temperature is lowered. These higher stresses at the boundary

temperature of K2008C lead to much higher energy release rate (crack extension force), i.e., the

energy available for a crack to propagate, at that temperature. Thus, the sample is more likely to

crack for a boundary temperature of K2008C as compared to a boundary temperature of K408C.
4.12 CONCLUDING REMARKS

Sterilization is the primary context in which many conduction and convection heat-transfer

models have been developed. Although conduction heat-transfer modeling of food processes has
q 2006 by Taylor & Francis Group, LLC



HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES140
been underway for more than 50 years, many important convection heat-transfer (both natural and

forced) models have also been developed in the last 20 years because computing power has became

more readily available. Radiation heat-transfer models are relatively rare in food processes, where

only a few studies exist. Increased coupling of heat transfer with other simultaneous processes will

be the major trend in modeling in the coming years. Such coupling includes internal heating of the

microwaves and radio frequency—processes that have already been modeled. Coupling of heat

transfer with biochemical changes and microbiological growth and decay are being pursued in the

context of modeling food quality and safety. Coupling of heat transfer with evaporation and

transport of moisture, as in drying and analogous processes, is also a very active area of modeling.

Finally, we expect to see more modeling work relating heat transfer to mechanical changes such as

those in freezing and cooking. Integration of the coupled physics with food-specific property and

parameter data in a user-friendly interface will make modeling more accessible to everyone.

The many examples shown in this chapter illustrate the power of physics-based models in

providing in-depth understanding of food processes. Although the chapter provides examples

primarily from heat transfer, the same is true for other physical processes such as fluid flow. Of

course, the physics-based approach requires the mastery of the knowledge of the physical processes

to be able to mathematically formulate a problem starting from a physical process by making

appropriate simplifications. A practical physics-based approach to complex processes also requires

the availability of powerful and user-friendly solvers (software). As major improvements in soft-

ware continue, the effort required to implement physics-based models should continually decrease,

making them more and more attractive.
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5.1 INTRODUCTION

5.1.1 Scope of This Chapter

Membrane processes are now commonplace in the dairy, food, chemical, pharmaceutical, and

water-treatment industries. Successful design of a membrane process relies on the ability to predict

filtration performance; for these predictions, the modelling of mass-transfer processes is essential.

After a brief introduction to the fundamentals of membranes and membrane processes, modelling of

pressure-driven membrane processes will be discussed in detail. Section 5.2 will review the

currently available models and Section 5.3 is a case study on the prediction of permeate flux in

ultrafiltration using computational fluid dynamics.
5.1.2 Membrane Processes

A membrane is a selective barrier that allows some species to permeate the barrier while

retaining others.1,2 In food and biotechnology applications, the goal is typically to concentrate,

recover, or remove particles, macromolecules, or low-molecular-weight solutes from an aqueous

feed stream.3 Membrane filtration can be categorized into four major pressure-driven membrane

processes: microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), and

direct osmotic concentration (DOC) where chemical potential is the driving force.

Membranes are porous materials,1 with pore sizes that decrease from MF, through UF and NF,

to RO. MF is principally used for separation of micron-sized species that are usually particles or

large macromolecules. UF is used for the separation of macromolecules (e.g., proteins) and NF and

RO are used for low-molecular-weight solutes (e.g., salts). DOC uses RO membranes and a

difference in chemical potential between the feed and permeate to concentrate solutions containing

low-molecular-weight solutes.

The separation mechanism for membrane processes is based upon either size exclusion or

solution diffusion. The pore size and the structure of the membrane determine which mechanism

is dominant. MF and UF membranes have well-defined pores and the separation is based upon size

exclusion. If the size of a species is larger than the size of the membrane pores, it cannot pass

through the membrane and is retained. For NF and RO membranes, which have smaller pores, there

still exists some debate concerning the separation mechanism. The suggested mechanisms are size

exclusion similar to MF and UF, or solution diffusion. In the solution-diffusion mechanism, species

are absorbed into the membrane, diffuse through the membrane structure, and are then desorbed.

The relative rates of the absorption, desorption, and diffusion of the species control the separation.

Although classified as porous, NF and RO membranes are often considered to be intermediates

between truly porous membranes such as those found in MF, and dense, nonporous membranes

used in gas separation and pervaporation.

In a membrane process, the pressure applied across the membrane to the drive the separation is

the transmembrane pressure (TMP). The portion of the feed that passes through the membrane

is termed the filtrate or permeate. The volumetric flow rate of permeate per unit area of membrane is
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the permeate flux, usually denoted by J,

J Z
1

A

dV

dt
: (5.1)

In this equation, V is the total volume that has permeated through the membrane at time t, and A is the

area of the membrane. The SI units of flux are m sK1, however, flux is often stated in LmK2 hK1.

The permeate may contain a fraction of the particles, macromolecules, or low-molecular-weight

components from the feed stream. This transmission of a species across the membrane is conven-

tionally described in terms of either the apparent sieving coefficient or observed rejection. The

apparent sieving coefficient (S0) is defined as the concentration of a species in the permeate (CP) as

a fraction of its concentration in the feed (CB).4

Sa Z
Cp

CB

; (5.2)

whereas the observed rejection (R0) is defined as

R0 Z 1KSa: (5.3)

In DOC, a membrane (usually RO) separates two compartments, one containing the feed

solution to be concentrated, and the other containing an osmotic solution. The chemical potential

of the osmotic solution (usually brine) is lower than that of the species to be concentrated; conse-

quently, there exists an osmotic pressure difference driving liquid across the membrane from the

feed solution into the osmotic solution. As a result, the feed is concentrated.

In general, membrane processes are used to either concentrate or fractionate a feed stream. In

concentration, the aim is to increase the concentration of the rejected species in the retentate. This is

achieved by selecting a membrane with pores much smaller than the species to be concentrated.

Permeation through the membrane leaves the retentate more concentrated in the rejected species. In

fractionation, the goal is to separate a feed stream containing two or more species into retentate and

permeate streams that are rich in different species. In general, the membrane must have pores that

are larger than the size of the species that must cross the membrane, but smaller than the size of the

species that remains in the retentate to be rejected. Fractionation can be imprecise and difficult

to achieve.
5.1.3 Microfiltration and Ultrafiltration

MF and UF operate on a size-exclusion principle. The membranes have a well-defined porous

structure. MF membranes have the largest pores, with mean pore diameters ranging from 0.1 to

10 mm. Their porosity is generally high and this leads to a low resistance to permeate flow. There-

fore, acceptable fluxes can be achieved at low TMP, typically below 2 bar.

The membranes can be produced from a wide range of both organic and inorganic materials.

Organic MF membranes are made from polymers such as polysulphone, polycarbonate, and poly-

vinylidene fluoride. Polymer membranes tend to offer a low resistance to permeate flow and a low

cost per unit area but are unable to handle high temperatures, a wide range of pHs or harsh chemical

cleaning conditions. Hence for some MF applications inorganic membranes made from ceramics

such as alumina (Al2O3) and zirconia (ZrO2) are preferred. These membranes can resist harsh

operating conditions but are expensive per unit area and may also be brittle.

Structurally, MF membranes differ from all others as they maybe either symmetric or

asymmetric. Symmetric membranes have a homogenous structure and the entire structure contrib-

utes to the separation, whereas asymmetric membranes have a thin top layer supported by a more

porous lower layer. The separation is governed by the thin top layer. All types of MF membranes
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are widely used in the food and biotechnology industries. Some examples of applications

of MF include:

† Clarification of cheese whey in the dairy industry
† Production of high quality water
† Downstream processing of fermentation broths for cell recovery
† Membrane bioreactors for wastewater treatment

The pores of UF membranes are smaller than those of MF membranes. The pore size is specified

by the molecular-weight cutoff (MWCO) of the apparent. The MWCO is defined as the molecular

weight of the macromolecules at which the apparent sieving coefficient falls in the range of

5–10%. UF membranes have MWCOs of between 1 and 300 kDa, which requires mean pore

diameters in the range 2–100 nm. As UF membranes have smaller pores—and generally a lower

porosity—a higher TMP (of up to 10 bar) is required to achieve acceptable fluxes. Like MF

membranes, UF membranes are made from a wide range of polymers and inorganics. The polymers

include polysulphone, polyvinylidene fluoride, polyamide, and cellulose acetate, whereas the inor-

ganics are limited to the ceramics, alumina, and zirconia. UF membranes are exclusively

asymmetric in structure because of the small pore size. The advent of robust asymmetric UF

membranes has lead to a growth in food and biotechnology applications. Some examples include:

† Fractionation of milk for cheese making
† Concentration of a wide range of fruit juices
† Production of high quality water
† Protein fractionation

Although membrane selection is important in MF and UF processes, the actual performance of

the process is often not governed by the membrane itself but by concentration polarization and

fouling (see Section 5.1.7 and Section 5.1.8). Therefore, when modeling these processes, the

accurate description of fouling and concentration polarization is essential.
5.1.4 Nanofiltration and Reverse Osmosis

In NF and RO, the selection of the membrane and, in particular, the material, is much more

critical. Here, fouling and concentration polarization must still be considered but the separation is

usually governed by the intrinsic properties of the membrane. In fact, the intrinsic selectivity of a

material towards a given solute is often the determining factor in membrane selection.1 The range

of materials used for NF and RO membranes is much smaller than that used for MF and UF, and is

limited to polymers. For example, cellulose acetate membranes are often used in RO processes for

the desalination of sea water because they have a relatively high permeability to water and a very

low salt permeability. Polyamides are also commonly used. Although polyamides exhibit a lower

water permeability, they can be operated over a wider range of pH.

All NF and RO membranes are asymmetric in structure.5 As with UF membranes, but to a much

greater extent, the separation layer must be kept thin as the pores are extremely small. It is estimated

that NF and RO membranes have pores with diameters less than 2 nm. Membranes are usually

classified according to their retention of monovalent (e.g., NaC, ClK) and bivalent (e.g., Ca2C)

ions. RO membranes have high retention of both monovalent and bivalent ions, typically more than

98%, whereas NF membranes have high retention of bivalent ions, usually over 90%, but much

lower retention of monovalent ions.1 Whereas RO membranes offer high retentions, the more open

structure of NF membranes leads to a lower resistance to permeate flow. NF is frequently called

“loose” or “leaky” RO.
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The low-molecular-weight species to be separated in NF and RO exhibit high osmotic

pressures. The pressure depends upon the species and its concentration. For example, seawater

has an osmotic pressure of approximately 25 bar; thus, this pressure must be overcome before water

can be made to permeate through the membrane from the feed where the salt concentration is high,

to the permeate where the salt concentration is low. The combination of high osmotic pressure and

high resistance to permeate flow leads to typical operating pressures of 10–100 bar. Given the high

pressures, pumping costs—and therefore energy costs—of NF and RO processes are much higher

than those for MF and UF. The high energy costs can be tolerated because NF and RO are

competing with separation technologies such as evaporation.

RO, in particular, has found many applications, the most common of which is the desalination

of seawater. In the food industry, RO is very useful as a concentration step. RO applications

include:

† Concentration of milk for bulk transport
† Down stream processing, particularly desalting
† Concentration of wastewater streams
† Production of ultrapure water

The applications of NF are more limited. A number of specialized applications exist, such as

concentration of whey in the diary industry and downstream processing in the corn and wine

making industries.
5.1.5 Direct Osmotic Concentration

In DOC, RO membranes are frequently used. There is no substantial hydraulic pressure applied

across the membrane; therefore, the driving pressure is almost equal to the osmotic pressure

difference across the membrane. The modelling of DOC processes is limited, but because the

process shares many similarities with pressure-driven membrane processes, models developed in

this area may well be applicable. It should be noted that one difference between DOC and pressure-

driven separations is that there maybe a significant resistance to mass transfer on both sides of the

membrane in DOC. Possible applications of DOC include the concentration of grape juice and

tomato juice. The focus of the remainder of this chapter will be pressure-driven membrane separ-

ations; however, with suitable modification the models presented could be applied to DOC.
5.1.6 Mode of Operation and Module Design

There are two modes of membrane operation: dead-end and crossflow. The original mode of

operation for membrane processes was dead-end, where the feed stream is normal to the membrane.

The applied pressure across the membrane causes the liquid portion of the feed to permeate.

Depending on their size particles, macromolecules and low-molecular-weight components in the

feed either permeate or are retained on or within the membrane. Dead-end filtration is still used in a

number of applications, such as cell harvesting in the biotechnology sector. In recent years cross-

flow operation has become popular. In crossflow operation, the feed stream flows tangentially

across the surface of the membrane. The pressure applied across the membrane forces typically

0.1–10% of the liquid portion of the feed stream to permeate through the membrane. As in dead-end

operation the permeate may contain some of the species present in the feed. The majority of the feed

does not permeate through the membrane and is swept out of the module, this is termed

the retentate.

Module design is linked to the choice of operating mode. Membranes are supplied as either

tubes of varying diameter, or as flat sheets that must then be mounted within a suitable module.
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Factors affecting the choice of module design include feed properties, operating conditions, ease of

cleaning, surface area of membrane per unit volume of the module (membrane packing density),

and cost. Flat sheet membranes are often mounted in spiral-wound modules. Membranes supplied

as tubes can be broadly classified either as capillaries, hollow fibres, or tubular membranes.

Capillaries are less than 1 mm in diameter, hollow fibers a few millimetres in diameter, and

tubular membranes that may be tens of millimetres in diameter. For dead-end filtration, single-

use cartridges containing either hollow fibres or flat sheet membranes are commonly used. A wider

range of modules are used for crossflow operation.
5.1.7 Concentration Polarization

In membrane processes, the retained or rejected species accumulate near the membrane surface.

This leads to two phenomena that reduce the filtration performance of membrane systems: concen-

tration polarization and fouling. Concentration polarization is a natural consequence of preferential

transport of some species through the membrane. The applied pressure across the membrane causes

convection of species towards the membrane. The concentration of rejected species increases at the

membrane surface. This creates a concentration gradient leading to back-transport of the rejected

species to the bulk. This is a particular problem when separating macromolecules and low-molecular-

weight solutes. These species can generate significant osmotic pressure at the membrane wall; this

reduces the effective applied pressure across the membrane. A reduction in the effective applied

pressure leads to a reduction in the permeate flux. Concentration polarization is linked to the

permeate flux through the film mass-transfer equation:

J Z
D

d
ln

Cw KCP

CB KCP

� �
Z k ln

Cw KCP

CB KCP

� �
; (5.4)

where k is the mass-transfer coefficient usually given in the SI unit m sK1, and Cw, CB, and CP are the

concentrations of the species at the membrane, in the bulk, and in the permeate, respectively. To

increase the permeate flux, either the mass-transfer coefficient must be increased, or the bulk concen-

tration of the retained species must be decreased.

Concentration polarization is a reversible phenomenon that does not itself affect the intrinsic

properties of the membrane. If a pure water or clean liquid stream is fed to the membrane, then the

permeate flux is determined by the TMP and the properties of the membrane. When a feed stream

containing a species that is rejected by the membrane is filtered under the same conditions, concen-

tration polarization will occur and the permeate flux will fall below the level for a pure-water feed

stream. If the feed is switched back to a pure-water stream, the permeate flux will recover. Hence,

the effect of concentration polarization is reversible.

Concentration polarization is a particular problem when filtering macromolecules and low-mol-

ecular-weight solutes that have significant osmotic pressures. Careful consideration must be given to

the module design and choice of operational conditions for UF, NF, and RO processes to limit the

phenomenon. MF is unaffected because particulate feeds do not exert large osmotic pressures.
5.1.8 Fouling

Membrane fouling results in a decrease in the permeate flux over time in constant TMP

operation. It is a more complex phenomenon than concentration polarization and may be both

reversible and irreversible. For porous membranes, fouling may occur as in-pore blocking of the

membrane pores, as adsorption onto the surface of the membrane, or as the formation of an external

fouling layer on the membrane surface.1 The relative importance of the three types of fouling
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depends on operating conditions, the feed stream, and membrane properties. In-pore blocking and

adsorption onto the membrane surface both reduce the open area of pores through which permeate

can flow, thereby reducing the permeate flux. This is a common problem when filtering macro-

molecules such as proteins and is irreversible. The performance of the membrane is reduced and

will not recover without chemical cleaning. An external fouling layer occurs when rejected species

build up on the membrane surface. This causes an additional resistance to the flow of permeate. In

MF applications with particulate feed streams, an external fouling layer of rejected particles, known

as a cake, is common. In UF applications, particularly at high TMP, an external gel layer of

macromolecules may form on the membrane surface.

Fouling and concentration polarization are related phenomena but should not be confused.

Concentration polarization is a natural consequence of mass transport through a membrane

which affects the performance of the system without actually altering the membrane itself.

Fouling, in contrast, may cause changes to the membrane or the formation of an external fouling

layer that acts to increase the resistance to permeate flow. In broad terms, fouling is a greater

problem in MF and UF; fouling in MF can be very severe and can lead to decreases in permeate flux

of more than 95%.1 The fouling of RO and NF processes tends to be a lesser problem because

usually some form of pretreatment of the feed is performed before it reaches the membranes.
5.1.9 Operating Conditions

The choice of operating conditions is important in limiting the effects of concentration polar-

ization and fouling. The majority of membrane processes are operated in crossflow mode because

the tangential flow of the feed stream across the membrane increases the mass-transfer coefficient

and reduces fouling. An important consideration is whether to operate with a constant applied

pressure across the membrane (constant TMP) or with a constant permeate flux. Originally, most

crossflow processes were operated under high constant TMP to achieve high permeate fluxes, but

this in turn led to severe fouling. In recent years, many processes have been shifted to operate at low

to moderate constant TMP or constant permeate flux. Particularly in constant permeate flux

operation, where the convective force towards the membrane is controlled, the effects of fouling

can be reduced and even eliminated.6 Here, examples will be given in which it is assumed that the

processes are operated under constant TMP.

Feed streams in the food and biotechnology industries are aqueous but tend to be very complex. It

is common for feeds to contain a mixture of particles, macromolecules, and low-molecular-weight

components. For example, whole milk contains fat globules, proteins, and carbohydrates, whereas

fermentation broths from the brewing industry contain yeast cells, cells debris, alcohol, and low-

molecular-weight flavor components. The membrane processes and operating conditions must be

carefully chosen to ensure the desired species are retained and an acceptable permeate flux

is achieved.
5.2 MODELLING OF PRESSURE-DRIVEN MEMBRANE PROCESSES

5.2.1 Classification of Models

The goal of modelling in membrane processes is usually to predict the variation of permeate

flux and transmission of one or more species with time under a given set of operating conditions.

The inputs to a model typically include operating conditions (e.g., TMP and crossflow velocity) and

feed-stream properties (e.g., particle size and feed concentration). Of particular interest is the

steady-state permeate flux that is achieved after extended operation under crossflow. Membrane

models are best categorized by the physical phenomena that govern the process. The four major
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categories of model are concentration polarization, fouling, membrane, and force balance.

Each will be considered in turn and selected examples will be given. There also exist entirely

empirical membrane models, but because they have few links to any underlying physical phenom-

ena, these models are highly application-specific and will not be considered here. Emphasis will be

placed on models for crossflow filtration under constant TMP given the prevalence of this oper-

ational mode in industry. However, it is interesting to note that many crossflow models are merely

extensions of earlier models developed for dead-end filtration. For MF, the models commonly used

are based upon force balance, concentration polarization, and fouling. Force balance models are

unique to MF, in which an individual entity, usually a particle, can be readily identified. Models

based on the membrane itself are rarely used in MF because the process is often dominated by

fouling; the actual membrane properties are not the controlling factor in the filtration process. No

category of model has been established as giving superior results, and some models use a com-

bination of the concepts.

For UF, as for MF, few membrane models exist because fouling and concentration polarization

are often significant. With UF systems, it is helpful to make a distinction as to which phenomena—

fouling or concentration polarization—is controlling the process. For some UF processes, fouling is

low or negligible and the permeate flux is controlled by concentration polarization. In these

situations, the osmotic pressure and gel models, which are adaptations of the film mass-transfer

equation, are most appropriate. The case study in Section 5.3 outlines such a process using the

osmotic-pressure model. In situations where fouling dominates in UF, both concentration polar-

ization and fouling models can be employed.

In general for NF and RO, concentration polarization and membrane models are employed. The

prediction of species rejection is of particular interest for these processes and, therefore, membrane

models are important. If concentration polarization is important, then a concentration-polarization-

based model may be used alone or linked to an intrinsic membrane-property model. That is not to

say that fouling models do not exist, they are merely less common.
5.2.2 Concentration Polarization Models

Concentration polarization models are based on a mass balance of material in the mass-transfer

boundary layer. At steady state, the convective flux of species to the membrane must be balanced by

a diffusive flux of species back to the bulk and a permeation of species through the membrane.

Control-volume analysis leads to the film mass-transfer or concentration-polarization equation:

J Z k ln
Cw KCP

CB KCP

� �
: (5.5)

The permeate flux can be found if the mass-transfer coefficient (k) can be predicted and the concen-

trations in the bulk (CB), in the permeate (CP), and at the membrane (Cw) are known. The bulk

concentration is a fixed operational parameter, and the concentration in the permeate may be easily

measured or sensibly assumed, given knowledge of the membrane. More problematic are the prediction

of the mass-transfer coefficient and the accurate determination of the concentration at the membrane.

There exist many equations and correlations to predict mass-transfer coefficients, most of which

were developed for conventional mass-transfer processes where the wall is not semipermeable. The

mass-transfer coefficient in the film mass-transfer equation has the same dimensions as conven-

tional or engineering mass-transfer coefficients. However, the semipermeable nature of the wall in

membrane processes alters the concentration profile in the mass-transfer boundary layer. In conven-

tional mass-transfer processes, there is no convective flux towards the wall. The concentration

profiles of species vary linearly between the wall and the bulk. However, in membrane processes,

the wall is porous and there is a convective flux to the membrane. The effect of this convective flux
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is to curve the concentration profile between the membrane and the bulk. Consequently, care must

be taken when predicting mass-transfer coefficients for membrane processes using equations or

correlations developed for conventional or nonmembrane processes.

The requirement to predict or measure the concentration at the membrane is perhaps the most

problematic aspect of concentration polarization models. Direct measurement of the concentration

at the wall under filtration conditions is extremely difficult. The prediction or determination of

concentration at the membrane is handled differently, depending on the membrane process.

Concentration polarization models have been applied to all membrane processes. The best results

are achieved when fouling is limited and TMP is high, such that the steady-state flux has become

independent of TMP. Initial attempts to use concentration polarization models (based on the film

mass-transfer equation) to predict permeate fluxes for the MF of micron-sized particles proved

unsuccessful. The predicted fluxes were much lower than those seen experimentally, owing to the

Brownian diffusion coefficient being used to determine the mass-transfer coefficient. For macro-

molecules and submicron particles, Brownian diffusion is the dominant back-transport mechanism.7

However, a different mechanism clearly controls the back-diffusion of larger particles. Original

workers termed this the flux paradox.8

An alterative back-transport mechanism known as shear-induced diffusion9 was proposed as a

solution to the flux paradox. Shear-induced diffusion results from particles in a flow undergoing

random displacements from their streamlines as they interact with other particles.

In a concentration gradient, a greater number of random displacements will occur on the high-

concentration side of the particle, thereby causing it to move down the concentration gradient.

Colton and Zydney9 used shear-induced diffusivity instead of Brownian diffusivity to predict the

mass-transfer coefficient in the film mass-transfer equation. Their work led to two solutions for flux:

J Z 0:078 _gw

d4
p

L

� �1=3

ln
fw

fB

� �
(5.6)

for fw KfB /fW, and

J Z 0:126 _gw

fwd4
p

fBL

� �1=3

(5.7)

for fB /fW, where _gw is the shear rate at the membrane, dp is the particle diameter, L is the

membrane length, and fw and fB are the volume concentrations at the membrane and in the bulk,

respectively. The SI units for flux are m sK1. In MF processes, there is often a cake fouling layer

formed on the membrane surface. The concentration at the membrane is often taken to be the

concentration at the top of the cake. Because most cakes are composed of approximately spherical

particles, the concentration at the top of the cake is taken to be the concentration of close-packed

spheres. Further investigation found that, in MF, these models are relatively insensitive to the exact

value of the concentration at the membrane.10

The osmotic-pressure model is suitable for UF processes where the rejected species exert

significant osmotic pressure. As the concentration of the rejected species at the membrane

increases, the osmotic pressure of the species also increases. This leads to a reduction in the

effective driving pressure across the membrane and, consequently, a reduction in permeate flux.

For a UF processes with negligible fouling and total solute rejection, Darcy’s law maybe written as

J Z
TMPKDp

mRm

; (5.8)

where m is the permeate viscosity (Pas), Rm is the resistance of the membrane (mK1),

and Dp and TMP are the osmotic and transmembrane pressures, respectively (Pa).
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The concentration-polarization equation for total solute rejection is

J Z k ln
Cw

CB

� �
: (5.9)

The osmotic pressure exerted by macromolecules has been measured experimentally and is a

function of concentration. Here, the concentration that determines the osmotic pressure is that at

the membrane (Cw), and the relationship between concentration and osmotic pressure is often

expressed in the form:

Dp Z a0 Ca1Cw Ca2C2
w Ca3C3

w C/ (5.10)

The constants (a0, a1, etc.) must be determined experimentally. The solution of Equation 5.8

through Equation 5.10 allows the flux and the concentration at the membrane to be determined.

Whether using the film mass-transfer equation, gel model, or osmotic-pressure model, a value

for the mass-transfer coefficient must be determined. The mass-transfer coefficient may either

be predicted or measured experimentally. The analogy between heat and mass transfer in conven-

tional or engineering mass-transfer processes has long been accepted. Thus, modified

semiempirical heat-transfer correlations are used to estimate the mass-transfer coefficient for

membrane processes.11

The correlations are expressed in terms of standard dimensionless numbers that are used

throughout work on mass transfer, and are not unique to membrane processes. These numbers

include the variables tube diameter (d), species diffusivity (D), mass-transfer coefficient (k),

crossflow velocity (U), solution density (r), and solution viscosity (m):

Sherwood number : Sh Z
kd

D
; (5.11)

Reynolds number : Re Z
rUd

m
; (5.12)

Schmidt number : Sc Z
m

rD
: (5.13)

These are normally expressed as:

Sh Z aRebScc d

L

� �d

: (5.14)

The coefficients a, b, c, and d depend upon the correlation selected, which in turn depends on

module design. It should be noted that a consistent set of units for all the variables must be

used. One such semiempirical solution for laminar flow in a tube is the Leveque solution that

is used when the velocity profile is fully developed but the concentration profile is still

developing:2

Sh Z 1:86 Re0:33Sc0:33 d

L

� �0:33

: (5.15)

The lead coefficient is also reported as 1.62.11 The Leveque solution can be expressed in terms

of mass-transfer coefficient and shear rate:

k Z 0:94
gwD2

L

� �0:33

; (5.16)
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where the shear rate (gw) at the membrane is given by

gw Z
8U

d
: (5.17)

The Leveque solution predicts that the mass-transfer coefficient is only a function of the

shear rate at the membrane (gw), the diffusivity of the species (D), and membrane length (L).

Because species diffusivity is fixed, only the membrane length and shear rate at the membrane

may realistically be changed. Given that most modules and membranes are designed to be

standard sizes, the variation of membrane length is also difficult. Therefore, the only realistic

method of increasing the mass-transfer coefficient is to increase shear rate.

Alternatively, if the flow is laminar but the velocity and concentration profiles are fully

developed, then the Grober correlation may be used:11

Sh Z 0:664 Re0:5Sc0:33 d

L

� �0:5

: (5.18)

For definitions of the dimensionless numbers Sh, Re, and Sc, the reader is referred to Chapter 6.

For the frequently encountered situation of turbulent flow in a tube, the Dittus–Boelter or

Chilton–Colburn correlation is often used:12

Sh Z 0:023 Re0:8Sc0:33: (5.19)

Other correlations have been produced to suit specific module designs. For example, in spiral-

wound modules, spacers are often added in the feed channel to cause locally high shear stresses,

improve mixing, and therefore increase the mass-transfer coefficient. Schock and Miquel13

produced a correlation for this situation; the flow in such a module with a spacer would be turbulent:

Sh Z 0:065 Re0:065Sc0:25: (5.20)

It is interesting to note that the dependence on the Schmidt number has changed only slightly from

the Dittus–Boelter correlation, but the dependence on the Reynolds number has changed by more

than an order of magnitude.

Whether analytical solutions or correlations are used, parameters such as species diffusivity and

crossflow velocity or wall shear stress must be determined for use in the model. The diffusivity of

many common species encountered in UF has been experimentally measured and correlations are

available. If module geometry is simple and the flow is steady then prediction of crossflow velocity

or wall shear stress is straightforward. However when module geometry is complex, for example

spiral-wound modules, or the flow is unsteady then prediction becomes much more difficult. In

these cases it is often necessary to use methods such as computational fluid dynamics.

Alternatively the mass-transfer coefficient maybe found experimentally. For MF and UF

processes, this is achieved by performing experiments at a range of bulk concentrations. A

rearrangement of the film mass-transfer equation may then be used to determine the mass-transfer

coefficient by plotting flux vs. natural log of bulk concentration. Here, the film mass-transfer

equation for a membrane with total retention is used:

J ZKk ln CB Ck ln Cw: (5.21)

The mass-transfer coefficient is found from the gradient of the resulting straight line, and the gel

concentration is found from the intercept on the y-axis.
5.2.2.1 Food and Bioprocess Examples

Constenia and Lozano14 studied the UF of apple juice through hollow fibres at constant volume-

concentration ratio. Reynolds and Schmidt numbers were calculated taking into account the effect
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of increasing viscosity with feed concentration using the well-known rheological power law:

m Z m0gnK1
w ; (5.22)

where m0 is the consistency coefficient and n is the flow behavior index; these values were

determined from experiment. Linear regression of log Re and log Sc vs. log Sh established the

relationship:

Sh Z 0:149 Re0:336Sc0:329: (5.23)

Both Re and Sc show a very similar dependence to the Leveque solution (Equation 5.15), however

the lead coefficient is an order of magnitude lower, and no dependence on the ratio of membrane

length to diameter is discussed.
5.2.2.2 Worked Example

Question: In a pilot-scale UF process, a nonfouling macromolecule is filtered under constant

TMP. Use the osmotic-pressure model to predict the permeate flux. The relationship between the

osmotic pressure in bar (Dp) and the concentration of the macromolecule at the membrane in

kg mK3 (Cw) can be taken as

log Dp Z 0:25 C0:1C0:35
w :

Operational Data:

TMP: 10 bar

Pure-water flux at 10 bar TMP: 7.5!10K5 m sK1

Concentration at the membrane (Cw): 100 kg mK3

Permeate Viscosity (m): 1!10K3 Pas

Solution: The osmotic-pressure model (Equation 5.8) is

J Z
TMPKDp

mRm

:

To find the flux, J, the osmotic pressure, Dp, and the resistance of the membrane, Rm must be

calculated. The resistance of the membrane can be found from the pure-water flux. Because pure-

water has zero osmotic pressure (DpZ0), then the membrane resistance is

Rm Z
TMP

mJ0

Z
10!105

1!10K3 !7:5!10K5
Z 1:33!1013 mK1:

The osmotic pressure can be calculated from the equation, given that

log Dp Z 0:25 C ð0:1!1000:35ÞZ 0:751;

Dp Z 5:64 bar:

The flux is then

J Z
TMPKDp

mRm

Z
ð10K5:64Þ!105

1!10K3 !1:33!1013
Z 3:28!10K5 m sK1:
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5.2.3 Membrane Fouling Models

Membrane fouling models are common in MF and UF, and apply equally well to all processes if

fouling is occurring. Under constant TMP operation when fouling occurs the permeate flux

decreases with time. The effects of fouling are often considered with respect to Darcy’s law.

When filtering pure water prior to exposing the membrane to any foulant, the resistance to the

flow of permeate is a minimum and is only a function of the membrane and the TMP:

J0 Z
TMP

mRm

; (5.24)

where m is the permeate viscosity (Pas), Rm is the resistance of the membrane (mK1).

In the general case of a membrane exposed to foulant species Darcy’s law becomes:

J Z
TMP

mðRm CRif CRcÞ
: (5.25)

After exposure to a foulant species, the flux will decrease (J!J0) due to either internal fouling of

the membrane (Rif) or the presence of a cake layer that causes a cake resistance (Rc). Internal

fouling may occur due to in-pore fouling at the openings or within the pores or the foulant species

being adsorbed onto the membrane surface. Alternatively, a fouling layer may form above the

membrane, providing an additional resistance to permeate flow that is quantified by the cake

resistance.1 There are four common models that account for the different physical phenomena

involved in membrane fouling: complete pore blocking, standard blocking, intermediate blocking,

and cake filtration.

Both complete pore blocking and standard blocking are internal fouling mechanisms because

the fouling occurs at the pore entrance or within the pores. There is no additional resistance due to

any fouling layer on the surface of the membrane.15 Standard pore blocking assumes a uniform

deposition of material on the pore walls, causing a uniform decrease in the diameter of the pores and

thus a reduction in the open pore area available for permeate flow. Complete pore blocking occurs

when a pore is completely sealed or plugged by a particle or macromolecule. After the pore is

plugged, no further flow through the pore is possible and the number of open pores available for

permeation is reduced. The number of plugged pores is assumed to increase in proportion to the

volume of permeate that has passed through the membrane.

Intermediate fouling is based upon a similar physical mechanism to standard pore blocking.

Depositing species completely block pores, but may deposit over an already blocked pore, leading

to an external fouling layer. Therefore, intermediate fouling leads to both internal and

cake resistances.

Cake filtration is an external fouling mechanism and its physical basis is different to complete

pore blocking or standard blocking. With cake filtration, there is no internal fouling and all

additional resistance to permeate flow is provided by a fouling layer on the membrane surface.

This is a common fouling mechanism in MF, particularly when particulate feeds and a membrane

with pores much smaller than the size of the particles in the feed are present. The resistance of the

cake (Rc) is proportional to M, the mass of cake deposited per unit area (kg mK2):

Rc Z aM; (5.26)

where a is the specific cake resistance (m kgK1) and is dependent upon the species forming

the cake. For rigid, nonadhesive spheres, the specific cake resistance is described well by the

Carman–Kozney equation for flow through a bed of packed spheres. There are numerous
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expressions of this equation:16

a Z
36K0t2ð1K3Þ

rcd2
p33

; (5.27)

where 3 is the porosity of the cake (K), rc is the density of the deposited particles in kg mK3 and dp

is the diameter of the deposited particles in meters. Here, K0 is the Kozney coefficient rather than

the mass-transfer coefficient. The tortuosity (t) can be used to account for beds of particles that are

nonspherical. In membrane applications, 36K0t2 is often taken to equal 180. However, if the cake is

formed from particles or species that are adhesive, or if it is formed under conditions where surface

charge is important, then Carman–Kozney tends to under-predict the specific cake resistance.

In these situations, the specific cake resistance must be determined experimentally. A further

complication arises if compressible species such as microbial cells7 or yeast cells17 form the

cake. The specific cake resistance then becomes a function of the applied TMP. This is often

accounted for using a power law:

a Z a0TMPs: (5.28)

Again, the specific cake resistance under zero applied pressure, a0, and the cake compressibility, s,

must be determined experimentally.

The four major fouling models were brought together by Hermia18 in a unified model for

fouling in dead-end systems expressed in terms of the total permeate volume, V (m3), and time,

t (s):

d2t

dV2

� �
Z K

dt

dV

� �n

: (5.29)

Each of the four fouling mechanisms is represented by a different value of n. The constant K must

be determined by fitting the equations to experimental flux decline curves. The units of K and n vary

with the fouling mechanism. There are many other fouling models, but the majority are essentially

derivatives of Hermia’s equation. Although Hermia’s equation is strictly only valid for dead-end

operation, it is often applied to crossflow operation by making the assumption that the convective

flow of material to the membrane far exceeds the removal of material by crossflow action. Under

these conditions, the effect of the crossflow is minimal and the system closely approximates dead-

end filtration.

Hermia’s unified model was expanded with the inclusion of a crossflow removal term to allow

rigorously accurate modelling of crossflow systems:6

K
dJ

dt
JnK2 Z KðJKJ�Þ: (5.30)

Again, n and K are constants that depend on the fouling mechanism, whereas J and J* are,

respectively, the flux at any time (m sK1) and the critical flux (m sK1) that is considered the flux

below which no fouling occurs. In recent years, there has been considerable interest in operating

MF and UF processes close to this point. There exists a subset of models that deal with prediction of

the first point at which fouling occurs; most of these models focus on the first point of deposition of

particulate species in MF.

The Table 5.1 summarizes the basic modes of fouling, their effects on the resistance terms in

Darcy’s equation, and an integrated form of Hermia’s dead-end constant-pressure model.

An alternative fouling model used for UF applications is the gel model. It does not fit into

Hermia’s framework, but like Hermia’s models it is underpinned by physical phenomena.

Experimentally, it is often noted that the flux in a UF processes is only a function of hydrodynamics
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Table 5.1 Summary of Hermia’s Blocking Laws

Mode Description Darcy’s Law Hermia’s Model

Complete

pore

blocking

Each particle that reaches a pore,

completely seals that pore

RifO0 and

RcZ0

nZ2; J ZJ0expðKKtÞ K ðsK1Þ

Standard

blocking

Diameter of pores is uniformly

reduced

RifO0 and

RcZ0

nZ1:5; J Z ðJK0:5
0 CKtÞK2 K ðmK0:5sK0:5Þ

Intermediate

fouling

Particles may seal a pore, or may

deposited over an already sealed

pore

RifO0 and

RcO0

nZ1; J Z ðJK1
0 CKtÞK1 K ðmK1Þ

Cake fouling A layer of rejected particles builds up

on the membrane surface

providing an extra resistance

RifZ0 and

RcO0

nZ0; J Z ðJK2
0 CKtÞK0:5 K ðsmK2Þ
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above a certain TMP. In the gel model, it is assumed that after the concentration at the surface

increases above a certain level, the rejected species will precipitate and form a gel layer at the

surface. The concentration of this gel, Cg, is fixed, and any further increase in TMP only results in a

thickening of the gel layer; therefore, the flux remains constant. The formation of a gel layer is a

fouling phenomenon; however, the gel model stems from a modification of the concentration-

polarization equation. Here, the gel model is given for a membrane with total rejection:

J Z k ln
Cg

CB

� �
: (5.31)

The only factor now affecting the process is the mass-transfer coefficient. Improvement of the mass-

transfer coefficient thins the gel layer and increases the flux. The mass-transfer coefficient can be

determined using correlations or determined experimentally.

As a predictive tool in MF and UF, fouling models must be treated with care. Preliminary

experiments must be performed to determine the dominant fouling mechanism and to allow

determination of model parameters. Given the very complex nature of membrane fouling, the

parameters determined in small-scale preliminary trials frequently do not scale-up well to industrial

plants. An illustration of the complexity of fouling is provided by processes such as MF of solutions

containing proteins. One such process is the separation of cell debris from a fermentation broth. The

goal is to retain the cell debris while allowing the proteins or other products to pass with the

permeate. In spite of native proteins being much smaller than the pores of MF membranes, they

can cause very severe fouling. The fouling mode is found to change from internal to external over

time. Thus, a model must be derived that incorporates both modes of fouling. Dead-end MF of

proteins has been extensively modelled.15,19 The models are complex, but a physical meaning can

still be ascribed to many of the parameters.
5.2.3.1 Food and Bioprocess Examples

Chiang and Cheryan20 used a modified form of the gel model to predict the steady-state

permeate flux for the UF in hollow fibers. They accounted for the increase in diffusivity with

feed concentration using a linear relationship:

D Z D0ð1 C4CÞ; (5.32)

where D0 is the reference diffusivity (m2 sK1) and 4 is an empirical constant with units dependant

on those used for concentration. With this concentration dependence, the film mass-transfer

equation is integrated and combined with a dimensionless correlation. Assuming the Schmidt
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number to exhibit a one-third power dependence, the following relationship was established:

J Z 0:087
D0ð1 C0:157CÞ

d
Re0:64Sc0:33 ln

CG

CB

K0:157ðCG KCBÞ

� �
: (5.33)

Both the lead coefficient and power dependence of Reynolds number are significantly different

from the Leveque solution (Equation 5.15).

De Bruijn and Borquez21 analysed the fouling mechanisms for apple juice filtration through a

ceramic UF membrane using a combination of the fouling laws proposed by Hermia18 and Field

et al.6 A characteristic relationship between total permeate volume and time was determined and

parameters were fitted using experimental data. Both cake formation and internal pore blocking

were found to contribute significantly to the fouling.

Bhattacharya et al.22 used a two-stage model for the flux decline in the UF of limed sugarcane

juice in stirred-cell experiments. Initially, an osmotic-pressure model was used to describe the rapid

fouling in the early stages. This initial period of fouling lasted only a few seconds. The more

significant long-term fouling was modelled using Darcy’s law (Equation 5.25) with the decreasing

flux attributed to a growing polarization layer. An empirical equation is fitted to the data to give the

variation of the resistance of the polarized layer.
5.2.3.2 Worked Example

Question: UF of a macromolecule was undertaken using a single tubular membrane, which is

assumed to have 100% rejection. Operation is at high TMP and the permeation rate through the

membrane is found to be independent of the TMP. Using the gel model, estimate the concentration of

the gel layer, given that the measured permeation rate (F) through the membrane is 22 ml minK1?

Operational Data:

Membrane Diameter (d): 12.5 mm

Membrane Length (L): 1.9 m

Feed Flowrate (Q): 1.75 L minK1

Feed Concentration (CB): 0.6 wt%

Feed Kinematic Viscosity (n): 1!10K6 m2 sK1

Macromolecule Diffusivity (D): 8!10K11 m2 sK1

Solution: The gel model was used, given by Equation 5.31:

J Z k ln
Cg

CB

� �
:

The model contains four variables; the feed concentration, CB, is given. To find the gel concen-

tration, Cg; the flux, J, and mass-transfer coefficient, k, must be determined.

The flux is defined as the permeation rate per unit area of membrane. For use in the model, the

flux must be in the same units as the mass-transfer coefficient. Here, the SI units of m sK1 are used.

Conversion to SI units: FZ22 m L minK1Z3.67!10K7 m sK1.

The flux is given by

J Z
F

p dL
Z

3:67!10K7

0:0746
Z 4:91!10K6 m sK1:

The mass-transfer coefficient must be found from a correlation. To choose the appropriate

correlation, one must determine if the flow is laminar or turbulent. This is found from the
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Reynolds number. To find Reynolds number, the crossflow velocity must be calculated from the

feed flowrate.

Conversion to SI units: QZ1.75 L minK1Z2.92!10K5 m3 sK1.

The crossflow velocity is determined by:

U Z
Q

ð1=4Þpd2
Z

2:92!10K5

1:23!10K4
Z 0:238 m sK1:

The Reynolds number is

Re Z
Ud

n
Z

0:238!0:0125

1!10K6
Z 2950:

The Reynolds number is greater than 2000. Therefore, flow is considered turbulent and the Dittus–

Boelter correlation for the Sherwood number will be used (Equation 5.19):

Sh Z 0:023 Re0:8Sc0:33:

The Schimdt number is:

Sc Z
n

D
Z

1!10K6

8!10K11
Z 12; 500:

The Dittus–Boelter correlation is:

Sh Z
kd

D
Z 0:023!29500:8 !12; 5000:33 Z 320:

From the Sherwood number, the mass-transfer coefficient can be determined by:

k Z
ShD

d
Z

320!8!10K11

0:0125
Z 2:05!10K6 m sK1:

Rearranging the gel model yields:

Cg Z Cfe
J=k Z 0:6!e4:91!10K6=2:05!10K5

Z 6:59 wt%:
5.2.4 Force Balance Models

Force based models are most readily applicable to MF because they require a particle or well-

defined entity on which all of the acting forces can be assessed. In general, this is a particle that is

either present in the fluid or deposited on the membrane. For particles in the fluid, the only two

forces that tend to be of significance are the drag towards the membrane caused by the convective

flux of solvent, and a lift force away from the membrane. The forces acting upon a deposited

particle include: drag, friction, and electrostatic forces. Depending upon the likely release

mechanism for the deposited particle, either a force or a torque balance may be used.

An early example of a force-based model for a particle in the flow was inertial lift.8 Inertial lift

occurs because of nonlinear interactions between particles and the surrounding flow. Inertial lift

becomes important if the Reynolds number (based on particle diameter) is large enough to cause the

nonlinear inertia terms in the Navier–Stokes equation to be significant. At steady state, the inertial

lift velocity is expected to balance the permeation velocity. Drew, Schonberg, and Belfort23
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proposed the following expression for fast laminar flow with a thin fouling layer:

J Z 0:036
r

m

� �
_g2

wd3
p : (5.34)

The solution density, r, viscosity, m, wall shear rate, g, and particle diameter, dp, have the usual

units. Models that balance the forces on a deposited particle are more common. These models often

incorporate a term to calculate the resistance of the cake formed by deposited particles and there-

fore involve components from fouling models. Altmann and Ripperger24 balanced the drag force of

the permeate flow, the drag force of the crossflow, the lift force, and the frictional force on a single

particle resting on the membrane. As more particles were deposited, the resistance of the cake layer

was estimated using the Carman–Kozeny equation. This produced a series of equations that could

be solved to give the permeate flux and cake layer height.

Alternatively, a torque balance may be taken about the centre of a deposited particle to

determine whether the particles will roll along the membrane or cake surface. This subset of

force based models are known as surface transport models. Sherwood25 considered the drag and

contact forces on a sphere deposited at the top of the cake. Taking a torque balance at the point of

contact, the permeate flux was predicted to be:

J Z 2:4dp _gwðd
2
pR̂cÞ

2=5cot q; (5.35)

where cot q is a parameter that depends on the surface morphology (K) and R̂c is the resistance per

unit depth of the cake (mK2).

Although force based models are frequently encountered in MF, they are rarely used in food and

bioprocess applications because of the complex nature of the feeds. Although useful for deter-

mining the deposition of micron-sized particles, when dealing with complex feeds, the fouling of

macromolecules, rather than particulate deposition, may control the steady-state flux.
5.2.5 Membrane Models

Intrinsic membrane property models are available for all of the four major membrane processes.

The Karman–Cozney and Hagen–Poiseuille models can be used to predict the membrane resist-

ance, Rm, of clean MF and UF membranes.1 However, because MF processes are usually dominated

by fouling, these models are of little practical use.

In NF and RO, when the rejection of a species is to be a determined, intrinsic membrane property

models become important. The three major starting points for modelling the membrane are

solution-diffusion, irreversible thermodynamics, or the extended Nerst–Plank equation. The simplest

and most common model is solution-diffusion:1

Solvent flux : J Z LpðTMPKDpÞ; (5.36)

Solute flux : Js Z BðCB KCPÞ; (5.37)

where Lp (m sK1 PaK1) and B (m4 kgK1 sK1) are the water and solute permeability coefficients

respectively and characterise the membrane:

Lp Z
DwcwVw

RTDx
; (5.38)

B Z
DsKs

Dx
; (5.39)
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where Ds and Dw are the diffusivities of the solute and water, respectively, in the membrane (m2 sK1),

cw is the concentration of water (mol LK1), Vw is the partial molar volume of water (L molK1) and

Ks is the distribution of the solute in the membrane (K). The flux is inversely proportional to the

thickness of the active separation layer of the membrane (Dx); this emphasises the need to minimize

membrane thickness. Both Lp or B must be determined experimentally.

More complex models use the extended Nerst–Plank equation26 to predict the flux of individual

solute components, ji, through the membrane given that the solvent flux, J, is known:

ji ZKDip

dci

dx
K

ziciDip

RT
F

dj

dx
CKicciJ: (5.40)

The relationship is very complex and depends on the hindered diffusivity of a species, Dip, valence

of the ion, zi, the hinderance factor for convection, Kic, and the electrical potential, j. Many models

use the above equation as a starting point, particularly for NF. Modifications have been made to

account for electrostatic effects,27 steric hindrance,28 and the log mean pore size distribution of the

membrane.29 The resulting sets of equations must be solved numerically.

A commonly used model based on irreversible thermodynamics with a greater number of

parameters than solution diffusion is the Spiegler–Kedem model.30 The working equations of

this model are:

J Z LpðTMPKsDpÞ; (5.41)

R0 Z 1K
CP

Cw

Z
sð1KFÞ

ð1KsFÞ
; (5.42)

where

F Z exp
KJð1KsÞ

Pm

� �
: (5.43)

R is the true rejection of the membrane (K), s is the reflection coefficient (K), and Pm is the

overall permeability coefficient (s mK1). A reflection coefficient of 1 indicates total solute rejec-

tion, whereas a coefficient of zero indicates zero rejection. Again, numerous modifications

have been made to this equation to improve the accuracy of prediction under specific

operating conditions.

Both the solution-diffusion and Spiegler–Kedem models are often combined with the film mass-

transfer model to allow estimation of model parameters from observed rejection and solvent flux

data:31

Solution-diffusion :
R0

1KR0

Z
J

B

� �
exp

KJ

k

� �
; (5.44)

Spiegler–Kedem :
R0

1KR0

Z
sð1KFÞ

1Ks

� �
exp

KJ

k

� �
: (5.45)

5.2.5.1 Food and Bioprocess Examples

NF has the potential to simultaneously concentrate and demineralize whey products in the dairy

industry. Van der Horst et al.32 described the NF of whey UF permeate, a complex multicomponent

mixture using a three-transport-parameter extended Nernst–Plank equation. To accomplish this, the
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Nernst–Plank equation was combined with the film mass-transfer equation, in which the mass-

transfer coefficient was calculated from an empirical correlation.

Alvarez et al.33 used a solution-diffusion model combined with the film mass-transfer equation

to determine the flux of apple juice through polyamide RO membranes under different operating

conditions. Apple juice was considered to behave as a mixture of sucrose, glucose, and malic acid.

The physical properties of apple juice were rigorously modelled. Total rejection was assumed. The

equations to be solved are:

J Z LpðTMPKDpÞ; (5.46)

Cmi Z Cbiexp
J

ki

� �
: (5.47)

The membrane permeability, Lp, and the variation of osmotic pressure, Dp, with the concentration

of the species in the apple juice were experimentally determined. The mass-transfer coefficient, k,

was determined using a correlation similar to Dittus–Boelter for turbulent flow in a pipe. The model

was in good agreement with experimental data.
5.3 CASE STUDY

5.3.1 Introduction

This case study will address the detailed modelling of the hydrodynamics of a membrane

process enhanced by two-phase gas/liquid flow using computational fluid dynamics. The volume

of fluid (VOF) method is used to calculate bubble shape, the velocity and the pressure fields, as well

as the wall shear rate. This hydrodynamic information is then combined with a mass-transfer model

to predict permeate flux. The osmotic-pressure model is then used to predict the permeate flux in UF

of dextran. The modelling of the system hydrodynamics is performed rigorously, with the only

major constraint on this section of the model being that the permeate flux is small compared to the

bulk crossflow. Therefore, the hydrodynamics section of the model is suitable for use with most

membrane process.

In this case study, the particularly complex problem of two-phase flow modelling, often termed

gas sparging in membrane applications, is addressed. However the modelling principles are equally

applicable to other complex module geometries or flow scenarios. A major possible application of

the model is prediction of the critical flux—the point at which fouling first occurs in applications

featuring with complex geometries or flows.

When used species such as dextran, the model is particularly useful for maximizing the hydro-

dynamic benefits of enhancement techniques such as gas sparging or spiral inserts. The steady-state

flux in the UF of dextran, when operated under constant TMP, is controlled by concentration

polarization. To improve performance in such a system, the mass-transfer coefficient must be

increased. Conventionally, this is done by increasing the crossflow velocity in the module,

which increases wall shear stress and therefore increases mass-transfer coefficient. However, this

approach can be energy intensive because of the high pumping costs incurred. One method of

increasing the mass-transfer coefficient without using high crossflow velocities is gas sparging. A

gas, usually air, is injected into the feed stream just before the module and forms bubbles. As the

bubbles move thorough the module, they cause high wall shear stresses that change rapidly in both

magnitude and direction. This results in a higher overall wall shear, excellent mixing, and therefore

an improved mass-transfer coefficient. However, the modelling of the wall shear stress in this

process is challenging, requiring the use of computational fluid dynamics due to the unsteady

nature of the flow. The Leveque mass-transfer equation is then used in conjunction with the

osmotic-pressure model to predict the steady-state permeate flux. As an example, the predicted
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and experimental permeate fluxes are compared for the gas-sparged UF of 238 kDa

dextran solutions.
5.3.2 Ultrafiltration and Enhancement

Any technique that thins or disturbs the mass-transfer layer on the transfer surface, and which

promotes cross-stream mixing, is likely to combat concentration polarization and enhance the

mass-transfer coefficient, thereby enhancing the permeate flux. Belfort34 described a number of

improved hydrodynamic enhancement techniques to ameliorate concentration polarization and to

augment the permeate flux, (e.g., inserts in the flow channel, corrugated membranes, rotating blade,

Taylor vortices, Dean vortices, and pulsatile flows). The introduction of gas/liquid two-phase flow

has been shown to be an effective technique to ameliorate the concentration polarization by thin-

ning or disturbing the mass-transfer boundary layer.35

Gas sparging, i.e., injecting air bubbles into the liquid feed to generate a two-phase flow stream,

has been investigated for nearly a decade.36 Pioneering work dates back to the first implementation

of such a technique for UF by Cui in 1993. When gas and liquid flow together in a tube, a slug flow

pattern often exists. Such a flow pattern is characterised by a quasiperiodic passage of long round-

nosed bubbles—usually referred to as “Taylor bubbles,” or “slugs”—separated by liquid plugs. In

particular, for UF, it was found that the gas flow rate required to effect substantial improvements in

permeate flux is very small. Furthermore, the liquid crossflow velocity has little effect on the

permeate flux in gas-sparged UF. These two aspects of the technique mean there exists the possi-

bility of significant savings on energy costs.37 Therefore, it not surprising that numerous works have

been dedicated to studying the development of the concentration polarization and techniques to

lessen such a phenomenon. In their succinct paper, Kleinstreuer and Belford38 reviewed early

works on approximate one- and two-dimensional models. In the 1990s, computational fluid

dynamics (CFD) became an attractive tool for researchers to simulate pressure driven membrane

processes. The adoption of CFD revealed a detailed picture of the process and proved helpful in

optimizing filtration processes.
5.3.3 Model Development

For a full computational solution in UF problems, momentum and concentration equations must

be simultaneously solved to give the velocity and concentration fields within the module. However,

in all but the simplest geometries,39,40 this requires prohibitive computing power. Therefore,

approximations are made. To avoid solution of the momentum equation, a velocity profile may

be assumed and only the concentration equations must be solved. Both finite element41 and finite

difference methods42 have been used to perform this solution. Alternatively, the momentum

equations may be solved to find the wall shear stress for a nonporous module; then, the flux is

then predicted using a standard membrane model, align as if the simulation had been carried out for

a porous module. This is the approach taken here.

The first part of the model uses the computational fluid dynamics package FLUENT (release

5.4.8, 1998) to simulate the motion of a single bubble rising in a flowing liquid. In FLUENT, the

control volume method—sometimes referred to as the finite volume method—is used to discretize

the transport equations. The movement of the gas–liquid interface is tracked based on the distri-

bution of aG, the volume fraction of gas in a computational cell, where aGZ0 in the liquid phase

and aGZ1 in the gas phase. Therefore, the gas–liquid interface exists in the cell where aG lies

between 0 and 1. A geometric reconstruction scheme that is based on the piece linear interface

calculation (PLIC) method43 is applied to reconstruct the bubble-free surface. The surface tension is

approximated by the continuum-surface-force model of Brackbill, Kothe, and Zemach.44 Turbu-

lence is introduced by the renormalization-group-based k-epsilon zonal model. The bubble shape,
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velocity fields, pressure fields, and the wall shear rate around a single bubble in a membrane module

with nonporous walls can be calculated.

The governing transport and volume fraction equations to be solved are:

1. The continuity equation:

v

vt
ðrÞCVðrðvÞZ 0: (5.48)

2. The momentum equation: A single momentum equation is solved throughout the domain,

and the resulting velocity field is shared among the liquid and gas phases. The momentum

equation, shown below, is dependent upon the volume fractions of all phases through the proper-

ties r and m:

v

vt
ðrðvÞCVðrðvðvÞZKVp CV½mðVðv CVðvTÞ�Crðg C ðF : (5.49)

3. The volume fraction equation: The tracking of the interface between the gas and liquid is

accomplished by the solution of a continuity equation for the volume fraction of gas:45

v

vt
ðFGÞC ðv$VFG Z 0: (5.50)

One could solve a similar equation for the volume fraction of liquid, FL, but instead FL is given

from Equation 5.48 by the constraint:

FG CFL Z 1: (5.51)

The physical properties of either liquid or gas are used in the transport equations when the

computational cell contains a single phase. When there is an interface between the gas and

liquid phases, the volume-fraction-weighted average is used to estimate the physical properties.

r Z FGrG C ð1KFGÞrL; (5.52)

m Z FGmG C ð1KFGÞmL: (5.53)

To simplify the model geometry, the bubble is considered axisymmetric; thus, a two-dimensional

coordinate system about the centreline of the pipe is used. The length of the domain is 11Dt,

where Dt is the tube diameter. The grids used to generate the numerical results throughout this

chapter are either uniform grids containing quadrilateral control elements/volumes, or uniform

grids with extra refinement near the walls.

In Figure 5.1, the boundary conditions and the initial bubble shape used in the simulation are

displayed. For a large tube simulation, the initial bubble shape consists of one hemisphere

connected to a cylinder of the same radius. If other shapes were used (e.g., only a cylinder), the

final shape of the bubble was similar, except that the convergence is slower. The initial guess for the

film thickness and the bubble rise velocity are calculated using simple mass balance. No difference

in the final results is discerned if a bad initial guess is adopted. The no-slip wall condition is applied

to the walls. The fluid mass flux at the inlet is specified using a profile for a fully developed flow

through a pipe. The governing equations are solved for a domain surrounding a Taylor bubble in a

frame of reference attached to the rising Taylor bubble. With these coordinates, the bubble becomes

stationary and the pipe wall moves with a velocity Uwall, equal to that of the Taylor bubble rise

velocity, UTB. The liquid is fed at the inlet with a velocity Uinlet, which is equal to UTB–USL. A fully

developed velocity profile is imposed at the inlet and the relative movement between the liquid and

the wall generates a velocity profile shown in Figure 5.1. The value of UTB is adjusted after the

initial guess until the nose of the bubble ceases to move in the axial direction.
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Figure 5.1 Taylor bubble rising in a vertical pipe in a moving coordinate moving with the bubble.
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The local shear stress is evaluated from the CFD simulation and its absolute value is then

averaged over the length of the membrane module. The average mass-transfer coefficient can then

be estimated from the Leveque solution:

k Z 1:62
gwD2

L

� �0:33

: (5.54)

It should be pointed out that this equation was developed under steady shear rate46 and is valid for

laminar flow (main restriction Re!2000).

The equations of the osmotic-pressure model (Equation 5.8 and Equation 5.9)

J Z
TMPKDp

mRm

;
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J Z k ln
Cw

CB

� �
;

can then be solved in combination with the appropriate osmotic-pressure function to give the

permeate flux and the concentration at the membrane. For 283 kDa dextran:

log Dp Z 0:1872 C3:343C0:3048
w : (5.55)

The above correlations are based on steady-state UF with negligible fouling. In UF of a macromolecule

such as dextran, the value of Rf is expected to be negligible in comparison to Rm and may therefore be

neglected.47 The nature of the above model does not restrict itself to dilute solutions. In some cases,

however, Rf is negligibly low if the solutions are dilute, but not so if they are concentrated.
5.3.4 Hydrodynamics of Gas-Sparged UF

In vertical pipes, Taylor bubbles are axisymmetric and have round noses, whereas the tail is

generally assumed to be nearly flat (Figure 5.2). The Taylor bubble occupies most of the cross-

sectional area of the tube. When the bubble rises through a moving liquid, the liquid that is flowing

ahead of the nose of the bubble is picked up and displaced as a liquid film; it begins to flow

downwards in the annular space between the tube wall and the bubble surface. Alongside the

bubble, the liquid film accelerates until it reaches its terminal velocity under the condition of a

long enough bubble. At the rear of the bubble, the liquid film plunges into the liquid plug behind the
Liquid film

Taylor bubble

Wake

Figure 5.2 (See color insert following page 178.) Numerical simulation of a Taylor bubble rising through glycerine
in a vertical tube.
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bubble as a circular wall jet and produces a highly agitated mixing zone in the bubble wake. This

highly agitated zone is believed to be responsible for disturbing the mass-transfer boundary layer.

This mixing zone sometimes contains a dense cloud of dispersed bubbles that have been sheared off

the tail of the Taylor bubble by the annular jet.

Figure 5.3 shows the wall shear stress around a slug unit (Taylor bubbleCliquid plug) together

with the liquid film thickness. The wall shear stress sign changes twice in a slug unit. The first

change occurs near the nose of the Taylor bubble and the second occurs near the top of the liquid

plug. The negative shear stress, indicating upflow, exists over the liquid plug ahead of the bubble

and persists beyond the nose of the Taylor bubble, before becoming positive as the downflow is

established in the liquid film around the bubble. The inverse transition from the downward film to

an upward one in the liquid plug is of a burst-like type. The brief fluctuations of the wall shear stress

in the film region correspond to the wavy nature of the bubble surface. Near the slug tail, the wall

shear stress starts to fluctuate. The above features were observed experimentally.48
5.3.5 Effect of Operating Conditions on Permeate Flux

Any model must be able to correctly predict the effects of changing any of the main operating

parameters. In general, for membrane processes, the applied TMP and crossflow velocity are

important factors. Given the complex hydrodynamics of gas-sparged UF, the usual single important

factor of crossflow velocity is replaced by a family of factors, including bubble volume, bubbling

frequency, and liquid flow rate.

Sur49 investigated the effects of TMP. The variation of permeate flux with the TMP is shown

in Figure 5.4. Experiments were performed for UF of industrial-grade dextran exhibiting an

average molecular weight of 283 kDa using a tubular PVDF membrane having a molecular

cutoff of 100 kDa. The length of the tubular membrane was 1.18 m and the diameter was

12.7 mm. The slug frequency was controlled using a solenoid valve and set to 1.0 Hz. It can

be seen that at a fixed liquid flow rate the permeate flux increases with TMP. The CFD predicted

values clearly capture the same trend. The predicted values underestimate the experimental values

as the model does not consider the transient nature of the shear stress around the bubble. The

model has also been successfully applied to predict the effects of liquid velocity, bubble volume,

and bubbling frequency.50
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5.3.6 Case-Study Conclusions

The concept of bubbling, or gas sparging, to enhance surface mass-transfer can be very

effectively applied to UF membrane processes. The bubble effect is typically achieved at rela-

tively low gas rates. The flux enhancement is most significant when nonsparged operation is

dominated by concentration polarization (or, in other words, where high boundary-layer resist-

ance occurs), such as at low liquid flow rates, higher solute/particle concentrations, and higher

operating pressures.

Computational fluid dynamics has successfully been used to model gas-sparged UF. To validate

the model, experimental data reported in the literature over a wide range of gas and liquid

velocities, slug frequencies, transmembrane pressures, and flow directions, are compared with

the CFD predictions. Good agreement was obtained between theory and experiment.

Gas sparging is a common enhancement technique for membrane processes in the water

industry and is frequently used with membrane bioreactors. In this application, there exists the

added benefit that the bioreactor must be aerated anyway to provide oxygen for the microbial

species. Therefore, sparging of the membranes can be achieved without incurring significant

additional capital or operating costs. The detailed model presented here maybe used as a tool to

optimise the sparging parameters or predict critical fluxes in this important application.
5.4 CONCLUDING REMARKS

Pressure-driven membrane processes have achieved penetration into the food and bioprocess

industries. The commonly encountered processes are microfiltration for the separation of micron-

sized species, ultrafiltration for the separation of macromolecules, and nanofiltration and reverse

osmosis for the separation of low-molecular-weight solutes. Accurate modelling of these processes

is essential to allow reliable and robust process designed. The aim of a membrane process model is

to predict either the steady-state permeate flux or the rejection of one or more species. The appro-

priate modelling strategy depends upon the process.

Microfiltration and ultrafiltration operate on a size-exclusion principle. Fouling and concen-

tration polarization in these processes can be severe and these phenomena have resulted in the
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development of many models. Although concentration polarization is not a significant problem in

MF applications, the film mass-transfer equation has still been applied. The replacement of the

Brownian diffusion coefficient with the shear-induced diffusion coefficient has allowed modelling

of MF processes. In UF, the film mass-transfer equation is principally used as part of either the gel

model or the osmotic-pressure model.

If fouling is the major factor determining the permeate flux and transmission, then Hermia’s

unified filtration law or one of its derivatives is usually chosen. Hermia’s law incorporates the four

major fouling mechanisms in MF and UF: complete pore blocking, standard blocking, intermediate

fouling, and cake layer fouling. If a fouling model is used, it is normally necessary to conduct

preliminary experiments to determine parameters in the model.

In nanofiltration and reverse osmosis, the intrinsic properties of the membrane play a major role

in determining the separation. For these processes, modeling of the membrane is often combined

with the film mass-transfer equation to predict rejection, given that the solvent flux is known. The

major models in this area are based on solution-diffusion, irreversible thermodynamics, or the

extended Nerst–Plank equation.

Concentration polarization models, in particular the film mass-transfer equation, are widely

used. For prediction of the permeate flux, a mass-transfer coefficient must be determined. This

is usually achieved through the use of empirical correlations derived for heat transfer in

nonmembrane systems. A range of empirical correlations for both turbulent and laminar con-

ditions are available. Alternatively, the mass-transfer coefficient may be experimentally

measured. For MF and UF processes, this is achieved by performing experiments at a range

of bulk concentrations and taking the gradient from flux vs. natural log of concentration data. In

NF and RO, observed rejection vs. flux data is often used to estimate the mass-transfer

coefficient. Table 5.2 summarizes a number of food and bioprocess applications of mass-

transfer modeling.

The models presented in this chapter may generally be considered to be of the first order of

complexity. Many models are presented in the literature that use the models presented here and

build upon them further. For example, the film mass-transfer equation is only a one-dimensional

solution for the concentration-polarization layer; the model consequently ignores any effects of

axial diffusion. More complex two-dimensional models which account for axial effects have been

reported in literature (ref 51), however the simple one-dimensional film mass-transfer model is still

widely used.51 .

A particular problem that arises in the food and bioprocess industries is the complexity of the

feed solution. When a fouling model is used, the model parameters determined in preliminary

experiments are very specific to one process and one feed stream. Consequently, great caution

must be taken if parameters developed for one feed are applied to a different feed, even if the

second feed appears similar in nature. For example, a cake-layer model is often used to describe

the MF of yeast suspensions where the pores of the membrane are much smaller than the size of

the yeast cells. The important parameter is the specific cake resistance of the cake of yeast cells.

However, depending upon operating conditions and the exact properties of the yeast suspensions,

this may vary by almost two orders of magnitude. Also, the majority of models for membrane

processes are developed in the academic field. Thus, the literature contains many examples of

typical values for model parameters obtained using small-scale equipment and model feeds.

However, far fewer values are published for actual industrial plants that operate on real

feed streams.

Membrane processes have been used industrially for half a century and the majority of physical

phenomena connected with the processes are understood. This has lead to a wide range of models

for all types of membrane processes. With large computational power now available, models will

become increasingly complex as the previous restrictions on what equations can readily be solved

are removed.
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Table 5.2 Summary of Modeling of Pressure-Driven Membrane Processes in the Food and Bioprocess Industries

Author Feed Membrane Model Operating Conditions Key Assumptions Key Findings

Constenia and Lozano Apple juice UF Gel model Concentration Total rejection Solution similar to

Leveque but with a

smaller lead

co-efficient

Hollow fibre

polysulphone

MWCO 50 kDa

Crossflow Pseudoplastic nature of

apple juice

incorporated

De Bruijn and Borquez Apple juice UF Fouling Constant concentration Total rejection Fouling due to both

internal pore blocking

and cake formation

Tubular ceramic

MWCO 50 kDa

Crossflow

Alvarez et al. Apple juice RO Solution diffusion and

concentration

polarization

Concentration Total rejection Good agreement

between model and

experimental data

Tubular

polyamide 99%

NaCl rejection

Constant concentration

Crossflow

Variation of density,

viscosity and

diffusivity with

temperature and

concentration

incorporated

Clarke and Heath52 Skimmed milk UF Modified concentration

polarization

Constant concentration Total rejection Using data from the flat

sheet system, the

flux in a spiral-wound

module could be well

predicted

Flat sheet and

spiral-wound

polysulphone

MWCO 5 kDa

Crossflow Variation of diffusivity

with concentration

incorporated

Van der Horst et al. UF whey

permeate

NF tubular

polyamide and

cellulose

acetate

Extended Nernst–Plank

and concentration

polarization

Constant concentration

Crossflow

Feed can be modelled

as a 3 component

system

Model well described

experimental results

Bhattacharya et al. Limed sugar cane

juice

UF

Flat sheet

cellulosic

MWCO 10, 15,

20 kDa

Osmotic pressure and

fouling

Stirred cell Empirical relationship

for polarization layer

Model maybe of use

with full scale plant
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GLOSSARY
Concentration polarization The increase in the concentration of a species at the membrane due

to rejection of that species by the membrane.

Diffusivity Mobility of a solute in a solvent due to diffusion.

Direct osmotic concentration (DOC) Membrane process using chemical potential as a

driving force.

Flux The amount of liquid permeating through the membrane per unit area per unit time.

Fouling Phenomena in which the membrane interacts with or adsorbs feed components resulting

in a temporary or permanent decline in the flux.

Mass-transfer coefficient A measure of the mobility of a solute due to either natural or forced

convection in a system. In the concentration-polarization equation is the ratio of solute

diffusivity to polarization layer thickness.

Membrane Semipermeable barrier.

Microfiltration (MF) Membranes with pore sizes ranging from 0.1 to 10 mm. Used for size-

exclusion-based separation of micron-sized particles.

Molecular-weight cutoff (MWCO) Defined as the molecular weight of species for which the

transmission is below 5%; frequently used to classify ultrafiltration membranes.

Nanofiltration (NF) Membranes with high rejection of bivalent ions, but low rejection of mono-

valent ions. Used for separation of low-molecular-weight solutes.

Osmotic pressure Pressure arising from the difference in chemical potential across a

semipermeable barrier.

Permeate That which has passed through the membrane.

Reverse osmosis (RO) Membranes with high rejection of both monovalent and bivalent ions.

Used for separation of low-molecular-weight solutes.

Transmembrane pressure (TMP) The pressure applied across the membrane between the feed

and permeate sides, this is the driving force for permeation.

Ultrafiltration (UF) Membranes with molecular weight cutoff of between 1 and 300 kDa. Used

for size-exclusion-based separation of macromolecules.
NOMENCLATURE
a Constants for osmotic pressure, Equation 5.10 (variable units)

A Membrane area (m2)

B Constant in the solution-diffusion equation (m4 kgK1 sK1)

CB Bulk concentration of solute (kg mK3)

Cg Gel concentration of solute (kg mK3)

CP Permeate concentration of solute (kg mK3)

Cw Wall concentration of solute (kg mK3)

cw Solvent concentration (mol LK1)

cot q Constant describing surface morphology, Equation 5.35

d Diameter of tubular membrane (m)

dp Particle diameter (m)

D Diffusion coefficient (m2 sK1)

Dip Hindered diffusion coefficient (m2 sK1)

Ds Solute diffusivity in the membrane (m2 sK1)

Dw Solvent diffusivity in the membrane (m2 sK1)

F Farday constant, Equation 5.40 (CmolK1)

F Constant in Equation 5.42 and Equation 5.43
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ðF External body forces (N)

FG Volume fraction of the gas phase in the computational cell

FL Volume fraction of the liquid phase in the computational cell

J Permeate flux (m3 mK2 sK1)

J0 Permeate flux at tZ0 (m3 mK2 sK1)

Js Solute permeate flux (m3 mK2 sK1)

J* Critical flux (m3 mK2 sK1)

k Mass-transfer coefficient (msK1)

K Constant in Hermia’s unified fouling law (variable)

K0 Kozney coefficient

Kic Hinderance factor for convection

Ks Distribution coefficient of solute in membrane

L Length of the tubular membrane (m)

Lp Water permeability (m sK1 PaK1)

M Mass of cake deposited per unit area (kg mK3)

n Constant in Hermia’s unified fouling law or constant power law

Pm Overall permeability coefficient (m sK1)

R Gas constant (JmolK1 KK1)

Ro Observed rejection

Rc Cake layer resistance (mK1)

R̂c Specific cake resistance per unit depth (mK2)

Rm Membrane resistance (mK1)

Rmo Membrane resistance at tZ0 (mK1)

Re Reynolds number

s Cake compressibility

Sa Sieving coefficient

Sc Schmidt number

Sh Sherwood number

T Temperature (K)

t Time (s)

U Crossflow velocity (m sK1)

V Permeate volume collected at time t (m3)

Vw Partial molar volume of solvent (mol LK1)

ðn Velocity vector (m sK1)

x Axial coordinate (m)

y Perpendicular coordinate (m)

zi Valence of ion

TMP Transmembrane pressure (Pa)

Dp Osmotic pressure difference (Pa)

Dx Thickness of the active membrane layer (m)

Greek symbols

a Specific cake resistance (m kgK1)

a0 Specific cake resistance under zero applied pressure (m kgK1)

3 Porosity

gw Wall shear rate (sK1)

d Thickness of concentration-polarization layer (m)

m Solution viscosity (Pas)

mo Consistency coefficient (Pas)

r Solution density (kg mK3)

rc Density of species deposited in the cake (kg mK3)
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t Tortuosity, Equation 5.29

s Reflection coefficient

4 Constant (m3 gK1)

fB Particle volume fraction in the bulk

fw Particle volume fraction at the wall

j Electric potential (V)
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6.1 INTRODUCTION

Transporting energy and mass across interfaces is of crucial importance in food processing. In

many ways, food processing is about preserving, creating, or manipulating food structures. Food

microstructures may be created through crystallisation, emulsification, gelatinisation, foaming, and

mixing. Additionally, sheeting, extrusion, and moulding are typical ways of making micro-

structures as well as macrostructures. These microstructures can affect how water is transported

within the structures. As a result, drying also may create a food structure. The nature of the

molecules, e.g., polymer or not, or sheared or not, also impacts on the physical changes such as

local shrinkage during drying, which in turn impacts on drying rate. Drying and product interactions

are very complicated to model mathematically.

Food processing involves transfer of species and chemical reactions, which is therefore

temperature dependent. Sometimes heat is required to be distributed evenly throughout the products

to make their quality uniform. Other times, heat may need to be more intense inside a product (for a

thorough cook of the material encapsulated) or to be more focused at the exterior surface (for a crust

to form for instance). Heating has a profound influence on drying rate.

Species exchanges at pore or cell levels occur, thus controlling mass transfer process. The mass

transport properties are strongly temperature dependent, which are affected more acutely at the mol-

ecular level. Across the structure or composition boundaries, mass transfer rate is altered either due to

the microscale alignments of the structure component or the macroscale fluid flow conditions. Fluid

flow definitely affects heat transfer to the extent termed as the convective heat transfer.

Manipulating heat transfer operation is often easier than manipulating mass transfer operations.

When evaporation or condensation occurs, mass transfer, to a large degree, is coupled with heat

transfer. Simple analogies based on the mathematical models of heat transfer are sometimes not

accurate for analyzing evaporative mass transfer such as air-drying.

In the chapter by Datta,1 the physics-based mathematical models of heat transfer have been

described. In that chapter, the detailed partial differential Default (PDEs) governing the heat and

mass transport processes also have been provided. These fundamental equations can be resolved to

cover the wide range of heat transfer problems, e.g., heat conduction (wherever there is a tempera-

ture gradient), heat convection (cooling with air or water), and heat radiation (which do not involve

phase change). With the exception of freezing (which does involve phase changes), the following

processes have not been included: condensation (e.g., retorting using steam condensation), boiling

(e.g., frying and other boiling style cooking), solidification including crystallisation (e.g., freezing

ice bars and moulding chocolate), melting (e.g., thawing of meat), evaporation (e.g., falling film

evaporation of milk), and steaming (e.g., softening wheat grains or making the steam buns).

The more volumetric ways of imposing heat into food materials are ohmic (or Joule) heating,

radio-frequency (RF) heating, and microwave heating. These processes can “penetrate” the

products better, and depending on the energy sorption properties of the food constituents, hot

spots can arise, which may not be advantageous. In the same chapter by Datta,1 the relevant

equations for the heat transfer aspects of the above problems have been detailed. These processes

involve molecular diffusion and convective mass transfer as well. The processes that have not been

detailed are: infrared heating, membrane separation, absorption and ion exchange, etc.

In food processing, simultaneous heat and mass transfer operations and, sometimes, chemical

reactions are involved. In the current chapter, the mass transfer, simultaneous heat and mass

transfer problems in particular, have been addressed. Here the processes are described in an
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intuitive way to provide the “feel” of these processes. This kind of discussion is important to allow

the often semi-empirical models to be introduced with greater confidence.

The conditions of mass transfer limiting, heat transfer limiting or coupled heat, and mass

transfer processes are discussed using air-drying as an example. The limiting conditions are very

useful for simplifying the model equations so that the full partial differential equations, such as

those given in the above-mentioned chapter by Datta1 may not need to be solved. Furthermore, the

intended simplifications may draw greater attention to the key fundamentals of the underlined

physics, while the mathematics involved are not demanding.

The details of air-drying of food materials are complex to model mathematically. In the current

chapter, modeling air-drying is used to show the fundamental principles of coupled heat and mass

transfer phenomena. With some innovative yet careful considerations, similar arguments could be

applied to baking and frying operations. Later in this chapter, a series of worked examples from the

literature is presented with comments.

To begin the intuitive description, it is shown what a person may do in everyday life, i.e., cooking by

boiling a food mixture in a pot in Figure 6.1. This example shows some of the most important modes

of heat or mass transfer such as: conduction of heat through the stove top into the pot, convective heat

loss from the pot and the sides of the stove into the air (natural convection), boiling heat transfer inside

the pot, convective heat transfer into the potato, vapor transfer into the air, etc.
6.2 MODELING AIR-DRYING

6.2.1 Background

Drying of foods is a cost-effective and traditional way to preserve food quality. It is known that

intermediate to low moisture contents are beneficial for quality keeping (minimized bacterial

growth, minimized lipid oxidation, and less stickiness). Ancient practice has demonstrated that

lowering the water content of natural food materials such as fish, meat, etc., can make the shelf life

of the biological material longer. Drying has enhanced immensely the human existence and the

human capability to survive. Today drying is used extensively on a large scale in order to produce

more desirable foods that then can be distributed and enjoyed by people globally.

The drying of liquid foods forms powdered products, which can be used extensively as food

ingredients for making new variety of foods. Many economies such as New Zealand and Australia

rely on such liquid-to-solid conversions.
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The principles behind drying have been investigated for many years. Due to the complications

of such processes not being directly visualized, progress developing an effective yet sufficient basic

understanding is still slow. When water content is so high to the extent that the solid material

surface is saturated with liquid water, evaporation from the surface appears to be the same as

evaporation from a free liquid water surface. This stage, after an initial cooling or a warming

period is often called the “constant drying rate“ stage, where the evaporation (drying) rate is

simply expressed as follows:

_mv Z hm$ðrv;sKrv;NÞ; (6.1)

where _mv is the mass flux of water vapor away from the liquid–gas interface (kg mK2 sK1) and hm is

the mass transfer coefficient (m sK1) which can be estimated using a correlation given in Appendix

1. rv,s is the saturated vapor concentration at the interface (rv,sat) at the surface temperature (Ts), and

rv,N is the vapor concentration in the bulk flow (kg mK3).

The complexity comes when the above equation overpredicts the rate of water removal as the

solid structure effect starts to take effect.

There have been a number of continuum type mechanisms proposed and the associated

mathematical models established. These include the liquid diffusion concept proposed by

Lewis2 in 1921, the capillary flow concept by Buckingham3 in 1907, the evaporation–conden-

sation concept by Henry4 in 1939, dual (temperature, water content gradient) and triple

(temperature, water content, and pressure gradient) driving force mechanisms by Luikov5 in

1986, another dual driving force mechanism by Philip and De Vries6 in 1957, and De Vries7

in 1958, dual phase (liquid and vapor) transfer mechanism proposed by Krischer as summarized

by Fortes and Okos8 in 1980. Whitaker, in 19779 and 1999,10 respectively, proposed the detailed

transport equations to account for the macro- and microscale structures in biological materials.

Three phase (solid, vapor, and liquid) conservations and their local volume-averaged behaviors

are considered. The mechanisms for moisture transfer are largely the same as those proposed by

Luikov11 in 1975 as well as Philip and De Vries,6 except that the small scale phenomena (local

pores, pore channels, shells, voids, etc.,) have been taken into account. This theory is based on a

known distribution of the macroscale and microscale unit structures which allow local volume-

averaging to be carried out.

The more modern approach is the pore-network model, which can include a number of scale

levels but, however, is still in the development phase and has not been rigorously validated

experimentally.12,13 In addition, the detailed pore structure and network (geometries and distri-

bution) is actually very difficult to establish quantitatively for a food material, which may hinder the

applicability of the model approach to food drying. Besides the liquid diffusion mechanism

considered as the single driving force for drying, the above approaches all involve complicated

mathematics (partial differential equation sets and numerical schemes for gaining a stable solution)

and some model coefficients which cannot be individually determined. Because the numerous

coefficients need to be considered, modeling the single trend of the overall water loss during

drying accurately is generally possible with these models. However, the practical significance of

the detailed physics associated with these models diminishes if only such simple trends are of the

practical interest.

Nonetheless, the above-mentioned models are helpful when spatial distribution of both the

water content and temperature is required. As more information is required about the product

surface and core during drying so that the differential changes of color, bioactivity and stress,

etc., between the surface and the core can be determined, these models are useful. Conversely, as a

compromise, liquid water diffusion is the model that has been used most extensively because it has

had a mixture of successes in both the overall trend modeling and local profile predictions. It is the

simplest approach among the models mentioned earlier.
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Based on the liquid diffusion theory, it has been possible to devise laboratory protocols to measure

the liquid diffusivity (for instance, the regular regime method by Coumans14 in 1987 and Yamamoto15

in 2001). The variations among the reported measured “effective diffusion coefficients” are large,

which are due perhaps to the diverse microstructures (pore sizes, pore channels, shrinkage considered

or not, etc.,) presented by different natural or processed materials as well as their sorption charac-

teristics affected by chemical composition. This effective diffusivity is therefore often considered to be

a fitting parameter in order for the model prediction to match the experimental weight loss data.

Air-drying has been modeled as an effective liquid diffusion process using Crank’s basic

solution of diffusion,16 and an effective diffusion coefficient is obtained most frequently through

fitting a model solution to the weight loss data. Often the effective diffusivity is correlated against

the drying air temperature, making the diffusivity only applicable to constant drying temperature,

sample size, and geometry. This is not fundamental enough, and a better result may be found. Many

forms of effective liquid water diffusivity have been generated that vary in trends considerably at

times, adding to the confusion of the underlined drying mechanisms. Even with the modern

techniques for establishing the (spatial) liquid water content profiles at different timings of

drying, one is tempted to fit the data only to generate the water content dependent liquid water

(effective) diffusivity. Apparently the more fundamental this approach may have appeared, the

isothermal condition was assumed. This is, again, an arguable proposition.

A closer look at the Crank’s solution of the system with surface evaporation reveals that the

boundary condition imposed by Crank in 197516 is not the same as Equation 6.1. The following

equation was used instead:

KDeff;l$
vCl

vx

����
s

Z b$ðCl;s KCl;NÞ; (6.2)

where b is the corresponding mass-transfer coefficient (m sK1), Cl,s is the concentration of liquid

water at the interface, and Cl,N corresponds to the liquid concentration in the material after

infinitely long time (i.e., the water content in equilibrium with the drying air humidity) (kg mK3).

Deff,l is a constant liquid water diffusivity in the porous material. This is one way to represent the

evaporation driving force.

However, during the air-drying process, liquid water does not mean to be able to “jump” out of

the material being dried without converting to vapor first. Equation 6.2 may be viewed as nonphy-

sics-based model. The only case when the Crank’s boundary condition yields the same solution as

Equation 6.1 is when the convection is very strong, making the mass transfer coefficients very large

(i.e., the infinite Biot number for mass transfer (Bim)). When Bim/N, the boundary liquid water

content may be assumed to be constant throughout the drying process. The following partial

difference Equation (for the slab geometry as an example) governing the mass transfer process

and the long-time scale solution of this PDE, are given below, respectively, which are often used to

yield the effective liquid water diffusivity:16,17

vCl

vt
Z Deff;l

v

vx

vCl

vx

� �
; (6.3)

and its solution for negligible external mass-transfer resistance:

�XKXN

XoKXN

Z
8

p2

XN

nZ0

1

ð2n C1Þ2
exp Kð2n C1Þ2

p2

4L2
Deff;l$t

� �
; (6.4a)

where �X is the remaining average water content on dry basis (kg water kg solidsK1), Xo is the initial

water content (kg kgK1), XN is the final water content in equilibrium with the drying air conditions.

The liquid concentration (Cl) is related to the dry basis water content (X) by C1ZXrsrs is the solid
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concentration (kg mK1). Note that here, a constant (effective diffusivity) is assumed. L is the total

thickness of the material being dried (Z2b) (in meters), b is the half-thickness (in meters), and

the material is dried symmetrically. This model also assumes zero volume change, negligible external

mass-transfer resistance and an isothermal process. The uniform initial water content is also necessary.

For a long time after drying starts, only the first term of Equation 6.4a is sufficient for a good

approximation to the full solution (i.e., Equation 6.4a):

ln
�XKXN

Xo KXN

� �
zln

8

p2

� �
K

p2

L2
Deff;l

� �
t: (6.4b)

This approach, however, is likely to induce significant error and correlates the weight loss data well

only towards the end of the drying period as discussed by Sikiatden and Roberts.18

The effective diffusivities vary greatly between materials and between individual studies, to the

extent of the order of 10,000 according to Sablani et al.19 Applying the values reported in literature

is almost certainly involving some trial and error. In other words, the effective diffusivities may be

viewed as empirical fitting parameters. Because the mathematical modeling of drying these days

involves heat transfer as well so by nature the model is different from the simple Equation 6.3,

where isothermal drying is considered. Thus, the nature of strong temperature dependence of the

effective diffusivity cannot be ignored. More recently, efforts have been put into establishing the

isothermal drying condition in an elaborate way18,20,21 to conform the lab conditions to the required

assumptions by the Crank model. Other methods, such as the regular regime method, have the same

issue of assuming the same constant temperature inside the material and in the bulk.14,15 The

diffusivities obtained in the methods other than isothermal method would need to be derived

when the drying rate becomes low in the late stage of drying where the material’s temperature

gets close to that of the bulk drying air.

For simplicity, air-drying also has been modeled by assuming that the process is heat transfer

limited (i.e., no mass transfer resistance). Opposite to this, though more widely accepted in litera-

ture, is that air-drying of porous material can be treated as being mass transfer limited (uniform

temperature condition). The evaporation is frequently assumed to occur at a sharp moving liquid–

vapor interface, which then recedes into the porous solid structure as drying proceeds.

On observing the drying related literature, it may be said that a good model should predict

accurately both the moisture loss and temperature-time history. Because the water loss versus time

is a simple trend to model in most cases, many simple explicit time functions (power, exponential

functions, etc.,) can be used for drying under constant conditions. Where possible, it is thus

desirable to be able to predict well the spatial distribution of temperature. Often, a model that

fits well with the weight loss versus time does not generate accurate temperature-time predictions.

In most occasions, only the weight loss is modeled. As mentioned earlier, isothermal drying models

are reported often yet the justification of these is sketchy. Furthermore, surface properties like

stickiness and color, etc., have become more important in practical operations, and therefore the

spatial distributions of temperatures and water contents (and local mechanical stress, pore size,

etc.,) will be very useful. The interactions between the microstructure, composition and drying

process will be the key to understanding of all these distributions. In the following discussion,

diffusion of species is considered to be the only mechanism for water transport during air-drying.
6.2.2 One-Dimensional Modeling of Air Drying

6.2.2.1 Basic Formula

The visualization drying mechanisms in two- or three-dimensional drying problems is not

straightforward. To visualize the underlined physics more easily, only one-dimensional conditions
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are considered in detail in this section. The perfect flat and smooth surface is at the start a

simplification, especially for drying natural food materials. For liquid foods such as milk, a

“perfectly smooth surface” is, in most situations, a reasonable assumption.

Using liquid diffusion alone is not enough to be able to explain the process of air drying.

Sooner or later, a vapor concentration profile has to be established within the porous material

being dried. As an improvement from the pure liquid diffusion model with an effective diffusivity

(or diffusivity function against temperature and water content), the mechanisms of drying are the

liquid water diffusion and water vapor diffusion. The models that take into account the spatial

distributions of temperature and water content (liquid water and water vapor) are summarized as

the following two types (here, one-dimensional conditions are represented for easier under-

standing; see Figure 6.2).

Without Source Term.

vCl

vt
Z

v

vx
Dl$

vCl

vx

� �
(6.5)

vCv

vt
Z

v

vx
Dv$

vCv

vx

� �
(6.6)

vT

vt
Z

1

rCp

v

vx
k$

vT

vx

� �
(6.7)

In the above model, there is no obvious interaction between the mechanisms described

in Equation 6.5 and Equation 6.6, except that the vapor diffusivity should be treated as a function

of porosity, which is a function of the liquid (water) content of the porous material. The thermal

conductivity k should also be a function of water content, which changes as drying proceeds. At the

boundary of porous structure and air flow, i.e., the convective boundary condition at xZxs (see

Figure 6.2), for vapor transfer, diffusive transport of vapor is balanced by the convective transport

of vapor into the air stream at the boundary, respectively.
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If the drying is symmetrical, xZ0 would be chosen as the symmetry and xZxs (xZCb or

xZKb). At xZ0, then, the boundary condition is the “impermeable and adiabatic” one:

vCl

vx

����
s

Z 0 (6.8)

vCv

vx

����
s

Z 0 (6.9)

vT

vx

����
s

Z 0: (6.10)

The vapor concentration at the boundary can be determined by balancing the diffusive water-

vapor transfer (in the porous structure side at the boundary) with the convective-vapor transfer. It is,

therefore, not necessary to assume the equilibrium relationship between the water vapor at the

boundary and the liquid water content at the boundary. In summary, the boundary conditions at xZ
xs may be written as

KDl$
vCl

vx

����
s

Z 0 (6.11)

KDv$
vCv

vx

����
s

Z hm$ðrv;sKrv;NÞ (6.12)

k$
vT

vx

����
s

Z h$ðTNKTsÞKðDHL CCpv$ðTNKTsÞÞ$hm$ðrv;sKrv;NÞ (6.13a)

or

k$
vT

vx

����
s

zh$ðTNKTsÞKDHL$hm$ðrv;sKrv;NÞ: (6.13b)

Equation 6.13 is based on the assumption that evaporation only occurs at the boundary as far as the

energy transport is concerned. Equation 6.12 can be expressed in pressure difference by taking the

ideal gas law into account. Equation 6.13b is different from Equation 6.13a as the enthalpy term

Cpv(TNKTs) is usually significantly smaller than the latent heat of evaporation, especially when the

temperature difference is small.

The relationship between the vapor concentration at the interface but on the side of the solid

(xZxsK) (i.e., Cv,s) and the vapor concentration at the interface but in the gas (xZxsC) (i.e., rv,s) is

approximately Cv,sz3srv,s, where 3s is the porosity at the surface of the porous material, which may

be approximated to be the same as that of the bulk material).

The heat and mass transfer coefficients (h and hm, respectively) are usually considered in food

engineering literature as “standard” parameters that can be determined using a classical Nusselt

number (NuZhd/k) or (NuZhI/k) correlation (see Appendix A). The Sherwood number (ShZhmd/

D) or (ShZhmL/D) correlation is simply a substitution of the Nusselt number correlation using the

Schmidt number (ScZn/D). When evaporation flux is high at the boundary, the boundary layer of

air is pushed towards the bulk flow (the boundary layer becomes thicker). This is the blowing effect.

The mass transfer coefficient is said to be in the regime called high mass flux boundary described in
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Bird et al.22 At the boundary, the vapor moves perpendicular to the airflow direction, expanding the

boundary layer thus lowering the mass transfer coefficient compared with the one predicted using

the conventional heat and mass transfer analogy. The Sherwood number would need to be corrected

(reduced in value usually), whilst the extent of reduction in Nusselt number is not as significant and

sometimes the reduction ignored (for examples, those shown by Lin and Chen,23 Kar and Chen,24

and Chen.25

In the literature, frequently only one mass transfer equation is adopted, i.e., Equation 6.5 for

liquid transfer. In this case, the liquid water transfer is treated as the effective water transport. The

effective liquid diffusivity is expected to “encapsulate” the effects of both liquid and vapor trans-

port. After such a simplification, the system described by Equation 6.5 through Equation 6.7 is

reduced to:

vCl

vt
Z

v

vx
Deff;l$

vCl

vx

� �
(6.14)

vT

vt
Z

1

rCp

v

vx
$ k$

vT

vx

� �
: (6.15)

The thermal conductivity may also be considered as the effective value, i.e., kZkeff, which

would be a function of water content, various components such as protein, carbohydrate, fat and

minerals, and temperature. The densities and specific capacities can be estimated for the first

approximation using the formulas given in the chapter by Datta.1 Under this simplified framework,

it is often assumed that the vapor concentration at the boundary is the one that is in equilibrium with

the liquid water content at the same interface. The boundary condition for mass transfer can then be

expressed as:

KDeff;l

vCl

vx

����
s

Z hm$ðrv;sKrv;NÞ; (6.16)

and Cv,s is a function of boundary temperature and boundary liquid water content, through the

equilibrium sorption isotherms.

RHs Z
rv;s

rv;satðTsÞ
Z f ðTs; XsÞ; (6.17)

where rv,sat(Ts) is the saturated vapor concentration at interface temperature Ts as mentioned earlier.

Most often, Equation 6.17 can be explicitly written as a GAB model equation.26 If the surface

(direct) liquid-to-vapor conversion still occurs and is significant, Equation 6.17 would not be

correct as the surface liquid water content in the bulk sense is not in equilibrium with the vapor

phase. When the drying proceeds into the material, Equation 6.17 may be more valid for a location

some distance away from the interface.

Equation 6.17 has not been justified in a rigorous scientific manner, and it is rather a necessity

for modeling. There is no strict reason why Equation 6.16 can be applied to the boundary instead of,

for instance, some location within the porous material.

Furthermore, many previous studies have measured the effective liquid diffusivity under

constant drying air (and said well mixed) conditions and taking no consideration of the temperature

of the actual sample being dried.

More advanced understanding leads to the incorporation of the local evaporation term rather

than leaving the evaporation seemingly all occur at the boundary.27 In this case, the following

system is considered:
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With Source Term.

vCl

vt
Z

v

vx
Deff;l$

vCl

vx

� �
K _Ev (6.18)

vCv

vt
Z

v

vx
Deff;v$

vCv

vx

� �
C _Ev (6.19)

vT

vt
Z

1

rCp

$
v

vx
keff$

vT

vx

� �
K

DHL

rCp

$ _Ev: (6.20)

Note from now on, the diffusivities are all called the effective diffusivities. The source term _Ev

describes the local moisture evaporation/condensation. This term is very important in the physics of

drying as it signifies explicitly the moisture exchange between the local solid structures or porous

entities that hold liquid water, and the local voids (e.g., intercellular spaces in plant materials such

as apple, carrot, etc.,) or the pore-channels into which the moisture can be evaporated. When

evaporation occurs, _Ev (kg mK1 sK1) is positive. If there is any heat generation due to chemical

reactions or volumetric heating such as ohmic or microwave heating, the above equations will be

added with additional source term(s) as described in Datta.1 The exact format of this source term is

not known. If the porous system is the packed moist porous solid particles, a local evaporation (and

condensation) term can be approximated around each particle (for similar pressure and uniform

particle size).28–32

Krsp$
dX

dt
Z heff;m$np$

Ap

Vp

$ðrv;sKrv;voidsÞ; (6.21)

where rsp is the concentration of the solid mass of the particle (kg mK3) and X is the water content

of the particle phase on dry basis (kg kgK1), np is the number concentration of the particles

(L mK3), Ap is the surface area of each particle (m2) and Vp is the particle volume (m3). heff,m is

the effective mass transfer coefficient (m sK1). The surface vapor concentration can be expressed as

a function of the mean temperature, mean water contents of the small packed particles, which can

be established experimentally. It is also possible to further employ the diffusion PDEs such as the

ones described earlier but for spherical coordinates to describe the moisture transfer within each

particle. This, however, makes the modeling rather complicated. It is noted that the use of Equation

6.21 does not mean that the internal moisture gradient has been ignored. Equation 6.18 through

Equation 6.20 was solved with a slightly different equation for local rate of drying by Zhang and

Datta in 2004.27
6.2.2.2 One-Dimensional Water Removal from a Temperature-Controlled
Column: A Hypothetical Experimentation to Evaluate the Mechanisms
Described in Section 6.2.2.1

In the above section, one can see that the equations are not “water-tight” fundamental equations,

which can be free from empirical assumptions. Understanding the key physics involved in the

simultaneous heat and mass transfer processes in foods is highly challenging. Here several intuitive

analyses (Section 6.2.2.2, Section 6.2.2.3, and Section 6.2.2.4) are given. This kind of approach

would also be useful in modeling other simultaneous heat and mass transfer processes.

Constructing an ideal isothermal drying device without volumetric heating such as microwave

or radio frequency heating, may not be possible unless the mass transfer resistance is not high inside
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Figure 6.3 A schematic of the one-dimensional calorimeter for the “thinking” experiments.
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the porous material being dried. Despite this difficulty, as mentioned earlier, many have considered

isothermal drying in their model analysis even though their experiments were not isothermal.

It is more likely for one to establish a reasonable one-dimensional drying device. This concept

can be seen in Figure 6.3, which may be called an experimental finite-difference approach (EFDA).

This idea is not new, and it was practiced in establishing a one-dimensional spontaneous heating

column for coal.33 In a device such as this, for simplicity, a nonshrinkable porous particle bed is

placed in the column (for example, having a diameter of 10 cm). Therefore, there is no bed move-

ment during the drying process. Moisture is extracted from the column from the exit plane on the

right hand side.

Supposing that this column is made of thin walled steel, wrapped with the finite-elements of

discretely arranged (metallic) thin-walled heater bands (heater films), controlled separately to

maintain the temperature at the center line in the corresponding finite-element section, cooling is

then possible. Cooling is also possible using cooling coils wrapped around the thin heater films

again attempting to maintain the temperatures in every section as mentioned earlier. The heat input

or the cooling power of each acted on each section is controllable and measurable. These values

along the column would be a good indicator of the water removal mechanisms in a way that has not

been measured yet.

Assuming that these heating or cooling elements are sufficiently narrow to give reasonable

resolution of the heating/cooling power (W mK2) profiles, the heating/cooling power profile along

the column could be plotted for a specific operation mode. When the drying apparatus is operated in

order that the temperature (assumed to be of little variation along the radial direction) along the

column is the same as the drying air, and the drying air has almost zero humidity to provide the

maximum driving force, the expected spatial profiles of heating/cooling after a period of drying are

illustrated in Figure 6.4.

Three different cases may be considered: (1) only boundary has evaporation as that governed by

Equation 6.5 through Equation 6.7 with the boundary conditions in Equation 6.11 through Equation

6.13, or those that do not have source term in both the heat and mass transfer PDEs; (2) evaporation

only occurs at a sharp moving front (which has been instigated in many studies whether it is

assumed to be mass or heat transfer limiting situations)—the sharp peak would be present after

some time because drying proceeds from the boundary (xs); and (3) evaporation occurs in a region

starting from the boundary (which would correspond to the conditions where the source terms are

considered in both heat- and mass-transfer PDEs).
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Figure 6.4 The heating power distribution for three different model approaches to maintain an isothermal drying
condition: (a) no source term in energy and mass conservation equations; (b) the existence of a sharp
evaporation front; (c) with source term in energy and mass conservation equations where the source
term is a spatially distributed function.
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In all these cases shown in Figure 6.4, the system (controlled by the devices) attempts to

preserve the uniform temperature status. Evaporation would induce temperature reduction in the

region of evaporation, thus the heater(s) corresponding to that section (and the adjacent sections)

would have to be switched on to compensate.

As such, different assumptions and corresponding partial differential equations can lead to different

heating/cooling profiles, indicating that models 1, 2, and 3 are conceptually (or physically) different,

even though these models can be made to fit the experimental water-loss data. When the sample is

sufficient small, the spatial distribution of temperature within the material can be negligible.
6.2.2.3 Microstructural Interpretation of Drying Profiles That Support the Model
Analysis in Section 6.2.2.1

Assuming the initial temperature of the material is only slightly lower than the wet-bulb

temperature of the drying medium for simplicity an ideal capillary system is shown in

Figure 6.5, where the heating and water vapor transfer are opposite to each other. The capillaries

here have identical diameters at the microlevel, and the walls are hydrophilic with no interexchange
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Figure 6.5 Water removal in air-drying at a direction perpendicular to the capillary assembly (bundle) with
identical capillary characteristics (diameter and wall material).

SIMULTANEOUS HEAT AND MASS TRANSFER 191
of heat and mass across the capillary walls (impermeable), assuming they were initially filled with

water completely and evaporation starts to happen. The evaporation occurs uniformly for all the

tubes for the same convection condition at the exits of all the tubes. There would be an obvious

receding front of the liquid–gas interface moving inwards as drying proceeds. The thickness of the

moving evaporation front would reflect the meniscus of the liquid–gas interface.

Considering the system of the capillaries such that different diameters and permeable walls

(e.g., a kind of membrane) are involved, and interexchange of heat is also possible across the

capillary walls, the evaporation rates among the tubes under the same drying condition applied at

the exits would be different. There would be nonuniform receding liquid–gas interfaces, giving the

distribution of the averaged liquid water content along the x-direction broader than that shown in

Figure 6.6. Furthermore, if the walls are made of materials that are hygroscopic, liquid diffusion or

spreading along the wall surfaces is also possible.

Though the interexchange of moisture and heat in-between the tubes may attempt to even the

evaporation rates and liquid water contents, a broader distribution of the liquid water content is still

expected. Furthermore, due to the extended liquid–gas interfaces, evaporation would not just occur

at the meniscus only. Evaporation will happen in a region of finite dimension, i.e., the occurrence of

an evaporation zone at the macrolevel.

Nevertheless, in the above two systems, for the straight tubes considered and under only one-

dimensional condition as shown here, there is a likelihood of receding front (curved ones included)

of some description. However, this kind of system is not common.

When the system is “homogenized” at the microlevel (a more realistic situation)—an example

is shown in Figure 6.7—capillaries would be oriented at many directions and interlinked or

networked. Even locally, the capillary diameter sizes can be uneven. The heat and mass transfer

would be multidirectional, but of course following the law of physics, i.e., following the directions

of the driving forces. Locally and microscopically, the receding front(s) would be a fuzzy one,

depending on the local microstructure. Liquid movement may be diffusive or driven by capillary

forces and traveling in relatively easier passages. Similarly for air and vapor transfer, certain

difficult (yet wet) patches may be bypassed by a main receding front (if there was one) and left

to be dried more gradually. Here, the sorption/desorption characteristics of the materials distributed
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enter to play key roles. All these chararcterics would make the liquid water content (averaged over

these microscopic regions) to be distributed over a region between the really wet core and the

boundary of the moist material. This shows a spatial transition rather than sharp receding liquid

water front (see Figure 6.7).

Compounding this phenomena, the capillary wall’s thickness (the apparently solid structure)

and the walls’ own porous microstructures (yet another smaller level of pore networks or systems),

and their unevenness in spatial distribution would add to the overall picture making the transition

more uniformly. The materials that create the walls of the microstructures are also important as they

can have quite different affinities towards water molecules (these are reflected by their equilibrium

isotherms or liquid water holding capacity at the same relative humidity and temperature).

The liquid water content distribution, where water vapor is in coexistence is shown Figure 6.7.

What may be stressed is that the rather gradual liquid water content profile which is not the kind

possessing a sharp moving front, thus indicating the effect of mass transfer and local exchange

of water between the moist solids and gas in the voids or channels. Evaporation may occur in most

of the transitional region where the rate is dependent on the local driving force for vapor transfer.

The above arguments readily can be generalized to packed particulate systems where the

individual particles can have their own macrostructure and sorption characteristics (see

Figure 6.8a), while the main voids (where easier vapor paths can be found) would be the voids

in-between the packed particles. In fruits and vegetables, the cellular structure plays a very import-

ant role as the cell walls present major water transfer resistance (see Figure 6.8b).

The perception of a moving (liquid) front or the (sharp) evaporation front can lead to different

approaches to drying modeling. Mass transfer from the sharp moving front and the vapor exit

surface is often modeled using a simple effective diffusion concept (with an expanding resistance

layer). This mass transfer is regarded sometimes as the rate limiting process form air-drying, i.e.,

the mass-transfer limiting process (for example, Nesic and Vodnik34). In this case, the vapor

concentration at the evaporation front is taken to be the highest (i.e., the saturated vapor concen-

tration inside the pores or pore-network channels).

Most recently, this relatively dry region has been taken as being the very dry crust (with only

bound water) so that a heat transfer limiting process is furnished. In this case, all heat that is

transferred to this evaporation front is consumed by water evaporation.35–38 It is interesting to

note that Farid37 and Nesic and Vodnik34 actually modeled the same set of data for skim milk

droplet drying in air, and they have obtained similar level of accuracy in predictions! This means

that even in recent times, the concepts of mass-transfer limiting and heat-transfer limiting are not

clear and there is a need to have better evaluation methods.
(a) Packed particle bed (milk powders etc) (b) Cellular structures in fruits and
      vegetables

Intercellular
spaces

Cell contents

Intact cell walls

Figure 6.8 Packed particulate (or unit) system.
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Based on the discussion earlier about the spatially distributed evaporation profile, one can

arrived at Figure 6.9, which shows more realistic perception of the drying processes.

It is also interesting to note from the process shown in Figure 6.9, that due to the temperature

distribution into the moist material being dried in the normal air-drying situation (where the air

temperature is higher than the porous material being dried), it is not necessary to have the highest

water vapor content at the innermost boundary where liquid water content starts departing from the

initial value. The vapor concentration should be higher than the boundary value or else there would

be no or little drying. It is possible to intuitively reason that there is a hump that can exist some-

where in the transitional region of the liquid water content (between dashed lines 1 to 3).

Zhang and Datta,27 in fact, predicted this kind of distribution without much significance being

discussed. Because there is a hump in the vapor concentration, there must be a vapor flow inwards

(towards the left on Figure 6.8). A condensation mechanism also may exist in the region marked in

the same figure as being the area of uncertainty.

As such, the process of having a high temperature in the air and low humidity in the same air

would induce an inward transport of vapor as well as one that goes outwards (thus drying is

evident). Furthermore, a part of the water evaporated in the lower part of the transitional liquid

water content region is transported into the structure and condensed at the lower temperature

location as long as there is porosity (spaces for vapor to go into). This is an interesting phenomena,

as it clearly a more effective heat transfer mechanism than just heat conduction.

This phenomena helps increase more rapidly the temperature of the core wet region, which by

itself has a higher heat conductivity due to the high water content (hence lower or no porosity).

This mechanism has an impact on the preservation of active ingredients such as probiotic bacteria

encapsulated inside a wet porous matrix subjected to drying. This result means that the fuller

picture of the drying would involve the heat transfer and moisture transfer characteristics in at

least two regions: one that is between the dashed line 1 and 2 and one that is between 2 and 3.

Line (2) is chosen qualitatively to mark the inwards and outgoing vapor flows. The microstructure
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in region 2 and 3 must influence (or restrict) water vapor transfer (porosity and tortuosity), thus

leading to reduced vapor diffusivity. Together with the effect of chemical composition, the

microstructure also impacts on the liquid water transfer towards the boundary 3. The structure

and indeed the porosity have a large impact on the thermal conductivity of this relatively dry layer

(region between line 2 and 3). Conversely, the porosity and structure inside the region between

line 1 and 2 are also important affecting vapor transport in this area. One would expect that this

region to have a lower porosity (thus lower vapor transfer coefficient—the vapor diffusivity).

However, due to the high water content, the heat conductivity would be higher here as mentioned

earlier. In addition to this, the vapor transfer and condensation mechanism as mentioned earlier

would make this heat conductivity is effectively even higher. As such, the main heat transfer

retardation by the presence of the solid materials would be in the region of line 2 and 3, and the

main retardation of water vapor going outwards would also be in the region 2–3. Note here that

there should generally be two lines denoted by line 2 dividing the heat transfer regions and the

mass transfer regions separately. The lowest liquid water content in region 2–3 clearly is

determined by the nature of the material and the drying air conditions through the equilibrium

water content concept (equilibrium isotherms).

Increasing temperature to a large extent may make the trend of liquid water content steeper;

and a “water fall” like behavior, where the vapor wave is apparently moving inwards, and a more

tidal like liquid water content versus distance profile emerges. For food and biomaterials, it likely

is to have a sharp liquid water-front if the temperature can rise in the drier region quickly. In any

case, how the material swells and shrinks locally would have an impact on the dried

product quality.

The above arguments, in particular the profiles shown in Figure 6.9, have been supported by

the microscale transient observations using Magnetic resonance imaging (MRI). MRI has become

in recent years a useful tool in investigating the relationship between the material microstructure

and moisture transfer mechanisms. A number of studies have been directly targeted at moisture

transfer.39–45 It has been illustrated that the simple receding evaporation-front assumption may not

be a realistic proposition,42,43 though some earlier studies suggested it was the case for some

hygroscopic materials.46 There was no sharp front of evaporation observed in the latest MRI

studies. The spread of the lowering liquid water content as drying proceeds relies on capillary

diffusion of liquid water.43 The moisture transfer or transport devices or units such as capillaries,

intercell spaces, void or channel networks between packed particles (which themselves may also

be porous presenting another (perhaps finer) level of transfer devices or units), all naturally

possess nonuniformity. The spread of the evaporation zone or a transitional or “mushy” zone

from the still very wet core and the already dried surface region therefore is expected. Referring

to Figure 6.9, in the region across regions 2 and 3, capillary effect is expected to be important.

The pre-treatment (soaking) using surface active reagent solutions may help accelerating the

water transfer process. Thicker material may be affected more by this kind of treatment.47 This

realization may open a door to a more scientific understanding of the effect of surface tension

lowering agents (such as surfactants). This may also be related to explaining the results on the

phenomena associated with the air-drying of osmotic-dehydrated fruit materials.

Furthermore, the spreading of the liquid water (the shape of the spatial distribution of the liquid

water content) would be dependent on the hygroscopic nature of the porous material being dried. A

hydrophilic porous solid system may have a smaller possibility to show a relatively “sharp moving

evaporation front” compared with a hydrophobic system. This understanding has been particularly

helpful in supporting the ideas of revising the conventional Biot and Lewis number calculations

when air drying is of interest so that the conditions for model simplifications can be made more

realistically, and the model concepts may be discerned with more quantitative backings48,49 (see

later sections on Biot and Lewis number analysis). The effective diffusivity functions published in

literature can be compared and discussed based on their relationships with the scientific insights

already discovered with MRI or other insightful tools. It is now recognized that the material
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microstructure and its nature (composition, pore sizes, etc.,) are interactive with the transfer

phenomena50,51 and the formation of microstructure has much to do with the speed and schedule

of the transfer processes.52–54
6.2.2.4 Solving the Equation Sets that Govern the Moisture-Transfer Process

The above mentioned partial differential equation sets for resolving the temperature and

moisture profiles in moist food materials during drying have to be solved using numerical

methods. This in general involves the use of finite difference and finite element methods. Since

the nonlinear nature of the models described above, in particular, when the models are highly

coupled between heat and mass transfer, instability and sometimes numerical diffusion (an artifact)

can be introduced.

There are two ways of validating the numerical solutions: an exact solution with some simpli-

fications of the model employed may be devised so that the numerical one can be compared against

it (such as that demonstrated by Wu and Irudayaraj in 199655); or a detailed experimentation is

conducted (note that only measuring the weight loss and a mean temperature is insufficient for

validating a detailed model such as the ones discussed in Section 6.2.2.1). Where possible, the

spatial distribution of temperature (or at least, a surface and a core temperature) should

be measured.

There are standard texts available in literature which can be referred to when the PDE systems

that govern transport processes need to be solved numerically, such as Patankar56, Rice and Do57

and Ozilgen.58 There are also numerous papers published in the area such as Irudayaraj et al.59,60
6.2.3 Mass- or Heat-Transfer Limiting

There is not a straightforward concept as far as drying modeling is concerned. When mass

transfer is the limiting process, which may usually be the case when the temperature difference

between the material to be dried and that of the drying gas is not very large, one may not need to

consider the spatial distribution of temperature and can therefore simplify the modeling process. If

heat transfer is limiting, then the temperature gradient within the medium being dried must be

considered. Thus, the mass transfer PDE may not be required to work out water loss. The reason is

that in this case the water loss is primarily determined by how much and how quickly the heat can

be supplied to the evaporation surfaces. This is a reasonable approach to modeling frying of a thin

potato chip in hot oil61.

In air-drying, however, there is the expectation that the spatial distribution of water content

inside a material is significant, i.e., the boundary could be dry, but the core could still be very wet.

The question is whether or not the temperature within the material being dried can be considered to

be uniform. At first glance, all these should correlate with two classical numbers, i.e., the Biot

number for examining the temperature uniformity and the Lewis number for examining heat or

mass transfer limiting.
6.2.3.1 Biot Number Analysis

The Biot number criterion is used to investigate the temperature uniformity of a material being

heated or cooled. Conventionally, the Biot number is introduced through steady state heat conduc-

tion in a slab with one side cooled by convection (see Figure 6.10a).62 The conductive heat flux

through the wall is set to be equal to the heat flux due to convection:
q 2006 by Taylor & Francis Group, LLC



T•

x = 0 x = L

L

Ts,1

Ts,2

x

q"x T•

x = 0 x = L

L

Ts,2

x

Ts,1

Surface
evaporation

(a) (b)

Figure 6.10 (a) The definition of Biot number; (b) schematic diagram of the system being heated with
surface evaporation.

SIMULTANEOUS HEAT AND MASS TRANSFER 197
q00x Z k$
Ts;1KTs;2

L
Z h$ðTs;2KTNÞ: (6.22)

The ratio of the temperature differences can then be expressed as

Ts;1 KTs;2

Ts;2 KTN

Z
h$L

k
: (6.23)

The Biot number is defined by

Bi Z
h$L

k
: (6.24)

When this ratio is less than 0.1, i.e., the internal temperature difference is smaller than 10% of the

external temperature difference then the internal temperature distribution may be neglected for

simplicity in modeling. For a spherical object, the characteristic length, L, may be set to be the

radius of the sphere.

One can rewrite Equation 6.23 in the form of the temperature ratio:

Ts;1 KTs;2

Ts;2 KTN

Z
h$L

k
Z

L=k

1=h
Z

Rcond

Rconv

; (6.25)

where R represents the thermal resistances, and the subscripts “cond” and “conv” represent the

conduction and convection, respectively. Therefore, the Biot number also can be considered to be

the ratio of the internal resistance to the external resistance. It appears that a small temperature ratio

and a small resistance ratio essentially suggest the same thing. It can be illustrated that they can

yield different results when the problem is no longer a pure heat conduction problem.48 More

fundamentally, the resistance ratio is a better argument. The thermal conductivity of the particle

would be affected by water content and porosity (when filled with air).

Chen and Peng48 have recently introduced a new formula, which accounts for evaporation from

the heat exchange surface. Similar to the conventional analysis (Equation 6.22), considering the

addition of evaporative loss, the following heat balance can be obtained (here the temperature of the

environment is greater than the material being dried; see Figure 6.10b):

h$ðTNKTs;2ÞKDHL$ _Sv Z h�$ðTNKTs;2ÞZ k$
Ts;2KTs;1

L
: (6.26)
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Here, h* is an equivalent convection heat transfer coefficient and _Sv is the surface based evaporation

or drying rate (kg mK2 sK1).

h� Z hK
DHL$ _Sv

ðTNKTs;2Þ
: (6.27)

This leads to a more appropriate Biot number for a surface evaporative system:

Bi� Z BiK
DHL$ _Sv

ðTNKTs;2Þ
$

L

k
(6.28)

When evaporation occurs from the heat exchanger surface, the modified Biot number (Bi*)

represents the temperature uniformity more precisely than Bi. Whereas a conventional and large Bi

indicates a nonuniform temperature distribution does not mean the temperature is not reasonably

uniform. Bi* is a smaller value than Bi indicating a more uniform temperature distribution. The

significance of this equation can be demonstrated in the following for evaporation from a water

droplet (which is relevant to drying of a coal particle with high moisture content at the beginning of

the drying process).

The following calculations are based on the laboratory data obtained by Lin and Chen23,63 on

drying of a single milk droplet (one-dimensional but spherical condition). The laboratory con-

ditions and the techniques employed are given:

Droplet diameter 2LZ1.43 mm

Heat transfer coefficient measured hZ99.1 W$mK2 KK1

Thermal conductivity of water kZ0.63 W$mK1 KK1

Evaporation rate _SvZ1.73!10K3 kg$sK1$mK2

Interfacial temperature TsZ23.48C

Drying air temperature TNZ67.58C

Latent heat of evaporation DHLZ2445!103 J$kgK1

The conventional analysis, based on Equation 6.24, yields BiZ0.11 for the above example,

which is even slightly greater than the critical value of 0.1 mentioned earlier. Based on Equation

6.28, however, one can find that the Bi required for uniform temperature assumption is 0.21 to

maintain the Bi* being 0.1, i.e.,

Bicri Z Bi�
cri

C
2445!103 !1:73!10K3

ð67:5K23:4Þ

1:43!10K3

2!0:63
z0:21 (6.29)

due to the evaporation (cooling) effect, which consumes much of the temperature diving force from

the outside of the material being dried.

Equation 6.28 can be extended to account for the cases when internal mass transfer resistance do

play a role. Here one can express the surface based evaporation rate using the overall mass transfer

coefficient concept:

Bi� Z BiK
DHLUmðrv;c Krv;NÞ

k
L
ðTNKTs;2Þ

; (6.30)

where L may be used as the characteristic length generically of slab, cylinder, sphere, etc. (in

meters). rv,c is the vapor concentration (based in the bulk) at the location marked by the charac-

teristic dimension (dc) inside the material, which may be taken as the saturated vapor concentration

at the material (mean) temperature (a high bound estimate). The overall mass transfer coefficient

Um may be expressed approximately as the following by Chen and Nelson (unpublished 2005):
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Um z
1

1
hm

C dc

Deff;v

: (6.31a)

The characteristic dimension (dc) signifies the effect of the vapor concentration profile and the

solid matrix resistance to vapor transfer (see Figure 6.9). For a symmetric material being dried, this

dimension for mass transfer should be smaller than the corresponding characteristic dimension for

heat conduction (for example, dc!the 0.5 half-thickness for a slab being heated).64 The effective

vapor diffusivity may be estimated using the porosity (3) and the tortuosity (t) correction:65

Deff;v z
3

t
$Dv;air; (6.31b)

where Dv,air is the vapor diffusivity in air (m2 sK1). The tortuosity (t) is not usually a known

paramete, so an estimate between 2 up to 20 may be used.65 Equation 6.31b does not seem to

have accounted for the sticking of the molecules in transfer onto the material internal surfaces and

could still give a high estimate of the real value.

The mass transfer coefficient (hm) could also be estimated using one of the heat and mass

transfer analogies, such as the one for a flat plate:62

h

hm

z
kair

Dv;air

$
Dv;air

aair

� �0:3

; (6.32)

which is based on the heat transfer coefficient h (which could be found using the correlations in the

Appendix).

One can see the new number, called in the author’s name to be differentiated from the classical

Biot number (Bi), is as follows for air drying, i.e., a Chen–Biot number.

For surface evaporation case shown in Figure 6.10b,

Ch_Bi Z BiK
DHL$ _Sv

ðTNKTs;2Þ
$

L

k
: (6.33)

It is difficult to evaluate the Chen–Biot number for the case when drying is occurring inside the

material. As mentioned above, the following formula has been proposed (though not yet applied to

a food system) as follows:66

Ch_Bi Z BiK
DHL

k
L

$
TNKTs;2

rv;cKrv;N

� �
1

hm
C dc

Deff;v

� � : (6.34)

Alternatively, the term of the mass transfer resistance due to diffusion in the above equation is

replaced by that using the effective liquid water diffusivity Deff,l but perhaps maintaining the same

characteristic dimension for heat conduction.

Equation 6.34 reduces to the surface evaporation case when the characteristic thickness dc

approaches to zero.
6.2.3.2 Lewis-Number Analysis

The Lewis number (Le) is defined as the ratio of the thermal diffusivity to the mass diffusivity

(for water vapor transfer). For drying of moist porous materials, this would mean that if Le!1, then

the heat penetration (through conduction) into the particle is slower than the penetration of the

water vapor front. If Le/1, then the heat transfer is limiting the drying process. When Lez1, the

heat input and moisture removal are highly coupled. When Le[1, the process is mass-transfer

limited. This becomes particularly informative and important for drying after the initial moisture
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rich condition. This process can be visualized as follows, by considering the heating of a semi-

infinite porous media in a constant temperature environment. It is known that the thermal

penetration depth (dT) can be approximated as:67

dT z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12$a$tT

p
; (6.35)

where a is the thermal diffusivity (Zk/rCp) (m2 sK1) and tT is thermal penetration time (s).

Correspondingly, the vapor “penetration” (mass penetration denoted by the subscript M) may be

expressed as:

dM z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12D$eff;v$tM

p
; (6.36)

where tM is the mass penetration time (in s). For reaching the same distance into the material, i.e.,

dTZdM, the ratio of the time required for mass to penetrate to that for heat to penetrate is essentially

the Lewis number:

Le Z
tM
tT

: (6.37)

The physics is apparent: if Le/1, mass transfer occurs much faster, thus heat transfer

is limiting.

A conventional Lewis number analysis using the effective vapor diffusivity calculated with

Equation 6.31b would, for a skim milk droplet drying for instance, yield a value smaller than 0.1.37

If one considers the source terms in describing drying, Equation 6.18 through Equation 6.20 can

be used.

For simplicity, the source term similar to that in Equation 6.18 may be approximated as

_Ev zKrs$
dX

dt
: (6.38)

This represents the local rate of evaporation. Assuming that Cv is the vapor concentration that is

in equilibrium with the liquid water content inside the solid structure, the following relationship

exists:

RH Z f Z
Cv

Cv;satðTÞ
Z f ðX;TÞ or X Z Fðf;TÞ; (6.39)

which is the equilibrium isotherm function. Therefore, one may write the following:

_Ev zKrs

vX

vf

vf

vt
C

vX

vT

vT

vt

� �
Z rs

vX

vf
$

v
Cv

Cv;satðTÞ

� �

vt
C

vX

vT
$

vT

vt

2

4

3

5: (6.40)

If the temperature may be taken as an average value especially when the equilibrium isotherm

functions are insensitive to temperature in the range considered, the following simplified Equation

6.40 can be obtained.

_Ev zKrs$
vX

vf
$

vf

vt

� �
zKrs$

vX

vf
$

1

Cv;satð �TÞ
$

vCv

vt

� �
: (6.41)

Thus vapor conservation Equation 6.19 can be rewritten into:

vCv

vt
z

�Deff;v

1 Crs$
vX
vf

$ 1
Cv;satð �TÞ

� � $
1

r2

v

vr
r2$

vCv

vr

� �
; (6.42)

by taking a mean, �Deff;v, for simplification.
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The equivalent mean effective diffusivity ( �Deff;v) is then

�D new
eff;v z

�Deff;v

1 Crs$
vX
vf

$ 1
Cv;satð �TÞ

� � : (6.43)

The effective Lewis number (i.e., the Chen–Lewis number) can then be written as

Ch_Le Z
�aeff

�Dnew
eff

Z
�keff

�r$ �Cp

 !,
�Deff;v

1 Crs$
vX
vf

1
Cv;satð �TÞ

� � : (6.44)

Equation 6.44 may be used to estimate a more likely high bound of Lewis number (here the

Chen–Lewis number). For the same skim milk drying case as mentioned earlier (i.e., the case for

Equation 6.29), Equation 6.44 can yield an estimate of the Chen–Lewis number (Ch–Le) on the

order of 100, indicting mass transfer limiting.
6.2.3.3 Combination of Biot and Lewis Numbers

There is no strict scientific proof regarding why one can use Bi and Le number together in some

fashion to justify isothermal, uniform temperature or else. Nevertheless, these are the two most

relevant dimensionless parameters in literature that seem most relevant. Sun and Meunier, in

1987,68 conducted a comprehensive numerical analysis on nonisothermal sorption in adsorbents,

which showed that the following rule exists:

† The isothermal model would be valid if LeBiO100 and the uniform temperature profile

model would be a good model if LeO10.

Note here that the Le and Bi are all based on the conventional definitions. It is expected that the

above rules are conservative. In the desorption process the temperature profile inside the porous

material would tend to be more gradual thus the criteria can be relaxed. The driving force for heat

transfer, i.e., the difference between the drying air (or drying medium in general) and the porous

material, i.e., (TNKTs), would also affect the temperature uniformity when drying proceeds.
6.2.4 Drying of Shrinkable Materials

When shrinking is considered, an apparent or effective velocity, uap, may be considered.

Equation 6.14 and Equation 6.15 can be modified to

vC1

vt
Cuap$

vC1

vx
Z

v

vx
Deff;1$

vC1

vx

� �
; (6.14a)

vT

vt
Kuap$

vT

vx
Z

1

rCp

$
v

vx
keff$

vT

vx

� �
: (6.15a)

For a symmetric drying situation, LZ2b, the shrinking velocity, up, (taken as positive value

when shrinking occurs) can be expressed as

uap Z uapðx ZCbÞ$
x

b
; (6.45)
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as an approximation (Karim and Hawlader 2005). This means that the effect of boundary movement

is the most influential at the boundary and has no effect at the symmetry. The velocity at the

shrinking boundary corresponds to the movement of b over time.

uapðx ZCbÞZK
dbðtÞ

dt
: (6.46)

To ensure the smooth transition of uap at xZ0, which should be the case at the symmetry, uap

may be better replaced by a nonlinear function instead so that
duap

dx
Z0 there. Of course,

d2uap

dx2 O0 is

necessary to present a minimum shrinkage at the center.

This velocity effect should also be reflected in the boundary conditions. For example, Equation

6.12 and Equation 6.13 need to be changed to:

KDeff;l$
vCl

vx
Kuap$Cl

� �

s

Z hm$ðrv;sKrv;NÞ; (6.12a)

keff$
vT

vx
CrCpuapT

� �

s

Z h$ðTNKTsÞKDHL$hm$ðrv;sKrv;NÞ: (6.13a)

It is again noted that uap is taken to be positive when shrinking occurs. The effective diffusivity

should also be corrected for shrinkage effect as it was often measured and interpreted by assuming

no-shrinkage (for instance, using fixed L with Equation 6.4a). This can be found readily in the work

by Crank:16

Deff;l corr

Deff;l

Z
b

bo

� �2

; (6.47)

where “corr” represents the corrected value and bo is the initial thickness (in meters). The change in

b is usually measured and correlated to water content.
6.3 WORKED EXAMPLES

6.3.1 Spray-Drying of Skim Milk Droplet in a Plug-Flow Dryer

Here, a simplified spray dryer, i.e., a plug-flow dryer, is simulated, which does not involve the

complications of the particle trajectories as in a full-scale computational fluid dynamics modeling.

In this case, the droplet drying kinetics and its influence upon the overall dryer wide performance

can be readily demonstrated by Patel.69 In previous literature, the partial differential equation for

mass diffusion with shrinkage was used for simulating the drying process of a single droplet.70 It is,

however, not yet practical to trace a large number of particles in computational fluid dynamics

(CFD) simulations of spray drying with this kind of detailed approach. Therefore, simplified models

are useful. In the following section, the simple kinetics approaches are described.
6.3.1.1 Mass-Transfer Model

The mass-transfer model calculates the moisture concentration profiles for both droplet and hot

drying medium phases. It also allows an engineer to understand the effect of various parameters

such as moisture content of the droplet, air humidity of the drying medium and temperatures on the

drying rate. As the first stage of spray drying, the atomization process transforms the bulk liquid

feed into a large number of individual droplets. Here a uniform distributed uniform size droplets

passes through the dryer length co-currently with the drying air.
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Figure 6.11 Single skim milk droplet in the spray drying chamber.
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The modeling for drying of droplet using fluids such as skim milk is quite complicated because

skim milk is a mixture of several constituents such as fats, proteins, carbohydrates, starches

(lactose), minerals, vitamins, enzymes and water. The single skim milk droplet that is made of

water and skim milk solids is shown in Figure 6.11. The droplet has moisture concentration X on

dry basis (kg kgK1) at time t (s). When the droplet comes into contact with the hot drying air, the

moisture starts escaping from the droplet surface at a specific rate. As the droplet falls down in the

spray chamber, the moisture concentration obviously decreases up to the exit moisture concen-

tration of the bulk drying air, Y kg water per kg dry air. At the exit conditions, the droplet and moist

air are nearly in dynamic and thermal equilibrium with each other and the moisture concentrations

of both phases are nearly the same.

Mass Balance around the Droplet Phase. Figure 6.12 shows the step-wise mass balance around

a single droplet in the spray-drying chamber. At any time t, the droplet is at a distance h meter from

the atomizer. The droplet moisture content is X kg kgK1 with the ms (kg) of milk solids at that

specific point. After time increment dt, the droplet travels an infinitesimal distance dh (m) with

losing an infinitesimal amount of moisture dX to the bulk air at specific drying rate Nv. The amount

of milk solids in the droplet remains constant during drying as only water vapor escapes from the

droplet surface during evaporation. The mass balance around the single droplet, P, for time step of
h

h + dh

X, ms

X+dX, ms

Hot air

Figure 6.12 Mass balance of a single droplet.
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dt can be written in the following mathematical form:

ms$X Z ms$ðX CdXÞCNv$APdt: (6.48)

On rearrangement,

dX

dt
ZK

Nv$AP

ms

; (6.49)

Or, written in another form,

dmw

dt
ZKNv$AP; (6.50)

where mw is the mass of water. AP is the effective surface area of the particle and that can be

calculated as

AP Z p$d2
P: (6.51)

Here, dP is the particle diameter. Equation 6.50 represents the rate of water evaporation during

drying of droplets. Equation 6.49 calculates the moisture content profile for the single droplets. At

this point one needs to calculate the drying rate Nv. Several approaches are available in the literature

to estimate the drying rate, including the diffusion model which consists of the second-order

transient partial differential Equation (like that of Sano and Keey70), but the present work considers

the following two approaches, which are semiempirical approaches as the diffusion model requires

many parameters to be pre-known.

Characteristic Drying Rate Curve Approach (CDRCA). In 1958, Van Meel71 suggested that a

unique characteristic drying curve can be drawn for the material being dried at specific drying

conditions for convective drying. This approach is based on the assumption that at each volume-

averaged free moisture content, there is a corresponding specific drying rate relative to the unhin-

dered rate in the first drying period that is independent of the external drying conditions.72 This

approach takes into account the commonly acknowledged drying rate characteristics at different

water contents.

Here, the relative drying rate (the drying rate relative to the maximum drying rate in the first

drying period) is defined as:

f Z
Nv

N̂v

(6.52)

where Nv is the specific drying rate and N̂v is the unhindered drying rate that is the drying rate in the

first drying period. The characteristic moisture content, f, can be defined as:

f Z
�XKXe

Xcr KXe

; (6.53)

where �X is the volume-averaged moisture content, Xcr is the moisture content at the critical point

(the point at which the falling rate period starts) and Xe is the equilibrium moisture content (the

moisture content of the droplet when it is at equilibrium with the partial pressure of the surrounding

air). This representation is attractive as it leads to a simple lumped-parameter expression for the

specific drying rate, which is illustrated by the following equation:72,73

Nv Z f $N̂v Z f $½b1ðpvs K pvbÞ�; (6.54)

where b1 is an external mass-transfer coefficient (s mK1), pvs is the partial pressure on the droplet

surface, and pvb is the partial pressure of the bulk drying air. Here, the critical water content is

considered to be a unique value, beyond that the evaporation is the same as that of the pure water
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droplet. Equation 6.54 has been used extensively as the basis for understanding the behavior of

industrial drying plants owing to its simplicity and the separation of the parameters that influence

the drying process: the material itself f, the design of the dryer b1 and the process conditions (pvsK
pvb). The characteristic drying rate curve approach, however, is clearly an approximation.72

For a material with a linear falling-rate curve and having no constant rate period (initial

moisture content Xi becomes the critical moisture content Xcr), and the dimensionless drying rate

f is proportional to (XKXe)/(XiKXe), Langrish and Kockel73 have rewritten the lumped parameter

expression in the following form:

Nv Z f $½b1$ðpvsKpvbÞ�Z
XKXe

Xi KXe

0
@

1
A$½b1ðpvsKpvbÞ�

Z ðXKXeÞ$½b2$ðpvs KpvbÞ�;

(6.55)

where b2 is another coefficient (m sK1 kgK1) as a result. Here they considered the critical water

content is the same as the initial water content (i.e., no constant drying-rate period). At dynamic

equilibrium of the droplet-air system, the rate of heat transfer is equal to the latent heat of vapor-

ization times the rate of mass transfer. Hence,

dQ

dt
Z a$AP$ðTbKTWBÞZKNv$AP$DHL; (6.56)

where DHL is the latent heat of vaporization (J kgK1). From Equation 6.55 and Equation 6.56,

a$ðTbKTWBÞZKðXi KXeÞ½b2$ðpvsKpvbÞ�$DHL: (6.57)

Equation 6.57 shows that the vapor-pressure driving force could be made proportional to the

wet-bulb depression. The specific drying rate expression from Equation 6.55 can be rewritten in

terms of the wet-bulb depression as

NvZðXKXeÞ½b3$ðTb K TWBÞ�$
msX

AP

; (6.58)

where, Tb is the bulk-air temperature and TWB is the wet-bulb temperature. Equation 6.58 predicts

the drying rate profile, and in conjunction with Equation 6.49 it estimates the moisture content

profile of the droplets. The drying rate calculations provide a means of computing the amount of

liquid that will be lost due to evaporation and the amount of liquid left in the exit particle. The

coefficient b3 (sK1KK1) in Equation 6.58 can be calculated by

b3 Z
a

ms

AP
$X$DHL

: (6.59)

In Equation 6.56, Equation 6.57, and Equation 6.59, a is the heat transfer coefficient and can be

calculated from the well-known Ranz–Marshall correlation69 as

Nu Z
a$dP

kb

Z 2 C0:6$Re1=2$Pr1=3: (6.60)

Here, Re is the Reynolds number and Pr is the Prandtl number, which can be described in terms

of the individual characteristics of the droplet and bulk air as:65

Re Z
dPvPrb

mb

; (6.61)

Pr Z
cpm

k

� �
b
; (6.62)
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where vP is the velocity of particle. In the above expressions, the subscript “P” denotes the particle

and “b” denotes the bulk air phase. The physical properties of bulk air such as specific heat (cp),

density (r), viscosity (m) and thermal conductivity (k) can be calculated using correlations. All these

gas-phase properties were calculated at an average film temperature (Tf) that is the arithmetic

average of the particle temperature and the drying air temperature.

The mass transfer driving force (XKXe) in the drying rate equation requires the determination

of equilibrium moisture content data at drying conditions. The equilibrium moisture content can be

calculated using desorption isotherms for skim milk. Several isotherms are available in the litera-

ture, for example SPS, Keey, Henderson, and Luikov models,74 which represent the direct

dependency of temperature on equilibrium moisture content and BET and GAB models don’t

show the direct dependency of temperature. Most of the published models in the literature have

been found for ambient (lower) temperatures and for lower humidity values up to 45%. Here, the

modified GAB model75, which has been fitted at elevated temperatures (up to 908C) and at higher

relative humidity levels (up to 100%), was used to estimate the equilibrium moisture content data.

The modified GAB equation used for calculating equilibrium moisture content (Xe) has the

following form:

Xe Z
C$K$mo$aw

ð1KK$awÞð1KK$aw CC$K$awÞ
; (6.63)

where C and K are equation coefficients and mo is the monolayer moisture content. The coefficients

C and K are theoretically related to the sorption enthalpy (energy of interaction between the first and

distant adsorbed molecules at individual water monolayer) and expressed as:

C Z Co$exp
DH1

RT

� �
; (6.64)

and

K Z Koexp
DH2

RT

� �
; (6.65)

where Co and Ko are fitting parameters, DH1 and DH2 are enthalpies of sorption of water, R is

universal gas constant, and T is absolute drying air temperature (Tb). The fitting parameters Co, Ko,

DH1, and DH2 were obtained by Lin.63 The above equations clearly show the dependency of

temperature on the equilibrium moisture content.

The parameter aw in the GAB equation is the water activity of the food sample. It is assumed

that the skim milk droplet during drying is in continuous contact with the hot drying air, and they

are in thermal equilibrium with each other. Hence, according to the definition of water activity,

water activity of the droplet is equal to the fractional relative humidity (j) of the hot drying

medium:

aw Z
%$j

100
: (6.66)

The relative humidity is defined as the partial pressure of water vapor (pv) for the drying air

divided by the pure component vapor pressure (saturated vapor pressure, psat) of water at the same

temperature as the droplet.76 Thus, water activity

aw Z
pv

psat

: (6.67)
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The partial vapor pressure of water vapor can be found by using the ideal gas law equation and

can be represented in the following form:

pv Z
P$Y

Y C ðMw=Mdry airÞ
; (6.68)

where P is the total pressure of the system. Usually, the spray drying operations are carried out at

atmospheric pressures; therefore, 1 atm total pressure was used during modeling of droplet drying

process. The parameter Y is the absolute humidity of air (moisture concentration of drying medium,

measured in kg water per kg dry air). The moisture concentration profile of the drying medium is

obtained from the mass balance around the drying medium. In Equation 6.68, Mw and Mdry air are

molecular weights of water and dry air, respectively. The saturated vapor pressure (the maximum

value of partial vapor pressure at the same temperature) of water was estimated using the three-

coefficient Antoine equation as

log psat Z AK
B

T CC
: (6.69)

In the above Antoine equation, T is the absolute drying medium temperature (Tb) and A, B, and C

are coefficients for water vapor.

Reaction Engineering Approach (REA). Another possible model to estimate the drying profile

of the droplets is the reaction engineering approach,28 which considers the drying process as a

competitive process between evaporation reaction and condensation reaction. If the droplet surface

is not completely covered up with the water (i.e., no constant-rate drying period), the drying rate is

well correlated by the following equation where the driving force is the vapor concentration

depression:62

Nv ZKb1$ðrv;sKrv;bÞ; (6.70)

where rv,s is the vapor concentration at solid–gas interface, rv,b is the bulk vapor concentration and

b1 is the mass transfer coefficient. The bulk vapor concentration rv,b can be estimated from the ideal

gas law as

rv;b Z
pv$Mw

R$Tb

: (6.71)

The mass transfer coefficient b1 can be calculated with the aid of Ranz–Marshall correlation, which

has the following form:

Sh Z
b1$dP

Dv

Z 2 C0:6$Re1=2Sc1=3: (6.72)

In Equation 6.72, Sh is the dimensionless Sherwood number, Dv is the vapor–air diffusion

coefficient and Sc is the dimensionless Schmidt number. The Reynolds number, Re, is given by

the Equation 6.61 and the Schmidt number, Sc, can be given by

Sc Z
mb

rb$Dv

: (6.73)

However, in Equation 6.3.23, the vapor concentration at the gas–solid interface rv,s is the

unknown parameter, but it is familiar that rv,s should be less than saturated vapor concentration

rv,sat for falling-rate drying period. Chen and Xie28 attempted to express rv,s as a function of

temperature in the following form:

rv;s Z j$rv;satðTsÞ: (6.74)
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Here, Ts is the interface temperature, which can be considered as the particle temperature (Tp)

because it is assumed that there is no temperature gradient within the particle itself. The parameter

j is the fractionality coefficient relative to the saturation condition. The coefficient j will become

unity if the liquid water fully covers up the droplet surface (vapor concentration at gas–solid surface

is equal to the saturated vapor concentration) and will become smaller than unity when the drying

begins to be hindered by the presence of solid components. Hence, the fractionality coefficient j

becomes the equilibrium relative humidity according to the theoretical definition of the relative

humidity. The fundamental assumption of the reaction engineering approach states that evaporation

is an “activation reaction” that has to overcome an “energy barrier,” but condensation does not have

to. Based on this assumption, Chen and Xie28 expressed the equilibrium relative humidity j(X,T) as

j Z exp K
DEv

R$T

� �
; (6.75)

where DEv is a “correction factor” in apparent activation energy for drying due to the increasing

difficulty of removing water from the particle at low moisture content levels. The correction factor

DEv is expected to be zero when liquid water fully covers up the droplet surface (jZ1) and should

gradually increase to a large value when the moisture content of the particle decreases to a small

value. If an absolutely dry environment (jZ0) is applied to the droplets, the activation energy

should approach infinity. Chen and Lin31 expressed the apparent activation energy in terms of

temperature and vapor concentration as individual characteristics of the droplets by combining

Equation 6.74 and Equation 6.75 in the following form:

DEv ZKRT$exp
rv;s

rv;sat

� �
: (6.76)

By combining the Equation 6.74 and Equation 6.75 and substituting them into the drying rate,

Equation 6.70, one may have the following expression for the drying rate profile:

Nv ZKb1$ rv;sat$exp K
DEv

RT

� �
Krv;b

� �
: (6.77)

Alternatively, one can express the above equation in terms of the rate of water evaporation as

following:

dmw

dt
ZKb1$APrv;sat$exp

DEv

R$T

� �
Cb1$AP$rv;b: (6.78)

The first term on the right hand side is a zero order drying reaction and that is the only activation

process. The second term on the right hand side is a first order wetting reaction, but it is not

activation process. Hence, Equation 6.78 represents that the drying is a competitive (or changing)

process between evaporation and condensation (wetting) reactions and this competitive process

would lead to the possible shrinkage of the droplets.

However, rv,s is still unknown in Equation 6.76 and the apparent activation energy need to be

estimated to figure out drying profile of the droplets. Chen and Xie28 and Chen and Lin31 have

introduced the normalized activation energy, which is the apparent activation energy relative to the

equilibrium activation energy to estimate apparent activation energy (DEv). The equilibrium acti-

vation energy is the possible lowest value of apparent activation energy. They have correlated the

normalized activation energy as a function of free moisture content (XKXe). The correlation was

given by the following equation:

DEv

DEv;e

Z f ðXKXeÞ Z a$exp b$ðXKXeÞ
c

� 	
: (6.79)
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Here, the activation energy ratio DEv/DEv,e is the normalized activation energy, DEv,e is the

“equilibrium” activation energy, and a, b, and c are constants. The values of constants a, b, and

c for skim milk are taken from Chen and Lin (2004). The equilibrium moisture content Xe(Tb) can

be calculated by the GAB model, Equation 6.63. The equilibrium activation energy at drying air

conditions can be given by the following equation:

DEv;e ZKR$Tb$ln
rv;b

rv;sat

� �
: (6.80)

It can be seen from Equation 6.79 that the normalized activation approaches zero when the free

moisture content of the droplet is high, meaning that the drying process becomes the evaporation of

pure water. When the free moisture content decreases to a lower value (X/Xe), the normalized

activation energy approaches to unity, i.e., the apparent activation energy DEv becomes the equili-

brium activation energy DEv,e, and the droplet would reach equilibrium with the drying air. This

way, the relation between the activation energy and the free moisture content of the material can be

used to predict the drying rate and water evaporation rate profile during modeling of a

drying process.

Mass Balance in the Drying Air. A similar mass balance can be written for the drying medium

by considering Figure 6.13. The hot drying medium is in dynamic equilibrium with a single vertical

stream of droplets. As the hot drying air passes through the dryer, it escapes vapor from the droplet

surface, and the air becomes more humid. The spray dryer geometry is divided into equal sized

mesh of well-defined area to simulate the governed system. In Figure 6.13, one single mesh is

shown which contains q number of droplets within the specified area. The hot drying air enters in

the mesh at distance h and it exits at distance hCdh.

The inlet humidity of drying air is Y kg water per kg dry air, and at the exit the humidity is (YC
dY) kg kgK1. As mentioned before, it is assumed here that only vapor is being transferred during a

droplet drying processing. The mass balance can be formulated (by balancing amount of vapor) in

the form of a following mathematical equation:
h

h + dh

X

X + dX

GY

G(Y + dY)

Drying
air

Figure 6.13 Mass balance of the drying air.
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q$ms$XKG$Y Z q$ms$ðX CdXÞKGðY CdYÞ; (6.81)

where, G is the mass flow rate of drying air in kg sK1.

Simplifying Equation 6.71, one may obtain

q$ms$dX Z G$dY : (6.82)

Because changes of various physical properties and drying parameters along the dryer length

are of interest, the velocity of the particle should be defined relative to the dryer length to get the

humidity profile along the dryer length:

vP Z
dh

dt
: (6.83)

By introducing velocity parameter in the Equation 6.82,

q$ms$
dX

dt
Z vP$G

dY

dh
: (6.84)

On rearrangement of Equation 6.84,

dY

dh
Z

q

G$vP

$
dmw

dt
: (6.85)

Equation 6.85 can be used to determine the moisture concentration profile of the drying

medium. The water evaporation rate dmw/dt can be determined by combining Equation 6.50 and

any of the drying rate equations formulated before.
6.3.1.2 Heat-Transfer Model

The heat balance around the droplet phase is written based on the assumption that there is no

temperature gradient within the droplet as long as the Biot number is less than 0.1. Another

possible argument for ignoring the temperature gradient inside the droplet is that the characteristic

time for internal heat transfer is much smaller than for internal mass transfer. Moreover, a part of

the heat transferred to the surface is used immediately for the evaporation of water. Therefore, the

droplet surface temperature can be considered as the average droplet temperature.

The heat balance around the evaporating droplet, moving in the hot air stream, is shown in

Figure 6.14. The droplet has the initial temperature TP (K). When the droplet comes into contact

with the hot drying air, the droplet acquires the sensible heat (that raises the droplet temperature)

and the latent heat (that changes the feed phase from liquid to vapor). As the droplet-hot air system

is in dynamic and thermal equilibrium with each other, the droplet temperature should approach the

bulk air temperature and both temperatures should be same at the exit. The energy balance around a

droplet being dried may be given by the following heat-transfer model:73

mPcp

dTP

dt
Z a$AP$ðTbKTPÞCDHL$

dmw

dt
: (6.86)

The left-hand side of the Equation 6.86 expresses the heat change of the droplet during convec-

tive drying, where cp is the heat capacity of the particle; a is the heat-transfer coefficient due to

convection (W mK2 KK1). The first term on the right-hand side represents the convective heat

being transferred from the hot drying air to a droplet because of the temperature difference between

two phases. The parameter a is the heat-transfer coefficient and can be calculated using Ranz–

Marshall correlation that was described by Equation 6.60. The second term on the right-hand side

represents the amount of heat supplied to the evaporating liquid for change of phase from liquid
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Figure 6.14 Energy balance around a single droplet.
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to vapor. Equation 6.86 can be used to predict the droplet temperature profile during spray

drying operation.

A heat balance can be formulated for the bulk drying medium using the step-wise heat balance

by considering an infinitesimal section as shown in Figure 6.15. Here it is assumed that the heat

losses through the dryer walls are negligible. The enthalpy of the bulk air at the entrance of the

illustrated mesh is Eb (J kgK1). The hot air supplies the convective heat to the droplets and in this

way the enthalpy of air is being changed. By considering Figure 6.15, the energy balance over

drying air can be written in the form of mathematical equation:
h

h +dh

Tp

Tp+dTp

G,Eb

G,Eb+dEb

Drying
air

qNv Eb Ap dt

q a  (Tb–Tp) Ap dt

Figure 6.15 Energy balance in the gas phase.
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G$EbKG$ðEb CdEbÞZ a$ðTbKTPÞ$q$AP$dtKNv$Eb$q$AP$dt: (6.87)

On reduction and rearrangement of the above equation,

G$dEb Z Nv$EbKa$ðTbKTPÞ
� 	

$q$AP$dt: (6.88)

The enthalpy of the gas (drying air) can be given by the following equation:

Eb Z cp$Tb CDHv$Y ; (6.89)

where, cp is the specific heat of the bulk drying air. The bulk drying air is the mixture of vapor and

dry air. The specific heat of bulk mixture can be calculated as:

cpb Z cp dry air CY$cp vapor: (6.90)

From Equation 6.88 through Equation 6.90,

G$cp dry air$dTb CG$ðDHv Ccp vapor$TbÞdY

Z qAP Nv$ cp dry air$Tb C ðDHv Ccp vapor$TbÞY

 �

Ka$ðTbKTPÞ
� 	

: (6.91)

On introducing the velocity of particle in above equation, one may have

G$cp dry air$
dTb

dh
CG$ðDHv Ccp vapor$TbÞ$

dY

dh

Z
q$AP

vP

$ Nv$ cp dry air$Tb C ðDHv Ccp vapor$TbÞY

 �

Ka$ðTbKTPÞ
� 	

: (6.92)

Equation 6.92 predicts the temperature profile of the drying medium if the moisture concen-

tration profile for the drying medium is known.
6.3.1.3 Momentum Transfer Model

The change in the droplet velocity is calculated by using momentum balance around a single

droplet. This requires the consideration of all forces acting along the falling droplet. The force

balance around a single droplet for co-current flow is shown in Figure 6.16. Basically, three forces

act onto the falling droplet during one-dimensional analysis: the downward gravity force (Fg), the

upward drag force (FD) and the upward buoyant force (FB). The resulting net force (FA) is balanced

with the acceleration (or deceleration) of the droplet. The individual forces can be calculated using

the following equations:

Fg Z
p

6
$d3

p$rp$g; (6.93)

where g is the gravitational constant.

FD Z
p

4
$d2

p$CD$rbðvbKvpÞ
2 (6.94)

FB Z
p

6
$d3

p$rb$g (6.95)

FA Z
p

6
$d3

p$rp$
dvp

dt
: (6.96)
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Figure 6.16 Moment balance of a single droplet traveling in drying air.
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The drag force represented in Equation 6.94 dominates the droplet motion and consists of the

friction force and form drag. The parameter CD is the drag coefficient and depends mainly on the

droplet’s Reynolds number. Here, the Reynolds number should be calculated using the relative

velocity (vbKvP). For a spherical evaporating droplet, the drag coefficient can be defined as:77

CD Z
24

Re
$

1 C0:2$Re0:63

ð1 CBÞ0:2
; (6.97)

where B is the Spalding number (transfer coefficient) that can be estimated by

B Z
Cpv$ðTbKTpÞ

DHv

: (6.98)

In Equation 6.98, Cpv is the specific heat of water vapor at the film temperature. The force

balance around a single droplet can be expressed as

FA Z FgKFD KFB: (6.99)

By using Equation 6.93 to Equation 6.96, one can derive the following equation that represents

the momentum balance around a falling droplet:

dvP

dt
Z

rP Krb

rP

� �
$gK

1:5CD$rb

dp$rP

ðvbKvPÞ
2

� � �
: (6.100)

Equation 6.100 represents the velocity profile of the evaporating droplet. The velocity of the

bulk drying medium can be calculated using the mass flow rate and dryer cross-sectional area as

vb Z
G

r !Cross–sectional Area
: (6.101)
b
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6.3.1.4 Prediction of Physical Properties of the Products

It is important to predict the physical properties of the final product before it is manufactured. In

the present study, models are formulated to estimate the physical properties in terms of particle

density and particle size. The particle density of milk powders is an important property in terms of

the physical quality and functionality. The particle density also determines the bulk density that is

an important property from the point of view of the economy and market requirements. In deter-

mining the particle density, the shrinkage of the droplet is accounted for by using a shrinking

balloon approach.78 The shrinking balloon approach assumes that the volume of the particle is

decreased by only the volume of the moisture leaving the particle that means the ideal shrinkage.

Then, the rate of moisture evaporation is balanced with the rate of moisture transfer from the center

to the droplet surface. During evaporation, the particle density will increase since the moisture is

escaping due to the rapid evaporation. The moisture being transferred at any specific time t can be

written as

dmw Z dðrw$VwÞZ rw$dðVwÞ: (6.102)

But it is assumed that the volume change of the particle is equal to the volume of moisture being

escaped; therefore Equation 6.102 can be written as

dmw Z rw$dðVpÞ Z rw$d
mp

rp

� �
: (6.103)

According to the definition of moisture content, the mass of water is described as:

mw Z ms$X$ (6.104)

By substituting Equation 6.104 into Equation 6.103, one can obtain

ms$dX Z rw$d
mp

rp

� �
Z rw$d

ms Cmw

rp

� �
: (6.105)

On rearrangement,

dX

rw

Z d
ms Cmw

ms

$
1

rp

� �
Z d

1 CX

rp

� �
: (6.106a)

Equation 6.106a can be expressed in the following integration form:

1

rw

$

ð
dX Z

ð
d

1 CX

rp

� �
(6.106b)

The above equation can be solved using the following boundary conditions:

At X Z 0; rp Z rs

When X s0; rp Z rp:
(6.107)

Using the boundary conditions, Equation 6.106bcan be integrated and rearranged in the

following form:

rp Z rs$
1 CX

1 C rs

rw
$X

: (6.108)

The particle density can be predicted using Equation 6.108. The equation clearly shows the

dependence of particle density on moisture content of the material being dried. The moisture

content profile for the material can be calculated by using mass transfer model.
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The particle size model may be estimated based on the assumption that the particle remains

completely spherical during the entire processing. The mass of water balance can then be written as:

rw$dVw Z rw$dVp Z dðVp$rpÞ: (6.109)

Integration of the above equation with following boundary conditions,

when Vp Z Vp0
; rp Z rp0

;

when Vp s0; rp Z rp;

leads to

ln
Vp

Vp0

Z ln
rp0

Krw

rp Krw

: (6.110)

By defining the relations between volume of particle and diameter of particle, one can write that

dp Z dp0
$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rp0

Krw

rpKrw

3

r
: (6.111)

The size of the dried particles can be predicted using Equation 6.111. The formulated model

shows that the particle size depends on initial droplet diameter and initial droplet density. This

requires suitable experimental techniques to measure droplet diameter and droplet density. The

final density of the particle can be evaluated using Equation 6.108. It can be seen that a continuous

change in particle diameter takes place during drying, which has a significant effect on heat and

mass transfer coefficients and on drag coefficient.

The predicted results using the two approaches were similar in trend in many occasions.

Figure 6.17 and Figure 6.18 show the REA model predictions of temperature, water content and
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Figure 6.17 Predicted trends of temperatures, humidity and moisture content.
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Figure 6.18 Predicted drying rate characteristics.
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rate of drying at different stages of drying in the plug flow dryer. The simulation conditions are

given in Table 6.1.

The models discussed thus far assumed uniform temperature within the droplet/particle being

dried. It is expected, however, that the surface temperature would be higher than the core tempera-

ture. This surface temperature plays a role in determining the surface properties like stickiness.

Thus far it has been impossible to measure or to realistically estimate this nonuniformity for such

small droplet/particles. Future work is expected to investigate exactly how high the surface

temperature in comparison with the core temperature.
6.3.2 Baking Bread

Bread has been one of the major cereal based products in West and is found to be increasingly

popular in various forms in the East. Bread baking is an ancient art. Only until recently, due to the

huge quantity demanded by the consumers and the high consistency of the products needed, the

process of bread baking has become an act of engineering. The engineering studies of this topic

have been reported by Therdthai et al.79–82 and Zhou.83
Table 6.1 Summary of the Modeling Conditions for Figure 6.17 and Figure 6.18

Parameter Value

Droplet diameter 0.0002 m

Droplet temperature (Tp) 508C

Total solids content 50%

Droplet moisture content (X) 1 kg water/kg solids

Mass flow rate of skim milk 10,000 droplets/s

Mass flow rate of skim milk 0.18 kg/h

Air temperature (Tb) 1808C

Air humidity (Y) 0.0065 kg water/kg dry air

Mass flow rate of air 0.0009 kg/s

Volumetric flow rate of air 3.72 m3/h
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Figure 6.19 Schematic diagram of bread baking (the thick lines denote the walls of the baking oven; the central
block is the bread; a, b, c, and d are, respectively, the important dimensions used in the modeling).
(Modified from a diagram kindly provided by W. B. Zhou at National University of Singapore, 2005.)

SIMULTANEOUS HEAT AND MASS TRANSFER 217
At the very least, baking bread involves radiation, convection and water movement. The heat

and the relatively dry conditions in the baking oven drive out moisture from the bread dough to

some extent. The dough also expands due to the CO2 generated as part of the pre-fermentation. The

bubble growth in the dough while baking places a key role in the texture and final acceptance of the

bread quality. Here only the heat and moisture transfer aspects are looked at.

As a simple example to show the principle, a large bread slab is considered (see Figure 6.19).

Assuming no expansion occurs, the following equations govern the heat and mass

transfer processes.
6.3.2.1 Inside the Bread

† Heat transfer:

vT

vt
Z

1

rcp

v

vx
k

vT

vx

� �
C

l

cp

vW

vt
; 0!x!xL=2; tO0: (6.112)

† Vapor transfer:

vV

vt
Z

v

vx
DV

vV

vx

� �
; 0!x!xL=2; tO0: (6.113)

† Liquid water transfer

vW

vt
Z

v

vx
DW

vW

vx

� �
; 0!x!xL=2; tO0: (6.114)
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† Boundary and initial conditions:

Kk
vT

vx

2

4

3

5
xZ0

Z hrðTr KTsÞChcðTairKTsÞKlrDw

vW

vx

2

4

3

5
xZ0

;

vT

vx

2
4

3
5

xZxL=2

Z 0; tO0:

Tðx;0Þ Z T0ðxÞ; 0%x%xL=2:

(6.115)

vV

vx

2
4

3
5

xZ0

Z hVðVð0;tÞKVairÞ;
vV

vx

2
4

3
5

xZxL=2

Z 0; tO0:

Vðx; 0ÞZ V0ðxÞ; 0%x%xL=2:

(6.116)

vW

vx

2

4

3

5
xZ0

Z hWðWð0; tÞKWairÞ;
vW

vx

2

4

3

5
xZxL=2

Z 0; tO0:

Wðx;0ÞZ W0ðxÞ; 0%x%xL=2:

(6.117)

where T(x,t) is temperature in K, x is space coordinate in m, and t is time in s. V(x,t) is water vapor

content in (kg water)/(kg product), DV is water vapor diffusivity in m2 sK2. r is apparent density in

Kg mK3, cp is specific heat in J kg, k is thermal conductivity in J KgK1 KK1, l is latent heat of

evaporation of water in W mK2KK1, W(x,t) is liquid water content in (kg water)/(kg product), xL is

the thickness of the bread slab. hr (simplified from Equation 6.30) and hc are heat transfer

coefficients due to radiation and convection respectively, in W mK1KK1. Tr and Tair are radiation

source temperature and surrounding oven air temperature, respectively, in K. TsZT(0,t) is bread

surface temperature in K. DW is liquid water diffusivity in m2 s. hV and hW, in L mK1, are mass

transfer coefficients of water vapor and liquid water at the bread surface, respectively. Vair and Wair

are water vapor content and liquid water content of the oven air, respectively. T0, V0, and W0

are initial temperature, initial water vapor content and initial liquid water content of the

bread, respectively.

It is interesting to note that there are two separate transfer coefficients used for vapor and liquid

water transfer at the outer boundary of the bread, which are not conventional.

The transfer coefficients were estimated by using natural convection theory for calculating Nu,

Pr, and Gr etc. They were correlated to temperature and water content. The values used were: hvZ
3.2!109/T3, hwZ1.4!10K3 TC0.27WK4.0!10K4TWK0.77W2. Note here that these equations

can only be solved numerically. Here, the Implicit Euler method was used to carry out computations

(Time stepZ30 s, space stepZ0.125 cm, initial temperature ToZ258C, oven temperatureZ2108C,

humidityZ0%).

The simulated results are shown qualitatively Figure 6.20. Obviously, the liquid water content

at the surface of the beard is rapidly removed, and the surface temperature rises quickly. The inside

region dries more slowly, and the temperature rise is delayed as expected. The half-way tempera-

ture is quite close to the center temperature, which may be due to the large evaporation effect in the

surface region, which consumes the largest portion of the temperature gradient.
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Figure 6.20 Qualitative representation of the moisture (liquid and vapor) profiles and temperature profiles of sur-
face and inside of a bread sample. (Modified from a diagram kindly provided by W. B. Zhou at National
University of Singapore, 2005.)
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The complex geometry of the industrial baking devices requires the full-three-dimensional

modeling of the oven spaces surround the baking line (where the breads are carried in and out of

the line). Natural convection must also be taken into account. Here, the Navier–Stokes equations for

fluid flow need to be solved together with the heat and mass conservation equations.
6.3.3 Further Examples on Drying, Frying, and Baking

To complete the chapter, an added list of useful references, which cover the modeling of food

drying, baking and frying, has been provided with broad classifications under drying,83–179

frying,180–200 and baking.201–213 It may be useful for the readers to examine these references for

their specific interest in the topic of simultaneous heat and mass transfer in food processing.

Furthermore, a review of the food related studies on transport phenomena has been given by

Welti-Chanes et al.214 which may also be of interest to the readers.
6.4 CONCLUDING REMARKS

Transport phenomena have been one of the most well studied engineering topics in science

and engineering. Applications of the known principles in food processing area take many forms,
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which can be innovative and satisfying. Foods are complex materials to work with and most

processes are of time-dependent by nature. The variability in food sources, structure changes

during processing, post-process handling, etc. all have impact on the reliability of the type of

mathematical model established. Food properties are of prime interest in any model develop-

ment. The combination of the transport phenomena modeling and the models of food quality

changes (chemical, physical, or microstructural) will likely be the most topical approach in the

near future. In this chapter, though never intended to be comprehensive, only selected examples

are given to show indeed the diversity involved in modeling heat and mass transfer processes

which all have achieved certain degree of success. It is hoped that the materials provided are

reasonably thought provoking. There is clearly a great room for further validations and improve-

ments in the area.
NOMENCLATURE

�X Average or mean water content on dry basis, kg kgK1

N̂v Drying rate for constant drying-rate period, kg mK2 sK1

_mv Mass flux of water vapor, kg sK1

_Ev Internal local evaporation rate, kg mK sK1

_Sv Rate of surface evaporation, kgmK2 sK1

DEv Apparent activation energy, J molK1

DEv,e Equilibrium activation energy, J molK1

DH1 Heat of sorption of water in GAB model, J molK1

DH2 Heat of sorption of water in GAB model, J molK1

DHL Latent heat of water vaporization, J kgK1

DHv Latent heat of vaporisation, J molK1

DHw Heat of wetting, J kgK1

A Antoine equation coefficient or surface area, m2

Ah Cross section area of air disperser hole, m2

An Cross section area of the single droplet nozzle, m2

Aori Cross section area of the nozzle’s orifice, m2

Ap Surface area of single droplet or particle, m2

aw Water activity

b Half-thickness, m

B Spalding number, Antoine equation coefficient

Bi Biot number (for heat transfer BiZhL/k or for mass transfer BimZhmL/D)

Bi* Modified Biot number

C GAB equation parameter, Antoine equation coefficient or concentration, kg mK3

C0 GAB equation coefficient

CD Drag coefficient

Ch_Bi Chen–Biot number as defined in the text

Ch_Le Chen–Lewis number as defined in the text

Cp or cp Specific heat capacity, J kgK1 KK1

D Diffusivity, m2 sK1

dD Diameter of spray dryer, m

dh Diameter of air disperser hole, m

dn Outer diameter of single droplet nozzle, m
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dori Diameter of the nozzle’s orifice, m

dp Diameter of droplet or particle, m

Dv Vapor-in-air diffusivity, m2 sK1

E Enthalpy, J kgK1

F Frequency of Droplets, sK1

f Relative drying rate

FA Acceleration force, N

FB Buoyancy force, N

FD Drag force, N

Fg Gravitational force, N

g Gravitational acceleration, m sK1

G Mass flow rate of the bulk-drying medium, kg sK1

h Heat transfer coefficient, W mK2 KK1, or distance from the tip of the atomiser (dryer

height), m

h* Equivalent heat transfer coefficient, W mK2 KK1

hm Mass transfer coefficient, m sK1

k Thermal conductivity, W mK1 KK1

K GAB equation parameter

K0 GAB equation coefficient

L Thickness of the material, m

Le Lewis number (LeZa/D)

M Molecular weight, g molK1

mo Monolayer moisture content in GAB model, kg kgK1

Mf Mass flow rate of feed, kg sK1

ms Mass of solids, kg

mw Mass of water, kg

n Number concentration of the particles, L mK3

Nu Nusselt number (NuZhl/k) (k here is that of the fluid thus differing from that for Biot

number calculation)

Nv Drying rate, kg mK2 sK1

P Product rate, kg sK1, or pressure, N mK2

Pr Prandtl number (PrZn/a, where n is the kinematic viscosity, m2 sK1)

psat Saturated vapor pressure, atm

pv Partial pressure of vapor, atm

Q Convective heat flow, J

q Heat flux, W mK2

R Particle radius (m)

r Radial coordinate (m)

R Ideal gas law constant

Re Reynolds number (ReZruL/m)

RH Relative humidity

S Spacing between two subsequent droplets, m

Sc Schmidt number (ScZn/D)

Sh Sherwood number (ShZhmL/D) (D here is that in the fluid thus differing from that for Biot

number for mass transfer calculation)

T Temperature, K

t Time, s

tD Drying time, s

tR Residence time, s

Tsat Adiabatic saturation temperature of drying air, K
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Twb Wet-bulb temperature of drying air, K

Um Overall mass transfer coefficient, m sK1

v Velocity, m sK1

V Volume, m3, or, water vapor content, kg kgK1

Vb Volumetric flow rate of bulk-air, m3 sK1

Vf Volumetric flow rate of feed, m3 sK1

vjet Velocity of liquid jet or column, m sK1

vr Relative velocity, m sK1

vt Terminal settling velocity, m sK1

x Distance or x-coordinate, m

Xcr Critical moisture content on dry basis, kg kgK1

Xe Equilibrium moisture content on dry basis, kg kgK1

Y Air humidity, kg kgK1

Greek Symbols

r Density, kg mK3

l Latent heat of water vaporization, J kgK1

s Stefan–Boltzmann constant

f Characteristic moisture content

r Density, kg mK3

m Dynamic viscosity, Pa s

h Efficiency

a Heat transfer coefficient, W mK2 KK1, or thermal diffusivity (aZk/rcp), m2sK1

b Mass transfer coefficient, m sK1

3 Porosity

j Relative humidity (ZRH)

d Thickness, m

t Tortuosity

m Viscosity, Pa s

b1 External mass-transfer coefficient, s mK1

b2 Coefficient, s(m kg)K1

b3 Coefficient, sK1 KK1

rv Vapor concentration, kg mK3

Subscripts

N Bulk, surrounding or equilibrium

1,2 Surface 1 and surface 2

A Ambient condition

air Air properties

av Average

b Bulk drying medium phase

c Characteristic parameters

cond Conduction

conv Convection

cr Critical conditions

D Dryer

e Equilibrium or ambient conditions

E Exit condition

eff Effective parameters
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f Feed

h Air disperser hole

I Inlet condition

l Liquid

L Thickness

M Mass

m Mass transfer

n Nozzle

o Center temperature or initial values

p Particle parameters

s Solid, surface

sat Saturated conditions

sp Porous solid particle

T Thermal

V, v Water vapor

W, w Liquid water

x Space coordinate

y Space coordinate

z Space coordinate
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APPENDIX A: TYPICAL CONVECTIVE MASS-TRANSFER
CORRELATIONS

Heat convection is a well-studied subject and is well documented in many texts.62 The mass

transfer calculations can be done, as the first approximation, based on the heat transfer corre-

lations. The mass transfer coefficient (hm) is obtained from established correlations for

Sherwood number (hmL)/D originally for Nusselt number hl/kL is the characteristic length of

the object (m) and k is the thermal conductivity of the bulk fluid (W mK1 KK1). The two

principal numbers are correlated to the Reynolds number ((ruL)/m), the Prandtl number (v/a)

or Schmidt number (v/D), respectively. u is the bulk fluid velocity (m sK1). r is the fluid density

(kg mK3), m is the viscosity (Pa s) and a is the thermal diffusivity (m2 sK1), and D is the mass

diffusivity (m2 sK1).

All the physical properties used in the calculations usually are determined at the film tempera-

ture ðTf Z ðTsCTNÞ=2Þ and film concentration ðCf Z ðCsCCNÞ=2Þ. Table 6.A1 shows the typical

correlations, which may be used as the first approximation for evaluating mass

transfer coefficients.
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Table 6.A1 Commonly Used Mass-Transfer Correlations for Average Sherwood Number Calculations

Configuration Geometry Conditions Correlation

External flow (forced

convection)

Flat plate Laminar, 0.6%Pr%50 L: length of the plate (m) ShL Z0:664Re1=2
L Sc1=3

Mixed, ReL,cZ5!105, ReL%108, 0.6%Pr%50, L: length of the

plate (m)

ShL Z ð0:037Re4=5
L K871ÞSc1=3

Cylinder (pipe or

tube)

ReLPrO0.2, L: diameter (LZd) ShL Z0:3C 0:62Re1=2
L Sc1=3 ! 1C ð0:4=ScÞ2=3

� 	K1=4
h i

1C ðReL=282;000Þ5=8
� 	4=5

Sphere L: diameter (LZd) ShL Z2C0:6Re1=2
L Sc1=3

External flow

(natural

convection)

Vertical plate L: length of the plate ShL Z 0:825C
0:387Ra1=6

L

1C 0:492
Scð Þ9=16

� 	8=27

( )2

Upper surface of

heated plate

LZAs/P, As: plate surface area, P: plate perimeter, RaL Zgb

ðTwall KTNÞL
3=an

ShL Z0:54Ra1=4
L , 104%RaL%107 ShL Z0:15Ra1=3

L ,

107%RaL%1011

LZAs/P, As: plate surface area, P: plate perimeter,

105%RaL%1010
ShL Z0:27Ra1=4

L

Cylinder (pipe or

tube)

LZd (diameter), RaL%1012 ShL Z 0:60C
0:387Ra1=6

L

1C 0:559
Scð Þ9=16

� 	8=27

( )2

Sphere LZd (diameter), PrR0.7, RaL%1011 ShL Z2C
0:589Ra1=6

L

1C 0:469
Scð Þ9=16

� 	4=9

Internal flow (forced

convection)

Laminar Fully developed, uniform wall heat flux, PrR0.6, LZ4Ac=P

(hydraulic diameter), Ac: flow cross-sectional area, P:

wetted perimeter

ShL Z4:36

Fully developed, uniform wall temperature, PrR0.6 ShL Z3:66

Turbulent, fully developed, 0.6%Pr%16,700,

Length/diameterR10, ReLR10,000, ms: viscosity at wall

ShL Z0:027Re4=5
L Sc1=3 m

ms

� �0:14

Internal flow (natural

convection)

Horizontal cavity

heated from

below

RaL ZgbðT1 KT2ÞL
3=anO1708T1: the bottom surface

temperature, T2: the upper surface temperature, b: thermal

expansion coefficient (z 1/Tf), L: distance between two

horizontal walls, 3!105%RaL%7!109

ShL Z0:069Re1=3
L Sc0:074

Vertical cavity

heated from one

side and cooled at

the other

2!H/L!10, Pr!105, 103%RaL%1010, H: height of the cavity,

L: distance between two vertical walls

ShL Z0:22 Sc
0:2CSc RaL

� �0:28 H
L

� �K0:25

Combined natural

and forced

convection

n is often quoted to be 3 though 7/2 and 4 are better for

transverse flows (i.e., two effects are “opposite to each

other” and the sign in the correction is “K”)

Sh
n
L ZSh

n
forcedGSh

n
natural

Source: Modified from Incropera, F. P. and DeWitt, D. P., Fundamentals of Heat and Mass Transfer, 4th and 5th ed., New York: Wiley, 1990 and 2002.
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120. Iguaz, A., San Martı́n, M. B., Maté, J. I., Fernández, T., and Vı́rseda, P., Modelling effective moisture

diffusivity of rough rice (Lido cultivar) at low drying temperatures, Journal of Food Engineering,

59(2–3), 253–258, 2003.

121. Jain, D., Modeling the performance of greenhouse with packed bed thermal storage on crop drying

application, Journal of Food Engineering, 71(2), 170–178, 2005.

122. Jain, D., Modeling the system performance of multi-tray crop drying using an inclined multi-pass

solar air heater with in-built thermal storage, Journal of Food Engineering, 71(1), 44–54, 2005.

123. Karapantsios, T.D., Conductive drying kinetics of pregelatinized starch thin films, Journal of Food

Engineering, 76(4), 477–489, 2006.
q 2006 by Taylor & Francis Group, LLC



HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES230
124. Kim, S. S. and Bhowmik, S. R., Effective moisture diffusivity of plain yogurt undergoing microwave

vacuum drying, Journal of Food Engineering, 24(1), 137–148, 1995.

125. Krokida, M. K., Foundoukidis, E., and Maroulis, Z., Drying constant: literature data compilation for

foodstuffs, Journal of Food Engineering, 61(3), 321–330, 2004.

126. Liu, Q. and Bakker-Arkema, F. W., A model-predictive controller for grain drying, Journal of Food

Engineering, 49(4), 321–326, 2001.

127. Lombraña, J. I. and Villarán, M. C., The influence of pressure and temperature on freeze-drying in an

adsorbent medium and establishment of drying strategies, Food Research International, 30(3–4),

213–222, 1997.

128. Luna-Solano, G., Salgado-Cervantes, M. A., Rodrı́guez-Jimenes, G. C., and Garcı́a-Alvarado, M. A.,

Optimization of brewer’s yeast spray drying process, Journal of Food Engineering, 68(1), 9–18,

2005.

129. Maroulis, Z. B., Kiranoudis, C. T., and Marinos-Kouris, D., Simultaneous estimation of heat and

mass transfer coefficients in externally controlled drying, Journal of Food Engineering, 14(3),

241–255, 1991.

130. Maroulis, Z. B., Kiranoudis, C. T., and Marinos-Kouris, D., Heat and mass transfer modeling in air

drying of foods, Journal of Food Engineering, 26(1), 113–130, 1995.

131. Maroulis, Z. B., Krokida, M. K., and Rahman, M. S., A structural generic model to predict the

effective thermal conductivity of fruits and vegetables during drying, Journal of Food Engineering,

52(1), 47–52, 2002.
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190. Oroszvári, B. K., Bayod, E., Sjöholm, I., and Tornberg, E., The mechanisms controlling heat and

mass transfer on frying of beefburgers. III. Mass transfer evolution during frying, Journal of Food

Engineering, 76(2), 169–178, 2006.
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7.1 INTRODUCTION

A number of different reactions occur in foods during processing and subsequent storage. The

objective of processing is the optimization of specific food quality characteristics, such as: food

flavor, color, texture, and nutritional profile; inactivation of undesirable microorganisms, enzymes,

or toxicants; and extension of food shelf life. The specific conditions and methodology applied are

often determined by the target quality parameters of the food because processes are designed to

cause an action and selectively improve food features. Therefore, to successfully design and

implement a process, it is necessary to both quantify the rates at which the attributes of interest

change with time,1 and estimate the effect of environmental factors, such as temperature, the system

pH, the moisture content, catalysts, etc. on these rates.

After food processing, final food products are subject to numerous reactions during subsequent

storage, transport, and handling. For each particular food there is a finite length of time after

production during which it will retain a required level of quality, organoleptically and safety-

wise, under stated conditions of storage. This period, which can be generally defined as the shelf

life of the food product, is directly related to durability open dating on food labels. Such “expira-

tion” labeling is of prime interest and influences consumer decisions and stock rotation systems.

Despite their multiparametric nature, food quality and food spoilage of a particular food can, in

most cases, be well described by specific indices. Since characteristic properties are overlaid for

every product, a decision has to be made at what level the decrease in a certain characteristic or the

development of an undesirable one can be detected by the consumer. Additionally, it is necessary to

be able to describe, in mathematical terms, this gradual deterioration as a function of time, and other

important parameters that may affect food spoilage. After developing a robust and well-validated

kinetic model for food degradation, it is possible to design alternative procedures and practices that

would lead to significant quality retention.

Food quality deterioration can be the outcome of multiple actions, roughly grouped in three

main categories: physical phenomena, chemical reactions, and microbiological spoilage. These

actions often occur simultaneously throughout a food’s life cycle, leading to its deterioration.

Additionally, one type of action can affect and accelerate other actions. The exhaustive in depth

study of the chemical and biological reactions and physical changes that occur in the food during

and after processing allows the selection of the parameters that are important for its safety and

which will, to a great extent, determine overall quality. These parameters are used as indices to

quantitatively assess quality loss and the corresponding degradation rates.

After recognizing and kinetically studying the prevailing food deterioration indices, another

major issue of food reaction kinetic studies involves the quantification of the factors influencing the

reaction rates of these indices. Several intrinsic and extrinsic factors significantly influence indices

of deterioration. Water activity, pH, and food constituents are endogenous factors affecting food

spoilage. Environmental factors—specifically temperature, exposure to oxygen or other packaging

gases, and light—have an important effect on food degradation rates. The scope of a full kinetic

study is to establish the quantitative effect of each parameter to the quality loss of a specific food.

The purpose of this chapter is to (1) provide an overall view of food reaction kinetics, (2) describe a

methodology for modeling reaction rates, and (3) quantify the effect of important environmental
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parameters on these rates, using well-known examples of frequent reactions occurring in foods,

mostly based on chemical mechanisms.
7.2 CATEGORIES OF PHENOMENA AFFECTING FOOD QUALITY

7.2.1 Introduction

In recent literature, major spoilage phenomena are attributed to physical, chemical, and micro-

bial mechanisms that often act simultaneously—or even synergistically—to deteriorate product’s

quality. Table 7.1 summarizes some common deteriorative mechanisms in different food matrices,

stating important influencing factors. Each of the main phenomena categories that lead to food

degradation are reviewed in this section.
7.2.2 Physical Changes

The first type of food deterioration is attributed to physical change or instability.2 Such

mechanisms may involve moisture or mass transfer of different substances in food matrices,

leading to a change of their moisture content, and, consequently, to a physical collapse, or in

some cases, to a detrimental microbiological or chemical degradation. Popular examples of this

category include staling of bakery product, rapid wilting of leafy vegetables, etc.

A number of physical changes are mostly influenced by temperature and humidity of the

environment. For example, dry foods and cereals are expected to have a certain crispy texture, a

requirement that frequently fails to be met in high humidity environments due to water absorption

and loss of textural properties. This phenomenon is attributed to a change in food matrix glass

transition temperature (Tg) that is closely related to food molecular mobility and, therefore, to

stability and quality. Glass transition theory has recently received much attention in food science

due to its various applications in carbohydrate containing and frozen foods.4 This theory is based on

the physical, second-order change of the product from a “glassy” rigid and solid phase to a

“rubbery”? amorphous and softened state. The interesting aspect of this phenomenon is that it is

often considered to be of kinetic nature, despite the discontinuity in heat capacity without change of

phase that indicates a second-order thermodynamic phenomenon. Another effect of the change of

glass transition temperature is the “freezer burn” phenomena in deep-frozen foods, following the

significant sublimation of water from food surface when storage temperature is not constant.

Caking of dry powders occurs when powder gains moisture; this is another effect of glass transition.

Other well-known physical phenomena that could also be considered as physical changes of

polymers are the gelatinization and retrogradation of starch.

Other physical changes frequently occurring in frozen foods or carbohydrate-containing foods

include crystal growth and undesirable crystal size and location change.5 Fat bloom, the whitish,

greasy haze found in cocoa butter of chocolate is an example of the migration and recrystallization

of fat and appropriate chocolate tempering is necessary to minimize its detrimental effect on

chocolate quality.2
7.2.3 Chemical Changes

Food spoilage involves chemical reactions, including the reaction or breakdown of intrinsic

food components such as proteins, lipids, carbohydrates, vitamins, etc. Most of these reactions

directly affect major quality attributes, such as color, flavor, texture, taste, and overall appearance

of perishable food products.
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Table 7.1 Common Deterioration Paths and Major Influencing Parameters in Various Food Matrices

Food Matrix Deterioration Path Critical Parameter Remarks References

Bakery products Staling, starch retrogradation, microbial growth Humidity, temperature,

oxygen

Significant mass and

moisture transfer

2

Dry foods/cereals Moisture migration, loss of crispy texture, oxidation Humidity, temperature Change of Tg temperature,

influencing food molecular

mobility

2–4

Frozen foods Moisture migration, ice crystal formation/recrystallization,

oxidation, freezer burn, vitamin loss, color changes

Humidity, temperature,

oxygen, inappropriate

handling

Change of Tg temperature 2, 3, 5, 55, 56

Chocolate Sugar and fat bloom (crystallization), oxidation Humidity, temperature,

oxygen

Appropriate tempering is

necessary

2

Fruit and vegetable tissues Enzymatic activity, browning, collapse, microbial growth Humidity, temperature,

oxygen, light

2,6

Milk powders, fruits Maillard browning Water activity, temperature,

oxygen, light, pH, metal

ions

2, 7, 39–46

Dairy products, animal

tissues

Rancidity, microbial growth Oxygen, temperature, pH,

water activity

2, 8
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Regarding proteins, the role of enzymes in food processing and subsequent storage is of major

interest. Acting as biological catalysts, enzymes enable and often accelerate chemical reactions,

causing, for example, browning, softening, or collapse of fruit and vegetable tissues. A number of

enzymes have been reported to influence both vegetative and animal tissues; enzyme study and

technological application is an area of great advance.6

Nonenzymatic browning, also known as the Maillard browning reaction, is an important case of

complex, chemical reactions between proteins and reducing sugars, leading to color darkening and

possible textural changes. Maillard browning has been widely studied in several tissues, with a

special focus on the role of environmental factors—such as temperature and water activity—on the

rate of brown pigment formation. Its relation to the change of the glass transition temperature, a

closely linked parameter to physical changes in amorphous or frozen matrices, has been also

investigated.7 Sugars may also be caramelized or undergo retrogradation reactions.

Lipids are usually involved in oxidation reactions for fats and oils that lead to undesired

rancidity of foods, such as milk and other dairy products, meat and fish tissues, cereals, coffee,

and chocolate. Lipolytic enzymes may also act to accelerate lipid degradation; a lot of effort is

focused on their inactivation by thermal processing or moisture decrease.8

Certain vitamins are susceptible to heat (C, thiamin, folate, B6), to oxidation (C, D, E, A), or to

photodegradation (riboflavin).
7.2.4 Microbiological Changes

Microbiological action is a common pathway of food spoilage, which may not be limited to loss

of food quality, but may also jeopardize food safety by causing food borne illnesses. Food predic-

tive microbiology is an area of increased interest that is focused on modeling food pathogen or

spoilage microorganism growth as a function of multiple influencing parameters, so as to predict a

certain microorganism behavior when a specific environmental factor is modified.9 Microorgan-

isms include bacteria, molds, and yeasts; each of these categories influence in a different way and

up to a different level of food quality and safety.

Most foods are susceptible to microbiological spoilage. Common cases include mold actions or

vegetable and fruit rots, growth of spoilage bacteria such as pseudomonads in refrigerated meats,

poultry, dairy, and eggs, lactic acid bacteria, and Brochothrix thermosphacta in vacuum- or

modified-atmosphere-packed meat products, etc.

Regarding food pathogens known to cause serious illnesses, Clostridium botulinum was recog-

nized early as producing a lethal neurotoxin in canned products. Staphylococcus aureus often

contaminates meat products or confectionaries through its enterotoxin, when appropriate sanitary

conditions are not observed in food industries or retail points. Salmonella is a ubiquitous species,

frequently causing major problems in ready-to-eat meals, meat products, poultry, and dairy

products. Listeria monocytogenes, a resistant psychrotroph bacterium, has recently been a major

problem in the dairy and ready-to-eat meat products industries.

In this chapter, modeling of microbiological events, such as microbial growth or inactivation,

will not be separately covered and studied.10 The models developed in predictive microbiology can

be used to calculate microbial numbers given a specific food composition, a food manufacturing

line, or a food distribution chain. Consequently, predictive microbiology gives improved, quan-

titative insight into the food properties and processes that are of importance to the safety and quality

of foods.11–13

For the prediction of food quality, usually lag and exponential growth phases play the most

important roles. Foods usually become spoiled if the number of microorganisms becomes larger

than 107 cells per g of product. For pathogenic microorganisms, safe numbers are generally far

lower. There are numerous empirical models of bacterial curves (Gompertz, Logistic, etc) of

significant practical use, which cannot be extrapolated in different cases.10 Mechanistic or
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dynamic models can be alternatively used. Specific growth rate and lag time of microorganisms

depend on environmental conditions (mainly temperature, pH, water activity, and amount of

oxygen); mathematical models have been developed to quantitatively describe this

relationship.11,12,14

It is worth mentioning that there are some general predictive microbiology software packages

available: Pathogen Modelling Program (PMP, USDA Eastern Regional Research Centre, Wynd-

moor, Pennsylvania, U.S.A.) and the Food MicroModel (FMM, Leatherhead Food research

Association, U.K.) are user-friendly software programs that predict bacterial growth at user-

defined sets of values of temperature, pH, and NaCl concentration. The recently developed

COMBASE (Institute of Food Research, Norwich, U.K., http://www.combase.cc) includes a sig-

nificant database of published material on developed models in different food products under

different environmental conditions, a tool of great practical importance.
7.3 BASIC PRINCIPLES OF REACTION KINETICS

7.3.1 Introduction

As briefly mentioned, different kinds of reactions continue to occur post processing, at a rate

determined by the inherent properties of the food, the type of packaging, and conditions of storage

and distribution.15 These factors determine the shelf life of the food. The fundamentals of

describing food kinetics, assessing food quality, and designing shelf life tests are the core of the

methodology used to model reactions in foods.

In understanding the progress of reactions, knowledge of thermodynamics is useful for asses-

sing the direction of a reaction, and thus, its driving force.16 Thermodynamics provides information

about the possibility of a certain reaction taking place in a specific system, but does not tell anything

about its rate; the latter is the object of the reaction kinetics field.

The first step in kinetically studying food spoilage is to determine the most important par-

ameters that reflect the overall quality loss, while at the same time, identify all controlling factors of

the degradation process—either intrinsic (e.g. pH of the matrix) or extrinsic factors (e.g, aw,

temperature, oxygen).1 Identifying and quantitatively estimating the influence of prevailing par-

ameters is of crucial importance in the design of food processing so that appropriate modifications

are made and specific processing conditions are applied.

The approach is based on the identification of the biological and chemical reactions that are

most likely to have a critical effect on quality loss. Assuming constant environmental conditions for

simplification purposes, a reaction scheme that expresses the effect of the concentration of the

reactants can be developed. The ultimate objective is to model the change of the concentrations of

constituents connected to food quality as functions of time.
7.3.1.1 Simple Kinetics

Molecular, irreversible reactions are typically expressed as3
n1A1 Cn2A2 Cn3A3 Cn4A4 C/CnmAm $$%
kf

P; (7.1)
where Ai are the reactant species, nj are the respective stoichiometric coefficients ( jZ1,2,.,m), P is

the products, and kf is the forward reaction rate constant. For such a scheme, the reaction rate, r, is

given by
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r ZK
1

nj

d½Aj�

dt
Z kf½A1�

n1½A2�
n.½Am�

nm ; (7.2)

where nj is the order of the reaction with respect to constituents Aj. A true molecular reaction holds

that njZnj.
7.3.1.2 Complex Kinetics

A common case of increased complexity is when consecutive or parallel reactions occur in the

food matrix.16 These cases include intermediate products that then react further. One simple

example of this category is described by the following scheme:

A $$%
k1

B $$%
k2

C (7.3)

The differential rate equations are then:

d½A�

dt
ZKk1½A�;

d½B�

dt
Z k1½A�Kk2½B�;

d½C�

dt
Z k2½B�:

(7.4)

The analytical solutions when external conditions are assumed constant are:

½A�Z ½A�0eKk1t;

½B�Z ½B�0eKk2t Ck1½A�0
eKk1t KeKk2t

k2Kk1

;

½C�Z ½C�0 C ½B�0ð1KeKk2tÞC ½A�0 1 C
k1eKk2t Kk2eKk1t

k2Kk1

0

@

1

A:

(7.5)

On the other hand, parallel equations happen when a reactant is simultaneously implicated in

two or more different reactions:

A CB%
k1

k2

P (7.6)

The corresponding differential equation that describes the reaction is

K
d½A�

dt
Z k1½A�½B�Ck2½A�; (7.7)

which is difficult to solve analytically; instead, numerical solutions are preferred.

There are numerous common examples of consecutive and parallel equations in foods, such as

non-enzymatic browning,7 or chlorophyll degradation during heating.17 In the literature, the

so-called steady state that significantly simplifies the above-mentioned complex equations is

frequently assumed. Supposing a case where in real, complex food systems, the degradation of

crucial quality parameters is described by reversible, multiple-step reactions, the following
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form provides description:

aA CbB%
kf

kb

cC CdD: (7.8)

In this case, A reacts with B to form products C and D that can back react with a rate constant of

kb. The reaction rate in this case would be:

r Z
Kd½A�

adt
Z

Kd½B�

bdt
Z

Cd½C�

cdt
Z

Cd½D�

ddt
Z kf½A�

a½B�bKkb½C�
c½D�d: (7.9)

At a certain stage, the rates for the forward and the reverse reaction become equal, equilibrium

is reached, and the equilibrium constant Keq is described by

Keq Z
kf

kb

Z
½C�½D�

½A�½B�
: (7.10)

However, for most cases of food degradation systems, either kb/kf, or for the time period of

practical interest they are distant from equilibrium, i.e., [C] and [D] are very small, allowing the

reaction to be treated as irreversible. The most common case is that one of the reactant species is the

limiting factor and affects reaction kinetics, with the other constituents being in large excess. That

allows the quality loss rate equation to be expressed in terms of specific reactants:

r Z
Kd½A�

dt
Z kf 0 ½A�

a: (7.11)

where a is an apparent or pseudo order of the reaction of component A and k 0f is the apparent rate

constant. Assuming that the aforementioned simplifications are used in complex food matrices,

food-quality loss and shelf-life loss can be, in practice, represented by the loss of desirable quality

factors A (e.g., nutrients, characteristic flavors) or the formation of undesirable factors B (e.g., off

flavors, discoloration). The rates of loss for A and of formation for B are expressed as:

rA Z
Kd½A�

dt
Z k½A�n;

rB Z
d½B�

dt
Z k 0½B�n

0

:

(7.12)

Both k and k 0 are the apparent reaction rate constants, and n and n 0 are the reaction orders. It

should be again stressed that Equation 7.11 and Equation 7.12 do not represent true reaction

mechanisms, and n and n 0 are not necessarily true reaction orders with respect to the species A

and B, but rather apparent or pseudo orders. The apparent reaction orders and constants are

determined by fitting the change with time of the experimentally measured values of [A] or [B]

to Equation 7.11 or Equation 7.12, by differential or integral methods.18
7.3.2 Reaction Order

The term reaction order is defined as the number of molecules participating in a reaction as

reactants. In other words, reaction order is the sum of the exponents of the reactant species. In food

science, it is quite common to describe a reaction as a first-order equation, even though the real

mechanism is not first order. The reaction order is then referred to as pseudo first-order or,

equivalently, as apparent first-order.
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7.3.2.1 Common Types of Reactions

Zero-order reactions. If A is the characteristic quality parameter selected to describe the

degradation of a food product, then the equations used are:

r Z
dA

dt
Z k;

A Z A0 Ckt:

(7.13)

Examples of common zero-order reactions in foods include frozen food shelf life, enzymatic

reactions in fresh foods, nonenzymatic browning, etc.

First-order reactions. The respective equations in the case of first-order reactions are:

r ZK
dA

dt
Z kA;

ln
A

A0

0
@

1
AZ kt0A Z A0eKkt:

(7.14)

Examples of common reactions in foods of first order include fresh and dry food shelf life,

microbial growth in fresh foods, microbial death, oxidative color loss, vitamin loss in frozen,

canned, and dry food, and thermal denaturation of proteins.19

Second-order reactions. The respective equations in the case of second-order reactions are:

r ZK
dA

dt
Z kA2;

1

A
K

1

A0

Z kt:

(7.15)

Second-order unimolecular reactions are characterized by a hyperbolic relationship between the

concentration of the reactant or product and time.20 A linear plot is obtained when the term (1/A) is

plotted vs. time.

Similarly, when studying a bimolecular reaction, Equation 7.15 becomes

r ZK
dA

dt
Z kAB: (7.16)

where A and B are the reactants.

If B is assumed to be constant, then integration of Equation 7.16 gives

ln
A

A0

� �
ZKk 0t; (7.17)

where k 0 is a pseudo-order rate constant, k 0ZkB.

A common case of such reaction is the aerobic degradation of ascorbic acid, where oxygen level

plays the role of reactant B. When studying this reaction at different levels of oxygen availability, a

family of pseudo-first order plots is discovered.
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nth-order reactions. The respective equations in the case of nth-order reactions are:

r ZK
dA

dt
Z kAn; nO1;

A1KnKA1Kn
0 ZKð1KnÞkt:

(7.18)

To determine the apparent reaction order, a trial-and-error process is often applied that is based

on assuming various values of n and evaluating, through iterative methods, which value yields the

best fit. There are two alternative methods to perform these assays, namely the graphical or the

least-square linear fit to the corresponding equations listed above (Equation 7.13 through Equation

7.18). Alternative methods are briefly described in a following section. As stated by Labuza 1984,21

a prerequisite for safely deciding the appropriate apparent order is to carry out the experiment to at

least 50%, or preferably up to 75% conversion. Additionally, another observation is that the worse

the precision of the method of measuring the quality factor A, the larger the extent of change to

which the experiment should be carried out to obtain an acceptably accurate estimate of the reaction

rate constant. Otherwise, any extrapolation to longer times may yield significant errors. Other

possible pitfalls stated by Taoukis et al. (1997) include the existence of lag phase and the

misleading use of the R2 criterion, in case of scattered data in zero- and first-order reactions.3

After the apparent order of the quality deterioration reaction has been established, the next step

involves the application of statistics for parameter k to estimate the error introduced. Student

t-distribution for the 95% confidence limits is frequently used if a linear regression method was

selected for the estimation of parameter k. Whichever method is applied to determine the apparent

reaction order, n, of Equation 7.18, there are many cases stated in literature that none of the

equations (Equation 7.13 through Equation 7.18) can adequately model the measured quality

loss. One approach in this case is to develop a semi-empirical kinetic/mathematical model that

effectively represents the experimental data. Saguy and Karel described the steps for building such

a model.22 Computer-aided multiple linear, polynomial, or nonlinear regressions can test multi-

variable linear models, polynomial equations; nonlinear models can be defined and their fit to the

data can be tested. Empirical equations modeling the effect of different composition or process

parameters can be derived from statistical experimental designs, such as surface-response

methods,23 where the coefficients determined lack any physical meaning.

It should be pointed out, however, that because the model often does not correspond to the true

mechanism of the reaction, any extrapolation of kinetic results to similar systems should be done

very cautiously. In certain cases, an in-depth kinetic study of specific reactions important to food

quality is desirable, so that the effect of compositional changes can be studied. In these cases, the

identity of the actual mechanism of the reactions is sought, if it is possible to find. Such studies are

usually done in model systems, rather than in actual foods, so that the composition and the relative

concentrations of the components are closely controlled and monitored.

7.3.3 Determining the Order of Reaction

After the parameter A that should describe a food system degradation is decided, it is necessary

to generate data of the change of A over time. Analysis of this information to estimate the most

appropriate reaction order can be completed using differential or integral methods.1

7.3.3.1 Differential Methods

The equation of unknown order used to describe the system change has the following form:

dA

dt
Z rateðrÞZKk½A�n: (7.19)
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Figure 7.1 (a) Plot of concentration [A] vs. time and (b) plot of ln(d[A]/dt) vs. ln[A] to determine the slope, n.
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1. [A] is plotted vs. time, and a smooth curve is drawn as shown in Figure 7.1a.

2. The slope is d[A]/dt and can be determined at various points in time by:

a. Drawing a tangent to curve

b. Taking d[A] for each dt (requires many data points)

3. ln dA/dt is plotted vs. ln A as in Figure 7.1b:

ln
d½A�

dt
Z ln k Cn ln½A�; (7.20)

where the slope, n, is the order of the reaction, estimated from algebraic substitution.
7.3.3.2 Integral Methods

The graphical procedure is a trial-and-error process where a reaction functional form is assumed:

d½A�

dt
ZKkF½A�0

ðAf

Ai

d½A�

F½A�
Z

ðt

0

Kk dt ZKkt; (7.21)

and the term of
Ð Af

Ai
d½A�=F½A� is calculated from the data measurements available. If the plot or the

regression of this term vs. time yields a linear function passing through the origin (0,0) with slope Kk,

then the hypothesis was correct; otherwise, a new assumption is made and the procedure is repeated.
7.3.3.3 Method of Half Lives

The half life (t1/2) is the time required for the parameter A to lose half of its initial concentration.

Table 7.2 summarizes the mathematical form of t1/2 for the different reaction rate orders.
Table 7.2 Forms of Half-Life for the Different Reaction Orders

Order of Reaction t1/2 (Half-Life)

First (1)
k

0:693

Second (2)
1

kA0

nth order (ns1) 1
ðk ½nK1�Þð2nK1K1=AnK1

0
Þ

� �
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Alternatively, life can be also determined for any decided fractional decrease. If f is the decimal

fraction of (A/A0) and n is 1, then

ln
A

A0

ZKkt0 ln
fA0

A0

Z ln½f �ZKkt0k ZK
ln½f �

tf

; (7.22)

where tf is the fraction life in time units. A well-known example of this methodology refers to the

decrease by one log cycle of microorganisms in microbial death. In that case, fZ0,1; tf is called

D-value and Equation 7.22 becomes

k ZK
ln 0;1

D
0D Z

2;3

k
: (7.23)
7.3.4 Effect of Temperature on Reaction Rates

The prevailing effect of temperature on the rate of food related reaction rates has long been the

subject of research and a significant number of kinetic studies of important indices have been

published—of physical, chemical, microbiological, or sensory deterioration of foods. In general,

temperature is regarded as the most important of all external factors affecting food spoilage.
7.3.4.1 The Arrhenius Equation

Of the mathematical equations that have been proposed to describe the temperature dependence

of the quality loss rate, the Arrhenius relation, which was derived from thermodynamic laws and

statistical mechanics principles, is the most widely used.24 The Arrhenius relation developed

theoretically for reversible molecular chemical reactions, but has been used to describe the effect

of temperature on the rate of several reactions of quality loss, as follows:

k Z kAexp
KEA

RT

� �
; (7.24)

with kA representing the Arrhenius equation constant and EA defining the activation energy, i.e., the

excess energy barrier that quality parameter A must overcome to proceed to degradation products. R

is the universal gas constant (1.9872 cal/(mol K) or 8.3144 J/(mol K)).

Another form, frequently used, uses a constant reference temperature, Tref, and then Equation

7.24 assumes the following form:

k

kref

Z e
K

KEA
R

1
T

K 1
Tref

h i
;

(7.25)

where kref is the reaction rate constant at Tref.

To estimate the temperature effect on the reaction rate of a specific quality deterioration mode,

values of k are estimated at different temperatures, in the range of interest, and (ln k) is plotted vs.

(1/T) or, similarly ((1/T)K(1/Tref)). The case of Equation 7.25 produces a semilog graph. A straight

line is obtained with a slope of KEA/R, from which the activation energy is calculated.
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7.3.4.2 The Q10 Value

The Q10 value of a reaction, a tool of practical importance to the food industry, is often used

when the temperature dependence of biological reactions is studied. Its definition is the number of

times a reaction rate changes with a 108C change in temperature, or, equivalently, it shows the

reduction of shelf life, qs, when the food is stored at a temperature higher by 108C:

Q10 Z
kðTC10Þ

kðTÞ
Z

qsðTÞ

qsðT C10Þ
: (7.26)

In essence, the Q10 approach introduces a temperature-dependence equation in the form of the

following:

kðTÞZ k0ebT 0 ln k Z ln k0 CbT ; (7.27)

which implies that if (ln k) is plotted vs. temperature, a straight line is obtained. Based on Equation

7.27, in an equivalent way, shelf life can be plotted vs. temperature, yielding the so-called shelf-life

plots:

qsðTÞZ qsoeKbT 0 ln qs Z ln qso KbT : (7.28)

These plots are true straight lines only for narrow temperature ranges of 10–208C. For such

narrow intervals, the Arrhenius and the Q10 concept are related as follows:

ln Q10 Z 10b Z
EA

R

10

TðT C10Þ
: (7.29)

7.3.4.3 The z-Value

This term is frequently used to describe temperature dependence in microbiological studies and

it is defined as the temperature change needed to change the microbial inactivation rate by a factor

of 10.20 The z-value expressed in terms of the reaction rate constant is as follows:

k2 Z k1½10�
T2KT1

z

� �
0 ln

k2

k1

Z
T2 KT1

z
lnð10Þ0

lnðk2=k1Þ

T2KT1

Z
lnð10Þ

z
: (7.30)

Assuming an Arrhenius relationship for k1 (k1ZkA exp[KEA/(RT1)]) and k2 (k2ZkA exp[KEA/

(RT2)]), the following ratio is estimated:

ln
k2

k1

Z
KEA

R

T2KT1

T2T1

0
lnðk2=k1Þ

T2KT1

Z
KEA

R

1

T2T1

: (7.31)

Equating the right-hand side of the two previous equations, the relation between z-value and

EA is

z Z
ln 10

KEA=R
T1T2: (7.32)
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7.3.4.4 The WLF Equation

As has been often noted in the food literature, there are cases where the temperature dependence

on the rate of food quality loss can deviate from the Arrhenius equation.25 Phase change phenomena

are often involved in such deviations. Glass transition is related to dramatic changes of food

mechanical properties and molecular mobility, and may occur in carbohydrate-containing foods

when storage conditions are suddenly modified, such as during rapid cooling or solvent removal.

Examples of common cases in foods that deviates from the Arrhenius law, include: frozen carbo-

hydrate-containing solutions or food products;26–29 whey powder and dehydrated vegetables;30 and

osmotically dehydrofrozen fruits and vegetables.31,32

In such systems, there is a drastic acceleration of the diffusion-controlled reactions above Tg—a

temperature zone where the system is in a rubbery, unstable phase and activation energy is not

constant, but is rather a function of temperature. This behavior has been often described by an

alternative equation, the Williams–Landel–Ferry (WLF) expression (Equation 7.33) that empiri-

cally models the temperature dependence of mechanical and dielectric relaxations in the range Tg!
T!TgC100

log
kref

k
Z

C1ðT KTrefÞ

C2 C ðT KTrefÞ
; (7.33)

where kref is the rate constant at the reference temperature Tref (TrefOTg) and C1, C2 are system-

dependent coefficients. Williams, Landel, and Ferry33, assuming TrefZTg and applying WLF

equation for data available for various polymers, estimated mean values of the coefficients

C1ZK17.44 and C2Z51.6. However, the uniform application of these constants is often proble-

matic,34,35 and the calculation of system-specific values is necessary. These coefficients were found

to depend not only on the type of matrix in question, but also on the water content.36 In the same

study, it was observed in several cases that in the rubbery zone of the matrices, the Arrhenius

equation described the temperature dependence of the loss of ascorbic acid more adequately than

the WLF model.
7.3.4.5 Effects of Other Environmental Factors

Besides temperature, moisture content and water activity (aw) are the most important factors

affecting the rate of deteriorative reactions at above-freezing temperatures.37 Water activity

describes the degree of boundness of the water contained in the food and its availability to act

as a solvent and participate in chemical reactions. Moisture content and water activity can influence

the kinetic parameters (kA, EA), the concentrations of reactants, and, in some cases, even the

apparent reaction order, n.

Critical levels of aw can be recognized above which undesirable deterioration of food occurs.

Microbiological decay and textural degradation are examples of quality-loss reactions that are

greatly affected by levels of water activity. Regarding microbial growth, many workers concluded

that the water activity is mainly the determinant of growth because it governs the osmotic stress,

and the ability to grow is controlled by both the degree of that stress and the osmoregulatory

capacity of a particular microbial cell.38,39

Besides the specific critical aw limits, water activity has a pronounced effect on chemical

reactions. This effect plays a very important role in the preservation of intermediate-moisture

foods (IMFs) and dry foods. Generally, the ability of water to act as a solvent, reaction medium,

and a reactant increases with increasing aw. As a result, many deteriorative reactions increase

exponentially in rate with increasing aw above the value corresponding to the monolayer moisture.

This can be represented schematically in a global food stability map, as illustrated in Figure 7.2.3
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Figure 7.2 Indicative food stability map, showing the effect of aw and moisture content on the rates of important
deterioration reactions. (Adapted from Labuza, T. P., Food Technology, 34, 36–41, See also p. 59,
1980.)
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Additionally, moisture content and aw directly affect the glass transition temperature of the system.4

With increasing aw, Tg decreases. As was discussed in the previous section, transverse of Tg and

change into the rubbery state has pronounced effects, especially in texture- and viscosity-dependent

phenomena, but also in reaction rates and their temperature dependence. Nonenzymatic

browning,40–43 aspartame degradation,44 and enzymatic activities in frozen-model systems26,35

are well-studied examples of reactions significantly influenced by the glass transition temperature.

Mathematical models that incorporate the effect of aw as an additional parameter can be used for

shelf-life predictions of moisture sensitive foods.45–47 Such predictions can be applied to packaged

foods in conjunction with moisture transfer models which were developed based on the properties

of the food and the packaging materials.48

Other factors that affect the reaction rates in foods are pH, reactant concentrations, ratio

between reactants, gas composition, partial pressures, and total pressure.15 The effect of the pH

has been studied for several food reactions and food systems. Enzymatic and microbial activity are

strongly affected by pH, each having a pH range for optimum activity and limits above and below

which activity ceases. Most protein behavior also depends on pH, with solubility usually having a

minimum near the isoelectric point, directly affecting their behavior in reactions. Acid–base

catalyzed reactions important to foods, such as nonenzymatic browning and aspartame decom-

position, are strongly pH dependent. With regard to the influence of pH on the Maillard reaction—

the popular reaction between carbonyls and amines that strongly affects food quality—Labuza and

Baisier7 observed that the substrate loss increased with increasing pH, up to a pH level of 10, with

little if any browning occurring below pH 6. Many studies are focused on assessing pH influ-

ence49,50 and even develop kinetic models that include pH effect in Maillard reaction rate

constants.51,52

Gas composition is an additional factor that can play a significant role in some quality loss

reactions. Oxygen availability is very important for oxidative reactions and can affect both the rate

and apparent reaction order depending upon whether it is limited or in excess.15 Further, the

presence and relative amount of other gases, especially carbon dioxide, strongly affect biological

and microbial reactions in fresh meat, fish, fruits, and vegetables. Different food matrices have

different optimum O2–CO2–N2 gas composition requirements for maximum shelf life. This knowl-

edge is the basis of successfully controlled and modified atmosphere packaging application. Total

pressure is usually not an important factor except in the case of hypobaric storage, which is an

alternative technology to CAP/MAP.
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Recently very high pressure technology (1,000–10,000 MPa) has been used experimentally to

achieve inactivation of microorganisms, modification of biopolymers (protein denaturation,

enzyme inactivation or activation, degradation), increased product functionality, and quality reten-

tion.53,54 Kinetic studies of changes occurring during high pressure processing and their effects on

shelf life of the foods is an area of current research.
7.4 APPLICATION OF FOOD KINETICS IN SHELF-LIFE PREDICTION AND
CONTROL

7.4.1 Case Study of Quality Degradation of Frozen Green Peas and Mushrooms

This practical example is based on experimental data generated and published by Giannakourou

and Taoukis.55,56 The purpose of these studies was to evaluate the quality loss in popular frozen

vegetables (green peas and mushrooms), in a wide range of temperatures in the subfreezing zone,

including the detrimental range between K3 and K108C, that frequently occurs in the often

problematic frozen chain (e.g., European Union survey EE1080/94/0006957). Additionally, these

studies tested the predictive value of the developed models under dynamically fluctuating tempera-

tures occurring during the life cycle of processed agricultural products.

The methodology utilized included three main steps, as described in the previous section (see

Section 7.3.2 through Section 7.3.4) to obtain a well-established and validated kinetic model of

food quality degradation:
7.4.1.1 First Step

In this phase, representative quality indices must be chosen that adequately describe the quality

loss of the product. Subsequently, experimental data of these indices are obtained under isothermal

conditions, and the reaction order of the corresponding deterioration is decided.

In this example, packaged frozen green peas and mushrooms were stored in controlled tempera-

ture cabinets (Sanyo MIR 153, Sanyo Electric Co, Ora-Gun, Gunma, Japan) at constant

temperatures (from K1 to K208C) or programmed variable temperature profiles, constantly moni-

tored by type-T thermocouples and a multichannel datalogger (CR10X, Campbell Scientific,

Leicestershire, U.K.).

1. Green peas. For this widely consumed frozen vegetable, the color change and vitamin C loss

were effective shelf life loss indices. The chroma change, expressed by
DC Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaKa0Þ

2 C ðbKb0Þ
2

q
; (7.34)
was modeled by a pseudo zero-order reaction (Figure 7.3a), whereas vitamin C degradation

showed an apparent first-order reaction (Figure 7.3b).

2. White mushroom. The main index of white mushroom deterioration is the gradual intense color

change, expressed mainly by parameter L (of the CIE Lab scale) related to the lightness of the

samples. The major enzyme responsible for the browning reaction is tyrosinase and the path

followed is the enzymatic oxidation of natural phenolic compounds to the corresponding

o-quinones that subsequently polymerize nonenzymatically to brown pigments.58 The

measured L shows an apparent first-order change (Figure 7.4).
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Figure 7.3 (a) Chroma change of frozen green peas at five storage temperatures vs. time. Experimental points
are shown as black and white triangles, black rhombs, black and white circles, and solid lines are least
square fits to the measurements. (b) Results for vitamin C loss (C is vitamin C concentration at time t
and C0 at time zero) vs. time at five storage temperatures. Experimental points are shown as black
and white circles, black rhombs, black squares and white triangles, and all curves (continuous and
dashed lines) represent the predicted values from the first order kinetic model.
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7.4.1.2 Second Step

After determining the main quality index, the order of the corresponding quality loss reaction is

decided, based on isothermal experimental data; then, the temperature dependence of the reaction is

evaluated. Arrhenius kinetics are most frequently used, although there are numerous cases where

other models (such as the WLF equation) were preferred, especially in the case of frozen foods

where the glass transition phenomenon may significantly affect the rate of diffusion-based

reactions59–61 as stated in Section 7.3.4.

In this case study, both the Arrhenius and the WLF equation were applied, and both showed an

equally adequate performance. Figure 7.5a and b show the Arrhenius plots for color loss and

vitamin C degradation in frozen peas. The estimated activation energies, EA, and 95% confidence

range were 79.2G19.2 kJ/mol (18.9G4.6 kcal/mol, with R2Z0.983) and 136.8G20.5 kJ/mol

(32.7G4.9 kcal/mol with R2Z0.993) for chroma and vitamin C loss, respectively, expressing

the different temperature sensitivities of the two modes of deterioration. Figure 7.6 is the Arrhenius

plot for enzymatic browning of white mushroom, with EA estimated to be 155.1G60.3 kJ/mol
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Figure 7.4 Results for enzymatic browning of white pieces of mushroom (represented by L-value loss compared
to the L-value at zero time, L0) vs. time at four storage temperatures. Experimental points are shown
as black and white rhombs, black and white circles and solid lines represent the least square fits to the
measurements.
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(37.1G14.4 kcal/mol with R2Z0.957), showing the extremely temperature-sensitive nature of

white mushroom.
7.4.1.3 Third Step

In this phase, mathematical models already developed for isothermal studies are tested under

dynamic storage conditions in programmable freezer-incubators. The agreement between

experimentally measured index values and predictions from the established kinetics was satis-

factory. In Figure 7.7 measurements of vitamin loss at dynamic conditions are compared to

predictions at the corresponding Teff. Predicted rate of loss is in good agreement with the experi-

mental rate of loss, as shown by kpredZ0.0268G0.0038 (1/days) vs. kexpZ0.0252 (1/days) (R2Z
0.947).

Similarly, shelf-life models for color change in green peas and mushrooms were validated under

nonisothermal conditions.

The main and practical purpose of developing a robust and validated mathematical kinetic

model of the behavior of principal quality indices of a food, is to expand its use at time–temperature

conditions that differ from the experimental ones. The importance of this purpose is evidenced by

the diversity of time–temperature history of a product during its actual distribution in the post-

processing chain, to the consumer end, as confirmed by recent temperature surveys.56 Food

products are therefore found to be exposed to a variable temperature environment that frequently
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Figure 7.6 Arrhenius plot of browning rates of white mushroom with TrefZK208C.
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includes stages of abusive storage or handling conditions. Different methodologies are proposed in

order to assess the kinetic parameters of certain reactions in cases of dynamic temperature con-

ditions, including integral and differential methods,61 the “equivalent point” theory,62 or the

“effective temperature” approach (the time/temperature/tolerance (TTT) approach).63–65 According

to this last approach, the fraction of shelf life consumed at the end of each stage, fcon, is calculated.

The fcon is estimated as the sum of the times at each constant temperature segment ti, divided by

the shelf life at that particular temperature qi:

fcon Z
X

i

ti
qi

; (7.35)

where index i represents the different time–temperature steps within the particular stage of study.

The remaining shelf life of products can be calculated at a reference temperature, representative of

their storage conditions, after each stage as (1KSfcon)q, where q is the shelf life at that

reference temperature.

To understand fully this approach in assessing the effect of temperature conditions during

transport and storage on food quality, an example in the real distribution chain is considered.

Based on the aforementioned shelf life models, color and vitamin C loss were measured for

frozen green peas, assuming a realistic scenario of 120 days in the distribution chain. Figure 7.8

shows the temperature profile and the stages assumed in this hypothetic scenario. This realistic

distribution scenario includes 30 days storage in the factory warehouse, intermediate transport,

40 days stocking in a distribution center (where vegetables are distributed to different supermarkets

at the retail level), and exposure at closed vertical freezers or open horizontal freezers for 20 days

before purchase. The final stage of this “time–temperature history simulation” is 30 days of

domestic storage, before final cooking and consumption. Temperature conditions for the initial

stages were obtained in Jul 1983,66 and for the final stages of retail and domestic storage from the

data shown in Figure 7.8.
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Applying the main principles of TTT approach, the shelf life of frozen green peas was estimated

at the end of each stage, taking as main quality criterion either color loss (DCZ10 was decided by

sensory results to signal the endpoint) or vitamin C loss (a 50% loss, compared to the initial

concentration). A significant remark out of this comparative study is that the quality level and

the remaining shelf life of a food, at any point of its distribution in the real chain, is strongly

dependent on the criterion chosen to signal the acceptability limit (Figure 7.9a). In the case study of

frozen green peas, at the end of the four-month cycle illustrated in Figure 7.8, the product has just

expired, according to nutritional criteria (50% vitamin C loss, Figure 7.9b). However, if sensory

criteria of color loss are assumed, the frozen product is still of acceptable quality for more than

200 days (221 days), if isothermally handled at K188C.
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of frozen green peas, presented in Figure 7.8.
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7.4.2 Modeling the Effect of Temperature and Relative Humidity Storage Conditions
(Nonenzymatic Browning of a Cheese Powder)

Nonenzymatic browning (NEB) through the Maillard reaction is a major deteriorative factor in

the storage of dehydrated dairy food products,43,61,67,68 as already mentioned in Section 7.2.3. NEB

may cause unacceptable nutritional and sensory effects in some stored food products and may be a

limiting factor in the shelf life of some products. In most cases, NEB results in deterioration of

flavor, darkening of color, and significant loss of nutrients in particular protein quality. Addition-

ally, it may result in the formation of substances of questionable toxicity.48,69 NEB as a model of a

possible diffusion-controlled binary reaction70 between an amino acid and a reducing sugar has

probably been given the most attention in studies of relationships between reaction rates and the

physical state controlled by the glass transition.40–42,71–73 The kinetics of NEB have been studied as

a function of many parameters (water activity, temperature, reactant concentration pH, and so forth)

and even related to physical aspects such as crystallization71,74 and viscosity.75 The glass transition

together with material composition, water activity, temperature, and other factors affect the rate of

the reaction.60,72,73,76

Taoukis and Skiadi69 studied the combined effect of temperature and aw on the rate k (kZ
f [T,aw]) of NEB of cheese powder. Because the value of water activity varies during distribution

and storage of dehydrated foods due to the water vapor permeability of packaging used, it is

important to be able to predict the change of moisture and aw under different storage conditions,

and thus design a packaged food of the desired quality and stability. A quantitative knowledge of

dependence by the aw of shelf life allows the determination of aw critical limits. The combination of

the shelf life quantitative dependence of aw level and the prediction of aw change under different

storage conditions can be used (1) for the selection of the optimum food-package systems, (2) for

the estimation of the effect of changes in the package or the environment parameters, and (3) for the

prediction of the shelf life of the product under variable storage conditions.

In the aforementioned study, the first part focused on developing an empirical model of NEB of

cheese powder, rather than exactly studying the complex mechanism of reactions occurring in the

matrix. Kinetic data was obtained for brown pigment formation and an apparent zero order reaction

was confirmed:

BKB0 Z kNEBt; (7.36)

with B being the absorbance measured spectrophotometrically and kNEB being estimated by a least-

square regression.

Table 7.3 summarizes the time needed for a ten-fold increase of brown pigments in

cheese powder.

Subsequently, the logarithm of kNEB is plotted vs. 1/T and the Arrhenius kinetic parameters are

estimated for each level of aw studied, and in parallel, iso-EA lines are obtained. While the

activation energy values were statistically the same, the Arrhenius constants kA were found to be

aw-dependent, and the selected model was found to conform to the expected pattern of a maximum

at the range of 0.6–0.8:

ln kA Z ln k0 Cga2
w ln aw: (7.37)

Combining Equation 7.36 and Equation 7.37, the complete quality function for browning of

cheese powder is described by the following mathematical expression:

BKB0 Z exp ln k0 Cga2
wln aw K

EA

RT

� �
t: (7.38)
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Table 7.3 Rate of Browning of Cheese Powder and Time for a Ten-Fold Increase, t10, as Affected by Water
Activity and Storage Temperature

awZ0.318 awZ0.492 awZ0.748

T (8C) k t10 (days) K t10 (days) K t10 (days)

30 0.00242 338 0.0072 114 0.0094 87

34 0.0037 221 0.0136 60 0.0142 58

40 0.0068 120 0.0191 43 0.0289 28

45 0.0141 58 0.0472 17 0.053 16
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Constants k0, g, and EA were calculated using multiple nonlinear regression for all kinetic data

available and the values obtained were ln k0Z30.05 dK1, gZK23.29, and EAZ97.81 kJ/mol.

In the second part of this study, the purpose was to model the effect of the packaging on the

change of aw of the packaged dehydrated food, and thus on the rate of browning of the cheese

powder. Therefore, the sorption isotherm of the cheese powder was experimentally determined by

the saturated solution equilibrated method, at all the temperatures of the kinetic experiments. As

detailed by Taoukis and Skiadi,69 samples of powder were packaged in pouches of a Cellophane

(30 g/m2)CLPDE (70 g/m2) film and stored at TZ408C or controlled variable conditions and

relative humidity conditions created by saturated NaCl (average awZ0.748). The quality index

studied (browning) was measured at predetermined time intervals and values were compared with

those predicted by the model. Film permeability was obtained by packaging desiccant in the same

pouches used for the powder and measuring the rate of weight change when stored at the above

isothermal and aw-conditions.

To describe mathematically the water sorption isotherms, a linear equation has been used in aw

range of 0.2–0.6 and equation GAB in aw range of 0–0.9:

Linear :m Z baw Cc

GAB :m Z
m0CKaw

ð1KKawÞð1KKaw CCKawÞ
;

(7.39)

where slope b and intercept c are empirical parameters, m0 the moisture monolayer value, and C and

K parameters relating to interaction energies between sorbed water and food, and between the

multiple layers of sorbed water, respectively. C and K are temperature-dependent according to the

following mathematical expressions:

CðTÞZ C0 exp ðH1KHmÞ=RT
	 


;

KðTÞZ K0 exp ðHLKHmÞ=RT
	 


;
(7.40)

where H represents sorption enthalpies.

Using the linear or GAB isotherm to describe the isotherms of cheese powder and the moisture

transport equations through packaging (based on Fick and Henry equations), we take the following

packaging equations:

awe Kawi

awe Kaw

Z
k

x

A

Ws

p0

b
t;

ðaw

awi

1 CK2½1KC�a2
w

½awe Kaw� 1KKa2
w

	 

½1KKaw CCKaw�

2
daw Z

1

m0CK

k

x

A

Ws

p0t;

(7.41)
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where aw is the water activity of the food at time t, ai is the initial water activity of the food, awe is

the equilibrium water activity corresponding to the external %RH and temperature, k/x (g/day

m2 mm Hg) is the moisture permeation of the packaging material, A(m2) is the exchange surface

o the package, Ws is the dry weight of the packaged food, and p0 (mm Hg) is the partial water vapor

pressure of the storage environment.

Consequently, assuming that external conditions T(t) and RH(t) are known, then functions T(t)

and aw(t) can be estimated, and the rate of the formation of brown pigment B can be estimated:

BKB0 Z

ð
exp ln k0 C ðgawðtÞ

2ÞlnðawðtÞÞK
EA

RTðtÞ

� �
dt: (7.42)

The former equation allows for the prediction of the effect of different storage conditions,

alternative packaging systems, and food-package design on shelf-life loss, giving the ability to

define the optimal conditions to obtain a target quality level.

Figure 7.10a shows the effect of different storage conditions and packaging materials on the

shelf life of cheese powders. From Figure 7.10b, it can be observed that when cheese powder is

stored at high humidity conditions (RHZ75%) and a moderate temperature of 308C, its shelf life

(designated at the point where BZ0.5) is almost reduced by half (50 days) compared to the shelf

life at a moderate humidity of RHZ45% and the same temperature (93 days), thus confirming the

significant effect of relative humidity on the durability of dehydrated food products. Equivalently,

studying Figure 7.10a, it can be concluded that temperature is an important environmental par-

ameter, significantly influencing cheese powder shelf life; an increase of 108C reduces nearly four

times the shelf life of cheese powder, if available experimental data at 208C are arbitrarily projected

until BZ0.5.
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Figure 7.10 (a) Nonenzymatic browning prediction of cheese powder for different temperature conditions (upper
line: 308C, lower line: 208C) and the same package and RHZ75% conditions. Browning, B, in y-axis
is measured spectrophotometrically. (b) Nonenzymatic browning prediction of cheese powder for
different RH(45%, 75%) conditions and the same package and temperature conditions. (c) None-
nzymatic browning prediction of cheese powder for different packages k/x: 0.05, 0.01 and the same
temperature and RHZ75% conditions. Absorbance at 0.5 has been set as the end of shelf life.
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7.4.3 Use of Time–Temperature Indicators as Shelf-Life Monitors

Determination of the quality function of a food product and its kinetic parameters not only allows

estimation of shelf life, but also permits the effect on quality of any actual or assumed variable-

temperature exposure to be calculated. Thus, the remaining shelf life at any point of a monitored

distribution can be estimated, as was shown by the case study in Section 7.4.1. In the real marketing

path of perishable food products, due to be stored and handled under refrigerated or frozen con-

ditions, the actual distribution conditions are not controlled by the manufacturer and are difficult to

monitor. Giannakourou and Taoukis56 studied the effects of the realistic conditions that a packaged

food can possibly face during the frozen distribution chain. Supposing average storage times at each

location of the assumed distribution route of a frozen vegetable, the remaining shelf life after

160 days in the distribution ranged from K250 days to about C300 days for best and worst

temperature scenarios, respectively, assuming that color loss is the selected acceptability criterion.

Accepting both the great deviation of the distribution conditions from what is ideal and the

detrimental effects of abusive handling, it would certainly be desirable to obtain a cost-effective

way to individually monitor the conditions of the products during distribution as well as a means to

signal remaining shelf life. This would lead to effective control of distribution, optimized stock

rotation, reduction of waste, and the meaningful information on product “freshness” that is

demanded by the consumer. Time–temperature indicators (TTIs) are a potential solution.15

TTI are devices with an easily measurable response that reflect the accumulated time–tempera-

ture history of the product they are attached to. Their operation is based on irreversible reactions

initiated at the time of their activation and proceeding with an increasing rate, as temperature is

elevated, in a manner that resembles the temperature dependence of most quality loss reactions of

foods.77,78

In essence, the usefulness of these tags in monitoring quality deterioration and estimating the

remaining shelf life at any point of the distribution chain of a product depends on the successful

simulation of food quality loss kinetics. Thus, the TTI will reflect the quality status of the food only

if the activation energy of the reaction that describes shelf life loss is close to that of the TTI

response, estimated by a thorough kinetic study of the behavior of the particular tag.79,80
7.5 FUTURE TRENDS

Making models more complex, in order to describe the exact mechanism of food spoilage, is an

alternative to simple, empirical modeling. However, the development and validation of simple

models allows for the mathematical prediction of food quality and shelf life, permitting for

optimal design of process parameters. More complex approaches, such as multivariate analysis,

fuzzy logic, genetic algorithms, or hybrid models, and other modeling methods that aim at

describing quality changes in a more generic fashion81 have been recently proposed in order to

expand the model’s use in a much wider context of processing conditions. These approaches will be

extensively covered in the following chapters of this book.

The use of empirical, but well-defined and validated models can serve as the practical basis for

developing a robust stochastic approach, where important environmental or product parameters are

taken into account in a statistical way. Increasing attention is focused on the role and logistics of

transport, storage, and handling; the benefits of taking a supply chain perspective are being appreci-

ated and pursued.82–85 In this context, the Monte Carlo simulation technique is frequently used in

order to incorporate the realistic variabilities, or possible sources of error of important parameters

into food quality and allow for process or logistics optimization.

The same iteration technique of Monte Carlo, based on the generation of alternative distribution

scenarios, was applied in assessing the performance of TTIs in the real distribution chain of

frozen,55,56 or chilled foods,77,86 in a product management system coded least shelf life first out
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(LSFO). Its structure is based on validated shelf life modeling of the controlled food product,

specification of the initial and the final, marginally accepted value of the selected quality parameter

A0 and As respectively, as well as careful temperature monitoring in the distribution chain with the

appropriate TTI. LSFO aims at reducing the rejected products at the consumer end, by promoting,

at selected decision making points of the product life cycle, those product units with the shorter

shelf life, according to the response of the attached TTI.55,87 A further improvement of the LSFO

approach, is a chill chain management system coded shelf-life decision system (SLDS).88,89

Compared to LSFO, SLDS policy accounts for the realistic variability of the initial quality state

A0 of the product.

The state of the TTI technology and of the scientific approach with regards to the quantitative

safety risk assessment in foods will allow the undertaking of the next important step: the study and

development of a TTI-based management system that will assure both safety and quality in the food

chill chain. The development and application of such a system coded with the acronym SMAS is the

target of a multipartner research project funded by the European Commission titled “Development

and Modeling of a TTI based Safety Monitoring and Assurance System (SMAS) for chilled Meat

Products” (project QLK1-CT2002-02545, 2003–2006; http://smas.chemeng.ntua.gr).
NOMENCLATURE

T Temperature (K)

aw Water activity

k Reaction rate constant

EA Activation energy (J/mol)

R Universal gas constant (Z8.3144 J/(mol K))

F Fraction

L,a,b Color parameters of the Lab scale

DC Chroma change

m0 Moisture monolayer value

k/x Moisture permeation of the packaging material (g/day m2 mmHg)

A Exchange surface of the package (m2)

Ws Dry weight of the packaged food

p0 Partial water vapor pressure of the storage environment (mmHg)

Subscripts

0 Initial value

eq Value at equilibrium

eff Effective

pred Predicted

con consumed

exp Experimental
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8.1 INTRODUCTION

Most food engineering models to date are deterministic in the sense that it is assumed the

product and process parameters are known in advance. In reality, many food processes are

subjected to a considerable amount of uncertainty. This can be largely attributed to the variability

inherent to biological materials. The variability introduced by poorly designed or controlled

equipment may be important as well. Experimental measurement errors in the estimation of

the parameters as well as model structure errors further increases the global process uncertainty.

Consequently, the process variables, such as the core temperature, are also subject to uncertainty.

In food process design these uncertainties are often taken into account by the use of safety

factors. These are often implicitly introduced by basing the design calculations on a “worst case”

(fail-safe) process, in which the values leading to the most conservative process are assigned to the

model parameters. However, when the number of parameters is large, the associated safety factor

may be beyond reasonable magnitude, causing severe over-processing. Consequently, it would be

more appropriate to base the process design on statistical considerations, taking into account all

uncertainties associated with the process. Such an analysis obviously requires a complete stochastic

specification of the process variables of interest, including probability density functions, mean

values, and variances, as a function of the stochastic properties of the random parameters and

their introduction into the governing algebraic, ordinary, or partial differential equations. Appro-

priate numerical techniques need to be used to solve the resulting stochastic equations.

The outline of this chapter is as follows. First, some models will be summarized that describe

uncertainty, including random variables, fields, processes, and waves. Then, the Monte Carlo method

will be briefly discussed, although the details are left to Chapter 16. Very generally, the Monte Carlo

method may lead to excessive computing times, especially when the solution of the governing model

equations is computationally intensive by itself. Therefore, alternative techniques will be evaluated that

are based on a probabilistic approach rather than on numerical experiments. First, some general

methods to compute the probability density function of functions of unknown stochastic variables

based on transformation theory will be introduced. These methods may be used when the governing

equations can be solved analytically to yield a closed solution. As an alternative, the stochastic pertur-

bation method will be described. This method allows the calculation of the mean value and the

(co)variance of the solution of the stochastic differential equation. Such information is often sufficient

for engineering purposes. Then, the Fokker–Planck equation, which describes how the probability

function of the solution of a stochastic differential equation evolves as a function of time, will be

introduced. Although the Fokker–Planck equation is generally applicable to a broad class of stochastic

differential equations, it is difficult to solve numerically except in some simple cases. It will therefore be

shown how simplified expressions can be used to calculate the mean value and covariance of

the solution.

All algorithms will be illustrated by some simple examples from thermal food process engin-

eering, as they represent an important unit operation in food processing.
8.2 DESCRIPTION OF UNCERTAINTY

In this section, some models that describe randomness will be introduced for future reference.

The reader who is not familiar with these concepts is referred to any textbook on probability theory

or stochastic processes, such as those by Gray and Davisson1 and Melsa and Sage.2
8.2.1 Random Variables

The most simple uncertainty model is that of a random variable. A random variable X is a real-

numbered variable whose value is associated with a random experiment. For example, the heat
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capacity of a potato is a random variable that can vary between different potatoes. A random

variable X can be characterized by its probability density function (pdf), FX(x), which is defined as

Pða%X%bÞb

ðb

a

fXðxÞdx; (8.1)

where P(a%X%b) represents the probability that X takes on a value between a and b. The most

common pdf is the Gaussian (normal) pdf, given by

fXðxÞZ ð2ps2ÞK1=2exp½KðxK �XÞ2=2s2�: (8.2)

Examples of other pdf’s are given in Chapter 16.

The mean value, �X, and the variance, s2, of X are defined as

�X bEðXÞb

ðN

KN

xfXðxÞdx; (8.3)

s2 bEðXK �XÞ2 b

ðN

KN

ðx� �xÞ2fXðxÞdx; (8.4)

with E the expectation operator.

Sometimes an experiment will yield values for two or more physical parameters. Assume, for

example, that both the thermal conductivity as well as the volumetric heat capacity of a food

material are measured simultaneously. In this case, the outcome of the experiment is a bivariate

(two random variables) or multivariate (more than two random variables). The random variables

can then be stacked conveniently in a random vector X. Similar to the univariate case, the prob-

ability density function fX(x), the mean value �X, and covariance matrix V of the random vector can

be defined as

�XbEðXÞZ

ðN

KN

ðN

KN

/

ðN

KN

xfXðxÞdx; (8.5)

VbE½ðXK �XÞðXK �XÞT �: (8.6)

Note that in the remainder of this chapter, vector and matrix quantities will be denoted by bold

symbols. The ith diagonal entry of V is the variance s2
Xi

of random variable Xi; the (i,j)th entry of

V is the covariance sXi;Xj
of random variables Xi and Xj. The correlation coefficient RXi;Xj

is

defined as

RXi ;Xj
Z

sXi ;Xj

sXi
sXj

; (8.7)

and K1%RXi ;Xj
%1.

As an example of a multivariate probability density function of dimension n, the Gaussian

(normal) multivariate pdf is given by

fXðxÞZ ð2pÞKn=2 detðVÞf g
K1=2exp K

1

2
ðxK �XÞVK1ðxK �XÞT

� �
: (8.8)
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8.2.2 Random Processes

If a parameter changes in an unpredictable way as a function of the time coordinate, it can be

described conveniently by means of a random process. The mean �X and covariance V of a stationary

process X with probability density function fX(x,t) are defined by

�X Z EðXÞy

ðN

KN

xfXðx;tÞdx; (8.9)

VðtÞZ Ef½XðtÞK �X�½Xðt CtÞK �XÞ�g: (8.10)

As this process is stationary, by definition the mean and covariance do not depend on time. A

Gaussian stationary white noise process W with covariance

VW ðtÞZ s2
W dðtÞ; (8.11)

where d is the Dirac delta, can be used to describe rapid, unpredictable fluctuations. Sample values

of W are uncorrelated, irrespective of how close together in time they are. However, white noise

does not exist in reality, as it has an infinite energy content. Autoregressive processes provide a tool

to incorporate fluctuations which change more smoothly as a function of time. An autoregressive

random process of order m is defined by the following stochastic differential equation

dm

dtm
XðtÞCa1

dmK1

dtmK1
XðtÞC/CamXðtÞZ WðtÞ; (8.12)

where a1,a2,.,am are constants, mR1, and W(t) is a zero-mean, stationary, Gaussian white-noise

process. The time scale of the fluctuations is dependent on the coefficients a1,.,am, and their high

frequency content decreases with increasing order m. The (Gaussian) random variable initial

condition corresponding to the stochastic differential equation, Equation 8.12, is defined as

E½Xðt0Þ�Z 0; (8.13)

E½Xðt0ÞK �X�2 Z s
2: (8.14)

Note that a random variable parameter X can be modeled as a trivial case of an AR(1) process:

d

dt
X Z 0: (8.15)

AR(m) processes are a special case of the class of physically realizable stochastic processes,

which comprise most of the random processes seen in practice.1 The smoothness of AR processes

depends on the order and coefficients of the governing differential equation.

In food engineering applications, the fluctuations of process conditions are often partially

deterministic and partially stochastic; stochastic disturbances of, for example, the temperature in

the production facility, may lead to fluctuations in the oven temperature that are partially compen-

sated by the control system of the oven. A stochastic model of the oven temperature would ideally

include both a model of the form of Equation 8.12 to describe purely random fluctuations and a

model to describe the dynamics of the oven and its control system with respect to such random

fluctuations. Although the development of such models is theoretically straightforward, this has not

yet been achieved in practice.
8.2.3 Random Fields and Random Waves

Often, a physical quantity varies randomly as a function of the time and/or space coordinates.

Examples include the temperature in an oven, the thermophysical properties of heterogeneous

materials, such as foods, hydraulic properties of soils, elastic properties of construction materials,
q 2006 by Taylor & Francis Group, LLC



PROBABILISTIC MODELING 269
etc. The random field concept provides a convenient mathematical framework to describe such

phenomena.3

A parameter that fluctuates in both space and time can be described by means of random waves.

The random wave model is a straightforward extension of the random field model combined with

the random process model. A full account of random fields and random waves is beyond the scope

of this chapter, and the reader is referred to the literature.3
8.3 THE MONTE CARLO METHOD

A common method to solve models involving uncertainty is the Monte Carlo method. In this

method, samples of random parameters are generated by means of a random number generator. For

every parameter set, the model is solved by analytical or numerical means, and the solution is stored

for future use. This process is repeated a large number of times, and in the end the statistical

characteristics can be estimated. The Monte Carlo method is outlined in detail in Chapter 16 and

will not be addressed further here. Although the Monte Carlo method is highly versatile, it relies on

a large number of simulation runs, even when advanced sampling strategies are applied. Depending

on the complexity of the problem that needs to be computed in every run, it may lead to excessive

computing time.
8.4 TRANSFORMATION THEORY

8.4.1 Principle

For simple food engineering problems, an explicit relation between a dependent variable and a

random variable is often available. If this is the case, transformation theory can be used.

Assume that the (in general, multivariate) food process variable of interest YZ[Y1Y2..Ym] is

related to a random vector XZ[X1X2.Xn] according to YZg(X), where g(X) a vector-valued

function. Furthermore, assume that the probability density function fX(x) is known. A function of a

random variable is also a random variable; therefore, Y is a random variable. It can be shown that if

nZm, the probability density function fY(y) can be found from2

fYðyÞZ fX½g
K1ðyÞ�det

v

vy
gK1ðyÞ

� �
; (8.16)

where det(.) denotes the determinant, and det v
vy

gK1ðyÞ
h i

is the Jacobian of the inverse

transformation.

Often, m is less than n. In this case, some auxiliary dependent variables can be introduced. For

example, if mZ1, then the dependent variable of interest is a scalar Y, and Y may be defined as

Y Z ½Y ;X2;K;Xn� (8.17)

and Equation 8.16 may be solved. The marginal probability distribution of Y can then be calculated

by integrating fY(y) over the range of x2,..,xn:

fY ðyÞZ

ðN

KN

ðN

KN

/

ðN

KN

fYðyÞdx2 /dxn: (8.18)
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If only the mean �Y and variance s2
Y of Y are required, the following equations can be used:

�Y Z

ðN

KN

ðN

KN

/

ðN

KN

gðyÞfXðxÞdx1dx2 /dxn; (8.19)

s2
Y Z

ðN

KN

ðN

KN

/

ðN

KN

½gðyÞK �Y�2fXðxÞdx1dx2 /dxn: (8.20)

In general, Equation 8.18 through Equation 8.20 must be evaluated numerically. For this

purpose, the integrals are approximated by a finite sum, e.g.,

ðN

KN

gðxÞfXðxÞdxy
Xq

iZ1

HigðxiÞfXðxiÞ (8.21)

for the univariate case, where Hi and q are the weights and the order of the quadrature formula,

respectively. The q points xi, where the integrand is to be evaluated, are called the integration

points. Most modern integration routines utilize a Gauss variant of Equation 8.21 in which the

integration points are chosen to achieve maximal accuracy for a certain class of integrands.4

Integration orders between two and ten are commonly used, depending on the smoothness of the

integrand. If the integration boundaries are infinite, as is the case if X is normally distributed, and if

g is a relatively smooth function they can usually be approximated well by finite boundaries

because the tail probabilities, e.g., P(XOx) for the upper tail, decrease rapidly with increasing

distance of x from �X. A convenient choice of integration interval is ½ �XK5sX ; �XC5sX�.

For simple problems, an analytical expression for g(X) may be known. If not, g(X) may be

evaluated numerically in the integration points.5 For a heat transfer problem with stochastic par-

ameters, this means that the temperature must be solved in the integration points using an

appropriate numerical technique such as the finite element method.

The approximation in Equation 8.21 can be extended to multiple integrals corresponding to a

problem with more than one random variable parameter. However, the number of integration points

increases geometrically with the number of random variables. Obviously, if g(X) must be solved

numerically, the necessary computation time may become unacceptable. The applicability of this

method is, therefore, limited. However, the computed mean values and variances can be of arbitrary

accuracy when appropriate integration routines and integration boundaries are chosen, so they can

serve as a reference solution to which solutions obtained by other methods can be compared.

Some applications of transformation methods to food/bioprocesses are summarized in

Table 8.1. Hertog6 applied transformation methods to study shriveling of “Braeburn” apples, the

color change of “Hass” avocados and stress crack development in corn grains. Schouten et al.7

followed a similar approach to describe the variability of pigment precursor concentrations in

cucumber fruit as a function of the variability in light conditions during the pre-harvest period.

These authors have shown that the pdf of the variable of interest may become highly skewed as a

function of time.
8.4.2 Application to Lumped Capacitance Heat Transfer

The transformation method will be illustrated based on the following simple lumped capaci-

tance heat transfer problem.8 Consider a sphere of radius r0 with heat capacity c and density r. The

sphere is initially at a uniform temperature, T0. At time tZ0, the sphere is immersed in a water bath

at temperature TN. The temperature of the sphere will approach TN with a rate that depends on the

surface heat-transfer coefficient h at the solid–liquid interface. In the lumped capacitance method, it
q 2006 by Taylor & Francis Group, LLC



Table 8.1 Applications of Stochastic Methods in Food/Bioprocessing

Process Deterministic Model Random Parameters Algorithm References

Batch food

sterilisation

Heat conduction Initial and boundary

conditions,

thermophysical

properties

Transformation,

perturbation,

variance

propagation, Monte

Carlo

5,19,20,27,30

Roasting Heat conduction Initial and boundary

conditions,

thermophysical

properties

Perturbation 22

Postharvest quality

changes

Stress cracking,

colour change,

shriveling

Material properties,

initial condition,

size

Transformation 6,7

Cooling of fruit Heat conduction Initial and boundary

conditions

Variance

propagation, Monte

Carlo

29

Drying Coupled heat and

moisture transfer

Initial and boundary

conditions,

thermophysical

properties

Perturbation,

variance

propagation, Monte

Carlo

21,31

Note: For more applications of the Monte Carlo method the reader is referred to Chapter 16.
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is assumed that, because of the high thermal conductivity of the solid medium, the temperature

inside the solid is uniform at any time instant during the transient heat-transfer process. This

hypothesis holds if the Biot number, Bi, satisfies the following constraint:

Bi Z
hL

k
!0:1; (8.22)

where L is the characteristic length of the solid which is usually defined as LZ3r0.8 Few food

engineering problems in practice are actually lumped, but this example serves as a simple starting

point to introduce the different algorithms before the more general Fourier heat conduction equation

is addressed.

It is easy to show that applying an overall energy balance leads to the following differential

equation:

rc
d

dt
T Z

3h

r0

ðTNKTÞ: (8.23)

After integration, the following formula for the temperature course is found:

TðtÞZ TN C ðT0KTNÞexp K
3h

rcr0

t

� �
Z gðt;TNÞ: (8.24)

Suppose now that TN is not a deterministic parameter but rather a Gaussian random variable

with mean �TN and variance s2
TN

. Obviously, the solution T(t) of Equation 8.23 at an arbitrary time-

instance is then also random. The derivation of the probability density function of T(t) is relatively

simple, as the function T(t)Zg(t,TN) is a scalar function of a scalar random variable, TN.

The inverse is given by:

gK1ðTÞZ TN Z
T KT0 exp K 3h

rcr0
t

� 	

1Kexp K 3h
rcr0

t
� 	 ; (8.25)
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such that

v

vT
gK1ðTÞZ 1Kexp K

3h

rcr0

t

� �� �K1

: (8.26)

Substituting Equation 8.25 and Equation 8.26 into Equation 8.16 yields

f ðTÞZ 2ps2
TN

1Kexp K
3h

rcr0

t

� �� �2� �K1=2

exp K
T K ðT0K �TNÞexp K 3h

rcr0
t

� 	
C �TN

h in o2

2 1Kexp K 3h
rcr0

t
� 	h i2

s2
TN

8
><

>:

9
>=

>;
;

where f(T) is the pdf of T. It is easy to see that f (T) is Gaussian with mean

�TðtÞZ �TN C ðT0K �TNÞexp K
3h

rcr0

t

� �
(8.27)

and variance

s2
T ðtÞZ s2

T¥
1Kexp K

3h

rcr0

t

� �� �2

: (8.28)

Note that any linear function of a Gaussian random variable is also Gaussian.2 By virtue of

Equation 8.24, the temperature, T, at an arbitrary time, t, is a linear function of the Gaussian random

variable, TN; therefore, it must follow that T is a Gaussian random variable as well. One could,

therefore, just as easily have used Equation 8.19 and Equation 8.20 directly to calculate �T and s2
T

and, hence, fully characterize f(T). However, if another parameter of Equation 8.24 is random, e.g.,

h, then the pdf of T will, in general, not be Gaussian.

In Figure 8.1 it is shown how the probability density function of the sphere temperature evolves

as a function of time. At tZ0, the temperature was considered to be deterministic and equal to 208C.

As time progresses, the probability density function tends to a normal distribution with a standard

deviation of 58C. In Figure 8.2, the time course of �T is compared with the values obtained by means

of the Monte Carlo method with 100, 1000, and 5000 runs. The parameter values were as follows:

rZ1000 kg/m3, cZ4180 J/kg 8C, r0Z0.01 m, T0Z208C, hZ10 W/m2 8C, �TNZ808C, and sTN
Z

58C. It is clear that the results of the Monte Carlo method are almost indistinguishable from those

obtained with the analytical solution. In Figure 8.3 the values of s2
T , as calculated by the different

methods, are shown. The correspondence clearly improves with increasing number of Monte

Carlo runs.
8.5 STOCHASTIC PERTURBATION ANALYSIS

8.5.1 Principle

In the perturbation method, the effect of a small (stochastic) parameter deviation on the solution

of an ordinary or partial differential equation is investigated. Some early analytical methods were

proposed by Chen and Tien,9 and by Beran and McCoy.10 Tzou11 applied similar algorithms to

transient heat conduction problems with random thermal conductivity and established analytical

expressions for the mean temperature and the variance of the temperature.

Assume that the random variable Y(t) obeys the following differential equation:

d

dt
YðX;tÞZ gðYðX;tÞ;XÞ and Yðt Z t0ÞZ Y0; (8.29)

where the mean value and covariance matrix of Y0 is known and g(Y(X,t),X) is a nonlinear function

of Y(X,t) and X; X is a vector of random variables with mean �X and covariance VX,X. Y(X,t) and
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g(Y,X) may be expanded in a Taylor expansion to yield

YðX;tÞy �YðtÞC
vYðtÞ

vX
DX; (8.30)

gðYðX;tÞ;XÞy �g C
vg

vY

vY

vX
DX C

vg

vX
DX; (8.31)

where the partial derivatives are to be evaluated in the mean parameters �X. Substitution of Equation

8.30 and Equation 8.31 into Equation 8.29 yields:

d

dt
�YðtÞZ �g; (8.32)

d

dt

vYðtÞ

vX

� �
Z

vg

vX

vYðtÞ

vX
C

vYðtÞ

vX
: (8.33)

The covariance matrix VY,Y(t) can then be calculated from:

VY;YðtÞZ Ef½YðtÞK �YðtÞ�½YðtÞK �YðtÞ�T gZ E
vYðtÞ

vX
DX

vYðtÞ

vX
DX

� �T� �

Z
vYðtÞ

vX
E½DXðDXÞT �

vYðtÞ

vX

� �T

Z
vYðtÞ

vX
VX;X

vYðtÞ

vX

� �T

(8.34)

The initial conditions corresponding to Equation 8.32 and Equation 8.33 are given by

�YðtÞZ �Y0 (8.35)

vYðtÞ

vX
Z

vY

vX






tZt0

(8.36)

at tZt0. Equation 8.32 indicates that a first order approximation of the mean value of �YðtÞ can be

found be solving the original equation, Equation 8.29, using the mean parameter vector �X. Equation
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8.33 describes how the sensitivity of the solution with respect to the random parameter X changes

as a function of time.
8.5.2 Application to Lumped Capacitance Heat Transfer

To illustrate the algorithm, the lumped capacitance heat-transfer problem previously introduced

will again be considered. Equation 8.23 may be rewritten as

d

dt
T Z

3h

rcr0

ðTNKTÞZ gðT ;TNÞ: (8.37)

Expanding T and TN in a Taylor series yields:

TðTNÞZ �T C
vT

vTN






�TN

DTN; (8.38)

gðT ;TNÞZ �g C
vg

vTN






�TN

DTN C
vg

vT






�T

vT

vTN






�TN

DTN

Z
3h

rcr0

ð �TNK �TÞC
3h

rcr0

DTNK
3h

rcr0

vT

vTN

DTN: (8.39)

Note that the equality holds because g is a linear function of TN. Substituting Equation 8.38 and

Equation 8.39 into Equation 8.37 and rearranging terms yields:

d

dt
�T Z

3h

rcr0

ð �TNK �TÞ; (8.40)

d

dt

vT

vTN

� �
Z

3h

rcr0

K
3h

rcr0

vT

vTN

� �
: (8.41)

Observe that both Equation 8.40 and Equation 8.41 have the same structure as the original

equation, Equation 8.37. The variance s2
T can then be found from

s2
T Z EðT K �TÞ2 Z E

vT

vTN

DTN

� �2

Z
vT

vTN

� �2

EðDT2
NÞZ

vT

vTN

� �2

s2
TN
: (8.42)

Direct integration of Equation 8.40 and Equation 8.41 and subsequent substitution of vT/vTN

into Equation 8.42 again yields Equation 8.27 and Equation 8.28.
8.5.3 Application to Heat Conduction

The perturbation algorithm will now be applied to a stochastic heat conduction problem for

which the lumped capacitance method is no longer valid. This is the case if the resistance to

conduction within the solid is large in comparison to the resistance to convection across the

fluid boundary layer, or, in other words, if BiO0.1. Key to the method is the spatial discretization

of the governing partial differential equation, which leads to a system of ordinary differential

equations of the form of Equation 8.29.
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8.5.3.1 Finite Element Solution of Heat Conduction Problems

Transient linear heat transfer in solid foods subjected to convection boundary conditions is

governed by the Fourier equation8

kV2T Z rc
vT

vt
; (8.43)

k
v

vnt
T Z hðTNKTÞ on G; (8.44)

T Z T0 at t Z t0; (8.45)

where T is the temperature (8C), k is the thermal conductivity (W/m 8C), rc is the volumetric heat

capacity (J/m3 8C), TN is the (known) process temperature (8C), n is the outward normal to the

surface, h is the convection coefficient (W/m2 8C), and G is the boundary surface. The Fourier

equation describes many important thermal food processes, such as thermal pasteurization and

sterilization of solid foods and cooling of horticultural products. Note that only linear heat conduc-

tion problems will be considered here; heat-transfer problems involving temperature-dependent

thermophysical properties such as phase-change problems (e.g., freezing and thawing of foods) or

involving nonlinear boundary conditions such as radiation (e.g., oven heating of bakery products),

will not be addressed. The algorithms developed below can be readily extended to such problems

after linearization of the governing equations.12

For many realistic heat conduction problems, no analytical solutions of Equation 8.43 subjected

to Equation 8.44 and Equation 8.45 are known. In this case, numerical discretization techniques,

such as the finite difference or finite element method, can be used to obtain an approximate solution.

The finite element method, in particular, is a flexible and accurate method for solving partial

differential equations such as the Fourier equation. In the framework of the finite element

method, the continuum is subdivided in elements of variable size and shape that are interconnected

in a finite number, n, of nodal points. In every element, the unknown temperature is approximated

by a low-order interpolating polynomial. The application of a suitable spatial discretization tech-

nique, such as the Galerkin method, to Equation 8.43 through Equation 8.45 results in the following

differential system:13

C
d

dt
u CKu Z f; (8.46)

uðt Z 0ÞZ u0; (8.47)

where uZ[u1 u2/un]T the overall nodal temperature vector, C is the capacitance matrix and K is

the stiffness matrix (both n!n matrices), and f is an n!1 vector. For more details about the

construction of these matrices, the reader is referred to the literature (see Reference 13). The

system, Equation 8.46, can be solved by finite differences in the time domain.

The finite element method has been successfully used in a number of thermal food processing

applications, such as sterilization of baby food jars,14 cooling of broccoli stalks,15 and heating of a

lasagna dish.16 For a more elaborate account, the reader is referred to Wang and Sun.17
8.5.3.2 Perturbation Analysis

Here, the analysis is started with the system of ordinary differential equations, Equation 8.46,

that was obtained by applying the finite element method to the heat conduction equation. Note that

any discretization (finite difference, finite volume) of the Fourier equation into a system of ordinary

differential equations will work. For simplicity, assume that TN is a random variable parameter and

that all other parameters are deterministic.
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It can be shown13 that TN only appears in the construction of f, not in the stiffness or capacitance

matrix. Obviously, u is then a function of TN as well. u may be expanded into a first-order Taylor

series around its (so far unknown) mean solution,

u Z �u C
vu

vTN
DTN; (8.48)

in which the partial derivatives must be evaluated using �TN. Similarly, f is a function of TN and is

expanded around its mean value �f, which can be assembled as usual but using �TN,

f Z �f C
vf

vTN
DTN: (8.49)

The partial derivative of f with respect to TN can be calculated by direct differentiation.

Substitution of Equation 8.49 into Equation 8.46 and combining appropriate terms in DTN

yields the following system:

C
d

dt
�u CK �u Z �f; (8.50)

C
d

dt

vu

vTN

� �
CK

vu

vTN

� �
Z

vf

vTN

: (8.51)

Equation 8.50 expresses that the mean value of the temperature, �u, may be found by solving the

original heat-transfer problem using mean values of the parameters. From Equation 8.51, it can be

derived that the temperature covariance matrix Vu,u(t) can now be computed from

Vu;uðtÞZ Ef½uðtÞK �uðtÞ�½uðtÞK �uðtÞ�TgZ
vuðtÞ

vTN

vuTðtÞ

vTN

s2
TN
: (8.52)

The variance of the temperature ui(t) at node i is the ith diagonal entry of Vu,u. It follows from

Equation 8.52 that initial conditions corresponding to the system, Equation 8.50 and Equation 8.51,

are given by

�uðt Z 0ÞZ �u0 (8.53)

vu

vTN

ðt Z 0ÞZ 0 (8.54)

where 0 is a null vector of appropriate dimension. As a consequence, an additional differential

system must be solved.

To illustrate the above algorithm, a typical thermal food process with a random variable

ambient temperature will now be analyzed. The problem consists of a cylindrical container

(radius r0Z3.41 cm, height LZ10.02 cm) filled with a 30% solids-content tomato concentrate

with kZ0.542 W/m 8C, rcZ3.89!106 J/m3 8C. The following process conditions were applied:

T0Z658C, �TNZ1258C, and hZ100 W/m2 8C. The standard deviation of the ambient temperature is

set equal to 18C, as this seems a reasonable value that can be obtained by proper control of

the equipment. For the finite element analysis the region, [0,r0]![0,L/2] is subdivided into 100

four-node axisymmetric quadrilateral elements. The time step is set equal to 36 s.

A semi-analytical solution for the mean value and the variance at selected positions inside the

can was calculated by evaluating Equation 8.19 and Equation 8.20 by numerical quadrature. The

analytical solution TZg(t,TN) is known18 and involves the solution of a transcedental equation and

two infinite series, which were truncated after six terms. For more details the reader is referred to

Nicolaı̈ et al.19,20
q 2006 by Taylor & Francis Group, LLC
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In Figure 8.4 and Figure 8.5, the mean temperatures and variances are shown. The results

obtained with the different methods are similar for both the mean values as well as the variances

of the temperature. For t/N the variances of the temperatures inside the container approach the

ambient temperature variance.

The relative CPU time (actual CPU time divided by the CPU time required to solve a determi-

nistic problem) for the perturbation method, the Monte Carlo method with 100 runs and the Monte

Carlo method with 1000 runs was equal to 1.4, 26, and 254, respectively. The required CPU time for

the perturbation method was less than twice that for a deterministic problem.

In Table 8.1, some applications of the perturbation method are given. The application of

stochastic finite element perturbation methods to heat conduction problems with random vari-

able thermophysical parameters has been described.19 An extension to heat conduction with

random field parameters has also been presented.12,20 The authors found that variation on the

initial temperature of the food tends to be smoothed during the process. Also, random variation

on the thermophysical properties and surface heat transfer coefficient initially increases the
0

0

5

10

900 1800 2700 3600

r = 3.41 cm

Time (s)

Te
m

pe
ra

tu
re

 v
ar

ia
nc

e 
(°

C
2 )

r = 1.71 cm

r = 0.0 cm

Figure 8.5 Temperature variance at various positions in an A1 can with random variable ambient temperature.
—, semi-analytical solution; -, Monte Carlo (100 runs); C, Monte Carlo (1000 runs); +, first-order
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variability of the temperature inside the food but, again, fades out toward the end of the heating

process. Random variation on the ambient temperature, on the other hand, causes the variation

of the temperature inside the food to increase monotonically as a function of time. The duration

of the thermal process will thus determine which properties or process parameters the food

engineer has to focus on to reduce the variability of the process. Further, the authors found that

random variable properties cause more variability of the temperature inside the food than

random field properties. The random variable problem can, hence, serve as a worst

case scenario.

Scheerlinck et al.21 applied the perturbation algorithm to coupled heat and mass transfer

problems described by Luikov’s equations. Aguirre et al.22 applied the perturbation algorithm to

roasting of coffee beans. They assumed that the initial condition, thermal properties, and boundary

conditions were random variables and showed that there might be a considerable uncertainty about

the actual effect of the roasting treatment.
8.6 THE FOKKER–PLANCK EQUATION AND THE VARIANCE
PROPAGATION ALGORITHM
8.6.1 Principle

Although the perturbation method is very powerful, it can only be used to solve problems

involving parameters that may be random but do not change unpredictably in time. Also, it does

not provide the full probabilistic information of the solution in terms of joint probability density

functions. In this case, some results from stochastic systems theory can be used to calculate the

mean value and variance of the solution of a stochastic heat-transfer problem.

The study of stochastic ordinary differential equations originated in the beginning of the twen-

tieth century with the work of Einstein and Langevin on Brownian motion.23 The formal

mathematical theory of stochastic differential calculus was developed only forty years later by

Ito24 and involves a new definition of the integral-concept in a stochastic setting. Stochastic systems

theory concerns the behavior of systems subjected to stochastic input signals and is based on Ito-

calculus. Assume that the evolution of a random process X(t) is governed by the following differ-

ential equation:

d

dt
XðtÞZ g½XðtÞ;t�Ch½XðtÞ;t�WðtÞ and Xðt Z t0ÞZ X0; (8.55)

where the pdf of X0 is known, g[X(t),t] and h[X(t),t] are nonlinear functions of X(t), and W(t) is a

zero-mean white-noise process with covariance matrix

VW;WðtÞZ JWdðtÞ: (8.56)

It can be shown2 that the probability density function fX(t)(x) is described by the following

Fokker–Planck equation:

v

vt
fXðtÞðxÞZKtr

v

vx
gðx;tÞ

� �
fXðtÞðxÞCgðx;tÞ

v

vx
fXðtÞðxÞ

� �

C
1

2
tr

v

vx

v

vx

� �T

hðxðtÞ;tÞJWhTðxðtÞ;tÞfXðtÞðxÞ

� �
; (8.57)

where tr{A} denotes the trace of a matrix A, i.e., the sum of the principal diagonal elements of A.

The boundary condition for Equation 8.57 is given by
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fXðtÞðxÞZ fX0
ðxÞ at t Z 0: (8.58)

Only for trivial problems can an analytical solution to Equation 8.57 and Equation 8.58 be

found. However, it can be shown2 that first-order approximate expressions for the mean vector �XðtÞ
and the covariance matrix VX,X(t) can be derived after some manipulations from the Fokker–Planck

equation:

d

dt
�XðtÞZ gð �XðtÞÞ; (8.59)

d

dt
VX;XðtÞZ

vg½ �XðtÞ;t�

vXðtÞ
VX;XðtÞCVX;XðtÞ

vg �XðtÞ;t
� �

vXðtÞ

� �T

Ch �XðtÞ;t
� �

JW;WðtÞh
T½ �XðtÞ;t� (8.60)

Equation 8.59 and Equation 8.60 are called the variance propagation algorithm. Equation (8.59) is

a matrix differential equation of the Lyapunov type.
8.6.2 Application to Lumped Capacitance Heat Transfer

The procedure based on the same simple lumped capacitance problem described by Equation

8.23 will be outlined. For simplicity, assume that TN(t) can be written as

TNðtÞZ �TN C ~TNðtÞ; (8.61)

where �TN is a (constant) mean ambient temperature and ~TNðtÞ is a time fluctuation that will be

modeled as an AR(1) random process:

d

dt
~TNðtÞCa1

~TNðtÞZ WðtÞ; (8.62)

where W is a zero-mean, white-noise process with variance s2
TN

Zs2
~TN

.

Equation 8.23 and Equation 8.62 may be combined into the following global system:

d

dt
X Z gðXÞChWðtÞ; (8.63)

where

X Z
T

~TN

" #
; (8.64)

g Z

3h

rcr0

ð �TN C ~TNÞK
3h

rcr0

T

Ka1
~TN

2
64

3
75; (8.65)

h Z
0

1

" #
: (8.66)

When Equations 8.63 through Equation 8.66 are substituted into the Fokker–Planck equation
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(Equation 8.57),

v

vt
fXðtÞðxÞZKtr

K
3h

rcr0

3h

rcr0

0 Ka1

2
64

3
75fXðtÞðxÞC

3h

rcr0

ð �TN C ~TNÞK
3h

rcr0

T

Ka1
~TN

2
64

3
75

v

vx
fXðtÞðxÞ

8
><

>:

9
>=

>;

C
1

2
s2

W tr
v

vx

v

vx

� �T 0 0

0 1

" #
fXðtÞðxÞ

( )
(8.67)

If, for simplicity of notation, the joint probability density function of T and ~TN is defined as

f ðT ; ~TNÞbfXðtÞðxÞ, then Equation 8.67 may be further elaborated into

v

vt
f ðT ; ~TNÞZ

3h

rcr0

Ca1

� �
f ðT ; ~TNÞK

3h

rcr0

ð ~TN C ~TNÞK
3h

rcr0

T

� �
v

vT
f ðT ; ~TNÞ

Ca1
~TN

v

v ~TN

f ðT ; ~TNÞC
1

2
s2

W

v2

v ~T
2
N

f ðT ; ~TNÞ (8.68)

This equation is a parabolic equation in two dimensions (T and ~TN). Because Equation 8.23 is

linear in TN and because TN is a Gaussian process, it can be shown that the solution of Equation

8.68 must be bivariate Gaussian. Therefore, Equation 8.8 (with nZ2) may be substituted into

Equation 8.68 and, after algebraic manipulations of considerable length, it is possible to derive

equations for �T and VT ; ~TN
that can be solved. Another approach is to solve Equation 8.68 numeri-

cally to describe the evolution of the probability density function of the soluble solids content in

apple fruit.25 These routes will not be explored here. Instead, the variance propagation algorithm

will be directly applied to calculate �T and VT ; ~TN
.

The following system is then obtained:

d

dt
�T Z

3h

rcr0

ð �TNK �TÞ; (8.69)

d

dt
�TN Z 0; (8.70)

d

dt
Vx;x Z

K
3h

rcr0

3h

rcr0

0 Ka1

2

64

3

75Vx;x CVx;x

K
3h

rcr0

0

3h

rcr0

Ka1

2
66664

3
77775

C
0 0

0 s2
W

" #
; (8.71)

where

Vx;x Z
s2

T sT ; ~TN

sT ; ~TN
s2
~TN

" #
; (8.72)

and sT ; ~TN
is the covariance of T and ~TN. The initial conditions are given by

�Tðt Z 0ÞZ T0 (8.73)

�TNðt Z 0ÞZ �TN (8.74)

Vx;xðt Z 0ÞZ
0 0

0 s2
~TN

" #
: (8.75)

Equation 8.69 expresses that the mean solution can be found by solving the original differential

equation for the mean value of the random parameter. Equation 8.70 confirms that the mean value

of the random parameter is constant (which was expected because an autoregressive process is

stationary).
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Equation 8.71 can be elaborated further to yield

d

dt
s2

T ZK
6h

rcr0

s2
T C

6h

rcr0

sT ; ~TN
; (8.76)

d

dt
sT ; ~TN

Z
3h

rcr0

s2
~TN

K
3h

rcr0

Ca1

� �
sT ; ~TN

; (8.77)

d

dt
s2
~TN

ZK2a1s2
~TN

Cs2
W : (8.78)

Because TN is stationary, s2
~TN

is not a function of time; therefore,

s2
~TN

Z s2
TN

Z s2
W =2a1: (8.79)

The solution of Equation 8.77 can be readily found through direct integration:

sT ; ~TN
Z

3h=rcr0

3h=rcr0 Ca1

s2
~TN

1Kexp K
3h

rcr0

Ca1

� �
t

� �� �
: (8.80)

After substitution of Equation 8.80 into Equation 8.78 and subsequent integration, the following

expression for s2
T may be derived:

s2
T Z

3h=rcr0

3h=rcr0 Ca1

s2
TN

C
3h=rcr0

3h=rcr0Ka1

s2
TN

exp K
6h

rcr0

t

� �

K
18h2=r2c2r2

0

ð3h=rcr0 Ca1Þð3h=rcr0Ka1Þ
s2

TN
exp K

3h

rcr0

Ca1

� �
t

� �
: (8.81)

In the special case of a random variable, TN, the above expression may be simplified by

putting a1Z0, so that

s2
T Z s2

TN
Cs2

TN
exp K

6h

rcr0

t

� �
K2s2

TN
exp K

3h

rcr0

� �
t

� �
; (8.82)

which is identical to Equation 8.28. Observe that the corresponding Fokker–Planck equation,

Equation 8.68, in this case reduces to a hyperbolic equation.

A sample of the random-process ambient temperature and the corresponding temperature

course in the sphere are shown in Figure 8.6. The parameter values were the same as before.

The high-frequency fluctuations are smoothed because of the thermal inertia of the sphere.

There was a very good agreement between the mean temperature of the sphere calculated by

means of the Monte Carlo and the variance propagation algorithm (not shown). In Figure 8.7 the

time course of the variance of the temperature of the sphere is shown. The results obtained by

means of the variance propagation algorithm and the Monte Carlo method with 1000 or 5000 runs

were comparable. However, the variances obtained by means of the Monte Carlo method with 100

runs are scattered.
8.6.3 Application to Heat Conduction

As was the case for the perturbation algorithm, for the extension of the variance propagation to

conduction-limited problems, the discussion will begin from the spatially discretized system,

Equation 8.46. As with the lumped capacitance problem, a first step is to write the stochastic
q 2006 by Taylor & Francis Group, LLC
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heat conduction in the form of Equation 8.55. It is easy to see that this can be accomplished through

the following choice of x, g, and h:

x Z
u

~TN

" #
; (8.83)

g Z
CK1ðKKu C fÞ

Ka1
~TN

" #
; (8.84)

h Z
0

1

" #
; (8.85)
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with 0 a null vector of dimension nnod. The variance propagation algorithm can now be applied, and

after some manipulations the following system is obtained:

d

dt
�u Z CK1ðKK �u C �fÞ; (8.86)

d

dt
Vu;u Z CK1 KKVu;u C

vf

v ~TN

VT
u; ~TN

� �
C KKVu;u C

vf

v ~TN

VT
u; ~TN

� �T

CKT ; (8.87)

d

dt
Vu; ~TN

Z CK1 KKVu; ~TN
C

vf

v ~TN

s2
~TN

� �
KVu; ~TN

a1; (8.88)

where the notation CKT denotes the transpose of the inverse of C. �f is assembled using �TN. The

initial condition for Equation 8.86 is given by

�uðt Z 0ÞZ �u0;

Vu;u Z 0;
(8.89)

Vu;TN
Z 0; (8.90)

with 0 null matrices of appropriate dimension. Equation 8.86 through Equation 8.90 constitute the

variance propagation algorithm for heat conduction problems with random process

ambient temperature.

Equation 8.87 is of the general form,

d

dt
VðtÞZ AVðtÞCVðtÞAT CBðtÞ;

where V, A, and B are square matrices of equal dimension, and is called a Lyapunov matrix

differential equation. This equation can be numerically solved after time discretization. In the

case an implicit discretization technique is applied, an algebraic Lyapunov equation is obtained

that can be solved readily.26 Equation 8.88 is of the same form as Equation 8.86, and this fact can be

exploited to reduce the computational effort.

The algorithm will now be illustrated by the tomato concentrate example that was introduced

in the previous section. The parameters are the same as given before, but the ambient tempera-

ture is now described by means of an AR(1) process with sTN
Z18C and a1Z0.00277/s. An

implicit Euler finite difference method in the time domain was used to integrate the differential

systems.

In Figure 8.8 the temperature variance at three different positions in the can are shown as

calculated by means of the Monte Carlo method with 100 and 1000 runs, and the variance propa-

gation algorithm. The agreement between the Monte Carlo method with 1000 runs and the variance

propagation algorithm is good, but the Monte Carlo method with 100 runs is not very accurate. For

the mean value an excellent agreement between the different method was observed (figure not

shown). The relative CPU time was equal to 74, 242, and 2426, for the variance propagation, Monte

Carlo with 100 runs and Monte Carlo with 1000 runs, respectively.

Applications of the variance propagation algorithm are given in Table 8.1. More extended

variance propagation algorithms for heat conduction problems involving stochastic parameters

have been developed.27–29 These authors applied the variance propagation algorithm with random

process and random wave parameters to evaluate the effect of random fluctuations in storage

temperature on the temperature inside pineapple and cucumber during cooling.30 They found that
q 2006 by Taylor & Francis Group, LLC
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high frequency fluctuations of the storage temperatures are attenuated because of the thermal

inertia of the fruit. The attenuation was larger near the center of the product. This is an important

result because it indicates that phenomena such as brown heart in pineapple—a chilling disorder

characterized by a brown discoloration of the core of the pineapple—are likely not a consequence

of rapid temperature fluctuations but rather of wrong storage temperature set-points or tempera-

ture abuse. For the same reason, other products, such as cucumber, which develop chilling injuries

at their surface, are expected to be more susceptible to temperature fluctuations. As in the case of

random field parameters, random variable properties cause more variability of the temperature

inside the food than random process properties.

The algorithm was further extended to coupled heat and mass transfer problems by

Scheerlinck et al.31
8.7 CLOSING REMARKS/FUTURE TRENDS

In this chapter, some algorithms for stochastic heat transfer analysis have been outlined.

In the Monte Carlo method, a large number of process samples are obtained by solving the heat

transfer model for artificially generated random parameter samples. Straightforward statistical

analysis of the simulation results yields the mean values and variances of the temperature. Transfor-

mation methods can be used to calculate the probability density function and moments of a function

of random variables but are only applicable to problems for which a (simple) analytical solution is

available. The perturbation method is based on the Taylor expansion of the governing ordinary or

partial differential equations. It is only applicable for random parameters of the random variable

and field type. The Fokker–Planck equation and the variance propagation algorithm are based on

stochastic systems theory and were originally developed for systems of ordinary differential

equations with parameters that fluctuate randomly in time (random process parameters). The

Fokker–Planck equation is difficult to solve by numerical means but can be used as a reference

technique, as it yields the exact expression (or a numerical approximation of arbitrary accuracy) of

the probability density function of the solution. It is limited to problems with a relatively small

number of random variables. Both the perturbation and the variance propagation algorithm can

readily be extended to spatially discretized partial differential equations, such as the Fourier

equation for heat conduction problems. The variance propagation algorithm then yields a system

of matrix differential equations that can be solved numerically.
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For random variable problems, the perturbation algorithm is the method of choice because of

its speed. For random process problems the perturbation algorithm is not applicable. In this case,

the variance propagation algorithm is to be preferred above the Monte Carlo method. The Monte

Carlo method, in general, requires a large amount of computing time to obtain results with an

acceptable accuracy. Also, it requires a complete stochastic specification of the random par-

ameters, while for the perturbation algorithm only the mean values of the parameters and their

covariance matrix must be known. The variance propagation algorithm is restricted to problems

involving autoregressive parameters with known mean value and covariance function. However,

the latter two algorithms can provide only limited statistical information, such as the mean value

and the variance, whereas the Monte Carlo method can also be applied to derive other statistical

characteristics of the solution, such as its probability density function. Also, as both the pertur-

bation and variance propagation algorithm are essentially based on a linearization of the

governing equations around their mean solution, they are only applicable if the variability is

relatively small (coefficient of variation smaller than 0.2).
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GLOSSARY

Autoregressive random process A special type of random process in which there is some
q 2006 by T
correlation between successive values; formally, an autoregressive random process is

defined through a differential equation with a white noise input.
Finite element method Numerical discretisation method to calculate approximate solutions of
partial differential equations.
Fokker–Planck equation Partial differential equation that describes the evolution of the prob-
ability density function of the solution of a stochastic differential equation.
Gauss quadrature Numerical solution of surface integrals where the integration points are
chosen such to achieve maximal accuracy for a certain class of integrands.
Lumped capacitance heat transfer Heat transfer in objects with an internal heat transfer resist-
ance that is much smaller than the external resistance.
Lyapunov equation A special type of matrix differential equation.

Monte Carlo method A method to solve a probabilistic model by random numerical sampling.

Normal (Gaussian) distribution The most important type of probability distribution charac-
terized by a bell-shaped function.
Perturbation method A method to approximately calculate the mean value and variance of the
solution of a probabilistic model.
Probability density function A function that allows the calculation of the probability of a
variable to have a value in an arbitrary range.
Random field A random variable that may vary in an unpredictable way as a function of position.

Random process A random variable that may vary in an unpredictable way as a function of time.

Random variable A physical variable that may vary from experiment to experiment in an
unpredictable way.
Random wave A random field that may also vary in an unpredictable way as a function of time.

Stationary process A process of which the probabilistic characteristics do not change in time.

Transformation method A method to calculate the probabilistic characteristics of a function of
random variables.
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Variance propagation method A method to approximately calculate the mean value and
q 2006 by Ta
variance of the solution of a stochastic differential equation.
White noise A special type of random process; successive values are completely uncorrelated no
matter how close in time they are.
NOMENCLATURE

All vector and matrix quantities are denoted with bold symbols.

ai Coefficient of autoregressive process

Bi Biot number

c Heat capacity

C Finite element capacity matrix

det Determinant

E Mean value operator

fX(x) Probability density function

f Finite element thermal load vector

g Function

h Surface heat transfer coefficient (W/m 8C)

h Vector valued function

Hi Weight in Gauss quadrature formula

k Thermal conductivity (W/m 8C)

K Finite element stiffness matrix

L Half-height of can

nt Outward normal

n Number of nodes, order

0 Zero matrix

P Probability

q Order of quadrature formula

r0 Radius (m)

R Correlation coefficient

t Time (s)

T Temperature (8C)

T0 Initial temperature (8C)

TN Ambient temperature (8C)
~TN Stochastic fluctuation of ambient temperature (8C)

tr Trace of a matrix (sum of diagonal entries)

u Nodal temperature vector

V Covariance function

W White noise process

X Random variable or process
�X Mean value of X

Y Random variable or process

Greek Symbols

d(t) Dirac delta
G Convection surface

r Density (kg/m)
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s Standard deviation

t Separation time
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9.1 INTRODUCTION

The basic principle of experimental design is to plan experiments so as to be able to study the

effects of certain factors on some specific results, and to identify the important influential factors

with a given level of confidence. The effects of the factors and their interactions are evaluated by

computing F-values, which are the ratio of effect-mean-square vs. error-mean-square. Randomiz-

ation and minimization of error are two important mathematical principles for efficient selection of

truly influential factors. Randomization is useful in objectively detecting uncontrollable errors,

thereby avoiding the inclusion of errors arising from man-made causes in the true errors. Some-

times “blocking” is required during randomization when there is an unavoidable need for handling

many factors in an experimental plan. Blocking should be made based on a controllable condition

(factor), such as date, so that the influence of that factor can be determined later if required.

Response-surface methodology (RSM) is a modeling technique to illustrate the effects of factors

on response surfaces for the purpose of locating the optimum. Therefore, the RSM consists of the

techniques for experimental design, regression analysis, and computation of the optimum. There

are two popular books for RSM: (1) Response Surface Methodology: Process and Product Optimi-

zation Using Designed Experiments by Myers and Montgomery1 and (2) Response Surfaces:

Designs and Analysis by Khuri and Cornell.2 The former has a broader coverage, including the

category of evolutionary operation such as sequential simplex optimization (SSO), which is not

covered by the latter.

To avoid conflict with other chapters in this handbook on linear programming and optimization,

the discussion in this chapter will be restricted to the response-surface modeling, including some

optimization techniques based on response surfaces. This is indispensable because the RSM itself is

an optimization technology, as discussed in the above textbook by Myers and Montgomery.1

Another point to be stressed is that this chapter does not give any detailed or deep elaboration

on the methods, theories, algorithms, and principles. The authors have followed the approach used

in the excellent chapter entitled “Optimization and Experimental Designs” by Otto,3 which was

written for a book for analytical chemists. The readers are advised to refer to his chapter for more

information, as we have avoided excessive duplication and instead have focused this chapter to

discuss the specific nature of techniques useful in food- and bio-processing.
9.2 BASIC PRINCIPLES

9.2.1 Factor Screening

There are two conflicting considerations in selecting factors for designing experiments. (1)

Theoretically, all potential factors should be entered into an experimental design to avoid

missing important factors that may appear minor but could in fact be critical in the mechanism

of the reaction in question. (2) However, it is generally accepted that the greater the number of

factors, the more the number of iterations that are required to reach the optimum. This increase in

the number of experiments—usually exponential—would immediately increase labor and expenses

of carrying out experiments, especially in the case of biological exercises.
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To circumvent these problems, a preliminary selection of factors is customarily made using a

factorial design, especially fractional factorial design. The L16(215) design of Taguchi4 has been

one of the most useful designs for this purpose due to easy identification of factor-interaction

columns in the design, thus being efficient in selecting influential factors or interactions without

losing important information. The delicate nature and complexity of biological phenomena can be

exemplified in cytokine chemistry and genetic engineering. For instance, interleukins 4, 5, and 6

may simultaneously exert their functions either antagonistically or symbiotically in the probiotic

activity of orally administered lactobacilli.5 The function of single residues in a protein sequence

cannot be accurately defined by replacement or deletion of the site in the sequence.6 In the case of

multifunctional phenomena, it is possible that the scree-plot of principal components3 does not

show a sharp decline of eigenvalues, thereby implying that many factors are playing almost equally

important roles in some biological phenomena. In this case, ignoring higher-order interactions for

the sake of dimensionality reduction may not always be justified as in the case of Taguchi designs.4

Decision making for the priority on whether full information should be kept so as not to miss the

chance of important discovery or the best efficacy in experiments by sacrificing some rarely

significant high level interactions is extremely critical.
9.2.2 Errors

Error is defined as the cumulative effects of uncontrollable factors that are the effects of

undefined factors as well as any other factors that have not been selected during the designing of

experiments. However, the most important error is the one that would critically affect the reliability

of analysis. It is highly recommended to maintain factors as constant as possible, because the

repeatability of analysis is extremely critical. Training of analysts prior to commencing experi-

ments is a minimum prerequisite, as increasing the cycles of replication is not as efficient as

intensive training in terms of reducing the size of error, which directly affects the reliability of

selecting the truly influential factors.
9.2.3 Replication

Replication is a popular way to decrease the size of error. However, because the error is only

reduced by a factor of 1=
ffiffiffi
n
p

, where n is the order of replication such that for duplication nZ2 or for

triplication nZ3, replication is not a very efficient way to reduce error. Therefore, for the sake of

the best efficiency in biological projects, it is recommended to include replicates only for the

purpose of computing the standard error value, instead of replicating the entire design.
9.3 FACTORIAL DESIGNS

9.3.1 Elements of Factorial Analysis

In contrast to one-factor-at-a-time approaches, where only one factor is varied while other

variables are held constant, designed experiments involving factorial analysis allow the analyst

to investigate the effects of the individual (main) factors as well as interactions between the factors.
9.3.1.1 Effects of Main Factors

Significance is assessed using F-values (mean square of treatment/mean square of error), as

previously discussed.
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9.3.1.2 Effects of Factor Interactions

Significant interaction between factors is defined as the departure from parallelism. If the main

effects are parallel, they are unilateral. Existence of significant interaction between factors A and B

means that a specific combination of factors A and B would result in an effect that is different from

the unilateral effects of factors A and B considered separately. For example, if the response in

question is processing yield, a significant factor interaction would mean that a specific combination

of A and B could result in unexpectedly high increase or decrease in the yield, which cannot be

anticipated from knowing the main effects of A and B independently.
9.3.1.3 Confounding

Confounding, in which effects are inseparable, can occur between factors and/or interactions

during the course of factorial analysis.
9.3.1.4 Symmetry

Experiments should be designed to distribute evenly within the search space of individual

factors as much as possible to avoid undesirable confounding. This rule was utilized in the regulated

random design of the random-centroid optimization (RCO) as described later.
9.3.1.5 Number of Experiments

In full factorial designs, all possible interactions between factors are assessed, and all com-

binations of levels are taken into consideration. Consequently, the required number of experiments

increases exponentially as the number of factors (n) increases, and it also increases as the number of

levels of factors increases. Two- and three-level full factorial designs require 2n and 3n experiments

for n-factor analysis. For instance, the full factorial designs for two-level experiments with 5, 6, and

7 factors would require 32, 64, and 128 experiments, respectively, whereas a three-level, 5-factor

design requires 243 experiments.

Because it is usually not only expensive but also time consuming to carry out each experiment,

especially in the life sciences, it is of paramount importance to obtain the desired information by

most efficiently conducting the minimum number of experiments. There are such techniques

available, in that only a portion of the full factorial design is chosen, yet satisfactorily adequate

information can be extracted. These methods are called fractional factorial designs and are

frequently used as a preliminary step during an optimization project by selecting the truly influ-

ential factors prior to performing the optimization experiments.
9.3.2 Fractional Factorial Designs

It is reasonable to believe that the higher the order of factor-factor interactions, the less the

statistical significance. By ignoring one such interaction, the total number of required experiments

in the design is reduced by half. This is the basis of fractional factorial designs, which gain their

efficiency by disregarding higher-order interactions, thereby analyzing main effects and lower-

(e.g., second-) order interactions only. In other words, it is assumed that usually two factor

interactions are adequate for judging the general trend in the response surface, and that unexpect-

edly high or low response values at specific combination of levels of more than two factors are not

as important as the main effects or second-order interactions. Note that these assumptions lead to

confounding of the higher-order interactions with some main effects or lower-order interactions.
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Since the early Yates’ algorithm using C and K signs that was employed by Box et al.,7 many

designs have been published, including one of the most popular, the Plackett–Burman design.3 In

this chapter, Taguchi’s designs4 that are based on orthogonal arrays will be discussed due to ease of

explanation of the principle and ANOVA (analysis of variance) computation. Among the many of

Taguchi’s designs for factors with two to five levels, the most useful L16(215) design will be

explained in this chapter to illustrate the basic principles. This fractional factorial design is

based on the four-factor, two-level full-factorial design; thus, the number of experiments required

is 24Z16 (L16). The other digits of 215 in the L16(215) designation show that there are 15 columns of

two-level limit values (upper and lower limits represented by digits 1 and 2, respectively) in the

design table, as shown in Table 9.1a. Columns 1–15 describe the experimental conditions as

combinations of the two levels of factors for each of the 16 experiments in rows 1–16. The

bottom of the table shows the list of component rows expressed as alphabetical letters, or their

combinations, their grouping, and the interaction schemes coined as linear graphs are depicted

underneath the table.

The components are used to find the columns where “column!column” interactions appear. To

use these components, the simple rules to be applied are: (1) multiply components of a combination

of any two columns to which factors are assigned; (2) replace with unity when squares of letters

appear in the component products; and (3) find the column that matches the computed component

products. The interaction effect of two factors assigned in the above rule 1 will appear in this new

column. If a new factor is assigned to this column, its effect will be confounded with the interaction

effect of the previously assigned two factors. Therefore, if this interaction should not be ignored, no

new factor should be assigned to the same column. For example, when pH and temperature are

assigned to columns 1 (component a) and 2 (component b), the pH!temperature interaction will

appear in column 3 (ab). Similarly, the interaction of columns 3 (ab) and 4 (c), which is abc, will be

found in column 7, whereas the interaction of columns 3 (ab) and 6 (bc), which is ab2c/ac, will

appear in column 5. In theory, the most logical half-design is to eliminate the experimental

condition appearing in column 15 with highest order of interaction, i.e., the four-factor interaction

of abcd. If all interactions are to be ignored, this table can accommodate a maximum of 14 factors

assigned to each of 14 columns, with one left-over column 15 assigned to the error term.

An easier way of assigning factors is to use the interaction schemes shown underneath Table 9.1a.

The schemes are composed of lines (interaction) connecting pairs of dots or “nodes” (for factor

assignment), with interactions designated as digits (interaction columns) on the lines. Scheme 1, for

example, may be used to assign five factors (in columns 1, 2, 4, 8 and 15) along with interactions

between each pair of factors, whereas scheme 4 is the design that may be used when all of the two-

factor interactions of factor 1 with other factors are assumed to be important.
9.3.2.1 Two-Level Design Example

A hypothetical example is shown in Table 9.1b. Nine factors (WHard: water hardness, pH,

PasTemp: pasteurization temperature, StTemp: storage temperature, StTime: storage time,

BotSize: bottle size, BotShape: bottle shape, VarLoc: fruit variety or locality, and Sugar: sugar

content) are considered to be affecting the sediment formation in a fruit drink. If a full two-level

factorial design is planned, 29Z512 experiments would have to be carried out. By assuming that

some higher-order interactions are not important, a fractional factorial design with only 16 experi-

ments may be used. To decide which interactions should be computed for significance, all of the

available information derived from past experience, literature data, and any other sources should

be taken into consideration. Four two-factor interactions (columns 3, 4, 14, and 15) are designed to be

assessed for their statistical significance. Several two-factor interactions were regarded to be

nonsignificant: columns 5, 6, 9, and 10, which were used to assign factors (BotSize, PasTemp,

StTime and BotShape, respectively). To avoid overlooking important interactions, it is
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Table 9.1a L16(215)

Experiment

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

3 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

4 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1

5 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

6 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1

7 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1

8 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2

9 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

10 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1

11 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1

12 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2

13 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

14 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2

15 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2

16 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1

Component a b a c a b a d a b a c a b a

b c c b d d b d c c b

c d d d c

d

Group (a) (b) (c) (d)

8

8

9
11

12 10
13
14

3 5

1

42 6

6 12
9

82 10

11

1415

4 5

4

5

6

7

21

1

2

4

3 12 15 14 13

8

5

10

7

9

6

11

3

9
11
13
1512

14

8
(6)(5)(4)

32 14

12
10

8
5

4

15
13

1197
5

1
10

3

1 137

7

7

4

5

12

6

2

3

1(1) (2) (3)

10

15

15

14

11

13 9

Source: From Taguchi, G, Design of Experiments, Vol. 1, Maruzen, Tokyo, 1957.
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Table 9.1b Sediment Formation in the Fruit Drink

Column Interaction

WHard 1 (a) 1!2Zab/3

pH 2 (b)

PasTemp 6 (bc) 2!6Zc/4

StTemp 7 (abc) 7!9Zbcd/14

StTime 9 (ad)

BotSize 5 (ac) 5!10Zabcd/15

BotShape 10 (bd)

VarLoc 8 (d)

Sugar 11(abd)

Unused a 12 (cd), 13 (acd)

a Other factors, e.g., food colors and preservatives, can be assigned.

PasTemp
St temp

Whard
13

12

StTime3

pH
BotShape

VarLoc

15

4

Sugar

14

BotSize

Source: Nakai’s lecture note.
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recommended to assign new factors, possible interactions or an error term to columns for higher-level

interactions, e.g., 7, 11, 13, and 14 (all are three-factor components) in Table 9.1a when other factors

are already assigned to columns 1, 2, and 8. At least one column should be left unassigned because it is

required to serve for the error sum of square computation. In the present example, columns 12 and 13

are left unused for this purpose.

In total, 16 experiments under the conditions shown in Table 9.1c are carried out in random

order to avoid carryover error, one experiment after another. The amounts of sediments measured as

a result of each of the 16 experiments are also shown in Table 9.1c.
Table 9.1c The Amounts of Sediments Measured After Storage of Bottled Drink

Exp

W

Hard pH 3 4

Bot

Size

Pas

Temp

St

Temp

Var

Loc

St

Time

Bot

Shape

Sugar

12 13 14 15

Sediment

-gr-

1 1 1 1 1 1 1 1 1 1 1.25

2 1 1 1 1 1 2 2 2 2 1.00

3 1 1 2 2 2 1 1 1 1 0.50

4 1 1 2 2 2 2 2 2 2 0.20

5 1 2 1 2 2 1 1 2 2 0.10

6 1 2 1 2 2 2 2 1 1 0.05

7 1 2 2 1 1 1 1 2 2 0.07

8 1 2 2 1 1 2 2 1 1 0.15

9 2 1 2 1 2 1 2 1 2 0.20

10 2 1 2 1 2 2 1 2 1 1.05

11 2 1 1 2 1 1 2 1 2 0.85

12 2 1 1 2 1 2 1 2 1 0.60

13 2 2 2 2 1 1 2 2 1 0.50

14 2 2 2 2 1 2 1 1 2 0.40

15 2 2 1 1 2 1 2 2 1 0.75

16 2 2 1 1 2 2 1 1 2 0.55
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Then, ANOVA computation was performed in ordinary fashion to obtain sum of squares for

treatment St, sum of squares for total ST, and correction term CT:

St Z
X

treatment 1
� �2

C
X

treatment 2
� �2

KCT; (9.1)

ST Z
Xk

1

ðdataÞ2KCT; (9.2)

CT Z
Xk

1

data

 !2

=k; (9.3)

where k is the number of experiments.

An example of St computation is:
q 20
St for bottle size in column 5 is ð1:25C1:00C0:10C0:05 C0:85C0:60C0:75C0:55Þ2C
ð0:50C0:20C0:07C0:15C0:20C1:05C0:50C0:40Þ2Kð1:25 C1:00C.C0:75C0:55Þ2=16:
All computations can be readily carried out using Excele functions SUM (total) and SUMSQ

(sum of squares).9

The ANOVA table thus calculated is shown in Table 9.1d. None of the nine factors is significant

in affecting the amount of sediment, even after the pH!PasTemp interaction has been pooled into

the error (panel A of Table 9.1d). To extract useful information, SS with F values lower than unity,

i.e., StTime, BotShape, VarLoc, and BotSize!BotShape, are pooled into the Error SS, thereby

increasing its degrees of freedom to 7 and resulting in an increase in the power of the analysis to

detect significant factors. In the ANOVA thus repeated (panel B of Table 9.1d), it is evident that

pH is highly significant (P!0.01), and BotSize and WHard!pH interactions are less significant

(P!0.05).

Any phenomenon is the consequence of its causes, and if all of the causes are correctly defined,

there should be no error introduced into the resultant data analysis. However, in reality, it is

humanly impossible to eliminate all errors throughout the entire experiment. Therefore, errors

would always exist, despite the fact that highly trained skill, appropriate knowledge, and use of

instruments with high accuracy may diminish the size of error to the minimum.

The response curves illustrated in Figure 9.1a demonstrate a decrease in sediment as pH

decreases and bottle size is increased. The increase in sediment by increasing WHard is nonsigni-

ficant (Table 9.1d:B). Significant interaction between pH and WHard is apparent in Figure 9.1b as

the departure from parallelism of the response curves. The specific combination of these two factors

has an effect on the response, which in this case is the amount of sediment. The formation of

sediment cannot be simply stated as “the lower the pH and WHard, the smaller the sediment,”

which would be true in the case of no interaction. It is interesting to note that the WHard!pH

interaction is significant although WHard itself is nonsignificant (Table 9.1d:B). This phenomenon

is characterized by a great reduction of sediment at low pH of 3 when water is soft (W1). At pH 6,

the sediment has increased even when the water is soft (Figure 9.1b).

There are many other fractional factorial methods aside from the Taguchi designs, such as those

of Plackett and Burman;3 many Latin square designs3 are also similar as far as undetectability of

interactions is concerned. Because of the importance of detecting factor–factor interactions, these

ineffective designs are not discussed further in this chapter.
9.3.2.2 Three-Level Design Example

The two-level designs are useful for the purposes of screening influential factors, but they are

not adequate to represent response surfaces because they cannot illustrate concave or convex
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Table 9.1d ANOVA for Sediment Formation of a Fruit Drink Before (A) and After (B) Pooling Factors or
Interactions Into the Error Term on the Basis of Mean Squares

Factor/
Interaction Column SS Df MS F

(A)

WHard 1 0.16 1 0.16 2.18

pH 2 0.59 1 0.59 8.05

PasTemp 6 0.21 1 0.21 2.86

StTemp 7 0.13 1 0.13 1.77

StTime 9 0.04 1 0.04 0.55

BotSize 5 0.27 1 0.27 3.68

BotShape 10 0.01 1 0.01 0.14

VarLoc 8 0.00 1 0.00 0.00

Sugar 11 0.14 1 0.14 1.91

WHard!pH 3 0.27 1 0.27 3.68

StTemp!StTime 14 0.09 1 0.09 1.23

BotSize!BotShape 15 0.04 1 0.04 0.55

[pH!PasTemp 4 0.05 1 0.05]

Error 4, 12, 13 0.22 3 0.073

Total 2.17 15

F(0.05)1,3Z10.1.

Source: Nakai’s lecture note.

Factor/Interaction SS Df MS F

(B)

WHard 0.16 1 0.16 3.61

pH 0.59 1 0.59 13.32a

PasTemp 0.21 1 0.21 4.74

StTemp 0.13 1 0.13 2.94

BotSize 0.27 1 0.27 6.10b

Sugar 0.14 1 0.14 3.16

WHard!pH 0.27 1 0.27 6.10b

StTemp!StTime 0.09 1 0.09 2.03

Error 0.31 7 0.044

Total 2.17 15

F(0.05)1,7Z5.59, F(0.01)1,7Z12.25.
a FOF(0.01), [P!0.01].
b F(0.01)OFOF(0.05), [P!0.05].

Source: Nakai’s lecture note.
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surfaces for which at least three-level designs are required. Taguchi’s L27(313) design shown in

Table 9.2a is most suitable for this purpose.

The general strategies and procedures previously described for two-level designs also apply to

three-level designs, with two exceptions. First, the component calculation to find interaction

columns is different from that used for two-level designs; i.e., “replace cubes (instead

of squares) with 1.” Second, an interaction appears in two columns rather than one column.

For instance, to find the interaction of columns 10 and 12, the relation of column 10 (ab2c2)!
column 12 (ab2c)/a2b4c3 is used. By the “replace cubes with 1” rule, this becomes a2b because

b3c3/1; when squared, this becomes a4b2, which turns to ab2 located at column 4. Meanwhile, the

relation of (ab2c2)!(ab2c)2/a3b6c4 becomes c (column 5). In summary, the interaction of column

10 and column 12 appears in columns 4 and 5.

The example used here involves an experimental design to study the effects of four factors and

three two-factor interactions on the solubilization of wheat flour by heating with HCl (Table 9.2b).

The solubility of the hydrolysates from each of the 27 experiments is measured as the responses.

The experimental conditions and the solubility obtained are shown in Table 9.2c.
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Figure 9.1a Response curves of sediment formation in the fruit drink as a function of (a) pH, (b) bottle size, and
(c) water hardness.
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Figure 9.1b Interaction effects on sediment formation.
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For ANOVA computation, the same equations (Equation 9.1 through Equation 9.3) described

for the two-level design example can again be used; the only difference is that the treatment levels

are 1–3 instead of 1–2. The ANOVA table is shown in Table 9.2d.

The response curves for the main effects and interactions are shown in Figure 9.2a and

Figure 9.2b, respectively. The confidence limit (CL) is calculated using the following formula:

CL Z tð0:05Þ at dfe=
ffiffiffi
k
ph i ffiffiffiffiffiffiffiffiffiffiffi

Se=dfe

p
(9.4)

where t (0.05) is the Student’s t value at PZ0.05, k is the number of data, and Se is SS for error.
Table 9.2a L27(313)

Experiment
No. 1 2 3 4 5 6 7 8 9 10 1 1 12 13

1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 2 2 2 2 2 2 2 2 2

3 1 1 1 1 3 3 3 3 3 3 3 3 3

4 1 2 2 2 1 1 1 2 2 2 3 3 3

5 1 2 2 2 2 2 2 3 3 3 1 1 1

6 1 2 2 2 3 3 3 1 1 1 2 2 2

7 1 3 3 3 1 1 1 3 3 3 2 2 2

8 1 3 3 3 2 2 2 1 1 1 3 3 3

9 1 3 3 3 3 3 3 2 2 2 1 1 1

10 2 1 2 3 1 2 3 1 2 3 1 2 3

11 2 1 2 3 2 3 1 2 3 1 2 3 1

12 2 1 2 3 3 1 2 3 1 2 3 1 2

13 2 2 3 1 1 2 3 2 3 1 3 1 2

14 2 2 3 1 2 3 1 3 1 2 1 2 3

15 2 2 3 1 3 1 2 1 2 3 2 3 1

16 2 3 1 2 1 2 3 3 1 2 2 3 1

17 2 3 1 2 2 3 1 1 2 3 3 1 2

18 2 3 1 2 3 1 2 2 3 1 1 2 3

19 3 1 3 2 1 3 2 1 3 2 1 3 2

20 3 1 3 2 2 1 3 2 1 3 2 1 3

21 3 1 3 2 3 2 1 3 2 1 3 2 1

22 3 2 I 3 1 3 2 2 1 3 3 2 1

23 3 2 1 3 2 1 3 3 2 1 1 3 2

24 3 2 1 3 3 2 1 1 3 2 2 1 3

25 3 3 2 1 1 3 2 3 2 1 2 1 3

26 3 3 2 1 2 1 3 1 3 2 3 2 1

27 3 3 2 1 3 2 1 2 1 3 1 3 2

Component a b a a c a a b a a b a a

b b2 c c2 b b2 c2 b2 b

c c2 c c2

Group (a) (b) (c)

(1)

3,4

2 8,11

6,7

5

9 10 12 13
1

(2)

3,4

6,7

9,10
12,13

11

8

5

2

Source: From Taguchi, G, Design of Experiments, Vol. 1, Maruzen, Tokyo, 1957.

9>>>=>>>; 9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
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Table 9.2b Wheat Flour Solubilization

Factor Column Interaction

Flour (F) 1 (a) 1!2Zab/3C4

HCl 2 (b) 2!5Zbc/8C11

Heat treatment (H) 5 (c) 1!5Zac/6C7

Reductant (R) 9 (abc)

Unused 10 (ab2c2), 12 (ab2c), 13 (abc2)

F

HHCl

R 10 12 136,73,4

8,11

HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES304
The parallel curves for flour-HCl (Figure 9.2b) indicate no significant interaction between these

two factors, and the effects of these factors can simply be stated as “the higher the HCl concen-

tration, the higher the obtained solubility at all flour concentrations.” However, the HCl!
temperature-time interaction is significant. When autoclaved (120 8C for 15 min), almost the

same high solubility was obtained at all HCl concentrations studied, but yielding solubility

responses that are not parallel to those at other HCl!temperature-time combinations.
Table 9.2c Solubility of Acid-Treated Wheat Flour

Experiment F HCl H R Solubility (%)

1 1 1 1 1 95.6

2 1 1 2 2 80.2

3 1 1 3 3 85.2

4 1 2 1 2 95.0

5 1 2 2 3 85.8

6 1 2 3 1 92.4

7 1 3 1 3 95.8

8 1 3 2 1 87.4

9 1 3 3 2 92.4

10 2 1 1 2 94.4

11 2 1 2 3 71.0

12 2 1 3 1 86.0

13 2 2 1 3 94.7

14 2 2 2 1 80.9

15 2 2 3 2 88.9

16 2 3 1 1 94.7

17 2 3 2 2 84.5

18 2 3 3 3 89.1

19 3 1 1 3 91.0

20 3 1 2 1 68.0

21 3 1 3 2 83.9

22 3 2 1 1 94.3

23 3 2 2 2 76.5

24 3 2 3 3 85.1

25 3 3 1 2 94.4

26 3 3 2 3 81.9

27 3 3 3 1 85.3
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Table 9.2d ANOVA of Acid Hydrolysates of Wheat Flour

Factor/interact ion SS Df MS F

Wheat flour 135.64 2 67.83 16.58a

HC1 152.91 2 76.46 18.69a

Temperature–Time 995.20 2 497.60 121.66a

Reductants 6.25 2 3. 13 0.77

Flour!HCl 1.60 4 0.40 0.10

Flour!T–T 38.04 4 9.51 2.33

HCl!T–T 88.79 4 22.20 5.43 b

Error 24.53 6 4.09

Total 1442.96 26

F(0.01)2,6Z10.43, F(0.05)2,6Z5.14, F(0.01)4,6Z9.15, F(0.05)4,6Z4.53.
a P!0.01.
b P!0.05.
Source: Nakai’s lecture note.
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Figure 9.2a Response curves of acid-solubilized wheat flour as a function of percent flour, HCl concentration and
temperature-time treatment.
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side) interaction between factors.
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9.3.2.3 How to Select Designs

The orthogonal array of Taguchi4 was constructed on the basis of a probabilistic rule that two

factors, which are difficult to change the experimental conditions, should be assigned to two

columns belonging to different groups in L16(215) design. Assigning these two factors

to columns in the same group is not recommended due to less chance of useful interaction

effects compared to the main effects of the already assigned factors. Also, the pooling-up

process of the resultant ANOVA, which is similar to the algorithm of backward stepwise multiple

regression, may improve the screening efficiency of factors.

We have found that Taguchi’s L16(215) design is the most efficient and useful for general

purposes, especially for factor screening. The three-level designs such as L27(313) are valuable for

approximating the response surfaces. More efficient designs than the L27(313) design for the purpose

of response-surface modeling will be discussed in the following section. Whether higher-order

interactions, especially higher than second order, can be ignored as in the case of the Taguchi

method10 is debatable. In the multivariate era, especially in biotechnology, high-degree interactions

may not be always ignored.

It was reported that the linear graphs of Taguchi had two disadvantages.11 First, they do not

identify unspecified interaction effects that are confounded with the main effects and the specified

interaction effects. Second, they do not provide information on confounding relationships. The

“interaction graphs” of Kacker11 may circumvent these problems. According to the interaction

graph for L16(215), eight columns (1, 2, 4, 7, 8, 11, 13, and 14) can be used for assigning factors,

whereas the rest (3, 5, 6, 9, 10, 12, and 15) are for assigning two-factor interactions or to be left

blank for error SS computation. In the case of the example of fruit drink sediment in Table 9.1b,

therefore, assigning factors to columns 5 (ac), 6 (bc), 9 (ad) and 10 (bd) may be a problem because

the 2 (b)!7 (abc), 1 (a)!7 (abc), 1 (a)!8 (d), and 2 (b)!11 (abd) interactions, as well as 1 (a)!
11 (abd) and 2 (b)!8 (d) interactions, respectively, may confound with those four factors.

Our result using the Taguchi method identified significance of the 1!2 interaction appearing on

column 3 (Table 9.1d:B and Figure 9.1b). In practice, columns 1 and 2 belong to different groups, i.e.,

group “a” and group “b,” respectively, (Table 9.1a); and column 3 was left blank to calculate the 1!2

interaction effect. However, according to the interaction graph of Kacker, column 3 consisted of four

interaction effects of 1!2, 4!7, 8!11, and 13!14. Because factors were not assigned to columns 4 and

13, the above-mentioned 4!7 and 13!14 do not eventually exist in this example, whereas the 8!11
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interaction can also be considered nonexistent because of the near-zero sum of squares for VarLoc

assigned to column 8. Therefore, significance in column 3 representing interactions should be mostly

due to contributions of the interaction of factors assigned to columns 1 and 2, which belong to different

groups. According to the interaction graphs of Kacker,11 interactions consist of at least four interactions,

thereby making it difficult to separate individual interactions. On the other hand, the Taguchi’s linear

graphs were made for detecting the most probable interaction effects, and the impact of the two disad-

vantages mentioned above may therefore often be negligible with no practical relevance, as illustrated in

the fruit drink sediment example.

Recently, Ross10 proposed new interaction tables by thoroughly covering possible interactions;

for column 3, seven interactions may be confounded. He recommended a simpler digital series of 1,

2, 4, 7, 8, 11, 13, 14, (3, 5, 6, 9, 10, 12) for assigning more than eight factors. As the number of

factors to be assigned increases, it is recommended to follow this order of selecting columns. For

instance, if one has 6–8 factors to be assigned, a shorter digital series of 1, 2, 4, 7, 8, (11, 13, 14) is

recommended. Column numbers in parentheses may be assigned in any order, whereas column

numbers outside of the parentheses must be used for assigning factors first. Other unassigned

columns are left blank to use in computation of interactions or error. Columns 1, 2, 4, 7, 8, 11,

13, and 14 all bear one or three letters as components: a, b, c, abc, d, abd, acd, and bcd, respectively.

If we accept low probability of significance of three-factor interactions, assigning factors to these

columns is reasonable. Columns 3, 5, 6, 9, 10, and 12, corresponding to ab, ac, bc, ad, bd, and cd,

respectively, should be left blank for computing two-factor interactions. At least column 15 should

be left blank for error computation. According to the two-level interaction table shown in Table 9.3,

even factors assigned to one-letter columns 1(a), 2(b), 4(c), and 8(d), may each be confounded with

seven two-level interactions each. Whether the two-level interactions adversely affect the main

effects or not should be tested as was done in the ANOVA computation shown above.

Theoretically, a fractional factorial design cannot avoid the confounding of multiple interaction

effects. However, it is worth noting that the great saving in the number of experiments that can be

gained by sacrificing some information on the interactions using Taguchi’s orthogonal array

method is still extremely valuable. This is especially true in the case of factor screening as a

prerequisite of the subsequent optimization. The important fact is that the controlling effects of

main factors are always vulnerable to the influence of any two-factor interaction. No matter which

design is used, the factors computed to be significant even after confounding with interaction effects

should be truly significant. This is important for factor screening.
Table 9.3 Two-Level Interaction Table

Column no.

Column no. 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 — 1 6 7 4 5 10 11 8 9 14 15 12 13

3 — — 7 6 5 4 11 10 9 8 15 14 13 12

4 — — — 1 2 3 12 13 14 15 8 9 10 11

5 — — — — 3 2 13 12 15 14 9 8 11 10

6 — — — — — 1 14 15 12 13 10 11 8 9

7 — — — — — — 15 14 13 12 11 10 9 8

8 — — — — — — — 1 2 3 4 5 6 7

9 — — — — — — — — 3 2 5 4 7 6

10 — — — — — — — — — 1 6 7 4 5

11 — — — — — — — — — — 7 6 5 4

12 — — — — — — — — — — — 1 2 3

13 — — — — — — — — — — — — 3 2

14 — — — — — — — — — — — — — 1

Source: Adapted from Ross, P. J., Taguchi Techniques for Quality Engineering, 2nd ed., McGraw-Hill, New York,
1996.
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Table 9.4 Recent Applications of Experimental Designs in Food/Bio Processing

Method Food/Bio Processes Finding Reference

Full factorial MAPa of sponge cake Minimum K sorbate to prevent

fungal spoilage

12

Fractional factorial

Plackett–Burman Triglyceride GC of cocoa

butter equivalents

Routine control of chocolate

bars

13

Taguchi–Orthogonal Red wine aroma Macerating enzymes from

transgenic wine yeast

14

a Modified atmosphere packaging.
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Recent examples of applications of factorial and fractional factorial experimental designs in

food/bio processes are shown in Table 9.4.
9.4 RESPONSE-SURFACE METHODOLOGY

9.4.1 Introduction

The basic procedure of the experimental designs is to compute ANOVA using factorial

analysis. In the life sciences, fractional factorial designs are essential for efficient analysis in

terms of costs and labor for biological experiments. After finding significant factors by these

experimental designs, the subsequent aim becomes to find the optimum that appears on the response

surfaces. Accordingly, the visualization of the curvature of response surfaces requires more

response values per factor than provided by three-level experiments.

There have been two schools of thought with regard to approaches for approximating the

response surface and finding the optimum, namely (1) extension and/or continuation of experi-

mental designs followed by curve-fitting to illustrate the response surfaces, and (2) “evolutionary

operation” and its derivatives to rotate the search toward the optimum during iterative search. The

incipient design of methods in school 2 can be rather simple, and these methods are usually simpler

in experimentation than those in school 1.

The earliest technique of RSM requires central composite designs to draw 2D or 3D response

surfaces, modeled using quadratic and/or polynomial factorial equations. At the same time, mixture

designs were developed to meet the constraint requiring that “the sum of components constituting a

food formula is 1.0.”

Subsequently, a stepwise approach to find the optimum was proposed, i.e., SSO (sequential

simplex optimization), which belongs to school 2. However, to search for the global optimum, it

was recommended to repeat the SSO process by initiating the search from different starting

locations within the global search spaces. Under this circumstance, despite its speculative property

and being basically inefficient in nature, a random search is the only powerful approach in terms of

overall efficiency to target the global optimum.

We have proposed “RCO (random centroid optimization)”—a randomized version of SSO with

an additional, characteristic 2D mapping—to approximate the true response surfaces. A 2D map is

used to visualize the response surface for each factor because it is not feasible to visualize multi-

variate response surfaces with greater than three dimensions. Furthermore, the curve-fitting

technology currently available is limited in ability to depict rugged, nonlinear global response

surfaces.

Since our presentation of RCO, a variety of RCO versions have been developed, such as for the

purposes of mixture designs, food formulation, container designs, site-directed mutagenesis, etc.,
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with potential applications in many other areas of food and biological processes. These extended

applications will be discussed later in this chapter.
9.4.2 Central Composite Designs

The minimum number of experiments necessary to estimate the parameters in a response-

surface model depends on both the number of factors (k) and whether the model is expected to

be first-order, second-order, or higher-order polynomial. For a model to account for a qth order

effect in a factor, the experimental design must have qC1 different levels in that factor. For

example, the experimental design for a first-order model with k factors could be either a 2k full

factorial design or a two-level fractional factorial design. However, for many life science

experiments, the response is not first order, usually showing some curvature and factor

interactions or second-order relationships. For such cases, although a 3k full factorial design

could be satisfactory to generate the necessary data to fit a second-order polynomial model, the

number of experiments, n, becomes unrealistically large. For example, for kZ4, then nZ81. For

this reason, central composite designs are recommended for RSM fitted to second-order

polynomial models.

Central composite designs are a “composite” of a star design (with axial points at Ga), a 2k

factorial design (with design points at G1), and a common center point of the two designs (at zero).

The general form of a-values is:

a Z 2k=4; (9.5)

where k is the number of variables. The combination of the two designs leads to five levels of each

factor, with [Ka, K1, 0, C1, and Ca] coordinates expressed as coded values. The minimum

number of design points in a central composite design is 2kC2kC1, where “1” is the center point

that is usually conducted in replicate to provide an estimate of error. Thus, for example, the usual

number of experiments for kZ2, 3, and 4, with the recommended 5, 6, and 7 replicates of the center

point, are 13, 20, and 31 experiments, respectively.

The example used here is the optimization of product yield by changing three factors, i.e., pH,

heating temperature, and time, with a-value of 1.682 (Table 9.5 and Figure 9.3).
Table 9.5 Product Yield Experiments Using Three-Factor Central Composite Design

Experiment PH Temperature Time Yield (g)

1 K1 K1 K1 16.44

2 1 K1 K1 12.50

3 K1 1 K1 16.10

4 1 1 K1 6.92

5 K1 K1 1 14.90

6 1 K1 1 7.83

7 K1 1 1 19.90

8 1 1 1 4.68

9 K1.682 0 0 17.65

10 1.682 0 0 0.20

11 0 K1.682 0 25.39

12 0 1.682 0 18.16

13 0 0 K1.682 7.37

14 0 0 1.682 11.99

15 0 0 0 24.03a

a Average of hexaplicate: 22.22, 19.49, 22.76, 24.27, 27.88, and 27.53 to estimate error
variability.
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Figure 9.3 Central composite design for three factors. *aZ1.682. (Adapted from Otto, M., Analytical Chemistry,
Kellner, R., Mermet, J. -M., Otto, M., and Widmer, J. M., Ed., Wiley-VCH, Weinheim, pp 759–773,
1998.)
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The limit level values corresponding to the coded values of K1.682 and C1.682 were assigned

as follows: 4 and 9 (pH), 608 and 100 8C (Temp) and 1 and 10 min (Time). The prediction equation

obtained by curve-fitting using multiple linear regression analysis was:

y Z 24:04K4:72x1K1:189x2 C0:229x3K5:426x2
1K0:884x2

2K5:159x2
3 K1:674x1x2

K1:146x1x3K0:971x2x3; (9.6)

with R2Z0.923. By solving the simultaneous equations resulting from derivatization then equal-

izing to zero, the optimal scale or coded values were computed to be K0.392, K0.355, and 0.099

for x1, x2, and x3, respectively. These values are equivalent to the factor conditions of pH 5.53 and

heating at 75.8 8C for 5.76 min, with the estimated best yield of 25.19 g.
9.4.3 Mixture Designs

Mixture designs are a technique to find the combination of the food ingredients that yields the

best quality of a food product. In the optimization of mixtures or food formulations, the sum of all

the ingredients must always be one, or 100%. Mixture designs must therefore consider this

constraint that changing the proportion of one component automatically leads to a change in the

proportion of the other components. The most well-known designs for ingredient mixing are

simplex-lattice designs.15 To accommodate a polynomial equation, points are spread evenly over

the whole simplex factor space and lattice; an ordered arrangement of points may have a special

correspondence to a specific polynomial equation.

In this chapter, the simplest mixture design method, i.e., extreme vertices designs using limit or

bound values (0 and 1.0) only, without selecting intermediate values (fractions such as 0.3), will be

discussed. The limit values (bounds) of each ingredient are initially selected. Then, all possible
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combinations of the bounds for q ingredients are computed by selecting bound values of qK1

ingredients at a time. The value subtracted from 1.0 (100%) is assigned to the remaining qth

ingredient, provided it is within its bounds; if not, this combination is withdrawn from the

design. In theory, the maximum number of design points for a q-component design will be

q$2qK1. In practice, many points will be eliminated since the remaining qth component may

exceed its bounds.

An example is shown in Table 9.6 for maximizing gel strength of fish cake (kamaboko)

measured as the peak force of Instron trace (N). Surimi base, potato starch, water, and salt were

the ingredients used, and their bounds were set as follows:
0:70%Base%0:85

0:10%Starch%0:20

0%Water%0:10

0:02%Salt%0:03

(9.7)
For instance, a combination of vertex values of 0.70, 0.20, 0.1, and 0.02 for the four ingredients

was eliminated from Table 9.6, as the total was 1.02O1.0.

A quadratic model fitted to the data was:
y Z 9:783x1K508:93x2K378:34x3K3987:0x4 C629:55x1x2 C265:92x1x3 C3827:28x1x4

C1318:19x2x3 C7177:21x2x4 C4977:35x3x4; (9.8)
with R2Z0.981, where y is peak force (N), x1, x2, x3, and x4 are base, starch, water, and salt,

respectively. Note that the substitution using the composition constraint x1Cx2Cx3Cx4Z1.0 leads

to Equation 9.8 by eliminating the intercept and square terms from the full factorial equation

exemplified in Equation 9.6.
Table 9.6 Extreme Vertices of Formulation of Kamaboko

Gel strength (N)

Base Starch Water Salt Measured Predicted

1 0.78 0.10 0.10 0.02 7 6.2

2 0.77 0.10 0.10 0.03 6 6.2

3 0.78 0.20 0 0.02 15 12.7

4 0.77 0.20 0.10 0.03 14 14.6

5 0.70 0.18 0.10 0.02 13 8.7

6 0.70 0.17 0 0.03 10 10.7

7 0.85 0.13 0 0.02 18 15.7

8 0.85 0.12 0 0.03 20 15.3

9 0.70 0.20 0.08 0.02 10 9.4

10 0.70 0.20 0.07 0.03 12 12.5

11 0.85 0.10 0.03 0.02 16 13.0

12 0.85 0.10 0.02 0.03 17 13.0

Center 0.775 0.15 0.05 0.025 13 13.3
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The simultaneous equations to be solved were:

x1 Cx2 Cx3 Cx4 Z 1:0;

0x1 C629:55x2 C265:92x3 C38:28x4 Cl ZK9:783;

629:55x1 C0x2 C1318:19x3 C7177:21x4 Cl Z 508:93;

265:92x1 C1318:19x2 C0x3 C4977:35x4 Cl Z 378:34;

3827:28x1 C7177:21x2 C4977:35x3 C0x4 Cl Z 3987:0:

(9.9)

where l is a Lagrangian multiplier to match the number of independent variables (i.e., 5) to that of

the above simultaneous equations, including the top equation for composition constraint. The

greatest gel strength that can be expected was calculated to be 15.5 N using 74.2% surimi base,

19.8% potato starch, 1% water, and 4.9% salt. This predicted value is in fact lower than the actual

value of 20 N measured for experiment 8 in Table 9.6. Furthermore, multiple linear regression

analysis such as used here could not prevent the boundary violation for salt constraint of 2–3%. The

well-known critical rule of polynomial surface derived from curve fitting is that the accuracy of

approximation is restricted to values within the range of the search spaces. The salt content of 4.9%

is obviously a violation of the search-space boundary, thus accurate prediction cannot be expected.

These problems could be a drawback of curve-fitting optimization in comparison to an evolutionary

operation approach.
9.4.4 Sequential Simplex Optimization

Sequential simplex optimization is an empirical feedback strategy of optimization, that basi-

cally searches for the optimum (either a maximum or a minimum point) by sequentially moving

away from the worst response or point in a small search area, termed a simplex.

Simplex evolutionary operation owes most of its success to its ability to handle multiple

variables including mutual interactions.16 Thus, the probability of reaching the true optimum is

diminished when the response surface contains a ridge (interaction), as illustrated by R in

Figure 9.4. When the search starts from point A on the x-axis by moving parallel to the y-axis,

point C appears to be the location of highest point on section profile Sa. Perpendicular to the x-axis,

the section profile Sb also shows that point C on the xy plane is the highest point (so-called ridge

problem). This figure shows that the iterative or evolutionary move of the triangular simplex finally

has reached the summit, P. However, if the search instead reaches a local hilltop D (a local

optimum), there is no chance to move away from it as long as only one-search-at-a time processes

parallel to x and y axes are alternately used.

Spendley et al.17 recommended the use of the following (kC1)!k matrix for initiation of SSO

with k factors:

j 0 0 0 / 0 j

j p q q / q j

j q p q / q j

j/ / / / /j

j q q q / p j

(9.10)

where pZ1= k
ffiffiffi
2
p� �

ðkK1ÞC
ffiffiffiffiffiffiffiffiffiffiffi
kC1
p� �

and qZ1= k
ffiffiffi
2
p� � ffiffiffiffiffiffiffiffiffiffiffi

kC1
p

K1
� �

. The p and q values for
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Figure 9.4 Hypothetical illustration of ridge problem, local optima, and simplex search for the global optimum.
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kZ2, 3, 4, and 5 are (0.966, 0.259), (0.943, 0.236), (0.926, 0.219) and (0.912, 0.205), respectively,

when the lower and upper limits of each factor are designated as 0 and 1, respectively.

After carrying out the experiments as designed above, the reflection vertex R is computed using

RZ �PC ð �PKWÞ where W is the worst vertex and �P is the centroid vertex that is the average of all

vertices within the simplex except W as shown in Figure 9.5 (right half). The response value of R

vertex (Yr) is compared as shown in the flow chart (left half of Figure 9.5). By replacing W with the

best vertex selected from the flow chart, the second simplex is formulated. This cycle is iterated by

moving to oblique directions (not vertical direction) until reaching a summit. An example of

computing the second vertex in simplex search is shown in Figure 9.6.
NO

NO

NO NO

NO

YES
YCr

>YW

YCr
>YR

YCr'
>YR

YES

YES R

R

W

P

R

E

Cr

Cr

CW

CW'

CW'

Cr

Cr

B

N

Cr'

Cr'YR<YW

YR<YN

YR<YB YE<YR

CW

E
E

Replace
W W:  Worst vertex

B:  Best vertex
N:  Next-to-the-worst vertex

R:  Reflection, k = 1.0
E:  Expension, k = 2.0
Cr:  Contraction of R, k = 0.5

Cr' :  Massive contraction  of R, k = 0.25
CW':  Massive contraction  of W, k = -0.25
Y stands for the response

CW:  Contraction of W, k = -0.5

YES YES

YES

YES

NONO

P:  Centroid of N-B vertices

Figure 9.5 Flow chart of the simplex minimization (left side). Calculation of the new vertex using V Z �P C ð �P K
W Þ (rightside).
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Problem:  The recovery of product A is optimized by varying the amount of
                additive B and heating temperature and time. The ranges set for
                search are 0–10% and heating at 70-80˚C for 2–12 min.

Initial simplex and recovery obtained:

Vertex B (%)

1
2
3
4

0
9.4
2.4
2.4

Centrold P= (9.4+2.4+2.4)/3

= 4.73

= 9.5

= 18.9 84.2 16.2

6.73+2x(6.73−2)

79.46

As response YR>YB, expansion is tried

As response YE<YR R replaces W

Simplex 2 constructed:

Vertex B

9.5
9.4
2.4
2.4

79.5
72.4
79.4
72.4

11.5
4.4
4.4

11.4

5
2
3
4

Temp Time

Expansion E =

11.5 80 (Vertex 5)

76 (Vertex 6)

Reflection R = 74.73+(74.73−70)

74.73 6.73

70
72.4
79.4
72.4

2
4.4
4.4

11.4

60 W
72
75 B
68

W 1
W 3
W 4
W 2

Temp (˚C) Time (min) Recovery (%)
Inferiority

order

Figure 9.6 Model computation of vertices in simplex search.
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This computer program written in Quick Basic is available on request.*
9.4.5 Random-Centroid Optimization

Because SSO cannot guarantee finding the global optimum unless the simplex search cycle is

repeated several times after shifting the search space, which will ruin the optimization efficiency, a

new approach of RCO was proposed, with a random search replacing the simplex search.18 Each

search cycle in the RCO consists of a regulated random search, a centroid search and mapping, and

requires much less number of experiments than that of the SSO. The number of experiments required

is 2kR9 for the random search and generally less than four for the centroid search, compared to (kC
1)!n in the case of SSO, where n is the number of replications of the SSO cycle until an optimum is

reached. Therefore, for optimization involving four factors, a maximum of 13 experiments is

required for the first cycle of RCO, with a slightly reduced number of experiments for every

succeeding cycle, whereas the SSO requires 5!n experiments, where n can frequently be greater

than three for four factors, without any warranty of homing in on the global optimum.
* shuryo.nakai@ubc.ca.

q 2006 by Taylor & Francis Group, LLC



EXPERIMENTAL DESIGN AND RESPONSE-SURFACE METHODOLOGY 315
The random design in each cycle of the RCO is regulated so that at least one experiment is located

in each quartile within the search space to assure near-even distribution of the search. This require-

ment is in a good agreement with the above-mentioned symmetry rule for factorial designs. The maps

drawn after every cycle are essential in deciding the direction of move for searching toward the global

optimum. To extract the maximum available information for deciding on the search spaces of the

subsequent cycles, a single- or double-factor ignoring process was introduced. An example of the

effects of factor-ignoring on the mapping is shown in Figure 9.7,18 which illustrates the results

obtained with (right half) and without (left half) the factor-ignoring process. Clearer trends

towards the potential location of the global optimum are observed after using the factor-ignoring

processes. New search spaces different from the current spaces and with usually narrower search

spaces are determined based on these maps and used as the new search spaces in the subsequent cycle.

The routine procedure for cycle 1 of RCO is as follows: (1) The factors and their search limit

values are entered into the RCO software; (2) the random design of experiments is printed out, and (3)

the experiments are carried out; (4) the response values of the experiments are recorded, whereupon
0
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Figure 9.7 Effects of factor ignoring on maps of enzymatic activity (A280). x1: reactant concentration, x2: NaCl, x3:
pressure, x4: temperature, x5: time. For instance, in the middle row for the response surface of
temperature, NaCl and time were not ignored (left half) and ignored (right half). (From Nakai, S.,
Ogawa, M., Nakamura, S., Dou, J., and Funane, K., International Journal of Food Property, 6, 25–47,
2003.)
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the centroid design is printed out; (5) after conducting the centroid experiments, the response values

are reported and the summary data are printed; (6) the computer program immediately moves to the

mapping process from which new search spaces are selected. This cycle is continued using the new

search spaces in the subsequent cycles, i.e., cycles 2, 3, etc. The simultaneous shift included in the

RCO package was useful in the model optimization trials for fine tuning of the search, but rarely used

in general optimization purposes in food and bioprocess applications.

Based on countless trials for many model computations, the RCO was demonstrated to be

successful in finding the global optimum; an example was shown in Nakai et al.18 When the

SSO was applied to a Fletcher-Powell arctangent model containing two local minima in addition

to the deeper global optimum in between, the search was stalled at local optima five times during 20

optimization runs. Even if the SSO search did not stall, 60–180 iterations were needed to reach the

global optimum, compared to less than 50 iterations without being stalled when the RCO was used.

Furthermore, the RCO is advantageous with a possibility of making a new discovery due to its

speculative nature. An example is shown later in the application of RCO to genetic modification

studies of human cystatin C, when an unexpected amyloidosis problem resulting in insolubilization

during isolation from yeast cells reduced the papain inhibitory activity of the isolated cystatin. RCG

(RCO for genetics) found an explanation of the potential mechanism of this phenomenon.

RCO and RCG can be downloaded from ftp://ftp.agsci.ubc.ca/foodsci/. The package includes

instructions on how to use the programs and also optimization model equations for

practice training.

9.4.6 Extended Application of RCO

Extension of the applications of RCO for diverse research problems in food science and related

disciplines are illustrated in the following examples.
9.4.6.1 Mixture Designs

The RCO approach was applied for a mixture design: the analysis of components of Raman

spectra to best fit to the surface hydrophobicity of proteins determined by different fluorescent

probes.20 The component constraint of SCiZ1.0, where i is the number of components C, was

imposed. Using this analysis, the best fluorescent-probe method for protein surface hydrophobicity

was, for the first time, selected based on quantitative assessment. In comparison to the conventional

mixture-design technology, in which experimental designs become more complicated along with

enhanced unreliability as the number of components increases, RCO could readily overcome this

problem due to its evolutionary operation nature.
9.4.6.2 Food Formulation

Factorial analysis, the Taguchi method, the original RSM, mixture designs, and constrained

simplex optimization were compared for food formulation purposes.21 Also, formulation of a food

with component constraints was successfully performed using RCO by incorporating a penalty

function accommodating component constraints.22
9.4.6.3 Shape Design and Market Survey

Glass shape was optimized by changing elemental measures, specifically bottom width, height,

top diameter of the hand-holding portion, and diameter of the round top of the glass shape,23 which

was then used as an example of market survey. The optimal preference of glass shape for various

consumer groups was determined using this RCO shape optimization.
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Broader application of RCO to art work or commercial designs may be possible. Multifactor

optimization required for those applications, such as shape or color combinations, is feasible.

Theoretically, there is no limit for the number of factors manipulated by the RCO program,

which is suitable for multifactor optimization, although the RCO program currently available

has a set limit to restrain optimization computation within the memory capacity of commercially

available PC computers.
9.4.6.4 Site-Directed Mutagenesis

Optimization of glycosylation of human cystatin C was successfully conducted by application

of RCG to obtain the best papain inhibitory activity as shown in Table 9.7, and to simultaneously
Table 9.7 Thermostability and Activity of Human Cystatin C Variants (nZ3)

Variants (two
sites) T1/2

a(8C)
Relative
Activityb

Variants
(one site) T1/2

a(8C)
Relative
Activityb

WTc 68.2 1.00G0.11

Cycle 1, random search

L9F/C83H 67.5 0.49G0.12 L9F NDd ND

P6C/Q107L 72.4 1.19G0.13 P6C 72.8 1.15G0.03

G32Y/A95D 69.7 0.97G0.13 G32Y 71.4 0.97G0.12

D15L/G69I 63.3 1.03G0.11 D15L 68.3 0.27G0.03e

G4L/D40I 58.2 2.11G0.29e G4L 59.4 0.13G0.01e

F29K/S44R 67.1 1.19G0.22 F29K. ND ND

EI9R/H86F 68.0 0.76G0.08 E19R 68.1 0.47G0.08

L27S/AI20R 62.0 0.55G0.12 L27S 60.8 0.73G0.13

S2K/V57F 68.0 1.68G0.06e S2K 64.8 0.51G0.20

Cycle 1, centroid search

D15P/H86I 71.5 2.65G0.30e D15P 71.3 1.24G0.09

G12W/H86V 70.3 4.98G0.09e G12W 66.4 0.51G0.08

A16W/R93V 58.4 0.28G0.09e A16W 65.4 1.85G0.16e

L9V/C83W ND ND L9V 70.5 1.00G0.02

Cycle 2, random search

E20K/S115D 59.2 0.31G0.07e E20K 59.0 2.39G0.43e

R8N/T71G ND ND R8N 72.0 2.30G0.14e

D15S/C83K ND ND D15S 68.3 2.01G0.18e

P13F/G1O8S 70.8 2.37G0.22 e PI3F 73.4 1.56G0.13

L9F/R93L 67.4 3.75G0.16e L9F ND ND

E21S/L64G ND ND E2IS 66.4 1.97G0.12e

R25Y/H90N 65.5 2.60G0.20e R25Y 66.6 2.57G0.14e

Cycle 2, centroid search

R8A/S98G 63.0 2.17G0.43e R8A 73.1 3.17G0.07e

V10S/Y102G 59.7 3.60G0.35e V10S 72.1 2.96G0.06e

V10S/R93G 67.9 4.50G0.07e

Left half and right half are data for double mutants and single mutants, respectively.
a T1⁄2

(8C), half-life temperature of papain-inhibitory activity.
b MeanGS.D.
c WT, wild-type.
d ND, no data because of absence of detectable papain-inhibitory activity after purification process.
e Significant differences from WT using LSD analysis at P!0.05.
Source: From Ogawa, M., Nakamura, S., Scaman, C. H., Jing, H., Kitts, D. D., Dou, J., and Nakai, S., Biochimica

et Biophysica Acta, 1599, 115–124, 2002.
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Figure 9.8 RCG maps of site-directed mutagenesis of human cystatin C. (a) and (b): different domains in the
sequence. (c): a-helix propensity. (d): b-strand propensity. (e): bulkiness. (From Ogawa, M., Naka-
mura, S., Scaman, C. H., Jing, H., Kitts, D. D., Dou, J., and Nakai, S., Biochimica et Biophysica Acta,
1599, 115–124, 2002.)

HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES318
avoid amyloidosis (insolubilization) during mutation and purification from Pichia pastoris cells.24

An approximate five-fold enhancement of activity was obtained by mutant G12W/H86V compared

to the recombinant control of wild-type enzyme.

Figure 9.8a and Figure 9.8b match the active site and binding site, respectively, with the

substrate papain. Figure 9.8c and Figure 9.8d demonstrate a decrease in helix (increase in the

scale) and strand, which may lead to a decrease in amyloidosis. Figure 9.8e shows that a decrease

in bulkiness is favorable for the activity. The reaction mechanism of unexpected amyloidosis as

suggested by maps is an advantage of RCG, which was performed without prior information on

the amyloidosis.
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Table 9.8 Recent Applications of Response-Surface Methodology in Food/Bio Processing

Method Food/Bio Processes Finding Reference

Central composite designs High pressure milk

coagulation

Best gel strength 30

Pork-batter gel Best texture 31

Mixture designs Gelled dairy deserts Best texture 32

High-melting milk fat Higher melting characteristics 33

Simplex optimization Wine blending Best blend based on GC

profiles

27

Random-centroid optimization Food formulation Better formulation than

mixture designs

22

Cooked Indica rice Best taste 34

Dietary-fiber bread Best loaf volume 35
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9.4.7 Multivariate Response Surfaces

For depicting response surface, multiple regression analysis (MRS) has been widely used as in

the case of a variety of RSM. However, multicolinearity may hinder accurate prediction of objec-

tive functions by MRS.25 This problem is best circumvented by relating the objective response

variables to the principal components of the predictor variables. To analyze structure-activity

relationships, principal components thus obtained were related to objective functions using artificial

neural networks (ANNs).26 The ANN packages, such as Statisticae, usually include a sophisticated

graphic subroutine to depict predicted response surfaces.
9.4.8 SSO vs. RCO

Despite the advantages of RCO over SSO as discussed above, the SSO could be advantageous,

especially in the case of automated optimization using computers. By using SSO as a subroutine,

automated optimization of many analyses or processes could be performed. Optimization of GC

patterns to obtain the best wine blending27 and blending of GC fractions with concentrated fruit

juice to best simulate fresh juice were realized. Use of RCO to do the same is difficult due to

required human intervention in the response-surface mapping, but it may nonetheless be imposs-

ible. There have been many attempts at applying the computerized optimization, such as simulated

annealing and genetic algorithms.28 However, a user-friendly interface is not available to inexperi-

enced users.29

As was previously mentioned, the manual simultaneous shift in the RCO program was used as a

fine adjustment of search direction toward the global optimum. This process can be replaced by the

SSO after adequately narrowing down the search spaces by bringing them to the neighborhood of

the global optimum by first using RCO. This approach may be a good strategy in enhancing both the

objectivity and the reliability for the global optimization.

Recent applications of RSM in food/bio processing are shown in Table 9.8.
GLOSSARY

Evolutionary operation (EVOP) A group of algorithms to shift or rotate the initial design
q 2006 by Ta
pattern to move toward the optimum. Typical examples are Box EVOP, rotating square

EVOP, random EVOP, and simplex EVOP.36
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Fractional factorial designs In addition to computing effects of main factors, only selected
q 2006 by Ta
interactions between factors are considered to reduce the total number of experiments

to be carried out.
Full factorial designs Effects of not only main factors but also interactions between all possible
combinations of factors, including two-factor, three-factor, or even higher-level

interactions are investigated.
Central composite designs Typical designs for the original response surface methodology as
shown in Figure 9.3.
Centroid The original simplex optimization technique defines centroid as the average point of
nK1 vertices after excluding the worst vertex (Figure 9.6). A similar definition is used

in RCO.
Lagrangian multiplier Supplemental/hypothetical independent variables when the number of
experiments is less than the number of independent variables in linear regression analysis.
Mixture designs In food formulation, ingredients are used as the independent variables in a
similar form to the full factorial designs. However, the total contents of ingredients

should be 100%; therefore, this equation should be included in multiple regression

equations as a constraint. This is a typical case requiring a Lagrangian multiplier.
Plackett–Burman design This fractional factorial design aims to define the effects of main
factors only3 without computing the effects of interactions.
Random-centroid optimization (RCO) A regulated random design assisted by surface-response
maps as human intervention effective for searching the global optimum.
RCO for genetic engineering (RCG) RCO to apply for site-directed mutagenesis of peptides
and proteins.
Response-surface methodology (RSM) The original RSM use central composite designs for
experiments, and then factorial (quadratic) multiple linear regression analysis to compute

the correlation of factors with responses.
Sequential simplex optimization (SSO) Spendley’s matrix is used as a starting simplex that is
then iteratively moved in different directions depending on larger (maximization) or

smaller (minimization) response values.
Simplex Pinnacles of vertices in SSO.

Spendley’s matrix Design of the starting simplex vertices as suggested by Spendley.17

Taguchi’s orthogonal designs One of the most efficient fractional factorial designs proposed by
Genichi Taguchi.
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10.1 INTRODUCTION AND ELEMENTARY CONCEPTS

Over the last decade, multivariate data analysis techniques have seen wider acceptance and use

in almost all fields of scientific inquiry. Although many reasons can be advocated, the following

two represent the most important ones:

† The realization that in many scientific inquiries it is necessary to analyze the simul-

taneous relationships among three or more variables.
† The advent of the high speed computer with large storage facility and the development of

readily available and easy to use software packages for implementing multivariate

analysis (MVA).1

A modern PC can be assigned to exclusively accommodate most of the MVA packages. MVA

includes all statistical methods that simultaneously analyze multiple measurements on each

individual or object under investigation. Because MVA is defined as simultaneous analysis of

more than two variables, many multivariate techniques are extensions of univariate analysis

and bivariate analysis, i.e., simple regression is extended to the multivariate case to include

several predictor variables. A confusion issue for the definition of MVA resides in its inconsistent

use either for examining relationships between or among more than two variables, or only for

problems in which all the multiple variables are assumed to have a multivariate normal

distribution.2

Most commonly, multivariate statistics are applied for:3

† Developing taxonomies or systems of classification
† Investigating promising approaches to conceptualize or group items
† Generating hypotheses
† Testing hypotheses

Application of MVA instead of multiple univariate analyses is based on the following reasons:

† If there are numerous variables (for example, hundreds of species) multiple univariate

analyses are tedious, and the problem of multiple comparisons may emerge.
† Multivariate methods take advantage of intercorrelations among variables.
† Multivariate methods can provide statistical tests of all response variables simultaneously.

In a case of few variables (e.g., 1–5), it is not advisable to employ MVA for data processing

because there are minimum variables required for the proper functioning of MVA methods.

However, the standard procedure is to use the simplest analysis possible to answer the

question posed.

The key notion underlying the classification of MVA is the data matrix (Table 10.1). The table

consists of a set of objects (p rows) and a set of measurements on the objects (q columns). The

variables are characteristics of the objects and define the latter in any specific study. There are many

descriptors by which associative data analyses methods can be classified:4
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Table 10.1 A Typical Data Matrix

Variables

Objects 1 2 3 4 . q

1 X11 X12 X13 X14 . X1q

2 X21 X22 X23 X24 . X2q

3 X31 X32 X33 X34 . X3q

4 X41 X42 X43 X44 . X4q

$ $ $ $ $ . $
$ $ $ $ $ . $

$ $ $ $ $ . $

p Xp1 Xp2 Xp3 Xp4 . Xpq
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† Purpose of study and types of assertions
† Research focus (i.e., whole bundle, specific variables)
† Specific partitioning of data matrix with regard to the type and number of

variables subsets
† Number of variables in the partitioned subsets
† Type of association under study: linear, transformable to linear, or inherently nonlinear
† Measuring scales of variables: nominal, ordinal, interval, ratio, and mixed

Most decisions about associative data analysis are strongly related to the researcher’s approach

to variables and his particular interests: (1) nature and degree of association between two or more

variables, (2) predicting the values of one or more criterion/predictor variables, and (3) assessment

of statistical reliability of an association between two or more variables.

However, for classification purposes, MVA techniques can be broadly divided into two

categories: dependence and inter-dependence methods. A dependence technique (DT) is defined

as one in which a variable or set of variables is identified as the dependent variable to be predicted

or explained by other variables known as independent variables. Multiple regression (MR) and

analysis of variance (ANOVA) are representative DTs. The interdependence method aims to

establish interrelationships among variables and includes factor analysis (FA), multidimensional

scaling (MDS), and cluster analysis (CA). FA, MDS, and CA are not used for prediction purposes;

they are intended to interpret the analysis output to opt for the best and most representative model.

The DTs are classified on the basis of two characteristics: (1) the number of dependent variables

(single-dependent and several-dependent, respectively), and (2) type of measurement scale (MS)

employed by the variables. The MS can be either metric (quantitative/numerical) or nonmetric

(quantitative/categorical) dependent variables.2,3

Dependence structures are usually analyzed by one of the following DTs; MR, discriminant

analysis (DA), logit analysis, multivariate analysis of variance (MANOVA) and canonical corre-

lation analysis (CCA). Provided that the variables to be analyzed have at least scale properties the

following MA techniques are available; principal component analysis (PCA), FA, metric multi-

dimensional scaling (MMS), CA, nonmetric multidimensional scaling (NMDS) and log-linear

methods.1

The main assumptions for ensuring the proper function of MVA are:

† Normality (normal distribution of data)
† Homoscedasticity (dependent variables should exhibit equal levels of variance across the

range of predictor variables)
† Linearity (linear associations between variables)
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Table 10.2 Assumptions for Ensuring the Best Function of MVA in Conjunction with Testing Method-
ology and Corrective Actions

Assumption Testing Method Corrective Action

Normality (1) Graphical (normal probability plot) Data Transformation (inverse for flat

distribution and square

root/logarithm/inverse for skewed

distribution)

(2) Statistical testing (rule of thumb based

on skewness and kyrtosis values)

Homoscedasticity (1) Graphical test of multiple regression

(2) Levene test for single metric variant

(3) Box’s M-test for many metric variables

Linearity (1) Examination of scatterplots of the

variables

(1) Transformation of one or both variables

(squared, square root, inverse)

(2) Running a simple regression analysis

and to examine the residuals

(2) Creation of new variables (termed

polynomials) to represent the nonlinear

part of the relationship

Source: From Dillon, W. R. and M. Goldstein, Multivariate Analysis, New York: Wiley, 1984; Hair, J. F., Ander-
son, R. E., Tatham, R. L., and Black, W. C., Multivariate Data Analysis, Upper Saddle River, NJ: Prentice Hall,
1998; http://trochim.human.cornell.edu/tutorial/flynn/multivar.htm (accessed January, 2004).
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All of the above-mentioned assumptions must be tested and corrective actions must be under-

taken if deviations occur. Table 10.2 summarizes the current assumptions, testing methods, and

suggested corrective actions for the appropriate functioning of MVA.

Multivariate data can be presented in two major ways: visualization and representation. The

former includes univariate (histogram, boxplot), biavariate (scatter plot), trivariate (scatter plot

[matrix], bubble plot, coplot), and multivariate (scatter plot matrix, Chernoff faces, stars); the latter

comprises data matrix (n rows, p columns), mean vector (p rows, l columns), (co)variance matrix (p

rows, p columns), and correlation matrix (p rows, p columns).5
10.2 PRINCIPAL COMPONENT ANALYSIS

The technique of PCA was first described by Pearson6 who proposed this method as the correct

solution to some of the biometricians’ problems. However, the practical computing method for

more than two or three variables was put forward only after three decennies (1933) by Hotelling.7

The PCA or Karhunen–Loeve transformation is a mathematical expression of determining that

linear transformation of a sample of points in N-dimensional space which exhibits the properties of

the sample most clearly along the coordinate axe. Along the new axes, the sample variances are

extremes (maxima, minima), and uncorrelated. The name comes from the principal axes of an

ellipsoid that are the coordinate axes in question. The principal axes will include those along which

the point sample has little or no spread (minima of variance) thus often showing linear interdepen-

dence in data.8

The main applications of PCA are to reduce the number of variables and to detect structure in

the relationships between variables (classification of variables).9 The assumptions, testing method-

ology and eventually required corrective actions are summarized in Table 10.3.

PCA transforms the original set of variables into a smaller set of linear combinations that

account for most of the variance of the original set. The principal components are extracted so

that the first principal component, denoted with PC(1) accounts for the largest amount of the total

variation:

PCð1Þ Z wð1Þ1X1 Cwð1Þ2X2 C/Cwð1ÞpXp: (10.1)
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Table 10.3 Assumptions for Ensuring the Best Function of PCA in Conjunction with Testing Methodology
and Corrective Actions

Assumption Testing Method Corrective Action

Multicollinearity Visual inspection Anti-image correlation matrix

Appropriateness Bartlett test of sphericity Examination of entire correlation

matrixMeasure of sampling adequacy

Presence of underlying structure

in the set of selected variables

No objective method is available Up to the researcher

Mixing dependent and

independent variables

Separate analyses

Homogeneous sample
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The second principal component PC(2) is an expression of the weighted linear combination of

the observed variables, uncorrelated with the first linear combination, and accounting for the

maximum amount of the remaining total variation (apart from PC(1)). The zth principal component

written as linear combination of the X’s is as follows:

PCðzÞ Z wðzÞ1X1 CwðzÞ2X2 C/CwðzÞpXp: (10.2)

One should bear in mind that PC(z) size is heavily influenced by the constraint shown in

Equation 10.3:

w2
ðzÞ1 Cw2

ðzÞ2 C/Cw2
ðzÞp Z 1: (10.3)

In a typical PCA, the following steps should be taken:10

† Coding the variables X1, X2,.,Xp to have zero means and unit variances
† Calculation of covariance/correlation matrix
† Determining the eigenvalues l1, l2,., lp and their corresponding eigenvectors a1,

a2,.,ap

† Omission of the components accounting for a small proportion of the variation in the data

The implementation of PCA is mainly focused on the number of components to be retained that

will account for most of the variability of the original data. Although there are several approaches,

such as formal significance testing and graphical, none of them seems to enjoy universal approval.

For instance, one could claim that only the components with associated eigenvalues higher than

zero should be retained. Another option is to require the cumulative percentage of the variance

extracted by successive components to be higher than a certain value (often 80%). A criterion

originally put forward by Kaiser11 consists of retaining components with eigenvalues greater than

one. Cattell12 introduced the scree test, in which the eigenvalues are plotted in successive order of

their extraction. The number of components retained is given by the point at which the components

curve above the straight line formed by the smaller eigenvalues. Cattell and Jaspers13 suggested the

number of factors to be taken as the number immediately before the straight line begins. However,

this apparently simplistic approach becomes complicated when two or more breaks occur in the first

half of the eigenvalues.1
10.3 FACTOR ANALYSIS

Although FA has a similar object to that of PCA—to describe a set of p variables X1, X2, X3,.,Xp in

terms of a smaller number of indices or factors and clarify the relationship between these
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Table 10.4 Objectives, Steps to be Undertaken and Main Underlying Errors in Implementation of FA

Objectives Steps Underlying Errors

Identification of a smaller set of

uncorrelated variables for

explaining the relationships

among the original variables

Finding provisional factor loadings

with PCA

Original variables are uncorrelated

Infinite number of alternative

solutions for the FA (which one

to choose)

Determination of the number of

underlying variables

Factor rotation (orthogonal or

oblique) to get new factors more

easily to interpret

How many factors to extract

(subjective approach)

Interpretation of these new

variables

Calculation of factor scores Subjective interpretation

Evaluation of individuals and/or

experimental units of the data

set versus the new variables

Subjective evaluation

Employment of these new

variables in other statistical

analyses

Source: From Manly, B. F. J., Multivariate Statistical Methods, Boca Raton, FL: CRC, 2000; Johnson, D. E.,
Applied Multivariate Methods for Data Analysis, Pacific Grove, CA: Duxbury Press, 1998; Caroll, I. D., Green, P.
E., and Chaturvedi, A. Mathematical Tools for Applied Multivariate Analysis, San Diego, CA: Academic Press, 1997.
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variables—there is one basic difference: PCA is not based on any statistical model, whereas FA employs

a specific model.10 Both objectives and underlying errors of FA are summarized in Table 10.4.

Spearman15 was the first to analyze the correlations between test scores of various types and suggested

that most observed correlations could be described by the following simple model of the scores.

Xi Z aiF Cei; (10.4)

where Xi is the ith standardized score with a mean of zero and a standard deviation of one, ai is a

constant, and F is a factor value. Apart from the constant correlation ratios, the variance of Xi is given by

varðXiÞZ varðaiF CeiÞZ a2
i CvarðejÞ: (10.5)

A proper FA presupposes a PCA and employment of the first few principal components as unrotated

factors. This approach is by no means accepted as correct, because ei is the part of Xi that is specific

exclusively to the ith test. Both F and ei are independent and the variance of F is assumed to be unity:

a2
i CvarðeiÞZ 1; (10.6)

where ai is the factor loading. The resulting final equation for general FA model is

Xi Z ai1F1 Cai2F2 C/CaimFm Cei; (10.7)

where Xi is the ith score with mean zero and unit variance; ai1, ai2,.,aim are the factor loadings for the

ith test; F1, F2,.,Fm are m uncorrelated common factors and ei is factor specific and uncorrelated with

any of the common factors. A correlation of test scores is only possible if they have high loading on the

same factors.

A typical FA is usually carried out in three stages:

† Generation of a correlation coefficients matrix for all the variable combinations
† Extraction of factors from the correlation matrix (principal factors)
† Axes rotation, preferably with varimax that ensures the orthogonality of axes (indepen-

dence among factors)
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FA is considered to be less objective than the other statistical methods, especially if the sample

is small and there are no replicates,16 because it is a descriptive (qualitative) tool and not a

quantitative one. Another handicap according to Seber17 is that “even if the postulated factor

model is correct then the chance of recovering with employing available methods is not high.”

Generally speaking, FA is similar to PCA, except that instead of trying to account for as much

of the total variance as possible, only correlations between variables are of interest as reflecting

putative underlying causes or factors.
10.4 DISCRIMINANT ANALYSIS

Discriminant analysis (DA) involves deriving linear combinations of the independent variables

that will discriminate between the a priori defined groups such that the misclassification error rates

are minimized. The latter is possible through maximization of the between-group variance relative

to the within-group variance. DA is based on a scoring system that assigns a score to each individual

or object in the sample that is essentially a weighed average of the individual’s or object’s values on

the set of independent variables.1 The basic purpose of DA is to estimate the relationship between a

single nonmetric (categorical) dependent variable and a set of metric independent variables, in the

general form:2

YðnonmetricÞZ X1 CX2 C/CXnðmetricÞ: (10.8)

The linear combination for DA, also known as the discriminant function, is derived from an

equation of the following form

Zmn Z a Cw1X1n Cw2X2n C/CwpXpn; (10.9)

where Zmn is the discriminant z score of discriminant function m for object n, a is the intercept, wi is

the discriminant weight for independent variable i and Xpn stands for the independent variable p for

object n.

As with rest of multivariate analyses there are several assumptions, one should bear in mind,

closely related with the objectives and testing methods (of the assumptions) of DA (Table 10.5).

There are three types of DA: direct, hierarchical, and stepwise. In direct DA, all the variables

enter the equations at once; in hierarchical DA, they enter according to a schedule set by the

researcher; and in stepwise DA, statistical criteria alone determine the order of entry. In most

analyses, the researcher has no reason for giving some predictors higher priority than others.

The third (stepwise) method, therefore, is the most generally applicable.18

A frequently employed corrective action towards improving the interpretability of DA solutions

is rotation. The latter leads to the following results:19

† Retention of total discriminatory power
† Groups relative position maintenance
† Rotated standardized discriminant coefficients and loadings coming closer to zero
† More even distribution of discriminating power across functions

Assigning of ungrouped individuals to groups is another crucial issue of DA. Several computer

programs allow the input of data values for a number of individuals for which the true group has not

been clarified. Thus, it is possible to assign these individuals to the group they are closest to, in

terms of Mahalanobis distance, assuming they come from one of the m sampled groups. However, it
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Table 10.5 Objectives, Assumptions, and Testing Methods of DA

Objectives Assumptions Testing Methods

Identification of statistically

significant differences between

average score profiles for a

priori defined groups

Normality of independent

variables

Calculation of discriminant Z

scores (metric variables)

Simultaneous estimation

Stepwise estimation (large

sample of variables)

Finding the independent variables

most accounting for the

differences

Linearity of relationships Evaluation of group differences by

means of centroids

(Mahalanobis D2 measure)

Opting for procedures for proper

object classification based on

the scores (independent

variables)

Lack of multicollinearity (data set

problem)

Group membership prediction

accuracy assessment with

graphical display

Determining the number and

composition of discrimination

dimensions

Equal dispersion matrices

(variance and covariance

matrices)

Box’s M

Profiling group differences on the

independent variables

Split-sample/cross validation

techniques

Source: From Dillon, W. R. and Goldstein, M., Multivariate Analysis, New York: Wiley, 1984; Hair, J. F., Ander-
son, R. E., Tatham, R. L., and Black, W. C., Multivariate Data Analysis, Upper Saddle River, NJ: Prentice Hall,
1998; Hawkins, D. M., Technometrics, 23, 105–110, 1981; Durbin, J., Journal of the American Statistical Associ-
ation, 1, 279–290, 1973.
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is not known whether the assignment was correct. The errors that occur in the allocation of

individuals from known groups indicate the assignment-process accuracy.10
10.5 CANONICAL CORRELATION ANALYSIS

Canonical correlation analysis (CCA) is a useful and powerful technique for exploring the

relationships among multiple dependent and independent variables. The technique is primarily

descriptive, although it may also be used for predictive purposes.2 Its main advantage resides in

its placing the fewest restrictions on working data contrary to other methods considered as leading

to better quality results due to the many restrictions imposed.20 CCA stands for the most general-

ized member of the family of multivariate statistical techniques and is strongly related to other

dependence methods such as DA and FA. The general equation describing the CCA is:

Y1 CY2 C/CYnðmetric; nonmetricÞZ X1 CX2 C/CXnðmetric; nonmetricÞ (10.10)

One should bear in mind that there are several limitations that might significantly impact the

CCA results:2

† CCA expresses the variance shared by the linear composites and not extracted from

the variables.
† Canonical weights are subject to instability.
† Canonical weights are derived to maximize the correlation between linear composites,

not the variance extracted.
† Canonical variates interpretation is difficult since no further aids are available such

as rotation.
† Meaningful relationships are difficult to be established between dependent and indepen-

dent variables due to lack of appropriate statistical methodology.
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Table 10.6 Objectives, Assumptions, and Testing Methods of CCA

Objectives Assumptions Testing Methods

Determining whether two sets of

variables are independent of

one another

Linearity of correlations Creation of two samples and

performing CCA on both

Determining magnitude of

relationships between two sets

Linearity of relationship Comparison for similarity of

canonical functions

Deriving a set of weights both per

dependent and independent

variable to correlate linear

combinations per set

Multivariate normality Sensitivity assessment of results

by removing dependent or

independent variable

Interpretation of dependent and

independent variables

relationships

Sample size. It has been

recommended at least 20/

40–60 times as many cases as

variables for estimating one

or two canonical roots,

respectively

Estimation of numerous canonical

correlations by removing a

different dependent or

independent variable

Measurement the relative

contribution of each variable to

the canonical function

Outliers can strongly affect the

magnitudes of correlation

coefficients

Application of Jackknife statistic in

CCA to minimise errors

Source: From Dillon, W. R. and Goldstein, M., Multivariate Analysis, New York: Wiley, 1984; Hair, J. F., Ander-
son, R. E., Tatham, R. L., and Black, W. C., Multivariate Data Analysis, Upper Saddle River, NJ: Prentice Hall,
1998; Gray, H. L. and Schucany, W. R., The Generalized Jackknife Statistic, New York: Marcel Dekker, 1972;
Mosteller, F. A. and Tukey, J., Handbook of Social Psychology, Vol. 2, 2nd ed., Lindzey, G. and Aaronson, R., Eds.,
Reading, MA: Addison-Wesley, 1968.
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An approach to restrict the chance of misinterpretation is outlined in the following procedure:1

† A considerable amount of variance in the criterion set is shared with the predictor set
† Inspection of the among set correlations
† Comparison of canonical weights and loadings per pair of canonical variates with regard

to algebraic sign and magnitude
† Implementation of cross-validation in case instability is detected

A synopsis of the major objectives and assumptions in conjunction with the validity testing

methods of CCA are summarized in Table 10.6. As a concluding remark about CCA it can be said

that its main drawback resides in interpretation of how strongly the two sets of variables are

practically related.
10.6 CLUSTER ANALYSIS

Cluster analysis (CA) is the name for a group of multivariate techniques whose primary purpose

is to group objects based on the characteristics they possess. CA classifies objects so that each

object is very similar to others in the cluster based on some predetermined selection criteria. The

resulting clusters are expected to show high internal (within-cluster) homogeneity and high external

(between-clusters) heterogeneity. Because CA is a data reduction technique it is important to

visualize its relationship with another similar technique of the same family already presented:

DA. The main difference is that, in DA, there is an a priori assumption that the groups are

known; i.e., all the observations are assumed to be correctly classified. Therefore, in DA, one

starts with well-defined groups and attempts to discover how these groups differ; in CA, in contrast,

one begins with groups that are initially undifferentiated and attempts to find whether a given group

can be partitioned into clearly differing subgroups. Many disciplines have their own terminology
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for CA; these are topology (construction), grouping, classification (analysis), numerical taxonomy,

segmentation analysis, and Q-analysis.1,2,14

The first step in CA is the establishment of the similarity or distance matrix. This matrix is a

table in which both rows and columns are the units of analysis and the cell entries are a measure of

similarity or distance for any pair of cases.21 The clustering algorithms are classified into two

general categories; hierarchical and nonhierarchical.
10.6.1 Hierarchical Cluster Analysis

Hierarchical cluster analysis (HCA) is a statistical method for identifying relatively homo-

geneous clusters based on measured characteristics. Hierarchical procedures are distinguished as

agglomerative or divisive. In the former, each object stands for its own cluster and these clusters are

further combined into aggregates. The graphical representation of the agglomerative procedure is a

tree diagram or dendrogram. In the divisive method, one starts with a large cluster that gradually

breaks down to smaller clusters. The most popular agglomerative algorithms and their cluster

criteria are summarized in Table 10.7.
10.6.2 Hierarchical Divisive Methods

Hierarchical divisive (HD) methods begin with splitting the total number of objects into two

groups, followed by further splitting. This initial split, which is of considerable importance for the
Table 10.7 Most Commonly Used Agglomerative Algorithms and Cluster Criteria for Cluster Development

Agglomerative
Algorithm Cluster Criterion Weak Point Strong Point

Single linkage or nearest

neighbor approach

Minimum distance or the

closest single pair

“Snaking” effect (1) “Correctedness”

maximisation of pair of

clusters

(2) Fewer clusters than

other methods

Complete linkage or the

furthest neighbor or

diameter method

Maximum distance or the

distance between their

two furthest members

Refers to a single pair (1) Intra-cluster distances

minimisation

(2) Compact cluster

formation

Average linkage Average distance from all

individuals in one

cluster to all individuals

in another

Cluster production with

approximately the

same variance

Produced hierarchy is the

same with the single or

complete linkage

algorihm

Centroid method The squared Euclidian

distance between the

cluster means

Any difference in the

distances between the

centroids of pairs

merged consecutively

Less affected by outliers

than other hierarchical

methods

Ward’s method or

minimum variance

method or error sum of

squares method

Square of the distance

between the cluster

means divided by the

sum of the reciprocals

of the number of points

within each cluster

Production of clusters

with approximately the

same number of

observations

Cluster combination with

a small number of

observations

Source: From Dillon, W. R. and Goldstein, M., Multivariate Analysis, New York: Wiley, 1984; Hair, J. F., Ander-
son, R. E., Tatham, R. L., and Black, W. C., Multivariate Data Analysis, Upper Saddle River, NJ: Prentice Hall,
1998; Johnson, D. E., Applied Multivariate Methods for Data Analysis, Pacific Grove, CA: Duxbury Press, 1998.
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rest of the procedure, can take place according to two methods: (1) a splinter-average distance

(SAD) method,22 and (2) automatic interaction detection (AID).23 The SAD method is based on

calculating the average distance of each object to objects in a splinter group and the average

distance of these same objects to other individuals in this group. The process starts by splitting

out the most remote object (object of greatest distance). The splitting continues with the next object

being closer to the splinter group than the main group. AID sequentially divides a total sample into

mutually exclusive subgroups through a series of binary splits. Each split is determined by selecting

a predictor value and its categories that maximize the reduction in the unexplained variation in the

dependent variable. The final result is one group of a low criterion score and another of a high

criterion score.1
10.6.3 Nonhierarchical Clustering Methods

Nonhierarchical clusterig (NHC) methods (k-means clustering) select an initial set of cluster

seed points around which further clusters are built by assigning every point in the data set to its

closest cluster seed according to the dissimilarity measures.14 The assignment of clusters follows

one of the following three approaches:2

1. Sequential threshold method: inclusion of all objects within a prespecified distance from

an initially selected seed

2. Parallel threshold method: simultaneous selection of several cluster seeds and assignment

within threshold distance to the nearest seed

3. Optimisation method: similar to the other two but more flexible due to the induced

optimisation that is reassignment of objects

Table 10.8 compares the advantages and disadvantages of both hierarchical and nonhierarchical

clustering methods.

Some further problems of NHC are the selection of cluster seeds and the initially required

prevision of the number of clusters to exist at the end of the process. Although NHC is one of the
Table 10.8 Advantages and Disadvantages of Both Hierarchical and Nonhierarchical Clustering Methods

Advantages Disadvantages Corrective Actions

Hierarchical Fast, less computer time is

required

Misleading due to persisting

early combinations

—

Effective as exploratory (first part

of a joint venture with NHC)

Considerable impact of outliers Use NHC

Not amenable to analyse very

large samples

Use NHC

In case of random sampling,

problem of

“representativeness”

Avoid it

Nonhierarchical The results are less

susceptible to:

Outliers Ability of researcher to select

seed points

Researcher’s training

Distance measure used Many alternative solutions Validation is required

Inclusion of irrelevant variables Final result is greatly

influenced by the order of

data appearance

Source: Hair, J. F., Anderson, R. E., Tatham, R. L., and Black, W. C., Multivariate Data Analysis, Upper Saddle
River, NJ: Prentice Hall, 1998; Johnson, D. E., Applied Multivariate Methods for Data Analysis, Pacific Grove, CA:
Duxbury Press, 1998.

q 2006 by Taylor & Francis Group, LLC



HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES334
continuously gaining ground methods in terms of its acceptability among scientists in view of its

major and undoubtful advantages, a potential combination of both hierarchical and nonhierarchical

is bound to gain the benefits of each.24
10.7 APPLICATIONS OF MULTIVARIATE METHODS

Multivariate analysis has been effectively used in authentication and classification of food

products such as meat and dairy products. The first step of the analysis is to obtain reflectance

and transmittance spectra of food products using visible or mid- or near-infrared (NIR) spec-

troscopy. The spectrum is usually acquired over a wide range of wavelength. These spectra are

then classified using one of the interdependence methods. Sensory properties, textural images,

electronic-nose performance, and physicochemical parameters (pH, color, water holding capacity

(WHC) soluble protrin, electrical conductivity etc.) have been analyzed using multivariate analysis.

Data obtained from different analytical instruments such as nuclear magnetic resonance spec-

trometers, differential scanning calorimeters, thermogravimetric analyzers, high-performance

liquid chromatographs, gas chromatographs, and Fourier-transform infrared spectroscopes have

also been examined using multivariate analysis for purposes of classification and quality control of

food products. Table 10.9 gives a synopsis of statistical and screening methods for authenticating

meat and dairy products.
10.7.1 Meat and Meat Products

The feasibility of using mid-infrared spectroscopy for addressing certain authenticity problems

with selected fresh meats (chicken, turkey, and pork) has been investigated.25 Preliminary analyses

for the detection of frozen/thawed meat and semi-quantitative analysis of meat mixtures were

reported. Minced chicken, pork, and turkey meat were identified by their infrared spectra. It was

also possible to differentiate between fresh and frozen/thawed samples. Moreover, mid-infrared

spectroscopy allowed the semi-quantitative determinations of the levels of pork and turkey mixed

with chicken. The experimental parameters were optimized and, although the models used were not

over-fit, no independent test was found within the frame of a full DA, thus showing that the results

cannot be considered conclusive.25

Visible and NIR reflectance spectra (400–2498 nm) of homogenized meat samples (chicken,

turkey, pork, beef, and lamb) were collected. The researchers attempted to classify the spectra

into individual species using factorial discriminant analysis (FDA), soft independent modeling

of class analogy (SIMCA), K-nearest neighbor analysis, and discriminant partial least squares

(PLS) regression. Optimum accuracy was achieved by investigating a variety of wavelength

ranges and data pre-treatments. Particular difficulty was encountered in distinguishing between

chicken and turkey. Therefore, models were initially developed using five separate meat classes

and again using four groups, with chicken and turkey being amalgamated into a single class. In

a four-group classification, the best models produced between 85 and 100% correct identifi-

cations, whereas employment of five groups resulted in lower rates. FDA and PLS

discrimination generally resulted in the best accuracy rates whereas SIMCA exhibited the

poorest classification performance.26

Spectra of raw pork, turkey, and chicken meat were recorded in the visible, near and mid-

infrared ranges. Discriminant models were initially developed separately in the mid-IR and the

visible–NIR regions. A number of discrete regions of the NIR spectra were analyzed. The best

predictive model achieved using mid-IR spectra correctly classified 86.5% of test samples; for

visible–NIR data, the optimum classification of 91.9% was achieved in the 400–1100 nm
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Table 10.9 Multivariate Analysis Methods Employed for Detecting Meat and Dairy Products Authenti-
cation

Statistical Method Product References

Principal component analysis Chicken, turkey, pork 25

Beef 32, 34, 45, 46, 55

Pork 63, 64, 67, 68, 70, 71

Poultry 77, 78, 84

Lamb 85

Dry cured hams 86, 87

Fermented sausages 88

Frankfurters 89, 90

Salami 91, 92

Cavourmas 93

Ham 94

Sausages 95–97

Partial least-squares regression Chicken, turkey, pork 25, 26

Beef 33, 37, 40–42, 46, 52

Poultry 76, 81

Dry cured hams 86, 87

Dried sausages 98

Sausages 95, 99

Factorial discriminant analysis Chicken, turkey, pork, beef, lamb 26

Beef 36, 37

SIMCA Chicken, turkey, pork, beef, lamb 26

Beef 37, 38

Discriminant analysis Pork, turkey, chicken 27

Beef 31, 56

Pork 56, 57, 60, 62

Poultry 56, 73, 83

Dry cured ham 87

Frankfurters 100

Ham 101

Neural networks Beef 29, 39

Pork 61

Poultry 80, 82

Fermented sausages 88

Factor analysis Beef 30

Ham 101

Evolving factor analysis Beef 30

Principal component regression Beef 31, 42, 45

Poultry 77, 81

Fermented sausages 88

Multivariate discriminant analysis Beef 32

Univariate analysis Beef 33, 48

Generalised procrustes analysis Beef 35

Canonical discriminant analysis Beef 38

Stepwise multiple linear

regression

Poultry 80

Beef 38

Canonical variate analysis Beef 41

Beef 42

Locally weighted regression Beef 43, 44, 47

Multiple regression analysis Lamb 85

Pork 71

Simple regression Beef 44, 46, 53, 59, 66

Univariate analysis Beef 48

Multivariate analysis Beef 48–52

Pork, ground meat 28, 69

continued
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Table 10.9 Continued

Statistical Method Product References

ANOVA Beef 54

Pork 67

Poultry 75

Cecina 102

Dried sausages 98

Dry fermented sausages 103

Frankfurters 103, 104

Luncheon meat 105

Ham 94

Sausages 95, 106

Principal factor analysis Beef 54

MANOVA Pork 58

General least-squares analysis of

variance

Pork 58

Pork 65

Cluster analysis Poultry 74, 79

Variable cluster analysis Poultry 72

Multiple linear regression Dried sausages 98

Dairy Products

Principal component analysis Milk/cow 126–131

Discriminant factorial analysis Milk/cow 132

Principal component analysis Cheddar type cheese 133

Hierarchical Cluster analysis

Principal component analysis Gouda type cheese 134

ANOVA Serra da estrella cheese 135

Principal component analysis Danbo cheeses 136

Principal component analysis Belgian cheeses 137

Discriminant analysis Commercial strawberry yoghourt 119

Partial least squares Traditional yoghourt 120

Principal component analysis

Principal component analysis Vanilla ice cream 124

Generalised procrustes analysis

Principal component analysis

Cluster analysis

Source: From Spanier, A. M., Stangelo, A. J., and Shaffer, G. P., Journal of Agricultural and Food Chemistry,
40(9), 1656–1662, 1992; Djenane, D., Sanchez-Escalante, A., Beltran, J. A., and Poncales, P., Food Chemistry,
76, 407–415, 2002; Bertram, H. C., Engelsen, S. B., Busk, H., Karlsson, A. H., and Andersen, H. J., Meat Science,
66(2), 437–446, 2004; Kaneki, N., Miura, T., Shimada, K., Tanaka, H., Ito, S., Hotori, K., Akasaka, C., Ohkubo, S.,
and Asano, Y., Talanta, 62(1), 215–219, 2004; Vainionpää, J., Smolander, M., Hanna-Leena Alakomi, H.-L.,
Ritvanen, T., Rajamäki, T., Rokka, M., and Ahvenainen, R., Journal of Food Engineering, in press; Arvanitoyannis,
I. S. and van Houwelingen-Koukaliaroglou, M., Critical Reviews in Food Science and Nutrition, 43(2), 173–218,
2003.
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wavelength range. Combined visible, NIR and mid-IR data yielded the most accurate classification

rate of 94.6%.27

Multilayer feed-forward neural networks were suggested to capture the nonlinearity between

the system inputs and outputs to predict meat quality with the textural features from the ultrasonic

elastograms. The efficiency of the training processes and the generalization of the networks using

the gradient descent and Levenberg–Marquardt algorithms in back propagation has been investi-

gated. In the case of difficult convergence in the gradient descent algorithm, the Levenberg–

Marquardt algorithm converged effectively. The Levenberg–Marquardt algorithm modeled

output variation accounting and network generalization better. Weight decay was further used in

the Levenberg–Marquardt back propagation to improve the generalization of the network models.

The leave-one-out procedure became part of every training process to ensure sufficient modeling on

a limited number of samples.29
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10.7.1.1 Beef

The tenderization of beef with pineapple juice was monitored by Fourier-transform infrared

spectroscopy. FA and evolving factor analysis (EFA) were applied to successively collect attenu-

ated spectra. Absorptions around the 1600–1500 and 1400 cmK1 regions were shown to increase

with time. After subtracting the starting spectrum from each of the succeeding spectra, FA and EFA

were applied to the resulting data matrix.30

The potential of different statistical techniques in the classification of raw beef, bovine M.

longissimus dorsi muscles, samples in tenderness subgroups was studied. The sample was classified

into three categories according to the degree of tenderness. A training set of samples was used to

reveal any relationships between categories determined with NIR spectroscopic measurements. The

study indicates that classical DA has advantages compared to multivariate calibration methods (i.e.,

principal component regression [PCR]), in this application. PCR underestimated high measurement

values and overestimated low values. By employing PCR, the number of correct classifications for

the intermediate subgroup amounted to 23%, whereas the use of DA increased this number up to

60%. The number of classifications in correct or neighbor subgroups for the two intermediate

extreme subgroups reached 97%.31

The effectiveness of dual-attribute time-intensity (DATI) method for assessment of temporal

changes in perceived toughness and juiciness of commercially acceptable meat cuts was examined.

Usefulness of DATI in assessing temporal aspects of perception of juiciness and toughness was

compared with single-attribute time-intensity (SATI) and line-scale profile. Results showed that

DATI provided a good separation of attributes and was equal to or better than SATI in differen-

tiating beef samples based on perceived juiciness and toughness. Generalised procrustes analysis

(GPA) was performed on a data matrix contained the SATI and DATI parameters to visualize

similarities and differences between DATI and SATI.35

Discrimination between fresh and frozen-then-thawed beef M. longissimus dorsi by combined

visible–NIR reflectance spectroscopy was investigated. FDA and SIMCA were used to facilitate

classification.36 Authentication of fresh vs. frozen-then-thawed beef employing NIR reflectance

spectroscopy of dried drip juice and selected chemometric techniques (PLS, FDA, SIMCA) has

been examined. The best separation was obtained using FDA for spectral data from 1100 to

2498 nm and a standard freeze–thaw regime.37

The authentication of beef and ox kidney and liver by the use of mid-infrared spectroscopy was

investigated. MIR spectra of beef, kidney, and liver were identified by PLS, canonical variate

analysis, and predictive models. Using modified SIMCA, the pure beef specimens are modeled

as single-class; this model identifies spectra of unadulterated beef with an acceptable error rate,

while rejecting spectra of specimens containing 10–100% w/w kidney or liver. Finally, PLS

regressions are performed to quantify the amount of added offal. The obtained prediction errors

(G4.8% and G4.0% w/w, respectively, for the kidney and liver calibrations) are commensurate

with the detection limits suggested by the SIMCA analysis.41

Investigations were conducted on the effectiveness of morphometric measurements (MM) of beef

carcass for the prediction of weights and percentages of muscle and fat. In addition to the MM, side-

weight (SW) and cross-sectional measurements (CSM) were employed for prediction with MR

analysis, singly or in combination with these measurements. For the prediction of muscle and fat,

the MM group was the best predictor. The CSW were effective only for the improvement of tissue-

weight prediction. The CSWCMMCSM (twelfth rib) and the MMCSM (twelfth rib) combinations

were best for the tissue-weight and the percentage prediction, respectively. A synergistic effect was

observed between MM and SM for the improvement of tissue-percentage prediction accuracy.

Regrouping the data to three breed types by morphological differences and analyzing it by a PCA

improved the prediction accuracy. Carcass weight range caused differences in fat content but did not

affect the prediction accuracy of muscle and fat percentages in the carcass when MM were used.43
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10.7.1.2 Pork

The possibility of using an electronic nose (e-nose) with a conducting-polymer sensor array

combined with pattern recognition routines to discriminate between varying intensities of boar

taint was explored. A set of samples in a model system comprising a neutral lipid base with

various combinations of androsterone and skatole were tested as if they were pork fat samples.

The data set was used to develop a discriminant function for grouping pork samples into three

response classes: normal, doubtful, and abnormal. Based on this, the e-nose managed to identify

all the abnormal samples correctly. However, 16% of the normal samples were also classified as

abnormal. It was concluded that the e-nose can satisfactorily discriminate between different

levels of boar taint.57

The muscle pH at exsanguination and the rate of pH changes in porcine M. longissimus dorsi

(LD) of normal, dark, firm, and dry (DFD), and pale, soft, and exudative (PSE) quality were

compared. The pH was continuously measured in the LD during the first 50-min post-mortem.

Calculations were attempted both on measured pH values and on pH values expressed as hydrogen-

ion concentrations. A regression of pH or hydrogen-ion concentration with time was constructed for

each animal. These individuals were then combined using a multivariate analysis (MANOVA in the

general linear model (GLM)-procedure) to estimate regression curves for each meat quality class.

The multivariate approach led to better results than general least-squares ANOVA because the

variances were somewhat influenced by the time of measurement. A linear relationship was estab-

lished between pH and time for normal and DFD quality and quadratic for PSE quality. The

intercepts of the regression curves differed significantly between PSE and the other two quality

classes only when the measured pH values were employed without transformation.58

The objective prediction of the ultimate quality of post-rigor pork musculatory was investi-

gated. Randomly selected carcasses were probed at 24 h post-mortem (PM) by Danish meat-quality

marbling (MQM), Hennessy grading probe (HGP), sensoptic resistance probe (SRP), and NWK

pH-K21 meter (NpH). Also, filter paper wetness (FPW), lightness (L*), ultimate pH (pHu), subjec-

tive color (SC), firmness/wetness (SF), and marbling scores (SM) were recorded. Each carcass was

categorized as either PSE, RSE (reddish–pink, soft, and exudative), RFN (reddish–pink, firm, and

nonexudative), or DFD. When DA was used to sort carcasses into four quality groups, the highest

proportion of correct classes was 65% by HGP, 60% by MQM, 52% by NpH and 32% by SRP.

However, when two groups designated as PSE and non-PSE were sorted, then the proportion of the

correct classification by MQM, HGP, SRP, and NpH were 87, 81, 71, and 66%, respectively. The

best prediction accuracy reached 72% for a combination of MQM and NpH.62

Research has also been conducted on objective pork-quality on-line evaluations. “Fat-o-

meat’er” carcass classification (lean content, fat, and muscle thickness), cold carcass weight,

24-h pH, and color were the measurements performed. The results showed that cold carcass

weight and lean content are only slightly related to meat quality as evaluated by pH and color.

CA has confirmed the importance of pH and color parameters such as L*, a*, and hue angle for the

evaluation of pork quality on-line in an industrial context.65

The objective measurements of acidity (pH), light scattering (FOP), conductivity (PQM), light

absorption (Gofo), L*, redness (a*), yellowness (b*), and WHC were evaluated for their suitability

in estimating meat quality of slaughter pigs. The animals were divided in three quality categories

based on pH (PSE, DFD, and normal). The predictability of the ultimate meat quality (paleness,

hue, exudation) with the initial measurements in the slaughter line was rather low. Differences

between light and heavy hams were identified by ANOVA. PCA of proteolytic and lipolytic

enzymes was performed by the SIMCA algorithm. The number of the significant components of

factors was established by the cross validation procedure. PCA showed that 56% of the total

variation in the different meat quality parameters could be explained by the first three principal

components. Based on the first principal component, a distinction could be made between PSE and
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normal meat because the intermediate slightly PSE meat class strongly overlapped both meat

categories.67
10.7.1.3 Poultry

Poultry breasts, deboned at 2, 6, and 24 h post-mortem, provided various characteristics for

establishing instrumental and sensory tenderness relationships. Sensory descriptive texture attri-

butes were classified by variable cluster analysis into five groups representing mechanical,

moisture, and chew-down characteristics. Warner–Bratzler (WB) and Allo–Kramer (AK) shear

values indicated differences due to deboning time and correlated highly (rR0.90) with mechanical

and chew down sensory characteristics.72

The texture of cooked chicken breast is usually determined on intact pieces or strips represen-

tative of the muscle. Two sensory and two mechanical methods were evaluated for effectiveness in

discerning texture differences in 1-cm2 pieces of cooked chicken. Three post-mortem deboning

times provided a texture-quality spectrum. Sensory characteristics were evaluated by descriptive

analysis–trained panel (DA–TP) and by category scales–untrained panel (CS–UP). Twenty-gram

breast portions of 1-cm2 pieces were evaluated using a multiblade AK shear blade. WB shear values

of intact 1.9-cm-wide strips were also recorded. DA classification based on DA–TP amounted to

0.21, whereas error rates for classification by mechanical devices were 0.3 and 0.21 for WB and

AK, respectively.73

The effect of irradiation of refrigerated and frozen chicken on sensory properties was investigated

on skinless, boneless breasts (white), and leg quarters (dark). Cluster analysis (VARCLUS) was

conducted to determine panelist performance and to detect outliers. Subsequent data analysis was

performed on responses from remaining panelists. ANOVA using the GLM procedure and Duncan’s

multiple range tests were conducted to determine significant differences among treatments. Irradi-

ation did not affect appearance of moistness and glossiness of raw chicken (white or dark). Irradiated

leg quarters while refrigerated were darker (p%0.05) than controls (nonirradiated chicken).74

Commercial chickens were implanted with a microosmotic pump that released 1 IU/kg BW/day

of adrenocorticotropic hormone (ACTH) and were killed after 24 and 48 h. The effect of the

implantation of ACTH on liver and carcass weight, lipid, moisture and pH of livers, liver color,

and fatty acid changes in liver was investigated. Data were analyzed by the ANOVA procedure of

the statistical analysis system software package. The differences between treatment means were

analyzed by the Duncan’s multiple-range test.75

Artificial neural networks (ANNs) serve as alternatives to regression analysis for complex data.

Based on CP or proximate analysis (PA) of ingredients, two types of ANN and linear regression

(LR) were evaluated for predicting amino-acid levels in corn, wheat, soybean, meat, bone, and

fishmeal. The two ANNs were a three-layer back propagation network (BP3) and a general

regression neural network (GRNN). Methionine, TSAA, Lys, Thr, Tyr, Trp, and Arg were eval-

uated and the R2 values were calculated per prediction method. ANN training was completed with

Neuroshell 2e using calibration to prevent over-training. Nearly 80% of the data were used as the

input for the LR and the two ANNs. The remaining 20% of the randomly extracted data were used

to calibrate the performance of the ANN.82

Characteristics of lipid fraction of two populations of ducks and two of chicken were studied.

Large sensory differences in tenderness, flavor, and juiciness were noted between the two popu-

lations of each species. The best discriminant factor between the lean and fat ducks was the ratio

between the percentage of linoleic acid and the total lipid content of the breast muscle. This ratio

allowed the correct assignment for 98% of the animals (p!0.001). For the chickens, by using only

the fat score, 85% of the animals were properly classified. However, by introducing the DA, two

major fatty acids (C 16:1 and C 20:4) and two minor ones (C 17:0 and C 17:1), 100% of the animals

could be correctly assigned.83
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10.7.2 Milk and Dairy Products

10.7.2.1 Physicochemical and Sensory Characteristics of Cheese Treated with
Multivariate Analysis

Major research efforts have been made toward amelioration of production aspects and quality of

cheese. The main aspects of this research include increasing cheese yield, flavour and taste

improvement by lipolysis, and study of volatiles for cheese odor.107

Evaluations by hand and mouth were compared for texture of cheese. Seven mouth terms and

five hand terms were identified and used to evaluate texture properties of 14 different types of

natural and processed full-fat and reduced-fat cheeses. PCA revealed that hand and mouth evalu-

ations differentiated the cheeses in a similar manner.108 Descriptive sensory analysis of two cheese

batches (produced from either raw or pasteurized milk) at two different ripening times (90 and

180 days) showed that: (1) cheeses made from the raw milk were firmer, with a more characteristic

odor, taste, and aftertaste, (2) cheeses made from pasteurized milk were creamier with a sweeter

odor and taste and a more bitter aftertaste, and (3) at 180 days, all samples were firmer, grainier,

with characteristic, spicier taste and aftertaste.109

A new descriptive and discriminative language and the corresponding set of standard references

for evaluating the main sensory characteristics of ewes’ cheeses were developed. Thirteen assessors

generated a very broad range of terms (attribute terms). Following discussion within the panel, the

redundant, synonymous, and vague terms were discarded. From this preliminary result, objective

selection of attributes was performed using PCA on the correlation matrix over assessor-averaged

data and stepwise discriminant analysis (SDA). Three linear discriminant analyses (LDA) were

performed to compare and validate the list of selected attributes: one with those obtained from SDA

and a third one with the finally selected group.110

Eleven different cheeses were sensory profiled by a TP using a previously defined methodology.

Using the same set of samples, a group of 300 consumers scored their preferences in a blind test;

their perceptions of the samples were taken into account.111 Table 10.9 (second part) summarizes

several applications of chemometrics and multivariate analysis on representative dairy products.
10.7.2.2 Multivariate Analysis and Technological Developments in Cheese
Manufacturing

The ability to predict sensory texture properties of feta cheese made from ultrafiltered milk

(UF–feta cheese) was investigated with uniaxial compression, small shear deformation measure-

ments, and indices of proteolysis. In PCA, some of the instrumental analyses were highly

correlated. PCA of the six sensory attributes showed that mainly one type of information was

present in the sensory results. Partial least-squares regression (PLS) of all results revealed that

stress at fracture from uniaxial compression was the individual instrumental parameter having the

highest correlation with the sensory texture attribute.112

A study of the effect of pasteurization in the manufacture of Idiazabal ewe’s-milk cheese was

conducted. Pasteurization resulted in a decrease in amino-acid release in the cheese during ripening

when a specific starter culture was used, but not with another starter culture. Multivariate analysis

confirmed increases in asparagine, serine, and taurine, and decreases in aspartic acid and glycine

with pasteurization, irrespective of the starter used.113

A face-centred cubic (FCC) experimental design was used to investigate the effects of extrac-

tion time, solvent, and sample temperature on simultaneous distillation–extraction (SDE). The

backward stepwise selection of the regression coefficients led to the identification of seven

groups of compounds of similar behavior with respect to the three variables investigated. The

same set of models was found by performing PCA on the t-values of the regression coefficients
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of the unrefined polynomials and cluster analysis on the scores of the 13 acids obtained with

PCA.114 Martin and Coulon115 analyzed the role of various factors involved in milk production

and its clotting ability. The considerable variations (30–48 mm and 8–22 min for curd firmness and

rennet clotting time, respectively) in 271 milks were attributed to lactation stages, milk-protein

genetic variants, and feeding practices depending on seasonal variations. Implementation of PCA

resulted in two main axes (PC1 and PC2) describing only 35% of total variation. PC1 characterizes

the milks rapidly forming gels (firm texture) and PC2 characterizes the milks of a weak pH and

rapid gellation.
10.7.2.3 Genetic Effect on Cheese Properties

Rahali and Menard116 investigated the influence of genetic variants of b-lactoglobulin (b-Lg)

and k-casein (k-Cn) on milk composition and on 83 Camembert cheeses’ capacities. Eight genetic

combinations of b-Lg and k-Cn were studied. Discriminant factor analysis showed that the effects

of b-Lg and k-Cn were additive and allowed for grading genetic combinations according to their

cheese-making quality.

The influence of three casein haplotypes (BBB, BA2A, and CA2B) was compared with regard to

the composition of milk and its cheese production capability. The physicochemical composition (fat,

total casein content, elasticity, firmness, cohesion) of 89 samples (40 BBB, 30 BA2A, and 19 CA2B)

selected on the basis of genotype and lactation stage was determined. The cheese yield coming from

BBB milk was the highest because of better retention of the amount of fat in the curd. At the end of the

ripening period (45 days) the BBB cheeses were endowed with superior mechanical properties

(firmer, less elastic, and more breakable) than the other two haplotypes’ counterparts.117 Heil and

Dumond118 studied the sensory properties of goat cheeses of various genetic types of as1-casein and

sampled at early, middle, and final stages of lactation. The sensory properties were recorded on mold-

ripened cheese (Pelardon-type) and semi-hard cheeses of Gouda-type. Nine and eight descriptors

were used for Pelardon and Gouda cheese, respectively. A 15-member TP was asked to classify the

above mentioned cheeses on a 5-point scale (1–5). Genetic-type instead of lactation stage emerged as

the most crucial parameter for the reported texture and flavor changes.
10.7.2.4 Yogurt

Samples of strawberry yogurts were determined by country, yogurt producer, and marketed age

group using PCA. From the PCA data generated, new strawberry flavors were developed along the

creamy-vanilla, juicy, green-floral, and berry-ripe-banana dimensions. The new flavors and three

commercial ones were analyzed by trained panelists using both PCA and PLS, and hedonically by

160 consumers between the ages of 6 and 16 years. PLS and correlation analysis identified the

positive consumer-liking drivers for strawberry flavor to be vanilla, creamy, and balsamic attri-

butes, whereas wild and floral attributes decreased liking.119

The sensory properties of traditional acidic and mild, less acidic yogurts were evaluated by a TP

using a descriptive approach. Important flavor differences were found between two classes of

yogurt. They were mainly due to differences in acidity and not to different concentrations of the

three impact aroma compounds acetaldehyde, 2,3-butanedione, and 2,3-pentanedione. The flavor

descriptors astringent, bitter, and acid as well as the aftertastes persistent, astringent, and lemon

revealed a positive correlation with decreasing pH. To better comprehend the overall sensory data,

PCA of significantly different attributes (according to ANOVA) was carried out on the correlation

matrix. The resulting biplot of the first two components shows that the main variation perceived by

the panel is in the attribute acid (77% of the total variation).120,121

Fifteen assessors, trained solely in visual profiling based on the quantitative descriptive analysis

(QDA) method, analyzed 16 formulations of mousse desert products over ten visual texture
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attributes. The visual profile data were examined using ANOVA, PCA, and GPA methods. ANOVA

results showed that cream levels significantly affected all the visual textures (p!0.05). The results

depict the possibilities of food formulators producing detectable variation in visual texture par-

ameters that may subsequently affect quality perception in chilled dairy dessert products.122
10.7.2.5 Ice Cream and Chilled Dairy Desserts

Vanilla-flavored ice creams varying in fat, sugar, and nonfat milk solids content were used to

disclose the influence of these three design variables on sweetness, flavour, and texture. Implemen-

tation of ANOVA, PCA, and PLS regression to ice cream resulted in:

† Increase in fat enhanced buttery and creamy attributes, and mouth-coating
† Fat addition lowered coldness, ice crystal perception and melting rate
† Increase in sugar augmented sweetness, caramel, and vanillin notes, but

decreased milkiness
† Increase in nonfat milk solids decreased coldness, ice crystal, and melting rate percep-

tions, but increased creaminess and mouth-coating
† PCA grouped the samples mostly on the basis of their fat content and then by their

sugar level
† PLS1 separated samples against fat content, whereas PLS2 separated by sugar and nonfat

milk-solids contents123

Flavor and texture profiling data on vanilla ice cream obtained from an experienced, well-trained,

homogeneous panel (NZ20) were analyzed with ANOVA and PCA for the full panel as well as for

several smaller panels (NZ10 and NZ5) that were drawn a posteriori and at random from the original

panel. Homogeneity of variance was maintained over all the panels. When the panel size was reduced

to half, only 67% of the descriptors were significant and retained; for interaction effects, there was

only 34% retention. Reducing the panel to one-quarter of its original size allowed retention of only

34% and 9% of the significant descriptors for these effects, respectively.124,125
10.8 IMPLEMENTATION OF MULTIVARIATE ANALYSIS

10.8.1 Case Study: PCA on Greek Traditional Sausages

10.8.1.1 Problem

Identification and assessment of parameters (physicochemical and sensory) for better descrip-

tion and chatracterisation of Greek traditional sausages.
10.8.1.2 Experimental

1. Materials: forty-five samples of traditional sausages were either locally purchased or

manufactured in the laboratory premices.

2. Physical analysis: color was measured with a Hunterlab (L*, a*, b*) both at the surface

and cross-section; water activity was measured at the core and at the outer ring; firmness

was measured with a Zwick penetrometer.

3. Chemical analysis: moisture, fat, protein, ash, and sodium chloride were determined.

Oxidative rancidity was determined with the 2-thio-barbituric acid test as TBA. Nitrites,

nitrates, and pH were also measured.
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4. Microbiological analysis: the samples were first homogenized and dilutions were

prepated with 0.1% peptone water. Following incubation, the samples were tested for

lactic acid bacteria (LAB), aerobic plate count (APC), micrococci and staphylococci and

Gram-negative bacteria.

5. Sensory evaluation: an experienced ten-member panel was used to evaluate traditional

fresh sausages for appearance, flavor, and firmness and grilled sausages for taste accor-

ding to a 5-point scale (5Zvery good, 4Zgood, 3Zacceptable, 2Zfair, 1Z
unacceptable). The grilled sausages (heated to a core temperature of 728C) were also

tested for overall acceptability according to the same 5-point scale.
10.8.1.3 Multivariate Techniques Employed

The principal-component loadings and rotated factor were determined using Statistical Package

for the Social Sciences (SPSS) for Windows, release 9.0 and by employing varimax for rotation.

Double cross-validation was performed to define the number of significant components in PCA.

PCA was employed because of the presence of underlying structure in the set of selected variables

and for mixing dependent and independent variables.
10.8.1.4 Results

The following attributes of Greek traditional sausages were recorded: fat 15.49–56.86%,

moisture 21.92–65.40%, protein 14.73–26.74%, sodium chloride 2.36–4.13%, nitrites 0.0–

3.26 ppm, mean nitrates 38.19 ppm, TBA value 0.42–5.33 mg malonaldehyde/kg, pH 4.74–6.74,

water activity (aw) 0.88–0.97, firmness 0–64 Zwick units, L* 25.03–35.37, a* 2.55–11.42, b* 4.42–

12.96, APC 5.48–9.32 cfu/g, LAB 5.26–9.08 cfu/g, micrococci/staphylococci 4.11–6.91 cfu/g, and

Gram-negative bacteria 1.78–6.15 cfu/g. Mean sensory scores ranged from 3.14 to 3.54 on a 5-point

hedonic scale. All the results are given in Table 10.10. Application of SPSS (PCA) to physical,

chemical microbiological and sensory values resulted in Table 10.11, Table 10.12, and Figure 10.1a

through 10.1c.
10.8.1.5 Discussion

Out of 29 variables initially determined (Table 10.10), 14 were finally selected as the most

discriminating and closely related to the overall acceptability of the sausages. The combined

analysis of loadings and variable correlations allow those variables to be excluded that show low

loadings on both components or low loadings on one component and mean values on the other, or

which provide the same kind of information, having similar coordinates and being highly corre-

lated.138 Fifteen variables were thereby excluded in successive steps (low loadings or same

information) and PCA was applied to the remaining 14 variables. Table 10.12 shows that at

least five factors must be taken into account to reach a description of the variance at approximately

80%. The main motivation for using the rotational method (varimax) was to achieve a simpler and

theoretically more meaningful representation of the underlying factors.139 In Figure 10.1a, PC1

stands for very low firmness, high moisture, dark color, and low sodium chloride content. There-

fore, it could be characterized as a representative “negative quality index.” On the contrary, PC1

stands for strong taste, nice appearance, and high overall acceptability (both for fresh and grilled

sausage), which are the main characteristics of a positive quality index. In lieu of a concluding

remark, it could be said that consumer preference was strongly related to satisfactory appearance

and strong taste, high LAB count, medium fat content, medium firmness, and lightness
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Table 10.10 Mean Value, Standard Deviation and Percent Coefficient of Variation of 30 Chemical, Physi-
cal, Microbiological, and Sensory Variables Evaluated on 35 Greek Traditional Sausages

Variables Mean Value Standard Deviation % CV

Physical

Water activity (aw)

in the core (internal) 0.94 0.02 2.06

at the surface (external) 0.93 0.03 3.30

Firmness (N) 26.19 19.31 73.72

Color at the surface

L* 29.78 2.66 8.92

a* 5.68 2.30 40.59

b* 8.84 2.17 24.62

Color at cross section

L* 43.50 4.12 9.47

a* 7.89 3.24 41.01

b* 13.07 2.13 16.30

Chemical

Nitrites 0.77 0.90 116.23

Nitrates 38.19 71.19 186.41

TBA 1.56 1.23 78.54

PH 5.76 0.53 9.23

Moisture 43.98 9.18 20.86

Protein 19.19 3.53 18.41

Fat 33.50 9.16 27.35

Ash 3.33 0.60 17.99

Sodium chloride (NaCl) 3.31 0.64 18.26

Microbiological

Aerobic plate count (APC) 8.21 0.87 10.61

Lactic acid bacteria (LAB) 8.08 0.84 10.43

Psychrotrophic bacteria 6.32 1.21 16.49

Micrococci/staphylococci 5.22 0.73 14.05

Enterobacteriaceae 4.30 1.33 31.06

Sensory

Fresh sausages

Appearance 3.54 0.64 18.20

Flavor 3.42 0.73 21.40

Firmness 3.41 0.73 21.44

Overall aceeptability 3.21 0.76 23.76

Grilled sausages

Taste 3.18 0.87 27.39

Flavor 3.40 0.88 25.7

Overall acceptability 3.14 0.85 28.10
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(L* surface). Extreme attribute values (high or low) for firmness, moisture, and fat content, low salt

content, and low taste were related to low consumer preference.
10.9 FUTURE TRENDS

Multivariate analysis is a very promising field for further development and application. Anyone

reviewing the literature will likely be surprised to discover that MVA has experienced exponential
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Table 10.11 Results from Principal Component Analysis (Eigenvalues and Cumulative
Percentage), Carried out by SPSS, for 14 Selected Variables

Variable Factor Eigen Value Pct of Var Cum Pct

Moisture 1 4.22241 30.2 30.2

Fat 2 2.86606 20.5 50.6

Sodium chloride 3 1.54177 11.0 61.6

TBA 4 1.17378 8.4 70.0

PH 5 1.05591 7.5 77.6

aw internal 6 0.91260 6.5 84.1

Firmness 7 0.64718 4.6 88.7

L�surface 8 0.50926 3.6 92.3

a�surface 9 0.42317 3.0 95.4

APC 10 0.29617 2.1 97.5

External appearance 11 0.17466 1.2 98.7

Overall acceptability (fresh) 12 0.12458 0.9 99.6

Odor-taste 13 0.03323 0.2 99.9

Overall acceptability (grilled) 14 0.01923 0.1 100.0
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growth in terms of applications in medicine, chemistry, engineering, agriculture, and food science,

among other fields. MVA has been widely recognized as a very powerful tool for handling data. In

view of the continuously increasing costs of experimentation, it becomes imperative to convert the

rows and columns of data into meaningful plots through which the information is clearly under-

stood and conveyed. Some representative applications of MVA include:140–146

† Quality control and quality optimization (foods, drugs, cosmetics, automobiles)
† Process optimization and process control
† Development and optimization of measurement methods
† Prospecting for oil, water, minerals
† Classification of bacteria, viruses, varieties, samples of same or different origin
† Analysis of economics, market search, consumer behavior
Table 10.12 Rotated Factor Matrix (Varimax–Kaiser Normalization) Calculated by SPSS

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Moisture 0.87892 0.22893 K0.06356 K0.28454 K0.09504

aw internal 0.87042 0.09487 0.17694 K0.27482 K0.03815

Firmness K0.78887 0.11750 0.07659 K0.12817 0.23346

Fat K0.73739 K0.26211 0.06029 0.40453 0.06023

a*surface 0.71998 K0.08385 K0.44076 0.15709 0.24535

Odor-taste 0.06711 0.95250 K0.15324 K0.06277 0.02350

Overall

acceptability

(grilled)

0.15230 0.88866 K0.28823 K0.16159 0.00441

Overall

acceptability

(fresh)

K0.25109 0.74628 0.18846 0.025330 0.40056

APC 0.29358 0.64644 0.29354 0.15501 K0.09652

TBA K0.05863 K0.20001 0.73481 0.10068 0.03522

PH 0.12779 K0.24099 K0.56664 K0.54619 K0.02497

L*surface K0.18426 K0.08173 0.08307 0.83934 0.03551

Sodium chloride K0.20091 K0.04507 K0.21745 0.18517 0.73901

External

appearance

K0.01001 0.44500 0.24179 0.024101 K0.01210
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Figure 10.1 PC1 vs PC2, PC1 vs PC3 and PC2 vs PC3 for physio-chemical and sensory analysis of traditional
Greek sausages.
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† Design of new products
† Authentication of products (foods of different cultivar, different geographical origin,

adulterated products)
† Pattern recognition
† Neural networks (food science, weather prediction, credit scoring and practically appli-

cable in any field)
† Identification of crucial factors for ecosystem and landscape ecology

However, one should also understand that the application of MVA bears the potential pitfall of

over-fitting. This discrepancy can be rather easily detected by using an appropriately sized,

independent test set. This presupposes the selection of a good proportion of the observations

available and not using them in the modeling process. After the model is constructed, it should

be applied to the test data. Should the solution stand for a good model of genuine structure in the

data, it should perform equally well when applied to the test set.147
GLOSSARY

Arch effect A distortion or artifact in an ordination diagram, in which the second axis is an arched
q 2006 by T
function of the first axis. It is caused by the unimodal distribution of species along

gradients. The arch appears in correspondence analysis and other ordination techniques.

One of the main purposes of detrended correspondence analysis is to remove the arch

effect. Principal components analysis creates a more serious artifact called the horseshoe

effect.
Bartlett test of sphericity. Statistical test for the overall significance of all correlations within a
correlation matrix.
Beta diversity Also called species turnover or differentiation diversity, beta diversity is a
measure of how different samples are from each other, and/or how far apart they are on

gradients of species composition. Alternatively, it is a measure of the “length” of an

ecological gradient or ordination axis in terms of species composition. An axis or gradient

with low beta diversity will be similar in species composition at both ends. Some ordina-

tion techniques (e.g., PCA) behave best at low beta diversity, and others (e.g., DA, CCA)

behave best at high beta diversity.
Bootstrap A reasonably new computer-intensive method to obtain confidence intervals, to esti-
mate parameters, or in some cases to test hypotheses, the bootstrap is considered a

“resampling method,” and is closely related to the jackknife and to randomization tests.
Categorical variable A variable that is represented by several different types; for example:
lake/river/stream, farm/pasture/unmanaged, pitfall trap/fence trap/direct sighting. For

most multivariate analyses, categorical variables must be converted to kK1 dummy vari-

ables (where kZthe number of categories).
Centroid The (weighted) mean of a multivariate data set which can be represented by a vector.
For many ordination techniques, the centroid is a vector of zeroes (i.e., the scores are

centered and standardized). In a direct gradient analysis, a categorical variable is often best

represented by a centroid in the ordination diagram.
Classification The methodology of placing things/samples into groups. Classification can be
completely subjective, or it can be objective and computer-assisted. Hierarchical classi-

fication means that the groups are nested within other groups. There are two general kinds

of hierarchical classification: divisive and agglomerative.
Correlation matrix A square, symmetric matrix consisting of correlation coefficients. The rows
and the columns represent the variables. The diagonal elements are all equal to one, for the

simple reason that the correlation coefficient of a variable with itself equals one.
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Correspondence analysis An eigenanalysis-based ordination method, also known as reciprocal
q 2006 by T
averaging. Correspondence analysis has a problem: the arch effect. This effect is caused by

nonlinearity of species response curves. The arch is not as serious as the horseshoe effect of

PCA, because the ends of the gradient are not convoluted. Another related problem of

correspondence analysis is that the ends of the gradient are compressed.
Covariance matrix A square, symmetric matrix in which the rows and columns are variables and
the entries are covariances. The diagonal elements (i.e., the covariance between a variable

and itself) will equal the variances.
Cross-validation Procedure of dividing the sample into two parts; the analysis sample is used in
the estimation of the discriminant functions or logistic regression model, and the holdout

sample is used to validate the results. Cross-validation avoids the “overfitting” of the

discriminant function.
Detrended Correspondence Analysis (DCoA) An eigenanalysis-based ordination technique
derived from correspondence analysis. DA performs detrending to counteract the arch

effect, a defect of correspondence analysis.
Discriminant loadings Measurement of the simple linear correlation between each independent
variable and the discriminant Z score for each discriminant function also known as

structure correlations.
Distance matrix A square and (usually) symmetric matrix in which the rows and the columns
represent (usually) samples. The entries represent some index of the difference between

samples, i.e., Euclidean distance, Manhattan (city block) distance, Bray–Curtis dissimi-

larity, the Jaccard coefficient, or any of a huge number of possibilities.
Dummy variable A binary variable of ones and zeroes that is one if the observation belongs to a

category and zero if it does not.

Eigenanalysis The process of finding eigenvectors and eigenvalues.

Eigenvalue A central concept in linear algebra (i.e., matrix algebra); an eigenvector of a matrix is
a vector that, when multiplied by the matrix,gives the vector back again, except that it has

been multiplied by a particular constant, called the eigenvalue. For a square matrix, there

are as many eigenvectors and eigenvalues as there are rows and columns in the matrix. The

eigenvalues are usually ranked from highest to lowest, and termed the first, second, third,

etc. eigenvalues or latent roots.
Fuzzy sets and fuzzy set ordination Fuzzy sets allow various grades of membership. Classical
set theory would define an arbitrary elevation or threshold, above which all plots must

belong, and below which no plots belong. Fuzzy set theory would allow a plot to belong

with 25% membership (for a relatively low elevation) or 75% (for a relatively high

elevation).
Gaussian ordination A little-used ordination technique that arranges samples along ordination
axes such that the fit of the species response curves to the Gaussian curve is maximized.

The fit can be measured by r2.
Horseshoe effect A distortion in ordination diagrams. It is more extreme than the arch effect
because the ends of the first gradient are involuted. The horseshoe effect can be observed

for very long gradients in PCA.
Inertia A measure of the total amount of variance in a data set directly related to the physical
concept of inertia, which is the tendency for an object in motion to stay in motion, and the

tendency for an object at rest to remain at rest. For weighted averaging methods such as DA

and CCA, the inertia is related to the spread of species modes (or optima) in

ordination space.
Jackknife A (usually) computer-intensive method to estimate parameters and/or to gauge uncer-
tainty in these estimates. The name is derived from the method that each observation is

removed (i.e., cut with the knife) one at a time (or two at a time for the second-order

jackknife, and so on) to get a feeling for the spread of data.
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Latent root Another name for eigenvalue.

Latent value Another name for eigenvalue.

Linear combination A linear combination of a set of variables is a new variable (yi) THAT can
q 2006 by T
be expressed as follows: yiZå(bjxij), where bj is the “coefficient” of variable j, and xij is

value of observation i of variable j. In MR, predicted values of the dependent variable are

linear combinations of the independent (or explanatory) variables. In CCA and RDA,

sample scores are linear combinations of the environmental variables.
Mantel test A method for comparing matrices to each other, also known as matrix correlation.

Monotonic distributions Describes species response curves in which species only increase along
environmental gradients, or only decrease along environmental gradients. A monotonic

distribution can be linear or more complex. If most species have a monotonic distribution,

then it is best to use PCA and RDA, but if most species have unimodal distributions, then it

is best to use DA and CCA.
Monte Carlo tests A synonym of randomization tests. A Monte Carlo permutation test is when
the actual data values are maintained, but they are randomly permuted to obtain the

distribution of the test statistic. Exactly how they are permuted depends upon the null

hypothesis to be tested.
Multidimensional scaling Currently, this is often a synonym for nonmetric multidimensional
scaling, but it previously referred to principal coordinates analysis.
Multiresponse permutation procedure Usually abbreviated MRPP. A randomization test that
evaluates differences in species composition, based on some distance measure.
Noise Refers to chance variation in nature that interferes with our ability to see pattern and infer
processes. In its simplest form, noise is synonymous with statistical error (e.g., the error

term in a regression).
Nominal variable A variable which can be represented as a binary: yes/no, on/off, present/
absent. A nominal variable is usually summarized by a dummy variable.
Nonhierarchical Clustering (NHC) methods Selection of initial set of cluster seed points
around which further clusters are built.
Nonmetric Multidimensional Scaling (NMDS) The most widely used distance-based ordina-
tion method. The user needs to prespecify the number of dimensions, and then the method

will minimize the stress (a measure of poorness of fit between the ordination and measured

ecological distances). See also distance matrix.
Outlier An observation that is substantially different from the other observations (extreme value).

Partial analysis An analysis (e.g., regression, correlation, ANOVA, ordination) in which the
effects of covariables are “factored out” or nullified. Examples of partial analysis include

partial correlation, partial DA, partial CCA, and ANOVA, among others.
Principal Coordinates Analysis (PCoA) A distance-based ordination method in which the
distances between sites in the ordination diagram is maximally correlated with

the distances.
Randomization test The purpose of inferential statistics is to evaluate whether a number that
summarizes something of interest is greater than (or less than) one would expect just due to

chance (i.e., if H0 is true). This number can be one of the well-known parametric statistics

(t, F, chi-squared, r, etc.), or nonparametric statistics (Mann–Whitney U, Spearman r,

etc.).
Similarity index A measure of the similarity of species composition between two samples.
Examples include the Sørensen coefficient and the Jaccard coefficient. Most similarity

indices have values of zero for samples that share absolutely no species, and 1 or 100%

for samples that have identical species composition.
Similarity matrix A square and (usually) symmetric matrix in which the entries are similarities
between samples. Similarity matrices are easily produced from, or converted into, distance
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matrices. The diagonal entries are usually 1 or 100%, meaning a sample is usually 100%

similar to itself.
Singular matrix A square matrix that cannot be inverted. In multivariate methods, a singular
matrix can occur if one variable is precisely a linear combination of the other variables.

This may occur if data are expressed in a percentage basis, or there are is a categorical

variable expressed as a series of dummy variables.
Singular value decomposition A way of manipulating matrices that is similar to, and ultimately
equivalent to, eigenanalysis.
Standardization A way of scaling variables so that different variables, measured in different
units, can be compared. The most common forms of standardization include ranking,

logarithmic transformations, placing on a 0–1 scale (according to the formula [xK
min]/[maxKmin]; this is used in fuzzy set ordination), and subtracting the mean and

dividing by the standard deviation. The last two kinds of standardization produce variables

which are perfectly correlated (rZ1) with the raw data. The last kind is by far the most

common, and unless otherwise stated, is what should be assumed by “standardized

variables.”
Stepwise analysis A MR method (including RDA and CCA, which are special cases of MR) in
which explanatory (independent) variables are selected on the basis of whether they

explain a “significant” amount of variation in your dependent variable(s). There are

several approaches to stepwise analysis: forward selection, backwards selection, and

combined analysis.
Weighted average An average, except that different observations are given differing importances
or “weights.” In ordination, the weights are typically the abundances (perhaps trans-

formed) of species. Weighted averages are intrinsic to correspondence analysis and

related methods.
Z The symbol used to represent a “regionalized variable,” a spatially varying variable.
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80. Santé, V. S., Lebert, A., Le Pottier, G., and Ouali, A., Comparison between two statistical models for

prediction of turkey breast meat color, Meat Science, 43(3–4), 283–290, 1996.

81. Ding, H. B., Xu, R. J., and Chan, D. K. O., Identification of broiler chicken meat using a visible/near

infrared spectroscopic technique, Journal of the Science of Food and Agriculture, 79(11),

1382–1388, 1999.
q 2006 by Taylor & Francis Group, LLC



HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES354
82. Roush, W. B. and Cravener, T. L., Artificial neural network prediction of amino acid levels in feed

ingredients, Poultry Science, 76(5), 721–727, 1997.

83. Girad, J. P., Culioli, J., Denoyer, C., Berdague, J. L., and Touraille, C., Comparison between two

populations of two poultry species according to their fat composition, Archiv für Geflugelkunde,

57(1), 9–15, 1993.
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and Ahvenainen, R., Comparison of different analytical methods in the monitoring of the quality of

MAD broiler chicken using PCA, Journal of Food Engineering, 65(2), 273–280, 2004.
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11.1 INTRODUCTION

People have been searching for patterns and trying to interpret them for centuries. Patterns are

important regardless if the field of study is chemical, biological, archaeological, or commercial.

Some patterns are regular in nature and occur often in data. They are typically straightforward to

describe and tend to provide reassurance that the process of collecting the data is sound. These are

not the patterns of interest in the field of data mining. They will be discovered during the process,

but they will not remain at the center of attention for too long. It is the irregular, unexpected pattern

that is sought. The patterns provide information previously unknown before the data was analyzed.

Not all of these patterns will be meaningful or useful, but they might provide some insight or

provoke further investigation and that is what is sought.

The mining analogy is suggestive of finding a nugget or gem rather than pulling out rocks,

rendering them to dust and reforming the dust into something valuable. The mining analogy is

useful because it implies that some form of engineering will be needed to provide the tools for

extracting the nuggets. Therefore, the field of data engineering has emerged to provide such a focus.

Although the distinction is not entirely clear, data mining can be thought of as covering the entire

process of discovering hidden and unexpected patterns in data, including the need to

interpret results.

Data mining is a relatively new subject, having its origins in the early 1990s. Of course, people

have been doing data mining for longer than that. In the field of statistics, the use of simple and

multiple regression to uncover correlations in data dates back to the 1920s. Machine learning, a

branch of artificial intelligence, is another field with a history of automated knowledge discovery,

and this dates back to the 1960s.1,2 The recent capability of recording data at point-of-sale,

weighing machines in factories, and so on have been the catalyst that has united statistics with

machine learning. Into the mix is the need to add very large databases and commerce; together, they

summarize the varied contributors to the current data mining scene.

Data is at the center of the subject, and the form the data takes has led to different application

areas. Typical applications include fraud detection, web site navigation analysis, network

intruder detection, stock market prediction, and so on. These applications will have been

developed while following some form of data mining process, and this process will constitute

the backbone of this chapter. As previously stated, data mining has its origins in a variety of

fields. What follows is an account of data mining from a machine-learning perspective.

Examples are presented using the Waikato Environment for Knowledge Analysis or WEKA.

This is an open source and freely available suite of Java programs designed to support the data

mining process. More information can be found in the textbook by Witten and Frank.3 The

software can be downloaded from http://www.cs.waikato.ac.nz/~ml. This software is one of

many commercial and non-commercial suites that are available; for more details on other

systems see http://www.kdnuggets.com/software/.

Machine learning is the driving force behind data-driven modeling. This is in contrast to

modeling an application using a physical model (mathematical or probabilistic) that is prescribed

a priori and then tested against actual data. This process is also referred to as predictive modeling,

and the terms are used interchangeably. Data-driven modeling involves a number of steps following

the collection of data. These steps may involve the removal of outliers, noise reduction, data

transformation, and so on. Collectively, they represent a cleansing process that prepares the data

for an induction step where models are learned directly from the data. The main advantage with

data-driven techniques is that they afford greater experimentation and can be used in circumstances

where no a priori model can be determined. In the case where a known model (such as an

exponential relationship) could be found, there is no guarantee that it will be discovered

using inductive techniques as they do not have a list of functions to try. Therefore, rather than

viewing inductive analysis as an alternative to other forms of data analysis, it is preferable to

include inductive techniques alongside these other methods.
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This chapter begins by defining what is meant by data and what is needed to make it ready

for mining.
11.2 DATA PRE-PROCESSING

First, data must be defined. Given that it is a priority to learn something from the data, it is first

hypothesized that concepts exist in the data that can be learned. By learning, it is meant that a model

(perhaps a set of rules) that describes the patterns in the data can be generated. The aim is to produce

an intelligible and operational concept description of the data. Intelligible so that it can be under-

stood, and something can be learned from it; operational so that the model can be used for

prediction (more on this later).

The data is often referred to as a collection of examples or instances. Each example is an

individual and independent example of a concept. A row in a database table or spreadsheet

would be a good example of an instance as would a point-of-sale transaction at a supermarket

checkout. Of course, other, more complicated forms of input are also possible. The database

analogy is useful because each instance has a set of attributes that measures different aspects of

the instance. These attributes would be the column definitions (or schema) in a database setting. In

some fields, attributes are referred to as features; here these terms are interchangeably used.

Attribute values can be nominal where they take on a value from a set of expected values or

numeric (for example, integer or real numbers).

While learning, one of the attributes is typically singled out as the class attribute. This attribute

is directly linked with the concept attempted to be learned. If the class attribute is nominal, then an

attempt to learn a model of that class (or concept) from the other attributes in the dataset can take

place. This process is called classification. If the attribute is numeric, then the process is also

classification but more typically referred to as regression. If something is to be learned of the

association(s) between attributes, that is, to not single out an individual attribute but to find out

something of the relationship between the attributes, then association rule learning can be

performed. Finally, in a situation where a hypothesis about possible concepts in the data cannot

be made, clustering can be performed. Clustering is the process of grouping together similar

instances into clusters so that their distance from each other within the cluster is small, and their

distance from other clusters is large.

Having decided where the data is going to come from and what concept, if any, is to be learned,

the data must first be massaged into the correct format. This process could involve denormalization

if a relational database is involved in order to produce a flat file of instances, that is, something akin

to a spreadsheet. Of course, the data could come from a variety of sources and may need to be

linked. In all cases, care must be taken to smooth over differences in the record keeping between

disparate data sources. Erroneous data must not be introduced during assembly as this may lead to

the uncovering of false patterns at a later stage.

Missing values can either be introduced during data collection, or they can naturally exist in the

assembled dataset. The values may be missing because they are unknown, unrecorded, or irrele-

vant. A measuring device, for example, could malfunction during data collection. All forms of

missing value can cause problems. In some applications, particularly in the medical arena, missing

values (the outcome of a test) may have significance. Most learning methods tend to deal with

missing values as if they were irrelevant. They might replace them with the mean of the existing

values or may code them as missing thereby adding an additional value. Table 11.1 below is a

typical dataset in the required format for WEKA. All input data is textual and easy to read. The file

is essentially in two parts; a header that describes the concept (or relation) to be learned and a data

part that contains all the instances. The example below has six attributes: two are numeric, and four

are nominal. This dataset has only four instances. Note the use of the question mark to denote that

the cholesterol value for instance four is missing. The first instance describes a 63-year-old male
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Table 11.1 A Dataset in the Correct Format for WEKA

@relation heart-disease-simplified

@attribute age numeric

@attribute sex { female, male}

@attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina}

@attribute cholesterol numeric

@attribute exercise_induced_angina { no, yes}

@attribute class { present, not_present}

@data

63,male,typ_angina,233,no,not_present

67,male,asympt,286,yes,present

67,male,asympt,229,yes,present

38,female,non_anginal,?,no,not_present
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who presents with typical angina and a cholesterol reading of 233; the angina was not exercise

induced, and heart disease was not present.

Most data mining software acknowledges that data can come from a variety of sources, and it

will provide ways of importing data from other formats such as binary, comma-separated values

(CSV), universal resource locators (URLs), and databases.

Once the data has been transformed, the best way to get to know it is to use simple visualization

tools. For nominal attributes, this usually means histograms across the set of values. These will

usually conform to the person performing the visualization’s background or domain knowledge of

the data’s distribution. Graphs of the values of numeric attributes are useful for discovering outliers.

Both two and three-dimensional visualizations will uncover dependencies between attributes (and

possibly the class attribute), and these can be very useful. Figure 11.1 shows a sample visualization
Figure 11.1 A visualization of attribute values with respect to their class attribute.
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of some data using WEKA. This dataset has four numeric attributes and a nominal class attribute

that can take on one of three values. As can be seen, the histogram for the class attribute shows that

there are 50 instances of each class (a total of 150 instances in the dataset). The other histograms

show how the numeric ranges of each attribute is distributed with respect to the class. This can show

the attributes that best separate the classes. Here, it can be seen that sepalwidth and sepallength do

not discriminate the classes as well as the other two attributes.

Other visualizations in two and even three dimensions are possible and can be helpful in

showing dependencies, but in all cases, domain experts—people who truly understand the

data—need to be consulted so that erroneous decisions are not made early in the process. Given

that data mining involves large amounts of data, it is sensible to ask what to do if there is an

excessive amount of data. The answer is to sample, and most packages make it straightforward to

do this.

Of course, looking at the data is not the only operation that should be performed; others include

discretization, normalization, resampling, attribute selection, transforming and combining attri-

butes, and so on. These operations are needed to massage the data into more understandable

forms. For example, suppose data on someone’s preference for a chocolate bar was collected.

Questions about certain features (attributes) of the bar such as its texture may have been asked,

and other attributes such as its sweetness may have been measured. Further, a scale of one to ten for

the individual’s overall rating of the bar may have been used. Options for data mining at this point

are to perform regression using the overall rating as the class or to perform classification by

enumerating each of the ten grades into a set. Neither option will be terribly satisfactory. The

regression will provide a real-valued number (somewhere between two possible grades in all

likelihood), and classification will be weak because there probably will not be a sufficient

number of instances of each of the ten grades to build a decent model.

Discretization could be applied to the overall rating to generate a smaller number of classes.

Perhaps all one to three instances could be replaced with poor; four to six replaced with average;

and the rest with good. There is a better chance now of constructing a decent model for each of these

new grades. The chance element could be removed by discretizing into a known number of classes

on the basis of ensuring an equal number of instances in each new class. Many options for

discretization are available, and experimentation is needed to find the best for a given dataset.

When discretizing attributes that are not the class attribute, options are available that either take into

account the class labels (supervised) or not (unsupervised). In practice, supervised methods are

preferred as they have typically led to superior results on classification tasks.

Many of the other techniques deal with the fact that a dataset can be large both in its number of

instances and in its number of attributes. In the former, sampling can occur, and in the latter, the best

attributes can be sought. In reality, it is not only the best attributes that need to be found, but it is also

the worst. Adding a random (irrelevant) attribute can significantly degrade the performance of a data

mining algorithm. In data mining, this is referred to as attribute selection, and it contains two parts

† A search method (for example, best-first, forward selection, backward elimination,

random, exhaustive, genetic algorithm, and ranking)
† An evaluation method (correlation-based, cross-validation, information gain, chi-squared,

and so on)

The first part searches through attribute space looking for the most useful (predictive) attributes.

It measures utility by employing the second part. Two architectures for putting these two parts

together have emerged. The first is called the filter approach that bases its assessment of attributes

on general characteristics of the data. As such, it is purely a preprocessing step and is usually

relatively fast. The alternate approach uses a learning method to select attributes. This method is

called the wrapper approach and is typically much slower because of the running time of the

learning method during cross-validation.
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Some techniques exist for automatically cleansing data. For example, some methods attempt to

relearn models with previously misclassified instances removed. Naturally, this can be a dangerous

thing to do, and it is always better to let a domain expert check misclassified instances for possible

data entry errors.

Noise is another source of difficulty in data. This can arise as class noise where two identical

instances are given different class labels or as attribute noise. Attribute noise can arise in a variety of

settings, for example, through faulty equipment giving noisy measurements. If the noise is

systematic, then it is better to leave it in the data as the pattern of this noise may be uncovered.

Unsystematic noise, however, needs to be removed as it will go undetected and will lead to spurious

model construction farther down the data mining process.
11.3 DATA MINING METHODS

There are a number of criteria that have to be met for a data mining method to be considered

practical. Minimally, an algorithm must have the ability to deal with

† Numeric attributes, missing values, and noise
† Very large datasets

Very large is not normally quantified. Rather, algorithms are sought with a complexity that

scales with the number of instances. There are not many algorithms that pass the criteria, but there

are ways of making use of more complex methods by periodically applying them to parts of the data

(more on this later). In this field, some terms are overloaded, so discovering patterns and finding a

model are equivalent. The models can be represented in many ways but typically come in the form

of a tree or set of rules of the form, if Condition(s), then Consequence.
11.3.1 Classification

The WEKA system contains over 50 methods for performing data mining. The majority of

methods perform classification. It is not possible to cover all of these; instead, focus will be on a few

of the major paradigms. The first are decision trees. A decision tree attempts to build a tree in a top

down (root first) recursive fashion that employs a divide-and-conquer methodology. The tree is

made up of interior nodes that perform a simple test on an attribute and leaf nodes that contain a

class label. The procedure first selects the attribute at the root node of the tree, and it creates a

branch for each of the possible outcomes for the test. Next, the instances are split into subsets, one

for each branch leading from the test node. Finally, the procedure is recursively applied to each

branch using only the instances that reach the branch. The process stops if all the instances of a

branch have the same class label.

At each iteration, an attribute to split the data should be chosen. The choice of best attribute is

problematic. It would be best to choose the one that will ultimately lead to the smallest tree, but all

possibilities cannot be exhaustively searched at all nodes. As a result, some form of educated guess

or heuristic is needed to make the choice. Most heuristics attempt to choose the attribute test that

leads to the purest separation of the classes. A popular purity criterion is called information gain.

This measure increases with the average purity of the subsets that an attribute test produces, so the

strategy is to choose the attribute test that results in the greatest information gain.

Consider the following problem. An optometrist has recorded data on the use of contact lenses

in a range of patients and wants to know if there is a simple way of recommending contact lenses to

new patients. The attributes of this problem are the age of the patient, the type of eye problem he or

she has, if they have astigmatism, and the patient’s tear production rate. The class attribute is the
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type of lens that was recommended. A typical decision tree for this problem is shown in Figure 11.2.

The tree has the tear production rate at its root. This was considered the most important attribute

when splitting up the data. The next most important attribute is the astigmatism attribute and so on.

As can be seen, patients presenting with reduced tear production rates are not recommended for

contact lenses. However, if their rate is normal, and they have no astigmatism, then soft lenses are

preferred. Patients are recommended hard lenses if they have normal tear production, astigmatism,

and are short-sighted (myopic).

Decision trees explain the relative importance of attributes in terms of their ability to divide the

data by the class attribute, and they give a model of a problem that can be used for advice

(prediction) in cases where the attribute values are known but the class attribute is unknown.

There are many decision tree algorithms. The best known, and probably most widely used,

methods are C4.54 and its commercial successor C5.0.5 The algorithms generally follow the top

down procedure outlined above but differ in their attribute selection criteria. The result of this

variation, however, almost always produces no difference in accuracy. Decision tree algorithms

have a complexity of approximately O(mn log n)CO(n(log n)2)3 for a dataset of n instances and m

attributes. This is a far cry from the linear or O(n) criteria previously mentioned.

A quite different, but commonly used, approach that has its roots in Bayes’ theorem is an

algorithm called NaiveBayes.6 Decision trees make greedy choices of attributes in growing a

tree whereas NaiveBayes makes no assumptions about the relative importance of attributes. The

only assumption it does make is that each attribute is statistically independent. Therefore, for a

given class value, the values of each attribute for that class value are independent of each other. In

practice, of course, this is highly unlikely, but equally improbably, it does not seem to lead to poor

performance. The method can be easily misled by irrelevant attributes, so it is recommended that

this method is used in combination with attribute selection.

An alternative to the greedy approach taken by decision trees that is also quite different from

NaiveBayes is a method based on rote learning. This method has a long history in the pattern

recognition literature and is known as nearest-neighbor or instance-based learning. Instead of

building a tree or counting attribute values as above, the instances themselves are used as the

underlying knowledge. If an instance has no class label then simply search through all the stored

instances and find the closest match. The class label of this instance is the one predicted for the new

instance. This approach is termed lazy because no decisions are made during learning that cannot

be undone.
Tear production rate

Reduced Normal

AstigmatismNone

Soft

Hard None

Myope Hypermetrope

Spectale prescription

No Yes

Figure 11.2 Decision tree for optometrist contact recommendation system.
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For this scheme to operate, a distance function must be defined so that “closest match” makes

sense. Typical distance functions are the Euclidean distance and the Manhattan or city block metric.

Nominal attribute values have to be handled (for example, by setting the distance to one if values

are equal and zero otherwise), and a method for dealing with missing values is also required. As

with NaiveBayes, attributes are equally treated although weighting attributes can be beneficial. This

method is both time and space consuming but can be made manageable.7

One of the most recent developments in data mining that is receiving much attention are

algorithms for learning linear classifiers called support vector machines (or SVMs).8 Many data

mining methods produce models that are in some sense too close or too specific to the data from

which they were learned. This phenomenon is called overfitting. The great strength of SVMs is their

resilience to this phenomenon. The method attempts to learn something called the maximum margin

hyperplane. The instances closest to the hyperplane are called support vectors, and they define the

hyperplane. Unlike the instance-based methods that require many instances to be stored in memory,

in SVMs, all other instances can be deleted without effect on the hyperplane. If a linear hyperplane

is not sufficient, then other non-linear boundaries can be attempted.

SVMs have been found to be most applicable in domains with many attributes where each

attribute incrementally adds to the concept. Example applications include human face identifi-

cation, handwritten digit recognition, protein secondary structure prediction, and text classification.
11.3.2 Regression

Numeric prediction is also a requisite part of a data miner’s toolkit. Simple methods exist for

linear regression, and when applicable, they work very well. In circumstances where the data is

non-linear, more sophisticated methods must be used. One method of doing this is to try to break up

the data into parts that are approximately linear and then apply linear regression to those parts. It is a

method that combines decision trees and linear regression. The most recent incarnation of this

philosophy is the model tree9 that has attribute tests on interior nodes and linear regression models

at the leaves. Other systems such as CART10 and CUBIST11 work in a similar fashion.
11.3.3 Association Rules

The aim in association rule learning is to find a correlation between arbitrary attribute-value

pairs in data. The class attribute is treated in the same way as all other attributes in this method. The

most often quoted application is called market basket analysis where supermarket basket goods are

analyzed to answer questions such as when someone buys X, what else do they tend to buy?

Obvious correlations such as bread and milk are uncovered alongside some less obvious com-

binations, classics being beer and diapers.

The single biggest issue in association learning is managing the large number of possible

associations. Two parameters called support and confidence are normally used to restrict the

number of associations. Support is measured by the number of instances that are correctly predicted

by a rule, and confidence is the number of correct predictions it makes relative to all the instances it

applies to. For example, if six shopping baskets were viewed and four of them had bread and milk

together and all had bread, then for the rule, if bakery itemZbread, then fridge itemZmilk, support

is the number of baskets that have both bread and milk (4), and confidence is the proportion of

baskets with bread that also have milk (4 from 6 or 66%). In other words, people seek frequent items

with strong correlations with other items.

Support and confidence are actually specified before rules are generated with support over 4 and

confidence over 80%. An efficient algorithm called Apriori is used to generate the rules.12 Some

issues remain as confidence is not that useful for items that are very common such as milk, and
q 2006 by Taylor & Francis Group, LLC



DATA MINING 365
although Apriori is efficient, it can still be overwhelmed by large datasets. Research is continuing

into alternative algorithms, for example [13].
11.3.4 Clustering

The target concept in most data mining tasks is usually well-defined. For association rule

learning, it is not as important but is at least present. In clustering, there is typically no such

concept, and the algorithm must attempt to discover collections of instances that are similar to

each other but distinct from other collections. There are many clustering algorithms and also some

differences in the clustering goals. For example, some methods attempt to place instances in

exclusive clusters whereas others accept that clusters overlap; therefore, an instance may belong

to several clusters.

All clustering methods must deal with the notion of similarity, and this usually means defining a

distance function between two instances. Various distance metrics have been proposed (see the

section on instance-based learning). Clustering methods vary tremendously in approach. Some are

probabilistic and others deterministic; some are hierarchical and others flat; and some work incre-

mentally and others on batches of instances. The classic k-means14 algorithm has the longest

history, is simple, and works well in practice. Other systems that work quite differently include

the expectation maximization (EM) algorithm,15 COBWEB,16 AUTOCLASS,17 and fractal

clustering.18
11.3.5 Meta Learning

Meta learning is one of the most significant recent developments in data mining. The basic idea

is to try to get more out of an existing classifier by building several models of the training data rather

than one. This is achieved by presenting several versions of the data to an algorithm and storing the

resulting models in a committee structure. At prediction time, each model votes, and the majority

vote is used to determine the outcome. Generating the versions of the dataset gives rise to different

approaches. Taking samples of the data gives rise to a technique known as bagging.19 An alternative

approach is to use weights on each instance then re-weighting according to performance on the last

model. Instances that are incorrectly classified are given a boost in weight so that they may be the

focus of the next model. This technique is known as boosting.20

In both techniques, it is possible to enhance the basic performance of a classification algorithm.

The maximum performance on some datasets is reached early whereas, for others, many models

have to be constructed. The automatic discovery of the correct number of models to build for a

given dataset is still an open research question.
11.3.6 Online Learning

There are application areas where it is possible to imagine a data source that continuously

provides data (for example, a manufacturing line). In these circumstances, the data cannot be

processed all together, partly because it is arriving all the time and partly because it could not

possibly be stored and processed quickly enough. It would be useful, however, to be able to provide

some form of monitoring capability to keep an eye on the data to ensure that it does not deviate from

known limits.

One solution to this problem is to learn a model from a finite source and then make continuous

predictions on the basis of that source. New models could be re-trained offline and brought into

operation at set times. Alternatively, models could be constantly updated at the same time that

predictions are being made.21 There is strong interest for more research in this area.
q 2006 by Taylor & Francis Group, LLC



HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES366
11.4 EVALUATION

Thus far, this chapter has not addressed how models are assessed. The situation is somewhat

different for each of the methods previously outlined. Clustering, for example, is the most proble-

matic as it can be subjectively and objectively judged, and there appears to be no universally

accepted standard. In regression, there is a choice of statistics that can be used to assess per-

formance. Correlation coefficients, mean absolute error, root mean squared error, relative

absolute error, and root relative absolute error can all be computed.

In classification, the picture is much simpler. The natural performance measure is error rate that

is the proportion of errors made by a classifier over a set of instances. An error occurs if the class

label predicted by a model differs from the class label of the instance under consideration. One error

rate that is easy to compute is the error rate a model attains on the data from which it learned. This is

known as the resubstitution error. This error rate is notoriously optimistic and is not a good measure

of performance.

More typically, a separate test set of data, independent of the training data, is used to test

performance. The test data is drawn from the same distribution as the training data, but it is not used

in the construction of the model. Many data mining methods have parameters that need to be tuned

to a particular application. In these circumstances, a third distinct set of data, called validation data,

is required. This data will be used to tune parameters.

When there is a large amount of data, then a single training, test and possibly validation dataset

may be all that is required. For smaller datasets, it is problematical because subtle variations in the

training data can lead to different outcomes in performance. In such circumstances, a technique

known as k-fold cross-validation is typically used. This technique divides the data into k subsets of

equal size. Then, each subset, in turn, is used for testing and the remainder used for training. In

practice, the subsets are stratified before cross-validation to ensure that the distribution of the

classes is approximately equal in each subset.

The overall error is computed as an average of the errors at each of the k-folds. The standard

approach is to choose k equal to 10. This value has been shown to be a good choice experimentally.

It represents something of a trade between size and computation. Researchers often go a step farther

and repeat the 10-fold cross-validation ten times. This step further reduces the error estimate’s

variance, further ruling out chance effects.

Given that the performance of a classifier can be measured, it seems natural to then ask how to

compare two classifiers on the same data. If the repeated 10-fold cross-validation procedure for two

classifiers is performed, then the variance is reduced, but the reliability of the results is question-

able. To establish confidence that there is a real difference in the results, significance tests are

performed (typically a t-test).

There are many other techniques for evaluation such as the bootstrap and ROC (Received

Operating Characteristic) curves. The topic of evaluation is a topic of research. Surprisingly,

perhaps, there is no agreed standard for comparing the performance of two methods.22
11.5 APPLICATIONS

The number of application areas for data mining has grown enormously in the last few years. In

broad terms, the areas cover medicine, commerce, manufacturing, bioinformatics, and so on. There

are many commercial and open-source data mining tools, and these have helped to increase

application development. In this section, attention is focused on some of the applications that

have been developed with the WEKA system.

WEKA was originally developed to process agricultural data because of the importance of this

application area in New Zealand. However, because of significant growth in methods and data

engineering capability, it is now commonly used in all forms of data mining application.
q 2006 by Taylor & Francis Group, LLC



DATA MINING 367
The major conferences regularly release competition datasets and give prizes to the best (they

release training and validation data and hold back test data). These datasets are usually from a

commercial source and represent real-world applications. Research papers are often written on the

outcomes of these competitions to further understanding of best practice.

In New Zealand, there are many research centers dedicated to agriculture and horticulture.

These centers provided many of the early applications of the WEKA system. Some examples

include predicting the internal bruising sustained by several varieties of apple as they make their

way through a pack-house on a conveyor belt,23 predicting the quality of a mushroom from a

photograph in real-time in order to provide automatic grading,24 and classifying kiwifruit vines

into twelve classes in order to determine which one of twelve pre-harvest fruit management treat-

ments has been applied to the vines. The data for this project was visible-NIR spectra.25

The applicability of WEKA in this domain was also the subject of further research26 that

showed a high level of satisfaction with WEKA and some advice on improvements. Other

work directly connected to the food industry can be found in27–31, a synopsis for which is provided

in Table 11.2.

In the field of bioinformatics, WEKA has been extensively used. Applications include auto-

mated protein annotation in32,33; probe selection for gene expression arrays34; experiments with

automatic cancer diagnosis35; development of a computational model for frame-shifting sites36; and

several others.

Another application area that has received widespread attention is text classification. The idea is

to automatically classify pieces of text so that they can be appropriately grouped together. The

Reuters news agency, for example, would be able to group news items without having to employ

people to do it. The problem is extremely difficult because of subject overlap. Detecting the main

subject area of an article is harder than it seems. Other applications revolve around the provision of

digital libraries and search engines. In these systems, it is important that articles provide accurate

keywords so that query results are meaningful. Research on the automatic extraction of keywords

has shown a great deal of promise.37

Many of the future applications involving WEKA will be developed in an online setting. The

recent work on data streams38 enables WEKA to be used in situations where a possibly infinite

source of data is available. As previously mentioned, such situations are common in manufacturing

industries with 24/7 processing. The challenge is to develop models that constantly monitor data in

order to detect changes from steady state. Such changes may be indicative of failure in the process

and may provide operators with early warning signals that equipment needs re-calibration or

replacement. Both case studies overleaf were analyzed with the WEKA software.
Table 11.2 Synoptic Table of Applications

Reference Number Key Findings

24 Drop height and location of impact determine likelihood of bruising

25 It is possible to perform automatic mushroom grading for quality

26 Agricultural users satisfied with machine learning as a data analysis technique

27 Multivariate techniques can be used to tackle problems in food science such as

sugar quality prediction and final product sensory quality

28 Time series analysis of point-of-sale data. General business solutions incl.

seasonal, performance, promotional analysis

30 AI techniques are useful in food processes because they automatically identify

non-linear behavior, explain themselves and find the major influences

affecting performance

31 Found context-dependent variables in a cheesemaking process evaluation

40 Successful application to the process of tulip bulb-forcing
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11.5.1 Case Study 1: Baking Industry

Automated plant bakeries are now commonplace, and although a large amount of operational

data is collected, very little of it is analyzed. The following study39 looked for relationships between

the process data and the product quality. The process data was collected from two dough mixers, a

divider, check weigher, rounder, and intermediate prover.

Data acquisition issues surrounded the timing of collection, for example, whether to record

every second, minute, or longer time unit. Not all the data was recorded by instruments connected to

the process; for example, photo images of the finished product were taken to arrive at quality

measures. Some data was not recorded because of computer constraints. In any data mining

application, it is highly likely that extra data is required, data that is thought to have an impact

on the process. The ease of collecting this information should not be underestimated.
11.5.1.1 Data Preparation

In most applications, visualization is a useful tool for detecting outlers or errors in the data.

Some automatic tools can also be tried, for example, by computing the leverage of an example. In

this study, missing data needed to be added and links made between data collected from different

parts of the process (typically by different recording instruments).

Because this application is time dependent, averaging was necessary to arrive at meaningful

instances. Additional attributes were also generated such as the time a loaf traveled between stages

of the process. The data was clustered so that average values could be incorporated to form cluster

instances so that a cluster of dough could be tracked through the entire process.
11.5.1.2 Analysis

Loaves are made up of five pieces of dough dropped into a tin by a divider. By tracking

individual pieces of dough, it was determined that the divider regularly produced heavier pieces

of dough in three positions (generally the same positions) than the other two. It was established that

the position of the dough in the tin has an impact on the final quality of the loaf.

Many applications focus on the problems within a process, in this case, the issue of top collapse

(the loaf has a convex shape on top). The cause of such collapse is generally not well-understood. A

decision tree was used on data labeled high and low (top collapse), and a relationship was found as

follows:

If Attribute X1OValue 1 then top collapse is high

Else If Attribute X2OValue 2 then top collapse is low

Else If Attribute X3OValue 3 then top collapse is low

Else top collapse is high

The details of the attributes and values can be found in [39]. The important aspect of this study

is that it is possible to determine from the above that attribute X1 is the most important attribute in

determining top collapse and that, altogether, only three variables (from those recorded)

are important.
11.5.2 Case Study 2: Horticulture

This study attempted to apply data mining to three related datasets connected with the kiwifruit

industry. The question addressed was to determine if data mining could be used at maturity
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clearance time to assess the risk of physiological pit occurring within individual Actinidia chinensis

cv. Hort16A orchard lines that are stored for more than 6–8 weeks.

Hort16A fruit that are prone to physiological pit have been shown to differ in fruit composition

and maturity when compared to unaffected fruit. Although the compositional and maturity

differences may not be directly causal for physiological pit, the combination of these affected

fruit properties may allow at-risk lines to be identified. Such an approach is akin to metabolic

profiling where changes in gas chromatograph/mass spectroscopy profiles of plants can be used as a

diagnostic technique.
11.5.2.1 Methods

Three industry databases provided the raw data for this study. The first database, orchard

identity, included data on orchard geographic location. The second database, maturity clearance,

contained the 2003 season data on clearance date, fruit maturity characteristics, and fruit age. The

third database, storage library, held data on defects recorded in 2003 on a representative sample of

fruit from each orchard line.

These relational database tables needed to be transformed into a single flat table before the data

mining algorithms could be applied. In this study, an instance was taken as the information unique

to a specific maturity area. Disorder data was discretized into groups of equal frequency, resulting

in an instance having a low or high potential to express a disorder such as physiological pit. The

final table consisted of 769 instances (each representing a maturity area) and 17 attributes.

Many learning algorithms were applied to the data, and the percentage of instances that were

correctly predicted was used to assess the predictive accuracy of the models they produced. The

evaluation method used was a 10!10 cross-validation (see above). The algorithms’ performance

on instances containing information about the presence of other defects was compared against the

performance of these same algorithms against instances where the presence of the other defects

was excluded.
11.5.2.2 Results

The physiological pit risk was correctly predicted 75–82% of the time, depending on the

prediction algorithm used and the presence or absence of other defects in the instance data

(Table 11.3). These results were considerably higher than the default accuracy (50%), and three

algorithms were significantly better than NaiveBayes (the least computational method). This gives

evidence that the learning algorithms were able to find patterns in the data.
Table 11.3 Percent Correct on Predicting Physiological Pit Risk Under a 10!10 Cross-Validation

Algorithm Without Extra Defect Counts With Extra Defect Counts

NaiveBayes 78.24 75.17

J48 77.56 76.20

ADTree 78.62 78.00

RandomForest 80.40 81.31

PART 76.85 75.37

JR 78.53 76.37

Logistic 81.04 80.27

SMO 81.85 80.40

Average 79.14 77.89

Values in bold are significantly better than NaiveBayes according to a 5% corrected t-test.
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Adding the extra defect information caused predictions of algorithms such as NaiveBayes to

suffer and others like RandomForest to improve. This behavior could be explained if some of the

attributes’ being introduced are highly correlated with other attributes. Correlated attributes are

known to hinder schemes like NaiveBayes, whereas schemes like RandomForest are more resistant

to this effect.
11.5.2.3 Conclusion

These finding indicate the potential to predict storage disorders such as physiological pit in

Hort16A from data already collected within a kiwifruit supply chain. This work needs to be

validated over several seasons. Where possible, the weighting that the various data mining learning

algorithms place on specific attributes should be determined, allowing the physiological basis of the

models to be assessed.
11.6 CONCLUSION

Although only in its infancy, the field of data mining has enormous potential in the quest to

extract knowledge from data. Many exciting applications are under development in many different

fields of endeavor. The provision of open-source toolkits such as the WEKA system enables users

with application level experience to analyze data. Although young, the field inherits much of its

solid foundation from the fields of statistics, machine learning, and databases.

In building applications of this technology, it is important to learn from the past, particularly the

experience that has been formed in the field of applied statistics where data pre-processing, algo-

rithm application, and result evaluation have featured as standard methodology for some time. The

great leap forward, of course, is the processing power that is now available. The inclusion of

databases as a subfield of data mining has seen new research emerge that attempts to place data

mining more explicitly in database systems, for example, extending SQL to perform data mining

queries. In fact, many commercial database systems already have data mining features.

Data mining does not replace any of the other data analysis techniques that have been developed

and used for decades. For many processes, where background knowledge and underlying physical

principles are well-understood, mechanistic models are likely to prove more successful than models

induced from data. One of the great challenges in data mining is the incorporation of background

knowledge. Very few systems even permit it. More research is needed to find ways to use this

information in existing methods and to develop hybrid systems that combine the best features of the

mechanistic and inductive models.
ACKNOWLEDGMENTS
The author would like to thank the WEKA team for providing daily inspiration.
GLOSSARY

Attribute A variable normally associated with input as an observation used to characterize an

object or a process. For example, if characteristics of mushrooms were recorded, then the length

of the stalk might be an attribute. Also referred to as independent variable or feature.

Attribute selection Process by which irrelevant attributes are removed from consideration. In the
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statistics literature, this is known as dimensionality reduction. As the above, can be called

feature selection.

assification Process by which a learning model is developed to describe a finite set of

target values. Often referred to as supervised learning.

ustering Process where groups of data are discovered that are similar to each other yet are

distinct from other groups. Often referred to as unsupervised learning.

ncept A description of an object in terms of its characteristics (attributes), including a special

target attribute that is dependent on those characteristics.

ta mining An emerging field related to machine learning and statistics that attempts to uncover

previously unknown information from large amounts of data.

cision tree A data structure comprising interior nodes that represent tests on attributes and

leaves that hold classification decisions.

neralization Extending the definition of a concept beyond its description as a collection

of instances.

uristics Rules of thumb that are used to guide decision making.

cremental learning Learning in stages by updating a model when new information

becomes available.

ductive learning Learning by employing facts and observations obtained from a teacher or

an environment.

stance An example observation normally arranged as a set of attribute values. Can be referred

to as an example.

achine learning A field of artificial intelligence dedicated to the development of theories and

practical systems for learning from data.

odel A description of data, usually in the form of a data structure, such as a tree or set of rules.

Models are the embodiment of knowledge in learning systems.

ediction Process of using an instance of values and a model to produce a target value.

gression Process by which a learning model is developed to describe a continuous set of

target values. Statisticians refer to this as classification with a real-valued target variable.

pervised learning Branch of learning where observations are labeled by a teacher.

aining data Data used to build a model from instances with pre-specified labels in the case

of classification.

st data Data used to test a model built from training data.

supervised learning Branch of learning where hypotheses are developed, concerning a

collection of facts and observations without any a priori knowledge of where the data came from.
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FURTHER READING

As previously mentioned, an excellent starting point is the book by Witten and Frank.3 Each

chapter of this book has a further reading section where more specific material can be sourced.

Verdenius40 provides an excellent overview of the area with examples of agricultural applications.

The KDD Nuggets website at http://www.kdnuggets.com is another excellent source of infor-

mation. Some of the major conferences and journals in this area are the International Conference

on Machine Learning, European Conference on Machine Learning, Knowledge Discovery and Data

Mining, IEEE International Conference on Data Mining, Machine Learning Journal, Journal of

Machine Learning Research, IEEE Transactions on Knowledge and Data Engineering, and Data

Mining and Knowledge Discovery Journal.Many software suites integrate various aspects of the

data mining process. Some of the best known commercial software packages are SAS Enterprise

Miner (http://www.sas.com), SPSS (http://www.spss.com), and DBMiner (http://www.dbminer.

com). A full overview of software, including surveys, can be obtained from the KDNuggets site

previously mentioned.
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12.1 INTRODUCTION

Artificial neural networks are computational structures inspired by biological neural systems.

Conventional computational models are particularly well suited to executing sequences of instruc-

tions that have been precisely formulated for them. On the other hand, biological neural systems are

well suited for tasks/operations such as speech, vision, information retrieval, generalization, and

complex spatial and temporal pattern recognition in the presence of noisy distorted data, all of

which are extremely difficult to accomplish by conventional computing methods. Therefore, the

motivation for artificial neural networks (ANNs) is to achieve many of those desirable abilities of

the biological neural systems.

An artificial neural network is a massively parallel-distributed processor made up of simple

processing units, which has a natural tendency for strong empirical knowledge and making it

available for use [1]. ANNs have the ability to learn from examples (i.e., data) through iteration

without requiring a prior knowledge of the relationship of the parameters and therefore generalize

(i.e., establish relationship between input and output data). The neural networks are also capable of

dealing with uncertainties, noisy data, and nonlinear relationships.

Increasingly, artificial neural networks are being used as effective general-purpose, nonlinear

regression tools and for developing models governed by complex relationships. ANNs are

especially useful for classification and function approximation/mapping problems which have

lots of data available but to which hard and fast rules (such as those that might be used in an

expert system) cannot easily be applied. Most neural networks that can learn to generalize effec-

tively from complex data are similar to classical statistical methods. One of advantages of ANNs

over the conventional statistical methods is that they do not require assumptions about the distri-

bution of the data to analyze it. ANNs are more tolerant of imperfect or incomplete data. They

perform better when there are complex nonlinear relationship in the data, especially with regard to

classification, pattern recognition and forecasting.

There are several problems in the food and bioprocessing area that cannot be characterized and

solved using a physics-based modeling approach. In those situations artificial neural network

modeling can be used as potential alternatives to physics-based models in food and bioprocessing.

The detail on physics base modeling is presented in Chapter 2 through Chapter 6. It is practically

impossible to cover all aspects of artificial neural networks and their application in a single book

chapter. Several books [1–4] and review articles [4–7] have been published on artificial neural

networks. Most of these books highlight the fundamental aspects of artificial neural networks such

as components of ANN and how they work. Most of the review articles have focused on providing

some background and basic principles related to ANN and their possible applications in food

processing without emphasis on how to formulate and model a particular problem using ANN

modeling methods. The primary difficulty for a beginner in using any new modeling technique is to

formulate a problem and choose the right analysis. The scope of this chapter is to introduce a

limited amount of fundamentals on artificial neural networks to a beginner to get him/her started

on using this modeling technique. The major emphasis is on how to develop artificial neural

network-based models using selected examples. Each application example is presented with

step-by-step solution procedure that includes major results.
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12.2 PRINCIPLES OF NEURAL NETWORKS

12.2.1 Biological Neural Networks

A biological neural system consists of several neurons. The idea of neurons as structural

constituents of the brain was introduced by Ramon y Cajal [8] in his pioneering work in under-

standing the biological nervous system. Typically, neurons are five to six orders of magnitude

slower than silicon logic gates; events in a silicon chip happen in the nanosecond (10K9 s) range,

whereas neural events happen in the millisecond (10K3 s) range. However, the brain makes up for

the relatively slow rate of operation of a neuron by having a truly staggering number of neurons

with massive interconnections between them. It is estimated that there are approximately 10 billion

neurons in the human cortex, and 60 trillion synapses or connections. The net result is that the brain

is an enormously efficient structure. The energetic efficiency of the brain is approximately 10–16

Joules per operation per second, whereas the corresponding value for the best computers in use

today is about 1906 Joules per operation per second [1,9,10].

Neurons come in a wide variety of shapes and sizes in different parts of the brain. A typical

neuron contains three major parts: soma (cell body), axon, and dendrites. The axon (the trans-

mission lines), and dendrites (the receptive zones), constitute two types of cell filaments that are

distinguished on morphological grounds. An axon has a smoother surface, fewer branches, and

greater length, whereas a dendrite has an irregular surface and more branches. At the end of the

axon, it contacts dendrites of neighboring neurons at a special contact organ, called the synapse,

where the signals are passed between neurons (Figure 12.1). The synapses are considered as

elementary structural and functional units that mediate the interactions between neurons. The

signals are transmitted electrically and affected by chemical transmitters released at the synapse.

The chemical transmitters also affect the response of the neuron that receives the signals.

The incoming signals from neighboring neurons are in an excitatory state if they cause firing, or

an inhibitory state if they hinder the firing response. The condition for firing or not firing is decided

by the state of aggregation of impulses. If it is in excitatory mode and exceeds a certain level (called

the threshold value), then the neuron will generate a pulse response and transmit it through its axon.

Thus, the activation depends on the number of signals received, the strength of the incoming

signals, and the synaptic strength of the connections. The magnitude of signals is not significantly

different among biological neurons. Therefore, we can treat the neurons as passing information by

means of binary signals.

Therefore a neuron can be considered as a simple signal processing unit with multiple inputs

from other neurons and only a single output that is distributed to other neurons. The neuron

aggregates the incoming signals, and when the signal exceeds a certain threshold level, it will

produce an output signal and transmit it to other neurons. Each neuron performs only a simple

function, but when neurons are massively connected together, they can perform complicated tasks.
axon synapse

Cell body

soma
dendrite

Figure 12.1 The biological neuron model.
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12.2.2 Artificial Neural Networks

An artificial neural network (ANN) is a computational structure and is characterized by net

topology, node characteristics, and learning rules. The basic processing unit is called a neuron

(node), which performs the simple functions of summing inputs and nonlinear mapping. Each

connection (synapse) comes with a numerical value, called a weight that expresses the strength

of connection. The potential advantages and capabilities of ANN are:

1. Nonlinearity. An artificial neuron can be linear or nonlinear. A neural network, made up

of an interconnection of neurons, is itself nonlinear. The nonlinearity is distributed

throughout the network.

2. Input–output mapping. ANN is capable of learning and mapping input–out data. The

learning involves modification of the synaptic weights of a neural network by applying a

set of labeled learning/training data.

3. Adaptivity. Neural networks have a built-in capability to adapt their synaptic weights to

changes in the surrounding environment. In particular, a neural network trained to operate

in a specific environment can be easily retrained to deal with minor changes in the

operating environmental conditions.

4. Fault tolerance. The ANN is tolerant to noisy and incomplete data, because the infor-

mation is distributed in the massive processing nodes and connections. Minor damage to

parameters in the network will not degrade overall performance significantly.

5. High computational speed. Potentially, the massive parallel nature of a neural network

makes it fast for the computation of certain tasks.

12.2.2.1 Model of an Artificial Neuron

McCulloch and Pitts [11] were the first to propose a formal model of an artificial neuron

(Figure 12.2a). The model was based on the highly simplified considerations of the biological

model. The elementary computing neuron functions as an arithmetic logic-computing element.

The inputs xi, for iZ1,2,.,n are 0 or 1, depending on the absence or presence of the input impulse.

The weights of connections between the ith input xi and the neuron are represented by wi. When

wiO0, the input is excitatory, and when wi!0, it is inhibitory.
U

w1

w2

(a) w3

∑ f

b

U = f W1X1 + b
n

s =1

w1

w2

(b)

wn Tr
an

sf
or

m

∑ ∑

Figure 12.2 Artificial neuron models: (a) McCulloch and Pitts model and (b) general neuron model.
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The neurons output can be described as

u Z
Xn

iZ1

wixi: (12.1)

The general neuron model includes an externally applied bias denoted by b. The bias has the

effect of increasing or lowering the net input of the activation function f(.), depending on whether it

is positive or negative. The activation function limits the amplitude of the output of a neuron. The

general model (output) of neuron can be written as:

y Z f
Xn

iZ1

wixi Cb

 !
: (12.2)

The bias, b, is an external parameter of an artificial neuron that can also be combined in

Equation 12.1 as follows:

y Z f
Xn

iZ0

wixi

 !
: (12.3)

In Equation 12.3, a new synapse is added and its input is

x0 ZC1; (12.4a)

and its weight is

w0 Z b: (12.4b)

The input and output signals are not limited to binary form, and the activation function can be a

continuous function other than the threshold function used in the earlier model (Figure 12.2b). The

activation function is typically a monotonic, nondecreasing, nonlinear function. Some of the most

commonly used activation functions are [5]:

† Threshold function:

f ðxÞZ
1; xOf

0; x!f

 !
(12.5)

† Sigmoid function:

f ðxÞZ
1

1 CeKax
(12.6)

† Hyperbolic function:

f ðxÞZ tanhðaxÞZ
eax KeKax

eax CeKax
(12.7)

† Linear function:

f ðxÞZ

1; xRf

x=f; 0!x!f

0; x%0

0
B@

1
CA (12.8)
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† Gaussian function:

f ðxÞZ eKax2

: (12.9)
12.2.2.2 Neural Network Learning Processes

The ability of a network to learn from its environment and to improve its performance is a

significant property of a neural network. Learning is a process of forcing a network to yield a

particular response to a specific input. A particular response may or may not be specified to provide

external correction. The learning of a network can be achieved by a supervised or an unsupervised

mode. In supervised learning, a set of input and desired output data, called training set, is supplied.

At each instant of time when the input is applied, the desired response of the system is provided.

The difference between the actual and the desired response serves as an error measure and is used to

correct network parameters externally. Error signals are then used to update weights and threshold

of networks. Examples of supervised learning are: perceptron learning, Hebbian learning, Widrow–

Hoff learning, delta learning, and back-propagation learning. In unsupervised learning, only input

data is fed into the network, because the output is unknown, and thus no explicit error information is

given. In this learning process the network is tuned to the statistical regularities of the input data and

then it develops the ability to form internal representations for coding features of the input, and

thereby creates new outputs automatically. Examples of this type of learning are winner-take-all

learning, Hamming net and MAXNET learning, and adaptive resonance theory learning [3].

Back-Propagation Learning. This is one of the most popular and extensively used learning

algorithms for network training. The back propagation uses the supervised training technique where

the network weights and biases are initialized randomly at the beginning of the training phase. For a

given set of inputs to the network, the response to each neuron in the output layer is calculated and

compared with the corresponding desired output response. The errors associated with the desired

output response are adjusted in such a way that it reduces these errors in each neuron from the

output to the input layers. This procedure is repeated over the entire training dataset for a specified

number of times (training/learning runs), usually several thousands times, to be chosen by the user.
12.3 NETWORK ARCHITECTURE

The common structure of a neural network is formed of layers of neurons interconnected in

different ways (Figure 12.3). Neural networks can have various structures depending on the way in

which the neurons are interconnected and on the flow of signals through the network. Haykin [3]

classified neural network structures into three classes of architectures.
Input layer Output layer(a)

Figure 12.3. Structures of artificial neural networks: (a) single layer feedforward network, (b) multi-layer feedfor-
ward network, and (c) recurrent network.
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12.3.1 Single-Layer Feedforward Networks

This is the simplest form of layered networks. In this structure, neural network has an input layer

consisting of input data that directly projects onto an output layer of neurons, but not vice versa

(Figure 12.3a). This is strictly a feedforward or acyclic type. The single layer refers to the output

layer of neurons (computational nodes). The input layer of source nodes/data is not counted since

no computation is performed in this layer.
12.3.2 Multilayer Feedforward Networks

This class of feedforward neural networks has one or more hidden layers of neurons. The neurons

present in these layers are known as hidden neurons. The function of hidden neurons is to intervene

between the external input and the network output in some useful manner. By adding one or more

hidden layers, the network is enabled to extract higher order statistics due to increased connections.

The hidden layers are particularly useful when the size of the input layer is large. This network has

an input, an output and one or more hidden layers (Figure 12.3b). The neurons in the input layer

receive input signals from the user. These signals are carried to the first hidden layer through the

connections. The output signal from the first hidden layer becomes the input to the second hidden

layer and so on. The signals are transmitted this way to the output layer which produces the network

output. The number of neurons in the input and output layers correspond to the number of input and

output signals or variables. The number of hidden layers and the number of neurons in each hidden

layer can be varied. The network shown in Figure 12.3b can be referred as an n–h1–h2–m network

with n input neurons, h1 neurons in the first hidden layer, h2 neurons in the second hidden layer, and

m neurons in the output layer. Such a neural network is said to be fully connected in the sense that
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every neuron in each layer of the network is connected to every other neuron in the adjacent forward

layer. If, however, some of the connections are missing from the network, then the network is

referred to as partially connected.
12.3.3 Recurrent Networks

This network structure differs from a feedforward neural network because it has at least one

feedback loop. For example, a recurrent network may consist of a single layer of neurons with

each neuron feeding its output signals to the inputs of all the other neurons (Figure 12.3c). This

type of network may or may not have hidden neurons (Figure 12.3c). The presence of feedback

loops has a profound impact on the learning capability of the network and on its performance.
12.4 DEVELOPMENT OF AN ANN-BASED MODEL

In principle, artificial neural networks can compute any mathematical function. In food related

areas, ANNs have most often been employed as flexible, nonlinear regression, and classification

models. Because it is a data-driven modeling technique, it requires (training) data that include both

the inputs (independent variables) and the desired results (dependent variables). For example,

consider the developments of an ANN model to determine the effect of process variables on

heat/mass transfer kinetics and quality factors. In this case, heat/mass transfer rates, temperature/-

mass concentration profiles, quality factors such as color, texture, nutrient retention/degradation,

and shrinkage/collapse can be taken as dependent variables, whereas thermophysical and mass-

transfer properties of food material, temperature, air velocity, air relative humidity, and pressure

can be considered as independent variables. Multiple dependent variables can be simultaneously

correlated with multiple independent variables in ANN modeling, which is unique to this

modeling technique.

The development of an ANN model involves three basic steps. These include the generation of

(or compilation of available) data required for training, the training of ANN networks, and the

selection and validation of the optimal configuration of the ANN model.
12.4.1 Data Generation

The data for training can be obtained by experiments, mathematical simulations, or compiled

from the literature. For example, neural networks can be applied to datasets obtained from many

food-processing operations without going through the rigor of extensive training, or understanding

the mathematical background of a problem [6]. Although the same data can be used for both

training and testing/validation, it is preferable to have two different datasets.
12.4.2 Training of ANN Networks

To train a model, several parameters (including the number of hidden layers and the number of

neurons in each hidden layer, the learning rule, the transfer/activation function, the random number

seed for initialization of connection weights, the error minimization algorithm, and the number of

training/learning runs) have to be specified. These parameters could be varied based on the

complexity of the problem. Given the lack of clear guidance in the literature concerning the

selection of the above parameters, a trial-and-error procedure must be followed.
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12.4.3 Selection of Optimal Network

The performances of the various ANN configurations can be compared using several statistical

parameters such as the mean relative error (MRE), the mean absolute error (MAE), and the standard

deviations in the relative (STDR) and absolute (STDA) errors:

MAE Z
1

N

XN

iZ1

DfA; (12.10)

STDA Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

iZ1

DfA KDfA

� �2

NK1

vuuut
; (12.11)

MRE Z
1

N

XN

iZ1

DfR; (12.12)

STDR Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

iZ1

DfR KDfR

� �2

NK1

vuuut
; (12.13)

where DfA Z jfPKfDj and DfR Z jðfP KfDÞ=fDj:

The parameter fP represents the predicted output from the neural network model for a given

input whereas fD is the desired output from the same input. The coefficient of determination, R2, of

the linear regression line between the predicted values from the neural network model and the

desired output is also used as a measure of performance. The best, or optimal, configuration of the

neural network is decided based on the minimization of error parameters. After the optimal network

configuration is selected, its performance is evaluated with the testing data set that is not used in the

training of the network.
12.4.4 Validation of the Optimal ANN Model

The performance of the optimal neural network is validated using a smaller data set not used in

the training procedure. As such, the network’s prediction ability is tested. Thereafter, the network

weights and coefficients associated with the optimal ANN model are presented in the form of

simple algebraic equations, so that these can be used for further predictions without the need of

the neural network software program that was used for modeling.
12.5 APPLICATIONS

The applications of ANN can be classified into four categories, such as product grading and

classification, food quality assessment, food process/property modeling, and process control. Only

the applications of ANN related to the modeling of food processes and properties are highlighted in

this chapter. In most of these cases, ANN has been used as a modeling tool similar to that of

nonlinear regression analysis. Specific neural network applications in food and bioprocess

modeling include thermal processing, freezing, drying, frying, reaction kinetics, food quality,

and the prediction of thermal and physical properties of foods (Table 12.1). The neural network

modeling, combined with fuzzy logic and genetic algorithm, has been used in the processes of
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Table 12.1 Application of Neural Network in Food and Bioprocessing

Application Problem Data ANN Models Reference

Product quality during

baking

(a) Danish pastry: prediction of height, % open

folding and hardness of dough

(b) Rye bread: pH, specific volume and hardness

of dough

Experimental industrial process data Feed forward, back propagation,

sigmoid function

12

Thermal properties

during thawing

Prediction of thermal conductivity and specific heat

as a function of temperature

Thawing experiments with 10%

gelatin gel

Feed forward, back propagation,

Sigmoid function

13

Fluid flow in pipes Explicit calculation of friction factor (f) in pipeline

flow: Bingham plastic

Numerical method (Regula–Falsi

method) was used as implicit

procedure to estimate f

Feed forward, back propagation,

hyperbolic tangent function

14

Thermal processing Prediction of optimal variable retort temperature

for conduction heated foods

Finite difference computer simulation

for data generation

Feed forward, back propagation,

hyperbolic tangent function

15

Mechanical properties

during drying

Prediction of porosity as a function of temperature,

moisture content, initial porosity and product

type

Experimental data for fruits and

vegetables from literature

Feed forward, back propagation,

linear, sigmoid, and tangent

hyperbolic function

16

Electrical property Prediction of electrical conductivity as function of

fat, protein, lactose and temperature

Experimental data for milk from

literature

Feed forward, back propagation,

sigmoid, tangent hyperbolic

17

Predictive microbiology Prediction of thermal inactivation of bacteria as a

function of temperature, pH and water activity

Experimental data of destruction of E.

coli from literature

Feed forward, back-propagation,

transfer function not clear

18

Frying Prediction of temperature, moisture and fat content

as a function of process variables and

properties of meat balls

Physical model was used to generate

data

Feed forward, back-propagation,

transfer function not clear

19

Fluidized bed drying Estimation of heat transfer coefficient from

dimensionless number Re, Ar, H/d

Experimental data from drying

experiments with silica gel particles

Feed forward, back-propagation,

transfer function not given

20

Fluid flow in pipes Estimation of pressure drop as a function of fluid

parameters (m, n, density), diameter of pipe and

mass flow rate

Experimental data for five fluid fluids

were generated using Brookfield

and rotational viscometers

Back-propagation, generalized

regression networks and quick-

propagation

21

Freezing time Prediction of freezing time of food of any shape Used Pham model to generate

freezing time data

Feed forward, back-propagation,

tangent hyperbolic function

22

Kinetics of food quality

parameters

Modeled kinetics of eight quality attributes of dry

peas during cooking

Experimental data Feed forward, back-propagation,

sigmoid transfer function

23

Food quality Prediction of quality parameters (i.e., rheological

properties) as a function of cheese composition

and processing conditions

Experimental data for 48 types of

cheeses from literature

Feed forward, back propagation,

Sigmoid transfer function

24
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control and optimization, respectively. In addition, several researchers have presented neural

network-based simple algebraic equations for prediction purposes. The details on genetic algorithm

and fuzzy logic have been presented in the Chapter 13 and Chapter 15 of this handbook. Here, three

examples are given to detail how the artificial neural network modeling approach is used in the

different areas of food and bioprocessing.
12.5.1 Modeling of Thermal Conductivity

12.5.1.1 Background

Thermal conductivity, k, of food materials is one of the important properties used to estimate the

rate of conductive heat transfer during processes, such as freezing, sterilization, drying, cooking,

and frying. Three factors affect the thermal conductivity of foods: composition, structure, and

processing conditions. Water content plays a significant role due to the relative magnitude of

conductivities of water in food. The nonaqueous part of food such as fats and oils also influences

thermal conductivity of fatty foods. The structural factors are porosity, pore size, shape and distri-

bution, arrangement, or distribution of different phases such as air, water, ice, and solids. The

processing factors are temperature, pressure, and mode of heat or energy transfer.

There has been consistent effort spent in developing generalized correlations to predict thermal

conductivity of food materials for the use in process design and optimization [25]. Sweat [26]

proposed a linear correlation for predicting the thermal conductivity of fruits and vegetables giving

predictive results within G15% for most experimental values. This model, however, is valid for

situations where moisture content (wet basis) greater than 0.60 and does not account for tempera-

ture and apparent porosity effects. According to Sweat, there was a strong relation between water

content and thermal conductivity of all fruits and vegetables tested except for apples, which were

highly porous. Therefore, it was suggested that a general correlation should include a porosity (i.e.,

apparent porosity) term. Considering the wide variations in materials and processing conditions, it

is difficult to develop an analytical model for the prediction of thermal conductivity.
12.5.1.2 Problem Definition

The chosen problem is to develop an ANN based model to predict thermal conductivity (k) as a

function of water content (Xw), temperature (T), and apparent porosity (3a) of the food material.

Data needed for development of an ANN model were obtained from the literature. A total of 676

data points collected from 12 journal papers for 10 different materials was used in the training and

validation of ANN models.
12.5.1.3 Solution Procedure

Collection of Thermal Conductivity Data. Several researchers have measured thermal conduc-

tivity of different fruits and vegetables. Most data on thermal conductivity have been modeled and

reported as a function of limited temperature and moisture range. However, as described above,

thermal conductivity is also influenced by the amount of air/void fraction present in the food

material. A thermal conductivity data set was prepared from literature that included the thermal

conductivity for a given moisture content, temperature, and apparent porosity. The thermal conduc-

tivity data of several food products for the range of processing conditions are presented in Sablani

and Rahman [27].

Training the Neural Networks. A multi-layer feed forward network structure with input, output,

and hidden layer(s) was used in this study, as shown in Figure 12.4. Several ANN models were

trained using the thermal conductivity data. A back-propagation algorithm was utilized in training
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of ANN models and a hyperbolic-tangent transfer function was used in all cases. The input layer

consisted of three neurons which corresponded to product moisture content, temperature, and

apparent porosity. The output layer had one neuron representing thermal conductivity

(Figure 12.4). The number of hidden layers varied from 1 to 2. The number of neurons within

each of these layers varied from 2 to 10, with increments of two. This resulted in a total of

10 networks.

The commercial software package Neural Works Professional II/Plus (Neural Ware, Pittsburgh,

PA), was employed in this study. To train a model, several parameters including the learning rule,

the transfer function, the learning coefficient ratio, the random number seed, the error minimization

algorithm, and the number of learning cycles, had to be specified [28]. These parameters could be

varied based on the complexity of the problem. While some of the parameters were kept constant

during our study, others were varied to develop the optimum ANN configuration. The parameters

that were kept constant included the transfer function (the hyperbolic-tangent transfer function), the

learning rule (the normalized-cumulative delta rule), the random number seed (257), and the

learning rate (0.9), momentum (0.6). The error-minimization process was achieved using

the gradient-descent rule [28] while the number of training cycles was set at 200,000. All of the

remaining model parameters (as specified above) were kept constant throughout the training

processes. The performance of various ANN configurations was compared using appropriate

statistical parameters (Equation 12.10 through Equation 12.13).

Result. Thermal conductivity data for different food products plotted as a function of moisture

content shows a strong dependence of k on temperature and relatively less influence of apparent

porosity (Figure 12.5). The thermal conductivity data set of the 676 cases was divided into two

groups. In the first group, 540 cases were taken for training/testing and in the second group 136

cases for validation, chosen randomly from the set of 676 cases. The error measures associated with

different ANN configurations for prediction of thermal conductivity with different data sets are

presented in Table 12.2. The network model with two hidden layers and four neurons in each hidden

layer resulted in the best prediction. The MRE and MAE for this configuration were 12.6% and

0.081 W/m K, respectively. The prediction performance for predicted values of k is compared in

Figure 12.6. The results demonstrated good agreement between the predicted and the desired values

of thermal conductivity (R2Z0.957). Even though the coefficient of determination was very good
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Table 12.2 Prediction Errors in the Thermal Conductivity with Different Neural Network Configurations
(Randomly Selected Data Set [w80%] Training and Testing 540 Cases)

Number of
Hidden Layers

Number of
Neurons in

Each Hidden
Layer MRE (%) STDR (%) MAE (W/m K) STDA (W/m K) R2

1 2 18.63 21.11 0.118 0.138 0.922

1 4 18.34 22.43 0.112 0.119 0.938

1 6 18.31 23.33 0.104 0.115 0.943

1 8 14.84 16.61 0.093 0.111 0.949

1 10 19.84 22.73 0.119 0.130 0.926

2 2 25.08 32.05 0.128 0.119 0.932

2 4 12.63 14.73 0.081 0.103 0.957

2 6 14.05 16.17 0.095 0.111 0.957

2 8 13.11 15.41 0.082 0.106 0.956

2 10 13.96 15.24 0.092 0.110 0.955
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Figure 12.5 Thermal conductivity values for different foods as a function of moisture content at different tempera-
tures. (Adapted from Sablani, S. S. and Rahman, M. S., Food Res. Int., 36, 617–623, 2003.)
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617–623, 2003.)
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(pO0.95), the standard deviations in relative errors were high 16.6%. This was due to a small

prediction error (in terms of absolute) at lower values of thermal conductivity which translated into

very high relative errors. The magnitude of errors reported for experimental measurement of

thermal conductivity was generally in the same order of magnitude as found earlier for narrow

experimental ranges and materials [25,26,29].

Depending upon the material, the ANN model either underpredicted (apple, raisin, potato, rice,

corn starch) or overpredicted (pear, carrot) thermal conductivity values, although for some

materials (i.e., starch, sucrose, ovalbumin) the predicted values of thermal conductivity closely

matched those of the experimental values. The ANN model was able to predict thermal conduc-

tivity values with acceptable accuracy both above and below freezing temperatures. Sablani and

Rahman [27] also developed a multiple regression model, with a polynomial of degree four, using

literature data. The R2 and mean relative error in the model were 0.91 and 81.6%, respectively. The

influence of moisture content, temperature, and porosity on thermal conductivity is highly nonlinear

in nature and a simple multiple regression equation was not able to capture this complexity.

The performance of the optimal neural network (two hidden layers and four neurons in each

hidden layer) was validated using a smaller data set consisting 136 cases. This network predicted

thermal conductivity values with an MRE of 16.2% and MAE 0.088 W/m K. The standard

deviations in relative and absolute errors were 21.2% and 0.095 W/m K, respectively. The

network weights and coefficients associated with this ANN model are presented in the form of

simple algebraic equations in Appendix A. These equations can be programmed in MS EXCEL and

used to predict thermal conductivity values for known moisture content, temperature, and apparent

porosity of food product. They can also be programmed using any computer language (FORTRAN,

C, BASIC, etc.) and can be incorporated as a simple subroutine in the numerical analysis of heat

transfer during processing where moisture, temperature, and apparent porosity-dependent thermal

conductivity values are needed. In literature, such equations and coefficients based on ANN are
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missing, and therefore, it limits the usefulness of neural network based models. The coefficients, in

the form of simple algebraic equations, make the ANN model user friendly.
12.5.2 Estimation of Friction Factor in Pipe Flow

12.5.2.1 Background

Calculating the drop of pressure in pipeline flow due to friction is important during the design of

the pipeline and the selection of the pump. The mechanical energy balance equation (commonly

known as the “engineering Bernoulli equation” for an incompressible fluid in a pipe) is used for the

hydraulic analysis of flow conditions of viscous nonNewtonian fluids [30,31]. The equation is

derived from the principle of conservation of momentum. It includes internal, potential, pressure,

and kinetic energy terms for a fluid in motion. Numerous assumptions are made in developing this

equation. These include a constant fluid density, the absence of thermal energy effects, single phase,

uniform material properties, and uniform equivalent pressure [32]. The mechanical energy balance

for an incompressible fluid in a pipe may be written as:

u2

� �2

a2

K
u1

� �2

a1

" #
Cgðz2Kz1ÞC

P2 KP1

r
C
X

F CW Z 0; (12.14)

where the subscripts 1 and 2 refer to two specific locations in the system and SF is the summation of

all friction losses. The summation of all friction losses can be determined from the following

equation:

X
F Z

X 2f u1

� �2
L

D
C
X kf uð Þ2

2
: (12.15)

These losses include those from pipes of different diameters and a contribution from each individ-

ual valve and fitting. Pressure losses in other types of in-line equipment (such as strainers) should

also be included in SF term.

The power-law fluid model (sZKgn) is one of the most useful models in pipeline design work

for nonNewtonian fluids. It has been studied extensively and found to accurately express the

behavior of many fluid foods, which commonly exhibit a shear-thinning (0!n!1) behavior.

Dodge and Metzner [33] correlated experimental results for the Fanning friction factor for turbulent

flow of shear thinning fluids in smooth pipes as a generalized form of the von Karman equation:

1ffiffiffi
f
p Z

4

n0:75

� �
log10

�
Re0f ð1Kðn=2ÞÞ

�
K

0:4

n1:2

� �
: (12.16)

This correlation is shown in Figure 12.7. The figure also includes some lines representing extra-

polation of Equation 12.16 for values of Re 0 and n beyond the measurements made by Dodge and

Metzner [33]. Recent studies tend to confirm the findings of Dodge and Metzner [33], but do not

significantly extend the range of their applicability. Having determined the value of the friction

factor, f, for a specified flow rate and having therefore determined Re 0, the pressure gradient can be

calculated by

DPf Z
2fLr �u

D
: (12.17)

The hydraulic analysis of pipe networks often involves the implementation of a tedious and

time-consuming iterative procedure that requires extensive use of computers [34]. Numerical

procedures such as the finite difference or finite element formulations allow for the hydraulic
q 2006 by Taylor & Francis Group, LLC
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Figure 12.7 Friction factor chart for power law fluids. (Adapted from Sablani, S. S. and Shayya, W. H., J. Food
Eng., 57, 327–335, 2003.)
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analyses of these systems, but with excessively large systems of algebraic equations to be solved

iteratively [35]. The number of equations varies with the number of pipe elements and flow outlets

within the system and may reach the order of thousands. The system of nonlinear algebraic

equations has to be solved iteratively, making it impractical to solve f iteratively within each

pipe section and during any given iteration.
12.5.2.2 Problem Definition

To devise a noniterative procedure using ANN for estimating the friction factor, f, for turbulent

power law fluids flow in closed pipes to avoid the need for a time-consuming, iterative solution.

This was accomplished using a numerical method to generate values of the friction factor, f, for a

range of Reynolds numbers, Re 0, and n values in tube flow. These values were then used in the

development of an ANN model.
12.5.2.3 Solution Procedure

Data Generation. The friction factor, f, in Equation 12.3 must be handled either by trial-and-

error or after implementing an implicit solution procedure such as the Newton–Raphson or Regula–

Falsi method. To implement these implicit solution procedures, Equation 12.3 is first written as:

Fðf ÞZ
1ffiffiffi
f
p K

4

n0:75

� �
log10

�
Re0f ð1Kðn=2ÞÞ

�
C

0:4

n1:2

� �
; (12.18)

where f is the unknown and F(f) is the function to be reduced to zero once the implicit solution

procedure converges to the solution. The Regula–Falsi method (RFM) was chosen to solve above

equation [36]. A total of 546 f values were computed for 39 Re 0 and 14n values. The data was then

used in the training of artificial neural network models.

Training of Artificial Neural Networks. Following the definition of network structure and

components, several ANN models were trained and tested using the developed training data set.

The input layer consisted of two neurons that corresponded to Re 0 and n, whereas the output layer

had one neuron representing the friction factor, f (Figure 12.8). The number of hidden layers was

varied from 1 to 2, while the neurons within each of these layers were varied from 2 to 16, in
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increments of two. This resulted in a total of 16 networks. The optimal configuration was based

upon minimizing the difference between the neural network predicted values and the desired

outputs. The data for training the ANN model were generated using the numerical procedure

described in the previous section. A data set consisting of 7240 points (40 values of Re 0 ranging

from 2000 to 108 and 181 values of n ranging from 0.2 to 2.0) resulting from the combination of Re 0

and n as inputs and f as output was used for training the ANN model. The other details about the

computer program and parameters are presented in previous example. The performances of the

various ANN configurations were compared using error parameters (Equation 12.10 through

Equation 12.13).

Results. The RFM was used in this study for the purpose of generating training and validation

data sets. The training data set consisted of 7240 cases, with Re 0 ranging from 2000 to 108 and n

ranging from 0.2 to 2.0. After a given ANN configuration was trained using the training data set, its

performance was evaluated using the same data set. The ANN configuration (out of 16) that

minimized the five error measures described in the previous section, and optimized R2, was selected

as the optimum. The whole analysis was repeated thrice (i.e., without transformation of data,

logarithmic transformation of only one input parameter: Re 0, and logarithmic transformation of

both input parameters: Re 0 and n).

Input data without transformation. In the initial attempt, the original data set obtained from

the numerical procedure was used to develop the ANN models. Its configuration was varied, as

discussed above, and an optimal configuration was chosen. However, the performances of the 16

ANN configurations were found to be inadequate because the MRE was always in excess of 22.3%

(which is unacceptably high). The error measures associated with the various ANN configurations

of this analysis are presented in Table 12.3. The mean relative error for the optimal ANN configu-

ration, which included two layers and 8 neurons within each layer, was 12.1%, while the maximum

and the standard deviation of the relative error were 64.6 and 17.7%, respectively. The coefficient of

determination of the optimal network was 0.684.

Transformation of input data. As mentioned earlier, the development of ANN models does not

require any prior knowledge of the relationships among model inputs and outputs. However, having

some idea about such relationships may provide for the fine-tuning of the ANN model. In some

instances, these ideas have shown exceptional improvements in ANN model performance [37]. It is

clear from Equation 12.16 and Figure 12.7 that the friction factor, f, is a logarithmic function of

input parameters. For this reason, an attempt was made to improve the performance of the ANN

model by transforming the input parameters Re 0 and n (one at a time) using a logarithmic function to

the base ten before supplying the data to the ANN model. As a first step only Re 0 was transformed

on the logarithmic scale (n was kept without transformation). The result was a remarkable improve-

ment in the prediction performance of the ANN model since the MRE of all 16 configurations was

less than 1.6%. The best ANN configuration included two hidden layers with 6 neurons in each
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Table 12.3 ANN Analysis Using the Back-Propagation Algorithm without Transformations of the Input
Parameters Re 0 and n or the Output Parameter f

Number of
Hidden
Layers

Number of Neurons
in Each Hidden

Layer MRE STDR MAE STDA R2

1 2 12.5 15.5 0.00138 0.00161 0.645

1 4 13.1 16.7 0.00143 0.00169 0.641

1 6 13.0 16.8 0.00142 0.00170 0.644

1 8 14.0 17.9 0.00151 0.00179 0.640

1 10 13.3 13.3 0.00157 0.00144 0.631

1 12 13.5 17.5 0.00146 0.00174 0.638

1 14 13.1 17.5 0.00139 0.00176 0.638

1 16 13.5 15.5 0.00147 0.00145 0.634

2 2 15.3 16.2 0.00165 0.00134 0.627

2 4 13.4 18.6 0.00143 0.00188 0.677

2 6 13.3 14.9 0.00143 0.00140 0.656

2 8 12.1 17.7 0.00129 0.00190 0.684

2 10 12.3 18.0 0.00128 0.00184 0.678

2 12 17.6 15.8 0.00206 0.00127 0.633

2 14 17.8 22.8 0.00186 0.00176 0.635

2 16 11.9 14.1 0.00134 0.00154 0.672
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layer. The mean relative error for this optimal configuration was 0.27%, with a 0.36%

standard deviation.

The prediction performance of ANN models improved further when both input parameters Re 0

and n were transformed on a logarithmic scale. The error measures associated with the different

ANN configurations for this case are presented in Table 12.4. The best ANN configuration included

two hidden layers with 12 neurons in each layer. The mean relative error for this optimal configu-

ration was 0.19%, with a standard deviation of 0.27%, and a coefficient of determination of 0.999.

However, considering the explicit nature of the neural network based approach, the simplest ANN

configuration (i.e., one hidden layer with two neurons) can be considered a good predictor since its

mean relative error is 0.91% with a standard deviation in relative error of 0.92% and a coefficient of

determination of 0.999. For this reason, the simplest ANN model is recommended to users since it

is very easy to implement. The network weights and coefficients associated with this ANN model

are presented in Appendix B. This simple algebraic set of equations may be used for the nonitera-

tive estimation of the friction factor. The equations can simply be programmed and incorporated in

any numerical-based hydraulic analysis program.

Verification of the optimal ANN model. The performance of the optimal ANN model (2 hidden

layers and 12 neurons in each hidden layer) was validated using a larger data set (72,400 data points

generated in the normal range of Re 0 and n using RFM) not previously used in the training of the

ANN model. The optimal ANN predicted f with a mean relative error of 0.17%, a standard

deviation in relative error of 0.20%, and a coefficient of determination of 1.000. The large data

set was also used with the simplest ANN configuration of one hidden layer consisting of two

neurons. This ANN configuration predicted the friction factor with a mean relative error of

0.50%, a standard deviation of relative error of 0.60%, and a coefficient of determination of 0.999.

Given its simplified form, the simpler model was recommended for the noniterative calculation

of the friction factor for viscous nonNewtonian fluids. The ANN model allows for the explicit

solution of f without the need to employ a time-consuming iterative or trial-and-error solution

scheme. Such a model will be useful for flow problems that involve repetitive calculations of the

friction factor, such as those encountered in the hydraulic analysis of flow conditions in pipe

network problems with viscous nonNewtonian fluids.
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Table 12.4 ANN Analysis Using the Back-Propagation Algorithm and Logarithmic Transformations of the
Input Parameters Re 0 and n (No Transformation of the Output Parameter f)

Number of
Hidden
Layers

Number of
Neurons in

Each Hidden
Layer MRE STDR MAE STDA R2

1 2 0.913 0.922 0.00010 0.00008 0.999

1 4 0.664 0.666 0.00008 0.00007 0.999

1 6 0.474 0.636 0.00005 0.00007 1.000

1 8 0.490 0.627 0.00006 0.00007 0.999

1 10 0.655 0.531 0.00008 0.00006 1.000

1 12 1.000 0.777 0.00012 0.00008 0.999

1 14 0.785 0.772 0.00009 0.00008 0.999

1 16 1.194 0.864 0.00014 0.00008 0.999

2 2 0.619 0.716 0.00007 0.00007 1.000

2 4 0.635 0.477 0.00007 0.00004 1.000

2 6 0.350 0.426 0.00004 0.00004 1.000

2 8 0.211 0.225 0.00003 0.00003 1.000

2 10 0.280 0.335 0.00003 0.00004 1.000

2 12 0.188 0.268 0.00002 0.00003 1.000

2 14 0.415 0.348 0.00005 0.00003 1.000

2 16 0.168 0.243 0.00002 0.00003 1.000
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12.5.3 Estimation of Heat-Transfer Coefficients

12.5.3.1 Background

The determination of surface temperatures, heat source rates, and thermophysical properties

by utilizing measured temperatures inside solid bodies is classified as inverse heat conduction

problems (IHCPs). Such problems are encountered in a multitude of food and process engineering

applications. Examples include: sterilization of particulate liquids in continuous systems (aseptic

processing), cooling of fresh produce, frying and freezing of food, and biological materials

[38–40]. The estimation of the heat transfer coefficient also falls under the category of an

IHCP. This approach requires experimental measurement of the transient temperatures inside a

body of known geometry at a specified location, usually at the center, and estimation of transient

temperatures at the same location by solving the governing heat conduction equations with an

assumed convective boundary condition (i.e., the Biot number, Bi). In doing so, Bi is varied

systematically to produce computed temperature/time histories closely matching the experimen-

tally measured temperature histories. The procedure involved is iterative in nature and needs a

long computation time. Several algorithms based on finite difference and finite element methods

have been developed for solving the IHCP. An excellent discussion of the difficulties encountered

in solving the IHCP, and several solution methods used, can be found in Beck et al. [39] and Beck

and Arnold [40].
12.5.3.2 Problem Definition

Use an artificial neural network approach to develop a single and direct procedure for esti-

mating the heat transfer coefficient to avoid the use of a time-consuming, iterative solution. This has

relevance in food processing operations such as transient heat transfer analysis during drying,

frying and freezing of small fruit and vegetable cubes, and sterilization of particulate liquids in

continuous systems (aseptic processing). All of these require knowledge of heat transfer

coefficients.
q 2006 by Taylor & Francis Group, LLC



HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES394
12.5.3.3 Solution Procedure

Data Generation in the DHCP. Consider the problem of transient heat conduction in an

isotropic cube exposed to a forced flow of a viscous fluid. The thermophysical properties of the

fluid and solid, as well as the heat transfer coefficient at all faces of the cube were assumed to be

constant. The governing tri-dimensional heat conduction equation in nondimensional form is:

v2q

vX2
C

v2q

vY2
C

v2q

vZ2
Z

vq

vFo
: (12.19)

The initial and boundary conditions that are imposed on Equation 12.19 are:

For Fo Z 0; q Z 1 for all X;Y ; and Z (12.20a)

vq

vX
Z 0 at X Z 0; for all Y and Z; FoR0 (12.20b)

vq
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Z 0 at Y Z 0; for all X and Z; FoR0 (12.20c)

vq
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ZKBiq at X Z 1; for all Y and Z; FoO0 (12.20e)

vq
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Z Biq at Y Z 1; for all X and Z; FoO0 (12.20f)

vq

vZ
ZKBiq at Z Z 1; for all X and Y ; FoO0; (12.20g)

where q is the nondimensional temperature, X, Y, and Z are the nondimensional coordinates, Fo is

the Fourier number or dimensionless time and Bi is the Biot number. The finite-element-based

computer software FIDAP (Fluent, Inc., NH) was used to solve this conduction problem with a

convective boundary condition. The details of the solution procedure are presented in Sablani et al.

[38]. The Biot number varied from 0.01 to 10. The increment of Bi increased with increasing Bi.

The FIDAP program was run several times with different values of Bi, thus obtaining the tempera-

ture history at XZ0. Because the nondimensional center temperature varied linearly with the

Fourier number when plotted on a semi-log scale, the temperature profile could be characterized

using the slope, S, of this curve. The slope was obtained from calculated temperature histories at the

center for the 65 Bi values. Thus, 65 cases were used in the development of the ANN models. The

data set of 65 cases consisting of a Biot number and the corresponding slope was divided into two

groups. The first group consisted of 51 cases for training/testing of ANN models, whereas the second

group had 14 cases for validation of the ANN model, chosen randomly from the set of 65 cases.

Training of the Artificial Neural Network Model. The feedforward network structure [41] was

used in this example, as shown in Figure 12.9. Several ANN models were trained and tested using

the training data set. In the case of cube, for the inverse problem, the input layer consisted of a

neuron corresponded to the input parameter, i.e., slope, S, whereas the output layer had one neuron

representing the Biot number, Bi. The number of hidden layers and the neurons within each hidden

layer can be varied based on the complexity of the problem and the data set. In order to reduce the

chances of memorization of the behavior among the data set (rather than generalization), the
q 2006 by Taylor & Francis Group, LLC



S Bi

Input layer Hidden layer Output layer

Figure 12.9 Schematic of multilayer neural network used for the inverse conduction problem (SZslope and
BiZBiot number).
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number of hidden layers and neurons in these layer ought to be minimized [14]. Only one hidden

layer was chosen while the neurons in that layer were varied from 2 to 10, in increments of 2. This

resulted in a total of five networks. The optimal configuration was based upon minimizing the

difference between the ANN predicted values and the desired outputs. The other details about the

computer program and parameters are presented in example A. The performance of various ANN

configurations was compared using the statistical parameters (Equation 12.12 and Equation 12.13).

The Iterative Parameter Estimation Approach. The transient temperatures at the center of the

cube with known physical and thermal properties were estimated by solving the governing heat

conduction Equation 12.19 and Equation 12.20) with an assumed Biot number /convective heat

transfer coefficient using an FIDAP program. The Biot number/heat transfer coefficient was then

varied to produce several time-temperature profiles and then slopes were estimated from these

temperature profiles. The Bi for transient temperatures obtained from the experiment was then

estimated by minimizing the following function, called the cost function:

E Z
XN

iZ1

½Sexp KSnum;i�
2: (12.21)

The slope, Sexp, was obtained from experimental time/temperature data as described in the

previous section. The transient temperatures at the center of the cube were obtained for a range of

Bi. Using transient temperature data, the Snum,i were computed. The cost function, E, was

determined using Equation 12.21 for various Bi values and at the minimum value of E, the

corresponding Bi was taken as experimental Bi. In this iterative procedure, the stopping criteria

used was set as E%10K6 at lower range (1!Bi!1.6) and E%10K4 at higher range (5!Bi!8) of

Biot number. Minimizing E with respect to parameter Bi leads to:

vE

vBi
Z 00
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vSnum;i

vBii
ðSexp KSnum;iÞ: (12.22)

Statistical Considerations in Parameter Estimation. Experimental measurements of tempera-

tures are not always exact. The measurement errors in temperature produce error on the

estimation of slope that may be amplified by an ill-posed character of the inverse problem. A

typical approach to verify the robustness of the inverse algorithm is to introduce Gaussian noise

with an average zero mean and a constant variance s2 (or standard deviation, s) to measured

temperature [40,42]. The statistical properties of estimated parameters, with and without noise,

are then correlated. The confidence limits in the estimated parameters (i.e., Bi) with a confidence

interval at 99% was estimated as C2.576s [40,42].
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Results. A data set of 51 conditions was used for training the ANN models. Different ANN

configurations were trained using the original as well as the transformed variables. In each analysis,

the ANN configuration (out of five) that minimized the four error measuring parameters and

optimized R2 was ultimately selected as the optimum. In the first attempt, the ANN models were

trained using an original data set without applying any transformation to the Biot number or to the

slope, S. The configuration of the ANN model was varied, as discussed above. However, the

performance of many ANN configurations was not very satisfactory (Table 12.5), since the

MRE and STDR in the prediction of Bi always exceeded 9% and 23, respectively. This was

particularly true for the prediction Bi in the lower range (BiZ0.01–1.0).

In principle, ANN models do not require any prior knowledge of the relationships between

dependent and independent variables. However, as shown in the previous example, transformation

of the independent or/and dependent variables can improve their predictive performance [36,37].

For examples, friction factor in pipe flow problems was correlated with Reynolds number on

logarithmic scale [36], heat transfer coefficient in tubes was correlated with thermal, physical and

flow properties in terms of dimensionless numbers such as Nusselt, Reynolds, Prandtl, and Eckert

numbers [43]. A plot of Bi versus S indicated that arctangent relationship between Bi and S [44].

Therefore, both Bi and S were transformed using the inverse tangent functions tanK1Bi and tanK1S

before feeding to the ANN model. This transformation led to a significant improvement in the

prediction performance of all ANN models. The optimal ANN configuration included two

neurons in the hidden layer (Table 12.6). The MRE for this optimal configuration was 1.7%, with

a standard deviation of 4.9%. Other trigonometric functions such as exponential transformation were

also used but they did not improve the prediction performance. The prediction error (i.e., relative

error) of optimal network in the higher range of Bi (7.0!Bi!10.0) was between 4 and 7%. Conse-

quently, the standard deviation in relative error was slightly higher than mean relative error.

The simplest ANN models with two neurons can be considered a very good predictor. This

particular model shows excellent accuracy (MRE of 1.4%) for the prediction of Bi in the range of Bi

between 0.04 and 10.0. The network weights and coefficients associated with this ANN model are

presented in the form of simple algebraic equations in Appendix C. These equations can be used to

predict Bi from the slope of experimental measured transient temperatures.

Verification of the ANN models. The predictive performance of ANN model was validated using

a data set of 14 cases, which were not used in the initial training of the ANN models. The simple ANN

model (2 hidden neurons) predicted Bi with a mean relative error of 2.3%, a standard deviation in

relative error of 5.5%, and a coefficient of determination of 1.000. Once again, the standard deviations

are higher than the mean relative errors because less than 0.04 of the errors in the predictive per-

formance for Bi were rather high (w20%). Otherwise, the mean relative errors in the prediction of Bi

using the ANN model was less than 1% in the Biot number range between 0.04 and 10.0.

Uncertainty analysis. Artificial neural networks are capable of handling uncertainties [41,45].

To test the generalization capability of artificial neural networks, a random noise was introduced to
Table 12.5 Associated Prediction Errors of the Biot Number, Bi, for
Cube/Fluid Assembly with Different ANN Configurations
before Transformations of Data

Number of Neurons
in Hidden Layer MRE (%) STDR (%) R2

2 12.6 33.7 0.999

4 14.4 39.3 0.999

6 15.9 44.5 0.999

8 9.88 23.3 0.999

10 43.1 97.9 0.999
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Table 12.6 Associated Prediction Errors of the Biot Number, Bi, for Cube/Fluid
Assembly with Different ANN Configurations after Transformations of Data

Number of Neurons
in Hidden Layer MRE (%) STDR (%) R2

2 1.71 4.88 1.000

4 2.56 8.60 1.000

6 3.24 10.9 1.000

8 2.39 7.50 1.000

10 3.34 11.6 1.000
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the training dataset. The Gaussian distribution, with a zero mean and a standard deviation of 5% in

slope, was introduced in each input data point (i.e., in slope, S). This is the worst-case error in

estimated slope. The error distribution is chosen such that, with a 99% probability, the error in

measured temperature is less than or equal to the worst-case error. The sensitivity of the optimal

network was examined using the full dataset (51 cases) with the noise. A set of 100 different files

with noisy data based on Gaussian distribution was created (with a total of 5100 cases). The

prediction accuracy of the optimal network with uncertain data was close to that of original data

set without noise. The results of the 100 data set are collected in a graph (Figure 12.10).

The prediction accuracy of neural network with noisy data, at higher range of Biot number was in

the same range (i.e., 10%) as observed with the original data set. The established neural network

exhibited small uncertainty in random errors; in Bi, there were less than eight. This demonstrated the

capability of ANN in dealing with uncertainties and noise.

The ANN model developed was noniterative, which yield results within 2.0% of those obtained

by iterative solution of the governing conduction equation. Though an analytical solution is avail-

able to determine the temperature in an arbitrary rectangular parallelepiped subjected to convective

heat transfer, estimation of the heat transfer coefficient/Bi from known time temperature data still

remains iterative in nature. The ANN model presented here can easily be used without any
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Figure 12.10 Biot number estimation results for Gaussian distribution with zero mean a standard deviation of 5%
in slope. (Adapted from Sablani, S. S., Kacimov, A., Perret, J., Mujumdar, A. S., and Campo, A., Int.
J. Heat Mass Transfer, 48, 665–679, 2005.)
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elaborate programming. The present concept of using neural networks for estimating heat transfer

coefficient can easily be extended for complex shapes and temperature dependent boundary con-

ditions. However, as the complexity of the problem increases, different transformation of

input/output variables may be required.
12.6 CONCLUDING REMARKS

In this chapter, the basic principles of artificial neural networks have been described. Neural

networks have the capability to generalize the behavior among data without requiring a prior

knowledge of the relationship of the parameters. The dataset may be experimental, simulated, or

compiled from the literature. Applications of neural network modeling in food and bioprocessing

were presented through different examples of modeling thermal conductivity, estimation of friction

factor in pipe flow, and heat transfer coefficients. There have been many interesting applications of

ANN modeling reported in the literature including the analysis of reflectance or transmission spectra

of a variety of food products by chemometric techniques. Neural network modeling is becoming a

very promising tool in predictive modeling of food and bioprocesses. When combined with fuzzy

logic, neural network modeling has potential applications in process control and automation.
GLOSSARY

Activation The time-varying value that is the output of a neuron.

Artificial neural networks Computational structure whose architecture is modeled after
q 2006 by T
the brain.
Artificial neuron A simple computational unit that performs a weighted sum on incoming
signals, adds a threshold or bias term to this value to yield a net input, and maps this

last value through an activation function to compute its own activation.
Back-propagation A name given to the process by which the Perceptron neural network is
“trained” to produce good responses to a set of input patterns.
Bias The net input (or bias) is proportional to the amount that incoming neural activations must
exceed in order for a neuron to fire.
Connectivity The amount of interaction in a system, the structure of the weights in a neural
network, or the relative number of edges in a graph.
Feedforward network An artificial neural network in which the flow of activity is in one direc-
tion, from input neurons to output neurons.
Generalization A measure of how well a network can respond to new images on which it has not
been trained, but which are related in some way to the training patterns.
Input layer Neurons whose inputs are fed from the outside world.

Learning rule The algorithm used for modifying the connection strengths, or weights, in
response to training patterns while training is being carried out.
Output neuron A neuron within a neural network whose outputs are the result of the network.

Pattern recognition The ability to recognize a given sub-pattern within a much larger pattern.

Perceptron An artificial neural network capable of simple pattern recognition and classification
tasks. It is composed of three layers where signals only pass forward from nodes in the

input layer to nodes in the hidden layer, and finally out to the output layer. There are no

connections within a layer.
Recurrent network A neural network in which the output of some neurons feeds back via
intervening connections to become input to them.
Sensitivity analysis The process which determines the sensitivity of a predictive model to small
fluctuations in predictor value.
aylor & Francis Group, LLC



ARTIFICIAL NEURAL NETWORK MODELING 399
Supervised learning A class of data mining and machine learning applications and techniques in
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which the system builds a model based on the prediction of a well defined prediction field.

This is in contrast to unsupervised learning where there is no particular goal aside from

pattern detection.
Synapse The space in which a signal passes from one neuron to another.

Threshold A quantity added to (or subtracted from) the weighted sum of inputs into a neuron,
which forms the neuron’s net input. Intuitively, the net input (or bias) is proportional to the

amount that the incoming neural activations must exceed in order for a neuron to fire.
Training set A neural network is trained using a training set. A training set comprises infor-
mation about the problem to be solved as input stimuli.
Weight In a neural network, the strength of a synapse (or connection) between two neurons.
Weights may be positive (excitatory) or negative (inhibitory). The thresholds of a neuron

are also considered weights, since they undergo adaptation by a learning algorithm.
NOMENCLATURE

Side of cube (m)

Biot number (ha/k)

Pipe diameter (m)

Cost function

Fanning friction factor, dimensionless or Correction factor

Fourier number (at/a2), linear problem

Acceleration due to gravity, 9.81 (m/s2)

Heat transfer coefficient (W/m2K)

Thermal conductivity (W/m K)

Friction-loss coefficient, dimensionless

Consistency coefficient, (Pa sn)

Length of pipe (m)

Flow-behavior index, dimensionless

Number of measurement

Pressure (Pa)

Reynolds number, (ruK2KnDn/8nK1K)[4n/(3nC1)]n, dimensionless

Volumetric flow rate in a pipe (m3/s)

Volumetric average velocity in the tube (m/s)

Pressure drop due to friction (Pa)

Regression coefficient

Temperature-time slope, (dq/dFo)

Time (s)

Temperature (K)

Linear coordinates (m)

Moisture content (wet basis), fraction

Dimensionless linear coordinates (x/a, y/a, z/a)

ymbols

Kinetic energy correction coefficient, dimensionless, thermal diffusivity (m2/sec)

Shear rate (1/s)

Shear stress (Pa)

Standard deviation
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q Dimensionless temperature (TfKT)/(TfKTi)

3 Volume fraction

Subscripts

a Air for k or apparent in 3

e Effective

f Fluid

i Initial

r Reference

w Water

s Solid
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APPENDIX A

Neural network based equations for calculation of friction factor (f) for power law fluids for known

Reynolds number (Re 0) and consistency index (n)

Y0 Z LOG 10ðReÞ

Y1 Z LOG 10ðnÞ

X2 Z Y0ð0:426ÞC ðK2:405Þ

X3 Z Y1ð2:00ÞC ð0:398Þ

X4 Z tanhððK2:291ÞC ðK1:733ÞX2 C ð0:252ÞX3Þ

X5 Z tanhðð0:790ÞC ð0:418ÞX2 C ðK0:555ÞX3Þ

X6 Z tanhðð0:733ÞC ð0:826ÞX4 C ðK0:632ÞX5Þ

f Z X6ð0:0139ÞC ð0:00862Þ

APPENDIX B

Neural-network-based equations for estimation of effective thermal conductivity, k (W/m K) for

known moisture content (M, fraction, wet basis), temperature ratio (T, T/Tr, T in K) and apparent

porosity (3)
X2 Z Mð2:13ÞC ðK1:09Þ

X3 Z Tð3:18ÞC ðK3:69Þ

X4 Z 3ð2:86ÞC ðK1Þ
X5 Z tanh½ðK0:66ÞC ðK0:99ÞX2 C ðK3:28ÞX3 C ðK0:38ÞX4�

X6 Z tanh½ð1:42ÞC ðK0:82ÞX2 C ðK0:54ÞX3 C ð2:11ÞX4�

X7 Z tan h½ðK3:49ÞC ð2:11ÞX2 C ðK3:66ÞX3 C ð1:00ÞX4�

X8 Z tanh½ðK0:18ÞC ð0:92ÞX2 C ð0:36ÞX3 C ð0:042ÞX4�
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X9 Z tanh½ð0:21ÞC ðK0:62ÞX5 C ðK0:72ÞX6 C ðK0:01ÞX7 C ð0:73ÞX8�

X10 Z tanh½ð0:025ÞC ð0:058ÞX5 C ðK0:043ÞX6 C ð0:17ÞX7 C ðK0:189ÞX8�

X11 Z tanh½ð0:54ÞC ð0:55ÞX5 C ð0:69ÞX6 C ðK1:13ÞX7 C ð0:19ÞX8�

X12 Z tanh½ðK0:15ÞC ðK2:76ÞX5 C ð0:53ÞX6 C ðK2:92ÞX7 C ð0:021ÞX8�
X13 Z tanh½ð0:078ÞC ð0:14ÞX9 C ðK0:032ÞX10 C ðK0:31ÞX11 C ðK0:29ÞX12�

k Z X13ð1:95ÞC ð1:18Þ
APPENDIX C

Direct estimation of Biot number, Bi from the slope (S) of temperature ratio (on logarithm scale)

versus Fourier number for cube

Y Z a tanðSÞ

X2 Z Yð1:676ÞC ð1:022Þ

X3 Z tanhððK0:354ÞC ð0:444ÞX2Þ

X4 Z tanhððK1:700ÞC ðK1:218ÞX2Þ

X5 Z tanhðð0:296ÞC ðK1:185ÞX3 C ð0:884ÞX4Þ

Bi Z tanðX5!1:218 C0:741Þ
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13.1 INTRODUCTION

In recent years, consumer demands for better quality of foods have increased, and it has

been necessary to reduce the costs of food and bio production processes. The use of an optimization

technique offers one solution for overcoming these problems. It is, however, not easy to solve such

problems using conventional mathematical approaches because the food and bio production

systems are complex and uncertain. There exist systematically complicated properties such as

nonlinearity, time variation, and multivariability in their systems. Intelligent approaches are

useful for treating and optimizing such complex systems to which conventional mathematical

approaches are not easily applied. One approach is the use of genetic algorithms. Recently,

genetic algorithms have been applied for optimizations of a wide variety of complex systems

such as food, bio, and agricultural production processes.

In this chapter, the basic concept of genetic algorithms is first introduced and then two appli-

cations of the genetic algorithms for optimizations of model parameterization and the optimal

control of the temperature during a fruit-storage process are focused on.
13.2 FUNDAMENTAL INTRODUCTION TO GENETIC ALGORITHMS

Genetic algorithms for computer simulation were mainly developed by Holland [1,2]. The

research has been extended further by his students and colleagues [3,4]. Their studies were first

concentrated on the mechanism of an adaptive system—how biological systems adapt to new

environment after the large climate change [5].

Genetic algorithms are search techniques for an optimal value, mimicking the mechanism of

biological evolution. They have a high ability to find an optimal value (global optimal value or at

least near global one) of a complex objective function, without falling into local optima [3,4,6].

They can deal with both continuous and discrete optimization problems. They are especially useful

for combinatorial optimization problems characterized by a set of several decision variables (e.g.,

several kinds of physical variables or l-step setpoints of one control variable). This is a kind of

discrete type. In this case, the optimal combination of several decision variables is determined.

The search space in the combinatorial (or multimodal) optimization problem is usually very

large and complex. However, genetic algorithms allow an optimal value to be easily and quickly

sought from a very large solution space parallel to a multi-point search procedure, by mimicking the

mechanics of biological evolution. Such genetic operators as crossover and mutation lead to a

multi-point search procedure. A global optimal value can be successfully found in parallel with this

multi-point search procedure [2,4,7]. This is because this genetics-based search technique allows
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the search point to be efficiently focused on the most promising part of the solution space by

inheriting important information from parent to offspring. This most promising part is called a

“building block” in the building block hypothesis [4]. The building block means “excellent descen-

dant,” as it is formed during the searching process by applying crossover and mutation. It usually

proliferates if it is not destroyed by crossover and mutation and, finally, an optimal value can

be created.

The search way for an optimal value is based on the principle of a Darwinian-type survival of

the fittest in natural evolution, where excellent individuals can mate with other individuals and

survive for the next generation [3]. The most excellent individual, which is the most evolved one, is

an optimal value. Figure 13.1 shows a conceptual search way for a global optimal value using the

multi-point search process based on the genetic algorithm. The horizontal axis is individual

(contains decision variable) and the vertical axis is fitness value (contains the value of objective

function). Here, because the search space in a real optimization problem is usually enormous and

complex, we suppose an objective function having many peaks. Two parents, A and B, are first

mated at random, and then two offsprings A and B are generated through genetic operations.

Furthermore, superior offspring, which have higher fitness than the parents, remain for the next

generation. Here, offspring A is superior one. In the next generation, furthermore, more superior

offsprings are selected and remain for the next generation. A global optimal value (or at least a near-

global one), which is given as the most excellent offspring (the most evolved one), can finally be

obtained by repeating these procedures, without falling into local optima.
Global

Global
optimal
value

Global optimal value

Local
optima

Local
optima

Local
optima

Local
optima

F
itn

es
s 

of
 in

di
vi

du
al

 
(o

bj
ec

tiv
e 

fu
nc

tio
n)

F
itn

es
s 

of
 in

di
vi

du
al

Parent
A

Parent
A

Parent
B

Parent
B

Off spring
A

Off spring
B

Mate

Global

Figure 13.1 Conceptual search way for a global optimal value using the multi-point search procedure based on
the genetic algorithm.
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Thus, the genetic algorithms are quite different from traditional methods such as gradient search

techniques (or hill-climbing methods), linear programming, dynamic programming, and direct-

search algorithms, which are characterized by deterministic and numerical. Most of traditional

analytical approaches, such as derivative and differential equations, require precise knowledge of

the system. Any slightly wrong knowledge causes a decrease in the performance of optimization. It

is therefore difficult to obtain the global optimal value of a complex objective function (a multi-

modal nonlinear function including local optima) by using traditional methods. This is because the

search point in the traditional method (gradient method) moves from one point to another (neigh-

boring) point in turn in the search space based on the arbitrary rule and, consequently, it sometimes

stops at the nearest peak (local optima), not the global one of the complex objective function. This

is one of the major drawbacks of traditional methods. It is also clear that since most of procedures of

the traditional methods are rigid or deterministic, they often suffer from low flexibilities in compu-

tation. However, the traditional methods have some merits. For example, most of them consume

less time for computation, and their optimal values are analytically guaranteed. In contrast, because

the procedures of the genetic algorithms are probabilistic (or stochastic) and require little knowl-

edge, they have high flexibilities in computation [7]. These are remarkable features of the genetic

algorithms. However, their procedures are time consuming, and the optimal value is not analyti-

cally guaranteed because of their probabilistic procedures.

The genetic-algorithm procedures are not analytical; they are biological. The biological optimi-

zation (or adaptation) method through the undirected mechanism of biological evolution and

natural selection, which is an iteration approach through trials and errors, might be the best

problem solvers for optimization (or adaptation) because living organisms on earth have acquired

many excellent functions for survival and have overcome many struggles for existence using this

method [2]. So, it can be seen that the genetic algorithms are practical and applicable to a wide

range of complex optimization problems.

From these viewpoints, genetic algorithms have been widely applied to optimization problems

of complex systems in many fields. Table 13.1 shows applications of genetic algorithms to food

production processes, bioprocesses, and agricultural production processes. Many good books on the

genetic algorithm have been also published [4,38,39].

13.2.1 Definition of Individual

To use genetic algorithms, an “individual” for evolution should be defined in the first step.

Each individual represents a candidate for an optimal value (one possible solution) to the problem

that is to be solved. If the solution consists of the combination of mth decision variables

(x1,x2,.,xm) then the individual can be given as follows:

Individual Z ðx1; x2;.; xmÞ;
Table 13.1 Applications of Genetic Algorithms for Food
Production Processes, Bioprocesses and Agricultural
Production Processes

Applications References

Optimization of bioprocesses 8–15

Optimization of crop-production processes 16–19

Optimization of fruit-storage processes 20–25

Model parameterization 26–30

System identification 31, 32

Planning 33, 34

Optimization of agricultural machinery 35, 36

Image processing (feature extraction) 37
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where each variable, xi, is called a chromosome. In this case, the optimal combination of

(x1,x2,.,xm) is obtained. It is noted that genetic algorithms are well suited for solving combinatorial

optimization problems. A set of individuals is called a population that evolves toward better

solutions. The individual number included in a population is called a population size. Genetic

algorithms work with a population involving many individuals:

Population Z

Individual 1 Z ðx11; x12;.; x1mÞ

Individual 2 Z ðx21; x22;.; x2mÞ

...........

Individual N Z ðxN1; xN2;.; xNmÞ

where N is the population size. The population size increases with applying genetic operations, such

as crossover and mutation, to individuals. In general, smaller population size tends to converge to a

local optima [40].

13.2.2 Coding

The second step is to transform the chromosomes (x1,x2,.,xm) into finite-length character

strings to make a fit to the genetic operations. Binary digit strings are usually employed for the

coding of the chromosomes. The “coding” means the transform of the variable from phenotype

(decimal representation) to genotype (binary representation). On the other hand, the reverse

transformation, which means restoration, is called a decoding. There are two main coding ways.

One is the case of a binary-valued representation (binary coding) consisting of 0 and 1, which are

most commonly used. One character (0 or 1) in the binary strings (chromosome) is called a “gene.”

For example, an individual in this method can be expressed as follows:

Individual Z ðx1; x2;.; xmÞZ ð010111; 111000;.; 101010Þ:

In this case, an individual is expressed by 6-bit binary strings. The length of the binary strings

depends on the range of numerical values that we want to use. The 6-bit binary strings provide

numerical values between 0 (Z000000) and 63 (Z111111). Thus, the genetic algorithm usually

works with a set of binary encoded parameters.

The other is the case of an integer-valued representation. In this case, an individual is given by

integral numbers as follows [41,42].

Individual Z ðx1; x2;.; xmÞZ ð2; 4; 1; 8; 5;..Þ:

When an individual is composed of many variables, this coding might be effective.

13.2.3 Definition of Fitness

The fitness is an indicator for measuring an individual’s quality for survival. All individuals’

performances are evaluated based on their fitness values at each generation (iteration step). The

fitness is similar to the objective function in conventional optimization problems. Individuals

having higher fitness are good ones. During the evolution process, therefore, relatively good

individuals reproduce, and relatively bad individuals with lower fitness die in each generation.

Finally, an individual having maximum fitness is obtained as an optimal solution. Any nonlinear

and discontinuous functions can be selected as the fitness [2].
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13.2.4 Genetic Operators

There are mainly three types of genetic operators: (1) crossover, (2) mutation, and (3)

selection and reproduction in the genetic algorithms. There are also other operators such as

copy, in addition to an island model. Concerning the copy operator, excellent individuals are

more copied and reproduced. In the island model, several individuals in another population

(island model) are inserted into the original population to maintain the diversity of the population.

13.2.4.1 Crossover

The most important genetic operator is crossover. The crossover combines the features of

different individuals (two parents) to form two new individuals (two similar offspring). It operates

by swapping corresponding components in their binary strings representing the parents. The cross-

over has several types: one-point crossover, multi-points crossover, and uniform crossover.

Now, suppose an individual consisting of one chromosome (individualZchromosome) that is

coded by 6-bit binary strings. Figure 13.2a and b show the operations of one-point and multi-point

crossovers. In the case of one-point crossover, two individuals (e.g., 000101 and 001111, which are,

respectively, given by 3 and 47 in decimal) are selected at random from the population and mated

with each other. The method is as follows. These binary strings are first cut at the center of the 6-bit

binary strings (3-bit position) and then two new individuals (000111 and 001101, which are, respect-

ively, given by 7 and 43 in decimal) are generated by swapping all the characters to the right of this

point (1–3-bit position). This point is called the “crossover point.” In many cases, the crossover point,

which is given by the center of the binary strings, is fixed. In the multipoint crossover, on the other

hand, it has several crossover points, and the crossing is carried out at their positions in the binary

strings, with the same method described above. Here, the case of two-point crossover is described in

Figure 13.2b. In this case, the first 3-bit and the last 3-bit binary strings in two individuals are swapped

with each other. The two crossover points are usually fixed because of its easy application.

On the other hand, a one-point crossover operation in the case of a real-valued parameter set is

shown in Figure 13.3 [41,42].

The individual number for crossover depends on the crossover rate, Pc, which has the value of

more than 50% so that new individuals (offspring), which are different from the parents, can be
(a) One-point crossover (b) Multi-point crossover

Parents    : 000011 and 101111
Offsprings : 000111 and 101011

Parents   : 101000101 and 001001111
Offsprings : 001000111 and 101001101 

Parents Offsprings 

000011 (3) 000111 (7)
↓ ↑

→

→101111 (47) 101011 (43)

Parents Offsprings

101000101 001000111

001001111 101001101
↓ ↑ ↓ ↑

→

→

Figure 13.2 Methods of one-point and multi (two)-point crossovers in the case of binary strings (the numeral in
the paranthesis shows the decimal number for the binary number).

Parents Offsprings

(3, 2, 5, 6, 7, 1) (3, 2, 5, 2, 3, 0)

(4, 7, 1, 2, 3, 0) (4, 7, 1, 6, 7, 1)
↓ ↑

→

→

Figure 13.3 Method of a one-point crossover in the case of a real-valued parameter set.
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created sufficiently. The crossover rate is usually ranged from 0.6 to 0.8. In each generation, NPc

individuals undergo crossover (N: individual number). The higher the crossover rate, the more

excellent the individuals that are created in the population. If the crossover rate is too low, the

evolution (searching process) may stagnate due to the lower number of new individuals with

ultimately poor performance.

13.2.4.2 Mutation

The mutation inverts one or more components, selected at random, of the binary strings

from 0 to 1 or vice versa. The new individuals generated by the mutation undergo random changes.

The mutation operation increases the variability of the population and helps to prevent premature

convergence to local optima in the evolution process [7]. Figure 13.4 shows the operation of a two-

point mutation. In the method, one individual (e.g., 00
�
011

�
0, 6 in decimal) is first selected at

random, and then a new individual (01
�
010

�
0, 20 in decimal) is created by inverting two characters

(genes), selected at random, from 0 to 1 or 1 to 0.

On the other hand, a two-point mutation in the case of a real-valued parameter set is shown in

Figure 13.5 [42]. Here, two values (2 and 6) at two positions selected at random are converted into

new two values (8 and 3) based on the random number.

The individual number for mutation depends on the mutation rate, Pm. The mutation rate in

natural evolution is usually very small. So, mutation can be considered as a secondary operator for

evolution. Therefore, the mutation rate is traditionally given by low values at the range of 0.01–0.1.

In each generation, NPm individuals undergo mutation (N: individual number). If the value is too

low, however, the possibility to fall into local optima increases. The lack of mutation induces

poorer performances in evolution. On the other hand, the higher mutation rate helps prevent

premature convergence to local optima. Recently, high mutation rates up to 0.4 or 0.6 have been

found beneficial [43,44]. It is, however, noted that a significantly high mutation rate leads to an

essentially random search.
13.2.4.3 Selection and Reproduction

In the process of evolution, new individuals (offspring) are continuously created from the

old ones (parents) every generation. Selection and reproduction are operators for choosing and

reproducing excellent individuals. Excellent individuals with higher fitness values are fundamen-

tally chosen and reproduced, and they have better chances for crossover and mutation than those

with lower fitness values in order to create the more excellent individuals [45]. Figure 13.6 shows

an example of the reproduction. Individuals with higher fitness are fundamentally reproduced and
Parent 0 0 0 1 1 0 (6)

Offspring 0 1 0 1 0 0 (20)

Figure 13.4 Method of a two-point mutation in the case of binary strings (the numeral in the paranthesis shows
the decimal number for the binary number).

Parent (3, 2, 5, 6, 7, 1)

Offspring (3, 8, 5, 3, 7, 1)

Figure 13.5 Method of a two-point mutation in the case of a real-valued parameter set.
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1100110011

1100110011

1111110011

Copy

Copy

Proliferate

Remove

An excellent individual: 1100110011

A normal individual: 1111110011

A bad individual: 0000110001

Figure 13.6 Example of reproduction. Excellent individuals with higher fitness values are chosen and reproduced
and have a better chance to do crossover and mutation than their less fitness values.
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proliferated by a copy operator with a generation number. In contrast, individuals with lower fitness

values are removed from the population. There are several selection strategies: a roulette wheel

selection, an elitist strategy and an expected-value selection.

Roulette Wheel Selection (Proportional Selection). The roulette wheel selection (proportional

selection) is the most simple and fundamental selection method. In this method, individuals are

selected based on their probability of selection, in proportion to their fitness values. Table 13.2

shows individuals’ fitness values and their probability of selection, Ps. Figure 13.7 shows the

conceptual diagram of the roulette wheel in the case of Table 13.2. In this method, each individual

is allocated a slot in the roulette wheel. The width of each slot is proportional to the individual’s

fitness value so that the individual can get a chance to reproduce new individuals (offspring)

according to its fitness value. Let fi be the fitness in an individual, i. The probability of selection,

Ps, is described as follows:

Ps Z
fi

PNs

iZ1

fi

: (13.1)

Individuals are selected according to the ratio Ps of an adequate individual’s fitness fi to the total

fitness Sfi obtained by summing the fitness values over all individuals. From Table 13.2, a total

fitness value of 126 is obtained by summing the fitness of all individuals. Here, individual 1 has a

fitness value of 53, which corresponds to 42% of the total fitness. Consequently, the 42% area of the

roulette wheel is allocated to individual 1 and each spin turns up individual 1 with a probability of

0.42. This method has an undesired property: there is a danger that the best individual may

disappear from the population due to the probabilistic selection method.

Elitist Strategy. In the elitist strategy, the best individual with highest fitness is compulsively

copied with no operations of crossover and mutation in each generation. It can always survive and is
Table 13.2 Individuals’ Fitness Values and Their Probability of Selection in the Roulette Wheel Selection

No. Individual Fitness Percent of Total

1 100011 53 42

2 100111 35 28

3 011001 19 15

4 001101 15 12

5 000011 4 3

Total 126 100
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Figure 13.7 The conceptual diagram of the weighted roulette wheel in the case of Table 13.1.
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guaranteed a long life from generation to generation. This method has an advantage of faster

evolution because the best individual always remains in each generation and the next generation

inherits its structure, without destruction. However, there is a danger of falling into local optima

because the diversity of the population becomes low because of the concentration of only

better individuals.

Expected-Value Selection. In the expected-value selection, individuals are selected based on

their expected-values, which come from their fitness values. The expected-value (i.e., the prob-

ability of selection, Ps) of each individual is computed using Equation 13.1 The individual number

to be reproduced is then determined based on its expected-value. Table 13.3 shows individuals’

fitness values, their expected-values, and the individual numbers to be reproduced. In this case, the

number of Ps!10 is reproduced. In this method, the best and excellent individuals always remain to

some extent because it is not a probabilistic approach like a roulette wheel selection and excellent

individuals are certainly selected based on their expected-values.

As mentioned above, there are various selection and reproduction methods. Many researchers

have investigated a more effective method. It can especially be seen that the combinatorial use of

the elitist and roulette wheel strategies is useful for selection.
13.2.5 Searching Procedure of an Optimal Value (Artificial Evolution Process)

The searching process for an optimal solution by using genetic algorithms is analogous to a

natural evolution process. As generation progresses, each individual in the population evolves

toward the better individual with a higher fitness value. Individuals with higher fitness dominate
Table 13.3 Individuals’ Fitness Values, Their Expected-Values and Individual Numbers to Be Reproduced
in the Expected-Value Selection

No. Individual Fitness Expectedvalue Individual Number Reproduced

1 100011 53 0.42 4

2 100111 35 0.28 3

3 011001 19 0.15 2

4 001101 15 0.12 1

5 000011 4 0.03 0

Total 126
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in the population with generation. The most evolved individual is an optimal value. Figure 13.8

shows the basic procedure of the genetic algorithm used for searching of an optimal value.

Step 1: Initial population. An initial population P(0) consisting of Ni types of individuals is

generated at random (NZNi). Each individual (binary string) is created based on the random

number. The genetic algorithm starts with the generation of the initial population.

Step 2: Fitness computation. The fitness values of all (N) individuals are calculated using a

fitness function (or objective function), and their performances are evaluated.

Step 3: Selection and reproduction. Ns types of individuals, which are superior individuals

having higher fitness, are selected and reproduced based on the roulette wheel strategy. The

best individual with highest fitness is also remained based on the elitist strategy. After the

selection, there are N (ZNsCNrep) types of individuals (Nrep is the individual number repro-

duced).

Step 4: Crossover: Two individuals (two parents) are chosen at random from the population

including N types of individuals and then the crossover operator is applied to those. Through

one crossover operation, two new individuals (two offsprings) are created and inserted into

the population. The number of the crossover Nc (ZNPc) depends on the crossover rate Pc.
Generate initial population

Compute fitness values of all individuals

Selection and 
reproduction

Crossover

Mutation

Termination
criterion

is satisfied?

No

Yes

Optimal value

Figure 13.8 Flow chart of a basic genetic algorithm used for searching for an optimal value.
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After the crossover, there are N (ZNsCNrepCNc) types of individuals.

Step 5: Mutation. One individual (one parent) is chosen at random from the population and

the mutation operator is applied to it. Through one mutation operation, one individual (one

offspring) is generated and then it is inserted into the population. The number of the mutation

Nm (ZNPm), depends on the mutation rate, Pm. After the mutation, there are N (ZNsCNrepC
NcCNm) types of individuals.

Step 6: Steps 2–5 are repeated until an adequate termination condition is satisfied. The

iteration usually stops when the fitness value of the best individual continues to keep the

same maximum value with increasing generation number. An optimal value is given by an

individual with maximum fitness.

Recently, it has been noted that various searching techniques have been studied to obtain a

global optimal value more quickly and efficiently. The methods improving the searching procedure

are mentioned in Section 13.2.7.

13.2.6 A Simple Genetic Algorithm

The most simple and fundamental method of genetic algorithms is called “simple genetic

algorithm.” It is usually composed of three genetic operators: (1) 1-point crossover, (2) 1-point

mutation, and (3) selection (or reproduction).

13.2.7 Improvement of Evolution Performance

The evolution process is time-consuming and its convergent speed is low. Problems such as

premature local convergence and the bias by genetic drift, which are probably caused by the loss of

diversity of the population, arise in the evolution process. There is also no guarantee to yield a

global optimal solution in the search by the genetic algorithms. In recent years, therefore, new

evolution techniques have been discussed in order to improve the evolution performance.

The diversity of the population significantly affects the speed of the evolution. The lower

diversity easily falls into a local optima. In the elitist strategy, all individuals tend to become

uniform with comparatively higher fitness values. This problem is especially severe when the

population size is small. The higher mutation rate helps prevent premature convergence to local

optima. In the roulette wheel selection, however, it should be noted that a higher mutation rate tends

to destroy the good structure (or scheme) of better individuals. Morimoto et al. [20,22] added a

number of individuals, generated at random, to the population in each generation to maintain the

diversity of the population at higher level. Through this procedure, a global optimal solution could

be successfully obtained. Tanese [46] also proposed a parallel genetic algorithm (GA) to maintain

the diversity of the population at higher levels. In this method, two GAs in parallel work under two

populations (original population and another one) and the immigration of some individuals is

conducted between two populations in every arbitrary generation. Van Rooij et al. [40] also

claimed that the use of a parallel GA is effective for increasing the speed of the evolution.

From the hints of new natural evolution theories, new evolution schemes have been developed

in order to improve the evolution performance. Kubota et al. [47] applied a virus evolutionary

algorithm to improve the performance of the evolution. In this method, the structures of chromo-

somes were effectively changed by the infection of retrovirus. Ohkura and Ueda [48] proposed a

new genetic algorithm based on neutral mutations to solve deceptive function optimization

problems having no search direction based on the building block hypothesis. On the other hand,

Bersini and Varela [49] developed an immune system for improving a local search performance

near the best solution by genetic algorithms. This technique, which is called a genetic immune

recruitment mechanism (GIRM), makes up a weak point of the local search of GA by conducting a

test of the similarity of each individual.
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13.2.8 Problems of the Genetic Algorithms

As mentioned above, the genetic algorithms have a high ability to find a global optimal value of

a complex objective function, without falling into local optima. However, the major problem is that

there is no guarantee that they will always yield a global optimal value. This is because the

searching (evolution) procedures, especially the methods of creating individuals by genetic

operators, depend on arbitrary probabilistic roles and, consequently, the process which reaches a

global optimal value becomes uncertain. However, better solutions (individuals) appear with

generation. It is clear that one can at least obtain the near-global optima using the genetic algorithm.

In such case, it is very important to confirm whether an optimal value obtained is a global optima or

local one. Comparing some optimal values obtained under different search conditions, e.g.,

different crossover and mutation rates, initial population, population size, and different methods

for crossover and mutation, which significantly affect the search performance, carries out this

confirmation. Moreover, it is also important to perfectly confirm an optimal solution by examining

values around it through trial and error. Through these procedures, a global optimal solution can be

obtained. Hu et al. [50] developed a new technique, which is a combinatorial approach of genetic

algorithms and gradient method, to quickly find a global optimal solution. In this method, the

genetic algorithm is first used for searching for a near optimal solution and then a gradient

method, which can be regarded as a local searching algorithm, is employed for finding a global

optimal. Renders and Flasse [51] also proposed a hybrid method combining genetic algorithms and

“hill-climbing” methods to yield a global optimal solution. These techniques are very effective for

searching for the global optima quickly because genetic algorithms are time-consuming techniques.
13.3 APPLICATIONS OF GENETIC ALGORITHMS TO MODEL PARAMETERIZATION

13.3.1 Optimization Problem

Many types of mathematical models have been developed for prediction and analysis of a

system in the crop, food, and bio-production processes. The aim of modeling usually focuses on

determining the appropriate values of several parameters (coefficients) used in their models.

Manual adjustment is often used for determining their best values. However, such tasks as a

model parameterization are usually troublesome and time consuming.

Here, the example that Sequeira et al. [26] used the genetic algorithm to automatically

determine the optimal parameters of the photosynthesis model (mathematical model) is introduced.

The model, which is used for the photosynthesis of C3 and C4 species by Johnson et al. [52], is given

by a direct analog of the lower root of the quadratic equation. The gross photosynthesis (P) of

Panicum maximum to variations in incident radiation is given by

P Z
1

2q
aI CPm K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaI CPmÞ

2K4qaIPm

q� �
(13.2)

where a is a photochemical efficiency, I is irradiance, Pm is an asymptotic value of P at the

saturating irradiance, and q is a scaling parameter. In this study, the optimal values of three

parameters (a, q, and Pm) are determined. This model is also defined as a semiempirical function

because all parameters have biological meanings. The genetic algorithm is used to search for the

optimal values of three parameters (a, q, and Pm).

The optimal parameters are determined so that the average error between the estimated and

observed values of the gross photosynthesis can be minimized. Therefore, an objective function fi
which depends on three parameters (a, q, and Pm), can be defined as follows:
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F1ðai; qi;PmiÞZ
Xn

jZ1

ðxj;real Kxj;estÞ
2; (13.3)

where n is the number of observations, xj,real is the observed value, xj,est is the model-prediction

value for observation j, and i is the individual (parameter set) being evaluated.

As for the restraints of three parameters, since there is no pre-knowledge on three parameters,

their ranges (search spaces) were given as wide as possible.

Thus, the optimization problem here is to search for the optimal values (optimal combination)

of three parameters (a, q, Pm) that minimize the objective function fi given by Equation 13.3, under

the restraints of amin%a%amax, qmin%q%qmax, and Pm min%Pm%Pm max.

minimize F1

subject to amin %a%amax; qmin %q%qmax; Pm$ min %Pm %Pm$ max

(13.4)

It is noted that if each parameter is coded as a 9-bit binary strings, the combinatorial number

(the size of the search space) of three parameters considered is (29)!(29)!(29)Z5123Z
13,421,772. The genetic algorithm allows the best combination of three parameters to be efficiently

found out from among this 13,421,772 combination.
13.3.2 Definition of Individual

An optimal value here is given by the optimal combination of three parameters (a, q, and

Pm). So, an individual is given by the parameter set of a, q, and Pm. They were all coded as 6- or

9-bit binary strings. If each parameter was given by 9-bit binary strings, it has numerical values

between 0 (000000000) and 512 (111111111).

Individual i Z ðai; qi;PmiÞZ ð10101010; 100111000; 111010011Þ:

13.3.3 Definition of Fitness

Fitness is an indicator for measuring an individual’s survival quality. All individuals are

scored by the fitness function and ranked according to their fitness values. During the evolution

process, individuals having higher fitness remained for the next population, and individuals with

lower fitness die in each generation. Finally, an individual having the maximum fitness can be

regarded as an optimal solution. Fitness is similar to the objective function in conventional

optimization problems.

Here, because the optimal values of three parameters are determined so that the average error

between the estimated and observed values of the gross photosynthesis is minimized, the fitness

function (objective function) can be defined as follows:

Fitness Z F1 (13.5)

13.3.4 Flow Chart of the Genetic Algorithm

Figure 13.9 shows the flow chart of searching for the optimal combination of three par-

ameters using genetic algorithms. The real values used in the genetic algorithm are shown in

Table 13.4. They are empirically determined [4,26]. The procedure is as follows: (1) The initial

population is generated at random. (2) All individuals in the population are passed to the simulation

model (Equation 13.2) and their fitness values are calculated using the Equation 13.3. (3) All

individuals are ranked based on their fitness values. (4) Individuals with higher fitness are selected

for reproduction and inserted into the next generation. Highly fit individuals tend to reproduce in
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Figure 13.9 Flow chart of a genetic algorithm as applied to model parameterization (Gen: generation number).
(From Sequeira, R. A., Olson, R. L., Willers, J. L., and McKinion, J. M., Computers and Electronics in
Agriculture, 11(2,3), 265–290, 1994.)
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the next generation. (5) The selected individuals are altered based on crossover and mutation. The

crossover and mutation rates were empirically determined to be 0.60 and 0.03, respectively. Two-

point crossover was used in this experiment. The probability that an individual C(t) at the present

generation t survives for the next generation (tC1) is given by its fitness value to the average fitness

value of all individuals in the present population:

PðCðt C1ÞÞZ FitnessðCðtÞÞ=Average population fitness:
Table 13.4 Real Values Used in the Genetic Algorithm Procedure

GA Parameter Tested Range

Population size 100

Crossover rate 0.60

Mutation rate 0.03

Number of gene 3–6

Number of generations 10.000

Crossover type Two-point crossover

Selection method RouletteCElitist

Stopping criteria Specified by number of trials

Fitness: forecast accuracy Sums of squares

String length 30–70
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The better individuals with higher fitness remained for the next generation to form the basis of

the new population. These procedures, from (2) to (5), continue in a manner until the average fitness

of all individuals in the population show slight changes (i.e., converges). This is the

termination criterion.
13.3.5 Searching Process of an Optimal Value (Artificial Evolution Process)

Figure 13.10 shows the evolution curve in searching for of an optimal value. This process is

analogous to a biological evolution process, where individuals usually evolve toward maximization.

In this case, however, because this optimization problem is minimization, all individuals evolve

toward minimization. The horizontal axis is the generation number for evolution, and the vertical axis

is the fitness of the best individual in each generation. The fitness value corresponds to the degree of

the individual’s evolution. As shown in the figure, the fitness dramatically decreased with the

generation number and then lowered down to the minimum value at about the 70th generation
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Figure 13.11 Relationship between the solar radiation and the gross photosynthesis of the plant, obtained from
simulation of the model optimized by the genetic algorithm. The black circles are the observed
values of the gross photosynthesis. (From Sequeira, R. A., Olson, R. L., Willers, J. L. and Mckinion,
J. M. Computers and Electronics in Agriculture, 11(2,3), 265–290, 1994.)
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number. The search was stopped when the fitness continued to keep the same minimum value. The

individual that gave the minimum fitness is considered to be the optimal value.
13.3.6 Model Performance

Figure 13.11 shows the nonlinear curve, representing the relationship between the solar

radiation and the gross photosynthesis of the plant, which was obtained from simulation of the

model optimized. The black circles are observed values. It is found that the estimated nonlinear

curve is well fitted to the observed data. Off course, traditional nonlinear curve-fitting methods are

also useful for this simple optimization problem. Notice that the genetic algorithm-based curve-

fitting method is useful for more complex problems.
13.4 APPLICATIONS OF GENETIC ALGORITHMS TO DYNAMIC OPTIMIZATION

OF FRUIT-STORAGE PROCESSES

13.4.1 Dynamic Optimization Problem

Freshness retention of vegetables and fruits during storage is one of the most important

issues in the post-harvest technology. The most fundamental manipulated variable for controlling

freshness is a storage temperature.

The storage temperature is usually maintained constant at a low level. This is because the low

temperature effectively reduces microbial spoilage and water loss of the fruit. In recent years,

however, there has been much interest in heat treatments that reduce the quality loss of fruit

during storage [53,54]. It has been reported that heat treatment is effective for inhibiting ethylene

production and delaying the ripening [55–59], for controlling insect pests and reducing chilling

injury of fruit [56,60]. An intermittent heat treatment is also more effective than a single treatment

in delaying the ripening of fruit [22,61,62]. It has been also reported that heat treatment can improve

fruit quality [63–65]. This is probably due to thermotolerance of the fruit acquired by heat stress.

It is well known that the exposure of living organisms to heat stress produces several types of heat

shock proteins (HSPs) in their cells, which acquire transient thermotolerance [66,67]. Recently, the

relationships between the heat treatment and HSPs have been investigated to elucidate the effects of

heat treatment [68]. Acquiring thermotolerance may lead to the reduction of water loss of fruits

during storage [59]. It is, therefore, important to know how to apply the heat stress to the fruit in order

to minimize loss of quality. An optimal control technique will give us the solution.

Figure 13.12 shows the conceptual diagram of the dynamic optimization problem that mini-

mizes the water loss of the fruit during storage by applying the heat stress [23,25]. For realizing

optimization, the control process was divided into l steps. Hence, the optimization problem here is

to find the variable temperature profile (optimal l-step set points of temperature; T1, T2,.,Tl) to

minimize the rate of the water loss of the fruit. That is, an optimal value is given by the optimal

combination of the l-step set points for temperature. The control input is the temperature, and the

controlled output is the rate of water loss of the fruit during storage.

Let WT(k) (kZ1,2,.,N) be a time series of the rate of the water loss, as affected by temperature

T(k), at time k. An objective function, F2(T), is given by the average value of the rate of the water

loss during the last period (NL%k%N) of the control process. NL and N are the first and last time

points in the evaluation period.

F2ðTÞZ
XN

kZNL

WTðkÞ

NKNL C1
; (13.6)

Note that the rate of the water loss was evaluated at the last step (last process) of the control

process (NL%k%N) in the control process. This is because the influence of heat stress is thought to
q 2006 by Taylor & Francis Group, LLC



NL NO

1st

step

T1

T2

T1

2nd

step
l th
step

R
at

e 
of

 w
at

er
 lo

ss
Te

m
pe

ra
tu

re

Minimize

k

WT (k )

Figure 13.12 A dynamic optimization problem that reduces (minimizes) the rate of the water loss of the fruit
during storage by the l-step set-points of the temperature including heat stresses {T1, T2,.,Tl}.
Here, the optimal trajectory (l-step set-points) of the temperature is obtained.

GENETIC ALGORITHMS 421
appear at the latter half stage if heat stress was applied to the fruit during the first period of the

control process.

As for the constraint of the temperature, we found 15 and 408C as the minimum and maximum

shelf-life temperatures in Japan from previous literature [53–55] and considerations for a one-day

application of heat stress.

Thus, the dynamic optimization problem here is to find the optimal l-step set points of the

temperature (or the optimal combination of l-step set points of the temperature) that minimizes the

objective function F2(T) from among numerous output responses WT(k), obtained from simulation of

a model (here a neural-network model is used) to any combination of the l-step set points of the

temperature under the constraint of 15%T(k)%408C.

minimize F2ðTÞ

subject to 15%TðkÞ%408C
(13.7)

Had the 4-step control process been used, the combination number of the 4-step set points is

(40K5C1)4Z456,976. The use of genetic algorithms allows the best combination to be very

efficiently sought from among such numerous combinations.

13.4.2 Plant Materials and Measuring Systems

Tomatoes (Lycopersicon esculentum Mill. cv. Momotaro) were used for the experiment.

Mature green tomatoes of uniform size (about 8 cm in diameter) were stored in a storage chamber

(Tabai-espec, LHU-112M), where the temperature and relative humidity were strictly controlled by

a personal computer with an accuracy of G0.18C and G2% RH, respectively. The rate of water

loss was estimated from the weight loss in the tomato, by hanging a cage containing three tomatoes

using an electronic balance. In this case, the electronic balance was set outside of the chamber in

order to remove the effect of the temperature change. The relative humidity was maintained
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constant at 60G2% RH while only the temperature was flexibly changed based on a system control

manner. The sampling time was 10 min.
13.4.3 Definition of Individual

Because an optimal value to be obtained here is the l-step set points of temperature, an

individual can be given by the l-step set points of temperature {T1, T2,.,Tl}. They were all coded as

6-bit binary strings, which gave numerical values between 0 (000000) and 63 (111111).

Individual i Z fTi1;Ti2;.TilgZ f101010; 111000.; 010011g:

13.4.4 Definition of Fitness
As mentioned above, because fitness is similar to the objective function in conventional

optimization problems, it can be represented by Equation 13.6:

Fitness Z F2ðTÞ: (13.8)

13.4.5 Genetic Operations

A single crossover and two-point mutation were used as genetic operators. The selection of

individuals was carried out based on the elitist strategy by which an individual with minimum

fitness compulsorily remains for the next generation. However, its searching performance can

easily fall into a local optimum because only the superior individuals with higher fitness are

picked in each generation. In this study, therefore, quite different individuals (100) in another

population were added into the original population in order to maintain the diversity and obtain

a global optimal value.
13.4.6 Searching Process of an Optimal Value

Figure 13.13 shows the block diagram of the searching procedure used here:

Step 1: An initial population P(0) consisting of Ni (Z6) types of individuals is generated

at random.

Step 2: No (Z100) types of new individuals in another population are added to the original

population to maintain the diversity of the original population. Here, the other population is

independent from the original population.

Step 3: The one-point crossover and two-point mutation operators are applied to the individ-

uals selected at random. The crossover and mutation rates are 0.8 and 0.6, respectively.

Through these operations, N (ZNiCNoCNcCNmZabout 1500) types of individuals

are obtained.

Step 4: The fitness values of all individuals are calculated using the identified neural-network

model and their performances are evaluated.

Step 5: Ns (Z300) types of superior individuals (individuals with higher fitness) are selected

and retained for the next generation based on the elitist strategy.

Step 6: Steps 2–5 are repeated until the fitness continues to keep the same maximum value

with increasing generation number. An optimal value is given by an individual with

maximum fitness.
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13.4.7 An Intelligent Control System for Dynamic Optimization

In this study, dynamic optimization of heat treatment for reducing the water loss in fruit

during storage was investigated using an intelligent control technique combining with neural

networks (simulation model) and genetic algorithms.

Figure 13.14 shows the block diagram of a control system for realizing the optimization

(minimization) of the rate of water loss of fruit as affected by temperature during the storage

process [16,18,23,25]. It consists of a decision system and a feedback control system. The decision

system, consisting of neural networks and genetic algorithms, determines the optimal set point

trajectory of the temperature. In the decision system, the rate of water loss, as affected by
Decision system

Search for optimal
setpoints

New
setpoint

Genetic algorithm

Identification

Neural network

FruitsEnviron-
ment

Con-
troller

eSet
point +

−

Feedback control system

Fruit
responses

Figure 13.14 The block diagram of an intelligent control system for realizing the optimization of the water loss of
fruit as affected by the temperature during the storage process.
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temperature, is first identified using the neural network, and then the optimal combination of the

l-step set points of the temperature that minimize the objective function is searched for through

simulation of the identified neural-network model using the genetic algorithm. The genetic algo-

rithm is used for searching for the best individual (optimal combination of the l-step set points of the

temperature is equal to the input signal) from among numerous trials obtained from simulation of

the neural-network model.

It was found that if these two procedures, identification and the search for an optimal value, are

repeated periodically during the storage process to adapt to the time variation of the physiological

status of the fruit, then both optimization and adaptation can be satisfied.
13.4.8 Dynamic Responses of the Rate of Water Loss

First, dynamic responses of the rate of water loss were observed in order to confirm the

effect of heat stress. Figure 13.15 shows a typical response of the rate of water loss as affected by the

temperature. The temperature was first increased from 25 to 35 to 408C and then decreased from 40

to 35 to 258C, respectively. Comparing to the two values of the rate of water loss at the same

temperature, before increasing and after dropping the temperature, it is found that the values after

dropping the temperature are lower than those before increasing the temperature at both the 25 and

358C conditions. These results suggest that a temperature operation that first rises to the high level

(35 to 408C) and then drops to the prior level has a tendency to reduce the rate of water loss, as

compared to when the temperature was maintained constant throughout the control process.

Figure 13.16 shows eight types of dynamic changes in the rate of water loss (controlled output) as

affected by temperature (control input) for about 192 h. These data are applied for identification using

neural networks. A black box model (dynamic model), representing the dynamic relationship
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Figure 13.16 Eight types of dynamic changes in the rate of the water loss, as affected by temperature.
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between the temperature and the rate of water loss, is built through identification. That is, these data

are all training data sets for the neural network. The temperature was flexibly changed between 5 and

408C to identify clearly the dynamics of the rate of water loss as affected by temperature. Short-term

heat stresses of 408C for about 24 h were included in several temperature operations. From the figure,

it is found that, in all cases, the rate of water loss dynamically changes with the temperature.
13.4.9 Identification of the Rate of Water Loss to Temperature Using
the Neural Network

Next, the training data in Figure 13.16 are identified using the neural network in order to

make a dynamic model for simulation. The system parameter number and the hidden neuron

number of the neural network were determined based on the cross-validation.

Figure 13.17 shows the comparison of the estimated response, calculated from the neural

network model, and the observed response for the rate of water loss. A testing data set, which is

quite different from the training data sets, shown in Figure 13.7; was used for this comparison. It

was found that the estimated response was closely related to the observed response. This means that

a suitable search simulator was found for obtaining an optimal value.

Figure 13.18 shows the estimated relationship between the temperature and the rate of water

loss of a tomato, calculated from the simulation of the identified neural-network model. Open

circles represent real observed data. The rate of water loss increases with temperature. In the

range over 358C, it has a tendency to decrease with temperature. This means that the water loss
q 2006 by Taylor & Francis Group, LLC
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was significantly suppressed by high temperature. Thus, it is found that the relationship between

temperature and the rate of water loss is nonlinear.

13.4.10 Searching Process of an Optimal Value

As mentioned earlier, 24 h was selected as the heat–stress application time, which means

one step for dynamic optimization. Here, the length of the control process for optimization was six

days, so it was divided into six steps.

Next, the optimal combination of the 6-step set points for temperature that minimized the

objective function was searched for through simulation of the identified neural-network model

using the genetic algorithm. In this method, the optimal combination was selected from among
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Figure 13.18 The static relationship between the temperature and the rate of the water loss, obtained from
simulation of the identified model.
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numerous responses of the rate of water loss, as affected by any 6-step set point trajectory of the

temperature, obtained from simulation.

Figure 13.19 shows the searching process for an optimal value under the different crossover and

mutation rates. The horizontal axis is the generation number for evolution and the vertical axis is

the fitness of the best individual in each generation. As shown in the figure, the fitness dramatically

decreased with the generation number and then lowered down to the minimum value. The search

was stopped when the fitness continued to keep the same minimum value and that individual was

considered to give the minimum fitness as an optimal value.

It was also found that the convergence speed was larger for the higher crossover and mutation

rates (PcZ0.8 and PmZ0.6) than for the lower crossover and mutation rates (PcZ0.1 and PmZ
0.01). The fitness could not decrease to the minimum value and fell into a local optimum when the

crossover and mutation rates decreased to lower values. The searching performance usually

depends on the diversity of the population [16,20]. A global optimal value could be obtained if

the diversity in the population was always maintained at a high level in each generation. Higher

crossover and mutation rates were shown to be effective in keeping a higher diversity in the

population, but excessively high crossover and mutation rates are time consuming. The values of

PcZ0.8 and PmZ0.6, which were determined through a trial and error, were high enough to avoid a

local optimum. It is also effective to add new individuals generated in another population to

maintain the diversity of the population.

As mentioned in Section 13.2.8, there is no guarantee that genetic algorithms yield a global

optimal solution. It is, therefore, important to confirm whether the optimal value is global or local.

Here, the confirmation was mainly carried out using a round-robin algorithm, which systematically

searches for all possible solutions around the optimal solution at the proper step. This is because a

near-global optimal solution can at least be obtained by genetic algorithms. An optimal solution

was confirmed with a different initial population and different methods of crossover and mutation.

Through these procedures, a global optimal solution was confirmed.

Through these investigations, we had two optimal values, under different evaluation lengths of

the control process. For example, when the evaluation length was at the latter half stage of the

control process, a single heat stress application of 408C during the first 24 h, TlZ{40, 15, 15, 15, 15,

158C} was found to be an optimal value. The length of each step is 24 h. A double heat stress

application, TlZ{40, 15, 40, 15, 15, 158C}, was also found to be an optimal value when the

evaluation length was restricted to the final step (only the last two stepsZ2 days) of the control

process. Two optimal values (single and double heat stresses) were characterized by the
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combination of the highest temperature (408C) and the lowest temperature (158C) and the rapid rise

and drop operations of the temperature.
13.4.11 Optimal Control Performances in a Real System

Finally, the optimal values for single and double heat stresses obtained were applied to a real

storage system. Figure 13.20 shows an optimal control performance of the rate of water loss when an

optimal value (a single heat stress; TlZ40, 15, 15, 15, 15, 158C) was applied to the fruit. The bold line

shows the case of optimal control, and the fine line shows the case of a constant-temperature TlZ{15,

15, 15, 15, 15, 158C}. The initial temperature was kept at 158C for 24 h and then the optimal control

started. The 6-day control process from 24 to 168 h was divided into six steps. In this case, the

evaluation length was the latter half step of the control process (96K168 hZ3 days), and the

constraint of the temperature was 15%T%408C. It was found that, after the single heat stress

application, the rate of water loss became lower in the optimal control than in the constant-

value control.

Figure 13.21 shows an optimal control performance of the rate of water loss when an optimal

value (double heat stresses; Tl Z40, 15, 40, 15, 15, 158C) was applied to the fruit. The bold line

shows the case of the optimal control, and the fine line shows the case of a constant-temperature

(TlZ{15, 15, 15, 15, 15, 158C}). In this case, the evaluation length was only the last two steps of the

control process (120K168 hZ2 days), and the constraint was 15%T%408C. The initial tempera-

ture was kept at 158C for 24 h and then the optimal control started.

From the optimal control performance, the rate of water loss after the second heat stress (double

heat stress) is lower than that after the first heat stress (single heat stress). Thus, the rate of water

loss had a tendency to decrease after each application of the heat stress. After the double heat

stresses, therefore, the value becomes much lower than that in the constant-value control. However,

the degree of reduction caused by the heat stress decreases with the application number of the heat

stress. In addition, the values of the rate of water loss during the second heat stress application were
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Figure 13.20 An optimal control performance of the rate of the water loss when the evaluation length is the latter
half stage of the control process (96–168 h) under the temperature range (15%T(k)%408C).
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much lower than that during the first heat stress application. This is because the first heat stress

significantly suppressed the water loss of the fruit. It was confirmed that this significant reduction

after the second heat stress application continues for at least 3 or 4 more days from

other experiments.

In this study, we focused on the rate of water loss, not the total amount of water loss, in order to

apply a dynamic control for optimization. This is because the rate of water loss, against the

temperature, is more sensible and controllable than the amount of the water loss. It is also clear

that, since the total amount of water loss is obtained by integrating the rate of water loss, the

response speed is always slow.

The reduction of the water loss caused by the heat stress suggests that the heat–stress fruits

acquired a transient thermo-tolerance. Controlling temperature, so that it first rises to the highest

level and then drops to the lowest level, seems to be especially effective at reducing the water loss

of the fruit during storage, as compared with 158C constant control.

These results suggest that genetic algorithms are very useful for dynamic optimization of plant

production systems, and a control method that changes flexibly and optimally on the basis of fruit

responses is a better way to maintain fruit quality during storage than a conventional control manner

that simply maintains the temperature at the lowest level.
13.5 CONCLUSIONS

Biological systems are usually characterized by complexity and uncertainty. They have

complex properties such as the strong nonlinearity, time variation, large scale, and so on in their

systems. It is, therefore, very difficult to solve optimization problems of such systems. Intelligent

approaches such as fuzzy reasoning, neural networks, and genetic algorithms are useful for dealing

well with such complex systems.

Genetic algorithms are a class of heuristic and iterative search techniques based on the

mechanics of biological evolution. Their procedures are biological, probabilistic, flexible, heuristic,

iterative, and trial-and-error based.
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In this section, the basic concept of the genetic algorithms was first introduced and then applied to

two optimization problems in the area of bio-production, model parameterization and dynamic

optimization of the fruit storage process. The former is the determination of the optimal values of

several parameters used in a photosynthetic model, given by a mathematical equation, and the latter is

the minimization of the water loss of the fruit during storage by the control of the storage temperature.

In both cases, their global optimal values (or near-global ones) could be rapidly and successfully

obtained, in parallel with a multi-point search procedure brought by the genetic operators, even in

case of a very large and complex objective function, without falling into local optima.

It is, therefore, suggested that the genetic-based optimization technique such as genetic algo-

rithm might be the best problem solver for any types of optimization problems because living

organisms on earth have acquired many excellent functions for survival, adaptation and evolution,

and also have overcome many struggles for existence using this method. The genetic algorithms

need only the objective function (fitness value) to guide its search direction. There is no require-

ment for derivatives or other knowledge. These are major features of the genetic algorithms.

Experimental results showed that the genetic algorithm outperforms other traditional mathematical

approaches. Thus, it can be seen that the genetic algorithms can be applicable to any type of

optimization problems.

However, it is also important to know the drawbacks of genetic algorithms. There is no

guarantee to always yield a global optimal solution because of their probabilistic rules, not deter-

ministic ones. It is, however, observed that a near-global optimal solution can be at least obtained

using genetic algorithms. Thus, it is important to confirm a global optimal solution using

other methods.

Finally, it can be concluded that the genetic algorithms are practical and effective tools for

solving optimization problems in the complex systems such as the crop, food, and bio-production

systems to which mathematical (or analytical) approaches are not easily applied. They are appli-

cable to a wider class of optimization problems.
13.6 FUTURE TRENDS AND POTENTIAL DEVELOPMENT

In recent years, complexities and uncertainties of food and bio production systems have

increased as consumer demands for better quality heighten and their control systems have

reached large scale, aiming at more effective methods. The development of a more effective

optimization technique for such complex systems is severely required.

Genetic algorithms have a high ability to find a global optimal value even in the complex

objective function, without falling into local optima. They are also useful for both continuous

and discrete optimization problems. Therefore, the genetic algorithms are applicable to any

types of optimization problems to which traditional mathematical approaches are not easily applied.

Genetic algorithms are also able to create a new organism (new control method or new control

system) through crossover and mutation. So, they are applicable to a self-organization system such

as a protein synthesis based on the base sequence in a gene level.
APPENDIX

International Conferences on Genetic Algorithms

In recent years, many international conferences on genetic algorithms have been held in the

world. International Conference on Genetic algorithms (ICGA) organized by the International

Society on Genetic Algorithms has been held every two years since 1985. Annual Conference

on Evolutionary Programming (EP) organized by the Evolutionary Programming Society has been
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held at Indiana police every year since 1992. IEEE Conference on Evolutionary Computation has

also been held at Indiana police every year since 1994.
NOMENCLATURE AND GLOSSARY

Chromosome Each variable (or parameter), represented by binary digit strings, in an individual.

Crossover A genetic operator for swapping corresponding components of the binary strings in
q 2006 by T
the two individuals, by which the features of two individuals (two parents) are combined

and two new individuals (two offspring) are generated.
Elitist strategy One of selection methods, where the best individual with highest fitness is
compulsively copied and remained for next generation with no operations of crossover

and mutation in each generation.
Fitness An indicator for measuring individual’s quality for survival, which is equal to an objec-
tive function in a conventional optimization problem.
Gene One character (0 or 1) in a variable (chromosome) represented by binary digit strings.

Individual One possible solution (a candidate for an optimal value) to the problem, which
consists of several chromosomes.
Mutation A genetic operator for inverting one or more components of the binary strings from 0 to
1 or vice versa.
Population A set of individuals.

Population size The number of individuals in a population.

Roulette wheel selection (proportional selection) Fundamental selection method, where indi-
viduals are probabilistically selected and reproduced in proportion to their slot sizes in the

roulette wheel which correspond to their fitness values.
Selection A genetic operator for choosing and reproducing excellent individuals for crossover
and mutation.
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14.1 INTRODUCTION

Fractal analysis is mainly applied when other methods fail or become tedious to solve complex

or chaotic problems. Many natural patterns are either irregular or fragmented to such an extreme

degree that Euclidian or classical geometry could not describe their form (Mandelbrot 1977, 1987).

Any shape can be characterized by whether or not it has a characteristic length (Takayasu 1990).

For example, a sphere has a characteristic length defined as the diameter. Shapes with characteristic

lengths have an important common property of smoothness of surface. A shape having no charac-

teristic length is called self-similar. Self-similarity is also known as scale-invariance, because self-

similar shapes do not change their shape under a change of observational scale. This important

symmetry gives a clue to understanding complicated shapes, which have no characteristic length,

such as the Koch curve or clouds (Takayasu 1990). The idea of a fractal is based on the lack of
435
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characteristic length or on self-similarity. The word fractal is a new term introduced by Mandelbrot

(1977) to represent shapes or phenomena having no characteristic length. The origin of this word is

the Latin adjective fractus meaning broken. The English words “fractional” and “fracture” are

derived from this Latin word fractus, which means the state of broken pieces being gathered

together irregularly.

Most branches of science and engineering are now using fractal analysis for characterizing

natural or synthetic particles, complex physical or chemical processes, and complex signatures of

instruments. Peleg (1993) and Barrett and Peleg (1995) reviewed the applications of fractal analysis

in food science. These included particulates characterization, non-linear kinetics, agglomeration

and crystallization, mixing of viscous liquids, diffusion in non-uniform media, and characterizing

jagged signatures. Fractal dimensions have been successfully used to describe the ruggedness and

geometric complexities of both natural and synthetic particles (Peleg and Normand 1985; Yano and

Nagai 1989; Nagai and Yano 1990; Graf 1991; Barletta and Barbosa-Canovas 1993; Peleg 1993;

Rahman 1997). Peleg (1993) also applied fractal geometry in the study of the shape of broccoli.

Similarly, fractal analysis has also been applied to characterize native and physically or chemically

transformed food particles. Fractal analysis can predict the efficiency of the transformation process

and food particle properties, such as adsorption capacity, solubility, puffing ability, chemical

reactivity, and emulsifying ability to optimize food ingredient selection for product development

and process design (Rahman 1997). Applications have also been made in studying textural proper-

ties of foods (Barrett et al. 1992; Rohde, Normand, and Peleg 1993; Barrett and Peleg 1995).

Examples are: acoustic signature analysis of crunchy food (Peleg 1993), image analysis (Barrett

et al. 1992; Peleg 1993), analysis of the cell size distribution of puffed corn extrudates (Barrett and

Peleg 1995), fractal reaction kinetics (Kopelman 1988), diffusion in fractal surfaces (Nyikos and

Pajkossy 1988); gel strength by rheology and fractal analysis (Bremer, van Vliet, and Walstra

1989); pore size distribution for porosimetry data (Ehrburger-Dolle, Lavanchy, and Stoeckle

1994); and moisture sorption isotherms (Suarez-Fernandez and Aguerre 2000). The fractal dimen-

sions of solid surfaces are known not to be constant but to range from 2 (flat) to 3 (volume-filling).

They depend not only on the composition of the material but also on how it was produced. This

fractal property has a strong influence on the efficiency of chemical reactions since most chemical

reactions take place on the surface and the higher the dimension, the greater the efficiency.
14.2 FRACTAL BASIC

The properties of fractals can be summarized as: (i) no characteristic length within the lower

cutoff and upper cutoff; (ii) self similarity, which means fractal objects can be decomposed into

parts, each obtainable from the whole by a similitude (fractal dimension is not same as the Eucli-

dian dimension, i.e., dsd); (iii) scale invariance; (iv) power law relation is valid; and (v) d is a

global characteristic of the system. Because dealing with fractal objects requires a computer,

Mandelbrot’s success in popularizing the concept of fractal geometry was overwhelming as

powerful microcomputers became widely available (Peleg 1993). If self-similarity is maintained

over a limited but pertinent range of length scales, fractal geometry can be effectively used to

describe this range without causing conceptual concerns.
14.3 FRACTAL DIMENSION

14.3.1 What Is Fractal Dimension?

In classical Euclidian geometry a point has a zero dimension, a line one, an area two, and a

volume three. In physics time axis is often added and as much it is considered that space-time is
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four-dimensional. All these empirical dimensions take integer values. Defining fractal dimension is

no problem, but a basic difficulty occurs when applying them in real physics or systems (Takayasu

1990). The mass contained in a sphere of radius r varied as:

mf rd (14.1)

where m is the mass (kg), and r is the radius (m), respectively. In the case of spheres one-dimension

can predict the mass, but the mass of a rectangular varies in two directions. Thus rectangle mass is

not self-similar only in one direction and it can be characterized by two exponents c and d. So the

mass in rectangular geometry of sizes a and b in x and y directions as:

mfAac CBbd (14.2)

Similarly the mass of ellipsoid bodies can vary in 3 directions. A rugged line is shown in

Figure 14.1. The fractal dimension can be between 1 and 2. It is obvious that the greater the

tortuosity of the line, the higher its fractal dimension above one.
14.3.2 Estimation of Fractal Dimension

Takayasu (1990) identified five methods to define dimension: (i) changing coarse-graining

level; (ii) using the fractal measure relations; (iii) using the correlation function; (iv) using the

distribution function; and (v) using the power spectra or spectrum. The dimensions obtained by

different methods may differ from each other. In some cases they agree but in other cases they

differ; this is a basic and difficult problem in applying fractal analysis.
14.3.2.1 Changing the Coarse-Graining Level

A complicated curve is shown in Figure 14.1. Let one edge of the curve be the starting point and

from there we can draw a circle of radius r. Then connect the starting point and the point where the

circle intersects the curve by a straight line. The intersection can be considered as a new starting

point and the above procedure can be repeated until it comes to the other edge. Then the number of

segments N(r) can be approximated to the curve and N(r) depends on the unit length segments r. If

the curve is a straight line, then the number of segments depends on:

Nf
1

r
Z rK1 (14.3)

The exponent 1 of r in the above equation also agrees with the dimension of a straight line.

When r is larger, then tiny rugged curvatures of the curve are not noticed. Thus for a rugged curve it

can be written as:

NfrKd (14.4)

where d is the fractal dimension which characterizes the ruggedness of the curve. An adsorption of a

monolayer of identical molecules on the surface can be used to characterize the fractal surface of
Figure 14.1 A complicated curve. (From Rahman, M. S., Handbook of Food Properties, Boca Raton, FL: CRC
Press, 1995.)
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Figure 14.2 (a) Number of gas moles is lower; (b) number of gas moles is higher. (From Rahman, M. S.,
Handbook of Food Properties. Boca Raton, FL: CRC Press, 1995.)
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porous structures. Usually the number is expressed as number of moles per gram of adsorbent. The

number of monolayer values will vary with the size of the adsorbate molecule as shown in

Figure 14.2. There is a lower cutoff and an upper cutoff molecular size, between which the

number of molecules will vary. Thus the adsorption of gas molecules can be used to characterize

the surface of the solid matrix.
14.3.2.1.1 Richardson’s Method

Richardson (1961) proposed a structured walk procedure for characterizing the fractal dimen-

sion of a rugged boundary. A series of polygons of side x are constructed on the perimeter using a

pair of compasses (Figure 14.3). The perimeter of a fractal shape can be measured many times with

many different scales of measurement. The scale of measurement is called the stride length. Larger

stride lengths give a lower perimeter, written as:

p Z nx Cg (14.5)

In dimensionless form, the above equation can be expressed as:

x Z nl C
g

L
(14.6)

A plot of x against l on a log–log graph yields a straight line of slope s where sZ1Kdr or drZ
1Ks. The relationship of dr equal to 1.0 indicates the smoothness and higher values of dr indicates

the ruggedness or roughness of the boundary. A log–log plot of stride length versus perimeter is

called a Richardson plot. The fractal dimension, dr is the morphometric ruggedness of a particle
x=2

x=8 x=
6

x=7x=9

x=10

x=
11

x=1

x=5

x=4
x=3

g

l

Figure 14.3 Characteristics of Richardson’s method; l is maximum Feret’s diameter or length of profile, g is the
length of final step. (From Rahman, M. S., Handbook of Food Properties. Boca Raton, FL: CRC
Press, 1995.)
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boundary, which can be estimated by Richardson’s method. In many cases, particles may have two

fractal components with two linear segments having two different slopes (Graf 1991). The linear

segment corresponding to large stride lengths is called the structure, and the linear segment corre-

sponding to small stride lengths is called the texture (Kaye 1989). The value of critical stride length

can only be predicted by visualization of the Richardson plot. Photographs from Scanning Electron

Microscope (SEM) analysis can be used to construct Richardson plots. The Richardson method

provides a quantitative measure of the ruggedness of the particle boundary. Fractal dimensions

estimated by Richardson method varied from 1.02 to 1.10 for native and modified starch (Rahman

1997), and from 1.06 to 1.10 for instant coffee particles (Peleg and Normand 1985). Higher values

indicate more ruggedness or roughness of the boundary, which was corroborated by scanning

electron microscopy of native and modified starch. There are objects whose morphology does

not have true self-similarity on any scale, but whose Richardson plot is still linear. In such a

case the slope can be used to determine a natural or apparent fractal dimension whose magnitude

only serves as a measure of jaggedness or ruggedness on a scale from 1.0 (smooth) to 2.0 (the upper

theoretical limit) (Rohde, Normand, and Peleg 1993).

14.3.2.1.2 Other Algorithms Similar to Richardson’s Method

Brittle foods, such as puffed cereals and extrudates have very irregular and irreproducible

strain-stress relationships (Figure 14.4). The fractal dimensions of digitized experimental force–

displacement curves of cheese balls were determined with the Richardson, Mikowski, Kolmogirov,

and Korcak algorithms (Borges and Peleg 1996). These algorithms used by the authors were

described and explained in great detail by Hastings and Sugihara (1993) and Russ (1994). The

Richardson method is based on calculating the jagged signature’s length as the sum of linear

segments, which progressively decrease in size at each iteration. The relationship between the

line length at each iteration and the corresponding segment size in algorithmic coordinates is

known as the Richardson plot. The apparent fractal dimension of the original line is the absolute

magnitude of the slope of its Richardson plot plus one. Kolmogorov is based on counting the

number boxes filled by rugged lines. The boxes on the plane where at least one point belongs to

the jagged signature can be found as the box size progressively diminishes at each iteration. The

Kolmogorov dimension is calculated from the slope of the number of filled boxes versus the box

size (or number of boxes) in the logarithmic coordinates. The Minkowski method is akin to the

Richardson algorithm and it is based on covering the signature by a chain of circles whose diameter

diminishes at each iteration. The line’s length at each iteration is calculated from the circles’

combined area. The calculated signature length versus the corresponding circle size is plotted in

logarithmic coordinates. The slope of the resulting line provides the original signature’s fractal

dimension. The Korcak method is based on determining the cumulative distribution of segments
Figure 14.4 Force–time graph for a brittle food.
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longer than a chosen size which are formed when the signature intersects a baseline. For a true

fractal signature, the plot of the cumulative number versus the changing size in logarithmic coor-

dinates converges to a straight line whose slope provides the fractal dimension. For all these

algorithms the force column of each data file can be transformed in the “Fractal” program which

is provided with Russ (1994). The files were analyzed to determine their apparent fractal dimension

with the Richardson, Kolmogorov, Minkowski, and Korcak algorithms, all of which are standard

options in the program. Borges and Peleg (1996) found all four methods, but especially the first

three, produced a consistent dimension despite the fact that the curves themselves were not truly

fractal. Similarly Damrau, Normand, and Peleg (1997) determined the fractal dimensions of jagged

force–displacement signatures using these algorithms.

The fractal dimension of a jagged line can be determined in more than one way (Barnsley 1988).

One of the more convenient methods is based on the blanket algorithm (Normand and Peleg 1988;

Barrett et al. 1992). According to this method, the processed image is covered by a blanket with a

thickness that increases stepwise. The surface area of the image is calculated at each step by

dividing the blanket’s volume by its thickness and the equivalent of a Richardson plot can be

constructed from these data. The same can be done for a one-dimensional image (line). In this case,

the line length is calculated by dividing the area of the formed coated image by the thickness at each

step (Normand and Peleg 1988). Application of the blanket algorithm to mechanical signatures first

involves fitting the force–deformation relationship to a polynomial or other function that describes

its general shape and then subtracting the fitted function from the original data. The difference

between the two curves exclusively represents the jaggedness of the relationship (Barrett and Peleg

1995).

Barletta and Barbosa-Canovas (1993) determined the fractal dimension of agglomerated food

powders by image analysis, which provided particle contour. They used fast, hybrid, and exact

procedures to obtain the profile perimeter using several stride lengths. Detailed descriptions of the

above procedures are discussed by Clark (1986). Each method specifies a different algorithm to

trace the contour from a file containing a string of coordinate points that represent the outline of the

profile. Once the data of the perimeter and yardstick in dimensionless units are available, the next

step is to find the range of scrutiny under which contour showed a self-similar curve. This was done

by scanning several ranges of dimensionless units (based on the maximum feret’s diameter) and

performing linear regressions.

There are various techniques to determine the fractal dimension of an object’s surface from its

digitized image (Peleg 1993). The latter can be a micrograph or a photograph taken with or without

magnification. The basis of most, if not all, of these methods is to convert the pixel gray level into a

numerical value to which various algorithms can be applied (Peleg et al. 1984; Gagenpain and

Rogues-Carmes 1986; Normand and Peleg 1986; Liao, Cavalieri, and Pitts 1988; Bartlett 1991). In

principle, the algorithms are similar to those used to determine the fractal dimension of jagged

lines, except that the image, or map, is three-dimensional; with the axes usually assigned to the gray

level (usually Z) and to the pixel coordinates (X,Y) (Peleg 1993). The inherent drawback of this

method is the fact that the gray level of the pixels is determined not only by the physical features of

the surface itself but also by the illumination intensity and the specimen’s orientation relative to the

illumination source (true in electron as well as light microscopy). Thus, the distinction between the

real surface morphology and induced shadows can sometimes be difficult. In principle, there are

ways to resolve images that eliminate such ambiguities, one of which is to reconstruct a truly

stereoscopic image using more than one photograph of the same object or site taken at different

angles (Peleg 1993). Normand and Peleg (1986) measured the fractal dimension of agglomerate

coffee using an image processing technique. From the digitized image, the fractal dimension can be

calculated by the box counting method (Kaye 1989). The steps are as follows:

1. A square mesh of a certain size L is laid over the object on the digitized image.

2. The number of mesh boxes N that contain part of the image is counted.
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3. The slope is calculated for the slope of logarithmic plot of N versus L.

4. The fractal dimension can be calculated from: dZslopeC1.

Hagiwara et al. (1997) used computer software for fractal analysis based on the box counting

method (Bourke 1993). Similarly Pedreschi, Aguilera, and Brown (2000) and (2002) performed

length-scale and area-scale analyses, two of the scale-sensitive fractal analyses, by the software

Surfrax (www.surfract.com). The data of food surfaces were measured with a scanning

laser microscope.

Rohde, Normand, and Peleg (1993) developed symmetrized-dot pattern (SDP) from force–time

curves of brittle food. It was demonstrated that although the original force–time relationships were

irregular and irreproducible, consistent patterns and values did emerge in the transformed data. It

has long been known that humans are particularly sensitive to symmetric patterns. This has led to

the development of a data presentation method known as a SDP (Pickover 1990). It was originally

used in speech analysis by transforming the irregular acoustic signature into an image resembling a

snowflake. Basically, the method consists of duplication of the original pattern along a selected

number of symmetry axes (i.e., six in a snowflake-like image) and addition of a mirror image of

each duplicate across its corresponding symmetry axis. It is roughly equivalent to a computerized

kaleidoscope. This form of data is aesthetically appealing, but it does not add any information not

already contained in the original signature (Rohde, Normand, and Peleg 1993).
14.3.2.2 Using a Fractal Relation

In the literature there are numbers of scaling equations available to determine the fractal

dimensions, which characterize a process or material. In this case, experimental data can be used

to determine the fractal dimensions. In this section selected examples are presented.
14.3.2.2.1 Scaling Equation to Characterize Gel based on Permeability

Bremer, van Vliet, and Walstra (1989) developed a scaling equation to characterize gel

structure from permeability measurements through the gel. In a gel each lattice site in a cluster

is occupied with either a particle or a volume element of solution. The number of lattice sites

occupied by a particle is:

Np Z
R

r

� �d

(14.7)

where Np is the number of lattice sites occupied by a particle, R is the radius of the fractal cluster,

and r is the radius of one lattice site, which can be equal to the radius of one primary particle if a

lattice site is of the same size as the particle size. The number of lattice sites (Na) that have been

taken by an aggregate for a three-dimensional lattice are related as follows:

Na Z
R

r

� �3

(14.8)

The above relation is limited to R/r[1. The volume fraction of particles (fa) in an aggregate

can be expressed as:

fa Z
Np

Na

Z
R

r

� �dK3

(14.9)
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The sum of all sites occupied by the individual fractal aggregates will be equal to the total

number of lattice sites in the gel:

Xn

iZ1

Nai Z NT (14.10)

Xn

iZ1

faiNai Z fpNT (14.11)

where fp is the overall volume fraction of the particles and n is the total number of aggregates.

From Equation 14.10 and Equation 14.11, the overall volume fraction of particles can be written as:

fp Z

Pn

iZ1

ðRiÞ
d

rdK3
Pn

iZ1

ðRiÞ
3

(14.12)

fp Z
Rav

r

� �dK3

(14.13)

The above equation describes a relationship between the overall volume fraction and the

average size of the clusters in a gel, given a fixed value of the fractal dimension. Rav is the

three-dimensional average cluster radius such that:

Rav Z

Pn

iZ1

ðRiÞ
3

Pn

iZ1

ðRiÞ
d

2
664

3
775

1=ð3KdÞ

(14.14)

If a gel consists of fractal clusters, the gel will be scale invariant. The fractal dimension can be

determined by measuring the permeation (Bremer, van Vliet, and Walstra 1989). The flux through

the ith fractal structural element can be written from Poiseuille’s law as:

Qif ðRiÞ
4 (14.15)

The flux through the gel in the case of a constant pressure gradient can be scaled as:

Qf
Xn

iZ1

Qif
Xn

iZ1

ðRiÞ
4 (14.16)

The above equation considers the number of pores in the gel as constant. The absolute size of

pore surface area in gel scale can be expressed as:

Sf ðRiÞ
2 (14.17)

Permeability from Darcy’s law can be written as:

kf
Q

S
f

Pn

iZ1

ðRiÞ
4

Pn

iZ1

ðRiÞ
2

NðRavÞ
2 (14.18)

If the cluster size distribution is self-preserving during the aggregation process then R42fR3D,

Equation 14.13, Equation 14.14 and Equation 14.18 can combine as:
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k Z
r2

t

� �
ðfpÞ

2=ðdK3Þ (14.19)

where t is a constant, comparable with the tortuosity factor in the Kozeny–Carman equation. The

above equation gives a relation between the structure of the gel (fractal dimension), volume fraction

of the particles in the gel, size of these particles and permeability of the gel. Bremer, van Vliet, and

Walstra (1989) plotted log k versus log fp for a casein gel and observed a straight line with a slope

of K2.6. The fractal dimension of the casein gel was 2.23 before significant microsyneresis.

14.3.2.2.2 Scaling Equation to Characterize a Gel from Rheology

Bremer, van Vliet, and Walstra (1989) derived a relation between the modulus and the volume

fraction of particles to determine fractal dimensions of a gel. The modulus of a gel network can be

written as:

G Z
Xn

iZ1

NiCi

d2A

dx2

� �

i

(14.20)

where G is the modulus of the network, x is the direction of applied force, N is the number of stress

carrying strands per unit cross sectional area perpendicular to x, dA is the change in Gibbs energy

when the particles in the strands are moved apart over a distance dx and C is the characteristic

length. The term Ci(d
2A/dx2)i can be considered constant for varying concentrations at the time at

which G is measured. In this case:

GfNi (14.21)

In a fractal network due to scale invariance the number of stress-carrying strands per unit cross

sectional area can be scaled as:

Nf
1

S
f

1

R2
(14.22)

Combining Equation 14.21 and Equation 14.22 the modulus can be written as:

Gf
1

R2
(14.23)

From the above equation which can be transformed to:

R Z af1=ðdK3Þ
p (14.24)

the final equation for a modulus can be written as:

Gff2=ð3KdÞ
p or G Z Kf2=ð3KdÞ

p (14.25)

where K is a constant independent of the volume fraction but dependent on the size of primary

particles and on the interactions between these particles. From the slope of a plot log G versus

log fp, the fractal dimension of a gel can be estimated. The fractal dimension estimated for

Na-caseinate and skimmed milk (rennet induced) are 2.23 and 2.17, respectively (Bremer, van

Vliet, and Walstra 1989). Shih et al. (1990) developed the scaling equation depending on the

strength of the links between the neighboring flocs compared to that within the flocs. The links

are classified into two types: strong-links and weak-links. In the strong-link regime, the links

between neighboring flocs have a larger elasticity than those within the flocs. For the gel with a

strong-link, the dependence of the elasticity E with concentration is described as:

Effð3CxÞ=ð3KdÞ
p (14.26)
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where d is the fractal dimension of the flocs (d%3), and x is the backbone fractal dimension of the

flocs, which varies between 1.0 and 1.3. On the other hand, in the weak link regime, the links in the

flocs have a larger elasticity than those between the neighboring flocs: for the gel with a weak-link,

the dependence of the E on particle concentration can be expressed as:

Eff1=ð3KdÞ
p (14.27)

Hagiwara et al. (1997) estimated the fractal dimension of protein gels from rheology and image

analysis of laser microscopy photographs and found similar results. Similarly, Marangoni and

Rousseau (1996) determined the fractal dimension of plastic fat crystal network from scaling

equation from rheology. Other scaling equations were developed for coagulation formation with

time as a function of processing time (Jullien and Botet 1987), measuring the transport of elastic

waves or solute or solvent along a fractal structure (Pfeifer, Avnir, and Farin 1984; Jullien and Botet

1987), aggregation of colloidal silica by x-ray scattering techniques (Cannell and Aubert 1986),

x-ray scattering of porous bodies (Bale and Schmidt 1984), turbidity data of gels (Bremer, van

Vliet, and Walstra 1989), flocculation and gel formation process (Kolb et al. 1986), yeast floccula-

tion (Davis and Hunt 1986), energy requirements in solid grinding processes (Suzuki and Yano

1989), gas adsorption processes (Pfeifer and Avnir 1983; Pfeifer, Avnir, and Farin 1984), and

antigen-antibody binding kinetics on biosensors (Sadana and Ram 1994). Hongsprabhas, Barbut,

and Marangoni (1999) determined the fractal dimension from the scaling equation based on

rheology and image from scanning and transmission electron micrographs; they found both the

methods provided similar fractal dimensions.
14.3.2.2.3 Scaling Equation for Pore-Size Distribution

Pfeifer and Avnir (1983) derived a scaling equation for pore size distribution as:

dVv

drv

f ðrvÞ
2Kdv (14.28)

The fractal dimension can be estimated from the slope of the plot of log(dVv/drv) versus log rv.

In terms of applied pressure the scaling equation can be written as (Ehrburger-Dolle, Lavanchy, and

Stoeckle 1994):

dVv

dP
fPdvK4 (14.29)

The data (dVv/dP versus P) for the above relationships (Equation 14.28 and Equation 14.29)

could be generated from the mercury porosimetry. The fractal dimension dv is the characteristic size

distribution of micropores in particles of the same size. Pore size distribution method provides the

characteristics of micropore formation in the particle. Two or three linear portions can also be

observed in the plot of log(dVv/drv) versus log rv. Initial and final segments indicate the mechanical

properties of the solid and the fractal dimension can be higher than 3. Ehrburger-Dolle, Lavanchy,

and Stoeckle (1994) observed three linear sections in log(dVv/dP) versus log P or log(dVv/drv)

versus log rv plots of different active carbon particles and concluded that only the middle linear

segment will give the actual fractal dimension. The initial or final slope may lead to a fractal

dimension much higher than 3 as observed by Friesen and Mikula (1988), Ehrburger-Dolle,

Lavanchy, and Stoeckle (1994), and Rahman (1997) which was unrealistic. A possible explanation

was proposed by Ehrburger-Dolle, Lavanchy, and Stoeckle (1994) as: below lower critical pressure

(lower cutoff), mercury is filling the inter-grain voids, which is not fractal in nature and above

higher critical pressure (upper cutoff); the result reflects in explaining the mechanical behavior of

the sample. Above the higher critical pressure, fine pores may also be formed by cracking, which is

also dependent on the chemical strength of the particles or indicates the compressibility of the
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particles. Fractal dimensions were 2.71, 2.96, and 3.11 for fresh and air-dried samples (20 and 3 h

drying at 808C), respectively. Dimensions were increased with the increasing drying time indicating

the formation of micro-pores on the surface during air-drying (Rahman, Al-Zakwani, and Guizani

2005). Rahman (1997) determined the fractal dimension of native, gelatinized, and ethanol

deformed starch and the fractal dimension values as 3.09, 3.10, and 2.45 respectively. Lower

values indicate the removal of micro-pores within the starch particles by ethanol modification.
14.3.2.3 Using Correlation Function

The correlation function is a fundamental statistical quantity, and it can be used to find the

fractal dimension. In theoretical models, the exponential function [exp(Kr/r0)] or the Gaussian

function ½expðKr2=r2
0Þ� is used to correlate variables. However, these functions do not possess the

fractal property because both of them have a characteristic length r0 (Takayasu 1990). On the other

hand, when the distribution is a fractal property, the correlation follows a power law (Takayasu

1990). In case of fractal there is no characteristic length and the rate of decrease of the correlation is

always at the same rate:

Cf rKa (14.30)

The relation between the exponent a and the fractal dimension d is simply

d Z dKa (14.31)

where d denotes the dimension of space.
14.3.2.4 Using the Distribution Function

P(r) is the probability that an arbitrarily chosen black spot has a radius greater than r. A change

of scale corresponds to transferring r to lr. The above mentioned fractal property of the distribution

requires the invariance:

PfPðlrÞ (14.32)

The only functional form that satisfies the above inequality is the power law:

PfrKd (14.33)

The exponent d is the fractal dimension of the distribution. If we count the number of observable

black spot, then the number should be proportional to P.
14.3.2.5 Using Power Spectrum

Many irregular patterns, for example, the acoustic signature of a crunchy food, can be treated as

a form of a periodic or wave function. For N values of a sequence X(t) the discrete Fourier

transformation is given by

Xf
XNK1

fZ0

Cf ½expð2pftÞ� (14.34)

where f is the frequency. The Fourier transformation is a conversion of the original function. The

power spectrum helps identifying frequencies of particular importance. The conversion itself can be
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done with the aid of the Fast Fourier transform (FFT) algorithm (Sandefur 1990), which is an

integral part of most statistical software packages for microcomputers commonly used in engin-

eering and physical analyses. A dense jagged pattern has a spectrum in which the high frequencies

are prominent (Peleg 1993). If the fluctuation can be transformed to a power spectrum then the only

spectrum S(f) with these properties is given by the power law:

Sf fKb (14.35)

When a spectrum is described by this power law, an important relationship exists between the

exponent b and the fractal dimension d of the graph of the signal (Takayasu 1990)

b Z 5K2d (14.36)

where 1!d!2. When 2!d!3 then:

b Z 7K2d (14.37)

The most convenient and common tool for such an analysis is “Fast Fourier Transform,” or FFT

(Ramirez 1985). The FFT converts, or transforms, the original curve into a power spectrum of

frequencies, thus making interpretation easier or more meaningful. The transform is based on the

possibility of expressing or approximating a function, f(x), in a given interval to any degree of

accuracy by the Fourier series (Kreyszig 1972):

f ðxÞZ a0 C
XN

iZ1

½ancosðnxÞCbnsinðnxÞ� (14.38)

where a and b are constants, and the n’s set of frequencies with the dimensions and units of 1/x. The

sum a2
nCb2

n of any frequency is defined as the corresponding power. Plots of power versus

frequency, known as power spectra, represent a transform of the original function of the variable

x to a new function of its underlying frequencies. In such plots special frequencies are characterized

by a prominent power magnitude and can therefore be easily identified. The FFT incorporates a

special algorithm that facilitates the conversion of the original function to its power spectrum,

hence the name FFT. The procedure is very common in engineering and physical analysis and is

almost standard in computer mathematical and statistical packages. One primary application of the

method in engineering is to determine of whether a system vibrates at a frequency (1/time) near to

its natural frequency, the result of which may be instability or mechanical damage.

Barrett et al. (1992) and Rohde, Normand, and Peleg (1993) applied power spectrum method

based on FFT procedure to analyze the force–deformation data, yielding a power spectrum. The

frequencies of the dimension are the reciprocal of the deformation length unit. The frequency scale

(mmK1) is obtained from dividing the original scale (sK1) by the compression velocity. The power

spectrum, which represents the relative intensity of the various frequencies, enables identification

of special frequencies having particular physical or structural significance. The power spectra of

puffed extrudates derived from FFT could be used to identify the length scale of structural features

where fractures took place, and its shape could be more directly related to structural features and

textural properties. The blanket algorithm was the most convenient measure of overall ruggedness,

since it was expressed by a single number (Barrett et al. 1992) A summary of selected applications

of fractal analysis in food systems are provided in the Table 14.1.
14.4 CONCLUSIONS

Fractal analysis is a powerful tool for characterizing materials and processes. The applications

of fractal analysis in modeling food systems are limited. Availability of commercial programs for

fractal analysis and current imaging technology could encourage the application of fractal
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Table 14.1 Applications of Fractal in Food Systems

Application Technique Used References

Characterization of

different starch

particles

Richardson’s method Rahman (1997)

Characterization of pores Scaling equation for

Poremaster

Rahman (1997) and Rahman, Al-Zakwani, and

Guizani (2005)

Characterization of pores Scaling equation for x-ray

scattering

Bale and Schmidt (1984)

Mechanical signature of

brittle foods

Blanket algorithm based

on Richardson’s

method

Rohde, Normand, and Peleg (1993), Damrau,

Normand, and Peleg (1997), and Borges and

Peleg (1996)

Mechanical signature of

brittle foods

Symmetrized-dot pattern

(SDP) method

Rohde, Normand, and Peleg (1993)

Mechanical signature of

brittle foods

First Fourier

Transformation (FFT)

Rohde, Normand, and Peleg (1993) and Barrett et al.

(1992)

Surface boundary Richardson’s method Barletta and Barbosa-Canovas (1993), Rahman

(1997), and Peleg and Normand (1985)

Surface roughness Algorithms for length-

scale (Richardson’s

method), and area-

scale

Pedreschi, Aguilera, and Brown (2000) and (2002)

Image characterization Box counting method Hagiwara et al. (1997) and Hongsprabhas, Barbut,

and Marangoni (1999)

Fat crystal and gel

network

Scaling equation from

rheology

Marangoni and Rousseau (1996), Hagiwara et al.

(1997), and Hongsprabhas, Barbut, and

Marangoni (1999)

Yeast flocculation process Scaling equation for light

scattering

Davis and Hunt (1986)

Binding process to

biosensor

Scaling equation from

kinetics and transport

equation

Sadana and Ram (1994)
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techniques in a broader array of food-related fields. More studies are needed to explore physical

meaning and industrial applications for fractal analysis in foods.

GLOSSARY

Acoustic signature Sound signals generated during biting and chewing recorded by acoustic
q 2006 by Ta
instruments. The signature is usually very rugged.
Blanket method According to this method, the processed image is covered by a blanket with a
thickness that increases stepwise. The surface area of the image is calculated at each step

by dividing the blanket’s volume by its thickness and the equivalent of a Richardson plot

can be constructed from these data.
Correlation function Correlation function is a fundamental statistical quantity used to correlate
variables, and it can be used to find the fractal dimension.
Fourier transform Fourier function is a form of a periodic or wave function which be used to
relate a variables as a function of time. The Fourier transform is a conversion of the

original function. The power spectrum helps identifying frequencies of particular import-

ance. All these analysis could be done by statistical packages for microcomputers

commonly used in engineering and physical analyses.
Fractal analysis The origin of “fractal” word is the Latin adjective “fractus” meaning broken.
Fractal analysis is to represent shapes or phenomena having no characteristic length. It is

usually applied in complex or chaotic problems when traditional methods fail or become

tedious to solve.
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Fractal dimension Fractal dimension is a fractional number which characterizes a fractal object
q 2006 by Ta
or process. In classical Euclidian geometry a point has a zero dimension, a line one, an area

two, and a volume three. However fractal dimension cannot be integer number.
Image A micrograph or photograph taken with or without magnifications of an object by
microscopic analysis.
Monolayer Amount of gas molecules needed to cover completely a solid porous or non-porous
material. It could be affected by surface characteristics of a solid surface.
Richardson’s plot In this method a series of polygons of side x are constructed on the perimeter
of a rugged boundary using a pair of compasses. A log–log plot of stride length versus

perimeter is called a Richardson plot and fractal dimension can be estimated from

the slope.
Scaling equation Equation developed to characterize a product or process based on the physico-
chemical principles which could be used to estimate fractal dimension by fitting the

experimental data.
Self similarity Self similarity means fractal objects can be decomposed into parts, each obtain-
able from the whole by a similitude.
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15.1 INTRODUCTION

Complexity in the real world generally arises from uncertainty in the form of ambiguity.

Humans have been subconsciously addressing complex and ambiguous problems since they

could think, whereas current computers fail to do so. This is simply because humans have the

capacity to reason approximately about the behavior of complex systems, thereby maintaining only

a general understanding of the problem. Fortunately, this generality and approximation is sufficient

to comprehend complex systems.

Models are usually developed to study and simulate the behavior of physical systems. A

mathematical model, for instance, is a set of equations that describes the desired operation of a

process. The size and complexity of mathematical models increase with the increasing number of

dependent and independent variables involved. As complexity decreases, the precision afforded by

computational methods becomes more useful in modeling the system.1

The relationship between the degree of complexity of a system and the precision inherent in the

model of the system is exemplified in Figure 15.1. Models represented by mathematical equations

provide precise descriptions of systems with little complexity and, hence, little uncertainty. Such

models range from fundamental (first-principles) models, with the highest precision, to data-driven

empirical models whose precision is based on the available data describing the system’s behavior.

Such models are known as white-box models. For systems that are slightly more complex but for

which significant data exist, model-free empirical methods provide a powerful and robust means to

reduce some uncertainty through learning from available data. For example, in artificial neural

networks, a structure is chosen for the network and the parameters (connections, weights, and
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Figure 15.1 Complexity of a system versus precision in the model of the system. (From Ross, T. J., Fuzzy Logic
with Engineering Applications, McGraw-Hill, New York, 1995.)

q 2006 by Taylor & Francis Group, LLC



FUZZY MODELING 453
threshold values) are tuned to fit the observed data as well as possible. These parameters are not

human-interpretable and do not offer any insight about the modeled system. Such models are

known as black-box models.

As complexity increases, fewer numerical data may exist, and only ambiguous or imprecise

information may be available. In this case, fuzzy reasoning may provide a way to describe the

behavior of the system by allowing functional mapping between input and output observations. The

imprecision in fuzzy models is therefore generally quite high. Fuzzy models can be viewed as gray-

box models because they allow the modeler to extract and interpret the knowledge contained in the

model as well as incorporating a priori knowledge into it.

Fuzzy systems can focus on modeling problems that are characterized by imprecise or ambig-

uous information and are less efficient in situations where precision is apparent. Despite the fact that

all models shown in Figure 15.1 may be considered mathematical abstractions of the real physical

system, the point is to match the model type with the character of the uncertainty exhibited in the

modeling problem.

Fuzzy set theory provides a means for representing uncertainties. But what about probability

theory that, for a long time, has been the primary tool for handling uncertainty in mathematical

models? Probability theory is, in fact, ideal for problems characterized by random uncertainty. This

exists in cases where the outcomes of any particular realization of the process are strictly a matter of

chance and can be precisely described by statistical functions. However, not all uncertainties

associated with complex systems and addressed by humans on a daily basis are random in

nature. Nonrandom uncertainty is well-suited to treatment or modeling by the fuzzy set theory,

which provides the tools for modeling the uncertainty associated with vagueness, with imprecision,

and/or with a lack of information.

Lotfi Zadeh made the following statement in his seminal paper of 1965:2
q 20
The notion of fuzzy set provides a convenient point of departure from the construction of a conceptual

framework, which parallels in many respects the framework used in the case of ordinary sets, but is

more general than the latter and, particularly, may prove to have a much wider scope of applicability,

particularly in the fields of pattern classification and information processing. Essentially, such a

framework provides a natural way of dealing with problems in which the source of imprecision is

the absence of sharply defined criteria of class membership rather than the presence of random

variables.
The application of fuzzy set theory and fuzzy logic has shown a tremendous payoff in areas

where intuition and judgment still play major roles in the model. Fuzzy logic seems to be most

successful in two situations:

1. Very complex models where understanding is strictly limited or quite judgmental

2. Processes where human reasoning, human perception, or human decision making are

inextricably involved

Human knowledge is becoming increasingly important. A theory is needed to formulate this

knowledge in a systematic manner and incorporate it into engineering systems together with other

information such as mathematical models and sensory measurements. As a general principle, a

good engineering theory should be capable of making effective use of all available information. For

many practical systems, important information comes from two sources: (1) human experts who

describe their knowledge about the system in natural language; and (2) sensory measurements and

mathematical models that are derived according to physical laws.3 An important task, therefore, is

to combine these two types of information. The main question is how to formulate human knowl-

edge into a similar framework used to formulate sensory measurements and mathematical models.

Fortunately, a fuzzy system essentially performs this transformation.
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In general, a fuzzy system is any system whose operation is mainly based on fuzzy concepts,

such as reasoning, arithmetic, algebra, topology, or programming, among others.4 However, in the

frame of this chapter, the term fuzzy system refers to developing a rule-based system that uses (1)

fuzzy variables represented as linguistic terms; (2) fuzzy sets to represent the linguistic values of

such variables; (3) fuzzy rules to describe causal relationships between the variables; and (4) fuzzy

inference to compute the responses of the fuzzy system to a given input. Input variables are

fuzzified by associating them with linguistic terms whose values are defined by membership

functions. An inference mechanism applies fuzzy logic operations on the fuzzy rule-base to

derive the implication of individual rules and determine an overall conclusion represented as a

fuzzy output. Finally, this output is translated into a crisp value using a defuzzification method.

In this chapter, the fundamentals of fuzzy modeling are discussed, with particular emphasis on

food-processing applications. Section 15.2 reviews relevant publications in the literature. These

relate principally to food quality and production-line control issues and equipment selection.

Section 15.3 describes the fundamentals of fuzzy set theory. Its application in fuzzy modeling is

discussed in Section 15.4, which addresses such topics as linguistic variables, membership func-

tions, fuzzy rule bases, fuzzy inference, and fuzzification/defuzzification processes. Section 15.5

presents a typical example of a fuzzy model, describing the operation of a bread extrusion process.

Finally, Section 15.6 discusses advanced techniques for developing and tuning membership func-

tions. These include neural-fuzzy systems and genetic algorithms.
15.2 APPLICATIONS OF FUZZY MODELING IN FOOD INDUSTRY

Food processes largely rely on operators’ rules of thumb and are not fully automated. A study by

Iiyukhin and coworkers5 shows that 59% of food manufacturing plants are not automated. The main

reason is that it is difficult to develop a realistic model due in part to (1) the many dimensions that

must be taken into account in parallel; and (2) the nonlinearity and coupling between the variables

involved in the system.6

A number of examples of fuzzy modeling relating to the food industry have been published in

the literature. Some of the more recent ones are summarized below. Broadly speaking, most of the

applications are in the area of image analysis and quality control of food products. Fuzzy modeling

as a precursor to fuzzy process control is finding useful applications in food processing. The

following sections will focus on the image analysis and fuzzy control applications found in the

literature. A brief section on equipment selection using fuzzy logic is also presented.
15.2.1 Image Analysis and Quality Control

The main problem in food process automation is that only a limited number of variables are

measurable online.7 A number of these variables, such as color, odor, taste, appearance, and texture,

are subjective and are usually evaluated qualitatively as linguistic terms. For such applications,

symbolic sensors are more useful than classical sensors that provide direct numeric values. The aim

of a symbolic sensor is to perform a linguistic symbolization of a phenomenon from numeric

measurements.8 Therefore, the symbolic sensor acquires a numeric measurement and then performs

the numeric–linguistic conversion itself, taking into account the subjectivity of the problem. Fuzzy

set theory provides an optimal frame for the treatment of this numeric–linguistic conversion,

reasoning with linguistic terms, and converting the linguistic conclusions back to numerical

representations that may be communicated to other instruments.

In food processes, fuzzy symbolic sensing is normally employed as a classification technique

used in conjunction with computer vision to evaluate food quality. Classification is an important

image-processing operation in which objects are identified and allocated to one of the finite sets
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describing individual classes. This involves comparing the measured features of a new object with

those of a known object or other known criteria, and it determines whether the new object belongs

to a particular category of objects.

In detailed and comprehensive reviews, Du and Sun9,10 described the classification techniques

that are used in food processing. They stated that statistical fuzzy logic and neural networks are the

main methods of classification employed in the literature. Of these, fuzzy logic has the advantage of

simulating the human experience of generating complex decisions using approximate and uncertain

information. The authors concluded that the performance of a fuzzy system depends on how well it

is tuned. This becomes difficult in multidimensional problems.

A fuzzy classifier for sorting apples on the basis of watercore severity was presented by Shahin

and coworkers.11 The classifier was able to separate the apples into three classes with an overall

accuracy of 80%. However, they found that a neural classifier performed better with an overall

accuracy of 88%.

Hu et al.12 employed both a conventional and a fuzzy classifier with a four-level hierarchy based

on the “generalized K-nearest neighbor rules” to grade herring roe and indicated that the fuzzy

classifier produced more accurate results (89%). Croft et al.13 achieved results of similar accuracy

(85%–95%) and reasonable repeatability for herring roe using an automated fuzzy system.

Center and Verma14 presented an overview of the application of fuzzy modeling to biological

and agricultural systems. Of the examples they quoted, only a few are relevant to food processing.

These include the sorting of tomatoes on the basis of quality,15 identification of physiological states

in fermentation processes for use in distributed control,16,17 feeding strategies on large dairy

farms,18 and grading beef quality.19

In a study by Verma,15 tomato quality was described as a complex combination of attributes

such as color (brightness and hue), sensory color, and fruit size, shape, and firmness. Six fuzzy

models were developed and linked together to form a fuzzy decision support system (DSS) that was

employed to predict the highest quality and the time required for a given tomato to attain this

quality. The DSS thus enabled the tomatoes to be grouped for sale on a certain date on which their

quality had peaked. On the basis of limited testing, the predictions of the model were claimed to be

very accurate.15

Jahns and coworkers20 combined image analysis and fuzzy logic to grade tomatoes on the basis

of quality. The authors proposed a fuzzy model for mapping visual fuzzy parameters into an output

parameter termed “total visual quality.” The input fuzzy parameters were the contour, shape, color,

and color uniformity. Contour and shape were processed by fuzzy reasoning to yield an output

called geometry, whereas color and color distribution were combined to yield an output called

impression. Both gave rise to the overall appearance fuzzy variable, which had to be checked for

cracks and faults. The output fuzzy variable cracks was a knockout criterion. When no disconti-

nuities in color or reflection could be detected, a further grading to size gave an overall visual

quality as a result. Image analysis measurements were fuzzified into the four input variables. Each

pair of input variables was used to infer the two intermediate fuzzy variables (geometry and

impression), which in turn were used to infer the existence of cracks, or appearance and size

that yielded the final output, termed visual quality. All input and output fuzzy variables were

defined as linguistic variables with triangular membership functions (see Section 15.3). The

authors reported that an optimization or tuning of the input membership functions by back-propa-

gation was possible if enough consumer interviews on total quality were available.

Kavdir and Guyer21 employed fuzzy logic as an aid in automating the grading of Golden

Delicious apples. They justified their choice of a fuzzy model as opposed to techniques such as

template matching and fixed-object modeling used in industrial applications because of the inherent

variability of the agricultural environment (weather, soil, etc.) and the morphological diversity of

the apples. The principal objectives of their study were to evaluate techniques for constructing and

tuning the fuzzy membership functions and to compare the predictions of their model with those of

a human expert. To construct the fuzzy model, five quality features (color, defects, shape, weight,
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and size) were measured for each apple using a variety of nondestructive testing techniques. These

features were grouped into three fuzzy attributes: color, defects, and size. The model graded the

apples into three categories: good, medium, and bad. A trial-and-error approach was employed to

develop the membership functions. For color and defects, these were triangular and trapezoidal in

shape. However, an exponential function was used to simulate the human expert in grading apples

in terms of size. The authors21 devised a total of 27 rules, which were of the form “If the color is

greenish AND there is no defect AND the apple is large and well formed, THEN the quality is

Good.” The Center-of-Area Method (COAM) was used for defuzzification. The fuzzy model

predicted the quality of around 89% of the 181 apples correctly. In general, misclassification

errors occurred mainly between adjacent groups. The authors concluded that the specification of

membership functions in terms of shape and boundary had a clear effect on the predictions. They

suggested that statistics of the class populations, such as average, standard deviation, and minimum

and maximum values, could help in the determination of membership functions.

As part of an automated inspection system for chocolate chip cookies, Davidson et al.22

developed fuzzy models to predict consumer preferences based on a number of physical attributes.

These included size, shape, baked dough color, and fraction of the top surface area occupied by

chocolate chips. Five separate polls, each with 30 participants, were undertaken during the course

of the study. The first three (so-called calibration polls) were conducted to formulate the fuzzy

models of consumer preference; two additional polls were undertaken to validate the models. The

authors concluded that such models could find additional use in the bakery for automating quality

assurance decisions (acceptance or rejection of individual cookies prior to packaging) and

improving the baking oven control.

Ioannou and coworkers23 employed fuzzy modeling to reproduce an assessment by experts of

the degree of crusting in sausages. This important defect is observed during manufacture and is

characterized by the appearance of a watertight crust on the surface of the sausage. The degree of

crusting is normally determined by experts (the plant operators) through visual observation of a

sausage slice. It is classified into five groups: 0 for sausages without defect and 1 (thinnest) to 4

(thickest) for defective sausages. Three factors are considered by the experts in determining the

degree of crusting: the length of black (LB) and red (LD) areas in the outer part of the sausage and

the color of the center (COL) of the slice. The input parameters LB and LD were fuzzified as

linguistic terms, such as nonexistent, a bit long, long, and very long, and triangular membership

functions were used. The color parameter COL was used to adjust the thresholds for LB and LD,

values of which were expressed in numbers of pixels. The numerical values of LB and LD were first

fuzzified, and the degree of crusting was determined using appropriate rules in the rule base; for

example, “IF LB is long AND LD is long THEN crusting degree (CD) is 3.” In the defuzzification

step, the results of all the triggered rules were combined to yield the crusting degree. The multi-

plication defuzzification concept was used in which the crisp value of CD was obtained by

multiplying the membership values of LB and LD, and the classification degree was inferred by

the rules. The authors compared the predicted values of the degree of crusting with the average

assessment made by two experts. Satisfactory agreement was achieved in 68 of the 76 cases

evaluated. The authors concluded that, overall, their technique appeared very promising.

Sun and Brosnan24,25 investigated the feasibility of using computer vision for automated quality

inspection of pizzas. Part one of their study24 focused on the quality of the pizza base and the sauce

spread, while toppings were considered in part two.25 The authors analyzed 20 pizza base samples

and 25 base samples with tomato paste spread over them. The bases were classified as standard,

poor pressing, poor alignment, and flowing base, whereas the sauce spread quality was classified as

reject underwipe, acceptable underwipe, even spread, acceptable overwipe, and reject overwipe.

Acceptable samples should have a standard base and even spread sauce. The criteria established for

an acceptable base were the minimum values of the area and the spatial ratios and a maximum value

for the circularity. The overall accuracy of the system was 87% when compared with human quality

inspection. On the other hand, sauce spread quality was evaluated by two indices: sauce area
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percentage and heavy area percentage. A fuzzy evaluation score (FES) was calculated that reflected

the overall quality of the sauce spread. A comparison between the results produced by the fuzzy

model and the human experts showed a misclassification rate of 52%. The authors concluded that

errors in the human classifications due to subjectivity and inconsistency, as well as inaccuracies in

the algorithm, contributed to the discrepancies. When two categories of classification (accept and

reject) were employed, an overall accuracy of 92% was achieved.

Analysis of the images of pizza toppings is very difficult, as different toppings are similar in

appearance, and overlapping is likely to occur.25 A total of 25 pizzas were analyzed for topping

quantity using three numerical indices representing ham, mushroom, and topping area percentages.

The same five linguistic descriptors as employed for sauce spread were used to fuzzify these indices

using triangular membership functions, as before. A FES was again calculated. The results showed

that the topping area percentage exhibited the least fuzziness and the ham area percentage exhibited

the most. The misclassification rate over the five levels examined was 24%. However, when only

two quality levels (accept and reject) were considered, the accuracy was 100%.

Davidson and Ryks26 investigated the use of fuzzy modeling to analyze specific microbial risks

in food-processing operations. Monte Carlo simulations have been widely used in such studies.

However, such simulations require extensive data to define appropriate probability distribution

functions for risk factors such as microbial loadings, processing effects, consumption levels, and

health effects. In the early stages of a risk assessment, however, it is frequently found that only

limited data are available. The authors demonstrated that fuzzy modeling is a more satisfactory

approach under these circumstances because fuzzy values can describe variability in model par-

ameters on the basis of limited information from the literature, quality control data, or expert

opinion. They suggested that their approach would allow an evolution to probability-based

methods as the knowledge-base is developed without the need to completely reformulate the

risk-assessment model.
15.2.2 Fuzzy Models in Fuzzy Control Applications

Food processes may be difficult to control or model by conventional methods where simplifica-

tions or linearization are often employed. This difficulty is due to tightly coupled control loops,

nonlinearities, and unpredictable noise. Some food processes are combinations of continuous and

batch operations. Such processes are usually controlled by experienced operators, who frequently

make observations and judgments, particularly about sensory attributes, that are difficult to repro-

duce using online sensors. It is not easy to transfer the knowledge from human experts to

mathematical models when designing a control system for food processes.7 However, fuzzy

modeling techniques make it possible to use operators’ observations and their experience in oper-

ating the process in computer-based control systems. As a result, fuzzy control systems offer

considerable potential for increasing automatic control applications in the food industry.27

Fuzzy control is a nonlinear predictive (or model-based) control system. Such systems require

a process model to predict the states of the controlled variables and a controller model to drive the

variables to their desired values. Fuzzy control systems can be based entirely on fuzzy techniques.

In this case, both the process model and controller model are fuzzy. Alternatively, predictive

fuzzy process models may be combined with conventional control techniques in hybrid systems.

Furthermore, fuzzy control can be classified into nonadaptive fuzzy control and adaptive fuzzy

control.3,28 In nonadaptive fuzzy control, the structure and parameters of the fuzzy model are

fixed and do not change during real-time operation. In adaptive fuzzy control, the structure and/or

parameters of the fuzzy model change during real-time operation. Nonadaptive fuzzy control is

simpler but requires more knowledge of the process model or heuristic rules. Adaptive fuzzy

control, on the other hand, is more difficult to implement but requires less information and may

perform better.
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Davidson27 outlined the basic elements of fuzzy control systems and discussed their application

in food processes. The author focused on the use of fuzzy techniques in controlling dryers and

fermentation processes. A number of fuzzy control applications of food-related processes are cited

in the literature. These include the control of a grain dryer,29 aseptic processing,30 fermentation

processes,31–35 cheese ripening,6,36 food frying,37 and browning of food products.38,39 The

following section will highlight a number of these applications.

Perrot and coworkers6 described the development of a fuzzy DSS to aid in the control of cheese

ripening. The authors constructed their DSS in three stages: acquisition of the expert knowledge,

building the fuzzy algorithm, and validating the approach. The acquisition process involved assim-

ilating the linguistic terms employed in the factory and converting these into numerical sensory

indicators in the manner described in Ioannou et al.39 and Curt et al.44 Formulation and preliminary

evaluation of the algorithm was achieved with the aid of experiments on a pilot plant. Further

validation was undertaken by testing it on-line on cheeses produced in a ripening cellar in

the factory.

Murnleitner et al.34 conducted an experimental study to develop a fuzzy control system for the

two-stage anaerobic pre-treatment of food industry wastewater. They produced a fuzzy model that

successfully predicted the biological state of the reactors and initiated suitable control measures to

avoid overload. The system could handle large fluctuations in the concentration of the substrate and

the volumetric loading.

Rywotycki39 employed a two-stage fuzzy model as the basis for controlling a fryer. The

objective was to increase the efficiency of the frying process while maintaining an acceptable

product quality. In the first stage of the model, the required temperature of the fat, T3, is inferred

from two inputs: the thermal power necessary to heat the raw product, Q2; and the makeup fat

placed in the fryer, Q3. Input variables were fuzzified and assigned linguistic values: very small,

small, medium, big, and very big. An example of one of the rules is: “IF Q2 is very small AND Q3 is

medium THEN T3 is medium.” The fat temperature, T3, is directly related to the desired quality

attributes of the fried product, which were rated in consumer surveys as very good, good, neutral,

poor, and bad. T3 is the input to the second stage of the fuzzy controller that determines the required

travel speed of the fryer conveyor belt, vp. The resulting travel speed was defuzzified using the

centroid or center-of-mass method. The proposed fuzzy controller was tested for the frying of

french fries in the temperature range 414–453 K. The author reported an increase in the frying

efficiency by several percentage points while, at the same time, matching the quality of the product

to consumer expectations.

Ioannou et al.38 employed fuzzy modeling to develop a diagnostic algorithm to describe non-

enzymic browning of a food product based on milk and eggs. Their model was subsequently

employed as the basis for controlling the browning process on the manufacturing plant.39 The

developed fuzzy model was based on three sensory indicators—the percentage of spot areas

(V1), the color of the spotted areas (V2), and the color of the nonspotted areas (V3)—each of

which was described by a set of linguistic terms and a membership function. These fuzzy variables

were amalgamated into a series of fuzzy rules that were used to define a browning global appear-

ance (BGA) index (hardly browned, slightly browned, browned, darker browned, and very

browned). For example, “IF V1 is small AND V2 is dark brown AND V3 is beige, THEN the

BGA is hardly browned.” The diagnostic model was validated on 40 products against the assess-

ment of the operator; the compatibility was 92.5%.

The fuzzy model described above was incorporated by Ioannou et al.39 into a fuzzy control

system (based on the Takagi–Sugeno method) that was fitted to the continuous browning oven on

the production line. The controller varied the power input to four banks of stainless steel lamps

located above the product conveyor in the browning oven. The effectiveness of the controller was

validated in a series of trials. In the example given in the paper, it was tested on the production line

for a 70-minute period, during which the controller adequately coped with three process upsets that
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required corrective action to be taken. Moreover, the actions undertaken by the controller were 90%

consistent with those that would have been taken by the operator.
15.2.3 Process Equipment Selection

Fuzzy modeling can also play a useful role in the selection of industrial plants because many of

the parameters influencing this process are often ill-defined and uncertain. The present authors, for

example, developed a fuzzy expert system to partially de-skill the selection of dryers for food

materials. These devices are particularly complex, as they not only reduce the moisture content of

the product but can also affect its quality-related attributes (e.g., color, flavor, etc.) as well. The

selection process involves a large number of imprecise variables, many of which can only be

defined in linguistic terms. Examples of the latter include stickiness, cohesiveness, fragility,

temperature sensitivity, etc. The authors therefore employed a flexible system that featured multiple

fuzzy knowledge bases that could be accessed over the Web.40 Separate rule bases were developed

for batch dryers41 and continuous dryers.42 A preliminary selection was first made to determine

which of these was the most appropriate in the particular circumstances. The flexible structure of

the algorithm also enabled, for example, design programs and help files to be accessed during the

selection process. The original knowledge-base was subsequently extended to aid in the specifi-

cation of detailed spray dryer configurations.43

As the above survey shows, fuzzy modeling has a useful role to play in food-industry appli-

cations in situations where quantitative knowledge is limited or imprecise. Grading and quality

assessment of food products have perhaps received the most attention. This is not surprising

because such judgments are made on the basis of human preferences rather than mathematical

equations. It is surprising that fuzzy modeling has not been employed more widely in sensory

analysis and profiling, which would appear to be a logical extension of some of the published

studies described herein. The apparent ability of fuzzy modeling to provide an adequate description

of several food-manufacturing processes is encouraging and should ultimately lead to the more

widespread use of fuzzy modeling in the industry.
15.3 FUZZY SET THEORY

For the classical set theory, an element x in the universe U is either a member of some crisp set A

or not. This binary membership can be expressed mathematically as:

cAðxÞZ
1; x2A

0; x;A
:

(
(15.1)

Lotfi Zadeh2 extended the notion of binary membership to accommodate various degree of

membership in the real continuous interval [0,1], where the infinite number of values between the

endpoints (0Zno and 1Zfull membership) can represent various degrees of membership. Consider

an element x in some set
~
A in the universe U. This set was termed by Zadeh as a fuzzy set, whose

membership function is expressed as

m
~
AðxÞ2½0;1�; (15.2)

where the symbol m
~
AðxÞ is the degree of membership of element x in fuzzy set

~
A. Therefore, m

~
AðxÞ is

a value in the unit interval that measures the degree to which element x belongs to fuzzy set
~
A.

For example, consider two crisp sets W and H defining “warm” and “hot” temperatures,

respectively. Any specific temperature, T, may be categorized as “warm” if its value is less than
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Figure 15.2 Temperature membership function in (a) crisp sets and (b) fuzzy sets.
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808C and “hot” if greater than 808C, as shown in Figure 15.2a. In this case, 79.98C would be

classified as “warm” (cW (79.98C)Z1 and cH (79.98C)Z0) whereas 80.18C would be classified as

“hot” (cW (80.18C)Z0 and cH (80.18C)Z1). Hence, for classical set theory, transition from one set

to another set is instantaneous. With fuzzy sets, however, the transition may be gradual because an

element can have partial membership in multiple sets. Figure 15.2b defines the membership func-

tions for two fuzzy sets
~
W and

~
H describing “warm” and “hot” temperatures, respectively. In the

fuzzy formulation, a particular temperature may belong to the two sets with certain degree of

membership. For instance, according to Figure 15.2b, TZ808C belongs to the “warm” set with

degree of membership m
~
Wð808CÞZ0:67 and to the “hot” set to degree m

~
Hð808CÞZ0:3.

Zadeh’s notation convention for a fuzzy set
~
A when the universe of discourse, U, is discrete and

finite, is as follows:

~
A Z

m
~
Aðx1Þ

x1

C
m
~
Aðx2Þ

x2

C/

( )
Z

X

i

m
~
AðxiÞ

xi

( )
: (15.3)

Accordingly, for the temperature universe, T, shown in Figure 15.2b, the “warm” and “hot”

fuzzy sets are defined as:

~
W Z

0

60
C

1

75
C

0

90

� �
and

~
H Z

0

75
C

1

90
C

0

105

� �
: (15.4)

In this notation, the numerator in each term is the membership of the corresponding element in

the denominator, and the plus sign (C) does not denote algebraic summation but rather the

collection or aggregation of elements.

When the universe, U, is continuous and infinite, a fuzzy set
~
A is denoted by:

~
A Z

ð m
~
AðxiÞ

xi

(15.5)

where the integral sign is not an algebraic integral in the usual sense; rather, it is a notation that

represents the grade of membership of x in a continuous universe.
15.3.1 Fuzzy Logic

Fuzzy logic is a method to formalize the human capacity of imprecise reasoning or approximate

reasoning. In fuzzy logic, all truths are partial or approximate. It can be considered as an interp-

olation process between the binary extremes of true and false.
q 2006 by Taylor & Francis Group, LLC



FUZZY MODELING 461
In classical predicate logic, a simple proposition P is a linguistic statement that can be identified

as strictly true or strictly false. For binary (Boolean) predicate logic, the truth of a proposition,

denoted as TP, is assigned a value of 1 (true) or 0 (false). In contrast, fuzzy logic is a multivalued

logic where propositions are assigned to fuzzy sets. When a fuzzy proposition
~
P is assigned to a

fuzzy set
~
A, the degree of truth for the proposition

~
P, denoted T

~
P, is equal to the membership value

of x in fuzzy set
~
A, given by:

T
~
P Z m

~
AðxÞ 0%m

~
AðxÞ%1: (15.6)

To illustrate the fuzzy logic approach, consider the expression: “For low throughput, reduce air

flow.” The proposition here is “throughput is low.” In classical set theory, the truth of this prop-

osition may be defined as:

TP Z clow throughputðxÞZ
1; x%50 kg=h

0; xO50 kg=h
:

(
(15.7)

In this case, a computer program would not recognize a 50.1 kg/h as being a member of the “low

throughput” set. In fact, both 50.1 and 1,000 kg/h may be equally recognized as not low, and

consequently, an incorrect decision would be taken.

In contrast, the fuzzy logic approach to handling the proposition, “throughput is low,” starts by

associating the crisp variable, throughput, with linguistic terms such as low, medium, and high.

Then the truth or confidence of the proposition is defined as:

T
~
P Z Tðthroughput is lowÞ Z m

~
A

low

ðxÞ 0%m
~
A

low

ðxÞ%1: (15.8)

Membership functions for the linguistic terms describing the throughput are shown in

Figure 15.3. In this case, for a throughput value of 110 kg/h, for instance, the truth of the prop-

osition “throughput is low” is Tðthroughput is lowÞZm
~
A

low

ð110ÞZ0:2. Nevertheless, this crisp value of

the throughput is described at the same time with another proposition, “throughput is medium,”

with truth value 0.8 (see Figure 15.3).
15.3.2 Fuzzy Set Operations

Consider two fuzzy sets,
~
A and

~
B, in the universe U. For a given element x2U, the following

function operations are defined for union, intersection, and complement operators:
Low

m (x )

0

50 125 200 350

Medium High

Throughput

0

1

Figure 15.3 Membership function for throughput.
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m
~
Ag

~
BðxÞZ m

~
AðxÞnm

~
BðxÞZ maxðm

~
AðxÞ;m

~
BðxÞÞ; (15.9)

m
~
Ah

~
BðxÞZ m

~
AðxÞom

~
BðxÞZ minðm

~
AðxÞ;m

~
BðxÞÞ; (15.10)

m �
~
AðxÞZ 1Km

~
AðxÞ; (15.11)

where n and o are maximum and minimum operators, respectively. In fact, all of the operations

on classical sets also hold for fuzzy sets, except for the law of the excluded middle and the law of

contradiction, which deal with the union and intersection, respectively, of a set
~
A with its compli-

ment. These are expressed as:

~
Ag

~
�AsU; (15.12)

~
Ah

~
�As:: (15.13)

To illustrate the fuzzy set operations, consider the two fuzzy sets describing the temperature that

are plotted in Figure 15.2b and expressed by Equation 15.4. Applying the operations given by

Equation 15.9 through Equation 15.13 results in the following expressions, which are also

illustrated in Figure 15.4:

~
Wg

~
H Z

0

60
C

1

75
C

0:5

87:5
C

1

90
C

0

105

� �
;

~
Wh

~
H Z

0

75
C

0:5

87:5
C

0

90

� �
;

~
�W Z

1

60
C

0

75
C

1

90

� �
;

~
Wg

~
�W Z

1

60
C

0:5

67:5
C

1

75
C

0:5

82:5
C

1

90

� �
;

~
Wg

~
�W Z

0

60
C

0:5

67:5
C

0

75
C

0:5

82:5
C

0

90

� �
:
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Figure 15.4 Graphical representation of (a) union, (b) intersection, (c) complement, (d) law of the excluded
middle, and (e) law of contradiction.

q 2006 by Taylor & Francis Group, LLC



FUZZY MODELING 463
15.4 FUZZY MODELING

The objective of any model is to find the state of a system, X, which can be implicitly

expressed as:

Xi Z f ðX;X0;X00;.Þ; Xi 2R; i2f1;.;ng; (15.14)

where XZ[X1,X2,.,Xn] is the state vector consisting of n dependent variables, while X 0 and X 00 are

the first and second derivatives of the state vector, respectively. The state vector X consists of m

input variables, Z, and nKm output variables, Y(XZZgY).

Fuzzy modeling of an engineering system becomes advantageous when the function f (Equation

15.14) is so complex that it cannot be deduced purely by physical modeling. Even when a physical

or statistical model does exist, for a relatively simple system or after many simplifying assumptions

have been made, the nature of the variables in the model and the methods of measuring them may

make it difficult to quantify them precisely.

Fuzzy models are known as fuzzy systems. They are knowledge-based (or rule-based) systems

constructed from human knowledge in the form of fuzzy IF–THEN rules that are represented in

terms of linguistic variables that are characterized by continuous membership functions. The

starting point of constructing a fuzzy system is to extract a collection of fuzzy IF–THEN rules

from human experts or based on domain knowledge. The strength of fuzzy systems is that they

provide systematic procedures for transforming the knowledge-base into a nonlinear mapping. This

transformation enables us to use fuzzy systems in engineering applications in the same manner that

we use mathematical models. In this case, the function f in Equation 15.14 is replaced by a relation

R representing the fuzzy model in the form of fuzzy rules, whereas the state vector, X, representing

the crisp input and output variables, is replaced by a fuzzy state vector,
~
X, representing the fuzzy

input and output variables
~
Z and

~
Y, respectively.

The structure of the fuzzy system described in this document is shown in Figure 15.5. The heart

of this system is the middle block that consists of a fuzzy rule base and an inference engine. It

receives fuzzy input variables and produces fuzzy output variables. Both the input and output fuzzy

variables are represented by linguistic variables and membership values. Based on the values of the

fuzzy input variables, the inference engine processes the fuzzy IF–THEN rules in the rule base and

deduces the fuzzy values of the output variables.

Engineering problems are normally represented in terms of real-valued (crisp) input and output

variables. Hence, to utilize the fuzzy rule base and the inference engine, these inputs should first be

converted into the fuzzy domain. This is achieved by adding a fuzzifier that transforms the crisp

input variables into fuzzy inputs ðZ1
~
ZÞ, and a defuzzifier, that transforms the fuzzy outputs of the
DefuzzifierFuzzifier

Inference engine

Fuzzy rule base

Crisp
inputs

Crisp
output

Fuzzy
outputs

Fuzzy
inputs

X Y

X~ Y~

Figure 15.5 Simplified structure of a fuzzy system.
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system into crisp outputs ð
~
Y1YÞ. Both fuzzy inputs and outputs are represented in terms of

linguistic variables.

The main objective of the rest of this chapter is to describe the constituents of fuzzy systems and

to outline the procedure for constructing fuzzy models that can be effectively used in modeling

engineering systems. The topics that will be addressed are: (1) linguistic variables, (2) membership

functions, (3) fuzzy rule base, (4) fuzzy inference, and (5) fuzzification and defuzzification.

In constructing a new fuzzy system, one is usually faced with the following questions:45

† How to define membership functions? This involves describing a given variable by a set

of linguistic terms, defining each linguistic term within its universe of discourse and

membership function, and determining the best shape for each of these

membership functions.
† How to obtain the fuzzy rule base? This involves extracting knowledge from someone

with sufficient experience to provide a comprehensive knowledge base for a complex

system that cannot be modeled physically. This task is referred to as knowledge acqui-

sition.
† What are the best ways to perform fuzzy reasoning or inferencing? This involves

defining the mechanism by which the fuzzy rules are processed to provide the transfor-

mation between input and output information.
† What is the best defuzzification technique for a given problem?
† How to improve and refine the computational efficiency of the fuzzy model?
15.4.1 Linguistic Variables

We often use words to describe variables in our daily life. Operators of a given process use

terms such as “moderate,” “high,” or “extremely high” when expressing the current values of

operating conditions. An expression such as “the pressure is very high” assigns the variable

“pressure” a value of “very high.” This value would be clearly understood by other operators;

the pressure is greater than the maximum acceptable level. When a variable takes numbers as its

value, there exists a well-established mathematical framework to formulate it. But when a variable

takes words as its values, classical mathematical theory would be unable to formulate it. In this

case, to provide a formal framework, the concept of linguistic variables should be utilized. Thus, a

linguistic variable is a variable that can take words in natural language as its values, where the

words are characterized by fuzzy sets defined in the universe of discourse in which the variable is

defined. Linguistic variables are also referred to as fuzzy variables.

A linguistic variable X~i can be defined by the quadruple

X~i Z ðx;U;TðxÞ;MðxÞÞi (15.15)

where x is a text expression in natural language that expresses the name of the variable, such as

pressure, throughput, and moisture content. U is the universe of discourse; UZ[UL,UU] defines the

interval of real values that Xi can belong to, where Xi2U. In other words, it is the actual physical

domain in which the linguistic variable Xi takes its quantitative (crisp) values. For example, the

domain of the “throughput” linguistic variable (Figure 15.3) may be defined as UZ[0,500]. T(x) is

the set of linguistic terms that Xi can take. In Figure 15.3, the set of linguistic terms describing

“throughput” are defined as TZ{low,medium,high}. M(x) are the membership functions that

provide the transformation from crisp numbers to linguistic terms. For example, M relates the

linguistic terms low, medium, and high to the membership functions shown in Figure 15.3.

Membership functions are discussed further in Section 15.4.2.
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Sometimes, more than one word is used to describe a linguistic variable. In this case, its value

may be considered a composite of primary terms and linguistic hedges. Primary terms are the basic

linguistic terms describing the linguistic variable, whereas linguistic hedges act as intensifiers of the

primary terms. They are adjectives (nouns) or adverbs (verbs) like “very,” “slightly,” “more or

less,” “fairly,” “almost,” “barely,” “mostly,” “roughly,” “approximately,” and others. These

linguistic hedges have the effect of modifying the membership function of the primary terms. As

an example, consider the following definitions of linguistic hedges applied on the primary linguistic

term L:

mvery L Z ðmLÞ
2; (15.16)

mslightly L Z
ffiffiffiffiffi
mL

p
; (15.17)

mnot L Z 1KmL; (15.18)

mnot very L Z 1KðmLÞ
2: (15.19)

To illustrate how hedges are used, define the membership function of L as,

mL Z
1

1
C

0:8

2
C

0:6

3
C

0:4

4
C

0:2

5

� �
:

Then we have,

mvery L Z
1

1
C

0:64

2
C

0:36

3
C

0:16

4
C

0:04

5

8
<

:

9
=

;;

mslighly L Z
1

1
C

0:8944

2
C

0:7746

3
C

0:6325

4
C

0:4472

5

8
<

:

9
=

;;

mnot L Z
0

1
C

0:2

2
C

0:4

3
C

0:6

4
C

0:8

5

8
<

:

9
=

;; and

mnot very L Z
0

1
C

0:36

2
C

0:64

3
C

0:84

4
C

0:96

5

8
<

:

9
=

;:

15.4.2 Membership Functions

Membership functions characterize the fuzziness in a fuzzy set in a graphical form for eventual

use in the mathematical formulation of fuzzy systems. There are an infinite number of ways to

graphically depict the membership functions. Thus, defining membership functions is subjective

and context-dependent.

Standard membership functions that are commonly used are shown in Figure 15.6. These are

functions of a set of parameters (a, b, c, and d) and can describe a large class of shape variations.

Figure 15.6a and b define the trapezoidal and triangular functions, which are piece-wise member-

ship functions; smooth continuous sigmoidal functions are defined in Figure 15.6c and d.

There are many ways to assign membership values or functions to fuzzy variables. This assign-

ment can be intuitive, or it can be based on some algorithmic or logical operations. Automated

methods for developing and tuning membership functions are discussed in Section 15.6.
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Figure 15.6 Shape and mathematical definition of standard membership functions: (a) trapezoidal, (b) triangular,
(c) sigmoidal, and (d) difference of two sigmoidals.
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15.4.3 Fuzzy Rule Base

In the field of artificial intelligence, there are various ways to represent human knowledge.

Perhaps the most common way is the IF–THEN rule-based form. A fuzzy IF–THEN rule is a

conditional statement expressed as:
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IF ½fuzzy proposition� THEN ½fuzzy proposition�: (15.20)

The fuzzy proposition in the IF-part of the rule acts as condition (or conditions) to be satisfied,

while the fuzzy proposition in the THEN-part provides the conclusion (or conclusions) of the rule.

The propositions in the IF and THEN parts of the rule are known as antecedents and

consequents, respectively.

There are two types of fuzzy proposition: atomic fuzzy propositions and compound fuzzy

propositions. An atomic fuzzy proposition is a single statement of the form:

½FP�Z ‘z is L’ (15.21)

where z is a linguistic variable and L is a linguistic value of z. For example, propositions describing

the throughput fuzzy variable defined in Figure 15.3 may be expressed as: “throughput is low” and

“throughput is not medium.” A compound fuzzy proposition is a composition of atomic fuzzy

propositions using connectives “and” and “or” that represent fuzzy intersection and fuzzy union,

respectively. Compound fuzzy propositions may be used to represent values of two or more fuzzy

variables. Compound fuzzy propositions combining two fuzzy variables are expressed as:

½FPand�Z ‘z1 is L1’ and ‘z2 is L2’; (15.22)

½FPor�Z ‘z1 is L1’ or ‘z2 is L2’: (15.23)

Compound fuzzy propositions are understood as fuzzy relations. Their membership functions

are obtained using the fuzzy set operations. The truth value of the propositions in Equation 15.22

and Equation 15.23 are obtained by combining the membership functions of the linguistic terms, L1

and L2, using the fuzzy intersection and union fuzzy operator given by Equation 15.10 and Equation

15.9, respectively. Hence,

TðFPandÞZ mFPand
ðz1;z2ÞZ mL1hL2

ðz1;z2ÞZ minðmL1
ðz1Þ;mL2

ðz2ÞÞ; (15.24)

and

TðFPorÞZ mFPor
ðz1; z2ÞZ mL1gL2

ðz1; z2ÞZ maxðmL1
ðz1Þ;mL2

ðz2ÞÞ: (15.25)

15.4.3.1 Aggregation of Fuzzy Rules

The rule base of most fuzzy systems consists of more than one rule. A rule is said to be fired if it

is satisfied. This means that the proposition in the antecedent (condition) part of the rule is true,

which implies that the proposition in the consequent (conclusion) part of the rule is also true. But

what if more than one rule in the rule base is fired? The process of obtaining the overall consequent

from the individual consequents contributed by each rule in the rule base is known as aggregation

of rules. Selecting an aggregation strategy depends on the type of satisfaction of a system of rules.

There are two types: conjunctive and disjunctive systems of rules.46 For the former the rules must

be jointly satisfied while for the latter at least one rule is required. Consider, for instance, a system

of r rules where the consequent of rule i is yi. In the case of a conjunctive system of rules, an “and”

connective is used, and the aggregated output, y, is determined by the fuzzy intersection of all

individual rule consequents, yi, as:

y Z y1 hy2h/hyr: (15.26)

Using the fuzzy intersection operation (Equation 15.10), the overall membership function is

thus defined as:
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myðyÞZ my1ðyÞomy2ðyÞo/omyr ðyÞ

Z minðmy1ðyÞ;my2 ðyÞ;.;myr ðyÞÞ
(15.27)

For the case of a disjunctive system of rules, the rules are connected by the “or” connectives,

and the aggregated output is determined by the fuzzy union of individual rule contributions:

y Z y1gy2g/gyr (15.28)

Using the fuzzy union operation (Equation 15.9), the overall membership function is defined as:

myðyÞZ my1ðyÞnmy2ðyÞn/nmyr ðyÞ

Z maxðmy1 ðyÞ;my2ðxÞ;.;myr ðyÞÞ
(15.29)
15.4.4 Fuzzy Inference

Due to the fact that fuzzy propositions are interpreted as fuzzy relations, the key task now is how

to interpret the IF–THEN rule. To do this, let us first rewrite the statement in Equation 15.20 as:

IF ½FP1� THEN ½FP2� (15.30)

where the fuzzy propositions FP1 and FP2 constitute the antecedent and consequent of the fuzzy rule,

respectively. In classical propositional calculus, the expression “IF p THEN q” is written as p/q. The

variables p and q are propositional variables whose values are either true (T) or false (F), while the

implication,/, is defined as a connective, such that if both p and q are true or false then p/q is true; if p

is true and q is false then p/q is false; and if p is false and q is true then p/q is true.

Fuzzy implications may be considered as extensions of the classical implications and are

usually referred to as fuzzy inference. Hence, the role of the inference engine (Figure 15.5) is to

process the rules in the fuzzy rule base using a fuzzy implication procedure. Fuzzy inference is the

process of formulating the mapping from a given input to an output using fuzzy logic. This mapping

provides a basis from which decisions can be made. There are two types of inference systems that

are commonly used in implementing fuzzy models: Mamdani-type and Sugeno-type inferences.

These two types of inference systems vary somewhat in the way outputs are represented and

determined.47 For Mamdani-type inference, the rule in Equation 15.30 may be expressed as:

IF ‘z1 is L1’ and ‘z2 is L2’ THEN ‘y is L3’ (15.31)

where L1, L2, and L3 are fuzzy sets. On the other hand, for the Sugeno-type inference, fuzzy rules

are expressed as:

IF ‘z1 is L1’ and ‘z2 is L2’ THEN ‘y Z gðzÞ’ (15.32)

It is obvious from Equation 15.31 and Equation 15.32 that the difference between both

representations is in the way the consequent part of the rule (i.e., the proposition FP2) is expressed.

For a Mandani-type system, both the antecedents and consequents are defined in terms of fuzzy sets

and membership functions. However, for a Sugeno-type system, the consequent part is a “crisply”

defined function. This function can be constant or linear with respect to the crisp values of the input

variables. Mamdani-type inference is the most widely used in fuzzy systems.3 It will be described

first, followed by the Sugeno-type inference.
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15.4.4.1 Mamdani-Type Fuzzy Inference

Fuzzy systems that use Mamdani-type inference are referred to as “standard fuzzy systems.”

Applying this type of inference to the fuzzy rule in Equation 15.30 results in a fuzzy relation
~
QM

with a membership function m
~
Q

M
ðz;yÞ, which is a function of both the input and output fuzzy variables z

and y. This indicates that this membership function is a combination of the membership functions

representing the input and output variables. There are a number of implication techniques for obtaining

the values of m
~
Q

M
ðz;yÞ. The two most widely used techniques are correlation-minimum and correlation-

product implications. The first technique is also referred to as Mamdani’s implication and defined as:

m
~
Q

M
ðz;yÞZ min½mFP1

ðzÞ;mFP2
ðyÞ�: (15.33)

The correlation-product technique is defined as:

m
~
Q

M
ðz;yÞZ mFP1

ðzÞ,mFP2
ðyÞ: (15.34)

The appropriate choice of an implication operator is typically context dependent. Although the

implications defined by Equation 15.33 and Equation 15.34 are suitable for most applications, there are

other implication techniques, such as:

m
~
Q

M
ðz; yÞZ max½mFP2

ðyÞ; 1KmFP1
ðzÞ�; (15.35)

m
~
Q

M
ðz; yÞZ min½1; ½1KmFP1

ðzÞCmFP2
ðyÞ��; (15.36)

and

m
~
Q

M
ðz; yÞZ

1; mFP1
ðzÞ%mFP2

ðyÞ

mFP2
ðyÞ; otherwise

:

(
(15.37)

These other methods have been introduced as computationally effective under certain conditions of

the membership values, mFP1
ðzÞ and mFP2

ðyÞ. The implication technique defined by Equation 15.35

reduces to Mamdani’s implication (Equation 15.33) when mFP1
ðzÞR0:5 and mFP2

ðyÞR0:5. The impli-

cations defined by Equation 15.36 and Equation 15.37 are known as Lukasiewicz’s implication and

Brouwerian’s implication, respectively.46

To demonstrate the Mamdani-type inference, consider the following simple two-rule system

where each rule comprises two conditions in the antecedent part and one conclusion in the conse-

quent part:

IF ‘z1 is L11’ and ‘z2 is L21’ THEN ‘y is P1’

IF ‘z1 is L12’ and ‘z2 is L22’ THEN ‘y is P2’
(15.38)

where Lij is the jth linguistic term (fuzzy set) of the ith input variable and Pj is the jth linguistic term

for the output variable y. The overall (aggregated) conclusion for these two rules is obtained by first

combining the conditions in the antecedent part of the rules using the fuzzy intersection operator

(Equation 15.24), followed by determining the conclusion of each rule using Mamdani’s impli-

cation technique (Equation 15.33). Individual conclusions from each rule are then aggregated using

the fuzzy union operator (Equation 15.29). This inference procedure is known as max–min method,

which results in the following output membership function:
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m
~
Q

M
ðz; yÞZ max

min minðmL11
ðz1Þ;mL21

ðz2ÞÞ;mP1
ðyÞ

� �
;

min minðmL12
ðz1Þ;mL22

ðz2ÞÞ;mP2
ðyÞ

� �

( )
: (15.39)
Applying the correlation-product implication defined by Equation 15.34 results in a similar

inference procedure, known as a max-product method, which results in the following formulation

for the output membership function:
m
~
Q

M
ðz; yÞZ max

minðmL11
ðz1Þ;mL21

ðz2ÞÞmP1
ðyÞ;

minðmL12
ðz1Þ;mL22

ðz2ÞÞmP2
ðyÞ

( )
: (15.40)
A graphical representation illustrating the Mamdani-type inference of the two rules given by

Equation 15.38 is shown in Figure 15.7. For each rule, the graphical inference in Figure 15.7 shows

that the minimum function (Equation 15.24) is applied because the conditions in the antecedent are

connected by a logical “and” connective. The minimum membership value for the antecedent

propagates through to the consequent where the output membership function is truncated for the

max–min method and scaled down for the max-product method. Then the resulting membership

functions for each rule are aggregated using the graphical equivalence of Equation 15.29 for

disjunctive rules. Hence, the resulted aggregated membership function is comprised of the outer

envelopes of the individual truncated membership forms for each rule.
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Rule 1
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Figure 15.7 Graphical representation of Mamdani-type fuzzy inference using max–min and max-product
implication methods.
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15.4.4.2 Sugeno-Type Fuzzy Inference

A Takagi–Sugeno–Kang (TSK) fuzzy system is a special case of what is known as “functional

fuzzy systems.” The TSK approach was proposed in an effort to develop a systematic approach to

generating fuzzy rules from a given input–output data set. For TSK systems, instead of a linguistic

term with an associated membership function the consequent part of the fuzzy rule is a function yZ
g(z), which is usually defined in terms of the crisp values of the input variables. Virtually any

function can be used, which makes the functional fuzzy system very general.28 The functional fuzzy

system is referred to as a first-order Sugeno model if g(z) is a linear function of input variables. For

the TSK rule defined in Equation 15.32, g(z) is given as:

y Z gðzÞZ a0 Ca1z1 Ca2z2; (15.41)

where a0, a1, and a2 are constants. If all coefficients are zeros except a0, the g(z) mapping is constant

and the fuzzy system is called a zero-order Sugeno model, which is a special case of the Mamdani

system in which each rule’s consequent is specified as a fuzzy singleton.

To demonstrate the Sugeno-type inference, consider the following simple two-rule system,

which is similar to the one in Equation 15.38 with an output y given as a zero-order Sugeno model:

IF ‘z1 is L11’ and ‘z2 is L21’ THEN ‘y Z C1’

IF ‘z1 is L12’ and ‘z2 is L22’ THEN ‘y Z C2’
(15.42)

where C1 and C2 are constants. A graphical representation of the Sugeno-type inference for the two

rules is shown in Figure 15.8. Values of the output variable are singleton spikes at C1 and C2. The

implication of each rule is simply the multiplication of the membership values of the antecedent

part of the rule with the singletons. This is, in fact, equivalent to taking the minimum between the

resulting antecedent value and the singleton spike (Figure 15.8). Hence, for Sugeno-type inference,

both the correlation-minimum and correlation-product implication methods are identical. Individ-

ual conclusions from each rule are aggregated using the fuzzy union operator (Equation 15.29),

which results in simply including all scaled singletons. This implication procedure can be expressed

mathematically as:

m
~
Q

M
ðz; yÞZ max

minðmL11
ðz1Þ;mL21

ðz2ÞÞC1;

minðmL12
ðz1Þ;mL22

ðz2ÞÞC2

( )
: (15.43)

At this stage, the output of the fuzzy inference system has been obtained. But for both the

Mamdani-type and Sugeno-type inference techniques, the fuzzy output is expressed as a fuzzy set

with a defined membership function (see Equation 15.39, Equation 15.40, and Equation 15.43) as

represented in Figure 15.7 and Figure 15.8. For this output to be useful, it should be converted to a

crisp value so that it may be used by a human or by an instrument. This task is the subject of the next

Section 15.4.5.
15.4.5 Fuzzification and Defuzzification

Most data used in engineering applications or measured by sensors are real-valued (crisp), such

as temperature, flow rate, and pressure. On the other hand, for a fuzzy system to be useful, its output

should also be crisp so that it can be readily used by other systems. For this reason, it is essential to

construct an interface around the fuzzy inference engine. This interface is achieved through the

fuzzifier and defuzzifier blocks shown in Figure 15.5. The role of the fuzzifier is to convert crisp

input variables into fuzzy input variables. This action is known as fuzzification. Conversely, the role
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Figure 15.8 Graphical representation of Sugeno-type fuzzy inference.
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of the defuzzifier is to convert the fuzzy output variables resulting from interpreting the fuzzy rules

into crisp output values. This action is known as defuzzification.

Fuzzification is a mapping from a space of real crisp values to a space of a fuzzy set. In other

words, it is a mapping between a real-valued input state vector Z2r and a fuzzy input state vector

~
Z2

~
A, where

~
A is a fuzzy set. Consequently, fuzzification is the process of converting numerical

input variables into fuzzy linguistic variables defined by the quadruple in Equation 15.15 above.

This means that each input variable should be associated with a set of linguistic terms defined as

fuzzy sets with membership functions (Section 15.4.2).

On the other hand, defuzzification is the conversion of a fuzzy quantity to a precise quantity,

just as fuzzification is the conversion of a precise quantity to a fuzzy quantity. It is a mapping from

the space of a fuzzy set to a space of crisp values. Consequently, it is a mapping between a fuzzy

output state vector
~
Y 2

~
A and real-valued output state vector Y2r.

A number of defuzzification methods have been proposed in the literature.4,28,46,48,49 Five

methods will be described below. Their objective is to determine a crisp value of a defuzzified

variable y* given an output fuzzy variable y that belongs to a fuzzy set
~
A defined in the universe U

(where
~
A is combination of the fuzzy sets in which y is defined, i.e.,

~
AZ

~
A

1
g

~
A

1
g/g

~
A

N
).

The membership function of a typical fuzzy output shown in Figure 15.9 will be used to demon-

strate the computation of the different defuzzification methods described below.
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15.4.5.1 Center-of-Area Method

This method is also known as center-of-gravity or centroid method:

y� Z

Ð
U

ymA
%
ðyÞdy

Ð
U

mA
%
ðyÞdy

; (15.44)

where E denotes an algebraic integration. Ross46 noted that this method is the most prevalent and

physically appealing of all the defuzzification methods. It may be considered the most accurate

defuzzification method; however, it is computationally slow and difficult and poses some doubts

when overlapping zones exist.45 For the fuzzy output membership function shown in Figure 15.9,

the COAM can be determined as:

y� Z

Ð1

0

y2 $dy C
Ð4=3

1

yð2KyÞ$dy C
Ð2

4=3

y yK1
2

� �
$dy C 1

2

Ð4

2

y$dy C
Ð5

4

y 5Ky
2

� �
$dy

Ð1

0

y $dy C
Ð4=3

1

ð2KyÞ$dy C
Ð2

4=3

yK1
2

� �
$dy C 1

2

Ð4

2

$dy C
Ð5

4

5Ky
2

� �
$dy

Z 2:275:

A practical and approximate way to solve Equation 15.44 is to divide the aggregated area of the

output membership function into small segments. In this case, a summation operator replaces the

integration operator, and Equation 15.44 becomes:

y� Z

PN

iZ1

yimA
%
iðyÞ

PN

iZ1

mA
%
iðyÞ

; (15.45)

where N is the number of segments, yi is the location of the segment, and mA
%
iðyÞ is the member-

ship value at yi. Approximation embedded in Equation 15.45 is fully justified when the membership

function is defined as fuzzy sets comprising singletons. Otherwise, for continuous membership

functions, the approximation accuracy increases with increasing number of segments.

Singleton output membership functions result mainly from the Sugeno-type inference systems

(see Section 15.4.4). For such systems, the overall crisp output is obtained by using Equation 15.45

where yi is the location of the ith singleton and mA
%
iðyÞ is its height. For instance, a crisp output may
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be simply obtained from the resulting singletons in Figure 15.8 by:

y� Z
w1C1 Cw2C2

w1 Cw2

: (15.46)

15.4.5.2 Weighted-Average Method

The weighted-average method (WAM) is given by the expression:

y�Z

PN

iZ1

�yimA
%
ið �yiÞ

PN

iZ1

mA
%
i ð �yiÞ

; (15.47)

where S denotes an algebraic sum and N is the number of aggregated membership functions. This

method is formed by weighting each membership function in the output by its respective maximum

membership value. The WAM is normally used for symmetrical membership functions.46

However, Ali and Zhang45 used a method called the weighted-section method (WSM), which is

identical to the WAM, and claimed that it is sensitive to unsymmetric membership functions. The

same method is termed as the mean of maxima (MOM) method by Peña-Reyes.4

Defuzzification of the fuzzy output membership function in Figure 15.9 using WAM is

performed as:

y� Z
ð1:0Þð1:0ÞC ð3:0Þð0:5Þ

1:0 C0:5
Z 1:67:

For a Mamdani-type fuzzy system, either COAM or WAM defuzzification techniques could be

applied to the aggregated membership function, and a value such as y*, shown in Figure 15.7 would

result. On the other hand, for Sugeno-type systems, Equation 15.45 and Equation 15.47 are

equivalent, and either one may be used to determine the weighted average of the singletons.

In fact, the COAM and WAM are the most commonly used defuzzification methods. Although

the COAM is more computationally intensive and many consider it more accurate, others prefer the

WAM due to its simplicity.
15.4.5.3 Max-Membership Principle

This defuzzification method is also known as the height method and is limited to peaked output

functions. The defuzzified output y* is given by the expression:

m
~
Aðy
�ÞRm

~
AðyÞ cy2U: (15.48)

For the fuzzy output function in Figure 15.9, y* is simply the location of the maximum peak for

which m
~
AðyÞZ1 and, hence, y*Z1.0.

15.4.5.4 Mean-Max Membership

This method is also known as middle-of-maxima. It is identical to the max-membership

principle (Equation 15.48) except that the locations of the maximum membership can be

a plateau rather than a single point. In this case, y* would be determined by finding the mean of
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the locations of the maximum plateau. That is,

y� Z
a Cb

2
; (15.49)

where a and b are the minimum and maximum limits of the maximum plateau. For instance, if the

output membership function in Figure 15.9 is chopped at m(y)Z0.75 then aZ0.75 and bZ1.25

while y*Z(0.75C1.25)/2Z1.0.
15.4.5.5 Center of Sums

This method involves the algebraic sum of individual output fuzzy sets, instead of their union.

The main advantage of this method is that it is not restricted to symmetric membership functions.

However, there are two drawbacks: the intersecting areas are added twice, and the method involves

finding the centroids of the individual membership functions. The defuzzified value y* is obtained

by the following equation:

y�Z

PN

iZ1

�yi

Ð
U

mA
%
i ðyÞ dy

PN

iZ1

Ð
U

mA
%
i ðyÞ dy

; (15.50)

where �yi is the centroid of the ith membership function, while the integral represents the area of the

individual membership functions. The center of sums method is similar to the WAM, except that

the weights used are the areas of the respective membership functions, whereas in the WAM the

weights are individual membership values.

For the output membership function in Figure 15.9, the centroid of the two membership func-

tions are at �y1Z1 and �y2Z3. Hence, y* can be obtained as:

y� Z
1!ð0:5!2!1ÞC3!ð0:5!ð4 C2Þ!0:5Þ

ð0:5!2!1ÞC ð0:5!ð4 C2Þ!0:5Þ
Z 2:2:

After describing the defuzzification methods, a natural question to ask is “Which method should

be selected?” The answer to this question is that the defuzzification method is context- or problem-

dependent.46 As with other issues in fuzzy systems, the method of defuzzification should be

assessed in terms of the correctness of the answer in the context of the data available. Hellendoorn

and Thomas50 have specified the following criteria against which to assess the suitability of the

defuzzification methods:

1. Continuity: a small change in the input of a fuzzy model should not produce large change

in the output. This criterion is specifically important for fuzzy models used in

control applications.

2. Disambiguity: the defuzzification method should always result in a unique value.

3. Plausibility: the defuzzified output should lie approximately in the middle of the support

region and should exhibit a high degree of membership. For our example, the COAM

resulted in an output close to the middle of the region, while that of the WAM lay in the

first quarter of the region. However, the WAM value is very close to the region with

maximum membership values compared with the COAM value. This is, in fact, a good

indication that selection of the defuzzification methods is problem-dependent.
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q 2
4. Computational simplicity: less time-consuming methods are favored. It is clear that the

COAM is more computationally intensive than the WAM.
15.5 EXAMPLE: FUZZY MODELING OF A BREAD EXTRUSION PROCESS

Application of neural networks and fuzzy logic in the modeling and control of extrusion

cooking was attempted by Linko and coworkers.51 They reported input–output data for extruded

flat bread produced with a twin-screw extruder. They reported 15 experimental data sets with three

inputs and four outputs. The input variables were moisture content of the dough, feed rate, and

screw speed. The output variables were product expansion rate, main motor current, pressure at the

die plate, and bulk density.

The aim of the current example is to demonstrate the process of building a fuzzy system to

model the bread extrusion process. Product expansion rate, E, has been selected as an output

variable. Experimental data adopted from Linko et al.51 is listed in Table 15.1. The fuzzy model

that will be developed here has two input variables and one output variable. The selected input

variables are moisture content, M, of the dough and speed of the screw, S. The third input variable

will be used later in other examples.

First, the universe of discourse for each variable is defined: M2[17,21], S2[200,300], and

E2[4.1,5.6]. This is followed by defining the fuzzy sets and membership functions. Three

linguistic terms (fuzzy sets) will be defined for each input variable: TMZ{“dry,”“normal,”

“wet”}, and TSZ{“slow,”“normal,”“fast”}. The membership functions for M and S are intuitively

defined, as plotted in Figure 15.10a and b, respectively.
15.5.1 Mamdani-Type System

For a Mamadani-type fuzzy system, the fuzzy sets and membership functions for the output

variable must also be defined. The linguistic terms assigned to the expansion rate are EZ{low,
Table 15.1 Experimental Data for Bread Extrusion Example

Inputs

Output
Expansion E (%)Moisture M (%)

Screw Speed
S (rpm)

Feed
F (g/min)

17.52 213 113 5.3

20.48 213 113 4.8

17.52 213 187 5.0

20.48 213 187 4.6

17.52 287 113 5.5

20.48 287 113 4.6

17.52 287 187 5.1

20.48 287 187 4.6

17.00 250 150 5.6

21.00 250 150 4.1

19.00 250 100 5.0

19.00 250 200 4.8

19.00 200 150 4.9

19.00 300 150 4.7

19.00 250 150 5.1

Source: Linko, P., Uemura, K., and Eerikainen, T., Food Engineering in a Computer
Climate, IChemE, Symposium Series No. 126, EPCE Event No. 452, Rugby, UK, 401,
1992.
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Figure 15.10 Membership functions representing the (a) moisture content, (b) screw speed, and (c) product
expansion rate, for the bread extrusion example.
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medium,high}, and the membership functions are plotted in Figure 15.10c. The task now is to

develop the rule base.

The rule base is normally constructed in close cooperation with human experts. In this case,

where the rules are extracted from experimental data, a practical way to construct the rule base is to

use the input–output matrix form shown in Figure 15.11. The linguistic terms describing the output

fuzzy variable, E, were assigned based on the numerical data given in Table 15.1. One fuzzy rule is

developed for each combination of the input variables. Hence, the rule base would consist of nine

rules. However, Figure 15.11 shows that the expansion rate, E, is “high” for all values of screw

speed, S, when the moisture, M, is “dry,” and E is “medium” for all values of S when M is “normal.”

This reduces the rule-base to the following four rules:

Rule 1: IF M is dry THEN E is high

Rule 2: IF M is normal THEN E is medium

Rule 3: IF M is wet AND S is slow THEN E is medium

Rule 4: IF M is wet AND S is normal THEN E is low

Rule 5: IF M is wet AND S is slow THEN E is medium

(15.51)

These rules will be processed using the Mamdani-type inference for the crisp inputs

MZ20.48% and SZ213 rpm. The inference mechanism is represented graphically in

Figure 15.12 for both the max–min and the max-product methods. The fuzzy model predicted

an expansion rate as EZ4.72% for the max–min method and 4.74% for the max-product

method. The inference steps can be summarized as follows:

1. Fuzzifying the crisp inputs results in M as “normal” with mnormal(M)Z0.26 and “wet”

with mwet(M)Z0.74, and S as “slow” with mslow(S)Z0.74 and “normal” with mnormal

(S)Z0.26.
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Figure 15.11 Input–output matrix for developing the fuzzy rule-base for the bread extrusion example.
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2. The fuzzy values of the input variables triggered all rules except rule 1. However, rule 5

did not fire because “S is fast” is not a true proposition. Therefore, as illustrated by

Figure 15.12, rules 2, 3, and 4 were fired.

3. Correlation-minimum implication was used for the max–min method and correlation-

product implication was used for the max-product method. Both implications of the fired

rules resulted in three fuzzy values for E, each with a defined membership function.

4. The three individual fuzzy outputs were aggregated using the fuzzy union operator

(Equation 15.29).

5. COAM defuzzification technique (Equation 15.44) was applied on the aggregated

membership functions to determine the crisp value of E.

Predictions of the fuzzy model are compared with experimental data in Table 15.2. The average

absolute error for both the max–min and max-product is 2.8%, which is quite low even though only

intuition was used in developing the membership functions and the rule-base. It is worth
Figure 15.12 Graphical Mamdani-type inference for the bread extrusion example.
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Table 15.2 Prediction Results of the Bread Extrusion Fuzzy System Using Mamdani and Sugeno
Inferences

Inputs Expansion E (%)

Mamdani Inference

Moisture M (%)
Screw Speed

S (rpm) Exp. Max–min Max-prod Sugeno Inference

17.52 213 5.3 5.19 5.24 5.37

20.48 213 4.8 4.72 4.74 4.61

17.52 213 5.0 5.19 5.24 5.37

20.48 213 4.6 4.72 4.74 4.61

17.52 287 5.5 5.19 5.24 5.37

20.48 287 4.6 4.72 4.74 4.66

17.52 287 5.1 5.19 5.24 5.37

20.48 287 4.6 4.72 4.74 4.66

17.00 250 5.6 5.47 5.47 5.50

21.00 250 4.1 4.23 4.23 4.10

19.00 250 5.0 4.85 4.85 5.00

19.00 250 4.8 4.85 4.85 5.00

19.00 200 4.9 4.85 4.85 5.00

19.00 300 4.7 4.85 4.85 5.00

19.00 250 5.1 4.85 4.85 5.00

Minimum 1.0 1.0 0.0

Error (%) Maximum 5.6 4.9 7.4

Average 2.8 2.8 2.6
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mentioning that a number of input data sets are repeated because the third input variable, F, is not

considered in this example. Moreover, the model predicted the same value of the output for most of

the values of M (Table 15.2). This is due to the fact that Rule 1 and Rule 2 included only M in their

antecedent part.
15.5.2 Sugeno-Type System

A Sugeno-type system for the bread extrusion example is implemented in this section. The

system assumes that the function in the consequent part of the fuzzy rules is a constant. The rule

base consists of the following five rules:

Rule 1: IF M is dry THEN E Z 5:5

Rule 2: IF M is normal THEN E Z 5:0

Rule 3: IF M is wet AND S is slow THEN E Z 4:6

Rule 4: IF M is wet AND S is normal THEN E Z 4:1

Rule 5: IF M is wet AND S is fast THEN E Z 4:7

(15.52)

The constants in the consequent part of the rules are derived from the experimental data listed in

Table 15.1. For the crisp inputs MZ20.48% and SZ213 rpm, the Sugeno-type model predicted the

expansion rate as EZ4.61%. The inference mechanism is represented graphically in Figure 15.13.

It starts with steps 1 and 2, described above, followed by rule implication, which is carried out using

the correlation-product method. For each rule, the implication produces a singleton. The singletons
q 2006 by Taylor & Francis Group, LLC



Figure 15.13 Graphical Sugeno-type inference for the bread extrusion example.
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are then aggregated by simply adding them in one plot. Finally, the WAM defuzzification method

(Equation 15.47) is used to determine the value of the crisp output.

As reported in Table 15.2, the Sugeno-type fuzzy model predicted the experimental data quite

closely, with an average absolute error of only 2.6%.

15.5.3 Implementing the Fuzzy Model in MATLABw

The Fuzzy Logic Toolbox52 consists of a collection of functions built on the MATLAB numeric

computing environment.53 It provides useful tools for creating and editing fuzzy inference systems

and a number of interactive tools for accessing a number of the functions through a graphical user

interface (GUI). There are five primary GUI tools: the fuzzy inference system (FIS) editor, the

membership function editor, the rule editor, the rule viewer, and the surface viewer.

In this section, we will implement a fuzzy system for the bread extrusion example discussed

above using the fuzzy logic toolbox. The implementation starts with the FIS editor that displays

general information about the fuzzy system. In this editor, we specify the input and output variables

and the main parameters of the inference mechanism. This includes the type of inference (Mamdani

or Sugeno), setting the fuzzy operations, rule implication, aggregation and defuzzification methods.

The FIS editor for the bread extrusion example is shown in Figure 15.14.

The next step is to define the membership functions for the input and output variables. The

shape and parameters of the transfer functions associated with each variable are constructed using

an interactive GUI. An example membership function editor displaying the speed of the screw input

variable is shown in Figure 15.15. The rule-base is then constructed using the rule editor, which

allows the fuzzy rule statements to be constructed automatically. The rule editor for our example is

shown in Figure 15.16.

At this stage, the implementation of the fuzzy system for the bread extrusion example has been

completed. There are two useful tools for testing and running the developed fuzzy model. The first

tool is the rule viewer, which displays a roadmap of the whole fuzzy inference process. An example

rule viewer window is shown in Figure 15.17. This tool can be used to determine the value of the

output variable for given values of input variables. The second tool is the surface viewer, which
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Figure 15.14 Fuzzy inference editor for the bead extrusion fuzzy system.

Figure 15.15 Membership editor displaying the membership function for the “speed” input variable.
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Figure 15.16 Rule editor used for constructing the rule base.

Figure 15.17 Rule viewer tool for the bread extrusion example.
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Figure 15.18 Surface viewer tool displaying the mapping from input to output variables for the bread extrusion
example.
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presents a three-dimensional curve that represents the mapping from the two input variables

(moisture content and speed) to the output variable (expansion rate). The surface viewer for our

example is shown in Figure 15.18.
15.6 DEVELOPING AND TUNING MEMBERSHIP FUNCTIONS

Because all information contained in a fuzzy set is described by its membership function that

embodies all its fuzziness, its description is the essence of a fuzzy property or operation. Never-

theless, a question that is usually raised is whether there is a unique and well-defined method for

specifying membership functions, similar to writing a set of differential equations for an engin-

eering problem. From an engineering standpoint, assigning a membership function is to take into

account effects of uncertainty. Hence, demanding precise specifications would contradict the whole

concept of fuzzy modeling. According to Bandemer and Gottwald54 the choice of the type and the

precise values for the parameters have, in general, little influence on the results, decisions, and

conclusions obtained as long as a local monotonicity is preserved. For two different membership

specifications, m1 and m2, local monotonicity means:

cz1;z2 2U : m1ðz2Þ%m1ðz1Þ5m2ðz2Þ%m2ðz1Þ: (15.53)

Intuition is the easiest method for defining membership functions. It is simply derived from the

capacity of humans to develop membership functions through their own innate intelligence and

understanding. This method has been used in developing the membership functions for the bread

extrusion fuzzy system developed above. It is remarkable that good results were obtained and

prediction errors were consistently small. Besides the intuition method, Ross46 listed four

methods for assigning and tuning membership functions. These include (1) inference, (2) rank

ordering, (3) neural networks, (4) genetic algorithm, and (5) inductive reasoning.
q 2006 by Taylor & Francis Group, LLC



HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES484
In cases where experimental data or practical observations are available, there are a number of

methods to develop or tune membership functions. These involve, more or less, an optimization

technique that minimizes the differences between the available data and the predictions of the fuzzy

system. In addition to developing the membership functions, there is an increasing interest in

augmenting fuzzy systems with learning capabilities. The most successful approach is to hybridize

the approximate reasoning of fuzzy systems with the learning capabilities of neural networks and

the evolutionary power of genetic algorithms. Integration of neural networks and genetic algo-

rithms with fuzzy systems cover different levels of complexity, from the simplest case of parameter

optimization to the highest level of complexity of learning the fuzzy rules in the rule-base.4,28,46

It is important to distinguish between tuning and learning problems. Tuning is more concerned

with the optimization of an existing fuzzy system, whereas learning constitutes an automated design

method for fuzzy systems that starts from scratch. Tuning processes assume a predefined rule base

and have the objective of finding a set of optimal parameters for the membership functions.

Learning processes perform more elaborate searches and aim at developing the rule base and

membership functions from input–output data.

Artificial neural networks, genetic algorithms, and fuzzy logic belong to the same family of bio-

inspired methodologies.4 In fact, they model, to different extents, natural processes such as

evolution, learning, or reasoning. The dynamic and continuously growing research on these

subjects have allowed for the identification of the strengths and weaknesses of each methodology

and have motivated their hybridization in order to take advantage of their complementary features.

This originated hybrid techniques known as neuro-fuzzy systems and genetic fuzzy modeling.

Integrating neural networks and genetic algorithms with fuzzy systems is the subject of the

remainder of this chapter. For each approach, a brief background will first be presented, followed

by a description as to how they are integrated with fuzzy systems.
15.6.1 Hybrid Neural-Fuzzy Systems

Derived from their biological counterparts, artificial neural networks (ANNs) are based on the

concept that a highly interconnected system of simple processing elements can learn complex

interrelationships between independent and dependent variables. Basic concepts and background

on ANNs are introduced in Chapter 12 of this handbook. In this section, an explanation is given of

how neural network capabilities are utilized to determine and tune the membership functions of

fuzzy systems. First, a brief introduction to neural networks is given.
15.6.1.1 Artificial Neural Networks

An ANN consists of an interconnection of basic neuron processing elements. Each element

computes some function of its inputs and passes the results to connected elements (neurons) in the

network. The knowledge of the system comes out of the entire network of the neurons. Figure 15.19

shows a common structure of a neural network with n input variables and m output variables. Input

variables are passed to the hidden layer that contains p neurons. ANNs may have more than one

hidden layer. The ANN shown in Figure 15.19 is a feed-forward network. There are other types of

networks that differ in the manner in which neurons are interconnected. These include feedback,

lateral, time-delayed, and recurrent networks.55–57 Each ANN type has its own specific appli-

cations; however, feed-forward networks are the most popular and are commonly used with

fuzzy systems.

ANNs solve problems by adapting to the nature of available input–output data. This is accom-

plished in two phases: learning and testing. In learning, a set of training data is fed into the network

to determine its parameters, weights, and thresholds. It often involves optimizing some energy

function. In testing, another set of data is used to test the generalization of a trained ANN.
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Figure 15.19 A general structure of an artificial neural network.
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To train an ANN, weights wi
j,k are randomly assigned to the connections between neurons. Then,

input data records from the training data set are passed through the neural network to compute the

values of the output variables. Predicted output values are compared with the actual values, and an

error is evaluated. Next, a technique called back-propagation is used to determine a new set of

weights that can approximate the output more closely. This procedure is iterated until the error

value of the output is within some prescribed limits. Finally, a testing-data set is used to verify how

well the network can simulate the nonlinear model.
15.6.1.2 Integrating Neural Networks and Fuzzy Systems

Neural networks provide learning capability, whereas fuzzy methods provide flexible knowl-

edge representation capability. Integrating these two methodologies can lead to better capabilities

that take advantage of the strengths of each methodology and at the same time overcome some of

the limitations of the individual ones. There are basically two ways that fuzzy logic and neural

networks can be combined. In the first way, fuzzy logic is introduced into neural networks to

enhance their knowledge representation capabilities. This leads to a fuzzy-neural system in

which fuzzy concepts are introduced within neural networks at the levels of inputs, weights,

aggregation operations, activation functions, and outputs. The second way is using neural networks

in fuzzy modeling to provide fuzzy systems with learning capabilities. This leads to a neural-fuzzy

system (also known as a neuro-fuzzy system), in which a fuzzy system is represented as a modified

neural network, resulting in a fuzzy inference system that is enhanced by neural-network capabili-

ties. Among the various neural-fuzzy systems reported in literature, an adaptive network fuzzy

system (ANFIS) is the most affective and has spawned numerous applications.58 ANFIS is

discussed later in this section.
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Although fuzzy logic can encode expert knowledge directly using rules with linguistic labels,

designing and tuning the membership function is usually not an easy task. Moreover, useful

applications of fuzzy modeling are restricted mainly to those fields where expert knowledge is

available and the number of input variables is small. Neural-network learning techniques can

automate this process and substantially reduce development time and cost while improving per-

formance. Neural networks are also utilized to process data and to tune membership functions of

fuzzy systems as well as to extract fuzzy rules from numerical data.

Fuzzy logic concepts can be incorporated into a neural-network structure at any level. For

instance, some or all components of a neuron can be replaced with fuzzy operations. This results

in a fuzzy neuron that replaces summation operator by the fuzzy aggregation operator. A min-fuzzy

neuron applies a fuzzy intersection operator, whereas a max-fuzzy neuron applies a fuzzy union

operator. A neural network with fuzzy neurons becomes a multi-layer fuzzy-neural network.

Three main areas may be identified in hybrid neural-fuzzy systems:3

1. Fuzzy-rule extraction from neural networks. This approach attempts to extract the fuzzy

rules from the knowledge embedded in trained neural networks.59,60

2. Neuro-fuzzy systems. These are fuzzy inference systems implemented as neural

networks, taking advantage of their structural similarity. ANFIS is a well-known

neuro-fuzzy system that will be discussed in more details in Section 15.6.1.3.

3. Interpretability-oriented neuro-fuzzy systems. A recent family of neuro-fuzzy systems is

constructed respecting certain interpretability-related constraints to keep permanent read-

ability of the system during the learning process.4 Examples of such systems include

NEFCON and NEFPROX,61 which are based on a three-layer neuro-fuzzy architecture

whose weights are constraints to respect the integrity of the fuzzy linguistic variables.
15.6.1.3 Adaptive Network Fuzzy Inference Systems

Adaptive Network Fuzzy Inference Systems (ANFIS) is an adaptive neuro-fuzzy inference

system proposed by Jang in 1993.62 The basic idea behind ANFIS is to provide a method for the

fuzzy modeling procedure to learn information about a data set in order to determine the parameters

of the membership functions that best allow the associated fuzzy inference system to track the given

input–output data with minimum error. Such hybrid systems can be optimized via powerful, well-

known neural-network learning algorithms. An ANFIS consists of a six-layer generalized network

with supervised learning. The structure and inference mechanism of ANFIS will first be demon-

strated on two simple rules, followed by an illustration of the implementation of such systems

in MATLAB.

To demonstrate the process of developing a neuro-fuzzy system, consider the two Sugeno rules

represented by Equation 15.42. Recall that the implication of these rules is given by Equation 15.43,

whereas the defuzzified output y* is evaluated using Equation 15.46. The parameters, w1 and w2 in

Equation 15.46 are the implication results of the rules. After all, when a crisp input zZ(z1,z2) is

presented, the inference mechanism should produce the crisp output:

y� Z
minðmL11

ðz1Þ;mL21
ðz2ÞÞ$C1 CminðmL12

ðz1Þ;mL22
ðz2ÞÞ$C2

minðmL11
ðz1Þ;mL21

ðz2ÞÞCminðmL12
ðz1Þ;mL22

ðz2ÞÞ
: (15.54)

A fuzzy-neural network for implementing this mechanism is shown in Figure 15.20. The

network consists of six layers: an input layer, an output layer, and four hidden layers. The first

hidden layer is the fuzzification layer. The input to this layer is a set of crisp input variables zZ(z1,

z2), and the output is the corresponding set of fuzzy variables:
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Figure 15.20 Graphical representation of an ANFIS network for two fuzzy rules.
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ðO11;O12;O13;O14ÞZ ðmL11
ðz1Þ;mL12

ðz1Þ;mL21
ðz2Þ;mL22

ðz2ÞÞ: (15.55)

The four neurons in this layer represent the membership functions L11, L12, L21, and L22, which

are specified in some parametric manner from a family of membership functions, such as those

shown in Figure 15.6. The outputs from layer 1 are fed to layer 2, which is an antecedent activation

layer. This layer consists of two min-fuzzy neurons that apply a fuzzy intersection operator

(Equation 15.24). The output of layer 2 is

ðO21;O22ÞZ ðminðmL11
ðz1Þ;mL21

ðz2ÞÞ;minðmL12
ðz1Þ;mL22

ðz2ÞÞÞ: (15.56)

A rule is fired if its antecedent membership value is greater than zero. This value is forwarded to

layer 3, which is an implication layer. This layer performs rule implications by applying the

correlation-product operator (Equation 15.34). The outputs of layer 3 are, in fact, two singletons

resulted from implication of the two rules:

ðO31;O32ÞZ ðminðmL11
ðz1Þ;mL21

ðz2ÞÞ$C1;minðmL12
ðz1Þ;mL22

ðz2ÞÞ$C2Þ: (15.57)

The last hidden layer is an aggregation layer. Layer 4 aggregates the resulted singletons, and its

output is

ðO41;O42ÞZ

minðmL11
ðz1Þ;mL21

ðz2ÞÞ$C1

minðmL11
ðz1Þ;mL21

ðz2ÞÞCminðmL12
ðz1Þ;mL22

ðz2ÞÞ

minðmL12
ðz1Þ;mL22

ðz2ÞÞ$C2

minðmL11
ðz1Þ;mL21

ðz2ÞÞCminðmL12
ðz1Þ;mL22

ðz2ÞÞ

0
BBBB@

1
CCCCA
: (15.58)

Finally, the output layer is a defuzzification layer that determines the crisp value of the output

variable by simply summing the inputs:

y� Z ðO41CO42ÞZ
minðmL11

ðz1Þ;mL21
ðz2ÞÞ$C1 CminðmL12

ðz1Þ;mL22
ðz2ÞÞ$C2

minðmL11
ðz1Þ;mL21

ðz2ÞÞCminðmL12
ðz1Þ;mL22

ðz2ÞÞ
: (15.59)

The procedure outlined above, and the graphical representation shown in Figure 15.20 can be

extended to any number of rules. An efficient learning algorithm is needed for this representation to
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be more useful. In conventional neural networks, the back-propagation algorithm is effectively used

to learn or adjust the weights. In ANFIS, the parameters of the antecedents and consequents of the

fuzzy rules play the role of weights. The parameters used in specifying the membership functions in

the IF-part are known as antecedent parameters, whereas the parameters used in defining the

functions g(z) in the THEN-part are known as consequent parameters. The objective of ANFIS

learning algorithms is to find the best values of these parameters from sample data. A detailed

description of the training algorithms is beyond the scope of this chapter and can be found else-

where.58 In Section 15.6.1.4, the development of ANFIS neuro-fuzzy system will be illustrated

using the Fuzzy Logic Toolbox of MATLAB.
15.6.1.4 Developing ANFIS in MATLAB: Bread Extrusion Problem

There exist some modeling problems in which the intuitive method is not sufficient. In such

cases, it is difficult to discern the shape of the membership functions and to predict their appropriate

parameters. Rather than choosing the parameters associated with membership functions arbitrarily,

such parameters may be chosen so that they are tailored to a set of input–output data. In this section,

the use of neuro-fuzzy techniques, in particular ANFIS, will be demonstrated in both tuning as well

as developing membership functions. This will be achieved by using the ANFIS tool that is part of

the Fuzzy Logic Toolbox of MATLAB.52 Using a given input–output data set, this tool enables the

construction of a fuzzy inference system (FIS) whose membership function parameters are tuned

using either a back-propagation algorithm alone or in combination with a least-squares type

of method.

The fuzzy systems that were developed in Section 15.5 for modeling the bread extrusion process

are based mainly on intuition. In this section, the same problem is revisited to demonstrate how

neural networks may be utilized to enhance the performance and prediction accuracy of fuzzy

systems. Three FIS models will be developed and compared with the Sugeno model developed in

Section 15.5. The results of this model are presented in Table 15.2 and will be referred to as

model-0. The input–output data set listed in Table 15.1 will be used in training the ANFIS networks

for each model.

For the first model (model-1), the ANFIS tool will be used to tune the membership and rule-base

parameters of model-0, whereas for the second model (“model-2”) a new Sugeno FIS will be

developed from scratch without prior knowledge of these parameters. So far, the three models

are for two input variables, M and S, and one output variable, E. For this reason, the third model

(model-3) will be developed for three inputs and one output. The additional input variable is the

feed flow rate, F, which is included in Table 15.1.

The front end of the ANFIS tool is an “Anfis Editor” (Figure 15.21), which may be activated

using the anfisedit command. The lower half of the editor contains means for loading the input–

output data, in addition to constructing, training, and testing fuzzy systems. The upper half provides

a display for several pieces of useful information. For instance, the dialog shown in Figure 15.21

displays a comparison between the training and testing data points for model-1.

Development of model-1 starts by loading the input–output data set, followed by loading the

FIS model that was previously developed for model-0. The same data set has been used as both

training and testing data sets. Tuning of the parameters of model-1 has been performed by training

an automatically developed ANFIS, using 50 epochs. The resulted training error is 0.142. Predic-

tions of model-1 are compared with the training data set in Figure 15.21.

For model-2, after loading the data set, the type of the membership functions are specified using

the dialog shown in Figure 15.22. For these applications, triangular membership functions are used,

which are defined in MATLAB as “trimf.” Training is then performed for the network structure

shown in Figure 15.23, which is automatically generated. Using 50 epochs, the training error for

model-2 is 0.113. It is clear from Figure 15.23 that the rule base of the fuzzy system that has been
q 2006 by Taylor & Francis Group, LLC



Figure 15.22 Specifying the shape of the membership functions.

Figure 15.21 GUI for the ANFIS tool for the bread extrusion problem (model-1).
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Figure 15.23 Automatically generated ANFIS structure for the bread extrusion model.
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generated by ANFIS consists of nine rules, whereas only five rules are used by all models

developed above.

Finally, model-3 is developed by first loading the data set for three inputs (M, S, and F) and one

output (E) and specifying three triangular membership functions for each input variable. Results of

the ANFIS training are shown in Figure 15.24. After 60 epochs, the training error approaches zero,

which means that model-3 may have achieved a perfect fit.

Prediction results of different models are compared in Table 15.3 against the experimental

data set.

Despite the fact that model-0 gave acceptable prediction accuracy, the other models that were

developed by ANFIS performed much better. For model-1 and model-2, the prediction error went

down to 2.2 and 1.8, respectively. However, model-3 showed a perfect fit. The following comments

may be derived from the analysis of the results and the structure of the resulting models:

† The shapes of the membership functions for all FIS models are comparable to those

shown in Figure 15.10a and b, and small variations were noticed in the parameters of the

tuned and developed membership functions.
† For model-0 and model-1, the rule bases were forced to have five fuzzy rules (see the

rules in Equation 15.52). However, ANFIS training for model-2 resulted in a rule base

with nine fuzzy rules. For this reason, model-2 showed better performance when

compared with the other two models.
† Discrepancies between the various developed FIS models are mainly due to differences

in the rule bases. Besides the number of rules, considerable differences were found in the

values of the g(z) function in the consequent part of the rules (Equation 15.52).

In conclusion, utilizing the training capabilities of neural networks is quite beneficial; it

improves the prediction performance of fuzzy systems. The ANFIS method is effective in deter-

mining the optimum parameters of the membership functions and the rule-bases.
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Figure 15.24 ANFIS training results for case 3.
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15.6.2 Genetic Algorithms

Genetic algorithms (GAs) belong to the domain of evolutionary computing, which is based on

the principles of natural evolution, and specifically utilize the concept of Darwin’s theory of
Table 15.3 Prediction Results of the Bread-Extrusion Fuzzy System That Are Tuned and/or Developed
Using the ANFIS Tool

Inputs Expansion E (%)

M (%) S (rpm) F (g/min) Exp. Model-0 Model-1 Model-2 Model-3

17.52 213 113 5.3 5.37 5.28 5.15 5.30

20.48 213 113 4.8 4.61 4.70 4.70 4.80

17.52 213 187 5.0 5.37 5.28 5.15 5.00

20.48 213 187 4.6 4.61 4.70 4.70 4.60

17.52 287 113 5.5 5.37 5.28 5.30 5.50

20.48 287 113 4.6 4.66 4.60 4.53 4.60

17.52 287 187 5.1 5.37 5.28 5.30 5.10

20.48 287 187 4.6 4.66 4.60 4.53 4.60

17.00 250 150 5.6 5.50 5.45 5.60 5.60

21.00 250 150 4.1 4.10 4.10 4.10 4.10

19.00 250 100 5.0 5.00 4.89 4.97 5.00

19.00 250 200 4.8 5.00 4.89 4.97 4.80

19.00 200 150 4.9 5.00 4.89 4.90 4.90

19.00 300 150 4.7 5.00 4.89 4.70 4.70

19.00 250 150 5.1 5.00 4.89 4.97 5.10

Minimum 0.0 0.0 0.0 0.0

Error (%) Maximum 7.4 5.6 3.9 0.0

Average 2.6 2.2 1.8 0.0
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evolution. Darwin’s theory basically stressed the fact that the existence of all living things is based

on the rule of survival of the fittest. It also postulates that new breeds or classes of living things

come into existence through the processes of reproduction, crossover, and mutation among existing

organisms.63 There are several types of evolutionary algorithms, among which GAs are the best

known. Other algorithms are genetic programming, evolution strategies, and evolutionary

programming. Although different in their specifics, these algorithms are all based on the same

general principle.4 A brief introduction to genetic algorithms will be given next, followed by a

demonstration of how these algorithms can be used to determine membership functions. Details on

computational procedures and algorithms are readily available in a number of textbooks.64–67

GAs can be viewed as either a search method or an optimization technique that performs an

intelligent search for a solution from a nearly infinite number of possible solutions. Although there

are many possible variants of the basic GA, the fundamental underlying mechanism consists of three

operations: evaluation of individual fitness, formation of a gene pool (intermediate population)

through selection mechanisms, and recombination through crossover and mutation operators.

The algorithm proceeds as follows: an initial population of individuals, P(0), is generated at

random or heuristically. For every evolutionary step, t, known as a generation, the individuals in the

current population, P(t), are decoded and evaluated according to some predefined quality criterion,

referred to as fitness, or a fitness function. Then, a subset of individuals, P 0(t), known as the mating

pool, is selected to reproduce, according to their fitness. Thus, high-fitness individuals stand a better

chance of reproducing whereas low-fitness ones are more likely to disappear.

New individuals enter the population and may be considered as new points in the search space.

These are generated by altering the selected population P 0(t) via the application of crossover and

mutation so as to produce a new population, P00(t). Crossover enables the evolutionary process to

move towards promising regions of the search space. Mutation prevents premature convergence to

local optima by randomly sampling new points in the search space. Finally, the new individuals, P00(t),

are introduced into the next-generation population, P(tC1). The termination condition may be

specified as some maximal number of generations or as the attainment of an acceptable fitness level.

In a GA, individuals in a population are coded as finite strings. Each of the strings is decoded into

a set of parameters that it represents and is passed though a numerical model of the problem space

(a fuzzy system, in this case). The numerical model gives out a solution and, based on the quality of

this solution, the string is assigned a fitness value. With this fitness value, the three genetic operators

(reproduction, crossover, and mutation) are used to create a new generation of strings that is expected

to perform better than the previous generations. The new set of strings is again decoded and evaluated,

and the process is continued until convergence is achieved within a population.

Many fitness selection procedures are currently in use, one of the simplest being fitness-propor-

tionate selection,4 where individuals are selected within a probability proportional to their fitness.

Crossover is performed using a “crossover rate” between two selected individuals, called parents,

by exchanging parts of their genomes to form two new individuals, called offsping. The mutation

operation is carried out by flipping randomly selected parts of the strings preserving the size of the

population. There are several variations of GAs66 with different selection mechanisms

(e.g., ranking, tournament, and elitism), crossover operators (e.g., multipoint crossover), and

mutation operators (e.g., adaptive mutation). These and other advanced topics related to genetic

algorithms are found in books such as Mitchell,64 Michalewicz,65 and Banzhaf et al.67
15.6.2.1 Genetic Tuning of Membership Functions

As briefly described above, GAs can be used to optimize the internal parameters of fuzzy

membership functions. The objective here is to find the most appropriate parameters of the

membership functions so that the total error between the outputs of the fuzzy model and the

desired outputs derived from the learning data is minimized.
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To illustrate how GAs may be utilized in developing and/or tuning the membership functions of

fuzzy systems, consider the membership functions defined in Figure 15.25 for the bread extrusion

example. The shape of these membership functions can be simply adjusted by fixing the full

membership points ðm
~
MZ1Þ and allowing the zero points ðm

~
MZ0Þ to vary. For each of the

fuzzy variables in Figure 15.25, the membership function on the right side is constrained to have

the right-angle wedge at the upper limit of the range of the fuzzy variable, and the left side function

is constrained to have the right-angle wedge at the lower limit of the range. In addition, the middle

membership function is assumed to be symmetrical, and its peak point is constrained at the middle

of the range.

Consider, for instance, the fuzzy moisture content M, which is parameterized in Figure 15.10.

The right side of the “wet” membership function is fixed at (21,1), i.e., MZ21 and m
~
MZ1, the left

side of the “dry” membership function is fixed at (17,1), and the peak of the “normal” membership

function is fixed at (19,1). As illustrated in Figure 15.25, the lengths of their bases that are

represented by the three parameters, a1, a2, and a3 are needed to describe the shape of the three

membership functions.

This mechanism is used in encoding the membership functions of the three fuzzy variables.

Therefore, the number of unknown variables for the bread extrusion problem is nine. These

variables are encoded as a concatenated string. The GA procedure starts with generating an initial

random population of individuals (strings). Each string contains a combination of membership

functions. To determine the fitness of each string, the square of the errors that are produced when

estimating the value of the output y of the fuzzy system are calculated, given the inputs x and

parameters of the membership functions a’s represented by the string. Relative fitness values are

then used to determine which strings are to be eliminated and the number of copies of each remaining

string that make the next generation of strings. Crossover and mutation are then applied on the

strings, thus developing a new generation of strings. These strings undergo the same process of

decoding and evaluation as the previous generation. The process of generating and evaluating strings

is continued until we get the membership functions with the best fitness value.
15.6.2.2 Genetic Learning of the Rule-Base

GAs may be employed as an evolutionary learning process to automate the knowledge-base

generation. This process can be considered as an optimization or search problem, where the task is
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to find an appropriate rule base from a set of input–output observations. Using an approach similar

to the one described for tuning membership functions, the main concept is to parameterize the

different components of the fuzzy system (fuzzy rules and fuzzy variables) and find those parameter

values that are optimal with respect to the optimization criteria. The parameters constitute the

optimization space, which is transformed into a suitable genetic representation on which the

search process operates.

For fuzzy rule-base learning, there are three main approaches that have been applied in the

literature:4 the Pittsburgh approach, the Michigan approach, and the iterative rule learning

approach. For the Pittsburgh approach, each individual string (genetic code or chromosome)

represents an entire fuzzy system, whereas in the Michigan approach each individual represents

a single rule and the fuzzy inference system is represented by the entire population. The main

shortcoming of the Pittsburgh approach is its computational cost, because a population of the entire

fuzzy system has to be evaluated each generation. The iterative rule learning approach combines

the speed of the Michigan approach with the simplicity of fitness evaluation of the Pittsburgh

approach. In this approach, each individual encodes a single rule, and a new rule is adapted and

added to the rule set, in an iterative fashion, in every run of the GA. An evolutionary algorithm is

used iteratively for the discovery of new rules until an appropriate rule-base is built.

Other hybridization techniques of GAs and fuzzy systems have been proposed in the literature.

These include genetic-neuro-fuzzy systems that are the result of adding genetic or evolutionary

learning capabilities to systems in which fuzzy and neural concepts are integrated. Such systems

incorporate fuzzy numbers to represent the weights, perform fuzzy operations in the nodes of the

network, and/or incorporate fuzzy nodes that represent membership functions. In addition, the

learning process applies GAs to obtain the weights of the neural network, to adapt the transfer

functions of the nodes, and/or to adapt the topology of the net.

Recently, a new evolutionary approach called Fuzzy CoCo has evolved and attracted numerous

research activities. Fuzzy CoCo is a cooperative coevolutionary approach to fuzzy modeling

wherein two coevolving species are defined.4 Inspired by natural coevolution, artificial coevolution

refers to the simultaneous evolution of two or more species with coupled fitness. This means that

the fitness of one individual depends on the fitness of individuals of other species and/or its

interaction with them. Such coupled evolution is the main difference between the Fuzzy CoCo

and the noncoevolutionary GA-based fuzzy systems.

Coevolving species can either compete or cooperate. In a competitive-coevolutionary algo-

rithm, the fitness of an individual is based on direct competition with individuals of other species.

Increased fitness of one of the species implies a diminution in the fitness of the other species. On the

other hand, in a cooperative-coevolutionary algorithm, the fitness of an individual depends on its

ability to collaborate with individuals from other species.
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16.1 INTRODUCTION

16.1.1 Probabilistic Modeling

Questions concerning model uncertainty arise in all scientific and engineering fields. The last

few years have seen many new developments in the field of uncertainty analysis.1 Decision makers

are increasingly demanding some defensible representation of uncertainty surrounding the output

of complicated mathematical models. Scientists, in turn, are putting more effort into the modeling

and propagation of uncertainty.

In general, uncertainty analysis requires stochastic modeling environments. Historically,

analysts have often developed models based on a single value or “point estimate” for each input

variable, ignoring uncertainty. This, broadly speaking, is the deterministic approach to modeling or

analysis. Often the point estimate is the mean value of the sample data. Uncertainty can cause

significant discrepancies in predicted risk and can have a major influence on decisions based on the

analysis. For example, using point estimates of the input variables, a point estimate of the output

variable can be calculated. On the other hand, if the uncertainty in the input variables is incorpor-

ated into the analysis, a probability density function (PDF) (or its statistics) for the same output can

be estimated. This is the probabilistic modeling approach, within which the Monte Carlo method is

one tool.2 The point estimate of the output is not necessarily the mean of its PDF and will generally

not be, except for a linear input/output functional relationship. Clearly, a PDF is preferable to a

point estimate, as it communicates more of the available information.

Modeling approaches can also be classified as to whether they are theoretical (analytical) or

numerical (approximate). Because only a small fraction of problems lend themselves to exact or

closed-form solutions, approximate methods play a central role both in research and engineering

applications. The Monte Carlo method is one of the most universally used approximate numerical

techniques, especially where stochastic effects are important, though it has also been used to

examine deterministic problems.3 The latter application includes the calculation of complex inte-

grals, solution of equations, etc.
16.1.2 Uncertainty in Food and Bioprocess Engineering

Variability in food processing and bioprocessing arises from random fluctuations in environ-

mental processing parameters such as temperatures, feed-rates, etc., and from dispersion of

internal parameters such as heat and mass transfer coefficients, reaction constants, physical and

thermal properties, etc.4 The last of these is very significant because biomaterials, owing to their

natural origin, inherently have a large dispersion in their physical and thermal properties. As a guide,

the coefficient of variation in a broad spectrum of thermophysical properties of foods can be expected

to lie within a band of 5–15%. Also, unlike variability in processing parameters (that can, to an extent,

be ameliorated by good system design and control practice), this intrinsic dispersion is outside the

control of the system designer. Therefore, an efficient and systematic method is required to evaluate

uncertainties and to investigate the effects of the uncertainties in food process simulation.5

More particularly, the thermophysical properties of many biological products, as well as the

external parameters such as initial and ambient temperature, surface heat transfer coefficient, etc.,
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may change randomly both as a function of space and time coordinates.6 For example, the chemical

composition and physical structure of many agricultural materials are very heterogeneous and are a

function of several factors such as harvest time and weather conditions, and the origin of the

product. The thermophysical properties are affected by this heterogeneity and can vary inside

the product as a function of the space coordinates. Other parameters, such as the temperature of

the convective fluid flowing around the conducting solid, are intrinsically stochastic and may

change in an unpredictable way during the heat-transfer process. For instance, the temperature

inside a refrigerated room may fluctuate as a function of time as a consequence of unpredictable

openings of refrigerator or oven doors, actions of the temperature control system, ambient con-

ditions outside the refrigerated room, and changes of solar radiation flux. As a consequence, the

temperature distribution inside the heated object is also random and can only be specified mean-

ingfully by means of statistical characteristics such as its mean value, variance, and PDF. The

Monte Carlo analysis technique is particularly suited to accommodate the intrinsically variable

nature of the properties of foods and other bio-products and uncertainties in the manufacturing

processes they undergo.7
16.1.3 Monte Carlo Simulation as a Probabilistic Modeling Tool

There is a wide range of methods available for analyzing uncertainties in model predictions due

to variability in model input parameters. Probabilistic modeling approaches include transformation

methods, perturbation methods (also known as statistical differentials), variance propagation

analysis, sensitivity analysis, stochastic response surface modeling, Markov chains, Monte

Carlo, etc. Chapter 10 includes a broader discussion of these techniques.

The term Monte Carlo is used to describe any approach to a problem where a probabilistic

analogue to a given mathematical problem is setup and solved by stochastic sampling. This invari-

ably involves the generation of many random numbers, so giving rise to the name. In direct Monte

Carlo simulation, vectors of model inputs are obtained by sampling from known or assumed model

input probability distributions. These distributions that characterize the variability in the input

model variables, are typically based upon field measurements or other prior knowledge of the

factor in question. The underlying deterministic model can vary in complexity from being a

single algebraic equation to a series of algebraic or differential equations. Repeated model

execution using these input vectors are then used to describe model outputs of interest in terms

of a PDF. Each single model execution is known as a run or trial. The PDF of the output variable(s)

can then be analyzed to determine statistics of interest including the mean, variance and higher

moments of the results. With Monte Carlo simulation, stochastic components in the system being

modeled can be incorporated, and the uncertainty associated with model predictions quantified.

The advantages of the Monte Carlo method are that (at least for direct Monte Carlo simulation)

it is conceptually easy to understand and robust in operation. It is equally applicable as a stochastic

solution technique to both phenomenological and empirical deterministic models of the underlying

process. Although large numbers of iterations or simulations (103–106) must usually be carried out

to generate statistically significant results, useful estimates of the uncertainties in model outputs can

be obtained with only 50 or 100 model runs. The Monte Carlo method allows use of standard

nonparametric statistical tests concerning confidence intervals. The single greatest disadvantage of

the method is that it is computationally expensive.

Consider a deterministic model lying at the high end of the complexity range, particularly

deriving from the finite element or finite difference technique. Typically, it will have a large

numbers of input parameters, many equations and parameterizations, thousands of grid points

and degrees of freedom and a high time resolution. Obviously, a large number of repeated iterations

of the model is not a practicable proposition.8 These comments concerning the drawbacks of the

approach primarily apply to the so-called direct Monte Carlo sampling method, where
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straightforward random sampling from the entire distribution for each input variable is carried out.

There are techniques available to reduce the number of model iterations that must be performed,

which can help ameliorate this problem (see Section 16.3.3).
16.1.4 History of the Monte Carlo Method

The name and systematic development of the Monte Carlo method dates from about 1944.9

There were, however, a number of isolated and undeveloped instances on earlier occasions. One of

the first accepted occurrences of a Monte Carlo type problem is the Buffon’s needle experiment that

involves the repeated random throwing of a needle onto a board or a floor ruled with parallel

straight lines where the value of p can be inferred from the number of intersections between needle

and lines. A number of physicists, mathematicians and statisticians (including Lord Kelvin and W.

S. Gosset) employed the method in a rudimentary form to tackle a variety of problems using the

principles of numerical sampling. In most cases, this was to verify the more traditional analytical

approach. In the beginning of the last century, the Monte Carlo method was used to examine the

Boltzmann equation. In 1908, the statistician “Student” (the pseudonym of W. S. Gosset) used

the Monte Carlo method to estimate the correlation coefficient in his t-distribution. Nonetheless, the

real use of the Monte Carlo technique dates from work on the American atom bomb project of the

Second World War as pioneered by von Neumann, Ulam, and Fermi. Von Neumann and Ulam

coined the term “Monte Carlo” after the gambling casinos of the Mediterranean city. This particular

work involved a direct simulation of the probabilistic issues associated with random neutron

diffusion in fissile materials. In about 1948, Fermi, Metropolis, and Ulam obtained Monte Carlo

estimates for the eigenvalues of the Schrödinger equation. Further important developments of the

Monte Carlo method was given by Metropolis during the 1950s. Over the intervening years, the

technique has grown in popularity due to the advent of widely available digital computers with

ever-increasing computational power.
16.1.5 Chapter Outline

Because of the wide applicability of Monte Carlo simulations, the types of problems it can solve

require some classification. In particular, the nature of the uncertainty or variability that is being

investigated requires elucidation. The Monte Carlo method has long been used to simulate discrete

random events; this is known as event modeling. Examples of such events are failure of equipment

items or services, and this approach lies in the realm of operations research and system engineering.

Event modeling finds applicability in the food industry as in many other industrial arenas.10

However, this chapter will primarily focus on the simulation of continuous time processes where

there is a continuous functional relationship (over time) between the input and output variables.

A straightforward statistical approach to the solution of random problems is the direct Monte

Carlo method. In this method, a random sample of the stochastic input parameters is generated by

the computer and the corresponding deterministic model is numerically solved. The solution is

stored and the process is repeated a large number of times. In the end, the statistical characteristics

of the output variables are estimated using classical inference techniques. The preponderance of

this chapter will focus on direct simulation in Section 16.2. However, after outlining this method,

some comment will be given on more involved procedures to handle complex variability where it

arises. In particular, two major issues can complicate the analysis and require a more sophisticated

approach:

† Nonindependent input random variables
† Random variables exhibiting noise
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The principle of variance reduction is also quite complex and will be discussed with the above

two issues in Section 16.3.

At the outset, it is necessary to appreciate the advantage of Monte Carlo simulation over simple

limit analysis. The range of an output variable will be defined by its minimum and maximum

values; these in turn, in most cases, can be found by inputting the extreme values (minimum or

maximum, as appropriate) of the input variables into the deterministic model. However, this does

not provide a realistic representation of the uncertainty in the output, as it is quite unlikely that all

uncertain parameter values would take their most optimistic or most pessimistic values simul-

taneously.11 Therefore, in addition to calculating the limits of the output variable, the Monte

Carlo technique can calculate the likelihood of these limits occurring.
16.2 DIRECT MONTE CARLO SIMULATION

Generally, simulation based on Monte Carlo analysis is performed through the following six

steps:

† The functional, deterministic model that relates the input and output variables is defined.
† Statistical analysis of the input variables to determine the PDF that will describe

each variable.
† Generation of uniformly distributed random (or pseudo-random) numbers.
† Generation of random samples for each input variable.
† Repeated model executions until a meaningful level of statistical significance is achieved

to assemble PDFs to describe the output variables.
† Analysis of the output variable to estimate important statistical quantities, such as the

mean and variance, and to conduct sensitivity analysis.

Figure 16.1 displays in flowchart form the procedure that must be followed.

The intention here is not to review the theoretical basis of the Monte Carlo method; there are

many excellent books available that satisfy that requirement.12–14 Rather, this section outlines a

practical “user’s guide” as to how to carry out a basic direct Monte Carlo simulation in sequential

steps. To aid understanding, a very simple deterministic model, representative of food processing,

will be selected and solved by direct Monte Carlo simulation. Furthermore, the predictions of mean

and variance in the output variable given by the Monte Carlo method will be compared to the

theoretical solution for these quantities and to estimates provided by a quick, approximate method

(Chapter of Bart Nicolai provides a fuller description of these latter methods). This will enable

factors dealing with the accuracy and convergence of the Monte Carlo method to be highlighted. It

should be noted that the theoretical and approximate solution are only possible when there is a

known analytical function relating the output variables to the inputs.

The theory of functions of random variables15 gives the expected value (i.e., the mean) of a

function of a random variable, yZf(x) from the equation:

EðyÞZ my Z

ðN

KN

f ðxÞgðxÞ dx; (16.1)

where g(x) is the PDF of the input variable, x. The variance (square of the standard deviation) in y

can then be calculated by

VðyÞZ s2
y Z Eðy2ÞKðEðyÞÞ2 (16.2)
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Figure 16.1 Direct Monte Carlo simulation flowchart.

HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES506
Equation 16.1 and Equation 16.2 are appropriate for the case where there is a single input

variable, x, and single output variable, y, though they can easily be generalized to the case of

multiple input and output variables. Alternatively, the perturbation method can also be used to

estimate the mean and variance in the output variable, given the mean and variance of the input

variables.16 Again, for a single input–output function, the mean and variance in the output variable

can be approximated as:

my zf ðmxÞ (16.3)

s2
y z

vf

vx

� �2

xZmx

s2
x (16.4)

where the derivative is evaluated at the mean value of the independent variables. For the special
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case where the function f is linear with respect to the input variables (and the input variables are

independent), the preceding formulae hold exactly. Once the function f does not depart too severely

from the condition of linearity, the input variables are independent and the magnitudes of the

variances of the input variables remain low, then the statistical differential estimations for output

mean and variance can provide a reasonably accurate prediction.
16.2.1 Selection of the Deterministic Model

The model may be a simple algebraic expression or a complicated set of equations and numeri-

cal procedures. It is only essential that the model is written as a mathematical function of some

vector of arguments. Generally, a process model can be represented by a system of differential-

algebraic equations as follows:

y Z f ðx1;x2;.xN ;tÞ (16.5)

where y is the output variable, xi are the input variables, and t is time.

As previously mentioned, to illustrate the approach, a particularly simple model will be

adopted; the first order decay of a variable with time

y Z y0eKkt (16.6)

where y is the output variable of interest that changes with time t in the manner given by Equation

16.6. Note that this is the explicit solution of the first-order differential equation

dy

dt
ZKkyðtÞ; (16.7)

with initial condition y(0)Zy0. The constant k in this equation is known as the rate constant for the

process. The inverse of k corresponds to the characteristic time of the system; the units of k will be

the inverse of whatever unit the time is expressed in (whether it be seconds, minutes, hours, etc.).

The input variables for this model will be y0 and k. Because the process is stochastic, rather than

interested in a single trajectory of the variable y against time, it is the transformation of the PDF that

describes y with time that is of interest. This concept is illustrated in Figure 16.2.
16.2.2 Statistical Analysis of the Input Variables

To transform the deterministic model to a probabilistic tool, the input variables must be

considered as random variables governed by probability distributions. There are a variety of

probability distribution (or density) functions that can be used to represent the dispersion of the

variables. The choice of the most appropriate probability distribution function for an uncertain

variable depends on the characteristics of the variable and the amount of available information on

the uncertainties of the variable. There are no restrictions on the shapes of the PDFs, although most

studies make use of a few basic PDF shapes, such as normal, log-normal, uniform, or triangular. To

select the most suitable probability distribution for the particular variable, statistical knowledge

about its behavior is required.
16.2.2.1 Analysis of Experimental Data

Generally, information about the input variables is found from repeated experimental measure-

ment. Alternatively, knowledge of the distribution of these variables is available from a priori

considerations. From the experimentally available sample data of the input variables, summary
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statistics based on the statistical moments should be generated. The first three moments are usually

sufficient. The first moment is the mean of the values. However, the mean of a probability distri-

bution with very broad tails may result in a very poor estimate or a meaningless value. Other

estimators such as median and mode can be used for such cases. Second moments, variance, and

average deviation characterize width or variability around the mean value. The third moment, or

skewness, characterizes the degree of asymmetry of a distribution around the mean. From the

available data of the particular variable, the sample mean, xm, standard deviation, s, and skewness,

v, can be calculated as

xm Z

Pn

iZ1

xi

n
; (16.8)

s Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

iZ1

ðxiKxmÞ
2

nK1

vuuut
; (16.9)

v Z

Pn

iZ1

ðxiKxmÞ
3=nK1

s3
: (16.10)

Note that n is the number of items (experimental measurements) in the sample.

In addition to calculating the sample statistics, a frequency histogram of the data from each

variable should be constructed. This graphical technique is excellent in revealing the overall shape

of the distribution, which can be matched to the PDF. The key issue here is the selection of the

optimum number of intervals to break the data into (or equivalently the width of each interval). If

too many intervals are selected (with too fine an interval width), the histogram will appear exces-

sively fragmented, whereas if too few intervals are chosen, the shape of the histogram will approach

that of an uneven rectangular block. Usually the best number of intervals is between 5 and 11.

Also, the input variables should be checked for independence. One informal, graphical

procedure is to build scatter plots where the available values of one variable are plotted against
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Figure 16.3 Frequency histograms of initial variables.
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another to test for independence. Applying linear or non-linear regression, a correlation coefficient

for each scatter plot can be obtained, and if the magnitude of this coefficient is close to zero, it is a

strong indicator of independence between the variables. In many instances, theoretical consider-

ations will show whether variables should or should not exhibit dependence.

To illustrate this step of the analysis, 40 individual measurements of the variables y0 and k are

assumed to have been taken. Furthermore, it is assumed that they are independent of each other.

Frequency histograms showing the distribution in the initial value of y and in k are shown in

Figure 16.3a and b, respectively. The distribution is slightly nonsymmetric about the mean and

skewed to the right, as shown by the positive values for the skewness of the data. Sample statistics

are summarized in Table 16.1.

From the sample statistics that quantify the input variables, the population parameters of these

same variables can be estimated.17 The experimental initial variable y0 (sample size 40) has a mean

value of 10 and a standard deviation of 0.99. From these sample statistics, (xm and s), the population

parameters m and s can thus be estimated as 10 and 1, respectively. The corresponding population

parameters for the rate constant, k will be 0.05 and 0.008, respectively. Note the skewness of the

underlying population of each variable is not required in this instance and is not estimated.
16.2.2.2 Selection of Probability Distribution Functions

In this subsection, the input random variables are assumed to be continuous, as opposed to

discrete random variables; therefore, only continuous probability distributions are discussed.

Any probability distribution can be characterized by its parameters, which in turn can be

estimated from the corresponding sample statistics. Generally, a probability distribution function

has three parameters that can be geometrically interpreted as defining the location, scale, and shape

of the distribution. A location parameter represents the position of the distribution on the x-axis by

specifying an abscissa such as the minimum value or the average of the distribution. Changing the

location parameter shifts the distribution left or right along the x-axis. The scale parameter
Table 16.1 Sample Statistics of Input Variables

Model Input Variables—Sample Statistics yo k

Minimum 8.0 0.035

Maximum 12.3 0.066

Mean 10.0 0.05

Standard deviation 0.99 0.0079

Skewness 0.013 0.143
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represents the width or dispersion of the distribution (such as the standard deviation in the normal

distribution). Changing this parameter compresses or expands the distribution without changing its

basic shape. The shape parameter represents the shape of distribution usually characterized by the

skewness of the distribution. Note that not all distributions have a shape parameter and some have

more than one (such as the beta distribution).

The first step in selecting a PDF to represent a given variable is to decide the general appro-

priateness of the candidate PDF based on the overall shape. In some cases, theoretical

considerations can be used to select the correct PDF. Variables can be measured or shown to be

capable of ranging from plus infinity to minus infinity, or alternatively to be capable of taking only

positive values, or of being limited to within an upper or lower bound that are both positive.

Analysis of the real problem can demonstrate that occurrences of the variable must be equi-

probable within a certain range with no peak or alternatively, be unimodal, or indeed bimodal.

Some variables must be, by definition, symmetric with respect to the modal value, whereas others

from physical consideration must be right-skewed (maximum values of the distribution are much

greater displaced from the mode than minimum values) or left-skewed (the reverse).

A brief overview of some of the potential PDFs that are available, their characteristics, and

merits is given below. Table 16.2 lists the expression for the PDF for each distribution over a

particular region of interest. In addition, each distribution is sketched in Figure 16.4 to provide an

appreciation of its general shape. A more detailed treatment is available in Law and Kelton.18

† The uniform distribution is used when information about the dispersion in the variable of

interest is poor and only the limiting values are known. The uniform distribution (also

known as the equiprobable distribution) is defined by its minimum, xmin, and maximum,

xmax, values. As it has no central tendency, the uncertainties result in broad distribution of

the values of the output variables. Irrespective of the PDFs used to describe the input

variables, the uniform distribution is always employed to initially generate the random

numbers for the simulation that are subsequently used to generate the random

input variables.
† The triangular distribution is used when the central and limiting values of a variable are

known. It is defined by its minimum (xmin) mode (xmo) and maximum (xmax) values. As

with the uniform distribution, it is suitable when there is relatively little information about

the actual distribution of the variable.
Table 16.2 Probability Density Functions of a Number of Common Probability
Distributions

Probability Distribution Probability Density Function

Uniform gðxÞZ
1

xmaxKxmin

xmin %x %xmax

Triangular gðxÞZ
2ðx KxminÞ

ðxmax KxminÞðxmoKxminÞ
xmin %x %xmo

Normal gðxÞZ
1ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p eK½ðxKmÞ2=2s2� KN!x !N

Log-normal gðxÞZ
1

x
ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p eK½ðln xKmÞ2 =2s2� 0!x !N

Exponential gðxÞZ
1

b
eKðx =bÞ 0%x !N

Weibull gðxÞZ
a

b

x Kg

b

� �aK1

eKððxKgÞ=bÞa g!x !N
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† The normal distribution (also known as the Gaussian distribution) is the most widely

applicable distribution in statistics. Much mathematical analysis in the field of probability

is based on (and restricted to) the normal distribution. The normal distribution is a

symmetric distribution and is defined by its mean, m and standard deviation, s. Where

experimental data, sampled from a variable, is unimodal and approximately symmetric

(the “bell shaped” curve), the normal distribution can provide good results when repre-

senting the variable in question. The normal distribution has a range from plus infinity to

minus infinity but can be applied to finite bounded data by the use of truncation.
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† Mathematically, the log-normal distribution is a transformed variant of the normal distri-

bution, though it is physically quite different. It fits the case where the data itself is

not normally distributed but the (natural) log of the data is normally distributed.

The log-normal distribution is a right-skewed distribution and is restricted to positive

quantities with a range from zero to plus infinity. It is applicable where continuous

random variables must take values greater than zero (if they occur), but have no practical

upper limit. In particular, it is appropriate for environmental variables that are widely

distributed and that tend to have a few large values. It is commonly employed to model

particle size distributions, as they are transformed by processes such as prilling, grinding,

and crystal growth.
† The exponential distribution is solely defined by its mean value, is right-skewed and has a

range from zero to plus infinity. It is defined by a scale parameter, b, which must be

positive. The parameter b is both the mean and standard deviation of the distribution. In

the area of bioprocess engineering, it can be used to model the residence time of particles

in a chamber or process.
† The Weibull distribution is defined by three parameters representing location (g), scale

(b), and shape (a). Similarly to the beta distribution, it is an artificial distribution, as

opposed to one deriving from a particular probability model. It can take a variety of

characteristic shapes depending upon the relative magnitudes of its parameters and hence

is a multipurpose distribution that can be fitted to a large number of different types of

random variables. It has a range from zero to plus infinity. The exponential distribution

can be considered as a special case of the Weibull distribution.
† The beta distribution is commonly used to represent the uncertainty in the probability of

occurrence of an event, because its range is limited between zero and one. It is defined in

terms of the beta function and although an expression for its PDF is available, the

equations are long and are not given in Table 16.2. The beta distribution is also very

flexible in terms of the wide variety of shapes it can assume, including positively or

negatively skewed, depending on the values of its parameters.

Many of the common PDFs that are available, such as the normal, log-normal, Weibull, etc.,

have ranges that extend to infinity, either on one side or both. Thus, if these are used to model

variability, in some cases, physically unrealistic values of the variable can be generated by

the probabilistic model. In such instances, truncated versions of the PDFs can be used where

upper or lower (or both) cutoffs are applied. In the case of a normal distribution, these limits are

generally selected to be plus or minus an integer number or half integer number of the

standard deviation.

Once a PDF has been selected for a variable, its goodness-of-fit to the experimental data must be

ascertained. The best-known test is the chi-square test, where in effect, the frequency distribution of

the data from the experimental frequency histogram is compared with the expected theoretical

distribution from the PDF. The greater the agreement (or the less the discrepancy) between the two,

then the more likely it is that the chosen PDF is acceptable. Other tests include the more powerful

Kolmogorov–Smirnov tests, which avoid some of the pitfalls of the chi-square method.19 In some

cases though, there will not be enough sample data to fit PDFs to the input variables using

goodness-of-fit measures.

For the particular model used to illustrate this work, the distributions in both the initial value of

the variable, y0, and the rate constant k are finite bounded and slightly nonsymmetric about the

mean (both skewed to the right). Both the Weibull and normal distributions are feasible to represent

the data, and the above tests can be used to select the best fit. For simplicity, the normal distribution

was chosen. It has theoretically an infinite range, which is obviously not physically possible for

either variable, so outer cut off limits of G3 standard deviations are applied to the tails of the
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distribution. With these cutoff limits, the truncated normal distribution for y0 has the PDF

gðy0ÞZ
1:0027ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p expK

ðy0KmÞ2

2s2

2
4

3
5; if mK3s%y0%m C3s

gðy0ÞZ 0; otherwise

(16.11)

A similar expression can be produced for the rate constant.
16.2.3 Generation of Uniformly Distributed Random Numbers

The engine of the Monte Carlo method is some procedure to generate random numbers.20 In

practice, this is accomplished by using a computer to generate a sequence of pseudo-random

numbers, based on some formula. The numbers generated must not have any obvious pattern.

The numbers generated must all lie between zero and one (including these two numbers) and

any number within this range must be capable of being generated. Thus, the random numbers

correspond to the continuous uniform distribution on the interval [0,1]. They can then be employed

to obtain random samples from any other PDF.

The search for methodologies to generate random numbers has exercised mathematicians over

the last 60 years. The numerical procedures used to do so have become more complex to satisfy the

stringent tests for randomness. The great majority of random-number generators in use today are

linear congruential generators using the modulus function. Generally the modeler need not be

concerned about the actual mechanics, and most simulation packages will return a random

number using a standard function or key with a name such as RND, RAND, or RANDOM.
16.2.4 Sampling of Input Random Variables

After uniformly distributed random numbers have been generated, the next step is to generate

random variates according to the selected input probability distribution function. Exactness, effi-

ciency, and robustness are all issues that, in theory, should be considered when selecting the most

appropriate algorithm. The main approaches are the inverse transform method, the composition

technique, convolution and acceptance–rejection. All offer advantages and disadvantages and these

are discussed comprehensively by Law and Kelton.18 Again, the simulation software will generally

perform this function.

As an example, if the variable in question is represented by the normal distribution, then the

procedure is to initially select random variates from the standard normal distribution of mean zero

and standard deviation one. These can then be converted to any particular normal distribution of

mean m and standard deviation s. One traditional technique is the Box and Muller algorithm, which

produces standard normal random variates in pairs.21 Assuming u1 and u2 are two uniformly

distributed random numbers, then z1 and z2 will be two standardized normal variates where

z1 Z ½K2 ln u1�
1=2 cosð2pu2Þ; (16.12)

z2 Z ½K2 ln u1�
1=2 sinð2pu2Þ: (16.13)

Two random variates from the particular normal distribution of interest (with parameters m and

s) are then obtained by scaling as
x1 Z m Csz1; (16.14)

x2 Z m Csz2: (16.15)

For the particular illustrative model discussed here, cutoff limits of G3 standard deviations
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were applied to the tails of the experimental normal distributions; this Gaussian generator was

modified to reject samples lying outside these limits, and they were not used in the

computer simulation.
16.2.5 Generation of Output

The next step is the propagation of uncertainties through the model. This step comprises model

calculation using the sampled values of the input random variables and storage of the calculation

results. Each time the model is executed, values are sampled from the input distributions and each

run or iteration of the model produces a unique final value for a given process time. Carrying out

many runs means a large number of values for the output variable can be assembled. The statistics

representing the output variable (mean, variance, etc.) will stochastically converge to the correct

values with increasing number of iterations. The execution step can be terminated when the analyst

is satisfied that the convergence has reached a satisfactory level.

Examining convergence in more detail, the main aim in Monte Carlo simulation is to obtain a

small standard error in the final result. The standard error in the predicted mean value of the output

variable is inversely proportional to the square root of the number of iterations, n (see Section

16.3.3.1). Thus, to reduce the standard error by a factor of, say 2, the number of iterations needs to

be increased by 4. From heuristic considerations, the number of iterations necessary to ensure

confidence in the results is assumed to occur when the output value stabilizes (within tolerance

limits) and becomes independent of the number of trials. As the mean of the output is itself a

stochastic variable, it will vary slightly even for a large number of trials. The t-statistic

can be applied to estimate the necessary number of runs for a given level of accuracy. For

relatively straightforward algebraic expressions, 10,000 or more simulations (i.e., functional evalu-

ations) can be conducted, but for a high-level food process simulation model, this is generally

not possible.

Alternatively, the results may be interpreted through statistical tolerance limits, which show

that the output from direct Monte Carlo uncertainty analysis is valid even for a limited number of

trials (for instance, 50 or 100). Tolerance limits differ from statistical confidence intervals in that

the tolerance limits provide an interval within which at least a proportion, q, of the population lies,

with probability, p or more, that the stated interval does indeed contain the proportion, q, of the

population. Note that this procedure is valid only when the Monte Carlo simulations are based on

direct random sampling and is not readily extended to the reduced-variance techniques discussed in

Section 16.3.3.
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Figure 16.5 Stochastic convergence of output mean.
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Table 16.3 Comparison of Model Output: Theoretical, Statistical Differentials, and
Monte Carlo

Output Variable Statistics

Analysis Method Mean (my) Standard Deviation (sy)

Theoretical 1.424 0.547

Statistical differentials 1.353 0.454

Monte Carlo simulation 1.421 0.493
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16.2.6 Analysis of Output

For the particular model employed to illustrate this work, the output statistics of interest will be

the mean and standard deviation in the variable y at a time of 40. The stochastic convergence of the

mean towards its equilibrium value is displayed in Figure 16.5; the mean was evaluated after 1, 10,

100, 1,000, 5,000, and 10,000 iterations, respectively. Table 16.3 gives the predictions for the mean

and standard deviation in the output variable y (at the time of 40). The mean and standard deviation

(square root of the variance) as calculated by the theoretical approach (Equation 16.1 and Equation

16.2, respectively), statistical differentials (Equation 16.3 and Equation 16.4, respectively) and the

Monte Carlo method (after 10,000 iterations) can be compared. A frequency histogram of the

output variable y (at the time of 40) is illustrated in Figure 16.6.

As is evident, the Monte Carlo approach predicts a mean value very close to the theoretical

value; the fractional error between the two is less than 0.25%. Increasing the number of iterations of

the model that are conducted will in the long term reduce this error. The agreement between the

Monte Carlo and theoretical approaches for the standard deviation is less satisfactory; here, the

fractional error is just under 10%. This is not surprising because standard deviation (or variance) is

always more difficult to estimate accurately than mean values. If a precise estimate of variance in

the output variable is required, then generally a very large number of model iterations must be

carried out.

The numerical output from any Monte Carlo simulation can be assembled in frequency histogram

form. Further analysis can allow the distribution of the output variable to be described by various

uncertainty displays such as cumulative distribution functions, PDFs, box plots, bar graphs, etc. Also,

sensitivity analysis procedures can be used to analyse the output. It is usually the case that a model

consists of a set of equations with m dependent or output variables and n independent variables plus

input parameters. The sensitivity coefficient, S, can be defined as the ratio of the fractional change in
2500

2000

1500

1000

N
um

be
r 

of
 o

cc
ur

re
nc

es

500

0
0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 y

Figure 16.6 Frequency histogram of output mean.
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an output variable to the corresponding fractional change in an input variable. As with any differential

procedure, it is implied that the fractional changes are small (e.g., less than 10%).
16.3 ADVANCED MONTE CARLO ISSUES

16.3.1 Dependent Input Random Variables

For processes where the input random variables are not independent, then a simple or direct

Monte Carlo simulation is invalid. The dependence between these variables must be taken into

account using correlation methods. The issue of dependence between input parameters can be

understood from thermal simulations. Product specific heat capacity and product density both

contribute to the heating rate of an item, but there is a relationship (positively correlated)

between the two quantities and from physical considerations, they are clearly not independent

variables. Sometimes approximate analysis can simplify the problem. Assuming a strong positive

correlation exists between the two variables, then one simple heuristic technique to capture their

inter-dependence is to use the same random number when sampling from both.
16.3.1.1 Mathematical Basis

On a more mathematical basis, for processes where the input random variables are not inde-

pendent, it is necessary to generate vectors of correlated random variables. Consider, for example,

the generation of an N-dimensional vector xZ(x1, x2,., xN)T from a normal distribution with given

mean vector xm and covariance matrix C:

EððxKxmÞðxKxmÞ
TÞZ C: (16.16)

Supposing that a vector z of uncorrelated, normal variables can be generated (e.g., by the Box–

Muller algorithm, Section 16.2.4), it is possible to generate correlated random variables by taking

linear combinations of the elements of z:

x Z xm CLz; (16.17)

where L is an N!N matrix. It is easy to show that if the elements of z have zero mean and unit

variance, then the covariance matrix of x is

EððxKxmÞðxKxmÞ
TÞZ LLT: (16.18)

Thus, the problem reduces to finding a matrix L that produces the desired covariance matrix,

i.e., satisfying the equation

LLT Z C: (16.19)

This is a standard problem of matrix algebra, and may be solved by computing the Cholesky

decomposition of C to yield the matrix L. The vector of correlated normal variables is then given by

xZxmCLz. If the desired random variables have distributions other than the normal distribution,

the generation of suitable correlated variables may not be so simple.
16.3.1.2 Example of Correlated Parameters

Suppose two correlated random variables are required from a joint normal probability distri-

bution, for example y0 and k for each realization (run) of the Monte Carlo simulations described in

Section 16.2.1. If drying is the process of interest, then y0 is the initial moisture content of a product
q 2006 by Taylor & Francis Group, LLC



MONTE CARLO SIMULATION 517
and k is its drying rate. In some instances, the wetter an item is to begin with, the faster it will dry,

thus giving rise to a dependence between the two variables. Let y0 have mean my, let k have mean mk,

and define the variances and covariance (cross-correlation) as

E½ðy0KmyÞ
2�Z s

2
y ; (16.20)

E½ðkKmkÞ
2�Z s2

k ; (16.21)

E½ðy0KmyÞðkKmkÞ�Z s2
yk: (16.22)

In the case where y0 and k are independent, we have sykZ0, and the variables are easy to

generate. However, when a correlation exists between the variables, the method described in

Section 16.3.1.1 must be utilized. Here we describe the algorithm in a step-by-step fashion, in

the special case of NZ2 variables.

The Cholesy decomposition of the covariance matrix

C Z
s2

y s2
yk

s2
yk s2

k

 !
(16.23)

yields the lower-triangular matrix

L Z
1

sy

s2
y 0

s2
yk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ys2
k Ks4

yk

q

0

@

1

A; (16.24)

with LLTZC. In each run, two independent normal variables, z1 and z2, of unit variance and zero

mean are generated using, e.g., the Box–Muller algorithm. According to the algorithm presented in

Section 16.3.1.1, the desired correlated variables y0 and k are generated by setting

y0

k

 !
Z

my

mk

� �
CL

z1

z2

� �
: (16.25)

Writing this vector equation in terms of components gives the recipe for generating correlated

random variables using the independent variables z1 and z2:

y0 Z my Csyz1 (16.26)

k Z mk C
s2

yk

sy

z1 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ys2
k Ks4

yk

q

sy

z2: (16.27)

The covariance, s2
yk can be related to the correlation coefficient Ryk between the two variables y0

and k using

s2
yk Z Ryksysk: (16.28)
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Hence, Equation 16.27 can also be written as

k Z mk Csk Rykz1 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1KR2

yk

� �r
z2

� �
: (16.29)

Note that in the case of zero covariance s2
yk ZRyk Z0

	 

, these equations reduce to the standard

method for generating independent normal variables with given means and variances, compared to

Equation 16.14 and Equation 16.15:

y0 Z my Csyz1 (16.30)

k Z mk Cskz2: (16.31)
16.3.2 Input Variables Exhibiting Noise

Another issue that must be considered is the nature of the randomness of the input variables and

how they can dynamically vary in space and with time. In the direct Monte Carlo technique, input

parameters are sampled or selected at the start of the run and held fixed for the duration of the

particular iteration. Different values for these input variables will be sampled for the subsequent

iteration, but remain constant within a given iteration. In many applications the input parameters

may vary randomly with time, i.e., have a noise component.22 In such circumstances, application of

a simple Monte Carlo technique (taking the mean value of the signal over time) can produce model

results that are very far removed from those observed in nature and also substantially different from

analytical solutions. Although the mean of the Monte Carlo ensemble is close to the “correct” mean

solution in the examples cited, the variance is too large. Even if the only goal of the modeling is to

determine the mean result, then the large variance of the results means that many samples (model

runs) are required for the sample mean to converge to the true mean, and if the aim is to investigate

the unpredictability (or variability) of the model results, then the direct Monte Carlo method

appears to be unreliable.

As an illustration of the above issue, consider the task of modeling the heating up behavior of a

number of ostensibly identical items of discrete product in a sterilization chamber. Variability in a

factor such as the surface heat-transfer coefficient can be incorporated in a number of ways. In the

simplest implementation, the heat-transfer coefficient can be assumed to be randomly distributed

between the different items, though constant (with respect to time and space) for each individual

item. A more thorough treatment, though, would assume that in addition to varying from item to

item, the heat-transfer coefficient will vary in a noisy fashion.
16.3.2.1 Mathematical Basis

The rigorous mathematical treatment of time-varying noise is based on the theory of stochastic

differential equations. The fundamental concept is the Wiener process or “white noise” that

describes very rapid unpredictable fluctuations in the input parameter. The mathematical idealiz-

ation of white noise is rather unphysical, as it has infinite energy content due to the infinitely fast

fluctuations. Moreover, the correct physical interpretation of the effects of white noise is not always

clear, due to the so-called Ito-Stratonovich modeling dilemma.23,24 To avoid these difficulties,

various types of “colored” noise are commonly used in modeling applications. Coloured

noise changes smoothly as a function of time, with a characteristic timescale of fluctuations

known as the (de-)correlation time. Samples of colored noise may be generated by, for example,
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autoregressive random processes that consist of linear stochastic differential equations with white-

noise forcing.22

In cases where the temporal variation of the parameters is important, a modified Monte Carlo

method, in which the parameters are resampled from the underlying probability distribution at

regular intervals through each model run (the stochastic parameters method), can produce more

reasonable answers than the direct Monte Carlo method described above. However, the results from

this method depend critically on the frequency with which the parameter resampling occurs.

The variability in these parameters is continuous in nature, and parameter values separated by

times shorter than the decorrelation timescale will tend to be similar. In modeling the effect of

temporally varying parameters, it is important that the time scale of this variation is known, as well

as the range of variability. It has been shown that for a parameter varying as an autoregressive

process of order one, the resampling time of the stochastic parameter method should be approxi-

mately twice the decorrelation time to ensure that the Monte Carlo results are similar to those of the

real system.25

The above approach to handle a factor varying in a random fashion with time can be extended to

cases where a parameter exhibits random fluctuation in space as well as in time. In the example

discussed before, it is possible that the surface heat-transfer coefficient of an object in the steriliza-

tion chamber could exhibit random spatial variation as well as the variation in time already

discussed. Random fluctuations in space and time may be modeled as autoregressive random

waves.26 The output parameter is now the solution of a partial differential equation (or of a

system of such equations), which typically requires solution by a finite element method. Standard

spatial discretisation techniques such as the Galerkin method lead to systems of ordinary differ-

ential equations in time for the nodal values of the output variable(s). The parameters of these

equations exhibit fluctuations in time, and so the methods discussed above may be applied to

calculate the quantities of interest, e.g., the mean and variance of the temperature at each nodal

point, by solving a matrix system.
16.3.2.2 Example of Parameters with Noise

As an example of a problem where the input parameters fluctuate randomly in time, consider the

solution of the first order equation

dy

dt
ZKkðtÞyðtÞ; (16.32)

with initial condition y(0)Zy0. Here, the rate of decay k(t) is a random function of time; for clarity,

y0 is taken to be nonrandom. Assuming that k(t) is a stationary random process, i.e., its statistical

properties do not change over time, it can be characterized by, for example, its mean

EðkðtÞÞZ mk; (16.33)

and by its correlation function:

E½ðkðtÞKmkÞðkðt
0ÞKmkÞ�Z RðtKt 0Þ: (16.34)

If k(t) is a Gaussian (normal) random process, then it is fully described by its mean and

correlation function as defined above. The correlation function R(t) measures how quickly the

function decorrelates with time; generally, R(t) decreases as the time difference t increases, and

when the value of R(t) is close to zero, the values of k(t) and k(tCt) are almost uncorrelated (i.e.,

independent). The special case of white noise corresponds to infinitely fast changes in k(t) (zero

memory time), and so the correlation function decays instantly to zero:
q 2006 by Taylor & Francis Group, LLC



HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES520
RðtÞZ D0dðtÞ (16.35)

where d is the Dirac delta function. Colored noise contains smoother fluctuations than white noise,

and so has a less singular correlation function; for instance, a first-order autoregressive (AR(1))

process (also known as an Ornstein–Uhlenbeck process) has a correlation function which decays

exponentially over a timescale aK1:

RðtÞZ DeKajtj: (16.36)

The solution of the differential Equation 16.32 is

yðtÞZ y0 exp K

ðt

0

kðsÞds

2
4

3
5; (16.37)

which gives the unknown function y(t) for each path or realization of the random process k(t). The

statistical properties of y(t) may in general be calculated by Monte Carlo simulation but in this

simple example it is possible to find the moments of y(t) in closed form:

EðymðtÞÞZ ym
0 exp Kmmkt C

m2

2

ðt

0

ðt

0

RðsKs0Þds0ds

2
4

3
5: (16.38)

Thus, for example, the mean value of y(t), when the decay rate k(t) is a white noise process with

the correlation function given in Equation 16.35, is

EðyðtÞÞZ y0 exp Kmkt C
1

2
D0t

� �
: (16.39)

Note that we have used the Stratonovich interpretation of white noise in this discussion; the Ito

interpretation leads instead to the result

EðyðtÞÞIto Z y0 exp½Kmkt�: (16.40)

This ambiguity in the interpretation of white noise is a consequence of its unphysically rapid

decorrelation—in essence, different regularizations of the delta function in Equation 16.35 can give

different results. To avoid this problem, the case of colored noise with a decorrelation timescale

aK1 may also be studied; using the correlation function of Equation 16.36 then yields for the

moments of the process

EðymðtÞÞZ y0exp½Kmmkt Cm2DaK2ðatK1 CeKatÞ�: (16.41)

Finally, a comparison is made to the direct Monte Carlo scenario where the decay rate k is a

constant in each realization, but with the value of the constant chosen from a normal distribution.

Because k does not vary in time in this case, the correlation function is a constant,

RðtÞZ D; (16.42)

where D is simply the variance of the k values. In this case, Equation 16.38 gives the usual result for

the moments
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Figure 16.7 Standard deviation of the output variable as a function of the Monte Carlo resampling time.
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EðymðtÞÞZ y0exp Kmmkt C
m2

2
Dt2

� �
: (16.43)

Note that the colored noise result (Equation 16.41) reduces to the constant-rate result in

Equation 16.43 in the limit a/0; however, at large times t[aK1, the behavior of Equation

16.41 resembles the random-walk growth of the white noise result in Equation 16.39. In the

latter limit, the white noise intensity, D 0 is related to the colored noise variance by D 0Z2D/a.

As an example, consider solving Equation 16.32 when k(t) is a time-varying random process,

e.g., an AR(1) process, and y0 is deterministic. Taking values from Table 16.1 for the mean and

standard deviation of k, and setting y0 equal to 10, consider finding the standard deviation of y at

time tZ40 by Monte Carlo simulation. The fluctuations in the value of k with time are described by

a first-order autoregressive process, with correlation function given by Equation 16.36, and decorr-

elation timescale aK1Z2sK1 (for instance); note D is the variance of k. Because the value of k

changes with time, the stochastic parameters method described in Section 16.3.2.1 to resample

values of k at regular intervals during each run, must be used. The question of the best sampling

frequency to use is answered in Figure 16.7, where the standard deviation of y (at time tZ40) found

by resampling using various sampling intervals d is compared to the exact solution (dashed line)

derived from Equation 16.41. As noted in Annan,25 the exact solution for this AR(1) process is well

approximated by choosing a sampling interval on the order of twice the decorrelation time, i.e.,

using a sampling interval d near 4.
16.3.3 Variance Reduction

Variance reduction techniques are available that can improve the efficiency of the Monte Carlo

method by more than an order of magnitude. There are a number of such approaches with the

importance sampling method being one of the more prominent.27 The basic idea behind the import-

ance sampling method is that certain values of the input random variables (or vectors) have more

important impact on the quantities being estimated than others, and if these “important” values are

sampled more frequently, i.e., sampled from a biased density function, the variance of the estimator

can be reduced. The outputs from simulations are then weighted to correct the bias caused by

sampling from the biased density function. The purpose of the importance sampling method is to
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obtain accurate estimates of output quantities with fewer samples than required in the direct Monte

Carlo method. There are two major steps involved in the importance sampling method: the first is

distortion of the original input process. Instead of taking samples from the original PDF, samples are

taken from some other PDF, called importance density functions, such that some “important” regions

of the sample space get more samples. The fundamental issue in implementing the importance

sampling method is the choice of biased importance density functions. The second step is correction

of the distortion by averaging the output from different samples (realizations) using weights that are

related to the distortion, such that the mean of the quantity being estimated is preserved.
16.3.3.1 Mathematical Basis

To understand more about the mathematical basis of variance reduction strategies, it should be

appreciated that techniques for the reduction of variance in Monte Carlo simulations are usually

discussed in the context of multidimensional integration. Therefore, it is useful to first demonstrate

the connection between simulation and integration problems. Consider Monte Carlo simulations with

N random input parameters x1,x2,.xN, written for convenience as the N-dimensional column vector

xZ(x1,x2,.,xN)T. The goal of Monte Carlo is the calculation of the mean (average) value of some

function f(x) of the inputs, with the average being taken over the PDF of the random inputs, denoted

g(x). The function f is typically very complicated, requiring, for instance, the numerical solution of

systems of differential equations, but for present purposes it may be accepted as given once the input

vector x is chosen. The mean, or expectation value, of f may be written as the N-dimensional integral

Eðf ÞZ

ð

U

f ðxÞgðxÞ dx (16.44)

with the domain of integration, U, depending on the distribution of the inputs; for example, if each

input parameter is normally distributed, then U comprises all of the N-dimensional space. Note also

that because (for instance) normally-distributed random variables x may be generated from vectors u

of uniformly distributed variables (with finite domains) by the Box–Muller algorithm (for instance)

discussed in Section 16.2.4, the integration domain may always be transformed to the N-dimensional

unit (hyper-) cube [0,1]N by the inverse of the transformation T:[0,1]N/U. Thus, the focus in the

remainder of this section is on the N-dimensional integral

I Z

ð

½0;1�N

FðuÞdu; (16.45)

which gives the desired quantity E(f) when F is related to f and g by the transformation T.

The integral I is over N dimensions, and is difficult to calculate accurately when N is large. As

noted already, the direct Monte Carlo method uses n sample input vectors u1,u2,.,un randomly

chosen from uniform distributions to estimate the integral I as

FmGnK1=2s; (16.46)

where Fm and s are the sample mean and standard deviation, as in Equation 16.8 and Equation 16.9:

Fm h
1

n

Xn

iZ1

FðuiÞ s h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

iZ1

ðFðuiÞKFmÞ
2

s
: (16.47)

The second term of Equation 16.46 is one standard deviation error estimate for the integral, not

a rigorous bound. Also, as there is no guarantee that the error is normally distributed, the error term
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should be taken only as a rough indication of the possible error. Note that the error decreases as n

increases at a rate proportional to nK1/2. The goal of the various variance reduction methods is to

choose the n sample points in such a way that the error term is reduced relative to that incurred by

the direct Monte Carlo method in Equation 16.46.
16.3.3.2 Sampling Strategies

Returning to the importance sampling method, its application is motivated by the fact that

choosing the sample vectors u from a uniform distribution may not be very efficient if the function

F(u) is sharply peaked in a small volume of the N-dimensional unit cube, but nearly zero every-

where else. In this case, many of the sample points will contribute very little information about the

value of the integral. The importance sampling method is based upon the use of a biased density

function (rather than a uniform density) for choosing the sample points, thus concentrating the

sample points in the vicinity of the important (peak) values of the integrand. It can be shown that

optimal reduction of variance occurs when the biased density function is chosen to be proportional

to the magnitude of the integrand.28 Of course, this requires a significant amount of prior infor-

mation on the form of the integrand, and so in practice the importance sampling method is usually

implemented in an adaptive fashion, with information from earlier samples used to estimate the

optimal biased density function for later sample points.

The idea of stratified sampling is quite different from importance sampling. In the stratified

sampling method, the integration domain is split into a number of nonoverlapping subdomains of

equal volume, with the number of sample points in each subdomain chosen in a manner that leads to

reduction of the overall variance. It can be shown that the optimal allocation of sample points is to

have the number of sample points in each subdomain proportional to the standard deviation of the

integrand over that subdomain. Like the importance sampling method, stratified sampling requires

some prior knowledge about the behavior of the integrand. Note that stratified sampling concen-

trates sample points in regions of the domain where the variance of the integrand is largest, whereas

importance sampling biases the sample points towards regions where the magnitude of the inte-

grand is relatively large.

Other common strategies for reducing Monte Carlo variance attempt to ensure a uniform

coverage of the integration domain—such methods are especially relevant when the number of

sample points n is relatively small, or the dimension N of the integration domain is relatively large,

so that the samples are sparsely distributed. The Latin hypercube sampling (LHS) method, for

example, works by dividing each dimension into n segments, so that the whole domain is parti-

tioned into nN cells. The n cells containing the sample points are chosen as follows: initially one of

the nN cells is chosen at random to contain the first sample point. Next, all cells that share any of

their parameters with the first cell (i.e., all cells in the same row, column, etc.) are eliminated.

Another cell is then chosen at random from the remaining (nK1)N cells, its rows, columns, etc., are

eliminated, and the process continues until only the final cell remains. The LHS leads to a sparse

sample pattern that is the multidimensional analog of the two-dimensional Latin square (an n!n

array of n symbols with exactly one symbol in each row and in each column). In effect, then, the

LHS method forces the distribution of random samples to be more equally spread across the

specified PDF, which is thought to be useful when large numbers of samples are not possible.

The LHS method does not allow the application of standard nonparametric statistical tests, and it is

often found to underestimate the total variance of the output parameters.

Quasi-random (or subrandom) sequences of numbers are used in quasi Monte Carlo methods. In

such methods, the input parameters are not actually random variables, but are generated number-

theoretically so that successive points fill gaps in the previously generated distribution. Thus quasi-

random sequences fill the integration domain more uniformly than uncorrelated random points.

Well-known examples of such sequences are associated with the names Halton and Sobol.28
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Figure 16.8 Fractional error in the calculation of the mean using direct Monte Carlo and the Halton sequence.
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As a simple illustrative example of a variance reduction technique, consider the calculation of

the mean value of y from Equation 16.6, with y0 fixed (nonrandom), and with rate constant k chosen

from a normal distribution with mean mk and variance D. The exact solution is given by Equation

16.43 with mZ1, and may be calculated from the integral

EðyÞZ
y0eKmkt

ffiffiffiffiffiffiffiffiffiffi
2pD
p

ðN

KN

exp KstK
s2

2D

� �
ds: (16.48)

The integration domain may be transformed to (0,1) by a change of variables, e.g., sZ
1/tan(pz). Figure 16.8 shows the fractional error of a Monte Carlo calculation of the mean of y,

(circles) compared with a calculation using the quasi-random Halton sequence of base 2 (squares).

Note the parameters used are DZ1, tZ1. The Monte Carlo error is averaged over 100 realizations,

each using n random evaluation points; the fractional error decays as nK1/2 in accordance with

Equation 16.46. The Halton sequence is a deterministic sequence in which successive points “fill

in” gaps left by previous points; it clearly converges more quickly to the exact value, at a rate on the

order of nK1.
16.4 APPLICATIONS IN FOOD AND BIOPROCESS ENGINEERING

16.4.1 Introduction

The realm of food and, more generally, bioprocessing, incorporates an enormous variety of

operations, and the literature suggests that Monte Carlo analysis is applicable in a large number of

instances. Some of the more prominent areas include the batch food sterilization process, broad

food thermal processing, the packaging of foods and predictive microbiology.

Sterilization has proved to be one of the more popular processes to which the Monte Carlo

method has been applied. The consequences of variability is critical here as the high levels of

dispersion in the thermal diffusivity of food materials (with a coefficient of variation of up to 15%)

causes a large variation in product temperature. As the thermal inactivation of microorganisms is

highly dependent on the temperature, it is very possible to end up in a situation were some foods of
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the same batch are microbiologically safe, while others are not. Monte Carlo simulation has also

been applied to the more general thermal processing of foods including the roasting, baking, frying

and cooling operations. In a different context, it has also been employed to examine the food

packaging question, specifically to determine the optimum strategy to form a pack of a given

weight or weight range by assembling individual items of the product whose weight is randomly

distributed. In the separate field of predictive microbiology, Monte Carlo modeling has also found

wide application. Microbial contamination levels, concentration levels, risk of infection and trans-

mission and relevant environmental factors such as temperature have been treated as random

variables and used to solve a number of either mechanistic or statistical deterministic models to

quantify the risk or danger of infection. Table 16.4 contains some of the more recent applications of

the Monte Carlo method in food/bio processing. In Section 16.4.2 and Section 16.4.3, two detailed

examples, taken from the literature of Monte Carlo simulation, will be examined.
16.4.2 Thermal Processing of Hazelnuts

The dry roasting of hazelnuts consists of loading the product into an oven and heating it for a

certain time until the centre of the hazelnuts reach a target temperature.36 Because of variability in

the dimensional and thermal properties between individual hazelnuts, a distribution in center

temperature is present at the end of the process. This dispersion in temperature will produce

dispersion in the quality (color, texture) and safety (allergen destruction, aflatoxin content) of

the hazelnuts. Therefore, if the process objective is that every hazelnut must achieve a minimum

target temperature for the required safety, this implies that most of the hazelnuts that are smaller

than the average size will reach temperatures greater than the target temperature with attendant

consequences for quality. In the study, a deterministic model of heat transfer to the hazelnut was

developed. The hazelnut was treated as a hollow sphere with a combined convective and radiative

heat flux at its outer surface and heat diffusion through its body. The distribution in the physical and
Table 16.4 Applications of the Monte Carlo Method in Food/Bio Processing

Process Deterministic Model Random Variables Output Reference

Batch food

sterilization

Heat transfer,

sterilization kinetics

Initial temperature,

heat-transfer

coefficient, retort

temperature

Product temperature

and process lethality

29–33

Deep-fat frying Percolation theory Product structure Degree of oil

absorption

34, 35

Hazelnut roasting Heat transfer Product dimensions,

thermal properties,

oven temperature

Product temperature 36

Airborne

contamination

of food

Deposition Settling velocity,

bacteria count

Contamination level 37

Food preparation

in a restaurant

Thermal inactivation Infective dose Risk of infection 38

Home cooking of

hamburgers

Dose response Presence and growth

of organisms

Health risk of food

consumption

39

Contamination of

potable water

Destruction kinetics Input contamination

level, residence

time, concentration

Safety of water 40

Shelf life of food Growth and inactivation

kinetics

Lag time Microbial load 41

Food packaging Food container/pack

filling

Individual item weight Optimum filling method 42–44
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Table 16.5 Statistical Parameters of the Input Variables in Hazelnut Roasting

Variable Units Mean Standard Deviation

Outside radius mm 6.9 0.395

Inside radius mm 3.69 0.57

Conductivity W/m K 0.2 0.025

Specific heat J/kg K 1994 188

Density kg/m3 875 17.3
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thermal properties was experimentally measured, and these were treated as the input random

variables. The objective of the work was to solve the deterministic model by the Monte Carlo

approach and to predict the evolution of standard deviation in hazelnut center temperature versus

time. These predictions were to be checked against experimental measurements of the variability

in temperature.

The deterministic model to predict hazelnut center temperature (or more precisely, temperature

on the inner surface) was a numerical, finite difference scheme with an explicit formulation. The

largest time step that did not violate the stability criterion was selected and there were 100 nodes in

the model. The input random variables to the model consisted of hazelnut outside radius, hazelnut

hole internal radius, thermal conductivity, density, and specific heat. A further random variable was

the location of the probe that was used to experimentally record the temperature. The random

variables were assumed to be independent, normally distributed, and time-invariant. The only

exception was conductivity and specific heat where a correlation existed. The mean and standard

deviation in each of these variables was found by experimental sampling. Table 16.5 contains the

magnitudes of the statistical parameters. Cutoff limits of G3 standard deviations were applied to

the tails of the normal distribution to ensure the domain of the variables was finite bounded.

Figure 16.9 displays the distribution, in frequency histogram form, of hazelnut outside radius

and mass as found by experiment with a superimposed normal distribution curve. For each

model run, each of the input variables was sampled and hazelnut temperature versus time was

calculated. It was estimated that after 5,000 runs or iterations, mean final temperature would be

calculated to within 0.3% of the actual value. From the 5,000 hazelnut temperature versus time

profiles, the mean and standard deviation in temperature versus time were determined.
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16.4.3 Batch Thermal Processing of Packed Food in a Retort

In-pack thermal processing of foods in batch retort systems should deliver safe products

throughout the retort.32 Two main factors contribute to variability in product safety and quality

during thermal processing: (1) nonuniformity in the process environment and, therefore, heat

delivery to the product throughout the process chamber, and (2) variability in heat transfer

within the product. The ideal thermal process should result in all the food items receiving the

same thermal treatment as measured by the heating lethality (F0h) value. The food product in the

study consisted of a solid/liquid mixture within a pack. Because a theoretical analysis of heat

transfer of such a system is excessively complex, an empirical deterministic model of heat transfer
Heat distribution Heat penetration

Retort non-uniformity Product non-uniformity

Monte Carlo technique

Mean and S.D.
in fh and jh

50 random adjusted
fh− j h combinations

Non-uniformity in
lethality Foh

APNS deterministic model

Time-temperature profile
in product during heating

Microbial kinetics model

Time-temperature profiles
at different positions in the retort

Figure 16.10 Schematic flowsheet of solution procedure for simulation of retort variability.
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Table 16.6 Statistical Parameters of the Input and Output Variables in the Retorting of Green Beans

Parameter Symbol Units Mean Standard deviation

Heating-rate index fh min 7.67 0.26

Heating lag factor jh — 1.27 0.09

Thermal lethality F0h min 8.35 1.48
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was selected. The objective was to calculate the variability in the F0h value that different containers

of food would receive during treatment.

The empirical model of heat transfer required two parameters: a heating rate index, fh, and a

heating lag factor, jh. From these two parameters, the time–temperature profile of the product

during heating could be calculated based on the time–temperature profile in the retort. After the

time–temperature profile of the food product was known, the heating lethality, F0h was calculated

using the standard D–z model of thermal inactivation kinetics (kinetic parameters for Clostridium

botulinum were used). The input random variables to the deterministic model were the heating-

rate index and heating lag factor; both were taken to be normally distributed. Variability in the

processing conditions was limited to a spatial dispersion in the retort temperature and the surface

heat-transfer coefficient to the product was assumed to be the same for all the packs. The mean

and standard deviation in the two random variables was found from an experimental study. The

solution procedure was that random numbers (normally distributed with mean zero and standard

deviation of one) were generated and then used to sample values from the heating rate index and

heating lag factor respectively. Lethality was then calculated with the deterministic model.

Repeated simulations enabled frequency distributions of the lethality to be assembled.

Figure 16.10 depicts a flowsheet of the solution procedure. In the first instance, both input

variables were taken to be independent, and the sampling method described in Section 16.2.4

was employed. Subsequently, however, the dependence between them was taken into account to

check the model’s predictions, and the sampling method was as described in Section 16.3.1.2 of

this chapter. It was shown that even where dependence does exist, ignoring it and treating the

parameters as independent does not significantly affect the predictions of the approach. Typical

coefficients of variation for the lethality values were found to range from 15 up to 63%, depending

on the product being processed. The distribution in lethality when calculated at the same position

in the retort was found to be normal, although the distribution in F0h throughout the retort was

non-normal. Table 16.6 contains the mean and standard deviation in the input variables (heating-

rate index and heating lag factor) and the overall mean and standard deviation in the output

variable (lethality) for the case where green beans were the product of interest in a water

cascading retort.
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GLOSSARY

Cumulative density function The integral of the PDF and giving the probability that the random
q 2006 by T
variable x, is less than a given value.
Deterministic model A model or relationship that relates the input variables of the system under
study to the output variables, in the absence of variability or uncertainty in the system.
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Independent random variables Two random variables, x and y, are independent where
q 2006 by Ta
(knowledge of) the values of one variable, x does not change any of the probabilities

associated with the values for y.
Monte Carlo modeling Solution of a probabilistic model by random numerical sampling.

Noise Where the random variable fluctuates (usually rapidly) with respect to time or a
space variable.
Normal (Gaussian) distribution The most important type of probability distribution has the
characteristic shape of the cross section of a bell.
Probability density function A form of the probability distribution that gives the probability of
the variable, x having a value in the small interval, Dx.
Probability distribution A function that associates each value of a random variable with the
probability that it occurs.
Probabilistic (Stochastic) model A model that relates input variables to output variables and
incorporates uncertainty that is present in the system.
(Uniform) random number The set of real numbers, lying between 0 and 1, that all have an
equal probability of being selected for an experiment.
Random variable For this work a physical variable (assumed continuous) whose magnitude is
subject to random effects.
Standardized normal distribution The form of the Normal distribution that describes a
normally distributed variable having mean zero and a standard deviation of unity.
Statistically significant result Where the Monte Carlo model has been run a sufficiently large
number of times so the magnitude of the output statistics (mean, variance, etc.) is no longer

influenced by chance variations.
Stochastic process A process where the variables of interest change randomly with time and are
described by a probabilistic model.
Uniform distribution The probability distribution where each interval value of the random
variable has an equal probability of occurring.
Variance reduction techniques Any procedure to reduce the number of numerical samples that
must be undertaken in order to calculate statistical parameters of the output variable by the

Monte Carlo method.
NOMENCLATURE

a Noise de-correlation frequency

D Variance of colored noise

D 0 Intensity of white noise

f(x) Input/output functional relationship for single input variable x

g(x) Probability density function of variable x

k System rate constant (input variable)

n Sample size

R Correlation coefficient

R(t) Noise correlation function

t Time

xi Generic ith input variable

xm Mean value of sample

xs Standard deviation of sample

y Generic output variable

y0 Initial value of variable y (input variable)

z Standardized normal variate
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d(t) Dirac delta function

m Mean value of variable

sx Standard deviation of variable, x

s2
x Variance of variable, x

s2
xy Covariance of variables, x and y
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17.1 INTRODUCTION

Dimensional analysis is a mathematical tool that is used to reduce complex physical problems

to the simplest forms before quantitative analysis and experimental investigation are carried out.

The reduction number of variables uses the Buckingham theorem1 as its central tool. In addition, it

allows identification of dimensionless parameters even if the form of equation is still unknown.
533
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Therefore, it reduces, by an order of magnitude, the number of experiments needed to generalize or

empirically correlate a set of data.

Dimensional analysis, in its most primitive form, is used to check the validity of algebraic

derivations or equations. Every term or quantity in a physically meaningful expression or equation

has the same dimension, and they can be added and subtracted from one another. Both sides of any

expression must have the same dimension.

In engineering, empirical results obtained from experiments are sometimes difficult to present

in a readable form such as in the form of graphs. Here, dimensional analysis provides a way to

choose the relevant data and to present them concisely. This, in turn, helps the development of

theoretical modeling of the problem. Relationships between influencing factors can be determined,

generalization of experimental data can be performed. It is useful for predicting performance of

different systems.2,3

Its application in science and engineering is ubiquitous, including its use in food processing. It

is an economical way to scale up processes as dimensional analysis reduces the degree of freedom

of the physical problems to the minimum. Dimensional analysis is a useful tool in engineering

experimentation and analysis, modeling, design, and scale up. This technique is extensively used in

other fields, although the focus here is on engineering, scientific, and technological applications.
17.2 LIMITATIONS

One important limitation of dimensionless analysis is that it does not unravel the underlying

physics or the nature of a physical phenomenon. Therefore, variables that affect or influence the

phenomenon should be known prior to dimensional analysis. It should be noted that selection of

variables is vital in ensuring a successful dimensional analysis. Therefore, it is important to know a

priori the relevance of parameters to be included in such analysis. Sometimes, it may be necessary

to carry out an iterative process by including or excluding certain parameters and correlating the

resulting dimensionless groups using experimental data.
17.3 HOW TO OBTAIN DIMENSIONLESS NUMBERS

Dimensionless numbers can be derived by variables and parameters governing any process

from a number of methods. Two most common methods in use are dimensionless analysis of the

differential conservation equation and the Buckingham P method. There are alternative avenues for

the generation of dimensionless groups as well, but they are beyond the scopes of this

concise chapter.
17.3.1 Buckingham’s P Theorem

Buckingham’s first theorem states that the number of independent dimensionless numbers, m,

that can be formed is equal to the total number of the physical quantities, n, minus the number of

primary dimensions, r, that are used to express dimensional formulas of the physical quantities in

question. In other words, every physical relationship between n physical quantities can be reduced

to a relationship between m mutually independent dimensionless numbers.1–3

If a physical problem is expressed by n independent physical quantities, Qi
f ðQ1; Q2; Q3; .; QnÞZ 0;
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then, according to the Buckingham’s first theorem, this can also be expressed by (nNm independent

dimensional numbers, pi, as

f ðp1; p2; p3;.; pnKmÞZ 0:

Buckingham’s second theorem states that each p group is a function of core variables (also

known as governing or repeating variables) plus one of the remaining variables. Core variables are

those variables that will most probably appear in all or most of the p groups. According to the

second theorem, only m core variables are to be chosen. Core variables can be freely chosen by

following the rules:

† A combination of the core variables must contain all basic dimensions.
† A combination of the core variables must not form a dimensionless group.
† The core variable does not necessarily appear in all p groups.
† The core variables that are chosen must be measurable in an experimental investigation

that is of major interest to the designer.

It should be noted that if extra unimportant variables are introduced, then extra p groups will be

formed. They will play small roles in influencing the physical behavior of the problem. However, if

an important influential variable is missed, then a p group will be missing. Experimental analysis

based on these results may miss significant behavioral changes. Therefore, it is very important to

choose all influencing factors when a relevance list is made.

A relevance list consists of all influencing dimensional parameters. The parameters consist of a

target quantity, geometric parameters, material parameters, and process-related parameters. In each

case, only one target quantity is to be considered, and it is the only dependant parameter. The rest of

the parameters in the list are independent of one another.4,5

Generally, the quantities and parameters are lished in a bracket { }. Semicolon separates the

quantities and parameters into various categories which are mentioned below. Therefore, a refer-

ence list is normally written in the following form:

{target quantity; geometric parameters; material parameters; process-related parameters}

For an incompressible fluid of density r and viscosity m which is flowing through a tube of

length L at velocity v, the pressure drop over the tube length is DP. The relevance list is constructed

based on the relevant physical quantities mentioned above.

In this example, the relevance list is

fDP; L; r; m; v; gg:

Note that DP is the target quantity, L is the geometric parameter, P and m are the material

parameters, v and g are the process related parameters.

Fundamental dimensions that made up the quantities listed in the relevance list are length, time,

and mass; therefore, r is 3, the number of physical quantities in question, n, is 6; consequently, the

number of dimensionless groups, m, that can be formed is 3. Three variables are to be chosen as the

core variables common to all three dimensionless groups. In this case, L, v, and r are selected.

The three dimensionless groups (also known as p groups) are

p1 Z Lavbrcg1;

p2 Z Ldverf DP1;

p3 Z Lgvhrim1:

If expressed in terms of basic dimensions,

½p1�Z ðLÞaðLtK1ÞbðMLK3ÞcðLtK2Þ1;
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½p2�Z ðLÞdðLtK1ÞeðMLK3Þf ðMLK1tK2Þ1;

½p3�Z ðLÞgðLtK1ÞhðMLK3ÞiðMLK1tK1Þ1:

To make the p groups dimensionless, the physical quantities must be raised to certain expo-

nents, a, b, c, and so forth. To evaluate the exponents, let the dimension of the p groups be zero.
q 2006 by Taylor & Fr
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L0t 0M 0ZLaCbK3cC1tKbK2M c
P2
 L0t 0M 0ZLdCeK3fK1tKeK2M fC1
P3
 L0t 0M 0ZLgChK3iK1tKhK1M iC1
Next, these exponents are equated at both sides:
P1
 For dimension L: 0ZaCbK3cC1
For dimension t: 0ZKbK2
For dimension M: 0Zc
Hence, cZ0; bZK2; aZ1
P2
 For dimension L: 0ZdCeK3fK1
For dimension t: 0ZKeK2
For dimension M: 0ZfC1
Hence, fZK1; eZK2; dZ0
P3
 For dimension L: 0ZgChK3iK1
For dimension t: 0ZKhK1
For dimension M: 0ZiC1
Hence, iZK1; hZK1; gZK1
Substituting these exponents values into the p groups equations yield the following dimension-

less groups:

p1 Z L1vK2g1 gives p1 Z
gL

v2
that is the reciprocal of the Froude number;

p2 Z vK2rK1DP1 gives p2 Z
DP

rv2
that is the Euler number;

p3 Z LK1vK1rK1m1 gives p3 Z
m

Lvr
that is the reciprocal of the Reynolds number:

Another way to obtain dimensionless numbers in the Buckingham method is to use dimensional

matrix to determine the dimensionless numbers. The columns of the dimensional matrix are

assigned to the individual physical quantities and the rows are assigned to the exponent values.
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The dimensional matrix is subdivided into a quadratic core matrix and a residual matrix.5,6

Dimension L v r g ΔP µ

L 1 1 −3 1 −1 −1

T 0 −1 0 −2 −2 −1

M 0 0 1 0 1 1

L+T 1 0 −3 −1 −3 −2

−T 0 1 0 2 2 1

M 0 0 1 0 1 1

(L+T)+3M 1 0 0 −1 0 1

−T 0 1 0 2 2 1

M 0 0 1 0 1 1

Core Residual

Quadratic core matrix (3 x 3)

Residual matrix (3 x 3)

Identity matrix (3 x 3)

To obtain the dimensionless numbers, each quantity in the residual matrix forms the numerator

of a fraction, whereas its denominator consists of the fillers from the core matrix (that has been

transformed into identity matrix by mathematical manipulation) with exponents indicated in the

residual matrix. The p groups are

p1 Z
g

LK1v2r0
gives p1 Z

gL

v2
that is the reciprocal of the Froude number;

p2 Z
DP

L0r1v2
gives p2 Z

DP

rv2
that is the Euler number;

p3 Z
m

L1v1r1
gives p3 Z

m

Lvr
that is the reciprocal of the Reynolds number:

Both methods of the Buckingham theorem give a Froude number, Fr, an Euler number, Eu,

and a Reynolds number, Re.
17.3.2 Dimensional Analysis of Governing Differential Equations

Differential equations are often derived from first principles to describe various transport

phenomena. Essentially, they are equations of conservation of mass, momentum, species, and

energy. Dimensional homogeneity requires that every term in a physically meaningful differential

equation has the same units or dimensions. The ratio of one term in the equation to another term is

necessarily dimensionless, and the ratio is known as dimensionless number (or group). Therefore,

the interpretation of the dimensionless number is clear if one knows the physical meaning of each

term in the equation.

For example, the x-component of the Navier–Stokes equation for laminar steady flow of an

incompressible Newtonian fluid is

ðvx

vðvx

vx
C ðvy

vðvy

vy
C ðvz

vðvz

vz
Z gx K

vP

rvx
C

m

r

v2ðvx

vx
C

v2ðvy

vy
C

v2ðvz

vz

� �
(17.1)
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Equation 17.1 can be expressed in terms of dimensional equality as Equation 17.2. Each term in

Equation 17.2 has the dimension of [L/t2], viz. acceleration.

ðv2

L

� �
Z ½g�K

P

rL

� �
C

mðv

rL2

� �
(17.2)

The physical meaning of each term in Equation 17.2 is commonly given as

½inertia force�Z ½gravity force�K½pressure force�C ½viscous force�:

The equal sign here is not correct, however. This equation simply represents a balance between

various forces acting on a fluid particle in the flow system.

There are six ratios that can be formed from the four terms shown in Equation 17.2, namely

½ðv2=L�

½g�
;
½ðv2=L�

½P=rL�
;
½ðv2=L�

½mv=rL2�
;
½g�

½P=rL�
;

½g�

½mðv=rL2�
; and;

½P=rL�

½mðv=rL2�
;

that gives the following dimensionless numbers:

ðv2

gL
;

rðv2

P
;

Lðvr

m
;

Lrg

P
;

L2rg

mðv
;

PL

mðv
:

Dimensionless numbers or their reciprocals derived this way have clear physical meaning.

Some of the well-known dimensionless groups obtained from the Navier–Stokes equation are

given in Table 17.1. Note that products of dimensionless groups as well as ratios of such groups

raised to any integral power are also dimensionless. However, they have no physical meaning in

general and are rarely used. It is important to note that the numerical values of some dimensionless

numbers can lead to misleading interpretation of the physics involved, so care must be exercised in

attributing significance to these numbers.
17.3.3 Dimensional Analysis on Transport Equations

The same method shown in the above example is performed on mass, heat, and momentum

transport equations, respectively. Note that to obtain dimensionless heat- and mass-transfer coeffi-

cients, one needs to cast the convective boundary conditions in a special form so that the boundary
Table 17.1 Dimensionless Numbers Obtained from Dimensional Analysis of Navier–Stokes Equations

Dimensionless
Number in
Equation 17.4 Interpretation Formula Symbol

Dimensionless
Group

ðv 2
=gL Ratio of inertia force

to gravity force

ðv 2
=gL Fr Froude number

r ðv 2
=P Ratio of inertia force

to pressure force

ReciprocalZ P =r ðv 2
Eu Euler number

L ðv r=m Ratio of inertia force

to viscous force

L ðv r=m Re Reynolds number

Lrg/P Ratio of gravity force

to pressure force

P/Lrg Eu$Fr Product of Euler number

and Froude number

L2rg=m ðv Ratio of gravity force

to viscous force

L2rg=m ðv Re/Fr Ratio of Reynolds number

to Froude number

PL=m ðv 2 Ratio of pressure force

to viscous force

PL=m ðv Re$Eu Product of Reynolds number

and Euler number
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condition has the same dimensions as those of the terms in the equation.
17.3.3.1 Mass-Transfer Equation

The mass transfer equation is given as

Rate of change of concentration

Z Rate of change by convection CRate of change by diffusion

CRate of change by homogenous chemical reaction

vcA

vt
ZKðv$VcA CDABV2cA CRA: (17.3)

Equation 17.3 can be expressed in terms of dimensional equality and it is given in Equation 17.4.

Each term in Equation 17.4 has the dimension of [N/L3t]:

c

t

h i
Z

ðvc

L

� �
C

DABc

L2

� �
C ½R� (17.4)

Likewise, there are six ratios that can be formed from the four terms in Equation 17.4.

L

vt
;

L2

DABt
;

c

Rt
;

ðvL

DAB

;
ðvc

LR
;

DABc

L2R

Table 17.2 shows the dimensionless numbers obtained from the mass transfer equation. The

dimensionless numbers also relate to some well-known dimensionless groups used in engineering.

Every term in the mass-transfer equation can be divided with mass-transfer coefficient, (kLc/L)

that has the dimension of [N/L3t]. The following four dimensionless numbers are obtained.

L

kLt
;
ðn

kL

;
DAB

kLL
;

LR

kLc

Table 17.3 shows the additional dimensionless numbers obtained from dimensional analysis of

mass transfer equation by division of every term of the mass transfer (or species) equation with the

mass transfer coefficient.
Table 17.2 Dimensionless Numbers Obtained from Dimensional Analysis of the Mass Transfer Equation

Dimensionless Number
in Equation 17.4 Formula Symbol Dimensionless Group

L= ðv t Reciprocal Zvt/L Th Thomson number

L2/DABt ReciprocalZDABt/L2 Fom Fourier number

c/Rt ReciprocalZRt/c DaI$Th Product of Damkohler

number and Thomson

number
ðv L=DAB vL/DAB Pem Peclect number
ðv c=LR ReciprocalZLR/vc DaI Damkohler number

DABc/L2R Reciprocal ZL2R/DABc DaII Damkohler number
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Table 17.3 Additional Dimensionless Numbers from the Mass Transfer Equation and Convective
Boundary Condition

Dimensionless
Number in
Equation 17.4 Formula Symbol Dimensionless Group

L/kLt ReciprocalZkKt/L Fo$Sh Product of Fourier number and

Sherwood number
ðv =kL ReciprocalZkL=ðv Sh/Pem Ratio of Sherwood number to Peclet

number

DAB/kLL ReciprocalZkLL/DAB Sh Sherwood number

LR/kLc LR/KLc Pem/Sh$Da1 —
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17.3.3.2 Energy Equation

The energy transfer equation is given as

Rate of change of temperature

Z Rate of change by convection CRate of change by conduction

CRate of generation by viscous dissipation CRate of generation by chemical reaction

CRate of generation by Joule heating
vT

vt
ZKðv,VT C

k

rCp

V2T C
mf

rCp

C
QRA

rCp

C
I2

serCp

: (17.5)

The last term in Equation 17.5 that is the rate of generation by Joule heating is omitted in the

dimensional analysis performed below. Equation 17.6 in the dimensional equality of Equation 17.5.

Each term in Equation 17.6 has the dimension of [T/t].

T

t

� �
Z

ðvT

L

� �
C

kT

rCpL2

" #
C

mðv2

rCpL2 :

" #
C

QR

rCp

� �
: (17.6)

Here the boundary condition involving heat transfer coefficient (hT/rCpL) is taken into account in

the dimensional analysis. The division of terms in Equation 17.6 as well as the heat transfer

coefficient yields the following dimensionless numbers:

L

ðvt
;

rCpL2

kt
;

rCpL2T

mðv2t
;

rCpT

QRt
;

rCpðvL

k
;

rCpT

mðv
;

rCpðvT

LQR
;

kT

mðv2
;

kT

L2QR
;

mðv2

L2QR
;

rCpðv

h
;

rCpðv

hT
;

k

hL
;

mðv2

LhT
;

LQR

hT
:

These dimensionless numbers include some well-known dimensionless groups that are

frequently encountered in engineering; they are listed in Table 17.4.
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Table 17.4 Dimensionless Numbers Obtained from Dimensional Analysis of the Differential Energy
Conservation Equation

Dimensionless
Number in
Equation 17.4 Formula Symbol Dimensionless Group

L= ðv t ReciprocalZ ðv t =L Th Thomson number

rCPL2/kt ReciprocalZkt/rCpL2 Fo Fourier number

rCpL2T =m ðv 2t ReciprocalZ
mðv 2t =rCpL2T

Fo$Br Product of Fourier number and Brinkman

number

rCpT/QRt ReciprocalZQRt/rCpT DaIII$Th Product of Damkohler number and Thomson

number

rCp ðv L=k rCp ðv L=k PeZRe$Pr Product of Reynolds number and Prandtl number

rCpLT =m ðv rCpLT =mðv Pe/Br Ratio of Peclet number to Brinkman number

rCp ðv T =LQR ReciprocalZ
LQR=rCp ðv T

DaIII Damkohler number

kT =m ðv 2 ReciprocalZmðv 2
=kT Br Brinkman number

kT/L2QR ReciprocalZL2QR/kT DaIV Damkohler number

mðv 2
=L2QR mðv 2

=L2QR Br/DaIV Ratio of Brinkman number to Damkohler number

rCpL/ht ReciprocalZht/rCpL Fo$Nu Product of Fourier number and Nusselt number

rCp ðv =h ReciprocalZh=rCp ðv StZNu/Pe Stanton number

k/hL ReciprocalZhL/k Nu Nusselt number

mðv 2
=LhT mðv 2

=LhT Br/Nu Ratio of Brinkman number to Nusselt number

LQR/hT LQR/hT DaIII/St Ratio of Damkohler number to Stanton number
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17.3.3.3 Momentum-Transfer Equation

The momentum-transfer equation is given as

Rate of change of momentum

Z Rate of change by convection CRate of change by molecular viscous transfer

CRate of change due to pressure forces CRate of change due to gravity forces

CRate of change due to magnetic forces

vðv

vt
ZKðv,Vðv C

m

r
V2ðvK

VP

r
Cg or Cg

Dr

r

� �
C

m

r
ðI !HeÞ: (17.7)

Note that the left side term expresses acceleration that is the rate of change of momentum per unit

mass of the fluid.

Likewise, the last term in Equation 17.7 that is the rate of change because of magnetic forces is

omitted in dimensional analysis for the momentum-transfer equation. Expressed Equation 17.7 in

term of dimensional equality, it yields Equation 17.8. Each term in Equation 17.8 has the dimension

of [L/t2].

ðv

t

� �
Z

ðv2

L

� �
C

mðv

rL2

� �
C

P

rL

� �
C ½g� or g

Dr

r :

� �� �
: (17.8)

Here, the sample boundary conditions involving wall shear stress, (t/rL), as well as surface

tension, (s/rL2), are taken into account in the dimensional analysis. The division of terms in
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Table 17.5 Dimensionless Numbers Obtained from Dimensional Analysis of the Differential Momentum
Conservation Equation

Dimensionless
Number in
Equation 17.4 Formula Symbol Dimensionless Group

L=ðv t ReciprocalZ ðv t =L Th Thomson number

rL2/mt rL2/mt Re/Th Ratio of Reynolds number to Thomson number

rðv L=Pt ReciprocalZPt =rðv L Eu$Th Product of Euler number and Thomson number
ðv =gt ðv =gt Fr/Th Ratio of Froude number to Thomson number

rðv =gtDr rðv =gtDr Re2/Gr$Th —

rðv L=m rðv L=m Re Reynolds number

rðv 2
=P ReciprocalZP =rðv 2 Eu Euler number

ðv 2
=gL ðv 2

=gL Fr Froude number

rðv 2
=gLDr rðv 2

=gLDr Re/Gr Ratio of Reynolds number square to Grash of

number

m ðv =PL ReciprocalZPL=m ðv Re$Eu Product of Reynolds number and Euler number

m ðv =rgL2 mðv =rgL2 Fr/Re Ratio of Froude number to Reynolds number

mðn=gL2Dr mðv =gL2Dr Re/Fr Ratio of Reynolds number to Froude number

P/rgL Reciprocal ZrgL/P Eu$Fr Product of Euler number and Froude number

P/gLDr P/gLDr Eu$Re2/GR —

r/Dr — — —

rðv L=tt Reciprocal Ztt=rðnL Ne$Th Product of Newton number and Thomson

number

rðnL2=ts rðv L2=ts We/Th Ratio of Weber number to Thomson number

rðv 2
=t Reciprocal Zt=rðv 2 Ne Newton number

rðv 2L=s rðn2L=s We Weber number

m ðv =Lt Reciprocal ZLt=mðv Re$Ne Product of Reynolds number and Newton

number

m ðv =s mðv =s CaZWe/Re Capillary number

P/t P/t We/Ne Ratio of Weber number to Newton number

PL/s PL/s Eu/We Ratio of Euler number to Weber number

rgL/t Reciprocal Zt/rgL Ne$Fr Product of Newton number and Froude number

rgL2/s rgL2/s We/Fr Ratio of Weber number to Froude number
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Equation 17.8 as well as the two coefficients yield the following dimensionless numbers:

L

ðnt
;

rL2

mt
;

rðnL

Pt
;

ðn

gt
;

rðn

gtDr
;

rðnL

m
;

rðn2

P
;

ðn2

gL
;

rðn2

gLDr
;

mðn

PL
;

rCpðn

h
;

rCpðn

hT
;

P

rgL
;

P

gLDr
;

r

Dr
;

rðnL

tt
;

rðnL2

ts
;

rðn2

t
;

rn2L

s
;

mðn

Lt
;

mðn

s
;

P

t
;

PL

s
;

rgL

t
;

rgL2

s
;

gLDr

t
;

gL2Dr

s
:

Table 17.5 lists the dimensionless numbers shown above, and these numbers can be related to some

well-known dimensionless groups frequently used in engineering.
17.4 LIST OF DIMENSIONLESS NUMBERS

A list of dimensionless numbers that are frequently used in modeling or correlating mass, heat,

and momentum transport processes as well as coupled processes is given in Table 17.6. Formulas

and interpretation of the dimensionless numbers are given as well as the areas where these numbers

are applied.
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Table 17.6 Dimensionless Numbers Encountered in the Literature Dealing with Transport Processes

Group Formula Interpretation Application

Archimedes

number

ArZgL3rf(rKrf)/m
2 Ratio of gravitational forces to viscous force,

used to relate motion of fluids and particles

due to density differences, as for fluidized

beds

Momentum transfer (general); buoyancy,

fluidization, and fluid motion due to density

difference

g-gravitational acceleration (m/s2)

L—characteristic length (m)

r—density of body (kg/m3)

rf —density of fluid (kg/m3)

m—viscosity (kg/s m)

Biot number BiZ(hL/ks)

h—overall heat transfer coefficient (W/m2 $K)

L—characteristic length (m)

ks—thermal conductivity of solid (W/m $K)

Ratio of the internal thermal resistance of a solid

to the boundary layer (or surface film) thermal

resistance

Unsteady state heat transfer

Can also be regarded as ratio of conductive to

convective heat resistance

Biot number relates the heat transfer resistance

inside and the surface of a solid

Bi O1 implies that the heat conduction inside the

solid is slower than at its surface. Thus,

temperature gradient inside the solid cannot

be neglected

Mass transfer

Biot number

BimZhmL/DAB

hm—overall mass transfer coefficient (m/s)

Ratio of mass transfer resistance in internal

species to mass transfer resistance at

boundary layer (interface) species

Mass transfer between fluid and solid

Can also be regarded as ratio of diffusive to

convective mass transfer resistance

L—characteristic length (m)

DAB—binary mass diffusion coefficient (m/s2)

Boltzmann

number

BoZ ð ðv cpðswÞÞ=hT Boltzmann number is a parameter of thermal

radiation exchange that relates the enthalpy of

gases and heat flow emitted at the surface

Simultaneous heat and momentum transfer
ðv — velocity (m/s)

cp—specific heat at constant pressure (J/kg $K)

sw-specific weight (N/m3)

h—Stefan-Boltzmann constant

T—absolute temperature (K)

Bond number BoZg(r1Krv)L
2)/s Ratio of gravitational forces to surface tension

forces

Momentum transfer (general); atomization,

motion of bubbles and dropletsg—gravitational acceleration (m/s2)

r—density (kg/m3)

L—characteristic length (m)

s—surface tension, undisturbed surface

tension (N/m)
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Table 17.6 continued

Group Formula Interpretation Application

Brinkman number BrZmðn2=kDT Ratio of heat production by viscous dissipation to

the heat transport by conduction

Heat transfer

m—viscosity (kg/s$m)
ðv —fluid velocity; local velocity (m/s)

K—thermal conductivity (W/m$K)

DT—temperature difference

Bulygin number BuZ(lcvP(TKT0)/c)

l—latent heat of phase change (kJ/kg)

Ratio of heat of vaporization to sensible heat to

bring liquid to boiling point

Heat transfer during evaporation

Bulygin number represents high intensity heat

and mass transfer during evaporation

cv—specific vapor capacity (kJ/kg 8C)

P—pressure, local static pressure (Pa)

T—temperature of medium/moist surface (wet-bulb

temperature)/moving stream

T0—initial temperature/hot gas stream

c—heat capacity of moist material (kJ/kg 8C)

Capillary number CaZm ðv =s; CaZWe=Re

m—viscosity (kg/s m)

Ratio of viscous forces to surface tension forces Momentum transfer (general); atomization

and two-phase flow in beds of solids

Capillary number describes the flow of fluids

through thin tubes (capillaries)

ðv —fluid velocity; local velocity (m/s)

s—surface tension, undisturbed surface

tension (N/m)

Coefficient of

friction

Cf Zts=ðrðv =2Þ
ts—shear stress (N/m2)

Ratio of the force that maintains contact between

an object and a surface and the frictional force

that resists the motion of the object

Momentum transfer

Can also be regarded as dimensionless surface

shear stress

r—density (kg/m3)
ðv —velocity (m/s)

Dean number DeZ ðd ðv r=mÞ
ffiffiffiffiffiffiffiffiffiffi
r =reff

p
Ratio of centrifugal force to inertia force in fluid

flow in a curve duct

Momentum transfer (general); flow in curved

channels

d—diameter of pipe, particle, bubble, droplet, impeller,

shaft, etc., (m)
ðv —velocity (m/s)

r—density (kg/m3)

m—viscosity (kg/s m)

r—radius of pipe, particle, bubble, droplet, impeller,

shaft, etc., (m)

reff—radius of curvature of bend
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Deborah number DeZtr/t0
tr—relaxation time or reaction time (s)

The first equation shows the ratio of relaxation

time to observation time. The second equation

shows the ratio of the relaxation time to the

characteristics diffusion time

Rheology

Deborah number indicates how “fluid” a material

is; the smaller the Deborah number, the more

fluid the material appears

t0—observation time (s)

DeZ(trDAB/L2)

tr—relaxation time or reaction time (s)

DAB—binary mass diffusion coefficient (m/s2)

L—characteristic length (m)

Eckert number EcZ ðv 2
=ðcpðTs KTNÞÞ

ðv —velocity (m/s)

cp—specific heat at constant pressure (J/kg$K)

T—temperature (K)

Ratio of kinetic energy of the flow to the boundary

layer enthalpy difference. Can also be

regarded as ratio of temperature rise to

temperature difference between wall and fluid

at the boundary layer in adiabatic flow

Momentum and heat transfer (general);

compressible flow

Euler number EuZDP =rðv 2 Ratio of friction head to two velocity head Momentum transfer (general); fluid friction in

conduitsDP—pressure drop due to friction (Pa) Euler number represents the relationship

between the pressure drop due to friction and

the inertia forces in a flow stream

r—density (kg/m3)
ðv —velocity (m/s)

Fedorov number FeZdefð4gr2ðrp=rgÞÞ=3m2g1=3

de—equivalent particle diameter (m)

g—gravitational acceleration (m/s2)

Fedorov number represents the relationship

between the flow of particles and gas in a

fluidized bed

Fluidized beds

r—density (kg/m3)

rp—density of particle or droplet (kg/m3)

rg—density of gas (kg/m3)

m—viscosity (kg/s m)

Fourier number FoZat/L2; aZk/cpr

a—thermal diffusivity (m2/s)

t—time (s)

L—characteristic length (m)

Ratio of the heat conduction rate to the rate of

thermal energy storage in a solid

Heat transfer (general); unsteady state heat

transfer

Can also be regarded as ratio of current time to

time to reach steady state

Dimensionless time in temperature curves, used

in explicit finite difference stability criterion

Fourier number characterizes the connection

between the rate of change of temperature,

physical properties, and the dimension of the

product in the unsteady heat transfer,

conduction for heat transfer

Mass transfer

Fourier

number

FomZDABt/L2

DAB—binary mass diffusion coefficient (m/s2)

Ratio of the species diffusion rate to the rate of

species storage

Mass transfer (general); unsteady state

mass transfer

t—time (s) Dimensionless time
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Table 17.6 continued

Group Formula Interpretation Application

L—characteristic length (m) It characterizes the connection between the rate

of change of temperature, physical properties,

and the dimension of the product in the

unsteady mass transfer, diffusion for mass

transfer

Friction factor f ZDP =ððL=DÞðrðv 2
f =2ÞÞ

DP—pressure drop (N/m2)

L—characteristic length (m)

Friction factor expresses the linear relationship

between mean flow velocity and pressure

gradient

Internal flow (general); fluid friction in

conduits

Can also be regarded as dimensionless pressure

drop for internal flow

D—diameter (m)

r—density (kg/m3)
ðv f—mass average fluid velocity (m/s)

Froude number Fr Z ðv =gL
ðv —velocity (m/s)

g—gravitational acceleration (m/s2)

L—characteristic length (m)

Ratio of inertia force and gravity force in

homogenous fluid flow

In fluid dynamics, the Froude number is the

reciprocal of the square root of the Richardson

number

Momentum transfer (general); open channel

flow and wave and surface behavior

Galileo number GaZL3gr2/m2 Ratio of gravity force to viscous force Momentum and heat transfer (general);

viscous flow/circulation and thermal

expansion calculations in particular

L—characteristic length (m) Galileo number measures the force of molecular

friction and the force of gravity in fluid flow,

particularly for a viscous fluid

g—gravitational acceleration (m/s2)

r—density (kg/m3)

m—viscosity (kg/s$m)

Gay Lussac

number

GaZ1/bDT Thermal expansion processes

b—coefficient of bulk expansion (KK1)

DT—liquid superheat temperature difference (K)

Graetz number GzZ _mcp=kL
_m—mass flow rate (kg/s)

cp—specific heat at constant pressure (kJ/kg$8C)

Ratio of thermal capacity fluid to convective heat

transfer in forced convection of a fluid in

streamline flow

Equivalent to {(L/d)/(Re$Pr)} or {(L/d)/Pe}

Heat transfer (general); streamline flow,

convection in laminar flow

k—thermal conductivity (W/m$K)

L—characteristic length (m)

Grashof number GrZ(gb(TsKTN)L3)/v2; vZm/r

g—gravitational acceleration (m/s2)

b—volumetric thermal expansion coefficient (KK1)

Ratio of natural convection buoyancy force to

viscous force acting on fluid in natural

convection

Heat transfer (general); free convection

T—temperature (K)

L—characteristic length (m)

v—kinetic viscosity (m2/s)
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Colburn j factor

(heat transfer)

jHZSt$Pr2/3

jHZ(h/cprv)(cpm/k)2/3
Dimensionless heat transfer coefficient Heat transfer (general); free and forced

convection

St—Stanton number

Pr—Prandtl number

Colburn j factor

(mass transfer)

jmZStmSc2/3 Dimensionless mass transfer coefficient Mass transfer (general)

Stm—mass transfer Stanton number

Sc—Schmidt number

Jakob number JaZcp(TsKTsat)/hfg Ratio of sensible to latent heat energy absorbed

during liquid-vapor phase change

Heat transfer (general); liquid-vapor phase

changecp—specific heat at constant pressure (J/kg$K)

T—temperature (K)

l—latent heat of vaporization (J/kg)

Karman number KaZ(rd3(KdP/dL))/m2 Karmen number is a measure of stream

turbulence in fluid flow

Momentum transfer (general); fluid friction in

conduitsr—density (kg/m3)

d—diameter of pipe, particle, bubble, droplet, impeller,

shaft, etc., (m)

P—pressure, local static pressure (Pa)

L—characteristic length (m)

m—viscosity (kg/s$m)

Kirpichev number

(heat transfer)

KihZqL/KDT

q—heat flux (W/m2)

Ratio of external heat transfer intensity to internal

heat transfer intensity

Kirpichev number relates the drying conditions

for heat transfer

Heat transfer (general)

L—characteristic length (m)

k—thermal conductivity (W/m$K)

DT—liquid superheat temperature difference (K)

Kirpichev number

(mass transfer)

KimZGL/DABrn

G—mass low rate per unit area (kg/m2$s)

Ratio of external mass transfer intensity to

internal mass transfer intensity

Mass transfer (general)

Kirpichev number relates the drying conditions

for mass transfer

L—characteristic length (m)

DAB—Binary mass diffusion coefficient (m2/s)

r—density (kg/m3)

n—specific mass constant (kg/kg)

Knudsen number KnZ(Lmfp/L)

Lmfp—length of mean free path (m)

L—characteristic length (m)

Ratio of the molecular mean free path length to

characteristics physical length

Knudsen number represents the relationship of

the mean free path of gaseous diffusion in

drying beds in relation to the characteristic

length dimension of the bed

Momentum and mass transfer (general); very

low pressure gas flow

Kossovich

number

KoZlX/cpDT

l—latent heat of phase change (kJ/kg)

Ratio of heat used for evaporation to heat used in

raising temperature of body

Heat transfer (general); convective heat

transfer during evaporation

X—moisture content (kg/kg)
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Table 17.6 continued

Group Formula Interpretation Application

cp—specific heat (kJ/8C kg)

DT -liquid superheat temperature difference (K)

Lebedov number LeZ(3bt(TsurrKT0))/cvPrs

3—voids

bt—vapor expansion in capillaries (kg/m3K)

Ratio of the molar expansion flux to the molar

vapor transfer flux for drying of porous

materials

Drying of porous materials

Tsurr—temperature of surrounding medium (K)

T0—initial temperature (K)

cv—specific vapor capacity (kg/kg Pa)

P—pressure (Pa)

rs—density of solids (kg/m3)

Lewis number LeZa/DAB; aZk/cpr; LeZSc/Pr

a—thermal diffusivity (m2/s)

DAB—binary mass diffusion coefficient (m/s2)

Ratio of the thermal diffusivity and mass

diffusivity of a material

Also known as the Lykov–Lewis number

Combined heat and mass transfer

Miniovich number MnZSR/3

S: particle area/particle volume (mK1)

Miniovich number relates the pore size and

porosity of a product being dried

Drying

R: radius of pipe, pore, shaft, etc.; radius of curvature

of bend (m)

3: voidage or porosity [K]

Newton number NeZt=rðv 2 Ratio of drag force to inertia force Momentum transfer

t—torque or shear stress

r—density (kg/m3)
ðv —fluid velocity (m/s)

Nusselt number NeZt=rðv 2

h—overall heat transfer coefficient (W/m2$K)

L—characteristic length (m)

Ratio of the total heat transfer to the conduction

heat transfer in forced convection

Heat transfer (general); forced convection

kf—thermal conductivity of fluid (W/m$K) Dimensionless temperature gradient at the

surface

It is used to calculate heat transfer coefficient, h

Ostrogradsky

number

OsZqvL
2/kDT

qv—strength of the internal heat source (W/m3)

L—characteristic length (m)

Ostrogradsky number relates the internal

heating of a product the thermal properties of

the medium (solid, liquid, gas)

Heat transfer

k—coefficient of thermal conductivity of medium

(W/m K)

DT—temperature difference (K)

Peclet number PeZ ðv L=a; aZk/cpr; Re$Pr
ðv —fluid velocity (m/s)

Ratio of bulk heat transfer to conductive heat

transfer

Heat transfer (general); forced convection
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It is a dimensionless independent heat transfer

parameter

L—characteristic length (m)

a—thermal diffusivity (m2/s)

Peclet number

(mass transfer)

PemZvL/DAB; PemZRe Sc
ðv —fluid velocity (m/s)

Ratio of convective mass transfer to diffusive

mass transfer

Mass transfer

It is a dimensionless independent mass transfer

parameter

L—characteristic length (m)

DAB—binary mass diffusion coefficient (m/s2)

Prandtl number PrZcpm/k); PrZ(v/a)

cp—specific heat at constant pressure (J/kg K)

m—viscosity (kg/s m)

k—thermal conductivity (W/m$K)

v—kinetic viscosity (m2/s)

Ratio of momentum diffusivity and thermal

diffusivity

Heat transfer (general); free and forced

convection

PrZ1 gives boundary layers of equal thickness

PrO1 gives a thinner velocity boundary layer as

momentum transfer is more rapid than heat

transfer

Rayleigh number RaZL3rgbDT/ma aZk/cpr

L—characteristic length (m)

Ratio of natural convective to diffusive heat/mass

transport

Heat transfer (general); free convection

r—density (kg/m3)

g—gravitational acceleration (m/s2)

b—volumetric thermal expansion coefficient (KK1)

T—temperature (K)

m—viscosity (kg/s$m)

a—thermal diffusivity (m2/s)

Reynolds number ReZ ðv L=v ; ReZrðv L=m
ðv —velocity (m/s)

Ratio of inertia force and viscous force

This number provides a criterion for determining

dynamic similarity

Momentum, heat, and mass transfer to

account for dynamic similarity

L—characteristic length (m)

V—kinetic viscosity (m2/s)

Schmidt number

(mass transfer

Prandtl

number)

ScZv/DAB; vZ(m/r)

v—kinetic viscosity (m2/s)

DAB—binary mass diffusion coefficient (m/s2)

Ratio of the momentum and mass diffusivities Mass transfer (general); diffusion in flowing

systems

Sherwood

number (mass

transfer

Nusselt

number)

ShZhmL/DAB; ShZjm$Re$Sc1/3

hm—overall mass transfer coefficient (m/s)

L—characteristic length (m)

DAB—binary mass diffusion coefficient (m/s2)

Ratio of length scale to the diffusive boundary

layer thickness

Sherwood number represents dimensionless

concentration gradient at the surface; it is

used to calculate mass transfer coefficient hm

Mass transfer

Stanton number StZh=rðv cp; StZNu/Re$Pr Ratio of heat transfer to momentum transfer Heat transfer (general); forced convection

h—overall heat transfer coefficient (W/m2 K) Stanton number is a modified Nusselt number

r—density (kg/m3)
ðv —velocity (m/s)

cp—specific heat at constant pressure (J/kg K)
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Table 17.6 continued

Group Formula Interpretation Application

Mass transfer

Stanton

number

Stm Zhm=ðv ; StmZSh/Re$Sc

hm—overall mass transfer coefficient (m/s)
ðv —velocity (m/s)

Ratio of mass transfer to momentum transfer; it

is a modified Sherwood number

Mass transfer (general); forced convection

Thomson number ThZ ðv t =L
ðv —velocity (m/s)

Ratio of convective transport to storage of

quantity in question

Mass, heat and momentum transfer

L—characteristic length (m)

t—time (s)

In mass transfer, it is the ratio of the rate of

convective mass transfer to the rate of species

storage

In heat transfer, it is the ratio of the rate of bulk

heat transfer (convective) to the rate of

thermal energy storage

In momentum transfer, it is the ratio of inertia

force to species rate of change of velocity

Weber number WeZrðv 2L=s Ratio of inertia force to surface tension force Momentum transfer (general), bubble/droplet

formation, and breakage of liquid jetsr—density (kg/m3)
ðv —velocity (m/s)

L—characteristic length (m)

h—Stefan–Boltzmann constant

This list is rather comprehensive and includes some groups found only in the Russian literature.
Source: From Hall, C. W., Drying Technology, 10(4), 1081–1095, 1992.

H
A

N
D

B
O

O
K

O
F

F
O

O
D

A
N

D
B

IO
P

R
O

C
E

S
S

M
O

D
E

L
IN

G
T

E
C

H
N

IQ
U

E
S

5
5
0

q 2006 by Taylor & Francis Group, LLC



Table 17.7 Category of Dimensionless Numbers

Transport Processes Dimensionless Numbers

Momentum transfer Ar, Bo (Bond), Ca, Cf, De (Dean), Eu, f, Fr, Ga, Ka, Re, We

Mass transfer Bim, Fom, jm, Kim, Pem, Re, Sc, Sh, Stm
Heat transfer Bi, Bu, Fo, Gz, GrL, JH, Ja, Kih, Ko, Nu, Os, PeL, Pr, Ra,

Re, St

Simultaneous heat and mass transfer Bo (Boltzmann), Ec, Ga

Simultaneous mass and momentum transfer Kn

Simultaneous heat and momentum transfer Le, Lu

Specific area

Fluidization Ar, Fe

Drying Kn, Le, Mn; Bi,8,9 Di(Dincer)8

Atomization, bubbles, and droplets Bo (Bond), Ca, We

Evaporation Bu, Ja, Ko

Rheology De (Deborah)

Compressible fluid Ec

Thermal expansion Ga

Fluid motion Ar

Pneumatic transport (coarse grain materials) Eu, f, Fr, Re10

DIMENSIONAL ANALYSIS 551
The dimensionless numbers listed in Table 17.6 are categorized into three main transport

processes, viz. heat, mass, and momentum transfers, and they are listed in Table 17.7. Dimension-

less numbers that are frequently used in specific transport processes such as fluidization, drying,

evaporation, and etc., are also listed in Table 17.7.

Table 17.8 lists some illustrative research findings on the application of dimensional analysis

and the respective p space that consists of the dimensionless numbers of the process. Most text-

books of fluid mechanics, heat, or mass transfer provide detailed analysis of dimensional analysis

and its application.
17.5 GENERALIZATION OF EXPERIMENTAL DATA TO OBTAIN EMPIRICAL
CORRELATIONS

After the dimensionless numbers associated with a particular process in question are identified,

experiments are designed and performed; the experiments are repeated for different values of the

variables listed in the relevance list. Then the experimental result is analyzed and plotted on an xKy

plot. Analysis of the experimental results will show that certain variables have negligible influence

and are irrelevant to the process in question. Such variables should then be removed form the

relevance list and the dimensional analysis repeated. Including irrelevant parameters can distort the

usefulness of dimensional analysis.

If experimental data is plotted on the graph lie and concentrated in a small band, then it indicates

that an equation or an expression can be used to represent the relationship of the variables plotted on

the graph. The equation obtained from the plot sometimes is valid only over the range of conditions

experimentally tested. The function that formed the equation may consist of a dimensionless

number or a function of several dimensionless numbers and parameters.
17.6 APPLICATIONS OF DIMENSIONAL ANALYSIS

Dimensional analysis has been applied to many areas, including areas related to food proces-

sing. In addition, many empirical equations and correlations that relate different dimensionless

numbers in the respective p-space have been obtained. Here two examples are given to show in

detail how the correlations and relationships between dimensionless groups are obtained from

experimental findings.
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Table 17.8 Some Research Findings on the Application of Dimensional Analysis in Areas Related to Food
Processing

Operation

Relevance List {Target Quantity;
Geometric Parameters; Material
Properties; Process Parameters} p-Space (References)

Mixing {variation coefficient (mixing quality), c; Zlokarnik:2 {c, L/D, d/D, dp/D, f, qðv q, Bo, Fr}

Drum diameter (D), drum length (L), mixing

devise diameter (d) mean particle diameter

(dp), degree of fill of drum (f);

Effective axial dispersion coefficient (Deff),

particle density (r);

Mixer rotational speed (ðv q), mixing time (q),

solid gravity (gr)}

Drying {Moisture ratio (MR);

Film thickness (d), film length (L);

Gas density (rg), solvent density (rL), gas

kinematic viscosity (v), gas heat capacity

(Cpg), solvent heat capacity (Cpl), gas

thermal diffusivity (a), solvent diffusivity

(DAB), solvent mass transfer coefficient (kL),

solvent vapor pressure (PvL), Solvent heat

of evaporation (DH);

Zlokarnik:2{MR; d/L; rL/rg, CpL/Cpg, PvL/P, Sc,

Sh, k2
L =DH, Pr; Fo, DH/CpLT, P/rDH, Re}

Gas throughput (F), gas pressure (P), gas

temperature (T), drying time (t)}

Bubbling gas

fluidized bed

{Target quantity; Bed diameter (D),

Bed height (H)

Zhang and Yang:14 fgD=u2
0 ; r2

sgðjd Þ4=m2
f Dg

for Rep%4

Fluid density (rf), solid density (rs), particle

sphericity (j), fluid viscosity (m), particle

diameter (d)

{gD=u2
0 , rfD/rsjsd} for RepR400

Superficial gas velocity (u0), gravity

acceleration (g)}

{gD=u2
0 ; r2

sgðjd Þ4=m2
f D , rfD/rsjsd} for

4%Rep%400

Circulating

fluidized bed

{Target quantity;

Column diameter (D);

Particle diameter (dp), particle density (rp),

gas density (rg), gas viscosity (m);

External solids circulation flux (Gs),

superficial gas velocity ð ðv gÞ, acceleration

gravity (g)}

van der Meer, Thorpe, and Davidson:15

d/D, rp/rg, Gs/rpu0, Re, Fr

Spouted bed {Target quantity; He, Lim, and Grace:16 gdp/u2, rpdpuo/m, rg/rp,

H/dp, D/dp, j, 3, f

Column diameter (D), bed height (H);

Particle diameter (dp), particle density (rp),

gas density (rg), gas viscosity (m), particle

sphericity (j), bed voidage (3), internal

friction angle (f);

Superficial gas velocity (u0), acceleration

gravity (g)}

HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES552
17.6.1 Convective Heat-Transfer Coefficients in Cans

Thermal processing or canning is one of the most effective methods of food preservation and

assurance of bacteriological safety. Since the early 1950s, agitation sterilization processing has

been recognized as an effective method for achieving high quality foods. During agitation proces-

sing, the heat transfer to particulate liquids in cans is considerably more complex. Examples of

particulate liquid cans are vegetable chunks in brine, fruit pieces in syrup or juices, meatballs in
q 2006 by Taylor & Francis Group, LLC



DIMENSIONAL ANALYSIS 553
tomato sauce, etc. To establish a thermal processing schedule for such systems, experimental

transient temperatures of liquid and particle center are needed. Theoretical models can also be

used for the design, optimization, and validation of such systems. Overall heat transfer coefficient

from heating medium to canned liquid (U) and liquid to particle heat transfer coefficient (hfp) data

can be used for the prediction of temperature profiles for liquid and solid particles besides relevant

thermal and physical properties. The convective heat transfer coefficients associated with canned

foods undergoing thermal processing are influenced by various operating conditions as well as

liquid and particle properties.11,12

The convective heat-transfer coefficients (U and hfp) are expressed in terms of the Nusselt

number (Nu) that is a function of other dimensionless numbers, consisting of relevant properties

of the liquid, particles, and system. Sablani et al.12 developed dimensionless correlations for

estimating convective heat transfer coefficients for cans with rotational processing. They used

the data of experimental and mathematical study conducted by Sablani.11 A summary of the

range of operating and product parameters used in the determination of convective heat transfer

coefficients is presented in Table 17.9. The experimental and mathematical procedure for esti-

mation of the convective heat transfer coefficients in cans is described in Sablani et al.12

Experimental data obtained for U and hfp were used to calculate the Nusselt number using the

relationship NuZU (of hfp) dcd/kl where dcd and kl are the characteristic dimension and thermal

conductivity of the liquid, respectively. Other dimensionless numbers were calculated using the

physical properties of liquid and particle (at average bulk temperature) and system (operating)

parameters. The characteristic length DrCDc (diameter of rotationCdiameter of can) was used in

the Nu based on overall heat-transfer coefficient, and equivalent particle diameter (deZ(6!volume

of particle/p)0.33) was used in the Nu based on liquid to particle heat transfer coefficient.12

Analysis of variance on the experimental data has shown that the convective heat transfer

coefficients (U and hfp) are influenced by rotational speed, liquid viscosity, particle size, shape,

and concentration. Therefore, the Nusselt number (Nu) was modeled as a function of relevant

dimensionless groups

Overall heat-transfer coefficient (U):

Nu Z f Re; Pr; Fr; Ar;
3

100K3
;

De

Dc

; j

� �
: (17.9)

Liquid-to-particle heat-transfer coefficient (hfp):

Nu Z f Re; Pr;
kp

kl

;
3

100K3
;

De

Dc

; j

� �
: (17.10)

For the overall heat-transfer coefficient, a stepwise multiple regression analysis of experimental

data on various factors, represented in dimensionless form, eliminated Froude number as nonsigni-

ficant (PO0.05) in comparison with the other parameters. The following equation gave the best fit
Table 17.9 System and Product Parameters Used in the Determination of Convective Heat-Transfer
Coefficients

System and Product
Parameters Symbol Experimental Range

Heating medium temperature TR 110, 120, and 1308C

Diameter of rotation Dr 0, 0.18, 0.38, and 0.54 m

Rotation speed N 10, 15, and 20 rpm

Can liquids Water and oil

Particle type and shape Nylon and sphere diameter (D) 0.01905, 0.02225, and 0.025 m

Cube (Lcu) 0.01905 m

Cylinder (Lcyl!Dcyl) 0.01905!0.01905 m

Particle concentration 3 20, 30, and 40% (v/v)
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HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES554
(R2Z0.99) for the experimental data for the overall heat transfer coefficient with multiple particles:

Nu Z 0:71Re0:44Pr0:36 3

100K3

� �K0:37 De

Dc

� �K0:11

j0:24: (17.11)

The above correlation (Equation 17.11) is valid for the Re in the range 1.7!104–5.4!105, Pr

in the range of 2.6–90.7, 3 in the range of 20–40% (v/v), the ratio of de/Dc in the range of 0.22–0.29,

and j in the range of 0.806–1.

Regression analysis of the experimental data, obtained for liquid to particle heat transfer

coefficient in the presence of multiple particles, gave the following correlation (R2Z0.96):

Nu Z 0:167Re0:61 kp

kl

� �1:98 3

100K3

� �0067 De

Dc

� �K0:70

j0:23 (17.12)

The correlation (Equation 17.12) is valid for Re in the range of 28–1.55!103, kp/kl in the range

from 0.56 to 2.24, de/Dc in the range from 0.22 to 0.29, 3 in the range from 20 to 40% (v/v), and j

in the range from 0.806 to 1.
17.6.2 Fastest Particle Flow in an Aseptic Processing System

In aseptic processing, the food is first heated in scraped surface heat exchangers (SSHE) and

held for a pre-determined time in a hold tube, cooled quickly through a second set of SSHEs, filled,

and aseptically sealed into sterile containers. Residence time distribution of particles and liquid to

particle heat transfer coefficient are needed for process calculations. Residence time distribution of

particles is critical because different particles take varying amounts of time to pass through the

holding tube. The residence time of the fastest particle is required from the process safety point of

view. Knowledge of the flow characteristics of viscous liquid and suspended food particles in

SSHEs and holding tubes is essential to continuous aseptic processing of low acid liquid foods

containing particulates.13 Abdelrahim et al.13 developed dimensionless correlations to describe the

flow behavior of food particles (meat and carrot cubes) in the SSHE, holding tube, and the entire

assembly of a pilot scale aseptic processing system.

Experimental study involved the determining of residence time of the fastest particle (meat or

carrot) in holding tubes and the whole SSHE. The carrier fluid was starch solution of different

concentration. The experimental conditions are listed in the Table 17.10. The details of the aseptic

processing system and properties of carrier liquid and particles are described in Abdelrahim et al.13
Table 17.10 Different Experimental Conditions Used in the Particle Residence Time
Study in the Aseptic Processing System

Parameters Range

Carrier fluid Thermo-flo starch (gelatinization

temperature 1408C)

Concentration of starch 3, 4, 5, 6%

Density 1010, 1014, 1019, 1026 kg/m3

Flow rate 10, 15, 20, 25 kg/min

Particles Carrots and meat

Particle size (carrot) 0.007, 0.016 m

Particle size (meat) 0.012, 0.019, 0.025 m

Particle concentration (carrot) 5%

Particle concentration (meat) 5%

Particle density (carrot) 1040 kg/m3

Particle density (meat) 1110 kg/m3
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A particle moving in viscous liquid experiences a change of momentum equal to the sum of

imposed forces: gravitational, buoyancy, drag, and fluid inertia.13 The velocity of the particle can be

described in the form of relative velocity (up/ul), particle Froude number (Frp), or particle general-

ized Reynolds number (Rep)

ðvp

ðvl

; Frp; Rep Z f Rel; Frl; a; Arl;p;
De

D

� �
; (17.13)

where f represents a function of the various dimensionless numbers are RepZvpderl/map, RelZ
vlDrl/map, FrpZv2

p=gde; FrlZv2
l gD, aZ[rp/rlK1], ArpZagd3

e r2
l =m

2
ap; Arl ZagD3r2

l =m
2
ap:

In the above-defined dimensionless numbers, because of the non-Newtonian character of starch

solutions (power-law liquids), the viscosity term is replaced by an apparent viscosity:

map Z
2ðnK3Þm 3nK1

4n

	 
n

ðvð1�nÞ
l DðnK1Þ

: (17.14)

The stepwise multiple regression of various dimensionless numbers (Equation 17.13) resulted

in the following two equations that gave the best fit for the experimental data of particle Froude and

Reynolds numbers in the SSHE (R2 were 0.97 and 0.99, respectively):

Frp Z 0:23Fr0:60
l

De

D

� �K0:48

Re0:50
l Ar�0:24

l : (17.15)

Rep Z 2:69Fr0:31
l

De

D

� �K0:27

Re0:23
l Ar�0:39

l : (17.16)

Both Froude and Reynolds numbers were influenced by the particle-to-tube diameter ratio,

carrier fluid velocity, density, and viscosity incorporated in different dimensionless numbers.

Similar types of correlations were developed for holding tube (i.e., without heating and cooling

sections of the aseptic system):

Frp Z 1:48Fr0:70
l

De

D

� �K0:65

Re0:15
l ArK0:08

l ; (17.17)

Rep Z 6:65Fr0:34
l

De

D

� �K0:29

Re0:10
l ArK0:45

l : (17.18)

The particle Reynolds number showed a better fit (R2Z0.99) over the data compared with the

Froude number correlation (R2Z0.84).

Here, RepZvpderl/map, RelZvlDrl/map, Frp Zu2
p=gde, FrpZv2

l =gD, aZ[rp/rlK1],

ArpZagd3
e r2

l =m
2
ap, ArlZagD3r2

l =r
2
ap.

Table 17.11 shows the correlations obtained from the generalization of experimental data of

some processes related to food and bioprocessing.
17.7 SCALE-UP

Scaling up from laboratory scale to pilot plant or industrial scale is done by achieving similarity

with the laboratory scale. There are three types of similarities: geometric similarity, where model

and prototype have the same dimension scale ratio; kinematic similarity, where model and proto-

type have the same velocity scale ratio; dynamic similarity, where model and prototype have the
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Table 17.11 Some Correlations Obtained from Dimensional Analysis

Processing
Operation Process Variables Correlation and Reference

Canning (liquid

only) end-over-

end rotation

Rotation speed (N), diameter of can (Dc), density of

liquid (rl), height of can (H), viscosity of liquid (m),

volume of can (Vc), volume of can headspace (Vp),

can angular velocity (u), surface tension of liquid

(s), thermal conductivity of liquid (kl)

Duquenoy:17 Nu Z17!105

Re1.45Pr1.19WeK0.551

(Dc/2H)0.932 (Vp/Vc)
0.628

NuZUDc /2kl, Re Z
2pNDcrlL/(DcCH)m

Canning (liquid

only) end-over-

end rotation

Rotation speed (N), diameter of rotation (Dr), density

of liquid (rl), viscosity of liquid (m), thermal

conductivity of liquid (kl)

Anantheswaran and Rao:18

NuZ2.9Re0.436Pr0.287

NuZU(DrCH)/kl,

ReZ(DrCH)2Nr1/m

Canning (heat

transfer to

liquid in the

presence of

particles) axial

rotation

Rotation speed (N), radius of reel (S), density of liquid

(rl), viscosity of liquid (m), thermal conductivity of

liquid (kl)

Lenz and Lund:19 Nu Z115C
15 Re0.3Pr0.08 (single particle in

the can) Nu ZK33C53

Re0.28Pr0.14 [ds/S(1K3)]0.46

NuZUS/kl

ReZS2Nrl /m

Canning (heat

transfer to

liquid in the

presence of

particles) axial

rotation

Rotation speed (N), diameter of can (Dc), density of

liquid (rl), height of can (H), viscosity of liquid (m),

can angular velocity (u), particle concentration (3),

drag coefficient (CD), thermal conductivity of

liquid (kl)

Deniston et al.:20 NuZ1.87!

10K4Re1.69 [((rpKrl)/CDrl)

((u2DcC2 g)/u2Dc) (ds/Dc)]
0.530

ðap=uD2
p Þ

0:126 [(1K3) (Hce/Dci)

ðuD2
c =alÞ]

–0.17

NuZUDc/k1 ReZrluD2
c =2m

Canning (heat

transfer to

particles) axial

rotation

Rotation speed (N), density of liquid (rl), viscosity of

liquid (m), thermal conductivity of liquid (kl),

equivalent diameter (de), particle sphericity (j)

Fernandez et al.:21 Nu Z2.7!
104Re0.294Pr0.33j6.98

NuZhfp de/kl

ReZde2Nr
l =m

Aseptic

processing

(heat transfer

to particles)

Relative velocity between liquid and particle (vr),

density of liquid (rl), viscosity of liquid (m, K, and n),

thermal conductivity of liquid (kl), particle diameter

(dp), specific heat of liquid (Cpl), volumetric thermal

expansion coefficient of the liquid (b), average

temperature of particle (Tav)

Baptista et al.:22 NuZNusC

0.17GRe0.71GPr0.42 (dp/dt)0.28

Nus Z2C0:025Pr0:33
s Gr0:5

NuZhfpdp/kl

GReZ8rlv
2Kn
r dn

p =2
nK

ðð3nC1Þ=nÞn

GPrZCplK ðð3nC1Þ=nÞn2nK3=kl

ðVr=dpÞ
1Kn

Gr Zd3
p gbr2

l ðTav KTlÞ=2ms

Aseptic

processing

(heat transfer

to particles):

straight tube

Relative velocity between liquid and particle (vr),

density of liquid (rl), viscosity of liquid (m, K and n),

thermal conductivity of liquid (kl), particle diameter

(d), specific heat of liquid (Cpl), volumetric thermal

expansion coefficient of the liquid (b)

Ramaswamy and Zeareifard:23 Nu

Z2C3.8GRe0.479GPr–0.655

(d/D)2.293 (Vp/Vs)
0.514

NuZhfpa/kl

GReZ8rlv
2Kn
r dn

p =2
nK ðð3nC1Þ=nÞn

GPr Z Cpl K((3nC1)/n)n 2nK3/kl (Vr

/dp)1Kn

Gr Zgbr2
l DTd3=m

Aseptic

processing

(fastest

particle

velocity, vp):

Straight tube

Liquid velocity (vl), density of liquid and particle

(rl and rp), viscosity of liquid (m, K, and n),

particle and tube diameters (dp, dt), upward

inclination of tube (I)

Baptista et al.:24 Particle linear

velocity (vp): Vp /vl Z
0.77GRe0.053Fr0.092Ar0.011aK0.28

(dp /dt)
0.52

Particle angular velocity (u): u/vl

Z0.23GRe0.33FrK0.25ArK

0.083a0.50 (dp /dt)
0.83

GReZ8rl v
2Kn
r dn

p =2
nK ðð3nC1Þ=nÞn

Fr Zv2
l =gdt

Ar Z ðrlrp KrlÞ sinðIÞgd3
p =m

2

Mixing (propeller

stirrer)

Stirrer speed ð ðv qÞ, mixing time (q), height (H),

diameter (D)

Zlokarnik:25

ðv qqf ðH=DÞ0:85 ReZ103

continued
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Table 17.11 continued

Processing
Operation Process Variables Correlation and Reference

ðv qqf ðH=DÞ1:5 ReZ104K105

Heat transfer in

bubbling beds

— Molerus and Wirth:26

NuZ0.165(Ar/Pr)(1/3) 105%Ar%108

NuZ0.02469Ar 0.4304 ArR108

Liquid

atomization

— Dahl and Muschelknautz:27

WeZ4.5!104Oh1/6, here Oh is

Ohnesorge number (We1/2/Re)

Zlokarnik:5 WeZ1:97!

104ð ðv m=sÞ0:154
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same force scale ratio. Sometimes, partial similarity is achieved when full similarity is not possible

in scale-up analysis.3 Similarity in scale up analysis can be achieved by ensuring that the corre-

lations obtained from small scale equipment after dimensional analysis still hold for larger scale

equipment. It is important to note that experiments must cover the full range of values of the

relevant dimensionless groups encountered in the scaled-up version.

Scale up of many types of equipments, viz. spray dryer,28 fluidized bed dryer,29 spouted bed

dryer,30,31 rotary dryer,32 pneumatic conveying dryer,33 layer dryer,34 mixer granulator,35 and

chemical reactor,36 as well as industrial processes, viz. spray coating,37 freeze drying,38 fermenta-

tion,39 agglomeration,40 and fluidized beds41 have been carried out and reported.
17.8 CONCLUDING REMARKS

Application of dimensional analysis is widespread. It is especially useful when a mathematical

model is either not possible or not feasible. Certainly, food processing is one of the areas that can

make use of dimensional analysis to perform experimental data analysis, model design, prototype

testing, and equipment scaling up. In performing dimensional analysis, a relevance list consists of all

influencing parameters in a physical problem is made, followed by the generation of p-space that

consists of dimensionless numbers. Thereafter, experiments are to be carefully designed and

performed. Generalization of experimental data gives relationships and correlations that relate the

dimensionless numbers. Based on the relationships and correlations derived empirically, reliable

scale up can be carried out.
NOTATION
Symbol
q 2006 by Taylor & Francis Gr
Quantity
oup, LLC
Dimension
 Unit
Basic physical quantities
L
 Length
 [L]
 m
t
 Time
 [t]
 s
T
 Temperature
 [T]
 K
M
 Mass
 [M]
 kg
N
 Quantity of matter
 [N]
 mol
F
 Angle
 [F]
 rad, deg
continued
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continued
Symbol
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Dimension
 Unit
Physical quantities
A
 Surface area
 [L2]
 m2
a
 Density simplex
 [K]
 —
bt
 Vapor expansion in capillaries
 [MLK3TK1]
 kg mK3 KK1
cA
 Molar concentration of component A
 [NLK3]
 mol mK3
c
 Heat capacity per unit mass

(incompressible substances)
[L2tK2TK1]
 J kgK1 KK1
cp
 Heat capacity per unit mass at constant

pressure
[L2tK2TK1]
 J kgK1 KK1
cv
 Specific vapor capacity
 [Lt2MK1]
 kg kgK1 PaK1
D
 Diameter
 [L]
 m
DAB
 Binary diffusion coefficient
 [L2tK1]
 m2 sK1
D
 Diameter
 [L]
 m
F
 Volumetric flow rate
 [L3tK1]
 m3 sK1
g
 Gravity acceleration Z9.80665 m sK2
 [LtK2]
 m sK2
G
 Mass flow rate per unit area
 [MLK2tK1]
 Kg mK2 sK1
H
 Height
 [L]
 m
He
 Magnetic field strength
 [QLK2tK1]
 C mK2 sK1
h
 Heat-transfer coefficient
 [MTK1tK3]
 W mK2 KK1
I
 Electric charge flux
 [QLK2tK1]
 C sK1mK2
k
 Thermal conductivity
 [MLTK1tK3]
 W mK1 KK1
kL
 Mass-transfer coefficient
 [LtK1]
 m sK1
L
 Length
 [L]
 m
MR
 Moisture ratio
 —
 —

_m
 Mass flow rate
 [MtK1]
 kg sK1
n
 Specific mass constant
 [MMK1]
 kg kgK1
P
 Pressure
 [MLK1tK2]
 Pa
Pv
 Vapor pressure
 [MLK1tK2]
 Pa
Q
 Heat released in chemical reaction per

mole reacting
[ML2tK2NK1]
 J molK1
q
 Heat flux
 [MtK3]
 W mK2
RA
 Molar rate of generation of component A
 [NtK1LK3]
 mol sK1 mK3
R
 Radius
 [L]
 m
r
 Radius
 [L]
 m
S
 Particle area/particle volume
 [LK1]
 m2 mK3
sw
 Specific weight
 [MtK2LK2]
 N mK3
T
 Temperature
 [T]
 8C, K
t
 Time
 [t]
 s
U
 Overall heat transfer coefficient
 [MTK1tK3]
 WmK2KK1
V
 Volume
 [L3]
 m3
ðv
 Velocity
 [LtK1]
 m sK1
ðv q
 Rotational speed
 [tK1]
 sK1
n
 Kinetic viscosity
 [L2tK1]
 m2 sK1
X
 Moisture content
 [M MK1]
 kg kgK1
x, y, z
 Cartesian coordinate
 [L]
 m
Physical Quantities (Greek Symbols)
a
 Thermal diffusivity
 [L2tK1]
 m2 sK1
b
 Volumetric thermal expansion coefficient
 [TK1]
 KK1
d
 Thickness
 [L]
 m
3
 Void fraction
 —
 —
h
 Stefan–Boltzmann constant

Z5.67!10K8 WmK2KK4

[MtK3TK4]
 W mK2 KK4
q
 Mixing time
 [t]
 s
l
 Latent heat of vaporization
 [L2tK2]
 J kgK1
continued
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Symbol
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Quantity
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Dimension
 Unit
K1 K1 K2
m
 Viscosity
 [ML t ]
 N s m
r
 Density
 [MLK3]
 kg mK3
s
 Surface tension
 [MtK2]
 kg mK2
se
 Electrical conductivity
 [Q2tLK3MK1]
 C2 s mK3 kgK1
t
 Shear stress
 [MLK1tK2]
 N mK2
f
 Viscous dissipation function
 [tK2]
 sK2
4
 Angle
 [F]
 rad, deg (8)
c
 Mixing quality
 —
 —
j
 Sphericity
 —
 —
Subscripts
A
 Component A
c
 Can
cd
 Characteristic dimension
cy1
 Cylinder
e
 Equivalent
eff
 Effective
f
 Fluid
fg
 Fluid-gas
fp
 Fluid-particle
g
 Gas
L
 Solvent
l
 Liquid
m
 Mass transfer
0
 Initial
p
 Particle
r
 Rotation
s
 Solids
sat
 Saturated
sph
 Sphere
surr
 Surrounding medium
V
 Vapor
x
 Direction in Cartesian coordinate
y
 Direction in Cartesian coordinate
z
 Direction in Cartesian coordinate
N
 Infinity
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18.1 INTRODUCTION

Decision makers (such as consumers, producers, and policy makers) are often concerned with

how to do things “best.” Companies attempt to maximize profits or minimize costs subject to a

variety of technological and source constraints, as well as legal regulations and demands. Consu-

mers try to spend their free but limited income in a way that will maximize their utility from the

consumption of the acquired goods and services. Policy makers or social planners try to allocate

public funds and to design a set of regulations that will maximize the social welfare of the

community. Analytical solutions for simple constrained optimization problems can sometimes

be obtained via the classical methods of algebra and calculus. However, optimal solutions for

more complex problems typically require the use of numerical algorithms.

Mathematical programming (MP) relates to the use of mathematical models for solving

optimization problems. A typical MP model involves the selection of values for a limited

number of decision variables (often called activities), focusing attention on a single objective

function to be maximized (or minimized, depending on the context of the problem), subject to

a finite set of constraints that limit the selection of the decision variables. Linear programming

(LP) is the simplest and most widely used form of MP in which the objective and constraints

are linear functions of the decision variables. In other words, LP is an optimization problem

that involves maximizing or minimizing a linear objective function that includes several non-

negative variables, the choice of which is subject to a set of linear constraints.

Compared to classical optimization methods, LP is a relatively new approach that grew out

of troop supply problems arising during World War II. Mathematicians were looking for an

approach that could make use of computers that were being developed at that time. The

simplex algorithm1 was developed by Dantzig in 1947. It is a simple recipe for solving LP

problems of any size and is easily programmed on a computer. The extensive availability and

widespread use of computers and their ever-growing computational power have turned LP into

a broadly utilized tool that furnishes practical solutions for a spectrum of problems. Examples

include: military analysis, production planning (especially for agricultural producers and oil

refiners), transportation and shipping, new product development, efficient utilization of

resources, and others. The food field, with its dynamic and spatial processes, is typically

recognized as complex, highly interactive, nonlinear and spatially distributed. These properties

make analysis, modeling, and even simulation a challenging task. However, in many cases, a

linear framework is quite adequate, providing an accurate description, or a fairly close

approximation, of the system at hand.2 Several typical applications of LP in the food

domain include processing, canning operations, livestock nutrition, design of a nutritionally

adequate diet at the lowest cost, evaluating the economic value of the fortified product,

formulation, etc. Therefore, LP furnishes a valuable and important tool for the food industry.

Other problems defined as dynamic and nonlinear programming represent a different class of

optimization and are not covered herein. A typical LP problem can have hundreds of variables

and constraints. These large-scale problems can be solved in a practical amount of time due to

recent advances in both computer power and algorithm efficiency. LP is commonly a relatively

short-term tool, as the constraints normally change with market pricing, labor cost, varying

requirements, etc. Therefore, LP needs frequent cost updates and repeatable verification of the

optimal results.
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For many years, the principal tool for the solution of LP models was the aforementioned

simplex method.1 Due to its broad applications, it will also be used as the main focus of this

chapter. In the 1980s, another class of solution algorithm became competitive with the simplex

method. This class of algorithms is called the interior point method3 and some computer implemen-

tations of it are the most efficient means of solving very large LP models.

The rest of the chapter proceeds as follows: first, in Section 18.2, the main concepts and the

general formulation of a LP problem are introduced by an illustration of its application via a

simple hypothetical example. The example is also used to characterize and analyze the optimal

solution. A graphical solution approach to LP problems and its application to a food-blending

problem are presented in Section 18.3. Subsequently, the graphical approach is utilized to

illustrate a few potential pathological situations of LP. Thereafter, in Section 18.4, a brief

review of some of the vast amount of literature on LP applications in food processing and

nutrition management is given. To further illustrate and highlight the utilization of computerized

LP, two simple, albeit representative examples are presented that can also be used by the reader to

verify the formulation and utilization of this straightforward yet powerful tool. Then, in Section

18.5, some of the currently available LP software is reviewed and a short introduction to the

software associated with the development of new products is provided. The concluding remarks in

Section 18.6 end the chapter.
18.2 LINEAR PROGRAMMING FORMULATION

18.2.1 Introduction

As indicated, the concept of MP relates to the use of mathematical models to solve optimization

problems. A typical MP model involves the selection of values for a limited number of decision or

control variables (often called activities). Attention will be focused on a single objective function to

be maximized (or minimized, depending on the context of the problem), subject to a set of

constraints that limit the selection of the decision variables. More specifically, the problem can

be defined as choosing the level of n activities, denoted by x1, x2,., xn that maximizes (or

minimizes) an objective function, F(x1, x2,., xn), subject to a set of m constraints. The activities

can be summarized by a column vector:

�
X Z

x1

x2

«

xn

0
BBB@

1
CCCA:

The constraints are defined by a set of m functions of the decision variables, g1ð �
XÞ%b1; g2ð �

XÞ%b2;

.; gmð �
XÞ%bm and by the requirement for non-negativity of the decision variables, (i.e.,

�
XR0).

The coefficients b1, b2,., bm are given and called constraint constants (also known as the right-

hand side of the equation, or RHS). The LP problem is the most commonly applied form of MP, in

which the objective function is linear and the constraints consist of linear equalities

and/or inequalities.
18.2.2 General Formulation of a LP Problem

Linear programs have objective functions that are to be maximized or minimized, linear

constraints that can be of three types (less than or equal to, equal to, and greater than or equal
q 2006 by Taylor & Francis Group, LLC
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to), and non-negative decision variables (or activities). A constraint whose left-hand side (LHS) is

less than or equal to (greater than or equal to) the constraint constant on the RHS is termed

maximum (or minimum) constraint. A constraint whose LHS is equal to its RHS is called an equality

constraint. A mathematical formulation of a standard form of a maximum LP problem with

maximum constraints can be given as follows:

Max
x
fF Z c1x1 Cc2x2 C/Ccnxng

Subject to :

a11x1 Ca12x2 C/Ca1nxn%b1 ð1Þ

a21x1 Ca22x2 C/Ca2nxn%b2 ð2Þ

« «

am1x1 Cam2x2 C/Camnxn%bm ðmÞ

xjR0; j Z 1;.;n:

The coefficient cj (jZ1,., n) in the objective function represents the increase (if cjO0) or decrease

(if cj!0) in the value of the objective function, F, per unit increase in xj, bi (iZ1,., m)is the

constant on the RHS of the ith constraints, and aij are the coefficients of the functional constraint

equations, expressing the number of units from the constraint i consumed by one unit of activity j.

Any non-negative vector
�
X that satisfies all the constraints is called a feasible solution of the LP

problem. A feasible solution that maximizes (or minimizes in the case of a minimization problem)

the objective function is called an optimal solution.
18.2.3 Example 1: The Problem of a Hypothetical Juice Manufacturer:
Underlying Assumptions of LP

Consider a manufacturer who owns a juice factory with a storage capacity of 400 m3 and

produces apple, lemon, and cherry juice, stored in stainless steel containers, each of 1 m3. The

production and marketing of one container of apple juice requires (per one month) 4 work-hours,

$15 of capital investment, and 24 machine-hours. Similarly, one container of cherry juice requires

2.5 work-hours, $12 of capital, and 11 machine-hours; one container of lemon juice requires 3.5

work-hours, $12 of capital, and 20 machine-hours. Marketing obligations require that the number of

containers of apple juice not exceed 40% of the number of containers of the other two juices. The

net profits per container (denoted by cj, jZ1,., 3) of apple, cherry, and lemon juice are $354, $325,

and $346, respectively. In addition to 400 m3 of storage capacity, the manufacturer has at its

disposal, for the month under consideration, 2200 work-hours, $5000 available for capital invest-

ment, and 8500 machine-hours. Obviously, the manufacturer’s objective is to maximize the total

net profit from the plant. The first task, then, is to formulate the LP problem to establish the optimal

feasible solution.

In this example, three (nZ3) activities and four (mZ4) constraints are identified. The activities

are the three types of juices (apple, cherry, and lemon), measured in units of 1 m3 containers.

Specifically, x1, x2, and x3 are the numbers of containers of apple, cherry, and lemon juice,

respectively. The constraints and the levels of the constraint constants are:

1. Storage capacity in cubic meters, b1 (Z400 m3)

2. Labor measured in work-hours, b2 (Z2200 work-hours)

3. Investment capital measured in dollars, b3 (Z$5000)

4. Machine work measured in machine-hours, b4 (Z8500 machine-hours)
q 2006 by Taylor & Francis Group, LLC



LINEAR PROGRAMMING 567
5. The juices’ balance constraint measured in containers, b5 (Z0 containers, see explanation

below)

The LP problem may now be formulated:

Max
x
fF Z 354x1 C325x2 C346x3g

Subject to :

1x1 C1x2 C1x3 %400 ð1Þ

4x1 C2:5x2 C3:5x3 %2; 200 ð2Þ

15x1 C12x2 C12x3 %5; 000 ð3Þ

24x1 C11x2 C20x3 %8; 500 ð4Þ

1x1 K0:4x2K0:4x3 %0 ð5Þ

xjR0; j Z 1;.;3:

The coefficients of the functional constraint equations are:

a11 Z 1;.;a23 Z 3:5;.;a32 Z 12;.;a41 Z 24;.;a53 ZK0:4:

All the constraints are maximum constraints. The first four relate the total demand of the activities

for the scarce resources (storage, labor, capital, and machine-hours) to the limited supply via the

fundamental relation demand%supply. The fifth (balance) constraint states that x1%0.4(x2Cx3).

However, the RHS of a constraint should include only a constant and the LHS should include only

the terms aijxj. Thus, the term of the above inequality is arranged to obtain the fifth constraint.

Before proceeding, the major underlying assumptions of LP are briefly identified:

† Boundedness: The number of activities (n) and the number of constraints (m) is finite.
† Fixedness: At least one constraint has a nonzero RHS coefficient (bi).
† Certainty: All the cj, bi, and aij coefficients in the model are constants that are assumed to

be known with certainty.
† Divisibility or continuity: Every constrained resource and every activity (xj) can be used

in quantities that are fractional units.
† Proportionality: This property requires that the value of each term in the linear function

be strictly proportional to the value of the activity in the term. This assumption asserts,

for example, that if one unit of the apple juice activity requires 1 m3 of storage volume, 4

work-hours, $15 of capital, and 24 machine-hours, and its associated net profit is $354,

then two units of apple juice activity will require 2 m3 of storage volume, 8 work-hours,

$30 of capital, and 48 machine-hours, and its associated net profit will be $708.
† Additivity: This assumption asserts that if, in the current example, the production of two

or more activities requires storage capacity, labor, capital, and machine work in amounts

that may differ, the total demand for storage capacity, labor, capital and machine work is

equal to the sum of the quantities demanded by all the activities.

The last two linear properties of proportionality and additivity preclude the use of a nonlinear

objective function and nonlinear constraints. The additivity property prohibits cross-product terms

(e.g., 10x1x2), which might represent nonlinear interaction effects, for instance between apple juice

and cherry in our example. The proportionality property, for example, requires that the total net

profit associated with a specific activity always be directly proportional to the level of the activity; it

follows that it is not possible to include a fixed start-up cost in the analysis.
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18.2.4 Primary Analysis of the Optimal Solution, Concepts and Definitions

Algorithms for solving an LP problem are available via many computer programs, and will be

discussed further on. At this stage, the optimal solution is presented and used to define and explain a

few important concepts and results associated with this solution (optimal values are hereafter

denoted by asterisks).

The activities’ optimal levels in this example (i.e., the levels which maximize the objective

function subject to the constraints) are: x�1 Z66:67 containers of apple juice, x�2 Z0:0 containers of

lemon juice and x�3 Z333:33 containers of cherry juice, implying that the optimal value of the

objective function is: F�Z138; 933:34ðZ354x�1 C325x�2 C346x�3 Þ. It should be mentioned that the

optimal activity levels are continuous. Therefore, in practice, the above results should be rounded

off to the nearest integer value. Activities which are strictly positive in the optimal solution (x1 and

x3 in the current example) are called basic activities (or basic variables). Activities that are equal to

zero in the optimal solution (x2 in the current example) are termed nonbasic.
18.2.5 Binding and Nonbinding Constraints, Shadow Prices

A specific constraint is binding (or effective) if, in the optimal solution, it is satisfied with the

equality sign. A constraint is nonbinding (or noneffective) if it is satisfied with the inequality sign. In

the current example, the first and third constraints are binding whereas the second, fourth, and fifth

constraints are nonbinding:

1x�1 C1x�2 C1x�3 Z 400 ð1Þ

4x�1 C2:5x�2 C3:5x�3 Z 1; 433:33!2; 200 ð2Þ

15x�1 C12x�2 C12x�3 Z 5000 ð3Þ

24x�1 C11x�2 C20x�3 Z 8; 266:66!8; 500 ð4Þ

K1x�1 C0:4x�2 C0:4x�3 Z 66:67O0 ð5Þ

Generally speaking, the amounts of apple, lemon, and cherry juice that the manufacturer is able

to produce are limited by the availability of the various resources and by the balance constraint,

implying that (for given levels of the coefficients aij and cj) the optimal levels of the activities

are functions of the constraint constants summarized by the vector
�
bZ ðb1; b2.; b5Þ:

x�1 Zx1ð�
bÞ; x�2 Zx2ð�

bÞ; x�3 Zx3ð�
bÞ. The objective function, F, can also be expressed as a function

of
�
b : F�ð

�
bÞZFðx1ð�

bÞ; x2ð�
bÞ; x3ð�

bÞÞ. The sensitivity of the optimal value of the objective function

to variations in the constraint constants can be calculated via differentiation of F* (with respect

to bi):

li h
vF�ð

�
bÞ

vbi

; i Z 1;.; 5:

The li’s are called dual prices or shadow prices of the constraints (in contrast to market prices that

are visible to everybody). In addition to the optimal levels of activity, the shadow prices of the

various constraints are obtained as by-products of the optimal solution.

It can be proven that the shadow price of a binding maximum constraint (%) is positive whereas

the shadow price of a binding minimum constraint (R) is negative. The shadow price of a

nonbinding constraint (whether it is a maximum or minimum constraint) is equal to zero. The

shadow prices calculated in the current example are: l1Z$314.00 per m3, l2Z$0 per work-hour,

l3Z$3.67 per dollar of capital investment, l4Z$0 per machine-hour, and l5Z$0 per container. The

shadow price of a constraint can be interpreted as the marginal sacrifice that the planner must bear
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because of the presence of that constraint. In other words, if the ith constraint could be made

less limiting by one unit, the optimal value of the objective function would increase byli. Conver-

sely, if the ith constraint becomes tighter by 1 unit, the optimal value of the objective function will

decrease by li. In the current example, the marginal contribution to the objective function of the

last cubic meter of the limited storage capacity and the last dollar of the limited capital are given

by l1ZF�ðb1Z400=
�
b

K1
ÞKF�ðb1Z399=

�
b

K1
ÞZ$314=m3 and by l3ZF�ðb3Z5000=

�
b

K3
ÞK

F�ðb3Z4999=
�
b

K3
ÞZ$2:67=capital, respectively. The term “=

�
b

Ki
”, iZ1,3 means that “all other

constraint constants, except for the ith, are held fixed at their original level.” On the other

hand, constraints 2, 4, and 5 are not binding. For example, in the optimal solution, only 1433.33

work-hours out of the 2200 available to the manufacturer are used by the activities in the optimal

solution. Namely, in the optimal solution there are 766.67 unused work-hours. Thus, if the available

amount of work-hours is reduced by 1 unit, this will not affect the optimal value of the objective

function:

l2 Z F�ðb2 Z 2200=
�
b

K2
ÞKF�ðb2 Z 1999=

�
b

K2
ÞZ $0=work day:

18.2.6 Opportunity and Reduced Costs of the Activities

The opportunity cost of the jth activity, denoted by zj, is the sacrifice of producing one

additional unit of that activity resulting from the fact that alternative production opportunities

(i.e., some other activities) must be forgone to satisfy the problem’s constraint. In principal, the

sacrifice can be either positive or negative. A positive sacrifice is to be avoided, whereas a negative

sacrifice is welcome.

To illustrate the calculation of zj, consider the apple juice enterprise. One unit of that activity

requires a11Z1 m3 of storage capacity, a21Z4 work-hours, a31Z$15 of capital, and a41Z24

machine-hours. Note that a51ZK1 and that if the fifth constraint were binding, it would force

the planner to increase the production of lemon juice and/or cherry juice to at least 0.4 containers

above the optimal levels of these activities that would be obtained in the absence of the fifth

constraint. This requirement, if binding, would reduce the value of the objective function

and therefore l5%0. The opportunity cost of apple juice is equal to the sum of the input

quantities required for one unit of the activity (apple juice) multiplied by the shadow prices of

these inputs:

z1 Z
X5

iZ1

ai1li Z 1ð314ÞC4ð0ÞC15$ð2:67ÞC24ð0ÞCK1ð0ÞZ $354=m3:

Similarly,

z2 Z
X5

iZ1

ai2li Z $346=acre; and z3 Z
X5

iZ1

ai3li Z $346=m3:

The reduced costs of an activity, denoted by Rj, are defined by the difference (zjKcj). In our

example,

R1 Z 354K354 Z 0; R2 Z 346K325 Z 21; and R3 Z 346K346 Z 0:

These results illustrate an additional important characteristic of the solution to the LP problem: the

reduced cost of a basic activity xjO0 is equal to zero while the reduced cost of a nonbasic activity

xjZ0 is positive and represents a reduction in the optimal value of the objective function if the

operation of one unit of a nonbasic activity were to be forced upon the planner. Lemon juice is a

nonbasic activity in our example. If it were to be produced at a level of 1 unit (i.e., 1 container),
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the manufacturer would gain c2Z$325 on the one hand, and would lose z2Z$346 (forgone

benefits), on the other. Because the loss exceeds the benefits, x2Z0 at the optimal solution. The

lemon juice activity would be a candidate for becoming a basic activity if c2 were to increase by at

least R2Z346K325Z$21 per container.

To further illustrate the relationships between the reduced costs of the activities and the shadow

prices of the constraints, recall that in the optimal solution, x�1 Z66:67, x�2 Z0, and x�3 Z333:33. By

substituting these values into the constraints (as was illustrated above), only the first and third ones

can be easily identified as binding, implying that l1O0, l3O0, l2Zl4Zl5Z0. Two equations are

required for calculating l1 and l3. Because x1 and x3 are basic activities, their associated reduced

costs are equal to zero:

R1 Z 1ðl1ÞC15ðl3Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
z1

K354|{z}
c1

Z 0

R3 Z 1ðl1ÞC12ðl3Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
z3

K346|{z}
c3

Z 0

9
>>=

>>;
0l1 Z 314; l3 Z 2:67:

This section is concluded with an informal presentation of two important theorems of LP (the

proofs are beyond the scope of this chapter; the reader is encouraged to consult available text-

books4–6).

† If a LP problem has an optimal solution,
�
X�Z ðx�1 ; x�2 ;.; x�n Þ, then the optimal value of

the objective function, F�Z
Pn

jZ1

cjx
�
j ðZ138; 933:34 in the example presented hereÞ, is

equal to the sum of the constraint constants multiplied by their associated shadow

prices: W�Z
Pm

iZ1

biliðZ400ð314ÞC2200ð0ÞC5000ð2:67ÞC8500ð0ÞC0ð0ÞZF�Þ.

† The number of the basic (nonzero) activities in the optimal solution of a LP problem ðx�j O0Þ

is no greater than the number of constraints (m) in that problem. This theorem is very

important for model builders. If a specific LP model has mZ50 constraints and nZ500

activities, then 450 of those activities will be irrelevant to any given solution. Thus, this

theorem may be viewed as a reminder of the importance of the row dimension in LP models.

18.3 GRAPHICAL SOLUTION APPROACH

18.3.1 Well-Behaved Problem

A simple way to solve an LP problem with only two activities is graphically. This is illustrated

via a simple hypothetical example of maximizing a linear profit function, F, measured in dollars

with nZ2 activities subject to mZ3 constraints:

Max
x
fF Z 3x1 C2x2g

Subject to :

10x1 C10x2 %100 ð1Þ

100x1 C200x2 %1; 600 ð2Þ

10x1 C5x2 %80 ð3Þ

xjR0; j Z 1; 2:
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Before graphing the above inequality constraints, consider a general formulation of ai1x1C
ai2x2%bi and note that the equation ai1x1Cai2x2Zbi represents all the combinations of x1 and x2

that satisfy the constraint with the above equality. To graph this equation on the (x1, x2) axes, it is

convenient to rewrite it as:

x2 Z
bi

ai2|{z}
Intercept

K
ai1

ai2|ffl{zffl}
Slope

x1:

The linear equation is depicted in Figure 18.1.

The graph of the inequality constraint ai1x1Cai2x2%bi, coupled with the non-negativity constraints

x1O0 and x2O0, is represented by the shaded half-plane below the linear line in the first quadrant.

The shaded area represents the feasible region of a LP problem with a single maximum constraint.

This region contains all the combinations of x1 and x2 under which x1O0, x2O0 and ai1x1C
ai2x2%bi. If the constraint was a minimum constraint, i.e., ai1x1Cai2x2Rbi, then the feasible

region would be the half-plane above the linear line in the first quadrant (depicted in

Figure 18.2).The graph including all the constraints, (1), (2) and (3), of the above problem, is

drawn in a similar way (Figure 18.3). The feasible region (the shaded polyhedron ABCDE in

Figure 18.3), which contains all the pairs (x1, x2) that satisfy each of the three constraints (including

the non-negativity constraints) simultaneously, is said to be the set of feasible solutions for the LP

problem. The optimal solution of the LP problem (if it exists) is the feasible solution that maximizes

the objective function FZ3x1C2x2.

To find the optimal solution, consider first an arbitrary level of profit, say F0, and note that the

equation F0Z3x1C2x2 or x2Z(F0/2)K(3/2)x1 defines all the combinations of x1 and x2 that yield a

profit of F1 dollars, and is called an iso-profit curve.

The iso-profit curve for a profit of F1 dollars is a straight line with an intercept of F1/2(ZF1/c2)

and a slope of 3/2(Zc1/c2) (see Figure 18.4). Similarly, if one chooses another arbitrary level of

profit, F2OF1, another iso-profit curve, x2Z(F2/2)K(3/2)x1, is obtained. The two iso-profit curves

are parallel (i.e., they have the same slope, 3/2(Zc1/c2), but the second curve lies above the first one

(i.e., the intercept F2/2 is larger than the intercept F1/2). In fact, there are an infinite number of iso-

profit curves that are parallel to each other and higher profits occur as they move further from the

origin (Figure 18.4).

All of the tools needed to determine the optimal solution are now in place. The map of the

(parallel) iso-profit curves indicates what the total profits are, namely values of the objective

functions, associated with various combinations of x1 and x2.
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Figure 18.1 The feasible region with a single maximum constraint.
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Figure 18.2 The feasible region with a single minimum constraint.
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The feasible region defined by the constraints indicates which of the combinations is affordable.

The planner’s task is to put the two together and choose a combination of activities that will yield

the highest affordable value of the objective function. Here, the feasible region is drawn together

with a few iso-profit curves (Figure 18.5).

Of the three iso-profit curves, F3 is preferred because it yields the highest profit; however, it is

not feasible, nor is any other (x1, x2) combination that lies beyond the feasible region. A profit of F1

dollars is not the highest feasible one. The planner’s strategy is to keep moving to higher and higher

iso-profit curves until the highest one that is still affordable is reached. The highest affordable profit,

F2, is obtained with the activity combination for which the iso-profit curve “touches” the corner

point C of the feasible region. Note that C is the intersection of the boundary lines of constraints (1)

and (3), namely, both constraints are satisfied with strict equality, implying:

ð1Þ 10x1 C10x2 Z 100

ð3Þ 10x1 C5x2 Z 80

)
0x�1 Z 6; x�2 Z 4; F� Z 26:
B
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Figure 18.3 The feasible region with three maximum constraints.
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Figure 18.4 Iso-profit curves.
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It is also worth noting that the second constraint is not binding at the optimal solution:

100x�1 C200x�2 Z1400!1600, implying that the shadow price of this constraint is zero, l2Z0.

To calculate the shadow prices of the two binding constraints, one should utilize the knowledge that

the reduced costs associated with basic activities x1 and x2 are equal to zero:

R1 Z 10ðl1ÞC10ðl3Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
z1

K 3|{z}
c1

Z 0

R2 Z 10ðl1ÞC5ðl3Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
z2

K 2|{z}
c2

Z 0

9
>>=

>>;
0l1 Z 0:10; l3 Z 0:20

Also, note that

W� Z
X3

iZ1

bili Z 100ð0:1Þ|fflfflfflfflffl{zfflfflfflfflffl}
l1b1

C80ð0:2Þ|fflfflffl{zfflfflffl}
l3b3

Z 26ðZ F�Þ:
6

4

0 108

8
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BC = segment of constraint (3)
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Figure 18.5 Optimal solution.
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The choice of corner point C of the feasible region as the optimal point can be made by either using

a ruler to move the iso-profit line away from the origin until the last point at which the ruler

intersects the feasible region, or by comparing the absolute value of the slope of the iso-profit

curve (c1/c2) to the absolute values of the slopes of the various segments of the feasible region

(ai1/ai2). Specifically, in the current example,Figure 18.5 also indicates that:

If ½c1=c2 O2�/ the optimal solution is obtained at the corner point B ðx�1 Z 8; x�2 Z 0Þ;

If ½2Rc1=c2O1�/ the optimal solution is obtained at vertex C ðx�1 Z 6; x�2 Z 4Þ;

If ½1Rc1=c2O0:5�/ the optimal solution is obtained at vertex D ðx�1 Z 4; x�2 Z 6Þ; and

If ½0:5Rc1=c2�/ the optimal solution is obtained at the corner point E ðx�1 Z 0; x�2 Z 8Þ:

These results can be generalized via the following theorem of LP (its proof is beyond the scope of

the current chapter): if an optimal solution for a LP problem exists, then it must be obtained at a

vertex or corner point of the feasible region. Furthermore, if the optimal solution exists at two

adjacent vertices of the polygonal feasible region, then every point on the linear segment

connecting the vertices is an optimum solution (if, for example, c1/c2Z1, then all the points on

segment CD of the feasible region yield the same maximum value of the objective function). In this

case, the LP problem will have an infinite number of solutions. Because they all yield the same level

of the objective function, we can choose the activity combination at one of the two vertices (either C

or D in the example discussed here).

This important theorem indicates that the search for an optimal solution to a LP problem can be

confined to the evaluation of the objective function at a finite set of vertex and corner points of the

feasible region of the problem. Indeed, the simplex method, which is an efficient, successful and

widely used algorithm to solve LP problems, searches for an optimal solution by proficiently

iterating from one vertex or corner point to another, and the value of the objective function

increases (in a maximum problem, or decreases in a minimum problem) with each iteration,

until it converges to its optimal value. A presentation of the (relatively simple) simplex algorithm

is beyond the scope of the current chapter and can be found elsewhere.4,5 Next, an example of a

minimum-optimization problem, also known as a food-blending problem, is discussed. This

problem was chosen to highlight the principles; therefore, the complexity of a typical nutritional

formulation was circumvented for the sake of simplicity.
18.3.2 Example 2: Food-Blending Problem

Consider a consumer who can purchase two food products to nourish his or her family. Being

very familiar with recent nutritional requirements, he or she decides that at least 50, 150, and 100

units per week are required of nutritional values such as vitamin A, vitamin B1 and vitamin C,

denoted A, B1, and C (no nutritional units are used for simplicity), respectively. The nutritional

content and cost of 1 kg of each food product is depicted in Table 18.1.

The goal is to determine the least expensive product combination that will provide the nutri-

tional requirements. To formulate the problem as an LP problem, let x1 and x2 be the number of
Table 18.1 Nutritional Composition of Food Products

Nutritional Elements (units/kg)

A B1 C Cost ($/kg)

Food product 1 1.00 2.00 4.00 7.00

Food product 2 1.00 5.00 1.25 10.00
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kilograms of products 1 and 2, respectively. The minimization problem is then given by:

Min
x
fC Z 7x1 C10x2g

Subject to :

1x1 C1x2 R50 ð1Þ

2x1 C5x2 R150 ð2Þ

4x1 C1:25x2R100 ð3Þ

xjR0; j Z 1;2:

In this case, the lowest affordable iso-cost line is sought. The optimal solution is presented in

Figure 18.6, where the iso-cost curve, denoted IC2, touches the shaded feasible region from below,

at point C. Obviously, the (x1, x2) combinations along the iso-cost line IC1 cost less than those along

IC2, but they are not feasible because they do not satisfy the minimum constraints.

Point C (Figure 18.6) is the intersection of the boundary lines of constraints (1) and (2);

specifically, both constraints are satisfied with strict equality, implying:

ð1Þ 1x1 C1x2 Z 50

ð2Þ 2x1 C5x2 Z 150

)
0x�1 Z 33:33 kg; x�2 Z 16:67 kg; C� Z 400 kg:

The third constraint is not binding at the optimal solution: 4x�1 C1:25x�2 Z154:17O100, implying

that its shadow price vanishes (i.e., l3Z0). The shadow prices of the binding, minimum constraints

(1) and (2) are negative, and represent the increase in value of the objective function (i.e., increase

in costs, which is equivalent to decrease in free income to the consumer), associated with an

increase of one unit in the minimum amount (the RHS constants of the constraints). To reduce

possible confusion in calculating these shadow prices, this is illustrated in a manner consistent with

that presented in the previous examples, where the objective function was maximized.

Towards this goal, it is worth noting that the objective function of the food management

problem: Min
�
XfCZ7x1C10x2g can be rewritten as: Max

�
XfKCZK7x1 K10x2g. The two objective

functions are completely equivalent and yield the same solution (the value of
�
X that minimizes C is
−1

−3.2

−0.1
−0.7

16.67

33.330 75

80
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Figure 18.6 Optimal solution for the food-blending problem.

q 2006 by Taylor & Francis Group, LLC



HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES576
exactly identical to the value that maximizes KC). Recalling that in an LP maximization problem,

the reduced costs associated with the nonzero basic activities are equal to zero and noting that

c1ZK7 and c2ZK10:

R1 Z 1:ðl1ÞC2:ðl2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
z1

KðK7Þ|ffl{zffl}
c1

Z 0

R2 Z 1:ðl1ÞC5:ðl2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
z2

KðK10Þ|fflffl{zfflffl}
c2

Z 0

9
>>>>=

>>>>;

0l1 ZK$5=Units of A; l2 ZK$1=Units of B:

As was illustrated in the previous examples, here too:

W� Z
X3

iZ1

bili Z 50:ðK5Þ|fflfflfflffl{zfflfflfflffl}
l1b1

C150:ðK1Þ|fflfflfflfflffl{zfflfflfflfflffl}
l2b2

ZK400 dollarsðZKC�Þ:
18.3.3 Pathological Situations of LP

Selected limited typical geometric examples of pathological situations that occur in LP are

outlined below.

18.3.3.1 Unbounded Solution

In this situation, there is no largest (or smallest) value of F, i.e., it is always possible to find

values of (x1, x2) that will make F larger than any pre-assigned value. In other words, F can be made

arbitrarily large. An example of a LP problem with an unbounded solution is:

Max
x
fF Z 4x1 C3x2g

Subject to :

K3x1 C2x2%6 ð1Þ

K1x1 C3x2%18 ð2Þ

x1;x2R0

The graphical presentation of this problem is depicted in Figure 18.7. These lines demonstrates that

F can be made arbitrarily large.
x1

x2

F=24F=12
F=36

F=60

Figure 18.7 Unbounded solution.
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Figure 18.8 Infeasible solution.
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18.3.3.2 Infeasible Solution

In this pathological situation, no feasible solution for the LP problem exists; specifically, a set of

xj’s, jZ1,., n that simultaneously satisfies all the constraints does not exist. This pathological

situation commonly arises from an error in the formulation of the LP problem. An example of such

a problem is:

Max
x
fF Z 3x1 C5x2g

Subject to :

5x1 C5x2%25 ð1Þ

9x1 C13x2R117 ð2Þ

x1; x2R0

The graphical presentation of this problem is depicted in Figure 18.8, which clearly indicates that

there is no feasible solution (i.e., there is no combination (x1, x2) that can be at the same time above

the upper linear line and below the lower linear line).
18.4 TYPICAL APPLICATION

One of the many typical applications of LP is the formulation of foods delivering products that

meet cost minimization while simultaneously meeting nutritional guidelines. Numerous other

characteristic examples include: human diets,7–11 economic value of fortified food supplements,12

food security,13 formulation of complementary infant and child foods,14 food production and

processing,15–17 breadmaking,18 accuracy and efficiency of estimating nutrient values in commer-

cial food products,19,20 general formulation,21–23 and quality optimization.24,25 These examples

represent only the tip of the iceberg, highlighting both the vast applications and possibilities of the

far-reaching capabilities that LP offers. In addition, LP deals with numerous other domains and

topics. It has found practical application in almost all facets of business, from advertising to

production planning, transportation, distribution, optimal control problems, integer programming,

economic analysis, game theory, modern welfare economics, operations research, optimal allo-

cation of resources, scheduling, shipping, telecommunication networks, oil refining, blending, and

even stock and bond portfolio selection.
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18.4.1 Nutritional Children’s Formulation: Excelw Solver

Before listing some of the frequently utilized dedicated LP software, we would like to highlight a

simple yet very powerful tool available on most PCs as a part of Excel (http://office.microsoft.com/

en-us/FX010858001033.aspx). To illustrate its use, two typical examples have been chosen,

both focusing on nutrition and food formulation. The overall objective here is to highlight the

utilization of the computerized LP application by providing a simple yet representative example

that can also be used by the reader to verify the formulation and application of this straightforward

yet powerful tool.

Appendix A lists a complete description of how Excel Solver is used to derive the optimal

solution for the composition of a nutritional children’s product described previously by Briend

et al.11 This example highlights the principles behind formulating an LP problem, typical data

required prior to attempting to utilize the Excel Solver, and data interpretation techniques. Due to

its length and detailed nature, it is listed in the appendix.
18.4.2 Example 3: Reconstituted Juice-Blend Formulation

The objective in this example is to optimize (minimum cost) a formulation involving the

blending of several juices while meeting marketing, taste, and nutrition constraints. The first

step, as indicated for the previous example (Appendix A), is to list all the variables and to

gather the database information on the ingredients. In this case, the data includes the solid

concentration (0Bx) of the concentrates and the juice, the minimum and maximum acidity of

the concentrates, nutritional information (e.g., the amount of ascorbic acid), densities and

prices ($/kg concentrate; this information should be frequently updated to accommodate fluctu-

ations in the marketplace). Typical information is listed in Table 18.2. The first column lists

the concentrations of the various juice concentrates; the second column lists the typical soluble

solids of the reconstituted juice; the third and fourth columns provide the maximum and

minimum acidity expected taking into account the natural variability of the various concen-

trates; the fifth column lists the ascorbic acid concentration; and the last two list the density

and price per 1 kg of concentrate. Note that all values except those in the second column

relate to the juice concentrate.

The LP goal is to determine the combination of juice concentrates that will cost the least, will

meet all of the constraints, and will provide an ascorbic acid concentration that meets quality

requirements. To formulate the problem as an LP problem, let x1,., x17 be kilograms of concen-

trated juice, flavor and water. The imposed constraints are as follows:

† A basis of reconstituted juice blend of 100 kg is chosen. This includes all the constituents

(i.e., juice concentrates, flavors and water).
† Juice concentration after reconstitution of each fruit should be between 5 and 20%. The

lower limit is imposed to ensure that the final blend includes a minimum concentration of

each and every juice, thus complying with the product label that may specify it. The

upper limit of 20% is imposed to ensure that no specific juice dominates the blend.
† Total concentration of the added flavors should be at least 0.35%, satisfying consumer

preference. In addition, each flavor should be present at least 0.05%, ensuring an accep-

table flavor combination.
† To provide the necessary sweetness, the final concentration of soluble solids in the

reconstituted juice blend should be between 13.5 and 14.0 0Bx.
† Total acidity should be between 0.8 and 0.9%. This value is imposed to ensure an

adequate acidity. In some cases, a constraint on the Brix-to-acidity ratio may be imposed.
q 2006 by Taylor & Francis Group, LLC
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Table 18.2 Typical Information on Juice Concentrate, Reconstituted Juice and Other Ingredients

Juice Concentrate
Conc. Soluble
Solids (0Bx)

Juice Soluble
Solids (0Bx) TAa min (%) TA max (%)

Ascorbic Acid
(mg/100 g) Density (g/mL) Cost ($/kg Conc.)

Apple 70.0 10.50 1.60 2.03 3.42 1.350 1.127

Banana 23.0 23.00 0.60 0.70 95.74 1.096 0.862

Cherry 68.0 14.30 2.29 4.11 755.12 1.337 2.533

Concord 68.0 14.00 2.13 2.99 14.55 1.337 2.564

Cranberry 50.0 8.00 11.40 13.84 122.07 1.232 9.032

Lemon 38.0 6.00 32.00 33.00 157.29 1.232 1.684

Madera 68.0 14.00 1.54 1.96 221.70 1.337 1.239

Passion fruit 50.0 14.50 10.00 12.00 102.90 1.232 3.307

Pear 70.0 12.70 1.72 2.29 8.28 1.350 0.072

Pineapple 61.0 12.80 2.29 3.22 54.63 1.295 1.171

Peach 70.0 11.80 4.39 4.59 20.14 1.350 2.205

Pink grapefruit 68.0 14.00 2.65 3.16 136.00 1.337 1.596

Red raspberry 65.0 10.50 8.00 12.00 318.11 1.319 10.845

White grapefruit 68.0 14.00 0.68 1.19 214.38 1.337 1.151

Other ingredients

Banana flavor 15.43

Cherry flavor 20.06

Raspberry flavor 17.64

Water 1.0 0.0

a TA, total acidity.
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† The final ascorbic acid concentration should be at least 50 mg/100 g.
† The cost of the water used to reconstitute the juice concentrate is taken to be zero.

The minimization problem is formulated as:

Min
x
fC Z 1:127x1 C0:862x2 C2:564x3 C/C17:637x17g

Subject to:

Juice content: 0:70=0:105x1 C0:23=0:23x2 C/C0:68=0:14x14

Cx15 Cx16 Cx17 Z 100 ð1Þ

Individual juice content ðmaxÞ: 0:70=0:105x1;0:23=0:23x2;..0:68=0:14x14 %20 ð2Þ

Individual juice content ðminÞ: 0:70=0:105x1;0:23=0:23x2;..0:68=0:14x14 R5 ð3Þ

Flavor content ðmaxÞ: x15 Cx16 Cx17 %0:35 ð4Þ

Flavor content ðminÞ: x15;x16;x17 R0:05 ð5Þ

Brix ðminÞ: 0:70x1 C0:23x2 C .. C0:68x14 R13:5 ð6Þ

Brix ðmaxÞ: 0:70x1 C0:23x2 C .. C0:68x14 %14:0 ð7Þ

Acidity ðmaxÞ: 0:016x1 C0:006x2 C .. C0:0068x14 %0:9 ð8Þ

Acidity ðminÞ: 0:016x1 C0:006x2 C .. C0:0068x14 R0:8 ð9Þ

Ascorbic acid ðminÞ: 3:42x1 C95:74x2 C ::C214:38x14 R50 ð10Þ

xj R0; j Z 1;.;17

The optimal solution found is $0.58/kg of juice blend and the other derived values are listed in

Table 18.3.

The optimal solution gives the lowest cost of the juice-blend formulation at $0.58/kg. This

solution meets all of the above constraints and simultaneously reduces the cost of the juice blend
Table 18.3 Optimal Solution for Least-Cost Juice Formulation

Juice Concentrate Variable
Optimal Solution (kg

Concentrate)

Constraint Status
(for the Juice

Blend)
Slack (for the
Juice Blend)

Apple x1 0.75 Binding 0

Banana x2 8.56 Not binding 3.56

Cherry x3 2.73 Not binding 7.97

Concord x4 1.03 Binding 0

Cranberry x5 0.80 Binding 0

Lemon x6 0.79 Binding 0

Madera x7 1.67 Not binding 8.12

Passion fruit x8 1.45 Binding 0

Pear x9 0.90 Not binding 0

Pineapple x10 1.05 Not binding 0

Peach x11 0.84 Binding 0

Pink grapefruit x12 1.03 Binding 0

Red raspberry x13 0.81 Binding 0

White grapefruit x14 4.12 Binding 0

Banana flavor x15 0.25 Not binding 0.20

Cherry flavor x16 0.05 Binding 0

Raspberry flavor x17 0.05 Binding 0

Water 73.12 Not binding

TA(%) 0.86 Not binding 0.06

Solid concentration (oBx) 13.50 Binding 0

Ascorbic acid (mg/100 g) 50.00 Binding 0
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to the minimum. Utilizing the density of the different concentrates as listed in Table 18.2 allows us to

calculate the volume and cost of each aseptic carton (assuming that this is the juice blend’s packa-

ging), and the price per carton. This information is vital for guaranteeing profitable production.

Obviously, if the conditions in the marketplace were to change, the cost of each ingredient

in Table 18.2 would need to be updated and the linear program rerun to determine the new

formulation. Indeed, it is important to note that the prices of the concentrates do fluctuate

quite often. Although it would produce the least-cost juice blend each and every time, frequent

modification of the formulation by applying this technique may have an adverse effect on consu-

mers, as changes could also result in different tastes and organoleptic characteristics. Therefore,

every formulation change should be considered carefully, and sensory evaluations are

highly recommended.
18.4.3 Example 4: Restaurant Management

“Greens” is a trendy, popular restaurant that uses only fresh vegetables for both its menu and its

ingredients. All the vegetables (green beans, corn, tomatoes) are grown in the owner’s 750 m2

garden plot. One kilogram of beans requires 1 m2 of land, 0.7 work-hours, and 1 m3 of water per

week. Similarly, 1 kg of corn requires 1 m2 of land, 1 work-hour, and 0.5 m3 of water, and 1 kg of

tomatoes requires 2 m2of land, 1.1 work-hours, and 0.4 m3 of water per week. The weekly growing

cost per kg (including water and labor costs) of beans, corn, and tomatoes is $1.5, $1.1, and $2.0,

respectively. The current staff can supply up to 600 work-hours per week and the weekly quota of

irrigation water is 400 m3.

These three vegetables are used to produce three dinner-menu items: sautéed vegetables (SV),

vegetable soup (VS), and a vegetable pie (VP). The items SV, VS, and VP are listed on the menu at

$7.75, $5.50, and $9.25 per large family-size serving, respectively. These relatively low prices are

promotional. The preparation of SV, VS, and VP requires 0.1, 0.2, and 0.1 h of labor, and 1 h of the

current team of workers costs the owner of the restaurant $2.5. Because the restaurant is so popular,

all the menu items that are produced are consumed by its customers. One serving item of SV requires

0.5 kg of corn and 0.3 kg of tomatoes; one serving item of VS requires 0.6 kg of beans, 0.2 kg of corn,

and 0.3 kg of tomatoes; and one serving item of VP requires 0.3 kg of beans, 0.3 kg of corn, and

0.4 kg of tomatoes. Based on past experience, the owner of the restaurant has asked his team to

produce at least 50 serving items per week of VP and has requested that the total serving number of

VS should be not less than half of the total serving numbers of the two other items.

The owner of the restaurant is seeking to develop a profit-maximizing production plan, which

can be obviously done via LP. The formulation and solution of the problem are presented below.

Start with a definition of the activities and constraints:

1. Activities (xj’s) and their associated income coefficients (cj’s):

a. To grow 1 kg of beans, c1ZK$1.5/kg.

b. To grow 1 kg of corn, c2ZK$1.1/kg.

c. To grow 1 kg of tomatoes, c3ZK$2.0/kg.

d. To produce one serving item of SV, c4Z 7:75|ffl{zffl}
menue price

K2:5x0:1|fflfflffl{zfflfflffl}
labor costs

Z$7:5=item.
q

e. To produce one serving item of VS, c5Z 5:5|{z}
menue price

K2:5x0:2|fflfflffl{zfflfflffl}
labor costs

Z$5:0=item.
f. To produce one serving item of VP, c6Z 9:25|ffl{zffl}
menue price

K2:5x0:1|fflfflffl{zfflfflffl}
labor costs

Z$9:0=item.

The level of x1, x2, and x3, is measured in kilograms and the level of each of the last three

x4, x5, and x6, is measured in the relevant number of serving items.
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The objective function of the LP problem is:

Max|ffl{zffl}
�
X

ðF ZK1:5x1K1:1x2K2x3 C7:5x4 C5x5 C9x6Þ:

2. Constraints:

a. Land constraint: 1x1C1x2 C2x3%750 m2

b. Labor constraint: 0:7x1 C1x2C1:1x3C0:1x4C0:2x5C0:1x6%600 h

c. Water constraint: 1x1 C0:5x2C0:4x3%400 m3

d. Beans: supply and demand:

1x1|{z}
supply ðkgÞ

R0x4 C0:6x5 C0:3x6|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
demand ðkgÞ

0K1x1 C0x4 C0:6x5 C0:3x6%0

e. Corn: supply and demand:

1x2|{z}
supply ðkgÞ

R0:5x4 C0:2x5 C0:3x6|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
demand ðkgÞ

0K1x2 C0:5x4 C0:2x5 C0:3x6%0;

f. Tomatoes: supply and demand:

1x3|{z}
supply ðkgÞ

R0:3x4 C0:3x5 C0:4x6|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
demand ðkgÞ

0K1x3 C0:3x4 C0:3x5 C0:4x6%0;

g. Requested ratio between VS and the two other items:

x5R0:5ðx4 Cx6Þ01x5K0:5x4K0:5x6R0;

h. Minimum SV: 1x4 R50 serving items

i. Non-negativity constraints: xjR0; jZ1;.;6

The problem was solved via the Excel Solver and the results are summarized in Table 18.4 and

Table 18.5.

The optimal value of the objective function, F*Z$3275/week.

Note that W�Z
P8

iZ1

libiZ750ð2:767ÞC600ð2:00ÞZ$3275=weekðZF�Þ:

The optimal solution of the water quota is 52.23 m3, constraints 3 and 8 are not utilized, and the

optimal level of SV (175.16 serving items) exceeds the minimum level required (50) by 125.16

serving items. Thus, the shadow prices of these two constraints are equal to zero. An additional

1 m2 of land will increase the restaurant’s net profit (i.e., the value of the objective function) by l1Z
$2.767, and an additional work-hour will increase the net profits by l2Z$2.00. Interpreting the

meaning of the shadow prices of constraints 4, 5, and 6 is not trivial, and will be explained via

constraint 4. Because the constraint is binding, it can be written as an equality: K1x1C0x4 C
0:6x5C0:3x6Zb4Z0: Increasing the level of b4 by one unit means that total demand for beans,

0.6x5C0.3x6Z176.75 kg, can be supplied by only 176.75K1Z175.75 kg of beans grown in the

restaurant’s garden plot. Thus, the shadow price l4Z$5.667/kg is the change in the value of
Table 18.4 Optimal Solution for the Restaurant Problem: Activities

x1 (kg) x2 (kg) x3 (kg) x4 (Serving Items) x5 (Serving Items) x6 (Serving Items)

Optimal value 176.75 187.90 192.68 175.16 191.08 207.01

Reduced costs 0 0 0 0 0 0
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Table 18.5 Optimal Solution for the Restaurant Problem: Constraints

Constraint / “1” (Land; m2)
“2” (Labor;

Hours) “3” (Water; m3)
“4” (Beans’

Balance; m2)
“5” (Corn’s

Balance; m2)
“6” (Tomatoes’
Balance; m2)

“7” (VS Relative
to FVDVP)

“8” (Minimum
FV; m2)

Constraint

constant (bi)

750 600 400 0 0 0 0 50

Surplus/slack 0 0 52.23 0 0 0 0 125.16

Shadow price (li) 2.767 2.000 0.000 5.667 5.867 9.733 K2.893 0.000

L
IN

E
A

R
P

R
O

G
R

A
M

M
IN

G
5
8
3

q 2006 by Taylor & Francis Group, LLC



HANDBOOK OF FOOD AND BIOPROCESS MODELING TECHNIQUES584
the objective function (i.e., the restaurant’s net benefit) in response to an addition of 1 kg of beans to

the total quantity produced in the garden plot. Similarly, the shadow prices l5 and l6 represent the

contributions to net profits by an additional kilogram of corn and tomatoes, respectively. Constraint

7 is a minimum binding constraint and its negative shadow price (measured in $/kg) can be

interpreted as the net profit that can be gained if the constraint is relaxed by one unit (i.e., if

when 0.5(x4Cx6)Z191.08 kg the restaurant will be “forced” to produce only 190.08 kg of VS,

i.e., x5 will be equal to 190.08 rather than 191.08).

This example is completed by assuming that the restaurant’s owner can rent up to 50 m2 of

additional land from his neighbor at a weekly rate of $2 per 1 m2. He can also hire up to 30

work-hours from a remote city at the relatively high cost (including transportation costs) of $5.5

per work-hour. Because the shadow prices of land and labor are positive, the owner should

examine the profitability of the two alternatives by introducing them into the LP problem and

solving it again. This can be accomplished by adding to the above problem (1) two additional

activities, namely x7, the number of m2 rented from his neighbor and x8, the number of work-

hours hired from the remote city; and (2) two additional constraints, i.e., 1x7%b9Z50 and

1x8%b10Z30. The income coefficients of (the new) activities 7 and 8 are c7ZK$2/m2 and

c8ZK$3/work hour, respectively. Recall that 1 work-hour of the current team of employees

costs the restaurant owner $2.5. This cost was already taken into account in the calculation of the

income coefficient c1–c7. To avoid counting it twice, $2.5 is deducted from the cost of hiring new

work-hours to get c8ZK(5.5K2.5)ZK$3. The extended LP problem can be formulated as:

Max|ffl{zffl}
�
X

fF ZK1:5x1K1:1x2 K2x3 C7:5x4 C5x5 C9x6K2x7K3x8g

Subject to :

1x1 C1x2 C2x3K1x7%750 m2 ð1Þ

0:7x1 C1x2 C1:1x3 C0:1x4 C0:2x5 C0:1x6K1x8%600 hours; ð2Þ

1x1 C0:5x2 C0:4x3%400 m3 ð3Þ

K1x1 C0x4 C0:6x5 C0:3x6%0 ð4Þ

K1x2 C0:5x4 C0:2x5 C0:3x6 %0 ð5Þ

K1x3 C0:3x4 C0:3x5 C0:4x%0 ð6Þ

1x5K0:5x4K0:5x6R0 ð7Þ

1x4 R50 serving items ð8Þ

1x7 %50 ð9Þ

1x8%30 ð10Þ

xj R0; j Z 1;.; 8:

The results are summarized in Table 18.6 and Table 18.7.

It follows that hiring additional expensive work-hours is not profitable (x8Z0). On the other

hand, the restaurant’s owner can increase his total net profits by renting an additionalw18 m2

of land (x7Z18.14). In this case, the value of the objective function will increase by $14/week

(Z3289K3275).
Table 18.6 Optimal Solution for the Extended Restaurant Problem: Activities

x1 (kg) x2 (kg) x3 (kg) x4 (Items) x5 (Items) x6 (Items) x7 (m2) x8 (Work-Hours)

Optimal value 208.75 159.17 200.11 50.00 186.46 322.92 18.14 0.00

Reduced costs 0 0 0 0 0 0 0 0.092

The optimal value of the objective function F *Z$3289/week.
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Table 18.7 Optimal Solution for the Extended Restaurant Problem: Constraints

Constraint / “1” “2” “3” “4” “5” “6” “7” “8” “9” “10”

Constraint

constant (bi)

750 600 400 0 0 0 0 50 50 30

Surplus/slack 0 0 31.62 0 0 0 0 0 31.8 30.0

Shadow price (li) 2.0 2.99 0 5.59 6.09 9.29 K2.96 K0.11 0 0
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18.5 SOFTWARE

18.5.1 Computer Programs

There is an impressive amount of LP software currently available. A relatively recent

OR/MS Today survey listed 44 different programs.26 Because this topic is extremely active

and companies are often merging, acquired, or cease to operate, the reader is strongly encour-

aged to consult the aforementioned survey that also includes a full description of the

interfaces, platforms supported, maximum number of constraints, pricing information, algo-

rithms, problem types, vendors, etc.

Another excellent resource is the Optimization Technology Center at Northwestern University and

Argonne National Laboratory (http://www-fp.mcs.anl.gov/otc/Guide/SoftwareGuide/Categories/line-

arprog.html),that provides detailed information on available LP software and the unique features of

each. The reader is encouraged to check their “Linear Programming Frequently Asked Questions”

section, which furnishes explanations and makes specific recommendations (http://www-unix.mcs.anl.

gov/otc/Guide/faq/linear-programming-faq.html#online_services). Typically utilized user-friendly

software includes: LINDO (http://www.lindo.com) and Economics QM for Windows. QM for

Windows is user-friendly Windows software available for quantitative methods, management

science, and operations research. It features separate modules covering a spectrum of topics

including integer programming, LP, mixed-integer programming, and others.

When teaching an introduction to optimization methods (including LP), GAMS (http://www.

gams.com) or AMPL (http://www.ampl.com) are useful packages for the student. Moreover, free

student versions (plus manuals) can be downloaded from their respective websites. In (and even

outside of) operations research GAMS and AMPL are rapidly becoming the acceptable “standards”

for the formulation of LP as well as NLP (nonlinear programming, which covers a very wide

spectrum of cases) problems. In addition, there are several “web-based optimization solver” sites

on the Internet where students and/or other practitioners can submit and solve LP and NLP

problems. These usually accept AMPL and/or GAMS formats. The advantage of these sites is

that students do not even need to install any software: they just need a PC with Internet access and a

browser. These sites are also interesting because they include a library of examples that can also be

useful for students.

To provide some idea of the relative performance of LP codes, a collection of benchmark results

for optimization software was compiled (http://plato.la.asu.edu/bench.html). It includes tests of

numerous simplex and interior-point codes for LP as well as branch-and-bound codes for linear

integer programming; both commercial packages and downloadable, free implementations

are included.
18.5.2 Product Development

New product development is a complex and time-consuming task that involves a plethora of

activities and resources. Even after most decisions have been made as to the adequate concept,
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and with respect to consumer benefits, quality, sensory evaluation, etc., one of the more salient tasks

when developing a new formulation is determining how to reduce costs to meet market pressure and

economic constraints. Although there is a great variety of product-development software avail-

able,27 this topic is not discussed here. However, to provide the reader with a short introduction to

this important topic, several typical examples are listed. It is worth noting that the authors have no

personal experience with these products and the information is based on available documentation

found on the Internet and/or private communication with the developers.
18.5.2.1 ProductVisione

ProductVision eliminates the need for multiple systems (spreadsheets, databases, additional

software packages) to maintain product recipe, nutritional, specification, and costing information.

ProductVision gives the user a single source of information. With ProductVision, there is

one database that holds all of the information concerning resources and formulas, and that same

integrated system handles the automatic calculation of product properties, costs, nutrition “Facts”

labels and ingredient statements (http://www.asdsoftware.com).
18.5.2.2 TechWizarde

TechWizard (The Owl Software, http://www.owlsoft.com) utilizes LP and is referred to as

goal-oriented formulation.28 One typical example of this software’s application is least-cost formu-

lation. The software unitizes current ingredient prices that are either entered into or retrieved from

the ingredient database. The formula specifications are listed, including the goals for this formu-

lation such as fat, total solids, sweetness, etc. LP and a combinatorial optimization algorithm are

implemented to determine the best blend of ingredients for the various goals. The software is

frequently utilized in food applications (L. G. Phillips, personal communication, 2004) such as

formulating ice creams for mouthfeel and taste.28
18.5.2.3 DevEXw

In addition to many facets of product development, this software also includes formula-optimi-

zation tools (http://www.selerant.com).
18.6 CONCLUDING REMARKS

This chapter provides the rationale, fundamental aspects, and general principles underlying the

utilization and application of LP. As indicated, LP offers a simple yet very effective algorithm for

formulating and solving management problems. Although most food-processing applications

related to engineering and kinetics are nonlinear in nature, LP provides a leading tool for formu-

lation and cost reduction. LP furnishes a very economical and straightforward method that allows

better utilization of resources, improving productivity and overall profitability. The formulation of

an LP problem is not complicated and it enables a fast and efficient way of searching for an

optimal solution. Overcoming the problem of nonlinear food systems is a topic that requires

special attention and expertise. Nevertheless, LP is extremely versatile and should be considered

due to its many potential benefits. The large variety of readily available software, as well as the

possibility of using LP on Excel, which exists on most PCs, makes this tool paramount for product

development, especially for improving and meeting nutritional requirements, as well as

maximizing profitability.
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18.A APPENDIX

18.A.1 Introduction

To use Excel to solve LP problems, the Solver add-in must be included. Typically, this feature is

not installed by default when Excel is first set up on your hard disk. To add this facility to the Tools

menu, you need to carry out the following steps (once only):

1. Select the menu option ToolsjAdd_Ins

2. From the dialogue box presented, check the box for Solver Add-In.

3. Click OK. You can now access the Solver option from the new ToolsjSolver menu option.

To illustrate Excel Solver, a recent publication11 was chosen both for its simplicity and because it

can be implemented for numerous nutritional applications. Those who have used Excel previously

can ignore this introductory example and delve directly into the juice formulation example.
18.A.2 Optimizing a Diet for Children

To utilize LP, the first stage is to create the necessary database outlining the various food

compositions, costs, and other pertinent information in table form (Table 18.A.1): For each food

item (variable), the cost (arbitrary units), energy, protein, calcium and iron are listed. This infor-

mation is widely available through a variety of sources (e.g., USDA National Nutrient Database for

Standard Reference, Release 16; http://www.nal.usda.gov/fnic/cgi-bin/nut_search.pl). Updated

prices can be found in financial resources.

The constraints for the formulation of the children’s diet should take into consideration the

maximum allowed portion size per day. In our case, the maximum daily intake for lentil and liver is

chosen to be 60 g. For maize flour and milk, a high arbitrary figure of 999 g is chosen, indicating

that these are important and unrestricted components in the children’s diet. In other words, while

the constraints of lentils and liver may be binding, those of maize and fresh milk are not.

The goal is to determine the least expensive product combination that will fulfill the nutri-

tional requirements. To formulate the problem as a LP one, let x1, x2, x3, and x4 be the grams of

maize flour, fresh milk, cooked lentils and liver, respectively. The minimization problem is then
Table 18.A.1 Nutritional Composition and Arbitrary Prices

Ingredient
Maximum

Allowed (g) Price ($/kg)
Energy

(kcal/100 g)
Protein

(g/100 g)
Calcium

(mg/100 g) Iron (mg/100 g)

Maize Flour (x1) 999 100 362 8.1 6 3.5

Fresh Milk (x2) 999 150 66 3.2 115 0.1

Lentils (cooked) (x3) 60 200 311 24.5 51 8.8

Liver (x4) 60 300 157 18.1 14 8.5

Source: From Briend, A., Darmon, N., Ferguson, E., and Erhardt, J. G., Journal of Pediatric Gastroenterology and
Nutrition, 36(1), 12–22, 2003.
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given by:

Min

�
X
fC Z 100x1 C150x2 C200x3 C300x4g

Subject to :

Energy : 362x1 C66x2 C311x3 C157x4 Z 746:0 ð1Þ

Protein : 8:1x1 C3:2x2 C24:5x3 C18:1x4 R5:0 ð2Þ

Calcium : 6x1 C115x2 C51x3 C14x4R196:0 ð3Þ

Iron : 3:5x1 C0:1x2 C8:8x3 C8:5x4R11:8 ð4Þ

Weight : x1; x2%999; x3; x4%60 ð5Þ

xjR0; j Z 1;.;4:

This information is now transferred into Excel as shown below (Table 18.A.2):

The calculation table includes the basket (x1.x4; $A$12.$A$15) and an initial arbitrary value

of 50 g for each variable ($B$12.$B$15), which apparently does not meet the imposed require-

ments (RHS; $D$21 to $G$21), i.e., at least 746 kcal, 5.0 g of protein, 196.0 mg of calcium and

11.8 mg of iron. The other values ($C$12.$G$15) are derived from the weight of the ingredient

that needs to be optimized ($B$12.$B$15).

Solving this problem requires the following steps:

1. Activate the solver.

2. Set the target cell (objective function, in this case minimum cost) to $C$18.

3. Set the cells that can be changed (variables x1. x4; $B$12.$B$15).

4. Set the constraints (Table 18.A.3):

a. The weight of the ingredients to be less than or equal to the total weight allowed for the

nutritional consideration ($B$12.$B$15%$B$4.$B$7)

b. The amount of energy the formulation provides; this is a binding constraint

($D$18Z$D$21)
Table 18.A.2 Optimizing A Nutritional Children’s Formulation Using Excel

Database

Max (g) Price ($) Energy (kcal) Protein (g) Calcium (mg) Iron (mg)

Maize flour (x1) 999 100 362 8.1 6 3.5

Fresh milk (x2) 999 150 66 3.2 115 0.1

Lentils (cooked) (x3) 60 200 311 24.5 51 8.8

Liver (x4) 60 300 157 18.1 14 8.5

Calculation

Basket (g) Price ($) Energy (kcal) Protein (g) Calcium (mg) Iron (mg)

Maize flour (x1) 50.0 5.0 181.0 4.1 3.0 1.8

Fresh milk (x2) 50.0 7.5 33.0 1.6 57.5 0.1

Lentils (cooked) (x3) 50.0 10.0 155.5 12.3 25.5 4.4

Liver (x4) 50.0 15.0 78.5 9.1 7.0 4.3

Price ($) Energy (kcal) Protein (g) Calcium (mg) Iron (mg)

Total 37.5 448.0 27.0 93.0 10.5

Requirements (RHS) 746.0 5.0 196.0 11.8

Source: Briend, A., Darmon, N., Ferguson, E., Erhardt, J. G., Journal of Pediatric Gastroenterology and Nutrition,
36(1), 12–22, 2003.
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q

c. The concentrations of protein, calcium and iron to be equal to or higher than those

recommended ($E$18.$G$18R$E$21.$G$21)

5. The following Solver options are chosen: linear model, non-negative values of the vari-

ables, and automatic scaling.
ble 18.A.3 Solver Parameters
The tolerance option is only required for integer programs (IP): it allows the solver to use “near-

integer” values, within the tolerance you specify, and this helps speed up the IP calculations.

Checking the show iteration results box allows you to see each step of the calculation, but this

may be prohibitive if the problem is complex. Automatic scaling is useful if there is a large

difference in magnitude between the variables and the objective value. The bottom three

options—estimates, derivatives, and search—affect the way the solver approaches finding a

basic feasible solution, how the solver finds partial differentials of the objective and constraints,

and how the solver decides which way to search for the next iteration. Essentially, the options affect

how the solver uses memory and the number of calculations it makes. For most LP problems, they

are best left as the default values. It is good practice to check the “Assume Linear Model” box,

unless, of course, the model is not linear. This will ensure the correct result and quite importantly,

provide the relevant sensitivity report.

The solution, listed in Table 18.A.4, shows a least-cost formulation of $51.9. It also shows that

the binding-energy constraint has indeed been met. It demonstrates that both calcium and iron are

also binding constraints, whereas protein is not, and the formulation provides almost six-fold more

protein than required. An attempt to enforce a binding constraint on protein concentration will lead

to a nonfeasible solution.
ble 18.A.4 Optimal Solution

ptimal Solution

Basket (g) Price ($) Energy (kcal) Protein (g) Calcium (mg) Iron (mg)

aize flour (x1) 118.6 11.9 429.4 9.6 7.1 4.2

esh milk (x2) 134.4 20.2 88.7 4.3 154.6 0.1

ntils (cooked) (x3) 60.0 12.0 186.6 14.7 30.6 5.3

er (x4) 26.3 7.9 41.3 4.8 3.7 2.2

Price ($) Energy (kcal) Protein (g) Calcium (mg) Iron (mg)

tal 51.9 746.0 33.4 196.0 11.8

quirements (RHS) 746.0 5.0 196.0 11.8
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Table 18.A.5 Excel Report

Cell Name Original Value Final Value

Target Cell (min)

$C$20 Total Price ($) — 51.9

Adjustable Cells

$B$14 Maize flour (x1) (g) 50 118.6

$B$15 Fresh milk (x2) (g) 50 134.4

$B$16 Lentils (cooked) (x3) (g) 50 60.0

$B$17 Liver (x4) (g) 50 26.3

Cell Name Cell Value Formula Status Slack

Constraints

$E$20 Total Protein (g) 33.4 $E$20OZ$E$23 Not binding 28.4

$F$20 Total Calcium (mg) 196.0 $F$20OZ$F$23 Binding 0.0

$G$20 Total Iron (mg) 11.8 $G$20OZ$G$23 Binding 0.0

$D$20 Total Energy (kcal) 746.0 $D$20Z$D$23 Not binding 0.0

$B$14 Maize flour (x1) (g) 118.6 $B$14!Z$B$5 Not Binding 880.4

$B$15 Fresh milk (x2) (g) 134.4 $B$15!Z$B$6 Not binding 864.6

$B$16 Lentils (cooked) (x3) (g) 60.0 $B$16!Z$B$7 Binding 0.0

$B$17 Liver (x4) (g) 26.3 $B$17!Z$B$8 Not binding 33.7
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Excel also provides a table that summarizes the solutions and highlights the binding constraints

(Table 18.A.5). This report provides information on shadow values, reduced costs and the upper

and lower limits for the decision variables and constraints.
GLOSSARY

Activities The decision variables of an LP problem. One unit of a specific activity is fully
q 2006 by T
characterized by its associated income coefficient and a series of coefficients expressing

the number of units from each constraint required for the operation of (one unit of) the

activity. Activities that are strictly positive in the optimal solution are called basic activi-

ties (or basic variables). Activities that are equal to zero in the optimal solution are

termed nonbasic.
Algorithm A complete procedure or method describing the steps to be taken for the solution of
a problem.
Constraint A linear relationship between the decision variables defining the structure of the LP
problem. It can either be an equation or an inequality. Those that are satisfied with equality

sign are called binding (or effective) constraints. Those that are satisfied with inequality

sign are termed nonbinding (or noneffective) constraints.
Dual price (or shadow price) A variable associated with a constraint in the LP problem. In a
maximum LP problem the dual price of a binding maximum constraint (%) is positive

while the dual price of a binding minimum constraint (R) is negative. The shadow price of

a nonbinding constraint (whether it is a maximum or minimum constraint) is equal to zero.
Feasible solution A solution for LP problem that satisfies all the linear constraints of the problem,
including the non-negativity constraints of the activities.
Graphical solution approach A simple way to solve a LP problem with only two activities.

Infeasible solution A set of values for the variables of a given LP problem that violates one (or
more) constraint(s).
Linear programming (LP) An optimization problem that involves maximizing or minimizing of
a linear objective function that includes several non-negative decision variables, the choice
aylor & Francis Group, LLC
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of which is subject to a set of linear constraints. LP is the simplest and most widely used

form of MP. The LP problem is termed as a maximizing, (minimizing), problem if the

objective function is to be maximized, (minimized). Several typical applications of LP in

the food domain include processing, canning operations, livestock nutrition, design of a

nutritionally adequate diet at the lowest cost, evaluating the economic value of the fortified

product, formulation, etc.
LP software A vast number of LP software is currently available. Typically utilized user-friendly
software includes: LINDO and Economics QM for Windows. GAMS, AMPL and Excel

are useful packages for students.
Mathematical programming (MP) Relates to the use of mathematical models for solving
optimization problems. A typical MP model involves the selection of values for a

limited number of decision variables, focusing attention on a single objective function

to be maximized (or minimized, depending on the context of the problem), subject to a

finite set of constraints that limit the selection of the decision variables.
Opportunity cost An economic criterion for the alternative costs associated with an activity in
the LP problem. It is the sacrifice of producing one additional unit of the activity, resulting

from the fact that alternative production opportunities (i.e., some other activities) must be

forgone in order to satisfy the problem’s constraints. In principal, the sacrifice can be either

positive or negative.
Optimal solution The feasible solution that optimizes (i.e., maximize or minimize) the value of
the LP linear objective function.
Reduced cost Defined as the difference between the opportunity costs and the income coefficient
associated with the activity under consideration. The reduced cost of a basic activity is equal to

zero while the reduced cost of a nonbasic activity is positive and, assuming a maximizing LP

problem, represents a reduction in the optimal value of the objective function if the operation

of one unit of a nonbasic activity is to be forced upon the optimal solution.
Simplex method The principal and very successful algorithm for solving LP problems; invented
primarily by G. B. Dantzig in 1947.
Unbounded solution A feasible solution of an LP problem associated with an unbounded value
of the objective function.
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