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Introduction to the English Edition

‘Fifty Shades of Grey Matter’ was, for the sake of witticism, my first choice of 
title for the English version of this book. It would have been probably better for 
the press coverage, but it would also have necessitated a twist to the original 
‘take- home message’. I was considering insisting on the dynamic properties of 
the brain as a driver of the decision- making process, and how each decision 
consists of switching from one brain state to the other. Each ‘shade’ would have 
corresponded to a brain state and I would have emphasized how aberrant some 
of those states could be. Unfortunately, even though this argument would have 
fitted perfectly with the title, I quickly realized that this new orientation was 
artificial and did not provide a faithful enough rendition of the French version 
of my essay. So, in lieu of my tentative attempts to be appealing to wide press 
coverage, I switched to the more straightforward title, ‘How the Brain Makes 
Decisions’.

There are many good books about decision- making that have been pub-
lished up to now, so why create a new one? The answer to this lies indeed in 
the title. This book is the first attempt to tackle the neurobiology of decision- 
making from a ‘bottom- up’ perspective. I invite the reader on a journey into 
time, in order to understand from what neural substrate the decision- making 
structure evolved in vertebrates and how much it impacts on the way we per-
form decision- making. Therefore, we start from the neural matter and try to 
understand how decision- making emerged from the physicochemical inter-
actions between its components. This approach is innovative when compared 
to the traditional view of experimental psychology in which a theoretical prin-
ciple is enforced into a neural structure using a ‘top- down’ epistemology.

The French edition was published in 2015 and received honourable press 
coverage. The distribution and feedback from readers and colleagues allowed 
me to think that this venture was worthwhile. The text was then re- published 
in a pocket version. This English edition has allowed me to update my orig-
inal theory (some predictions I made then have been confirmed since) and 
correct some errors and approximations (some of which were highlighted by 
scrupulous readers). I have also updated the historical background (the reader 
will understand soon that my interest in science is balanced by my interest in 
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viii Introduction to the English Edition

history). I rewrote entirely (instead of translating) several chapters, especially 
the chapters covering pathophysiology, which were too naïve. The revised 
chapters may still be perceived as naïve perhaps, but I endorse them, and that 
is not the case anymore for some of my former hypothesis. I have also added 
a new full chapter about free will. This resulted from discussions, debates and 
round tables I have participated in since the publication of the original text. 
These opportunities allowed me to refine my ideas and feel confident to believe 
that I may have something insightful enough to write about it. Finally, I re-
structured the book slightly and moved a chapter that was central in the French 
version into an appendix in the English edition, in order to make the reading 
easier. In its place I recall the main principle of neural dynamics it relies on. 
I think this amend is sufficient to understand the main ‘take- home message’, 
but I invite any reader who wants to go deeper to have a look at the appendix.



Introduction to the French Edition

Agathe Tyche1

With all due respect to devotees of André Malraux,2 the twenty- first century 
will be remembered as one of decision- making, and for its new heroes, policy- 
makers! We are forced to notice that we have totally forgotten that this was not 
always the case. The concept of decision- making is a Western obsession and 
one that finally emerged quite late in history. We only have to look to the an-
cient epics to realize this.3 Let’s take a quick wander through the ‘biographies’ 
of Gilgamesh, the heroes of the Mahabharata, or those depicted by Homer:4 
isn’t it striking how much they do not seem to act according to their own will, 
but are guided by external forces?

Even after the emergence of the concept of reason among the Greek philo-
sophers, literature is not immediately permeated by the ancient equivalent of 
our executive managers. Whether historical figures reported in the annals or 
fictional characters, they appear to be just as much the play- things of destiny 
as their pre- Socratic ancestors were. Even if, in his autobiographies, Caesar 
seems animated by a genuine free will, his famous ‘Alea iacta est’, quoted by 
Suetonius, actually reveals his belief in Fate, just as Demosthenes had en-
graved his motto on his shield to be placed under the protection of Fortuna. 
Although imbued with the teachings of philosophers, these political leaders, 
like most of their contemporaries, were convinced that a higher power was 
watching over their destiny and dictated their actions. However, this didn’t 

 1 ‘To Good Fortune!’ This was the motto of Demosthenes, an Athenian political leader of the fourth 
century BC. He fought his whole life against the Macedonian expansionism of Philip II, Alexander the 
Great, and Antipater.
 2 The famous French writer and politician of the twentieth century. He is attributed as saying: ‘The 
twenty- first century will be religious or will not be’. . . I wrote this paragraph in 2013; in light of recent 
events, he was maybe right, indeed . . . 
 3 I voluntary exclude mythological or hagiographical texts that are ontologically disqualified because 
of their cosmogonic nature.
 4 This list is non- exhaustive. I limited myself to the best known in the Western world. Another in-
teresting example is the one of the Icelandic Sagas. Although, they have been transcript by Christian 
scholars around the 12th century BC, they refer to ancient myths in which the protagonists are manipu-
lated by the Fate, the central driving force of the Germanic mythology to which even the Gods could not 
escape.
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specifically bring them luck: Caesar fell at the hands of the conspirators of 
the Ides of March, and Demosthenes was forced to take poison. At this time, 
decision- making capacity was also not the main criteria of popularity for 
leaders. According to Diodorus of Sicily, for example, the popularity of Gallic 
kings depended on the harvest. If this was very poor, the king was removed 
and another was elected.5

Christianism did not change this belief. The gallant gesture of the heroes of 
medieval chronicles simply substituted Faith for Fortuna.6

The notion of free will emerges from religious disputes of the Middle Ages, 
but the heroes of literature have to wait for the reinterpretation of ancient 
sources through the prism of Christianity by Humanism in order to finally 
take their destiny in hand. This will result in a new figure immortalized by 
Shakespeare:7 the dilemma that strikes those characters condemned to choose 
between their duty and their emotions.

Following this, decision- making and the motivations that underlie it are in-
creasingly at the heart of the concerns of Western civilization. This is the phi-
losophy of the Enlightenment and its aspiration to universality that will mostly 
contribute to its spread. It is true that the establishment of democratic regimes 
presupposes that citizens are rational individuals. Therefore, a value scale be-
tween the rational individual (homo occidentalis) and the rest of humanity 
(including women) must be established also. Fortunately, decolonization and 
feminist movements eventually levelled things and rationality was granted 
in conjunction with the right to vote for former colonized peoples (who have 
adopted more or less democratic regimes of their own) and women.

In the twentieth century, choice and commitment, its ideological avatar, re-
placed fate or faith as principal drives. From initial choice depends the future 
of the individual in society. For example, French political life still echoes the 
distant opposition between those who chose collaboration with the occupier 
and those who chose resistance. Nowadays, the modern hero is the Decision- 
Maker, the executive manager, the one who makes decisions, whatever they 

 5 I have to report something tedious here; I have re- read Diodorus since and have been unable to find 
this quotation. I am certain I read it somewhere, but I can’t remember where and why my memory at-
tributed it to Diodorus. Jean- Louis Brunneau, a French expert in Celtic mythology, cannot either. This 
given, when we see how much the popularity of modern state leaders depends on the fluctuation of the 
market on which they have basically no influence, we can ask ourselves whether, behind our supposed 
rationalism, our deep beliefs are really so far from those of our ancestors?
 6 It is probably one of the factors of the success of the cult of the Virgin that it shares some similarities 
with Fortuna.
 7 In the French edition I mention Corneille, who wrote his plays about half a century later than the 
genius of Stratford- Upon- Avon. This was to highlight that in French, ‘un dilemme cornélien’ became a 
common phrase.
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are. We are imbued with a true mystic of choice. This implies that our decisions 
should be perfectly rational and reasoned,8 but nothing is less certain.

My decision to write this book is an excellent illustration. When I took this 
on, it seemed like a rational idea. It seemed wise to share the knowledge I had 
gained in the various fields that address the subject and offer my perspective on 
the neurobiological basis of the selection process.

Then, when the time came to start writing, discouraged by the magnitude of 
the task, I was less convinced. First of all, my knowledge was not as complete as 
I had envisaged myself. I had also accumulated a lot of misconceptions. I was 
hoping it would be easy, I would have plenty of time to devote to the writing, 
and that I would take pleasure from it. The first two predictions proved wrong. 
I’m definitely a slow writer and I had to make many sacrifices in order to give 
myself enough time. In particular, I spent less time with my family and par-
ticipating in sports activities, while significantly increasing my consumption 
of tobacco and coffee, which could have an impact on my health. I also wrote 
fewer research projects and that has significantly reduced funding for my team. 
In contrast, I’ve actually enjoyed the process, despite the difficulties and on-
going rewriting. Nevertheless, in making this decision, there have been some 
negative consequences, and context suggests that the rational decision was 
to decide not to write this book. However, now that the task is accomplished, 
I have updated my knowledge and I hope I have corrected at least some of my 
misconception. It is unclear if the benefit justifies the cost, but that is up to the 
reader to decide.9

Bordeaux, 25 October 2013– Biarritz, 28 September 2014   
(for the French edition)

 8 It is even more predominant in France, the motherland of Cartesian rationality!
 9 The feedback received for the French edition, it transpires that the cost/ benefit ratio is in fact 
positive!
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1
Twenty- Five Centuries of Debate

A Short History of Decision- Making

It takes five seconds to decide if you wanna be a problem or if you wanna 
be a solution.1

Introduction

In controlled conditions, it takes only a few tenths of a millisecond to make 
a decision, but scholars have asked themselves the question of what the un-
derlying process involves since the invention of philosophy, in one of the nu-
merous Greek cities of the eastern coast of Turkey, about 2,700 years ago.

The Beginnings: From Reason to Free Will

The rational discourse, logos (verb) in Greek, preoccupies classical Greek 
philosophers from Thales to Aristotle and their disciples. It seems that 
Aristotle was the first to formalize the relationship between decision and logos 
in Nicomachean Ethics. But with the Aristotelian, the concept of logos doesn’t 
dissociate the will driving the reasoning and rationality as we understand it. It 
is a Latin term (ratio) that will specifically define the faculty of the mind that 
allows us to fix criteria of truth based on quantification. Between the third cen-
tury BC and the third century AD, Stoics, who profess that reason must prevail 
over any other consideration, and Epicureans, defenders of a theory centred 
on welfare, were opposed in a dialectic that would be summarized in the sev-
enteenth century by Blaise Pascal with its formula: ‘the heart has its reasons 
that reason does not know’. With the advent of Christianism, the debate then 

 1 Brother JC Crawford introducing the MC5 before their mythical concert at Detroit in October 
1968. In: Kick out the Jams by the MC5 (1969).
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focused around free will after its conceptualization by Augustine of Hippo. 
Doctors of the church first, then scholastics (Abelard, Buridan, etc.) them-
selves opposed for centuries using theses, encyclicals, and excommunications 
as weapons to decide if man is granted with free will and if his actions are pre-
determined or not. The discussion would be revisited less virulently by human-
ists (Erasmus, More, Montaigne, etc.) and would ultimately provide ground 
to the Reformation: between the many griefs that Luther and Calvin carried 
against the Catholic church, there is the incapacity of its hierarchy to acknowl-
edge that only God saves and free will is an illusion!

Too Much Philosophy Kills Reason

The debate would not come back into the secular domain before the seven-
teenth century AD, remaining however under the close supervision of the 
church, which was always ready to excommunicate those who went a thesis 
too far. In a context where questioning too deeply the central position of man 
in the creation could bring you to the stake, Descartes buttered up censorship 
with his famous ‘cogito ergo sum’.2 It defines man through self- awareness and 
creates the dichotomy between man, the only true thinking being, and the rest 
of the animal world. It influenced the Western world’s philosophy to such an 
extent that Cartesian dualism is still prevalent today. Proponents of the theory 
of mind concede self- awareness to all animal species able to recognize them-
selves in a mirror (which includes apes,3 orcas, elephants, and magpies),4 but 
many are those who violently oppose and deny the existence of non- conscious 
decisions. Amazingly, fundamentalists of Cartesian dualism are recruited from 
within scientists, Lacanian psychoanalysts or religious extremists of any obedi-
ence. From this point, philosophers slowly turned away from the debate of free 
will and reason itself to focus rather on the ethics of action, like Spinoza, or the 
application fields of rationality (Kant).

Blaise Pascal, who was both a philosopher and a mathematician, and who 
lived at the same time as Descartes, not only summarized the old debate be-
tween Epicureanism and Stoicism but also drove the issue of reason out of 
the muddy field of speculation to enter the rigorous world of mathematical 
formalism. His famous wager on the existence of God introduced the use of 

 2 Translation: ‘I think therefore I am’.
 3 This category includes bonobos, chimpanzees, gorillas, orangutans, and gibbons.
 4 In humans, self- awareness appears between 6 and 12 months (Wallon, 1934).
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probabilities to make a decision in a context of uncertainty. For Pascal, it could 
be solved as follows: If I bet that God exists, at best (if He exists), I gain eternal 
life; at worst (if He doesn’t exist), I lose the pleasures of earthly life, which Pascal 
considered negligible. If I choose not to believe in God, my maximum loss is 
eternal damnation. So, for Pascal, to believe in God minimizes losses, therefore 
it is the only reasonable option. This wager5 is the origin of the mathematical 
formulation of the problem of decision- making, regardless of its theological 
implications. Pascal speaks for himself only concerning the values he attributes 
to eternal life as compared to the pleasures of earthly life! In the mid- twentieth 
century BC, von Neumann formalized this approach with the minimax the-
orem to determine, in a two- dimensional matrix of losses and gains, what is 
the least costly solution for decision- making in uncertain conditions. It is rare, 
however, for the issue to be as dramatic as when one plays his soul against God!

The Day Economics Replaced Philosophy

The formalistic approach inspired the Swiss mathematicians, who, pragmat-
ically, were more concerned with economic risk than the salvation of their 
souls. The most famous of these was the Bernoulli6 family including Daniel,7 
a descendant of the second generation, who introduced the concept of utility,8 
a mathematical function of the value attributed to property by a subject that 
varies depending on the risk associated with obtaining it (see Figure 1.1). It 
provided a tool to quantify the notion of subjectivity of needs at the core of 
Market theory. Economics emerged from the Enlightenment era with the 
systematization of these principles by Adam Smith.9 The Scotsman categor-
ized the key parameters that influence the subjective feeling of needs and thus 
constrain the behaviour of choice and aggregation of individual behaviour 

 5 The original formulation is as follows: You have two things to lose, the true and the good; and two 
things at stake, your reason and your will, your knowledge and your happiness; and your nature has two 
things to shun, error and misery. Your reason is no more shocked in choosing one rather than the other, 
since you must of necessity choose. This is one point settled. But your happiness? Let us weigh the gain 
and the loss in wagering that God exists. Let us estimate these two possibilities. If you gain, you gain all; 
if you lose, you lose nothing. Wager, then, without hesitation that He exists (Pascal, translated from the 
French edition).
 6 A family of Swiss scholars and artists who produced several mathematicians over two generations 
between the seventeenth and early eighteenth century AD, whose work has had numerous applications 
in physics and economics.
 7 Daniel Bernoulli (1700– 1782) was also an innovator in the field of fluid mechanics.
 8 Readers could refer to the glossary at the end of this book.
 9 Adam Smith (1723– 1790), is considered as the father of modern economics with his book entitled 
An Inquiry into the Nature and Causes of the Wealth of Nations volume I (1776). He died before writing 
volume II.
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in economic activity. From this time, the question of the formalization of the 
principles of decision- making never left this field and is still at the heart of the 
concerns of several schools of economists.

Amongst others, let’s mention quickly the works of Samuelson10 and 
Houthakker,11 who defined the notion of revealed preference that infers the 
tastes of subjects from their choices rather than from what they say. Here is a 
classic example: If we ask a subject to choose between an apple and a banana 
and he chooses the banana, then it infers that he prefers bananas to apples. 
This approach is particularly valuable because the post- hoc justification of a 
choice by a subject is notoriously unreliable;12 overall it also enables us to study 
the preferences of subjects who are unable to justify their choices verbally 
(such as infants and animals). The next step was taken by von Neumann and 
Morgenstern13 who brought both the work on utility and that on revealed pref-
erences together, and developed an axiomatic approach to decision- making 
uncertainty. According to their theory of expected utility, when faced with a 
choice (A, B, or C) of different utility U(A), U(B), or U(C), a rational individual 

Fig. 1.1 Utility function. Given a set of lotteries with a fixed expected value 
(Ē(A) = Probability × Value) but different probabilities (therefore the values are also 
different in inversed ratio). Utility U(A) as defined by Bernoulli is asymptotical to 
Ē(A) when P(A) is high but is far from it when P(A) is low. This function matches well 
with the behaviour of subjects that prefer options with lower expected value but 
are less risky. We call this behaviour, frequently observed, risk aversion.

 10 Samuelson (1938).
 11 Houthakker (1950).
 12 Pareto (1848– 1923) even wrote ‘economy will have a great interest to depend as least as possible of 
psychology’. He referred to the Mentalist school based upon introspection.
 13 von Neumann and Morgenstern (1944).
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must meet four conditions: i) completeness (given two options A or B, a subject 
must prefer A to B, B to A, or have no preference); ii) transitivity (if he prefers 
A to B and B to C then he must prefer A to C); iii) independence (if he prefers 
A to B, then regardless of the lottery C and the probability p between 0 and 1, 
this subject should prefer p.A + (1- p).C to p.B + (1- p).C]; and finally iv) con-
tinuity (if he prefers A to B and B to C, then there must be a probability p be-
tween 0 and 1 for which B = p.A + (1- p).C.

Rats, Pigeons, and Armed Bandits

Under the influence of Positivism in the late nineteenth century, economists 
were joined by psychologists who arrived at the same conclusion on the need 
to study the process of decision- making by emptying it of any mentalist con-
sideration. Thorndike14 raised the principle of reinforcement learning, which 
states that if a behaviour is followed by a reward repeatedly, then they will even-
tually be associated. This opened the way to behaviourism,15 which domin-
ated the field of experimental psychology throughout the twentieth century 
and is still particularly influential. Skinner16 radicalized the concept of associ-
ation between an action and reinforcement by defining operant conditioning. 
To illustrate this concept, the easiest way is to borrow an example from Skinner 
himself: Take a lab rat, put it in a box (now bearing the name of Skinner’s box) 
that includes levers and a food pellet dispenser. If, when the animal presses a 
lever, a food pellet is issued, he will learn to associate his action on the lever 
with the reward, meaning that for the majority of the time he will spend in the 
box, he will run back and forth between the lever and the pellet dispenser. The 
rat’s behaviour will be conditioned by the reinforcement. This method of in-
vestigation would be developed, advanced, and adapted to study the learning 
process in almost all species, from earthworm to human.

An interesting, because it is a more ecological, alternative is to associate 
the action and the reinforcement according to a certain probability. In exper-
imental psychology, we talk about the contingency rule (the term is borrowed 
from statistics). It is close to the principle of the slot machine, which is to op-
erate a lever (or push a button for the newer versions) for a monetary reward.17 

 14 American Psychologist (1874– 1949), precursor of behaviourism.
 15 This neologism was invented by Watson (1878– 1858) in order to label the branch of psychology 
that studies how the environment and the history of a subject influences their behaviour.
 16 Burrhus Frederic Skinner (1904– 1990) was the most radical behaviourist.
 17 In fact, slot machines are a bit more complex: the probability of winning the jackpot depends on the 
number of winning combinations divided by the total number of possible combinations (it is therefore 
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The stronger the contingency, i.e. the more likely the action is to lead to a re-
ward, the faster the learning will be. This experimental paradigm responds to 
the gentle name of the One- Armed Bandit task. This type of protocol enabled 
Rescorla and Wagner to formalize the learning law of a subject from the differ-
ence between the expected result and the actual result.18 This postulate with 
high heuristic value has been very influential in experimental psychology over 
the last 40 years. It is also very similar to the concept of expected utility that we 
encountered in economics, and marks the beginning of a convergence between 
the two disciplines.

A decisive step in the study of decision- making would be reached by a stu-
dent of Skinner, Richard Herrnstein (1930– 1994) who worked with pigeons. 
He developed a variant of the One- Armed Bandit task that became the bench-
mark of the paradigm to study decision- making.

It was called the Two- Armed Bandit task by analogy (see Figure 1.2A).19 
In it, the subject is confronted with two options. Each option has a fixed gain 
(e.g., a seed for birds)20 but different probability of reward ignored by the sub-
ject. The subject is entitled to a number of successive attempts (between tens 
to hundreds depending on the experimental protocols) during which he must 
choose one of two options. To an outside observer, it is possible to infer the ex-
pected utility (Ē) for each option by computing the ratio between the number 
of times the option was awarded and the number of trials performed. The work 
of Herrnstein helped to formalize a concept still widely discussed in the lit-
erature: the balance between exploitation and exploration. A subject exploits 
their environment when they show a marked or exclusive preference for the 
most attractive option. A subject explores when they show no preference for 
one of two options. Herrnstein found that pigeons chose proportionately to the 
contingency rules of the two options he proposed (see Figure 1.2B). It never 
follows the most rational solution which would have been to exploit, i.e. select 
only the best- rewarded option. Surprisingly, this lack of rationality that one 
can expect from pigeons devoid of a proper cortex (but see Chapter 7), is found 

fixed ... in theory). The magnitude of the gain is set by the compensation rate. The latter, which is a min-
imum imposed by law (in France it is 85 per cent) defines the amount of money that must be redistrib-
uted to the customers of the casino over a given time. Therefore, the amount won for a jackpot depends 
on the history of the machine.

 18 Rescorla and Wagner (1972).
 19 The test was used in a wide variety of species, including the pigeon (favoured by Herrnstein), crows, 
coyotes (!), various species of rodents, and primates including apes and humans.
 20 The nature of the reward varies depending on subjects. In animals, it is usually a food reward (solid 
or liquid); in humans it is usually a monetary reward (although food and sex have also been proposed by 
playful experimenters).



Economics Trapped in Contradictions 9

in all species that have been tested with this type of protocol, including apes 
and humans.21

Economics Trapped in Contradictions

This finding is just one example among many of the limitations of rationality. 
Economists have come to the same conclusion as the behaviourists eviden-
cing a number of paradoxes by following a different thread. One of the best 
known is the paradox of Maurice Allais, a French Nobel Prize winner in eco-
nomics,22 highlighted at a conference which brought together the crème de la 
crème of the discipline in 1952. He proposed to his colleagues that they choose 

Fig. 1.2 Two- armed bandit task. (A) The subject has the choice between two 
lotteries A1 and A2 of different but unknown expected value (here Ē(A1)>Ē(A2)). 
The utility (U) of the two lotteries is similar at the beginning, but after each 
trial, the outcome of each choice allows subjects to revaluate U(A1) and U(A2) that 
became asymptotic to Ē(A1) and Ē(A2) respectively. Once expected value has been 
approximated, a rational subject is supposed to choose exclusively the best option 
(A1 here). The problem is that this is seldom the case. (B) Herrstein matching 
law is a blatant demonstration. When this task is proposed to pigeons, their 
probability to choose the best option Pchoix(A1) is proportional to the expected value 
of A1 divided by the sum of all the possible expected values. At variance with what 
we can expect, humans perform as pigeons in this task.

 21 See (non- exhaustively): Herrnstein (1974); Graft et al. (1977); Bradshaw et al. (1979); Matthews 
and Temple (1979); Dougan et al. (1985); Herrnstein et al. (1989); Lau and Glimcher (2005); Morris 
et  al. (2006); Pasquereau et  al. (2007); Lau and Glimcher (2008); Gilbert- Norton et  al. (2009); and 
Palminteri et al. (2009).
 22 In fact, of the exact name is Swedish National Bank’s Prize in Economic Sciences in Memory of 
Alfred Nobel. The prize was established in the late sixties and is highly controversial.
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between lottery A, consisting of a 100 per cent chance to win 10,000 FF,23 
and lottery B, consisting of a 90 per cent chance to win 15,000 FF.24 Although 
the Expected Value of lottery B is greater (Ē (A) = 1 x 10,000 = 10,000 FF; Ē 

(B) = 0.9 x 15,000 = 13,500 FF, a computation that any undergraduate in eco-
nomics knows how to do!), most of his fellows chose lottery A. This behav-
iour is known as risk aversion (see Figure 1.1). In other words, although Ē (A) is 
less than Ē (B), the utility U(A) is greater than U(B). The paradox comes from the 
second proposal made by our playful economist. He offered them two new lot-
teries; lottery C, consisting of a ten per cent chance of winning 10,000 FF, and 
lottery D, consisting of a nine per cent chance of winning 15,000 FF. Here the 
choice made by the majority of his colleagues was for lottery D, of which the 
Expected Value (Ē (D) = 1,350 FF) is actually higher than that of lottery C (Ē 

(c) = 1,000 FF). But, C can be decomposed into p.A + (1- p).Z and D into p.B + 
(1- p).Z with p = 0.1 and Z being a lottery of Gain = 0. Our prestigious assembly 
of economists therefore violated the principle of independence, which is one of 
the four founding axioms of their discipline. The reasons for this paradox are 
still being debated. Leonard J. Savage, a famous American statistician who was 
present, claimed that it was because of the wine that had been served at lunch 
(the conference was happening in France, so much for the cliché!). However, 
when these scenarios are reproduced with a panel of sober subjects, the results 
are consistent. This was the first demonstration that constraints limit the ability 
to reason rationally, even among experts.

Rationality, Final Frontier

Thus, behaviourists and economists reached almost simultaneously the limits 
of rationality in the second half of the twentieth century. For the former, it 
could be perceived simply as an interesting phenomenon per se; but for the 
latter, it generates a real existential crisis: How do we identify general princi-
ples that govern the world economy, if the decisions that are the source of their 
fluctuations are not based on rational foundations? Would economics be the 
victim of its own contradictions? As is so often the case, salvation has come 
from inter- disciplinary approaches. Inspired by information theory,25 Simon26 

 23 For French Francs; the FF was devaluated in 1958 so 10,000FF approximates 12 £ today (without 
adjustment to the cost of life).
 24 The attentive reader will notice that we are in a scenario close to a One- Armed Bandit task except 
that in experimental economics lottery probabilities are provided explicitly.
 25 Shannon (1948).
 26 Simon (1947). Herbert Simon (1916– 2001), Nobel Prize in economics in 1978.
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defined the principle of bounded rationality. For him, the main cause of the 
limitation of human rationality is that our brain is unable to handle the mass 
of information available. This approach opens the way to a mathematical for-
malism that aims to maximize performance based on the quantification of the 
amount of information available.

Rationality in Prospect

However, other causes have been identified. Daniel Kahneman and Amos 
Tversky, two Israeli experimental psychologists, scrutinized the cognitive 
biases that are the foundations of the paradoxes observed in experimental eco-
nomics. One of their most famous experiments has shown the extent to which 
how a problem is formulated then influences the choices made by its subjects. 
Their seminal experiment consisted of offering two groups of students the fol-
lowing dilemma: Which policy to choose within the framework of an epidemic 
that erupted in their country. To one group they asked them to choose between 
saving 200 people out of 600 with certainty (policy A), or, with a probability 
of one- out- of- three, to save 600 people (policy B). The question was then 
phrased differently to the other group: Choose between leaving 400 people to 
die without fail (policy A’), or, with a probability of two- out- of- three, choose to 
see 600 people die (policy B’). Interestingly, the Expected Utilities of all these 
solutions are the same (on average 200 people will be saved), so there is no 
single ‘better’ policy. In addition, policies A and A’ differ only in their formu-
lation, and this is the same for policy B with respect to policy B’. The subjects 
of the first group favoured A due to risk aversion (they are certain to save 200 
people) while the second group favoured B’, which suggests the possibility of 
saving 600. They called this cognitive bias ‘framing’. From these observations, 
Kahneman and Tversky proposed Prospect Theory, which formalizes how 
subjects rate loss and gain with asymmetric prospects.27 This theory postu-
lates that individuals define their preferences with respect to a reference point 
(frame) from which the subject will evaluate the gains (which are above) and 
losses (which are below). The value (V) binding the subject’s preference to re-
sults does not follow the same laws for the gains and the losses. It is concave for 
the former and convex for the latter, and the slope of the loss is greater than that 
of the gains (see Figure 1.3A). This asymmetric sigmoid function accounts for 
the sensitivity to losses. This function is then weighted by a factor ‘w’ to set the 

 27 Kahneman and Tversky (1979).
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utility (U = w.V) from which subjects choose. This weighting factor reflects the 
tendency to overestimate low probabilities and underestimate high probabil-
ities (see Figure 1.3B).

Kahneman and Tversky thus explain why the choices of their subjects are in 
contradiction with the axiomatic approach of Von Neumann and Morgenstern. 
They also solve at the same time a number of paradoxes, including the Allais 
paradox. This theory is behind the behavioural economics that was conse-
crated by a Nobel Prize in Economics awarded to Kahneman28 in 2002. Since 
then, many studies have followed and new biases have been identified and for-
malized. They involve memory, reasoning, and emotions, of course, but also 
the personality of the subjects. For example, a series of recent studies, initi-
ated by Tali Sharot,29 shows the influence of optimism on our daily decisions. 
One of the most striking examples, which she used to quote in her lectures, is a 
study on marriage, whose participants consisted of a group of London lawyers 
who specialized in Family law. The question was posed to those who were to 
be married, in the month preceding the ceremony, to estimate the likelihood 
of them divorcing within the ten years that followed. Their answers revealed 
a pleasing corporatism of spirit, since they all replied without exception, ‘zero 
per cent’. Knowing that, in London, the divorce rate after ten years of marriage 

Fig. 1.3 Prospect theory. (A) Value granted to options depends on a framing 
point. The slope of the loss curve is steeper than that of the gains. (B) The 
pondering factor w(A) used to compute utility (U(A) = w(A) × V(A)) is a non- 
monotonic function of P(A). Individuals overvalue small probabilities and 
undervalue large ones. Adapted from Kahneman and Tversky (1979).

 28 Tversky died in 1996, he thus cannot benefit from the Nobel Prize, the rules of which stipulate that 
it cannot be awarded posthumously.
 29 Sharot (2011).
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is between 30 to 40 per cent, as in all European capitals, this example demon-
strates how optimism can skew judgement.

And the Brain in All of This?

This review is far from comprehensive, but its goal was to bring the reader to 
the conclusion that more than 25 centuries after the emergence of the concept 
of reason, psychologists and economists agree that the concept of rationality 
is relative. To grossly summarize: When a subject decides, he doesn’t usually 
optimize choice. For behaviourists, explanation is to be found in exploratory 
behaviour. Evolutionary pressure has selected behaviours that anticipate pos-
sible changes in environmental conditions. The subject (animal or human) ex-
changes some immediate efficacy against information which may serve him 
later. For economists, the answer is more complex. It is a combination of the 
inability to understand all of the options surrounding a problem (bounded ra-
tionality) associated with biases that cloud judgement.

But what about the organ of decision- making? What can study of the brain 
tell us? Can we unravel the mechanisms that underlie these theoretical con-
cepts (exploration, exploitation, bounded rationality, and cognitive biases)? 
This is the goal of this text, starting from the fundamental question: What are 
the basic properties that a neural network of decision- making needs to pos-
sess? We will use a bottom- up approach of the neural substrate of the decision- 
making process. Combining data drawn from phylogeny and physiology, 
we will draw together a general framework of the neurobiology of decision- 
making in vertebrates and explain how it evolved from the lamprey to the 
different taxa of vertebrates, including apes. We will then address the conse-
quences: how it impacts our capacity for reasoning, and examine some aspects 
of the pathophysiology of high brain functions. In conclusion, we will open up 
discussion to more philosophical concepts.
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2
A Ghost in the Machine

The Neurobiology of Decision- Making

In this case you will declare: he is one who has a wound at his temple, 
penetrating the bone, ( . . . ) who has blood coming out of his nostrils, 
who had a rigidity of his neck, one who is voiceless. This one, is one 
I cannot heal.1

The Eye of the Clinician

This passage from the Edwin Smith papyrus is often quoted as the first descrip-
tion of traumatic aphasia attesting that, as far back as the Bronze Age, Egyptian 
physicians would have noticed the link between the jelly pudding contained 
in our skull and cognitive abilities. However, even considering the archaism of 
the language, it is not certain that we can assimilate ‘one- who- is- voiceless’ with 
aphasia. But, in other passages of the same papyrus, a lesion of the viscera- of- 
the- head (the brain!), following a traumatic injury, is associated with motor 
impairment. It is therefore clear that the Egyptians had identified the role of the 
brain at least as a prime mover.

The Greek world had to wait until the dissections of Herophilus of Alexandria 
(fourth to third centuries BC). Until then, following Hippocrates, they tended to 
locate the logos in the heart under the control of the humours. Both theories long 
remained in competition. During the 20 centuries that followed, knowledge ad-
vanced slowly thanks to the propensity of Homo sapiens to smash the skull of his 
fellow contemporaries by all possible means. This occurrence graciously provided 
practitioners with numerous clinical cases of brain damage to observe. More con-
tributions were made through dissections usually done in secret by the church, 

 1 Edwin Smith papyrus (seventeenth century BC), personal translation. I know, the grammar is awk-
ward, but my teacher emphasized the necessity of maintaining the archaism in the translation in order 
not to betray the ancient Egyptian way of thinking.
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always prone to incinerate body- snatchers. In the nineteenth century, Positivism 
reached medicine and practitioners began to try to connect more or less focal 
lesions with deficits measured more precisely using standardized tests. They fo-
cused naturally on the motor and sensory functions that are easier to objectify. 
Phineas Gage is a famous exception. This unfortunate worker of the huge railway 
construction project, joining together the east and west coasts of the United States, 
was seriously wounded in 1948 after mishandling explosives. A metal rod went 
through his left frontal lobe. He miraculously survived this tragic accident and 
seemed not to have suffered motor sequelae, but his personality seems to have 
been significantly altered. He became unstable, rude and capricious whereas he 
had been considered as quite puritanical before the accident. The case of Phineas 
Gage, reported by Harlow (1819– 1907), is considered to be the first case report 
of a personality change following a brain injury. The association of this change 
with frontal lobe lesions was completed in 1994 by Antonio Damasio and Antoine 
Bechara2 after having exhumed the skull of the unfortunate and proposed a re-
construction of the extent of the lesion by modern imaging methods.

It was also in the middle of the nineteenth century that practitioners came to 
realize that rather than waiting for fate to provide subjects with brain damage, 
lesions could perhaps be induced in animals. This was the birth of experi-
mental neuroscience.

The Miracle of Electricity

The physiological approach made a fundamental advance after the discovery 
of the electrical properties of neurons. In the mid- nineteenth century, Emil 
du Bois- Raymond (1818– 1896), a German scholar, was the first to identify the 
spikes: electrical events, invariant in shape and amplitude,3 which propagate 
along the axons of neurons. Louis Lapicque (1866– 1952), a French physician 
and physiologist, defined the conditions under which this signal propagates 
from one neuron to another. He was also the first to propose a mathematical 
model of neurons called ‘integrate and fire’ that is still used today. Integrating 
electrical stimulation and lesion, Sir David Ferrier (1843– 1928) established the 
first functional brain mapping (mainly motor areas) in dogs and primates. This 
was complemented by the work of the first electrophysiologists who sought 
to correlate brain activity with behavioural observations (sensory stimuli, 

 2 Bechara et al. (1994); Bechara et al. (1996); Bechara et al. (2000).
 3 In fact, when neurons fire in bursts, the amplitude of spikes tends to decrease.
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movements, etc.). Their approach was macroscopic at first, with the develop-
ment of the electroencephalogram recording the changes of electric potentials 
on the surface of the skull. Microelectrodes were then used to obtain a better 
resolution down to the scale of the neuron. Applied at the sensory and motor 
areas of the cortex, single neuron electrophysiology identified the main prin-
ciples of coding of information by these structures in the second decade of the 
twentieth century. This allowed us to infer that most of the information is con-
tained in the neuron firing rate, i.e. the number of spikes per unit of time.

And Neurons Predicted Choice!

Until the late 1980s, ignoring the work of experimental economists and behav-
iourists, electrophysiologists restricted themselves to the study of sensory and 
motor function, believing it to be impossible for them to access cognitive pro-
cesses. In 1989, William Newsome and Anthony Movshon broke the dogma 
while studying the role of neurons in the medio- temporal area of   the cortex 
(an associative visual area) in the visual discrimination of macaques. The task 
consisted of watching dots that move randomly on a screen (see Figure 2.1).4 

Fig. 2.1 The random dot experiment. The subject is seated in front of a screen 
on which dots move. Targets are located on each side of the screen. The subject 
must fixate his gaze if the dots are moving completely randomly. If he detects 
an apparent movement (as in (B)), he must operate a saccade toward the 
corresponding target. In experimental conditions (with many more dots), animals 
can detect a movement from 3 per cent of coherence.

 4 Newsome et al. (1989).
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Within this population, a small fraction moves in the same direction. To investi-
gate the capacity of discrimination, experimenters vary the level of consistency, 
i.e. the proportion of dots that move in the same direction. To check whether 
the animal was able to distinguish an apparent motion, they encouraged it to 
indicate by a saccade the direction in which the dots animated with a coherent 
movement were heading. This study produced two surprising results. The first 
was that the animals were able to discriminate an apparent movement below 
three per cent consistency, and the second, most pertinent regarding our own 
line of interest, was that the firing activity of the neurons of the medio- temporal 
cortex area anticipated the choice made by the animal. Newsome and Movshon 
therefore stepped into the history of the neurophysiology of decision- making as 
the pioneers who first managed to correlate decision- making with electrophys-
iological activity in neurons. This correlation, which they called psychometric– 
neurometric pairing, became the backbone of all subsequent studies of the 
neurobiology of decision- making. The discovery was fortuitous: for them, the 
decision- making of the animal was a way to check the direction of apparent 
motion discriminated by the animal. From then on, the electrophysiological 
community realized that the study of the neurobiological correlates of decision- 
making was now within reach.

When the Brain Lights Up, Phrenology Is Not Far

The next step was the development of functional MRI, in order to visualize 
in 3D using a spatial resolution to the order of a cubic millimetre, changes in 
cerebral blood flow. The signal captured is known as BOLD, which stands for 
‘blood- oxygen- level dependent’. It is correlated to variations of glucose and ox-
ygen consumption in brain tissue that indirectly reflect the activity of neural 
populations with a delay of about a second. Although this method provides 
indirect information and poor temporal resolution, the disadvantages are out-
weighed by its non- invasive nature and the possibility of using it on humans. 
Since the end of the 1990s, this approach has been at the heart of research that 
has clarified the involvement of different structures in the decision- making 
process in different conditions, depending on the nature of the task, the re-
wards, the context, uncertainty, etc. Some teams have even tackled the struc-
tures involved in social interaction and moral judgements. The methods of 
investigation are all built on the same model initiated in electrophysiology by 
Newsome and Movshon: correlation of the BOLD signal with the choice of the 
subject and the task settings. The heuristic value of brain imaging methods, 
granted by the possibility to visualize the activated areas, making them 
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immediately understandable by all, is an undeniable advantage of these tech-
niques. But this advantage also has drawbacks. The spatial resolution to the 
order of mm3 focuses the attention of observers on the cortex, which repre-
sents about 80 per cent of the total brain volume in humans,5 but only 25 per 
cent of neurons.6 The method thus overstates the role of this structure, which 
is known to appear late in phylogenesis and develops slowly in mammals. This 
‘cortico- centrism’ cannot account for how corvids, for example— which like all 
birds, are equipped with a pallium, a very archaic version of the cortex— are 
nevertheless able to perform complex cognitive tasks including the mirror test7 
(see Chapter 2). The BOLD signal is also particularly noisy, so only a strong 
signal can be measured. As a result, for each task, only a small amount of brain 
areas ‘light up’. The consequence is that, by combining these two biases, we 
have seen simplistic explanations, attributing a particular function to a par-
ticular cortical area, flourish. From studies whose scientific value are indisput-
able, a pseudoscientific vision has been developed in which the cortex has been 
sliced into areas of fun, choice, regret, procrastination and so on. We are not far 
from the glorious days of phrenology, the pseudoscience invented by Gal in the 
eighteenth century, which claimed to be able to predict the cognitive skills of 
subjects by observing the shape of their skulls.

The Tale of the Two Brains

A pernicious avatar of this neo- phrenology approach is the opposition between 
right brain (rational and calculator) and a left brain (intuitive and artistic). 
This example is one of the most prominent of many abusive generalizations 
of observed phenomena in the brain. That old- age favourite, fodder for staff 
management and personal coaches, was involuntarily originated by Fink and 
Marshall.8 They used a task in which the right brain hemisphere ‘lit- up’ when 
the subjects focused on details, and the left when they focused more generally 
on the whole structure. This task was an example of a known fact that some 
areas are more specialized on one side than the other (e.g. Broca’s area, which is 
involved in the semantic processing of language, located to the left hemisphere 

 5 Swanson (1995).
 6 Twenty- one billion neurons in the cortex out of a total of 100 billion neurons throughout all the 
nervous system (Pakkenberg and Gundersen 1997; Pakkenberg et al. 2003).
 7 Prior et al. (2008).
 8 Fink et al. (1996).
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in 80– 90 per cent of the population), but it didn’t imply that the dominant 
hemisphere works independently from the other. The fact that for some people 
the asymmetry is less pronounced than for others attests otherwise.9 However, 
New Age psychologists have developed this idea ad absurdum into ‘right’ and 
‘left’ personalities. Despite the fact that this myth has been contradicted several 
times,10 it is still widely diffused.

Master and Servant

While functional imaging strives to highlight areas involved in the decision- 
making process in the cortex, electrophysiologists are interested in subcortical 
structures that are more developed in rodents and primates, the animal models 
they use. Their work shows that if one can correlate the activity of the prefrontal 
cortex to the choices made by animals, the same properties can be found in 
subcortical structures that are called basal ganglia. We’ll describe these struc-
tures in more detail in Chapter 5, but it may be good to remember that they are 
already present in the earliest vertebrates such as the lamprey. Moreover, it is 
these structures that receive the greatest input of dopamine, which plays a cru-
cial role in the learning process, as discussed in the second part of this book. 
This role of the basal ganglia in the learning process and decision- making is 
also confirmed by functional imaging studies in humans. Therefore, main-
tained by a certain parochialism, the debate rages between those who support 
the leading role of the cortex and those who defend that of the basal ganglia. It 
must be said that the two structures are closely interlinked and that it is prob-
ably simplistic to attribute to one of the two a necessary and sufficient role. That 
said, I am forced to admit that I belong to the family of electrophysiologists of 
the basal ganglia and so I cannot avail myself of total neutrality in the debate. 
I will content myself for the moment to reiterate that these structures appeared 
before the cortex in evolution.

 9 Zago et al. (2016).
 10 E.g. Nielsen et al. (2013). We also showed in 2009 that if a subject is involved in a One- Arm Bandit- 
type task which involves validating his choice by a movement of the right hand for one option or the 
left hand for the other, the decision results from the difference of level of activation between the left and 
the right orbito- frontal cortices. If his right orbitofrontal cortex prevailed, the subject pressed the left 
button and vice- versa. So we are indeed witnessing a clash between right brain and left brain, but to 
control left and right side of the body, not unlike that famous scene from Dr. Strangelove when the right 
hand of the eponymous character tries to strangle him while his left tries to stop him. Palminteri et al. 
(2009).
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The Normative Approach to Decision- Making

What is decision- making in terms of the nervous system? The reader will 
doubtless be surprised to learn that this crucial issue is almost never discussed 
in publications dealing with decision- making. In the best case, as we have seen, 
researchers demonstrate a correlation between the activity of a neuronal pop-
ulation and the choice made. More generally, they identify the involved struc-
ture which then becomes a box they fit into their scheme of decision- making. 
The real question, ‘How does the decision emerge?’, is simply forgotten. It is 
true that there is vagueness in the definition of decision- making that does 
not help. We therefore must define first the meaning that we give to the term 
decision- making.

In order to avoid falling into the pitfalls of speculation, we use a definition 
that we can operationalize. We consider decision- making to be the selection 
(choice) of an option from several available (often two for simplicity). This def-
inition is perfectly symbolized by the ‘executive decision- maker’ (see Figure 
2.2), a mechanical alternative to the tossing of a coin, invented by Terry Gilliam 
for his film Brazil (1985). We thus free ourselves of notions of consciousness, 
unconscious, subconscious etc., particularly difficult to define and especially 
to be tested experimentally. This normative approach is close to the approach 
of the economists who have emancipated mentalist considerations of psy-
chology in the twentieth century. With our decision- making being objectified 

Fig. 2.2 Executive decision- maker. A pendulum is attached to a reel and is 
rewound with a crank. When it is released, it meets a wedge that makes it fall on 
‘yes’ or ‘no’ with even chance. It symbolizes the arbitrariness of decision- making 
taken by the bureaucratic society described in ‘Brazil’.
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by an observable behaviour, we can study it in worm, octopus, or human. 
Incidentally, this approach also allows us to dissociate decision- making and 
learning. A decision does not need to be adapted. It is independent of the result.

Learning is thus defined as a mechanism that biases decision- making. It is a 
dynamic process: rewarded decisions are reinforced and those that are not (or 
that lead to punishment) are repressed.

So now that we own a normative definition of decision- making and learning, 
we can address the central question of this book: How does the nervous system 
decide?
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3
Introduction to Information Transfer in the 

Nervous System

One must remember that all our temporary psychological knowledge 
should one day be establish in the matrix of biological substrates.1

Introduction

It is difficult to understand the processes described in this book without having 
a certain fundamental knowledge about information transfer in the nervous 
system. This paragraph recalls the main notions. Readers familiar with them 
can easily move on to the next chapter.

The Elemental Brick: The Neuron

The nervous system is organized around specialized cells called neurons, de-
scribed fist by Ramon y Cajal, a great Spanish physiologist of the 19th- century, 
Nobel Prize of Medicine (Fig. 3.1). These neurons, which are about 100 billion 
in a human brain, contact each other via structures that we call synapses. Each 
neuron contacts an average of 10,000 other neurons.

The Action Potential, Support of Information

The neurons generate unitary electric pulses of invariant form and duration 
called action potentials or spikes. The quantity of spikes produced per unit 
of time is conventionally quantified in spike per second (spikes/ s). Neurons 
have an intrinsic firing frequency that is their frequency of producing spikes 
when they are not influenced (Fig. 3.2A). We call phasic neurons those with an 

 1 Sigmund Freund!
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intrinsic frequency close to 0: the neuron produces action potentials only if it 
is subjected to an excitatory external influence. Tonic neurons have a high in-
trinsic activity (several tens of spikes/ s).

Neurons works as integration units that transform all received informa-
tion into new information. The variation of their firing frequency is constantly 

Fig. 3.1 Different neurons hand drawn by Santiago Ramon y Cajal circa 1890.



Fig. 3.2 Transfer of information into the nervous system. (A) Mode of firing of 
neurons. The top figure represents a tonic neuron, firing continuously and more 
or less regularly. The lower neuron is a phasic neuron. It produces virtually no 
action potentials when it is at rest, but bursts in response to a stimulus, in order 
to generate behaviour, etc. Of course, these are archetypes, the biological reality is 
usually somewhere between these two extremes. (B and C) Information coding. 
B represents the responses of a neuron in the area M1 of the primate motor cortex 
during the execution of a two- dimensional movement. Each group of five lines 
represents the response of the neuron to five repeated forearm movements in one 
of eight directions (0– 315°) from a central position. The x axis represents time 
(in ms) and each vertical line represents the occurrence of a spike. The neuron 
increases its firing rate to the maximum when the animal performs a forearm 
movement to the left (180°). This direction is called the preferred direction of the 
neuron. Histogram C summarizes the responses for the eight directions and shows 
a cosine distribution around the preferential direction (we call this histogram 
the tuning curve of the neuron). It is thus possible to decode the information 
transmitted by the neuron and to infer the direction of movement performed 
by the animal from the firing rate encoding the information. Here the coded 
parameter is the direction of movement (and each neuron has its own preferential 
direction), but this type of coding has been demonstrated for a wide variety of 
motor parameters (speed, amplitude, torque), sensory (visual, olfactory, tactile, 
auditory) and also, as we will see, cognitive parameters depending on the area of 
the brain in which the recordings were made. Onset of Movement: beginning of 
the movement. Reproduced from Georgeopoulos et al. (1982).
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regulated by the balance between the excitatory and the inhibiting inputs (see 
below). If the balance is in favor of the former, their activity will increase, if it is 
in favor of the latter, it will diminish. It is the frequency variations of these ac-
tion potentials— that is, the amount of action potentials per unit of time— that 
convey information in the nervous system (Fig. 3.2B and C).

The Production of Spikes Is a Stochastic Process

Neurons do not produce their spikes with regularity. We are able to measure 
their firing rate, but we are not able to predict accurately when an action po-
tential will occur. This results from the fact that the process of spike generation 
is not automatic, but probabilistic (in mathematics one speaks of stochastic 
process). At the scale we are interested in, time is a continuous linear process, 
but to manipulate it easily using a formalism derived from discrete statistics 
we use an artifice that consists in cutting it in time interval t. We can thus de-
fine the probability P that the neuron produces an action potential over this 
time interval t. For reasons that we will not discuss here, we consider that the 
nervous system functions on a millisecond time basis. Thus, one can describe, 
the behaviour of a neuron which has a discharge frequency of 10 spikes/ s by the 
probability of producing 1 spike at each instant t=1ms that is P=0.01. This pro-
cess follows a distribution law described originally by Simeon Denis Poisson2, 
which is characterized by a mean equal to the variance of the distribution. It is 
therefore often called a Poisson process.

The Production of Action Potential, a Noisy Process

From the early age of single neuron electrophysiology, however, neurophysiol-
ogists found that even under conditions of maximum stability, the firing rate of 
neurons recorded in vivo displays variability over time. Therefore, the variance 
of the firing rate is generally greater than the mean in apparent violation of the 
law of Poisson. The difference between the theoretical variance of a Poisson 
process and the variance observed is usually called noise.

 2 This approximation is not fully accurate because a certain number of phenomena cause the pro-
duction of action potentials to violate the Poisson process. However, we will stick to it because it is self- 
sufficient for our purpose and it is much more practical to describe a process with a single parameter.



The Chemical Synapse, Information Relay 29

For scientists who study sensory or motor processes, noise is a problem 
because it disrupts the reliability of the transmission of information. Some 
even deny the existence of noise, attributing the observed variability to our 
incapacity to master all the external parameters that influence the process 
of production of spike. On the other hand, as we shall see, with regard to the 
decision- making processes noise is an appreciable asset.3

The Chemical Synapse, Information Relay

The transfer of information from one neuron to another takes place at the syn-
apses. There are several types of synapses, but we will only describe the chem-
ical one that is the essential relay between two neurons. The information is only 
transmitted in one direction in chemical synapses. The electrical impulses of 
the presynaptic neuron are transformed into a chemical signal by the release 
of molecules called neurotransmitters into the space between the two neurons 
called synaptic cleft. The higher the frequency of action potentials, the greater 
the number of neurotransmitters released. These neurotransmitters bind to re-
ceptors on the postsynaptic neuron, where this biding produces a new elec-
trical signal called a post- synaptic event (Fig. 3.3). This neuron sums all the 
post- synaptic events and that influence eventually its frequency of production 
of action potentials.

Synaptic coupling (or gain) is the strength of the relationship between two 
neurons. It determines the intensity of the postsynaptic response according to 
the activity of the pre- synaptic neuron. This coupling varies from one pair of 
neurons to another and the same neuron can be coupled differently to different 
target neurons. The coupling will depend on the amount of neurotransmitter 
released, the concentration of receptors present on the postsynaptic membrane 
and many molecular factors that interact with these processes and which are 
the subject of a very abundant literature but that we will not detail. For the same 
pair of neurons, this gain can vary over time this is called synaptic plasticity.

There are two major families of neurotransmitters. In general, a neuron re-
leases only one type of neurotransmitter belonging to one of these two families.

The first family is that of excitatory neurotransmitters. The neurons that 
release them are naturally called excitatory neurons. When they bind with 
postsynaptic receptors, they have a facilitating effect on the production of 

 3 Guthrie et al. (2013).
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action potentials. The most common of these in the central nervous system is 
glutamate.

Inhibitory neurons release neurotransmitters whose binding with 
postsynaptic receptors decreases the discharge frequency of the postsynaptic 
neuron. In the central nervous system GABA is the main representative of this 
family.

To be quite complete, we must mention a special family of neurotransmit-
ters: the neuro- modulators. They interact with a very diverse set of receptors 
whose effects can be activation or inhibition according to their distribution 
and to which protein they are coupled. Dopamine and serotonin are part of this 
family. We will have to talk about it again.

We have summarized in this short chapter the modalities of transmission of 
information in the nervous system. We will now turn to the question that inter-
ests us in the next chapter: by which process will the choice emerge from the 
interactions between the different populations of neurons involved?

Fig. 3.3 The chemical synapse. The spike trains cause the release of 
neurotransmitters into the synaptic cleft. They bind to the receptors on the 
postsynaptic neuron. If they are excitatory neurotransmitters (glutamate, 
acetylcholine), they will cause electrochemical changes (by modification of 
transmembrane currents) on the post- synaptic neuron which will increase its 
production of spikes. In the case of inhibitory neurotransmitters (GABA), the 
postsynaptic neuron will decrease spike production. Many factors modulate these 
phenomena in the more or less longterm. All of these regulatory mechanisms are 
called neuronal plasticity.
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4
The Winner Takes It All

How Decisions Emerge

To decide is to act.1

Introduction

In this chapter, we will succinctly review the general principles that are nec-
essary for a neural system to make decisions. A comprehensive illustration of 
the various principles is shown in Appendix A (the Diachetron). We will then 
examine how these principles are implemented in vertebrates in the following 
chapters.

An Effector System

As commonly stated by experimental psychologists and economists alike 
who study decision- making, we need to generate choice in order to overcome 
psychological bias (see Chapter 1). The simplest decision is that of choosing 
between two options.2 We assume that we can generalize mechanisms of 
decision- making for more than two options from what we can observe within 
this framework. We thus require an experimental paradigm within which, for 
a given condition, the subject has to perform one of two similar actions. For 
this purpose, we need two populations of excitatory neurons that can act on 
the locomotor system in vertebrates, each allowing the execution of a specific 

 1 I cannot find the origin of this sentence, popular with executive officers!
 2 Some people may consider that to decide between an action and nothing is even simpler, but in fact 
it does not necessarily involve the same mechanism as initiating an action while cancelling another that 
has been pre- selected (Eagle et al., 2008). Therefore, it is less obvious that we can generalize between 
one action and nothing compared to two to three to n actions. On the contrary, generalizing from two 
actions to three actions and n is actually less problematic (for discussion about the possibility of gener-
alization see Chapter 22).
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behaviour (such as moving the body or pointing a limb in one direction or the 
other). For a choice to be observable, one of these two populations should be 
activated, while the other should be inhibited. This implies a mechanism of 
competition between them.

Lateral Inhibition

Examination of the literature shows that the simplest system to obtain an im-
balance between two populations of neurons subjected to the same activation 
consists of two interconnected populations of inhibitory neurons.3 These two 
populations exert lateral inhibition on each other. As we explained in the pre-
vious chapter, a given population of neurons releases, generally, only one type 
of neurotransmitter. The neurons cannot be both excitatory and inhibitory. 
Therefore, in order to exert lateral inhibition on each other, our two popula-
tions of excitatory neurons of the effector system need to be connected to two 
different populations of inhibitory neurons that are reciprocally connected.

Noise

If the transmission of information were to be fully reliable, it would not be 
possible to obtain an imbalance within an architecture of two co- activated ex-
citatory populations stimulating two reciprocally connected populations of 
inhibitory neurons. They would cancel each other out and the system would 
become stuck. In order for a differential response to emerge, noise is necessary. 
There are many sources of noise, an important one of which is Brownian mo-
tion.4 At the molecular level, it animates the ions responsible for the variations 
of membrane potential. At the synaptic level, it also animates the receptors and 
the transmembrane molecules, inducing variability in neural transmission.

Furthermore, the release of neurotransmitters by exocytosis follows random 
processes: a spike will not systematically release the same number of neuro-
transmitters. Therefore, each neuron receives input from several thousand 
other neurons through several thousand synapses, whose random behaviour 

 3 See Deco et al., 2009; Jovanic et al., 2016.
 4 Brownian motion is a mathematical description of the behaviour of a particle immersed in a fluid 
subjected to permanent shocks with the elementary particles (ion, atoms) of the surrounding fluid. This 
results in a seemingly random movement of the large particle, which was first described in 1827 by bot-
anist Robert Brown inside pollen grains.
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has non- linear properties that will induce a great variability of response to an 
identical stimulus. Synaptic noise is considered the main source of noise in the 
nervous systems.5

Positive Feedback

However, as it is, the system is relatively unstable:  it can alternate from one 
state to another without modification of the stimulus. If the noise is too large, 
the divergence can also be triggered in the absence of stimulus. Stabilization 
is provided by another property called positive feedback. It means that each 
population of neurons exerts an activating influence on themselves, amplifying 
the effects of an imbalance between the two populations as it occurs. It remains 
as long as the stimulus lasts, and therefore maintains the divergence as long as 
necessary.

Learning Process

Within such an architecture, our system would work randomly. It would 
therefore not be possible to determine a priori which action would be chosen. 
However, if our choices have the potential to lead to different outcomes, this 
provides interesting opportunities for our system to learn how to select the best 
option. In order to achieve this, our system needs neural plasticity rules.

In the late 1940s, neuropsychologist Donald Hebb formulated the first plas-
ticity rule that bears his name, and which can be summarized as follows:6 if a 
neuron A is connected by a synapse to a neuron B, and the two neurons in-
crease their activity together, then the gain of the synapse that joins them will 
be increased. So, when neuron A is stimulated, the response of neuron B will 
be amplified. It would take more than 20 years for the underlying mechanism 
to be demonstrated in the hippocampus by Lømo and Anderson7 in the form 
of what he called long- term potentiation (LTP). This is a gradual increase in 
response from a post- synaptic neuron to the excitation of the pre- synaptic 
neuron that persists over time. Hebbian learning and LTP form the basis of 
learning processes in the nervous system.

 5 Calvin and Stevens (1968); Contreras et al. (1996); Kohn (1997); Nowak et al. (1997); Pare et al. 
(1998); Azouz and Gray (1999); Lampl et al. (1999).
 6 Hebb (1949).
 7 Anderson and Lomo (1966).
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However, the simple Hebbian learning rule is not enough, because it in-
creases synaptic coupling without any regard to the usefulness of the outcome. 
What we need is often referred to as a tri- component Hebbian learning rule, or 
more commonly, reinforcement learning. It implies that there is a third class of 
neurons, where firing is conditioned by the presence of reward and their effect 
is to modify synaptic coupling when activated, rather than altering the firing 
rate of the post- synaptic neuron. If we connect this population of neurons at 
the interface between excitatory and inhibitory neurons, when one of the two 
actions results in a reward, this population of neurons reinforces only the cou-
pling between the populations of neurons corresponding to the selected action. 
The gain between the activated neurons will change from an average state to a 
high state, so that the competition will be biased toward the rewarded action.

Anti- Hebbian Learning

However, if by chance, the context changes and the action associated with a re-
ward is reversed suddenly, the system is no longer able to readjust. For this, we 
must introduce a devaluation mechanism for a chosen option if it is no longer 
rewarded. The simplest solution would be to add a mechanism for decreasing 
the gain between excitatory and inhibitory neurons if an option is chosen and 
not rewarded. The mechanisms for this type of solution exist in nature, and are 
grouped under the term extinction.

Among these mechanisms, one of the best described is the mirror mech-
anism of LTP:  long- term depression (aka Anti- Hebbian Learning), which 
causes two neurons that fire together, under certain conditions, to reduce their 
synaptic coupling.

Now that we have reviewed the general principles that are necessary for a 
nervous system to generate a decision, we will proceed to examine the architec-
ture of the vertebrate brain in order to identify the associated network.

Implementation

To understand how these principles can be integrated into a model of the 
neural system that is able to decide between two options, I invite the curious 
reader to look at Appendix A (the Diachetron). This is an attempt to identify 
the minimal network of decision- making, in order to establish if we can find a 
similar architecture in the nervous system of vertebrates.
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5
The Lamprey’s Dilemma

Introduction

Any attempt to identify the circuits involved in the decision- making process 
must therefore consider the principles identified in the previous paragraph. 
However, we need to keep in mind that a number of generalization methods 
must be taken into account. Perceptual modalities in vertebrates are complex 
and multimodal; we seldom decide between two options, having instead much 
more open choices, etc. However, that being said, the six principles introduced 
in the previous chapter (Effector, Lateral Inhibition, Noise, Learning Process, 
Positive Feedback, and Anti- Hebbian Learning) constitute the lowest common 
denominator of neural decision- making systems that we should look at. This is 
the task we will initiate now. As our aim is to study these processes in humans, 
we will limit ourselves to vertebrates, which all share the same longitudinal or-
ganization and possess a brain and a spinal cord.

A Tripartite Brain

Let us first recap quickly on the organization of the vertebrate brain. It is made 
of two symmetrical hemispheres controlling the contralateral hemi- body: the 
motor areas of the left hemi- brain control the muscles of the right hemi- body. 
The brain hemisphere consists of grey matter, in which is located the cell bodies 
of neurons, and white matter, which corresponds to the pathways of axons 
connecting one brain area with another distant one, or with the spinal cord. 
The organization of the grey matter is based on the development of the brain 
during embryogenesis. It is subdivided into three major parts, derived from 
three different vesicles formed in the embryonic stage:

 • The mesencephalon includes: i) the tectum, a sensory- motor organ; ii) the 
raphe nuclei involved in the regulation of many functions such as sleep, 
alertness, mood, and which also controls certain motor behaviours; and 
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iii) the tegmentum, consisting of the substantia nigra and the red nucleus 
which are both involved in the regulation of behaviour.

 • The diencephalon includes: i) the thalamus: a large nucleus at the interface 
between the sensory systems and the motor systems; ii) the subthalamic 
nucleus that is associated with basal ganglia, to which we will come back 
in detail; and iii) the hypothalamus and the epiphysis, which are involved 
in the regulation of many hormonal functions.1

 • The telencephalon, i.e.:  i) the olfactory bulb; ii) the striatum and the 
pallidum (the two nuclei constitute the basal ganglia per se); iii) the pal-
lium (aka mantle) of which, in mammals, the dorsal and lateral parts are 
called cortex and the ventral part hippocampus.2

We mentioned in the introduction that the cortex was among the serious 
candidates as substrates of the decision- making process in humans. However, 
the cortex appears late in evolution. In vertebrates other than mammals, the 
pallium has a simpler anatomical structure. It consists of a layer of cells sand-
wiched between two layers of communication fibres. Moreover, in the most 
archaic species, it represents less than 20 per cent of the cerebral mass and re-
ceives little or even no feedback from the subcortical structures.3 To identify 
our decision- making system, we must therefore look for the structures of the 
central nervous system, common to all vertebrates, that could share the prop-
erties we have identified. It implies that if a common structure exists, it must 
necessarily belong to an archaic system common to all vertebrates. It seems 
thus wise to start with the most ancient of this taxon: the lamprey.

In the Beginning Was the Lamprey

The lamprey appeared about 560  million years ago. It is the most famous 
representative of the agnathans. It has a nervous system whose relative sim-
plicity makes it a model of choice to study networks involved in locomotor 
activity. The lamprey is devoid of fins and moves by waving its body, which 
is composed of a series of muscle segments called myotomes. Each myotome 
is controlled by a couple of generators. Each element of a couple controls the 
motor neurons that activate the muscle fibres of one half of the myotome via 

 1 Another great communication pathway between the nervous system and the body.
 2 Involved in memory and spatial navigation (see Chapter 16).
 3 Striedter (2017).



The Basal Ganglia 37

excitatory neurons whose neurotransmitter is glutamate. The two elements of 
a couple mutually inhibit each other via glycinergic inhibitory neurons.4 When 
the muscle fibres on one side of the myotome are contracted, the opposite fibres 
are released. When a motor drive is sent from the reticulospinal cells into the 
spinal cord, a rhythmic activity is propagated in the various medullar segments 
with a rostro- caudal shift thereby generating a sinusoidal body motion of the 
animal that allows its movement in the water.

The reticulospinal neurons belong to the reticular formation located in the 
brainstem of the lamprey. These are organized somatotopically. If a differen-
tial stimulation is exerted on the neurons located on both sides of the reticular 
formation, the animal will turn toward the direction of the most important 
stimulation. It is thus possible to control the locomotion of the animal from 
this structure. In fact, these reticulospinal neurons act as the effector system 
defined in the previous chapter. We have thus found the first element of our ele-
mentary decision- making system; let us now look at its connections.

Apart from the peripheral input that comes back from the spinal cord, the 
reticular formation receives, among other things, input from the diencephalon 
and specifically the thalamus.5 This structure allows interfacing between sen-
sory stimuli (visual, auditory, olfactory) and the motor system.6 The other very 
important targets of the thalamus in the lamprey are the basal ganglia.

The Basal Ganglia

The striatum and the pallidum are the basal ganglia of the telencephalon per se. 
The subthalamic nucleus (STN), which belongs to the diencephalon, and the 
substantia nigra (SN), originating from the midbrain, are anatomically associ-
ated with them. The term ended up designating the functional unit constituted 
by these four nuclei.

We will not detail too precisely here those nuclei whose anatomy and ter-
minology vary from one species to another, but we will roughly describe their 
functional architecture based on the nomenclature used in the primate.7 They 
are organized as follows (see Fig. 5.1):

 4 Glycine is the main inhibitory neurotransmitter of the spinal cord.
 5 The reticular formation also receives input from other systems such as the pallium, the tectum, and 
the GABAergic neurons of the basal ganglia.
 6 McClellan and Grillner (1984); Dubuc et al. (2008).
 7 Nomenclature in the lamprey is slightly different and still subject to fluctuation because its charac-
terization is relatively recent. For simplicity, I prefer to use that of the hominids, which is better known, 
and which is the primary purpose of this book.
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 • Two input structures: the striatum and the STN;
 • One output structure (sometimes subdivided into two nuclei):  the in-

ternal part of the globus pallidus (GPi) in primates;8

 • One intermediary structure: the external part of the globus pallidus (GPe).

The striatum is the most complex structure. It consists of several types of 
neurons; the medium- sized spiny neurons are the most numerous. They are 
GABAergic inhibitory neurons and their axons connect to the intermediate 

Fig. 5.1 Functional anatomy of the basal ganglia. (A) Represents the three main 
pathways between the input and the output structures of the basal ganglia: the 
direct (black), monosynaptic, indirect (grey), trisynaptic and hyperdirect (white), 
monosynaptic pathways. (B) The different structures are organized into an input 
layer, an intermediate layer, and an output layer (see the text for the abbreviations 
used). The neurons represented in solid lines are excitatory (glutamatergic), the 
neurons represented in dashed lines are inhibitory (GABAergic). In mammals, 
the different populations of neurons are in segregated nuclei, but in anamniotes, 
reptiles, and birds, they are much less well differentiated anatomically. For the sake 
of readability, the figure is oversimplified. For example, I have represented only the 
populations of neurons that connect one structure to another in mammals while 
there are many other populations in the striatum in particular. Also, very recent 
work seems to indicate that the GPe neurons that connect back to the striatum are 
not the same as those that connect with the STN or the GPi.

 8 I am deliberately simplifying when I reduce the output structure of the basal ganglia to the GPi only. 
Although it is a single population of neurons in vertebrates other than mammals, in the latter, anatomi-
cally, it is divided into two structures: the GPi and the pars reticulata of the substantia nigra.
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and the output neurons. These neurons are almost silent when the system is at 
rest and only activate when they receive many inputs.

The STN, the other input structure, has a much simpler architecture. It is a 
glutamatergic (excitatory) nucleus that seems to have only one population of 
neurons that project their axons mainly to the output structure. Whatever the 
species, these neurons have a tonic basal activity of a few tens of spikes.

The output structure is also made of a single population of tonic neurons 
with a high basal firing rate. These neurons are GABAergic (inhibitory).

The GPe, the intermediate structure, is very similar to the GPi, consisting 
of the same type of high frequency tonic GABAergic neurons. These neurons 
project their axons onto all other basal ganglia, thus exerting global inhibitory 
control.

If we follow the transfer of information in our mini- network of basal gan-
glia, we have:

 • A monosynaptic pathway between one of the input structures (the stri-
atum) and the output structure (the GPi), which has been dubbed the ‘di-
rect pathway’.

 • A poly- synaptic pathway between the same two structures, which passes 
through the GPe and the STN, which is commonly called the ‘indirect 
pathway’.

 • And finally, a monosynaptic pathway between the second input struc-
ture: the STN and the GPi, which is called the ‘hyperdirect pathway’ be-
cause it is supposed to be faster than the direct pathway (see Fig. 5.1).

The pattern of the information flow in the basal ganglia has been well docu-
mented by electrophysiologists in rodents and primates in the 1990s– 2000. 
A cortical stimulation leads to a tri- phasic response (activation/ inhibition/ ac-
tivation) in the output structure. It has been shown, by selective inactivation of 
the different structures of the BG, that the early response is due to the hyper- 
direct pathway, the second phase to the direct pathway and the last to the indi-
rect pathway.9 Apart from these differences in timing and effect, the hyperdirect 
and the indirect pathways activate the output structure while the direct one 
inactivates it. Another important difference is related to connectivity (see 
Fig. 5.2). The direct pathway is selective: a population of striatal neurons will 

 9 Deniau and Chevalier (1984, 1985); Nambu et al. (2000); Nambu et al. (2002).
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inhibit another GPi population preferentially and will not make connections to 
neurons of other populations. Conversely, along the hyperdirect pathway (and 
also the indirect pathway that is common with the hyperdirect pathway on its 
distal path), the STN neurons connect sparsely and non- selectively with the 
neurons of the output structure.

Thus, if we summarize, the basal ganglia constitute a network in which 
the dynamics result from a selective direct inhibitory pathway whose ef-
fects are in balance with the hyperdirect and indirect pathways whose ef-
fects are excitatory, sparse and non- selective. These properties have been 
demonstrated in mammals, but it has been shown relatively recently that 
this was already the case in the earliest vertebrates and has been conserved 
throughout evolution. It has been particularly characterized in lamprey and 
songbirds. In these species, macro- anatomical segregation in nuclei is not 
complete but the different populations of neurons coexist in poorly differen-
tiated clusters.

Fig. 5.2 Segregation, divergence, and convergence. The direct pathway (dotted) 
selectively connects the striatum to the GPi: the neurons of the grey population of 
the former connect with those of the grey population of the latter. It is the same for 
the white population. On the other hand, the hyperdirect pathway (continuous) 
connects the input and output populations in a sparse and nonselective diffuse 
manner. Note also that the number of GPi neurons (about 150.103 in primates) 
is much lower than that of the striatum (about 9.109 in primates), resulting 
in convergence. We did not represent the GPe and the hyperdirect route on 
this diagram for the sake of simplicity, but it is also divergent since it takes the 
hyperdirect route on its last third.
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The Diencephalic and Telencephalic Loops

The basal ganglia fit into a functional loop. In all anamniotes, such as the lam-
prey, this loop is constituted mainly with the thalamus (see Fig. 5.3): the latter 
provides the majority of the input to the striatum and the STN and receives 
massive connections of the output neurons of the basal ganglia (equivalent of 
the GPi neurons in primates).10 We will call this the thalamus- basal ganglia 
loop, the diencephalic loop.11 There is also a pallium- thalamus- basal ganglia 

Fig. 5.3 The diencephalic network in anamniotes. The architecture of the 
network as it is known in lamprey is downscaled to the level of two neurons in 
the thalamus: M1 and M2 which each control a different action (a movement to 
the right for M1 and to the left for M2 for example). The corresponding actions 
were not represented to simplify the figure. The sensory system is reduced to its 
simplest expression: a neuron S connecting evenly with M1 and M2. To each of the 
thalamic neurons corresponds a neuron in the other structures of the loop. Note 
that the pathways between the striatal neurons (Str1 and Str2) and the GB output 
neurons (GPi1 and GPi2) are independent, while each STN neuron connects the 
two GP neurons according to the divergence principle (Fig. 5.4).

 10 Reiner et al. (1998).
 11 This term is not official. It is also not completely accurate. It should be called a diencephalic- 
telencephalic loop because the basal ganglia are predominantly telencephalic structures. However, I will 
use it in this book for the sake of simplicity to avoid repeating thalamus- basal ganglia constantly.
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loop, with similar organization, but which plays a negligible role in the genesis 
of behaviours in these species. We will call it the telencephalic loop.12

Back to the Lamprey

This long digression aimed to describe a network that forms a functional loop. 
The few readers I have not yet lost have kept in mind that in this archaic or-
ganism we have identified the effector system, the first element of our decision- 
making system. The most intuitive among them will probably have understood 
that we will now look in this network for the other elements. For this we will 
close the loop on the basal ganglia system (see Fig. 5.3) to form a diencephalic 
loop (let’s leave aside for now the telencephalic loop, which, we repeat, is anec-
dotal in the lamprey) and we will integrate in each structure of our network two 
populations corresponding to two distinct actions. The connectivity between 
the different populations will obey the rules shown in Fig. 5.4. Finally, for the 
sake of simplicity, we will remove the indirect pathway because its dynamic 
properties are similar to that of the hyper- direct pathway in the first estimate.13

Following these principles, we obtain the structure represented by Fig. 5.4. 
We have our effector system (the M1 and M2 neurons) of the thalamus that act 
on the spinal cord and can control two different actions (the behavioural reg-
ister of the lamprey is limited).

We will limit ourselves to determining for the moment if our system is able 
to decide without learning because we have not yet described the system of 
taking into account the consequences for our animal. It must therefore have 
a selection mechanism, noise to tilt the system in one direction or the other, 
and a positive feedback mechanism to stabilize the system in three possible 
states: no choice; choice of option 1; choice of option 2.

The positive feedback system is the simplest to evidence:  it loops on the 
thalamus through the striatum and the GPi following the direct pathway. 
Stimulation of this pathway leads to an increase in thalamus activity (see 
Fig. 5.4A).

Noise is one of the specific features of the structure. The responses to dif-
ferent experimental conditions of these structures are notoriously noisy 

 12 See note 68.
 13 See Chapter 20. For a comprehensive discussion of the reasons for this approximation see Leblois 
et al. (2006) and Guthrie et al. (2013).



Fig. 5.4 (A) Positive feedback loop through the direct pathway. If we remove the 
STN and the hyperdirect pathway, a stimulation of the sensory neuron (S) leads 
to a significant excitation of neurons M1 (in black on the right) and M2 (in grey). 
Note that the presence of synaptic noise makes the excitations unstable. (B) 
Competition between neurons of the striatum evidenced by a selective stimulus 
applied to Str1. On the left, the connections that allowed Str1 to influence Str2 are 
shown in black, those non- involved are shown in grey. On the right, the firing rate 
of the neurons corresponding to Action 1 are in black and those corresponding to 
Action 2 are in grey. An excitation of the neuron Str1 causes inhibition of GPi1 (1), 
which increases the activity of M1 (2) and STN1. This induces an increase in the 
activity of GPi2 (3) that inhibits M2 (4) maintaining Str2 in an inactivated state 
(5). Note that the system is more stable than in the previous configuration.
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and decorrelated.14 This results in great variability in the response of a given 
neuron to an event (stimulus, go signal, movement initiation, etc.). This noise 
is amplified by a specific property of the medium spiny neurons of the stri-
atum, which also generated an abundance of literature examining the non- 
linearity of the response to stimulation.15 These neurons are particularly quiet 
at rest and strong input must be applied to reach their firing threshold. Once 
this threshold is exceeded, they discharge for a few tens of milliseconds, some-
times more, at a high frequency of several tens of spikes.

Thus, all that remains is to highlight the selection mechanism. At first 
sight this does not seem obvious, as there is no lateral- inhibition between the 
neurons of the striatum or the GPi, the two populations of inhibitory neurons 
in our network.16 However, we must remember that our system operates in a 
loop (like all neural networks by the way, a fact that is often omitted). Thus, 
even if the two striatal neurons of our network do not directly inhibit them-
selves reciprocally, they do so via a long circuit which borrows successively 
from the two loops: the negative one which follows the hyper- direct pathway 
followed by the positive one which takes the direct pathway (see Fig. 5.4B). An 
activation of the neuron Str1, for example, causes an activation of the neuron 
NST1 which activates the inhibitory neurons GPi1 and GPi2 in an equivalent 
manner. But as with the neuron GPi1, this activation is counterbalanced by 
the inhibition coming from Str1, which causes an imbalance between the two 
populations which, amplified by the phenomenon of resonance that generates 
this loop, ends up causing the activation of one population and the inhibition 
of another. In this system, the selection is not produced locally by lateral inhi-
bition, but results from interactions between all elements of the network.

Our network can thus work as a random decision- making engine (see Fig. 
5.5). If we submit our model nervous system of the lamprey to a stimulus which 
gives it the injunction to turn to the right or to the left, the neuron S excites 

 14 Nevet et  al. (2007); Leblois and Perkel (2012). The electrophysiologists working on basal gan-
glia had a bad reputation for a long time because their recordings are notoriously noisier than those 
obtained in other structures such as the sensory and motor cortical areas or the hippocampus.
 15 Wilson and Groves (1981); Nisenbaum and Wilson (1995); Sandstrom and Rebec (2003).
 16 This observation has generated a huge amount of literature. Especially at the level of the striatum, 
which we have seen has several populations of inhibitory inter- neurons (Parent and Hazrati 1993, 
1995b; Parent et al. 2000). Recent work seems to show some degree of lateral inhibition in the striatum, 
but it appears to be limited (Jaeger et al. 1995; Oorschot 1996; Koos et al. 2004). Some authors rely on 
these results to model the physiology of the network and it must be admitted that their solution has the 
merit of being simple and elegant (Groves 1983; Alexander and Wickens 1993; Kotter and Wickens 
1995; Wickens et al. 1995; Bar- Gad and Bergman 2001; Suri et al. 2001). We prefer not to take this into 
account because their effectiveness is not fully demonstrated and we show that the architecture of the 
system is such that we can do without it (see Leblois et al. 2006 and Guthrie et al. 2013 for the demon-
stration). If it turns out that lateral inhibition is confirmed in the striatum then it will only strengthen 
the mechanisms proposed here.
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M1 and M2, but the synaptic noise at the connection between the M- Str and 
Str- GPi neurons causes an imbalance between channel 1 and channel 2. This 
imbalance is amplified by the phenomena of negative and positive feedback, 
which selectively activate one of the two populations M. Since there are no neg-
ative or positive consequences for these actions and the system lacks a learning 
process, our fictional lamprey will randomly turn right or left in response to a 
single stimulus.

We have identified a network, already existing in the earliest vertebrates, 
which has the characteristics of a decision- making system. Is it capable of 
learning? How did it evolve? Is the neuronal structure able to solve competi-
tions? Can it be replaced by another system during evolution? These are all fas-
cinating questions that we will try to answer in the following chapters.

Fig. 5.5 The diencephalic network of anamniotes: a decision- making engine. 
When a stimulus is applied to the neuron S, the interaction between the direct and 
indirect pathways provides the necessary properties for one of the two actions to 
be chosen: a competition process between two inhibitory neurons (see Fig. 5.4B), 
noise, and the positive feedback amplification process (see Fig. 5.4A). For the 
moment, in the absence of a learning mechanism, these decisions are random. In 
the example shown on the right, Action 1 will be initiated thanks to the activation 
of the M1 neuron (in black).
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6
Learn to Earn

Le Cœur a ses raisons que la raison ne connaît pas.1

Introduction

In order to instil rationality into our decision- making system, actions must 
have meaning. Motivation is the driving force of behaviour. Why will our 
lamprey bother, if its choice to turn left or right has no consequences, ei-
ther positive or negative? Negative consequences can be life- threatening (in 
which case the subject is not allowed to make mistakes) or unbearable (pain 
or the loss of a positive enhancer). These processes elicit mechanisms of fear 
and aversion that are still not very well known.2 Moreover, pain and loss of a 
positive enhancer are probably underlaid by different networks. Finally, our 
initial interrogation concerned the lack of rationality and that negative rein-
forcement processes are less often faulted, in particular because they are much 
less studied, for obvious ethical reasons. With our approach being guided by 
the necessity of experimental validity, we will therefore focus on the positive 
consequences.

When studying the learning abilities of a subject, any beneficial conse-
quence is called reward. This reward can be of a different nature. If the subjects 
are human, it is generally money, but other modalities have sometimes been 
tested, if only to assess whether there are several levels of classification for re-
wards (one for money, one for food, one for sex, etc.) or only one that would 
perform a collation.3 When the subjects are animals, the reward is usually food 
(solid or liquid) for the sake of simplicity. Since we cannot restrain a lamprey’s 

 1 ‘The heart has its reason which reason does not know’, Blaise Pascal (Pensées 1670).
 2 The literature concerning aversive conditioning is plethoric but there is no consensus on the circuits 
involved and the underlying mechanisms (for review see: Delgado et al. 2008; Iordanova 2009; Tronson 
et al. 2012; Fernando et al. 2013; Reichelt and Lee 2013).
 3 Kable and Glimcher (2009); Sescousse et al. (2010); Wunderlich et al. (2012); Sescousse et al. (2013); 
Sescousse et al. (2014).
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access to drinking water (even a virtual one), we will use an experimental para-
digm with food as the reward.

So, let’s modify our experimental protocol as follows: if our hungry lamprey 
chooses Action 1: it will get a piece of food; if she chooses Action 2: she will not 
get anything.

In order for our lamprey to learn to choose Action 1 rather than Action 2, 
we know that it is necessary to introduce a reinforcement learning mechanism 
and a system which informs the lamprey on the outcome of its choice.

Dopamine

This neuromodulator4 comes into play and will have a major role. Dopamine 
is a monoamine5 released by specific neurons whose role will be different 
depending on the family of receptors on which it will bind. If it binds with do-
pamine receptors of type 1 (D1) or type 5 (D5), it will have a facilitating effect 
on the synaptic transmission of these neurons. If dopamine binds to type 2 
(D2), type 3 (D3), or type 4 (D4) receptors, it will have an inhibitory effect on 
synaptic transmission.6

Apart from a classical synaptic transmission, dopamine can also be sparsely 
released at the level of varicosities. This mode of release, called volume trans-
mission,7 ensures the molecule a wider diffusion in a mode similar to hor-
monal secretion of the paracrine type.8 It is in this form that it played a role in 
the earliest stages of evolution.

Dopamine is found in all multicellular animals, even those without a 
nervous system such as sponge and corals.9 In all the species in which it has 
been studied, it is associated with motor behaviour.10 In organisms as rudi-
mentary as earthworms11 or aplysias12 (a kind of sea slug), dopamine is in-
volved in foraging— the search for food— one of the most basic rewards.

 4 As stated in Chapter 3, a neuromodulator is a molecule that modulates synaptic transmission be-
tween two neurons.
 5 I.e. a molecule synthesized by the chemical alteration of an essential amino acid (tyrosine for 
dopamine).
 6 Monsma et al. (1989); Gerfen et al. (1990); Sibley et al. (1992); Gerfen and Keefe (1994).
 7 Zoli et al. (1998); Bustos et al. (2004); Rice and Cragg (2008); Fuxe et al. (2013); Cachope and Cheer 
(2014).
 8 Paracrine hormonal communication is a signaling mode involving chemical messengers that act in 
the vicinity of the cell that synthesized them (Kanno 1977; Heitz 1979; Larsson 1980a, b; Frohman 1983).
 9 Cottrell (1967).
 10 Barron et al. (2010).
 11 Kindt et al. (2007).
 12 Nargeot et al. (1999); Nargeot and Simmers (2011); Bedecarrats et al. (2013).
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In vertebrates, dopamine is associated with reinforcement learning and 
decision- making. In these species, there are several nuclei of dopaminergic 
neurons in the central nervous system, but also in the peripheral one.13 There 
are even cells capable of releasing dopamine into the circulating blood, whose 
function is still poorly understood. However, the substantia nigra and the ven-
tral tegmental area, the dopaminergic nucleus that will be of interest to us, are 
closely connected with our diencephalic and telencephalic loops.

The Substantia Nigra and Ventral Tegmental Area

The substantia nigra is a mesencephalic nucleus that owes its name (black nu-
cleus) to its natural colour in mammals due to the presence of neuromelanin. 
It is subdivided into the pars reticulata (functionally associated with the GPi, 
see Chapter 5) and the pars compacta. The ventral tegmental area (VTA) is a 
neighbouring structure located more medially. The dopaminergic neurons are 
grouped in the substantia nigra pars compacta (SNc) and the VTA. Both struc-
tures innervate almost all the diencephalon and telencephalon, but it is the stri-
atum that receives the most important proportion of dopaminergic input.14 
This nucleus is literally immersed in a bath of dopamine: the concentration 
is one hundred times greater than in any other brain structure in mammals.15 
As would be expected with such high concentrations, volume transmission is 
known to play a role into the striatum. It is very likely that this role is function-
ally different from the one played by synaptic transmission.

With regard to synaptic transmission, dopaminergic neurons connect with 
all striatal neuron populations, but it is with medium- sized spiny neurons 
(the projection neurons) that the connections are the most important and 
the best known. On these neurons, the dopaminergic terminations are close 
to the presynaptic button with which they are functionally associated.16   

 13 Barbeau (1972); Goldberg et al. (1978); Creese et al. (1981); van Rooyen and Offermeier (1981); 
Berkowitz (1983); Snider and Kuchel (1983); Van Loon (1983).
 14 It is sometimes stated in the literature that the striatum receives 90 per cent of the dopamine pro-
duced in the substantia nigra, however I was unable to find the source of this assertion.
 15 Fitoussi et al. (2013). Data on lamprey are less consistent but seem to be compatible (Ryczko et al. 
2013; Stephenson- Jones et al. 2013; Perez- Fernandez et al. 2014).
 16 Most of our knowledge on this matter comes from mammals and mainly concerns cortex- striatal 
connections because the cortex is the main input for these species (Parent and Hazrati 1993; Parent et al. 
1995; Parent and Hazrati 1995b). The few elements gathered on the anamniotes (Menard and Grillner 
2008; Ericsson et al. 2011; Stephenson- Jones et al. 2012; Ericsson et al. 2013; Stephenson- Jones et al. 
2013) and birds (Gale and Perkel 2010) are consistent with it.
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The two families of receptors (D1 and D2) are present in the structure but 
they seem to be expressed by different neurons. The neurons that belong 
to the direct pathway express mainly the D1- type receptors and those of 
the indirect pathway express rather the D2- type receptors.17 The release of 
dopamine will thus modulate the activity of striatal neurons in both direc-
tions: facilitating it on the direct pathway and inhibiting it on the indirect 
pathway.

Dopamine and Learning

The effect of dopamine on synaptic transmission is evident in many physiolog-
ical and pathophysiological processes, but it is the role of dopamine in learning 
that will hold our interest here. Neurophysiologists have been working in this 
area for about 40 years and dealing with substantial controversy, but a con-
sensus seems to have emerged finally, at least for dopamine D1 receptors. 
Several experiments have shown that D1 antagonists suppress the long- term 
potentiation which is the experimental demonstration of tri- component 
Hebbian processes (see Chapter 4).18 It is an indirect demonstration, but it has 
been reproduced often enough and by a sufficient number of teams for us to 
have confidence in its robustness.

So, we can assume that the binding of dopamine with D1 receptors facilitates 
learning and that dopamine is significantly released in the striatum of the lam-
prey as in all vertebrates.19 The striatum of this animal is thus likely to process 
reinforcement (tri- component Hebbian) learning.

 17 The first decade of the twenty- first century degenerated into a genuine scientific warfare around 
the issue of the location of dopaminergic receptors and the degree of segregation between the direct 
and indirect pathways. Nowadays, it seems that the armistice has been signed after the total victory 
of the ‘segregationists’. The two populations are almost completely segregated and the neurons of the 
direct pathway express only the D1 receptors while those of the indirect pathway express almost ex-
clusively the D2 receptors (Surmeier et al. 1992; Le Moine and Bloch 1995; Robertson and Jian 1995; 
Aubert et al. 2000; Svenningsson et al. 2000; Deng et al. 2006; Bertran- Gonzalez et al. 2010; Thibault 
et al. 2013).
 18 Arbuthnott et al. (2000); Kerr and Wickens (2001); Centonze et al. (2003a); Centonze et al. (2003b); 
Ding and Perkel (2004); Lemon and Manahan- Vaughan (2006); Calabresi et al. (2007); Granado et al. 
(2008); Pawlak and Kerr (2008); Schotanus and Chergui (2008); Zweifel et al. (2008); Roggenhofer 
et al. (2010); Xu and Yao (2010); Dallerac et al. (2011); Hong and Hikosaka (2011); Ghanbarian and 
Motamedi (2013); Krawczyk et al. (2013); Roggenhofer et al. (2013); Huang et al. (2014); Suarez et al. 
(2014); Wiescholleck and Manahan- Vaughan (2014).
 19 Perez- Fernandez et al. (2014).
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Dopamine and Reward

The main reason why dopaminergic neurons interest us here is because of the 
relationship that binds them to the reward process. This relationship has been 
known since that seminal experiment which demonstrated that these neurons 
initially responded to reward administration, and then were able to transfer 
their response to the stimuli that predicted it (see Fig. 6.1).20 Since then, the 
modalities of dopaminergic neurons’ responses have been studied in detail and 
we know that their activity is much richer than a simple stimulus- response as-
sociation. But for now, we will satisfy ourselves with the following approxima-
tion: when there is a reward, there is a release of dopamine.

From this, we can attribute our virtual lamprey with the following properties:

 •  A dopaminergic neuron that releases dopamine when rewarded.
 •  An increase in gain between thalamic neurons (M) and striatal neurons 

(Str) activated when the action performed by the animal is rewarded (re-
inforcement learning).

Fig. 6.1 Dopaminergic neurons and Pavlovian learning. Monkeys have been 
trained to focus on the appearance of visual cues on a screen. Some of these cues 
precede the administration of a reward (fruit juice). (A) At first, the dopaminergic 
neurons of the SNc and the VTA increase their activity in response to the 
administration of the reward. (B) Once the animals have identified which cues 
precede the reward, the dopaminergic neurons increase their activity in response 
to the appearance of this specific cue on the screen (from Schultz 1988).

 20 Schultz (1998a).
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 •  A decrease in gain between thalamic neurons (M) and striatal neurons 
(Str) activated when the action performed by the animal is not rewarded 
(anti- Hebbian learning). This last rule allows us to anticipate relearning 
problems or more complex tasks such as that of the two- armed bandit.

We thus obtain a neural network (see Fig. 6.2) which is now able to learn.

Exploration and Exploitation

Incidentally, if we test our neural network with a two- armed bandit task 
(see Chapter 1), we will observe the same behaviour as that observed first in 

Fig. 6.2 The diencephalic network with learning capacity. We added to the 
diencephalic network of our lamprey a neuron sensitive to the administration 
of reward (R), which activates a dopaminergic neuron (with neuromodulatory 
properties) in the SNc. The selected action provided reward (here it is Action 1). The 
activation of the SNc modulatory neuron makes it possible to strengthen the gain of 
the M1- Str1 synapse because these two neurons are co- activated, but not that of the 
M2- Str2 synapse, because these two neurons have been rapidly inactivated.
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pigeons by Herrnstein (see Fig. 1.2). This provides an anatomical substrate for 
the trade- off between exploratory and exploiter behaviour described by behav-
iourists. Therefore, one of the benefits of our bottom- up approach is to propose 
a robust hypothesis about the substrate that allowed this evolutionary edge to 
emerge (see also Appendix A for more details).
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From Pallium to Cortex
The Coup of the Telencephalon

La fonction crée l’organe.1

Introduction

Nothing could be further from the truth than this maxim, which is supposed to 
summarize the theory of Jean- Baptiste de Lamarck (1744– 1829). This French 
naturalist, who invented the term biology, is best known for having pro-
posed a classification of species according to their kinship and a theory called 
Transformism, that states that new organs develop to adapt to changes in the 
environment. He was one of the influential precursors of Darwin who how-
ever moved away by proposing the theory of natural selection that overturn the 
view. First a mutation appears and, if it gives rise to new properties that pro-
vide an advantage over the individuals that are lacking it in the environment 
in which it appeared, this mutation is conserved and transmitted. The muta-
tion eventually allows the appearance of a new species with new functions. The 
advent of genetics in the early twentieth century has definitely validated the 
theory of Darwin. If the way in which these mutations appear (gradually or by 
punctuated equilibrium) is still debated, the theoreticians of evolution agree 
on the fact that the organ precedes the function. It implies that what is con-
veniently called a function in biology is de facto an emerging property that has 
been preserved by the mechanisms of evolution because it provides an advan-
tage to the organisms that possess it.

The enrichment of the ethogram,2 a key feature in the evolution of verte-
brates, is one of these evolutionary advantages. The previous two chapters 

 1 ‘Function creates organ.’ French Lamarckian Motto of unknown origin.
 2 We define ethogram as the number and variety of individual or social behaviours that a species can 
display.
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allowed us to show that the basic module of a system capable of making deci-
sions and learning already existed in the earliest vertebrates in which the tel-
encephalon represented less than 10 per cent of the total volume of the brain 
(see Fig. 7.1). The anatomy changes very marginally in other anamniotes such 
as fish3 and amphibians. For all these species, the thalamus will play the role of 
the main relay between effector organs, which control behaviour, and sensory 
organs, which receive information coming from the outside environment, as in 
the case of our simplified lamprey (see Fig. 6.2). In fact, for these archaic ver-
tebrates, the behavioural register varies little: foraging, mating, fight or flight 
reactions. Of course, there are differences from one species to another in the 

Fig. 7.1 Evolution of the mass of the pallium/ cortex in the function of the 
mass of other brain structures (diencephalon+mesencephalon). In anamniotes, 
reptiles, and most birds, the telencephalon represents less than 50 per cent of the 
cerebral mass. In mammals, it accounts for more than 50 per cent (up to 94 per 
cent in some primates). Note that the scale is logarithmic.
Extrapoled from Hardman et al. (2002); Herculano- Houzel et al. (2006); Herculano- Houzel et al. 
(2007); Wang et al. (2007); Herculano- Houzel (2009, 2011a, 2011b); Herculano- Houzel et al. (2011); 
Herculano- Houzel (2012a, 2012b); Herculano- Houzel et al. (2013); Willemet (2013); Herculano- 
Houzel (2014). I am providing here mass and volume data, but, to be perfectly rigorous, these data 
should be standardized because the density of neurons does not vary in the same way in all species. For 
example, the neuronal density decreases with size in rodents while it remains constant in primates.

 3 There is at least one exception to this assertion: some teleost fish such as Wrasses have a telenceph-
alon that represent more than 50 per cent of the brain volume and can use tools (Bernardi 2012).
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modality of foraging for example (e.g. between herbivores and carnivores), or 
nuptial rituals, but the whole remains largely homogeneous. The role of the 
diencephalic loop has been confirmed in these species with regard to eating be-
haviour.4 Its role in the other behavioural registers needs to be demonstrated, 
but it is very likely. Reinforcement learning has been demonstrated in sala-
manders and newts.5 What about other classes of vertebrates? How is their be-
havioural register evolving? What are the brain structures related to them?

We have, though unwillingly, a very anthropomorphic conception of evo-
lution. Humankind, like all primates, is characterized by the development of 
the dorsal part of the telencephalon, which represents more than 80 per cent of 
total brain mass. From anamniotes to humankind, the ethogram increases in 
parallel to the development of this brain area; it seems natural to find a cause- 
and- effect relationship. Is this really the case? To verify this, let us recall the 
main stages in the evolution of the telencephalon in vertebrates.

The Scale and the Feather

‘Reptile’ is a term with fuzzy boundaries that covers several lineages of dif-
ferent origins distributed in more than 9,000 species, which appeared around 
340 million years BC. Reptiles present a somewhat greater variety of behav-
iours compared to anamniotes. However, even species with a relatively high 
encephalization quotient (the ratio of brain weight to body weight), such as 
crocodiles and Komodo dragons, do not exhibit very sophisticated social be-
haviours. In these species the pallium represents between 10 per cent and 20 
per cent of the total cerebral mass (see Fig. 7.1).

Things are changing more dramatically with birds that appeared only 
150 million years ago. Although all birds are descended from a common an-
cestor, the 10,000+ species of existing birds have a very wide diversity of behav-
iour. It is in social behaviour that diversity is most apparent, such as courtship 
behaviours that can follow very different modalities such as singing or complex 
gestures but also communication about territorial issues, defence against pred-
ators, or foraging. Many bird species are organized into social groups whose 
complexity is comparable to that of mammals.6 Some bird species have also de-
veloped cognitive abilities, (remember that the task of the two- armed bandits 

 4 Reiner et al. (1998); Stephenson- Jones et al. (2013).
 5 Shibasaki and Ishida (2012); Retailleau et al. (submitted).
 6 E.g. the emperor penguins of the Antarctic, whose social organization was featured by Luc Jacquet 
in the world- acclaimed documentary ‘March of the Penguins’ (2004).



56 7. From Pallium to Cortex

was developed in pigeons, see Chapter 3). The all- round champion of cogni-
tion in birds, however, is the corvid. Caledonian crows, for example, are able to 
use tools: they cut rods to the right dimensions to dislodge insects from their 
nest.7 They are also capable of the same level of abstraction as a seven- year- old 
child, demonstrated through solving a task that involves throwing pebbles into 
a beaker to raise the water level to recover food that floats in the water out of 
reach of their beak.8 Few mammals can do this.

The learning ability of birds is also well known. In songbirds such as the ca-
nary or the zebra finch, the offspring learn a song by trial and error through 
imitation of an adult.9

This enrichment of the unprecedented behavioural register is correlated with 
morphological and functional modifications of the encephalon of birds. Firstly, 
the birds generally have a higher encephalization quotient than anamniotes 
and reptiles. But it is the development of the pallium especially which is re-
markable in these species. It accounts for more than 30 per cent of brain mass 
and can exceed 50 per cent in corvids (57 per cent in New Caledonian crows) 
and some songbirds. Although no comprehensive studies have been conducted 
in birds, there appears to be a strong correlation between pallium development 
and that of social behaviours and cognitive abilities.10

Cortex, Play, and Mind

Mammals appeared around 220 million years BC. The 5,400+ species of this 
taxon colonized from deep sea to land and air. Their behavioural register is 
richer and more varied than that of birds. Two behavioural characteristics, re-
lated to each other, distinguish them from other vertebrates. The first is a pe-
riod of dependence of infant mammals that can last several years. The second 
is play.11 During the juvenile period, much of the time saved from foraging 
is used to play. Although the function of this activity is still debated, it is cer-
tain that it plays a central role in the learning of foraging and social behav-
iours. There is, moreover, a correlation between the complexity of the social 

 7 Emery (2006).
 8 Logan et al. (2014)
 9 Nottebohm et al. (1990); Mooney (1995); Tchernichovski and Marcus (2014).
 10 Cnotka et al. (2008); Herculano- Houzel (2011a); Willemet (2013).
 11 In fact, play is not unique to mammals: it has been observed in turtles and crows for example, but 
these are exceptions, whereas it is the rule in mammals (Bekoff and Byers 1998). It is probably not a co-
incidence that non- mammal species in which play is observed have a large pallium also.
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organization of a species, the duration of the juvenile period, and the amount 
of time spent playing.

Another characteristic that is almost exclusive to mammals is the ability to 
recognize oneself. Of the seven species in which this ability has been demon-
strated using the mirror test, six are mammals (the exception being magpies).12

These specific behavioural features are correlated with a general increase 
in the encephalization quotient and also the ratio between the size of the tel-
encephalon and the rest of the brain. The latter already accounts for 77 per 
cent of brain mass in mice13 and up to 94 per cent in some primates.14 There 
is also a link between these two parameters and social complexity on the one 
hand versus time spent playing that evolve in parallel. Moreover, the species in 
which self- recognition has been demonstrated are those with the most devel-
oped telencephalon.

However, the mammalian cortex is not merely an expansion of the pallium 
of lower vertebrates. It is characterized by a significant structural change. The 
pallium consists of two or three types of neurons organized into three layers, 
while the cortex is subdivided into six layers of neurons and comprises 12+ 
different types of neurons. They are organized in a modular fashion into mini 
functional units organized around an output neuron. This functional unit, 
called a column, provides much more complex and powerful basic modules 
than the archaic three- layer system.15 The richness of the ethogram of mam-
mals is probably as much a result of this complexification as the simple increase 
in brain volume.

Language, Planning, and Consciousness

Man being the measure of all things, as Protagoras liked to say, it seems justi-
fied to focus on this special mammal.

Humans have long been believed to be unique, endowed with specific abil-
ities that have classified them outside of the animal kingdom. The advent of 

 12 See Chapters 1 and 11. Doubt persists for crows and some species of parrots.
 13 This ratio does not explain everything: mice have a behavioural register much more limited than 
that of New- Caledonian crows (mice are far from being able to use tools). It’s true that the brain of a 
raven weighs almost 20 times more (7.5g) than that of a mouse (0.4g).
 14 Curiously, in men, this ratio is only 84 per cent, but it is true that the latter is largely offset by a 
massive increase in brain mass (1500g against 85g in the macaque). The decrease in the ratio is related 
to the increase in the mass of communication fibres between the different structures and therefore the 
complexity of the structure (this factor may also partly account for the paradoxical differences in ratios 
between the raven and the mouse).
 15 Shepherd (2011).
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evolutionary theories has brought humankind back to its true place. What 
characterizes humanity on the behavioural level is the synergistic extension of 
several capacities already in existence at the embryonic stage in other species.16 
The extension of these capacities is associated with a high encephalization 
quotient and a cortex/ brain mass ratio of around 85 per cent. The most devel-
oped cortical territory is its anterior cortex, particularly the orbito- frontal and 
prefrontal areas.

Amongst humanity’s unique capacities, the most obvious is spoken symbolic 
language associated with the manipulation of abstract concepts. This ability 
develops along with several cortical structures, the most important of which 
is Broca’s area (for language production), located in the left frontal cortex in 90 
per cent of right- handed people, and 70– 80 per cent of left- handed people, and 
Wernicke’s area (associated with understanding), located in the left associative 
cortex with the same ratio. Language can be taught in a rudimentary way to 
some other species but homo sapiens is the only genus in which it has appeared 
spontaneously.

Another important skill is the ability to anticipate. This capability provides, 
amongst other things, the possibility of foreseeing the consequences of one’s 
actions. This is a considerable evolutionary advantage, since it enables human-
kind both to i) reject a certain number of particularly disadvantageous (even 
dangerous) situations without having to test them, and ii) to plan a series of 
sequential acts whose consequences are not immediate, thus making the most 
of the present environment. Certain mammals (especially primates) and also 
crows are capable of a certain degree of anticipation but this is far below adult 
human capacities. It has been very clearly demonstrated that this capacity 
is related to the development of the prefrontal cortex and the orbito- frontal 
cortex.17

The third ability is more complex to define. It concerns what is commonly 
called consciousness. If we define the latter as the capacity to subjectively ap-
prehend our own existence, it is shared with a certain number of animals of 
which we have already spoken. However, we intuitively feel that in humans 
the definition of consciousness covers a somewhat more complex reality in-
cluding affective and mental states as well as a temporal dimension. These 
concepts are impossible to communicate without abstract language and there-
fore it seems unlikely that we could access them in other species even if they 
experienced them.

 16 Herculano- Houzel (2009, 2012b).
 17 Mackintosh (1974); Bouton (2007).



Language, Planning, and Consciousness 59

Cognitive scientists have addressed the notion of consciousness through 
theory of mind, i.e. the ability to decode the behaviour of other individuals. 
It is based on the possibility of inferring mental states: motivations, emotions, 
beliefs in others. It can be subdivided into several aspects: i) understanding the 
intentions of others; ii) understanding the perception of others; and iii) under-
standing the knowledge of others. Some apes, especially chimpanzees, seem 
to be able to infer the intentions and perceptions of others. However, no other 
animal except humankind appears to be able to apprehend the knowledge of 

Fig. 7.2 (A) Several processes contribute to the increase of the register of 
elementary behaviours; (B) The increase of the number of options for a basic 
behaviour; (C) The division of the possible options into sequences; (D) The 
adoption of new flexible behaviours.
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others. To assess this ability, cognitive scientists use experiments that make it 
possible to attribute false beliefs to an individual. The best known of these ex-
periments is that where the subject is told the story of Maxi and his mother 
who are in their kitchen and store some chocolate in the fridge. Then, Maxi 
goes to join his friends to play. During his absence, his mother decides to make 
a cake. She takes the chocolate from the fridge, uses some of it, and puts the 
rest of the chocolate in the cupboard. Later, Maxi comes back, he wants to eat 
chocolate. Then the subject is asked, ‘Where will Maxi look for the chocolate?’ 
The correct answer is given by children aged three to five years old. Despite the 
development of several equivalent nonverbal paradigms,18 chimpanzees, who 
are the only animals that have been tested on this type of task, have not been 
able to pass this test.

This chapter affirms that there is indeed a correlation between the develop-
ment of the telencephalon and the complexification of the behavioural register. 
However, there is no evidence that the cortex plays a determining role in the 
decision- making process itself. Indeed, organisms that do not have a cortex 
(such as newts or pigeons) are quite able to make decisions as we have defined 
them above (choosing between two options). They are also capable of learning 
and do not show a greater lack of rationality than the most advanced mammals 
in ‘two- armed bandit’ tasks (see Chapter 1). Thus, we can state that to make a 
decision does not require a cortex. What this really highlights is a greater diver-
sity in the scope of the decision- making process, not necessarily an improve-
ment to the decision- making engine itself. This diversity can be expressed in 
several ways: by increasing the number of available options, or a sequential 
division of possible responses, which thus offers a decision- making tree that 
further multiplies these options, or creates new flexible behaviours in the ap-
plication of decision- making (see Fig. 7.2).

 18 Call and Tomasello (2008).
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8
The Eminence Grise

There was Father Joseph ( . . . ); but his name was never mentioned ( . . . ) 
so great was the terror that inspired the Eminence Grise, the shadow of 
the Cardinal.1

Spoilt for Choice

In order for the exponential increase in the behavioural register, related to the 
development of the telencephalon, to benefit the decision- making process, the 
network involved must develop accordingly.

In the lamprey, the decision- making network is the diencephalic loop. The 
connections between the embryonic pallium of this species and the basal gan-
glia are almost negligible. It is the same with anamniotes and reptiles (see Fig. 
8.1C). By contrast, the development of the pallium in birds is correlated with 
the development of the telencephalic loop which now supports a much larger 
part of the ethogram (see Fig. 8.1B). The relative ratio of flexible behaviour 
supported by each loop is correlated with the development of the pallium, 
which is highly variable in birds (20 per cent of the brain mass in humming-
birds, more than 50 per cent of the brain mass in corvids). It has been shown 
that in these species the diencephalic loop controls eating behaviours and also, 
perhaps, flying and fleeing behaviours. The telencephalic loop is involved in 
social behaviour— especially singing in songbirds— and cognitive processes 
that can be very complex, such as those in the New Caledonian crow.

In mammals, the telencephalic loop, in which the cortex now replaces the 
pallium, takes a leading role in controlling behaviour. The diencephalic loop 
alone is involved in visuo- motor coordination and hearing (see Fig. 8.1A).

 1 Translated from The Three Musketeers (Dumas). Father Joseph was Cardinal Richelieu’s hidden 
adviser. He was influential in the last phase of the thirteen- years’ war, triggering the intervention of 
Gustavus Adolphus of Sweden. Now his nickname designates those who operate ‘behind the scenes’.
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Thus the telencephalon, a very minor input of the basal ganglia in anamniots, 
gradually becomes the main input as evolution progresses.

Through the Looking- Glass

In 1986, Hershberger designed an experience he dubbed ‘The room through 
the looking- glass’, in tribute to Lewis Carroll.2 It consisted of placing chickens 

Fig. 8.1 Interactions between the basal ganglia (BG) and the telencephalon are 
proportional to the role of the latter in controlling behaviour. (A) In mammals, 
the cortex takes control of most of the behaviours in correlation with the increase 
in size. It also becomes the main source of input and output of the BG. (B) In birds, 
a transition is observed: the pallium supports a more and more important part of 
the behaviour (the song for example) and the BGs interact in identical proportions 
with the other two structures. (C) In anamniotes and reptiles, the behaviour is 
controlled mainly by the thalamus which is the main partner of the BG.

 2 I owe this reference to Dayan et al. (2006).
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in a straight runway in which a feeder was set on a carriage placed on rails. The 
feeder moved in the same direction as the chicken, but at twice the speed. Thus, 
in order to have access to the food, the chickens had to learn to ‘walk the other 
way’. Whatever the duration of the apprenticeship, the poor chickens persisted 
in pursuing the feeder, which escaped them continuously.

This experience illustrates ad absurdum what the cortex brings to the net-
work of the decision- making process. Chickens with a poorly developed pal-
lium are not able to act against their instinct that drives them towards food.

In contrast, primates are able to project themselves through the looking- 
glass. Rhesus macaques are able to perform visuospatial transformation tasks 
in which the relationship between the movement of a cursor on a screen is ab-
ruptly reversed compared to the movement of the joystick they handle.3 They 
only need a short adaptation period of a few tens of tests to learn how to modify 
the movements of the joystick so that the cursor follows new trajectories im-
posed on them. This adaptation is correlated with a shaping of the tuning curve 
(see Fig. 3.1) of the neurons of the primary motor cortex. Thus, the develop-
ment and complexification of the cortex not only makes it possible to increase 
the ethogram of mammals, but also to improve their learning capacity.

The Architecture of the Telencephalic Loop

The organization of the telencephalic loop is very similar to that of the dien-
cephalic loop, though a little more complex. Let us describe it very briefly in 
primates from whom we borrowed the nomenclature of the basal ganglia in 
Chapter 5 (see also Fig. 8.2). Pyramidal neurons from layers three and five of 
the cortex provide input to the basal ganglia (striatum and subthalamic nu-
cleus). Almost all cortical areas project onto the striatum,4 but only the frontal 
areas project onto the subthalamic nucleus.5 The feedback to the cortex is 
through the thalamus, whose anterior nuclei now connect extensively with the 
anterior cortical areas.

A quick comparison of Figs. 6.2 and 8.2 confirms that, despite a slight 
complexification, the main principles of selection through competition mech-
anisms are preserved. We still have an effector system (MC neurons), a system 
that initiates the behaviour (Str neuron), a mechanism of competition between 

 3 E.g. Paz et al. (2003).
 4 Parent and Hazrati (1995b).
 5 Parent et al. (1989); Parent and Hazrati (1995a).
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the inhibitory feedback loop (MC- STN- GPi- MT- MC loops), and a positive 
feedback mechanism that stabilizes the system in three possible states (MC- 
Str- GPi- MT- MC loops). The mechanism of noise generation remains the same 
as for the diencephalic loop.

The development of the telencephalic layer is superimposed on primitive 
mechanisms without modifying their intrinsic dynamic properties. This inte-
gration with an already existing system is made possible thanks to the devel-
opment of the system itself. The volume of the basal ganglia evolves too, even 
if it is not in the same proportions as the cortex. But, and this is often ignored, 
communication channels also evolve accordingly. The development of the tel-
encephalon is correlated with that of the internal capsule, the entanglement 
of fibres of connection between the cortical areas and the subcortical and 

Fig. 8.2 The telencephalic network in mammals. The architecture is slightly 
more complex than that of the diencephalic network (see Fig. 6.2) since it adds 
an additional layer by subdividing the population M. Cortical neurons (MC1 
and MC2) are, at the same time, the main input of the basal ganglia (BG) and 
the motor centres; it can be the motor cortex if the actions are movements. The 
thalamic neurons (MT1 and MT2) play only a role of relay between the GPi and 
the cortical neurons. The corresponding actions were not represented here for 
clarity. Since thalamic neurons are excitatory (glutamatergic) and the rest of the 
connections have not changed, this network has the same dynamic properties 
as the diencephalic network. Adapted from Leblois et al. (2006); Guthrie et al. 
(2013).
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medullary structures. It is also the conjunction of these two phenomena that 
explains the decrease in the ratio between the mass of the telencephalon and 
that of the other cortical structures in apes: the macaque has a proportionately 
larger cortex (94 per cent of the cerebral mass) compared to humankind (only 
84 per cent of the cerebral mass) due to the fact that humankind has (a little) 
bigger basal ganglia and more connections.

Thus, the development of the ethogram results from the re- use of archaic 
processes applied to new behavioural fields: exploration, social interactions, 
storage of food, etc. However, the limits of these mechanisms remain the same 
and will be considered in the third part of this book, where we will examine the 
causes of the limits of rationality, which were at the origin of our questioning 
on these processes.

Cortical Learning

The anatomical architecture of the mammal cortex is organized in columns 
that enable it to perform lateral inhibition and positive feedback. The cortex is 
therefore also able to perform competition unlike the early pallium of the lam-
prey (see Figs. 8.3A,B). 6 Moreover, classical Hebbian learning (see Chapter 4) 
or reinforcement learning has been evidenced at the cortical level also.7 Indeed, 
there is a significant release of dopamine in the cortex,8 even if it is about a hun-
dred times less important than in the striatum (see Chapter 6). A two- speed 
system is therefore possible (Figs. 8.3C,D). Initially the telencephalic loop, 
whose dynamics are unstable and fast, allows learning processes to modify 
the equilibrium of the interactions between the different cortical columns 
(Fig. 8.3E). Once an imbalance is established in favour of one of the columns, 
the cortex can take over. It would then be a consolidation process similar to the 
model that has been proposed for memory in which the neuronal assemblies 
that underlie the mental representations emerge in the hippocampus at first, 
then crystallize into associated cortical areas.9 The cortex could then poten-
tially decide alone if it was deprived of subcortical afferents (Fig. 8.3F).

Recent data confirm this hypothesis.10 Primates were trained to choose be-
tween two targets by pointing. During the same session they were presented 

 6 See Chapter 7; Shepherd (2011).
 7 Horvitz (2000); Del Arco and Mora (2009).
 8 Sesack et al. (1998)
 9 Lesburgueres and Bontempi (2011); Lesburgueres et al. (2011).
 10 Piron et al. (2016).
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alternately with pairs of targets they were familiar with, followed by pairs of 
targets they were unfamiliar with. These targets were associated with different 
reward probabilities (0.25 and 0.75 in both cases), so that there was always a 
better choice regardless of the condition. When the familiar targets were pre-
sented, the animals preferentially chose the one associated with the highest 
utility (i.e. the one with an associated reward probability of 0.75). When new 
targets were presented they chose at random first and then, after completing 
a few dozen trials, they began to prefer non- exclusively the target of greater 
utility. Blocking the operation of the telencephalic loop through the pharma-
cological inhibition of GPi neurons does not alter the performance of animals 
when they have to choose between known targets. On the other hand, it causes 
an inability to choose between two new targets: the animals continue to select 
them at random. Another interesting aspect of this experiment was that the re-
action time of the animals lengthened in both cases. This confirmed that in pri-
mates, after learning, the cortex can do without the basal ganglia when making 
a decision, but this takes longer.

The presence of the cortex does not alter drastically what we have discussed 
about the telencephalic loop, but it does open up interesting questions: Is this 
the case in all mammals or does it specifically relate to primates?11 Is this the 
case for all cortical areas or only certain ones?

From the Evolution of Species to Neural Darwinism

At this point, it may be necessary to summarize this part of the book for 
the reader lost by the density of the concepts exposed. After defining what 
we mean by decision- making and learning, we have shown that what we 
call rationality results from the conjunction of these two processes. Then we 
demonstrated what deciding implied in terms of neuronal processes (acti-
vation of certain populations and repression of others). We then identified 
the basic principles necessary for decision- making to emerge in a neural 
network. These principles involve competition mechanisms (which re-
quire negative feedback loops), stabilization processes, and random noise. 
Learning is made possible by phenomena of plasticity that can bias the 
choice of a subject to the most interesting option. We then went on to illus-
trate that these principles are united in a network present in all vertebrates 

 11 In rodents, it appears that the inactivation of the striatum impairs the capacity to choose between 
learned options (Gage et al. 2010).
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since the most ancient, which we have called the diencephalic loop. This 
loop consists of the thalamus and a heterogeneous structure called the basal 
ganglia. Dopamine controls the plasticity of the network and thus enables 
its learning capacities, limited by the constraints of the network (presence 
of noise, necessity to choose initially and then to be able to switch prefer-
ences in case of modification of the context but limiting the possibility of 
optimizing). In the chapters that followed, we recalled that the evolution 
of vertebrates resulted in the development of their behavioural register 
and of the mantle of their telencephalon (called the cortex in mammals 
and the pallium in other vertebrates). This resulted in the development of a 
telencephalic loop, which exists only in a rudimentary state in anamniots. It 
has a structure very similar to the diencephalic loop and operates on similar 
principles. It shares the same mechanisms and limitations.

If we reframe this in an evolutionary perspective, we can assume that ev-
olution in vertebrates is based on the explosion of the ethogram underlied 
by the recycling of the system of selection and learning initially devoted to 
locomotion and eating behaviours. In the eighties, Jean- Pierre Changeux 
and Gerald Edelman (both neurophysiologists), and Alain Connes (a 
mathematician) proposed the concept of Neural Darwinism to explain 
the mechanisms implemented in the brain. Through a process of ‘mise en 
abîme’, they stipulated that the same two processes, whose conjunction was 
the driving force that presided over evolution at the macroscopic level, were 
also at work anatomically and functionally in our nervous system. These 
two processes were: i) a diversity generator, which offered a number of op-
tions, and ii) a selection mechanism which allowed the selection of options 
that were most appropriate to the situation from a panel of options. At the 
macroscopic level, the mutations fulfilled the role of generating diversity 
and adaptation to the environment. The theory of Neural Darwinism pro-
posed initially to apply these principles to the development of the nervous 
system, with genes being the generator of diversity and selection carried 
out by a process of maturation. The theory attempted to generalize these 
mechanisms to physiological processes but it became obsolete because, 
at this time, it lacked biological incarnation and thus remained on too- 
abstract a level. It turns on that Neural Darwinism has never been formally 
applied to the neural processes of decision- making that were not yet for-
malized at this time.

However, I think that this theory provides a good metaphor here, so I want 
to pay tribute to its instigators. Following this perspective, the role of the gen-
erator of diversity is devolved to the thalamus and the telencephalon and that 
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of the selection engine to the diencephalic and telencephalic loops. The history 
of the evolution of vertebrates, in which humankind likes to think that they 
are the ultimate product, could be rewritten as the development of the gener-
ator of diversity which allows for the emergence of a very large panel of flexible 
behaviours.
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9
A Hierarchy of Decision- Making

Introduction

So, we will now focus on mammals in order to detail the properties of this 
telencephalic loop (Fig. 8.2). So far, we have limited our decision- making 
system to an ultra- simplistic context:  two options and binary conse-
quences: reward or not. However, it turns out that in daily life the choices we 
face are seldom so simple. Therefore it may be useful to examine and classify 
the different situations in which we have to choose and the modalities in-
volved therein.

A Multi- Option System

Living organisms are seldom faced with choices between two options only; 
the number is frequently higher. This dimension is also rarely approached 
experimentally for the sake of simplicity because the number of combin-
ations increases exponentially with the number of options and it thus be-
comes difficult to collect enough data to obtain robust statistical analysis. 
But it is generally assumed that the system works with n options as with two, 
and this has been demonstrated both experimentally and theoretically (see 
Fig. 9.1A).1

A Multitask System

Another important property of the system is its ability to make several de-
cisions in parallel. If in the most rudimentary animals, such as lamprey, this 

 1 Leblois (2006); Pasquereau et al. (2007); Guthrie et al. (2013)
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property is difficult to highlight, observing the hunting behaviour of a predator 
is enough to understand that it involves several elementary behaviours in par-
allel (such as approaching behaviour, scanning for hazards or other predators/ 
competitors, etc.). The system must therefore be able to simultaneously handle 
several different options without interference. With a modular system like the 

Fig. 9.1 A modular and flexible system. Each possible choice corresponds to 
a module. (A) By increasing the number of modules up to n, we do not modify 
the dynamic properties of the network. It is still able to activate a single output 
channel (MC) by inhibiting the others. (B) Different assemblies (shown here with 
only two modules each to simplify the diagram) can operate in parallel without 
interference. (C) By interacting parallel sets, a hierarchy can be installed. In our 
example, the activation of MC1 will cancel that of MC3. (D) Different conditions 
may cause opposition between modules belonging to different sets, creating de 
facto new sets. Here stimulus 3 causes a competition between MC2 and MC3. 
This last example shows that this division into sets is a heuristic device intended 
to facilitate understanding of the various principles exposed. In mammals, all 
STN neurons are grouped in the same anatomical structure (the subthalamic 
nucleus), as well as all the Str neurons (the striatum). For the sake of simplicity, 
I have not shown here the cortico- cortical connections, but they exist and thus are 
susceptible to learn also.
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one we have defined, it is not difficult to design several sets of modules in par-
allel that can act autonomously (see Fig. 9.1B).

A Hierarchical System

Moreover, it may be interesting for the system to organize itself according to a 
hierarchical principle: some modules of one set can repress others belonging 
to another set, in order to prevent two agonistic behaviours from expressing 
themselves (see Fig. 9.1C).

A Re- Combinable System

Finally, it is conceivable that, under certain conditions, modules of two dif-
ferent sets are competing together (see Fig. 9.1D). The notion of set thus be-
comes a heuristic artifice, since it varies according to the conditions.

Telencephalic Loop and Ethogram

The system is thus highly versatile and limited only by the number of neurons 
involved in each elementary behaviour. To examine this question, one can try 
to compare the number of neurons in the output structure of the basal gan-
glia: the GPi, which is an anatomical funnel, with the number of elementary 
behaviours of each species. These data are patchy and difficult to find in the 
literature, but can be estimated for a few species. In the mouse, this nucleus has 
a little less than 3,000 neurons; in the rat, this number is about 6,000 (6.103); 
in the macaque, it is above 100,000 (105), and in humans, it is close to 700,000 
neurons (7.105).2 Concerning the ethograms, the results are even more ques-
tionable, but do give an estimate. The mouse has about 13 elementary behav-
iours; the rat 20; the macaque 130. For humankind, I have not been able to 
obtain a quantification and it seems that the specialists in human behaviour 
are reluctant to risk it.3 Using these values, we can observe that the ratio of the 

 2 Extrapolated from Hardman et al. (2002); Herculano- Houzel et al. 2006; Herculano- Houzel et al. 
2007; Herculano- Houzel (2009).
 3 Boris Cyrulnik proposed between 100– 200, but he carefully stated that this number is hard to ob-
tain and probably under- estimated.
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number of elementary behaviours compared to the number of GPi neurons 
follows a logarithmic law in the other three species (0.005, 0.003, and 0.0004 
respectively). This seems logical: what an ethologist defines as elementary be-
haviour corresponds to a set of micro- behaviours whose number increases as 
the species becomes more complex. In other words, it takes 200 GPi neurons 
to subtend an elementary behaviour in a mouse, 300 in a rat, and a little more 
than 2,300 in the macaque, which, even taking into account my previous re-
mark, allows a margin for some redundancy that is a constant of the nervous 
system.

If we follow this law, it gives a figure of 150 elementary behaviours for the 
human species. I have no idea if this figure has any value and I provide it here 
for informational purposes only.4

The Geography of Decision- Making

Let us consider now the topology of these different territories and the major 
functions with which they are associated. Since the pioneering work of David 
Ferrier in the early twentieth century, together with the insights of electro-
physiology and more recently imaging, we have an increasingly precise un-
derstanding of the functional organization of the brain. However, we must be 
careful not to fall into neo- phrenology, associating a function with a specific 
brain area, and keep in mind that with regard to decision- making processes 
(i.e. all behaviour!) it will be necessary to associate cortical areas and territories 
of the basal ganglia and the thalamus.

Between 1986 and 1990, following the conjoint work of several multidisci-
plinary teams,5 a map of the network was broadly defined. Despite some re-
arrangement, it still remains valid. The network is segregated into five major 
loops: motor, oculomotor, prefrontal, orbitofrontal, and cingulate (see Fig. 9.2). 
The first two circuits deal with the learning and decision- making processes of 
the motor domain. The prefrontal and frontal circuits are involved in cognitive 
processes. Finally, the cingulate circuit is involved in episodic memory, regu-
lation of emotions (pleasure, fear, aggression, etc.) and modulation of mood.6 
Therefore, we can already see a certain hierarchical order, underpinned by 

 4 But this number is compatible with the one advanced by Cyrulnik (see note 3).
 5 Albin et al. (1989); Alexander and Crutcher (1990); DeLong (1990); Albin et al. (1995).
 6 ‘In psychology, a mood is an emotional state. In contrast to emotions, feelings, or affects, moods are 
less specific, less intense, and less likely to be provoked or instantiated by a particular stimulus or event. 
Moods are typically described as having either a positive or negative valence.’ (Wikipedia).
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anatomical realities: the mood, emotions, and personal history of the subject 
(his memory) will condition the cognitive functions that will influence motor 
behaviours. This hierarchy can be concretized by direct interactions between 
the different loops (see Fig. 9.1C,D) of which anatomical evidence has already 
been demonstrated several times.7

It should not be forgotten that this system is superimposed on the dience-
phalic loop without replacing it (see Chapter 6). It therefore continues to play a 
role in visuo- motor coordination and hearing at the very least, but probably in 
other processes also.

Conscious or Unconscious Choice

We explained in Chapter 2 that when we want to test decision- making pro-
cesses experimentally, we try as much as possible to free ourselves from the 

Fig. 9.2 The telencephalic loop is organized in parallel circuits that manage 
different functions. Each loop is identified according to the cortical areas 
with which it is associated. We note that these networks are related to different 
territories of the striatum whose names are provided for comprehensiveness 
(putamen, dorsolateral and ventromedial caudate nucleus, ventral striatum etc.). 
Each loop replicates the modular anatomy of the network. Only two modules 
are shown for each circuit, but there could be many more (potentially 140,000 
per circuit if they were distributed equitably, which is probably not the case). 
The motor, oculomotor, and cingulate circuits operate in an unconscious mode, 
whereas the prefrontal and orbitofrontal circuits can function in a conscious 
mode . . . in conscious beings.

 7 Graybiel et al. (1994); Kimura et al. (1996); Haber et al. (2000).
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notions of consciousness and unconsciousness. There is, however, no funda-
mental difference between the architecture of networks involved in conscious 
and unconscious decisions, but simply a different topology. Unconscious de-
cisions involve motor, oculomotor, and cingulate loops as well as the dience-
phalic loop.8 Conscious decisions are taken by the prefrontal and orbitofrontal 
networks.

It is also worth reminding ourselves that the majority of decisions that ver-
tebrates make are unconscious, even if we focus on humans, the only animal 
capable of self- expressing the notion of consciousness.9 As far as humankind is 
concerned, a large part of the behaviour they present in a typical day is based on 
choices made by their decision- making system that do not reach their level of 
consciousness. Consider for example the hand we use to open a door: we all use 
our dominant hand generally speaking (the right hand for the majority of the 
population), but we will use the other hand without thinking if the first holds 
a load or if our position in relation to the door does not lend itself to it. The 
same goes for picking up a cup: we will tend to use the side where the handle is 
placed, or we will turn the cup without thinking before picking it up. There are 
a multitude of other examples where humans choose ‘without thinking’, that 
is to say without the choice, or even the need to make a choice, reaching their 
level of consciousness. This allows humans to continue focusing on other tasks.

Thus vertebrates extend their ethogram during the evolution process, thanks 
to the complexification of the system which is constructed from identical mod-
ules but whose functions are diversified and organized in a hierarchical way. 
However, the basic principles remain the same, the constraints are identical, 
as are the limitations. It is therefore within the framework of these constraints 
that the question of the boundary of rationality must be examined.

 8 It is also highly probable that part of the prefrontal and orbitofrontal network also functions in an 
unconscious mode, if only for species lacking self- recognition capacity.
 9 There is a rich and fascinating debate about the definition of consciousness and the theory of mind 
in animals. Part of it consists in determining whether the co- operative behaviours observed in certain 
species (mainly primates) are really motivated by altruistic feelings. At the same time, specialists have 
not yet decided whether recognition in a mirror is a necessary and sufficient condition for the pres-
ence of self- awareness. For a more comprehensive approach see Tomasello (2004) and de Waal (2006) 
amongst others.
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Noise and Rationality

(Life) is a tale. Told by an idiot, full of sound and fury.1

Variability and Teleology

All behavioural specialists agree that in response to a given problem, the re-
sponses of individuals of the same species are variable. This variability is at-
tributed to uncontrolled parameters. Difference in motivation, difference of 
character, difference in attention or more subtle biological parameters (differ-
ence in the concentration of such and such hormones) would be some of the 
reasons why the experimenter in cognitive psychology or in behaviour must 
see large cohorts of individuals and many repetitions of the same test in order 
to derive statistically reliable data.

These explanations are satisfying with regard to the behaviour of several 
individuals but are less convincing when they are related to the behaviour of 
a single individual. Here too, variability is the rule. No behaviour follows ab-
solute law and only tendencies can be revealed with more or less important 
probabilities of occurrence. Let’s consider the example of the two- armed 
bandit protocols (where subjects are asked to make a choice between two lot-
teries of different values, see Fig. 1.2): after having reached a substantial level 
of learning, the subjects continue to choose from time to time the least inter-
esting option. We have seen that the traditional explanation involves a balance 
between exploration and exploitation behaviour. However, this post- facto jus-
tification, if it is satisfactory because it provides a simple and comprehensible 
explanation, also presents the inconvenience of being intrinsically teleological. 
Indeed, teleology is a major hidden pitfall of neuroscience and biology in ge-
neral. It is almost impossible to read a publication in neuroscience which does 
not explain that a particular molecule or structure serves a particular func-
tion. As we have already mentioned, what is conveniently called a function in 

 1 Shakespeare (Macbeth).
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biology is an emerging property that has been preserved by the mechanisms of 
evolution because it provides an advantage to the organisms that have it.2 This 
is true of all brain functions, from eating to consciousness. To explain a behav-
iour by the evolutionary advantage that it can possibly induce is to put the cart 
before the horse.

Noise and Bifurcation

We have seen (Chapter 4) that noise is a prerequisite for the system to generate 
a choice and that synaptic noise is considered the main source of noise in the 
nervous system.

At the network level, these phenomena can be amplified by bifurcation pro-
cesses, especially in networks that rely on populations of excitatory and in-
hibitory neurons interconnected randomly.3 This bifurcation phenomenon 
belongs to what physics calls chaotic processes. It is intrinsically a determin-
istic process very sensitive to initial conditions (the best known example of 
chaotic process is the metaphor of butterfly flight in Brazil that is supposed to 
trigger a storm in Texas). Associated with stochastic phenomena, bifurcation 
leads to equilibrium states that can be very far apart.

The diencephalic/ telencephalic network associates stochastic processes and 
dynamics that ensure this ability to bifurcate from one choice to another. This 
process is random at first, and then as learning progresses, the bifurcation will 
take the most likely path (the one that has been repeated the most times) and 
that will require the least energy to reach. But due to the stochastic nature of 
the network, it may happen from time to time that it takes another path and 
‘chooses’ a less interesting option.

Irrational Animals

Thus, the very basis of the apparent irrationality of behaviour is intrinsic to 
the properties of the decision- making network. This approach is much more 
satisfactory than traditional explanations because it relies only on biolog-
ical mechanisms and thus overcomes teleological justifications. Incidentally, 
it also provides an alternative explanation to individual and inter- individual 

 2 See Chapter 7.
 3 Hansel and Sompolinsky (1992, 1993).
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variability in behaviour. The variability of behaviour that results from these 
processes may provide an evolutionary advantage by allowing individuals of 
each species to be able to switch from exploitation to exploration behaviour. 
It also adds an additional reason to the various explanations of variability of 
behaviours of different individuals that remains, even if one restricts the condi-
tions of an experiment to the maximum.

Vertebrates do not behave in an optimized and standardized mode simply 
because they cannot do it. They are not able to because in order to be able to 
choose, they need this association between stochastic and bifurcation pro-
cesses. In fact, the real surprise is more that the notion of rationality emerged 
from the brain of a big ape. Why did humans invent this concept and how do 
they manage to use it (theoretically at least)?
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Reason Under Scrutiny

(Science) is one of the many forms of thought that have been developed 
by man, and not necessarily the best.1

Rationalism and Society

In Farewell to Reason, Feyerabend wrote that the rationality of our societies is 
a myth. He claims that there is always a nucleus of approximation in scientific 
theories and that the ambition of science2 to pretend to a universal cosmogony 
is a dogmatism. In other words, science is only one method amongst others 
(such as magic, religion, etc.) to explain the world and should not arrogate for 
itself the right to be the only possible way of thinking, because in doing so, it 
falls into the same pitfalls as the exclusive religions.3 This approach, borrowed 
from libertarianism, is generally rejected by most scientists. But this anathema, 
apart from the fact that it gives reason to Feyerabend on the dogmatism of sci-
ence, is based on a misreading. The philosopher does not reject science and re-
ligion back to back. According to him, science carries intrinsically an impulse 
of progress that is absent from religions. Even if science does not always reach 
its goal, the drive of scientific knowledge is to contribute towards improving 
human lifespan and quality of life. What Feyerabend is criticizing is the de-
sire of science for universality which, according to him, is a brake on prog-
ress. However, the religions to which our societies are confronted also have 
strong universalistic tendencies and hardly accept to coexist with science (and 
even less so to coexist between them). If we have to choose between a society 

 1 Paul Feyerabend, Farewell to Reason (1987). This Austrian philosopher (1924– 1994) was inspired 
by Wittgenstein and Popper. He developed his own philosophy of science based on scepticism about the 
existence of universal methodological rules.
 2 Here I use the world as a generic word to design every knowledge that is claiming to be based on 
rationality.
 3 Religions that do not accept any other mode of explanation for the world such as Abrahamic reli-
gions (Judaism, Christianity, Islam). Conversely, Asiatic religions (Buddhism, Taoism, Shintoism, etc 
...) tolerate each other to the extent that Westerners do not generally grant them the status of religion, 
but rather that of philosophy. Would philosophy be wiser than religion?
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governed by science only, with the scientific tendencies that implies, and a 
society governed by religious dogma, I think that all the examples offered by 
history and/ or recent events demonstrate that the first solution remains by far 
the best.

It is worth noting that this critical approach to epistemology is contem-
porary with the demonstration of the limits of human rationality4 by experi-
mental psychologists5 and economists.6 The question is therefore twofold: i) 
to understand the origins of rationality (even limited) and ii) why it became 
the dominant mode of thinking in our civilizations. The biologist's answer to 
the second question is that it provides an evolutionary asset. A civilization that 
constantly evolves its irrigation system by developing aqueducts, dams, and 
pumping systems is more likely to flourish than another that depends on rain-
making ritual.7 And we will not dwell on the military, but many historians have 
shown the preponderant role that the technological development of weapons 
and the brutalization of the resulting practice of war has played in both shaping 
Western civilization and ensuring its current supremacy.8

Reason and Representation

Where does this obsession with rationality, which imprints its mark on our 
daily lives, come from? We will not go back to the history of this concept that we 
succinctly addressed in Chapter 1, but rather to the neurobiological basis. Let 
us first recall what we define by reason in the context of the study of decision- 
making processes. To make a rational decision (to exercise one's reason in the 
context we are interested in) is to choose the option which will be the most 
beneficial (or the least harmful) according to the information at our disposal.

For that, one must be able:

 • to individualize oneself;9

 • to deliberate;10 and
 • to anticipate the reaction of other individuals.

 4 See Chapter 1.
 5 Herrnstein (1974); Sutton and Barto (1998).
 6 Simon (1947); Kahneman and Tversky (1979).
 7 I borrow this example from Feyerabend (1979): our confidence in rationality leads us to consider 
the rainmaking ritual as an absurdity, although the inefficiency of this method has never been scientifi-
cally demonstrated.
 8 Hanson (1990); Keegan (1996); Diamond (1997); Hanson (2002).
 9 I.e. to identify oneself as an entity.
 10 I.e. to anticipate the consequences of various possible actions.
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We humans are capable of conceiving rationality— that is, the possibility 
of recognizing optimal behaviour in all circumstances— because we identify 
ourselves as individuals and anticipate the consequences of our actions (and 
therefore we are aware of our responsibilities) and because we anticipate the 
reaction of others when they are our allies (we can thus coordinate our actions) 
or when they are our adversaries (we can thus try to deceive them).

These three capabilities did not develop at the same time during the evo-
lutionary process but stem from a fourth ability, without which they cannot 
express themselves: the capacity to construct a mental representation of the 
context. Without this mental representation, there is no possibility of individu-
alizing oneself or anticipating the consequences of our actions in the context of 
which we execute them.11

 11 Here the context indicates both the material environment (place, objects) and other individuals 
potentially involved (allies and adversaries).



How the Brain Makes Decisions. Thomas Boraud, Oxford University Press (2020). © Oxford University Press. 
DOI: 10.1093/oso/9780198824367.001.0001.

12
Mental Representation

Our life is what our thoughts make it.1

The Concept of the Cognitive Map

In 1948, Tolman2 postulated that spatial learning requires a representation of 
the environment in which a subject evolves. For example, a rat is able to locate 
a place that is not directly noticeable by using all the cues available in his envi-
ronment, regardless of his starting point.3 Since the animal cannot use a spe-
cific cue associated with the goal or reproduce a stereotyped trajectory, it must 
have a spatial representation that encodes the structure of the environment.4 
This concept has been popularized under the term ‘cognitive map’, defined as 
allocentric (independent of the position of the animal) representations of the 
environment. These maps would retain information about the spatial relation-
ships between different places, which supposes the existence of a coordinate 
system, or referential.

This hypothesis took time to be accepted. It was the result of a slow matura-
tion and many confrontations between ‘behaviourists’, who considered the or-
ganism as a machine to establish stimulus- response relations, and ‘cognitivists’, 
who considered that the subject was able to establish a representation of his 
environment. Finally, the concept of ‘cognitive maps’ has been widely accepted. 
It is now commonplace and found at the heart of memory theories.5

 1 Marcus Aurelius, Meditations (1995, for the edition consulted). The original quote was in Greek, the 
language of philosophers in this era. Since television and Internet have replaced the humanities, I would 
like to remind readers that Marcus Aurelius was the last of the ‘Five Good Emperors’ and a Stoic philos-
opher. He was probably not suffocated by his son Commodus, as the bad peplum Gladiator suggested 
(but apart from 1963's Jason and the Argonauts, are there good peplums?).
 2 Edward Chance Tolman (1886– 1959) is an American psychologist who criticized the rigid concept 
of behaviourism based only on stimulus- response association (Tolman 1948).
 3 Morris et al. (1982).
 4 In spatial navigation, we can use an allocentric framework (based on the environment) or an ego-
centric framework (center on the individual).
 5 John O'Keefe, May- Britt Mauser, and Edvard Mauser won the 2014 Nobel Prize for Medicine on 
account of their work on the neural substrate of the cognitive map.
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Psychologists describe two types of memory:  declarative and procedural 
memory.6 The first is the ability to tell an episode from one’s previous life (for 
example, what one ate at the last Christmas meal), to recall the words of a 
poem or a song, to describe the arrangement of a place that one visited several 
months ago, or kinship with family members. Procedural memory describes 
the ability to reproduce learned behaviour (for example, riding a bicycle). 
We equate this second form of memorization with the decision- making and 
learning processes that we have described so far. To learn a behaviour corres-
ponds to a sequence of successive decisions which is acquired by trial and error 
and which does not require a special representation of the environment. On the 
other hand, declarative memory is based on very different processes. Whatever 
form it takes, it undoubtedly requires the construction of a mental representa-
tion. This mental representation is likened to the ‘cognitive maps’ theorized by 
Tolman. This is a generalization of the concept that most likely follows the way 
in which this ability emerged during evolution. The primitive ability to create 
a mental representation of the environment was then diverted as new capabil-
ities developed, until the appearance of language.

The Role of the Hippocampus

In 1953, at Hartford Hospital in Connecticut, Dr. William Scoville operated 
on HM,7 who was suffering from drug- resistant epilepsy. He was testing a new 
method to suppress epilepsy which involved surgical lesion of the two hippo-
campi.8 The hippocampus is a medial telencephalon structure,9 folded at the 
base of the brain in humans (and other primates), consisting of five layers of 

 6 As is often the case in cognitive science, there is no consensus and several systems of classification 
for different types of memory are used. We also find in the literature a subdivision between implicit 
memory (which is more or less equivalent to procedural memory) and explicit memory (which is partly 
equivalent to declarative memory). This classification is often preferred by behaviourists because the 
animals they study do not speak, therefore it is hard for them to declare. In order to be exhaustive, 
there is also working memory, which corresponds to a memorization in the short term which is prob-
ably based on different physiological mechanisms. It can be declarative (a phone number to remember 
before dialing) or procedural. Since memory is not the subject of this book, readers should refer to the 
following textbooks: Cowan 1988; Baddeley 1993; Tulving 1995; Squire 2004.
 7 Originally these initials protected the identity of Henry Gustave Molaison (1926– 2008). His name 
is now revealed, but in the literature related to memory, he is generally referred to by his codename, 
‘patient HM’.
 8 This structure is related to epileptic phenomena, but the full lesion is no longer proposed. Today, 
neurosurgeons operate in two stages: an exploratory phase when several recording electrodes are im-
planted in the patient's brain in order to determine the location of the epileptogenic area, which is then 
secondarily injured. Only very severe cases resistant to all known antiepileptic drugs are treated this 
way nowadays.
 9 See  chapter 5.
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cells and divided into several regions named the subiculum, Ammon's horn 1, 
2, and 3 (generally abbreviated to CA1, CA2, and CA3), and the dentate gyrus. 
The operation was almost a total success: the patient never suffered from epi-
lepsy again ... However, he went on to become the number one subject of study 
for understanding the mechanisms of memory because he developed from that 
day on a permanent and definitive anterograde amnesia.10 HM was now un-
able to fix any new memories for more than a few seconds. He kept intact his 
old memory until 1942 (11 years before the operation), then it gradually deteri-
orated. Thus, he remembered that the United States went to war in 1941, but he 
did not remember either the end date or the way in which the war ended. Only 
his long- term declarative memory was affected: he could still perform proce-
dural learning.

This clinical case has drawn the attention of physiologists to the hippocampus. 
Its central role in memory processes has since been confirmed in many species, 
including the rodent, which is the main study model for this structure.11

In the seventies, several teams simultaneously showed that neurons in the 
CA1 region selectively increased their activity according to certain sensory or 
behavioural parameters.12 O’Keefe and Dostrovsky demonstrated that some of 
these neurons fired selectively when the animal was located in a specific loca-
tion.13 They called these neurons, each of which corresponded to a different lo-
cation, ‘place cells’. By simultaneously collecting the signal of several place cells, 
one can reconstruct in real time the path of the animal in its environment.14 
The whole population makes it possible to form a mental representation of the 
environment in which the rodent evolves and thus contributes to the creation 
of this cognitive map conceptualized by Tolman.15 Since then, the existence of 
place cells has been confirmed in other mammalian species, including bats,16 
macaques,17 and humans.18

 10 HM's case has been extensively studied by Brenda Milner and Suzan Corkin, two neuropsych-
ologists from McGill in Montréal (Milner and Penfield 1955; Scoville and Milner 1957; Penfield and 
Milner 1958; Milner 1959, 1972; Cohen et al. 1985; Freed et al. 1987; Freed and Corkin 1988; Corkin 
2002; Schmolck et al. 2002; O'Kane et al. 2004; Annese et al. 2014). Histological slices of his brain can 
be examined on the ‘Brain Observatory’ website available here: https:// www.thebrainobservatory.org/  
[last accessed 16 May 2020].
 11 For a more comprehensive approach, I recommend Memory: From Mind to Molecule (2009), and 
The Hippocampus Book (2007).
 12 Hirano et al. (1970); Vinogradova et al. (1970); Ranck (1973).
 13 O'Keefe and Dostrovsky (1971).
 14 Muller et al. 1996; Bures et al. 1997; Barry and Burgess (2014).
 15 The contribution of O'Keefe to this work gained him the Nobel Prize in 2014 (see note 5).
 16 Yartsev and Ulanovsky (2013); Rubin et al. (2014). The latter was the first to validate the concept in 
three dimensions.
 17 Hori et al. (2005).
 18 Ekstrom et al. (2003); Miller et al. (2013).
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In other vertebrates, the medial pallium forms a structure corresponding to 
a primitive hippocampus. The homology of this structure is strongly suggested 
by its biochemical and functional similarities with the hippocampus although it 
does not possess its characteristic shape. Several studies have also demonstrated 
this functional analogy by highlighting the involvement of the medial pallium 
in the construction of cognitive maps in birds, reptiles, and fish.19 Place cells 
have even been recorded in goldfish!20 It is therefore highly plausible that all 
vertebrates have the capacity to construct a representation of their environment.

The Memory Networks

Concerning HM, it may be worth mentioning that he only lost the ability to 
create new mental representations, but that he kept some of those he already 

Fig. 12.1 Hippocampus and cingular network. The hippocampus is closely 
connected to the cingulate loop (one of the subdivisions of the telencephalic loop 
in mammals) and can interact with it. It is not impossible for it to be a variant of 
this loop, but this hypothesis remains to be demonstrated. Freely adapted from 
Retailleau et al. (2012). ACC: anterior cingulate cortex; STN: subthalamic nucleus; 
VP: ventral pallidum; DM: dorso- medial nucleus of the thalamus. I have not 
shown here the complexity of thalamic architecture.

 19 Rodriguez et al. (2002).
 20 Canfield and Mizumori (2004).
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possessed. Thus, the hippocampus is involved in the network that allows the 
learning of these maps, but not in the retention of this information in the 
longterm (beyond 11 years anyway!). So, if the hippocampus is necessary to 
create new representations, there are other structures involved, especially in 
the very longterm. Sixty years of research have shown that in addition to the 
hippocampus, many other brain structures play a role in these memory pro-
cesses: different cortical areas, including the ventral part of the basal ganglia, 
insula, fornix, amygdala, hypothalamus, etc. We will not enter into detail here 
in order to stay focused on our main subject. However, the processes by which 
these mental representations are created and then memorized are still very 
controversial.21 It is enough to say that among the structures involved, some 
belong to the prefrontal, orbitofrontal, and cingulate circuits (see Figs. 9.1 and 
9.2). We have suggested that the architecture of this network is a particular case 
of the cingulate loop (see Fig. 9.3),22 but this is still a vague assumption, based 
on preliminary data23 that requires a full experimental demonstration.

 21 Literature is plethoric and theories somehow controversial. Here is a non- exhaustive list of recent 
reviews: Fouquet et al. (2010); Norman (2010); Rolls (2010); Albouy et al. (2013); McDonald and Hong 
(2013); Rogerson et al. (2014) ... I didn't even mention neurogenesis; that will bring us further away 
from our topic, but see for example: Deng et al. 2010; Nogues et al. 2012.
 22 Retailleau et al. (2011); Retailleau and Boraud (2014).
 23 Retailleau et al. (2013); Retailleau and Morris (2018).
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Mirror, Mirror!

Si le visage est le miroir de l'âme, alors il y a des gens qui ont l'âme bien 
laide.1

Introduction

All vertebrates are thus equipped with the capacity to build a representation 
of the environment, but we have already seen that this can be far from the case 
in terms of self- recognition ability. This ability has been demonstrated in only 
seven species using the mirror test. Six2 are mammals: the elephant,3 the killer 
whale,4 the bonobo, the chimpanzee, the orangutan5 and, of course, humans.6 
The seventh animal is the magpie.7 All of these species have a large brain in 
common, a large encephalization coefficient, and a cortex (or dorsal pallium) 
that accounts for more than 50 per cent of brain mass. Brain- imaging studies 
conducted in humans show that self- recognition strongly involves the hippo-
campus8 but especially the prefrontal cortex9 (or their equivalents), which are 
two structures more developed in these species than in others. However, it is 
not certain that self- recognition in a mirror is essential to differentiate oneself 
from one’s fellow creatures.

 1 ‘If the face is the mirror of the soul, then some people have a very ugly soul’, Gustave Flaubert, 
Dictionnaire des idées reçues (2008, the edition consulted here).
 2 Since I published the French edition, it looks like an eighth species, the rhesus monkey, has passed 
the test (Chang et al. 2015). It is the first monkey species to do so.
 3 Plotnik et al. (2006).
 4 Delfour and Marten (2001).
 5 Lethmate and Ducker (1973); Povinelli et al. (1993); de Veer et al. (2003) for the three species of 
great apes.
 6 Postel (1966); Papousek and Papousek (1974).
 7 Prior et al. (2008). The question remains open for other corvids and parrots.
 8 It makes sense because to be capable of self- recognition, one must be able to build a mental repre-
sentation of self.
 9 Kircher et al. (2001); Sugiura et al. (2005); Uddin et al. (2005).
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The Mirror Image

In the nineties, in Parma, Giacomo Rizzolatti's team demonstrated the exist-
ence of neurons that fire in a similar way when an animal makes a movement, 
or when the movement is carried out by a third individual. At first these imita-
tion neurons were thought to be isolated in the motor cortex of primates,10 but 
they were later identified in other structures11 and other species12 and gained 
the generic nickname of ‘mirror neurons’.13 The discovery of these neurons ex-
cited our community and has generated many hypotheses. Some regard these 
neurons as the basis of empathy,14 the origin of desire, while others consider 
them the basis of civilization, nothing less! However, most of these theories, as 
attractive as they are, have little clear supporting experimental data. But there 
is at least a very high probability that these neurons are involved in imitation 
learning processes because they have been found in species that practise this 
type of learning.15 This is only a correlation rather than causal evidence, be-
cause nobody has yet managed to show that by removing this property, the 
ability to learn by imitation will also be removed. We must therefore remain 
cautious about their true involvement in this type of learning, but they do how-
ever remain serious candidates. These precautions having been taken, the ex-
istence of these neurons challenged the concept that in order to be aware of 
one’s identity it is absolutely essential to be able to differentiate oneself from an-
other. If the mirror neurons excited the neuroscientists so much, it is because 
the majority of neurons (of the motor cortex in particular) only activate them-
selves when it is the subject who performs an action. The nervous system of 
the species endowed with these imitation neurons is thus able to differentiate 
an action carried out by the individual and another realized by others. Thus, 
identifying oneself as an individual does not necessarily mean being aware of 
it. When in doubt, we need to position nearly all mammals and birds (at least 
songbirds) into the group of animals that can identify themselves as individ-
uals. This solution is compatible with our initial intention to free ourselves as 
much as possible from the concept of consciousness, a concept which is always 

 10 Gallese et al. (1996); Rizzolatti et al. (1996); Rizzolatti et al. (1999).
 11 Fabbri- Destro and Rizzolatti (2008); Caggiano et al. (2009).
 12 Prather et al. (2008).
 13 I am always amazed by the fascination for the mirror among scientists. They could have been called 
imitation or mimicking neurons, but it seems that the influence of mythology (Narcissus), folktales 
(Snow White), or psychoanalytic theories imposes this term as soon as the notion of identity is at stake.
 14 Preston and de Waal 2002.
 15 Principally birds and mammals. Learning by imitation is linked to play; see Animal 
Play: Evolutionary, Comparative, and Ecological Perspectives (1998).
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problematic in cognitive science, since it makes the notion of the individual in-
dependent of self- awareness.

Recognition Processes

According to our approach, individualization and self- recognition are emer-
ging processes of the prefrontal loop which is one of the modules of the 
telencephalic network we have described (Fig. 9.2). These processes are thus 
subject to the constraints and limitations of the network. We can infer, for ex-
ample, that the 6 to 12 months necessary to acquire self- recognition in a mirror 
for humans16 corresponds to the learning time of the neuronal populations 
involved. We have all experienced situations where one wonders ‘who is this 
person who comes in front of me?’ in public places with wall mirrors, before 
realizing that it was actually ourselves. It is very likely that these litigious cases 
correspond to situations associated with ambiguous information, where the 
noise switches the system from one state to another and transiently produces a 
wrong decision.17

 16 Wallon (1934).
 17 It is probably worth remembering that we consider that any process of discrimination between 
several options is a decision. To decide that the image that a mirror sends me is mine rather than that of 
another is thus an unconscious decision.
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Anticipation and Utility

A man's worth is no greater than his ambitions.1

Introduction

In the previous chapter, I assumed that the processes that make it possible for 
species to construct mental representations and bring about individualization 
are based on processes similar to those that make it possible to decide. But what 
about those processes that allow us to anticipate?

Two processes interact: first of all we need to introduce the concept of delay 
and therefore temporality, and then we need to introduce a value system.

Time Is Money

Temporality is a complex topic that requires a full textbook to do it justice. 
Here therefore, we will leave aside the question of the internal clock: how does 
the brain take into account the passing of time? How many internal clocks are 
there? What structures are involved? These questions go far beyond the scope 
of this essay.2 We will focus instead on anticipation and projection into the 
future that do not necessarily require taking into account the clock problem. 

 1 Marcus Aurelius, Meditations.
 2 To my knowledge there is no comprehensive work on this subject (the closest is maybe Buser and 
Debru 2011). There are several internal clocks, more or less coupled, that are controlled by the neuro- 
hormonal system (and we do not even mention here the ‘genetic’ clock that controls the lifespan of an 
individual and aging). One of the best known is the circadian clock that controls the sleep- wake cycle 
that already exists in insects. In vertebrates it is generated by a network involving the hypothalamus and 
the pineal gland (Harmer et al. 2001; Koike et al. 2012; Woller and Gonze 2013). For shorter time scales 
(which allow us to estimate time in hours, minutes, seconds, or smaller fractions), the mechanisms are 
not well known (Buhusi and Meck 2005), but it is likely that the cerebellum as well as the cortex and 
basal ganglia (hence the telencephalic loop) play an important role (Rao et al. 1997; Harrington et al. 
1998a; Harrington et al. 1998b; Bueti et al. 2008). It is assumed that the system relies on several oscil-
lators distributed in several structures that synchronize ad hoc in case of necessity without the under-
lying mechanisms and the exact nature of these oscillators being well determined (Gupta 2014).
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Indeed, if many consider that in order to anticipate it is necessary to keep a rep-
resentation of time, alternative theories postulate that we need nothing more 
than a decreasing memory system based on the same mechanisms as those 
of habituation.3 It is the decrease in the activity of neuronal populations that 
would manage the notion of the passage of time between two successive events. 
This idea, which remains to be demonstrated, is interesting however, because it 
comes close to a property of the process of evaluating the consequences of our 
actions, which we call temporal devaluation or temporal decay. This concept 
describes how the value of a reward evolves with the time that separates one 
from getting it.4

When Rats Anticipate the Future

It is thus accepted that the nervous system knows how to manage time (in the 
form of a clock or in the form of a decreasing function). But is it able to generate 
anticipatory representations of the future? Since the early 1950s, experimental 
psychologists have observed that when a rat is involved in an experimental task 
involving choices, it moves its head alternately in the direction of the various 
possible options.5 They called this behaviour ‘vicarious trial and error’ because 
they postulated that it corresponded to behavioural evidence of the cognitive 
processes of anticipatory deliberation (comparison of the different possible 
options available). Among the arguments in favour of this hypothesis, one of 
the most convincing was that the frequency of head movements decreases as 
learning progresses, and then disappears when the performance of the animal 
is optimal.6 Moreover, all processes (lesions, administration of drugs, etc.) that 
interfere with learning, also interfere with these processes.7

Due to a lack of evidence, this concept was forgotten until electrophysiology 
brought it back into consideration. During these episodes of vicarious trial 
and error, the place cells of the hippocampus and the orbitofrontal cortex were 
alternately activated as if the animal had made the different trajectories suc-
cessively several times.8 The rat’s brain was therefore able to build the mental 

 3 The process of gradually decreasing the intensity of a response to the repeated or prolonged presen-
tation of the stimulus that triggered it.
 4 A good example of this is that if I ask you if you would prefer to receive 100 pounds today or 120 
pounds in six months, most of you would probably choose the first option, even though the inflation 
rate of recent times has never reached the staggering figure of 20 per cent per year (even with Brexit!).
 5 Taylor and Reichlin 1951; Muenzinger 1956).
 6 Goss and Wischner (1956); Hu and Amsel (1995); Schmidt et al. (2013).
 7 Blumenthal et al. (2011); Retailleau et al. (2013); Amemiya et al. (2014).
 8 Papale et al. (2012); Steiner and Redish (2012).
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representation of the path it had to perform for each option. This demonstra-
tion has not yet been replicated in other species, but there is no reason to be-
lieve that it is different in other mammals or even in other vertebrates.

The structures involved are the same as those that create and maintain 
mental representations. It is highly likely that the orbitofrontal circuit (see 
Fig. 9.2) plays a role, even if the scientific evidence for this still needs to be 
obtained. The processes involved in the selection of an option by the nervous 
system are based on processes of competition within the telencephalic loop.

Everything Has a Price

Anticipating is one thing, but economists have taught us that in order to be able 
to choose, one must attribute utility to different options.9 This utility is subjec-
tive and only reflects the subject's preference for an option, but rationality can 
only be defined if the different options are evaluated according to preference. 
The eighties played a seminal role for the introduction of this question in the 
field of neuroscience. It started with Bill Newsome and Antony Movshon, who 
demonstrated that the activity of neurons in the middle temporal visual area 
(MT) of the cortex can be correlated with the decisions made by an animal.10

Simultaneously, Wolfram Schultz showed that the dopaminergic neurons 
of the Substantia Nigra pars compacta and the Ventral Tegmental Area play 
a central role in stimulus- response association processes.11 But he, and other 
teams, continued to dissect the properties of the responses of dopaminergic 
neurons during learning and decision- making processes. They modified their 
protocol by manipulating the contingency rules (see Fig. 14.1).12 The different 
stimuli presented on the screen no longer predicted the administration of a 
reward a few seconds later, but they were associated with probability. In eco-
nomic terms, this varied the expected value (Ē) of the reward. By recording 
dopaminergic neurons, as they had done previously, Schultz and his colleagues 

 9 See Chapter 1 (Bernoulli 1738; Smith 1778; Samuelson 1938; Houthakker 1950). The neurosci-
ence literature, which is often less sharp on economic concepts, often confounds value, expected value, 
and utility. I am not sure that the nervous system makes the difference, anyway. Let's remind ourselves 
that utility is the subjective preference I give to several options (for example, I personally prefer Islay's 
Scotch to other ‘single malt’, and ‘single malt’ to ‘blended’ whiskies, so I attribute a higher utility to the 
first than to the second and to the second than to third); the expected value is utility (or value) times the 
probability of obtaining the option (see Fig. 1.1 in Chapter 1).
 10 See Fig. 3 in Chapter 2; see also Newsome et al. 1989.
 11 See Fig. 6.1 in Chapter 6; see also Schultz 1998b).
 12 For the introduction of this concept, see  chapter 1. Let's briefly remind that contingency designates 
the probability that associates a conditional stimulus with an unconditional one (here a reward).



Everything Has a Price 95

showed that the response of dopaminergic neurons to the presentation of 
visual stimuli varied linearly according to the expectation of the rewards asso-
ciated with these symbols.

Dopaminergic neurons project significantly onto the striatum, suggesting 
that this key structure of the telencephalic loop should encode the same infor-
mation.13 Subsequently, using ‘two- armed bandit’ paradigms, other teams have 
shown that dopaminergic and telencephalic neurons also encode utility during 

Fig. 14.1 Dopaminergic neurons encode the expected value of reward. This task 
is very similar to that shown in Fig. 6.1. (A) Animals have been trained to follow 
the appearance of cues on a screen. Different cues predict the administration 
of a reward (a few drops of fruit juice) with different probabilities (from 0 to 1). 
(B, C, and D) The amplitude of the response of dopaminergic neurons to the 
presentation of the cues (B and C) is proportional to its expectation (C). From 
Fiorillo et al. (2003).

 13 Apicella et al. (1992); Apicella et al. (1998).
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decision- making processes.14 By dissociating the action to be performed from 
utility, it has been shown both in primates and in humans that there is indeed 
competition between populations that code for each of the proposed options, 
and that it is the population that ‘wins’ this competition that decides the chosen 
action.15 Thus, by recording the response of GPi neurons, the main output of 
the basal ganglia, it is possible to predict the choice made by the subject, even 
when he chooses the least interesting option.16

Since then, many studies have shown that utility17 is encoded in the orbito-
frontal loop,18 the prefrontal loop,19 the cingulate loop,20 and the amygdala.21 

 14 Samejima et al. (2005); Morris et al. (2006).
 15 Pasquereau et al. (2007); Palminteri et al. (2009).
 16 Garenne et al. (2011).
 17 Or expected value ... neurons ‘dont care’.
 18 Gallagher et al. (1999); Kobayashi et al. (2010); Sescousse et al. (2010); Rudebeck et al. (2013).
 19 Rich and Wallis (2013); Vassena et al. (2014).
 20 Vassena et al. (2014).
 21 Rich and Wallis (2013); Rudebeck et al. (2013).

Fig. 14.2 Networks of rationality. The hippocampus and the cingulate 
loop elaborate a mental representation (cognitive map) of the situation, the 
orbitofrontal loop projects the subject into the context and evaluates the 
options, and the prefrontal loop chooses. Naturally, this representation is very 
symbolic: the boundaries between the different loops are fuzzy and not fully 
segregated.
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These studies have confirmed the distributed nature of the process between 
different networks of the telencephalic loop.22

Mise en abîme

The previous three chapters have demonstrated that individualization and an-
ticipation of the consequences of own actions, the processes underlying the 
concept of rationality when applied to oneself, are supported by one or more 
networks of the telencephalic loop. They should operate on principles similar 
to decision- making processes, of which they each ultimately represent a partic-
ular case. We have discussed in Chapter 9 the possibility of a hierarchy in the 
functioning of these processes. When we address the problem of rationality 
we can organize it in the manner of a ‘mise en abîme’: the limbic loop builds a 
representation of the environment in which the orbitofrontal loop projects the 
subject and evaluates the possible options, while the prefrontal loop decides 
which option to choose (see Fig. 14.2). Each of these loops is subject to the 
same constraints and is likely to bifurcate occasionally to less ‘rational’ options 
because of the stochastic processes involved:23 to choose the wrong represen-
tation (it is not me in the mirror) or the wrong option (the one whose utility is 
the weakest). If he can talk, the subject will just have to say: ‘I do not know what 
went through my head!’

 22 Samejima and Doya (2007); Guthrie et al. (2013).
 23 See Chapter 10.
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The Grandmaster and the Playmates

Guess a number from zero to 100, with the goal of making your guess 
as close as possible to two- thirds of the average guess of all those partici-
pating in the contest.1

Introduction

Rationality is not limited to the ability to evaluate the consequences of one’s 
actions alone, but also to anticipate those of others. Compared with previous 
capabilities addressed in this text, the number of species gifted with this ability 
is drastically reduced. Theory of mind2 is an almost exclusive characteristic of 
homo sapiens. Chimpanzees are not far off:3 these animals understand inten-
tions and are able to evaluate the perceptions of others, but they lack the ability 
to understand false beliefs (where will Maxi search for the chocolate?).

The Beauty Contest

In the thirties, John Maynard Keynes4 found that across all financial markets, 
stock prices depended on the perception of market participants rather than 
their intrinsic value. He concluded that the best strategy for an investor was 
to guess what others were thinking. To illustrate his reasoning, he chose as 
an example the beauty contests organized by British newspapers such as the 

 1 Challenge proposed in the Financial Times in 1997 by Richard Thaler (Nobel Memorial Prize in 
Economic Sciences in 2017). To be fair, in the French edition my example of the Keynes beauty contest 
came from a 1983 sample of Jeux et Stratégie, the ultimate French geek publication of the era (in fact 
‘nerd’ was more used than ‘geek’ at this time to designate the population of science- / computer- / comic- 
oriented young people).
 2 See Chapter 7.
 3 See Chapter 7; see also Call and Tomasello 2008.
 4 British economist who was born in 1883 and died in 1946. The Keynesian macro- economy, of which 
he was the founder, postulates that the deregulation of financial markets does not lead to an economic 
optimum. Keynes advocated regulation of the markets. His long- influential vision was rejected by fi-
nancial liberalism in the eighties. The 2008– 2009 crisis generated a renewed interest in his theories.



The Beauty Contest 99

Sunday Times of the Edwardian era:  they proposed a panel of one hundred 
photographs of ‘playmates’ from which readers (necessarily male, suffragettes 
had not yet won their case) had to choose the six they considered the most 
beautiful. The winner of the contest was the one whose choices came closest to 
the six most chosen pictures. Keynes proposed to standardize his approach by 
using a mathematical variant of the test, which nevertheless retains its beauty 
contest name with reference to its origin. In this form, the contest consists of 
asking a group of subjects to choose a number between 0 and 100, indicating 
that the winner will be the one who finds the value closest to two- thirds of the 
average of the proposed values. There is no single solution because the value 
depends on the level of reasoning (see below) of the majority of the group 
tested. On the other hand, there is a Nash equilibrium5— that is to say a value 
for which all the participants win— it is the value zero. This is the solution to-
wards which a group converges if it is made to play repeatedly. But whatever 
the solution, one interesting facet of the game is to provide a classification of 
the participants into several levels of reasoning.6

Level 0: players choose randomly.
Level 1: players assume that the majority of other players choose randomly, 

so that the average will be around 50 and the value to reach will be 
around 33.

Level 2: players make the assumption that the majority of the other players 
are Level 1 and therefore the value to reach is around 22, etc.7

There is no absolute level of reasoning. In order to obtain a winning strategy, 
one must be able to evaluate the average level of reasoning of the other partici-
pants, that is, master theory of mind.

This protocol has recently been adapted for fMRI.8 The authors showed that 
the activity of the medial prefrontal cortex9 was positively correlated with the 

 5 John Forbes Nash Junior (1928– 2015) was the Nobel Memorial Prize in Economic Sciences winner 
in 1994. He was one of the founders of game theory. His life is romantically told in Ron Howard's biopic 
A Beautiful Mind (2001).
 6 It seems that this classification was proposed by Rosemarie Nagel for the first time (Nagel 1995).
 7 So? Where do you stand in the game proposed in the introduction? In the original contest, the 
Financial Times got 1,382 contestants. The average guess was 18.9, thus the winning value was 13. This 
meant that the average behaviour was at the second level of thinking, where the winner had to go up to 
a third level of thinking to win. Regarding the French version of 1983, the majority of readers who an-
swered the competition had used a fourth level of reasoning and therefore the winners had to use a fifth. 
Please don’t infer from this that French people have a higher average level of reasoning; it is more likely 
to be a bias due to the fact that the publication was geared toward a population of geeks.
 8 Coricelli and Nagel (2009).
 9 This is the part of the prefrontal cortex located inside the hemispheres in the median sagittal plane.
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level of reasoning of the subjects. This confirmed what has long been assumed, 
that the ability to attribute intentions to (and account for) others is correlated 
with the development of this structure.

The Brain of the Shogi Grandmaster

The Japanese developed their own version of the chess game around the six-
teenth century. They called it shogi. This game presents with a greater mobility 
and the possibility of reusing the captured pieces of the opponent in his own 
camp. It results in a much more open game than the Western version, which 
makes more use of strategic intuition than memorization of combinations. It 
should be noted that players at international level insist on the Zen10 aspects 
of their practice: the best shot to play comes to them intuitively. This is why a 
number of Japanese researchers use it to study the neurobiological basis of the 
strategic decision- making in grandmasters of the game. Their work shows in 
particular that during the phase that precedes the generation of the movement 
of a piece, the quality of the chosen strategy11 was positively correlated with the 
activation of the lateral dorsal prefrontal cortex and the caudate nucleus, i.e. 
the part of the striatum that belongs to the same telencephalic loop.12

Once again, structures belonging to the telencephalic loop are at the origin of 
the capacity to anticipate the actions of others and to judge their rationality. The 
prefrontal cortex is the cortical zone that has the greatest expansion in humans 
compared to other primates.13 There is no formal data regarding the expansion 
of associated subcortical structures, but according to the scale laws used in pri-
mates, it seems that the progression is linearly proportional.14 It is therefore pos-
sible to imagine a scenario in which the development of the prefrontal loop has 
allowed the emergence of the ability to anticipate the behaviour of others and 
allowed the human ape to master theory of mind. So, because of the constraints 
of the network, which we have already described, even if humans can become 
experts in anticipating the thoughts of others through learning, due to the na-
ture of the processes implemented, this is not completely foolproof.

 10 Japanese Zen is a practice that insists on ‘unthinking’. The Zen master is supposed to act without 
thinking. From my Cartesian jingoism, I have long thought it was folklore, but I did begin to wonder if, 
in the end, it does not rely on training the telencephalic loops without activating consciousness.
 11 Assessed using contests similar to the chess game we can find in Western newspapers: ‘the white 
plays and wins in 3 moves’.
 12 Wan et al. (2011).
 13 Van Essen and Dierker (2007).
 14 Herculano- Houzel (2009, 2012a).
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Thus, although rationality is at the core of our concerns in Western culture, 
our mammalian brain is not armed to exercise it fully. We are able to consider 
different options, to evaluate the one which is the most rational, but we are not 
always able to choose it, partly because of the stochastic nature of the func-
tioning of our nervous system. This element of randomness is initially a signif-
icant evolutionary advantage since it is the engine from which exploration of 
various options is carried out, enabling us to make decisions, even in times of 
uncertainty. However, this ability then goes on to turn against us in our quest 
for ultimate efficiency.

Finally, the remaining question is: ‘Is it rational to want to be rational at all 
costs?’ Is this quest not doomed from the start, since we know that we have 
limits?
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The Machine- Learning Approach 

of Reinforcement Learning

We are machines, stamped out like bottle caps. It’s an illusion that I- I 
personally- really exist, I’m just representative of a type.1

Introduction

Our approach, which combines neurophysiology, computational neurosci-
ence, and evolutionary approaches, has led us to postulate that whatever the 
context, decision- making processes are generated by structures that share a 
similar architecture and operate in a homologous way. However, this approach 
is far from consensual. There is a strong tendency in cognitive neuroscience to 
organize these processes into several distinct and hierarchical systems.

This particular approach is inspired by machine learning. The initial goal 
of this branch of artificial intelligence, which appeared in the middle of the 
twentieth century, was to develop and implement algorithms that allow a ma-
chine to learn. Originally, they were computers or more or less autonomous 
robotic automata. As artificial intelligence has developed and cross- fertilized 
with neuroscience, it has begun to be used to model the learning and decision- 
making processes for biological agents, broadening the meaning of the word 
‘machine’. Theoreticians of this discipline define several categories of learning, 
but we will cover here only those which are related to reinforcement learning.2

 1 Quote from Dick, Philip K. (1996) [1968]. Do Androids Dream of Electric Sheep?. New York: Ballantine 
Books. ISBN 0- 345- 40447- 5. by Philip K. Dick (1968). This classic of new wave science fiction describes 
a universe where corporations are able to create android creatures similar in every way to humans. This 
is an opportunity for the author to ask the question about what defines humanity? I have always con-
sidered that the title is one of the best a novel can carry. Unfortunately, it has since been renamed Blade 
Runner following the success of the movie adaptation (1982). It's a shame that it has lost in poetry what 
it has gained in brevity.
 2 See Chapters 2 and 4.
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The Markov Chain and Markov Process

To understand how these algorithms work, it is necessary to explain first the 
Markov chain (see the example in Fig. 16.1A). This is a discrete stochastic pro-
cess that defines the transition from a state (E) at a given step (t)3 to the next 
step (t+1) by a probability function independent of the system history.

Reinforcement learning algorithms formalize the behaviour of an agent in 
an environment on which it can act according to a Markov decision- making 
process (see Fig. 16.1B). At each step (t), the interaction between the agent 
(or subject) and the environment defines a state (E). From this state, the agent 
must choose an action (A) between several possible options. These actions de-
fine a new state at t+1 (which can be the same as the one at t, or a different 
one). It can produce (or not) a reward value (R). In this context, this term does 

Fig. 16.1 (A) Markov chain. In this example, there are three possible states 
(E1, E2, and E3) for the system. The Markov chain defines the probabilities of 
transition from one state to another. Note that the sum of the probabilities of the 
possible transitions for a given state is always 1 and depends only on the current 
state. Also note that, in this example, the states are not equiprobable: E1 and E2 are 
much more likely to occur than E3. (B) The Markov decision- making process. 
In this example, the action (A, in grey) determines the transition probability to 
the new state. It is thus the sum of the transition probabilities from an action that 
is equal to 1. Here, the actions A1 and A3 have variable outcomes whereas A2 is 
deterministic: it automatically leads to the state E2. States are characterized by the 
reward (R) they provide (here +1, - 1, or 0). Note that a given state does not allow 
all possible actions.

 3 We can talk about time or iteration.
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not necessarily have a positive connotation because the reward can be posi-
tive or negative. The probability of the next state now depends on the action 
(A) chosen and not on the state (E) at time t.4 In a learning process, the contin-
gency rules between actions (A) and states (E) are unknown at the beginning. 
It is therefore the role of the algorithm to discover them as quickly as possible, 
in order to reach an optimum policy.

‘Model- Free’ Reinforcement Learning Algorithms

In the eighties, Sutton proposed the first real machine- learning algorithm 
called temporal difference (TD) learning.5 The principle consists of starting 
from a situation where all available actions (A1, A2, ... An) from a given state 
are equiprobable. The function that defines the choice of an action from a state 
is called policy (π). To evaluate the consequences of this policy, TD learning 
uses ĒAi(t), an estimate of the expected value of the action, between - 1 and 1,6 
which is associated with each action Ai(t).7 ĒAi has a value of 0 at the begin-
ning of learning. At each step t, the choice of Ai(t) will be a function of ĒAi. The 
algorithm will preferentially choose the action of which ĒAi is the highest. If all 
utilities are identical, the choice will be random. Once this choice is made, (at 
t+1), the system computes the temporal difference δ(t) which corresponds to 
the difference between Ri(t+1), the reward actually obtained, and the expected 
value ĒAi associated with the chosen action Ai(t), all multiplied by a con-
stant. This variable δ(t) is also often called the prediction error, which has the 
merit of being less ambiguous than temporal difference. If δ(t) is positive (Ri 
(t+1)>ĒAi(t)), then ĒAi(t+1) is increased. If δ(t) is negative (Ri(t+1)<ĒAi(t)), 
then ĒAi(t+1) is decreased. If δ(t) is zero (Ri (t+1)=ĒAi(t)), then ĒAi(t+1) is 
not modified. Thus, as steps proceed, the system will converge to a state where 
the most interesting actions will be chosen and the others discarded. In the ex-
ample given in Fig. 14.2, after learning, the system would choose A2 (whose ex-
pected value ĒA2=1), when possible, preferentially to A1 (ĒA1=0.5), and avoid 
A3 (ĒA3=- 0.8).

Temporal difference learning and similar algorithms are called ‘model- free’ 
learning algorithms. Their shared properties is to track a single parameter: an 

 4 But A is not fully independent of E because for some states not all actions are available.
 5 For temporal difference learning, see Sutton and Barto (1998).
 6 It can also be varied between 0 and 1 in which case the starting value will be 0.5.
 7 It may be useful to remind ourselves that the expected value is the mean of the rewards (R) the sub-
ject has obtained so far by choosing this action.



108 16. The Machine-Learning Approach

estimate of the expected value. The difference between the algorithms relies on 
the parameters to which the expected values are attributed (the average expec-
tation of an action or that of the states to which the action leads).8 Amongst 
them, we can distinguish the greedy algorithms,9 which automatically select 
the action associated with the largest estimated expected value, and the sto-
chastic algorithms (‘softmax’ types), which introduce a random process to 
allow the system to sometimes choose the lower value options and thus to 
explore all possibilities. This last class of algorithms is widely used in biology 
because it is closer to the real behaviour of biological agents that alternate ex-
ploration and exploitation behaviour (see Chapter 2).

The Actor- Critic Model

Using this formal description, the actor- critic model that has been proposed 
represents this approach in symbolic language. It breaks down an agent into 
two elements: the actor who designates the process that chooses the policy and 
the critic who evaluates the consequences (see Fig. 16.2).

Model- Based Learning Algorithms

The other family of algorithms that interests us here differs from the previous 
one through stored information. It is thus the nature of the critic that is dif-
ferent between these two families of algorithms. In model- based algorithms, 
the whole history of the system is kept in memory. The actor is provided with 
an anticipatory representation of the cascade of states that he can explore in the 
following moments, not just at t+1. It will therefore be possible to revaluate the 
estimated expectation of each of its successive actions. If we take the example of 
Figure 16.1B, a ‘model- based’ enhancement algorithm will learn to choose A1 
rather than A2 because the E2 state to which A2 leads gives no alternative but 
to choose A3, which has eight out of ten chances of ending up with a negative 
reward. After learning, the system will eventually result in a stable sequence in 
which the system will preferentially select A1 to alternate between the states E1 

 8 Similar to Q- learning and state– action– reward– state– action (SARSA) learning. For details see 
Sutton and Barto (1998).
 9 Sometimes called ε- greedy.
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and E3. The estimated expected value of this sequence will be 0.5 which is the 
highest value in the longterm.

This example illustrates that model- based learning can lead to better solu-
tions than ‘model- free’ learning, but it requires many more resources and takes 
longer to implement.

Fig. 16.2 The actor- critic model for a ‘model- free’ algorithm. The agent is 
decomposed into two processes: the actor corresponds to the decision- making 
process: At time t, it chooses an action Ai(t) from those available according to its 
policy π (see the box). This action will bring the system (agent- environment) into 
a new state Ei(t+1) associated with a reward Ri(t+1). At t, the critic provides the 
expectation ĒAi(t) of all the available actions and evaluates at t+1, the temporal 
difference δ(t) that will be used to revaluate ĒAi of the chosen action Ai. α is a 
constant that defines the amplitude of the revaluation of ĒAi.
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The Decision- Making Engine

A critic is a man who knows the way but can't drive the car.1

Dopamine=Prediction Error

Reinforcement learning algorithms, more specifically actor- critic models, are 
currently very successful in the field of decision- making. They are notably re-
lated to properties of dopaminergic neurons not yet addressed in this book.

Indeed, we have seen that dopaminergic neurons respond when the subject 
receives a reward or when the subject associates a conditional stimulus with 
the reward (see Chapter 6, Fig. 6.1) and that this response to the stimulus is 
proportional to the utility function of the reward (see Chapter 14, Fig. 14.1). In 
fact, dopaminergic neurons behave exactly like a process that computes tem-
poral difference (Fig. 17.1). The amplitude of their response when the reward 
is administered is proportional to the difference between the expected utility at 
time (t) and the reward actually obtained at the moment (t+1), i.e. the temporal 
difference. This data was obtained with classical Pavlovian conditioning tasks 
during which the animal had no action to perform in order to obtain a reward.2 
Later these findings were largely confirmed by other studies using operative 
tasks such as the two- armed bandit.3

To be exhaustive, I must say that the exact nature of the signal produced 
by dopaminergic neurons is still debated.4 Some postulate that their activity 
is correlated to the effort required to perform an action,5 others to the novelty 
of a situation or a stimulus.6 The approach that I have adopted here allows me 

 1 Quote from Kenneth Tynan, a British theatrical critic I had never heard of. I have to confess that 
I found this quote thanks to a search engine.
 2 Fiorillo et al. (2003).
 3 Morris et al. (2004); Morris et al. (2006).
 4 Caplin and Dean (2008); Rutledge et al. (2011).
 5 Salamone and Correa (2012); Nunes et al. (2013).
 6 Zink et al. (2004).
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to free myself from it. Indeed, this debate exists only if one has, consciously or 
unconsciously, a teleological vision of biology in which functions predefined 
by a somehow abstract determinism are attributed to networks or molecules. 
Our approach considers a system in which processes emerge from the system 
without predefined functions; we do not care if the system we study has only 
one function or several ... It seems to me more plausible that it has several. So, 
for us, dopamine can indeed produce a signal similar to a time difference and 
can also, under certain conditions, play a role in the detection of new stimuli or 
the quantification of the effort to be produced.

Fig. 17.1 Dopaminergic neurons encode the temporal difference. (A) The task 
is the same as that in Fig. 12.1. (B, C, and D) The amplitude of the response of 
dopaminergic neurons to reward (continuous curve) or no- reward (dotted lines) 
outcome is proportional to the temporal difference δ(t) (D). Note that the slope 
of the response of dopaminergic neurons is less pronounced for the response to 
no- reward, than reward outcome responses while the two lines are parallel for 
theoretical δ(t). Note also that for the purposes of the experiment, reward was 
sometimes not administered after a signal that predicted it with certainty. But the 
ethics is safe because, on the other hand, animals sometimes received a reward 
after a stimulus that normally announced a certain absence of reward (after 
Fiorillo et al. 2003).
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Is the Telencephalic Loop an Actor- Critic System?

Once the observation that dopaminergic neurons transmitted utility7 and be-
haved as a temporal difference signal had been identified in the mid- nineties, 
the analogy between the actor- critic model and the telencephalic network was 
proposed.8 This approach attributes to one or more structures of the network 
the role of actor, and to another the role of critic. Their authors thus substitute 
two or three equations that can be correlated with neurobiological (e.g. fMRI 
signals) or behavioural parameters in various learning and decision- making 
tasks to the complexity of the biological substrate. This approach has been 
very successful. It has enabled identification of the structures involved in these 
processes and the noisy nature of decision- making processes. The decision- 
making algorithms that best describe these parameters are usually stochastic 
algorithms.

There is, moreover, no major incompatibility with their conclusions and 
ours. If one applies the symbolism of the actor- critic model to the telencephalic 
system as we have described it up until now (see Chapter 8, Fig. 8.2), we can 
propose as a first approximation that the telencephalic network fulfils the role 
of the actor,9 while the dopaminergic neurons play the role of interface be-
tween the critic and actor. They transmit a utility function at t and the temporal 
difference δ(t) at t+1. To take this aspect into account, it is enough to slightly 
modify the initial model and insert a critic module between the reward and 
the dopaminergic neuron (see Fig. 17.2). This does not modify the dynamic 
properties of the telencephalic loop. The only modification is that reinforce-
ment learning is no longer done according to a binary mechanism— presence/ 
absence of reward— but according to a scalar quantity that varies between - 1 
and +1. This signal has two advantages. On the one hand, it directly provides a 
scalar when anti- Hebbian learning is necessary (if it is negative, then the gain 
of the activated M- Str synapses is decreased). On the other hand, there is no 
need to boundary artificially the gain (see Chapter 4), as when δ(t) is zero, it no 
longer changes.

However, this analogy has to be considered carefully. First of all, if we are 
able to describe the dynamic properties of the actor network precisely enough, 
there is currently no sufficiently accurate anatomo- physiological data to pro-
duce an equivalent of the critic network. What we can say is that it must involve 

 7 Schultz et al. (1997)
 8 Houk et al. (1995); Doya (2000); Daw et al. (2005); Daw et al. (2006); Schultz (2006); Daw (2007); 
Samejima and Doya (2007); Humphries et al. (2012); Khamassi and Humphries (2012).
 9 In lower vertebrates the diencephalic loop is substituted for the telencephalic one.
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the dopaminergic neurons of the Substancia Nigra pars compacta and Ventral 
Tegmental Area and therefore probably the areas connected to them. Among 
these, we have already presented some:  the striatum of course, with which 
these structures are connected in both directions, but also the ventral part of 
the globus pallidus. There are also others of which we have not yet spoken, in-
cluding the amygdala, the lateral habenula, and mesencephalic structures such 
as the pedunculo- pontine nucleus and the raphe nuclei. The network must 

Fig. 17.2 The telencephalic network adapted to the actor- critic model. The 
architecture of the telencephalic network is not modified as compared to the 
initial one (Fig. 8.2). It fulfils the role of the actor. It chooses an action in response 
to a state Ei(t) at time t. It is the architecture of the loop that determines the 
followed policy. In this case the behaviour of the loop can be fitted with a softmax 
type algorithm. On the other hand, the dopaminergic neuron (SN) no longer 
codes directly Ri (t+1), the presence or absence of the reward at t+1, but the 
temporal error δ(t). This is generated by a critic network embedded between 
the reward and the dopaminergic neuron. It is therefore δ(t), and no longer 
the presence or the absence of reward, which will modify the Hebbian learning 
processes at the cortico- striatal synapses (M- Str).
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probably also involve other structures that are connected to them: notably the 
orbitofrontal cortex, the anterior cingulate cortex, and the hippocampus. We 
know that the activity of the three structures is correlated with reward, utility, 
or temporal difference.10 Some of these structures are part of the telencephalic 
network, to which has been attributed the function of the actor, therefore it ap-
pears difficult to clearly segregate the two processes.

The nature of the signal propagated by the dopaminergic neurons at the 
initial step is another pitfall. It is relatively established that dopaminergic 
neurons behave in a homogeneous way. They cannot therefore provide the 
utility associated with each available action, but only an average utility of all 
the possible actions.11 If one remains stuck on a rigid formalism, this ques-
tion remains insoluble. But our approach shows that the gain of cortico- 
striatal synapses (M- Str) is specific and proportional to the utility of each of 
the actions for which a population of striatal neurons is coded. The difference 
between the options is thus already embedded in the actor network. It under-
lines the limits of the complete segregation of the two processes to two fully 
segregated networks.

On the other hand, the time dimension that we have not taken into account 
up until now posits a still unsolved problem:  the delay between the action 
performed and the reward provided. If we consider that δ(t) allows readjust-
ment of the weight of the cortico- striatal synapses,12 it is necessary to add to 
the standard RL mechanisms another which allows it to keep a memory of the 
activated synapses. This is referred to as eligibility trace.13 It seems that the an-
swer exists in the phenomenon of time- dependent plasticity processes that 
have been studied for more than ten years in the striatum, but there is still no 
consensus.14

Convergence of Connectionist and Automatic Approaches

The model- based approach has been introduced relatively recently in the 
field of cognitive neuroscience. It shares many analogies with the concepts of 

 10 For review, see Haber and Knutson (2010).
 11 Morris et al. (2006).
 12 It could be inferred that the dopaminergic signal transmitted at the time of the presentation of the 
stimuli plays this role, but this solution would simply shift the learning process. This artifice also raises 
another problem which is that of the way the critic learns. It is very likely that the striatum plays a de-
termining role in the evaluation function and as such, it must be able to integrate δ(t) to revise its utility 
functions (and thus plays an active role in the critic process also).
 13 Florian (2007); Killeen (2011); Saito et al. (2011); Vassiliades et al. (2011).
 14 Caporale and Dan (2008); Fino and Venance (2011); Feldman (2012).
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mental representation, cognitive maps, and deliberation. It has been proposed 
as a complement to the model- free approach, assuming that the two processes 
are in competition and underpinned by very different networks.15 However, 
starting from a purely automatic approach, Khamassi and Humpries have pro-
posed a theoretical model from which they draw conclusions very close to 
ours.16 They posit that: i) the cingular loop (see Fig. 9.2) builds the model of 
the environment, i.e. the representation of all the stimuli, states, actions, and 
rewards that define the environment; ii) the orbitofrontal and prefrontal circuit 
works like a model- based algorithm, which evaluates the utility of each option 
according to all the information available in order to develop ‘directed’ behav-
iours (we would say rational in our context); and iii) the motor circuit works 
like a ‘model- free’ algorithm to build ‘habits’ which are stimulus- response as-
sociation sequences.

The Limits of the Automatic Approach

It is therefore possible to use reinforcement learning algorithms to study the 
behaviour of the telencephalic/ diencephalic network in the learning and 
decision- making processes that we have described so far. The advantage of this 
approach is to be able to model them with very few parameters and a handful 
of easy- to- code algorithms to replicate these behaviours with virtual or real 
robots.

This formalism converges with our approach and leads to conclusions that 
are quite similar to ours concerning the structures involved and the stochastic 
nature of decision- making. It has the heuristic advantage to clearly explain the 
function of the networks studied.

But this advantage is also a drawback. On one hand, it induces an under-
lying teleologism that is antagonistic to the repositioning of the question in 
an evolutionary perspective. It easily misleads to the identification between 
a function and a structure of which the neural activity correlates vaguely 
with an algorithm. This type of reasoning is also at the origin of the parochial 
quarrels that regularly animate the scientific community because correl-
ations are generally found in different structures as it is expected in a distrib-
uted process.

 15 Daw et al. (2006).
 16 Humphries et al. (2012); Khamassi and Humphries (2012).
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Moreover, these algorithms are purely descriptive. If they insist, as we do, on 
the stochastic nature of decision- making processes, they do not explain their 
origin. Thus, they are able to replicate the limits of our rationality but are un-
able to explain why. When they are used, one should keep in mind that this is a 
description, not an explanation, in order not to overshadow the understanding 
of how function emerges from the process.
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Bias and Heuristics1

Introduction

Whether with the connectionist approach that we have adopted, or an arti-
ficial intelligence approach, we have converged on the observation that the 
processes implemented for decision- making do not completely obey the 
principles of rationality and are subject to a certain degree of randomness. 
The connectionist approach coupled with an evolutionary dimension pro-
vides an intrinsic explanation: we are not rational because the principles of 
rationality emerge from a structure that has no finality in itself. Stochasticity 
is a necessity for the system to be able to make choices. Learning processes 
have emerged from the substrates involved in eating behaviours to im-
prove performance. Ethograms then developed in parallel with the pallium 
mantle and its complexification, which introduced more regularities and 
automatisms, the roots that enable the development of skills and habitual 
behaviour.2 Finally, the ability to produce mental representations eventually 
emerged and provided the necessary substrate to anticipate and thus to con-
ceive of rationality.

As we have already stated,3 the notion of rationality is an avatar of these pro-
cesses, not necessarily shared by all humanity, but central to Western civili-
zation, of which it is one of the cosmogonic principles. However, even if our 
civilization claims to be based on purely rational principles,4 irrationality still 
permeates. To avoid making myself too many enemies, I will simply give as an 

 1 Part of the materials of this chapter has been published in Boraud et al. (2018).
 2 Boraud et al. (2018).
 3 See Chapters 1 and 10.
 4 Let’s remember that according to the economic principles that govern us, the markets do not need 
to be regulated because the economic agent is supposed to behave as a purely rational entity.
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example the omnipresent horoscopes in newspapers and the success of home-
opathy, where the effectiveness of one or the other has never been scientifically 
proven. It is true that their ineffectiveness has not been scientifically proven ei-
ther, but no scientist worried about his own reputation would try to do this since 
the Benveniste affair,5 thus showing a risk aversion that is not necessarily more 
rational. Rationality is therefore at worst a myth, at best an approximation.

Heuristics in Judgement

Herbert Simon6 introduced the notion of heuristics in judgement to define 
the approximate rational rules upon which individuals rely to make decisions. 
Tversky and Kahneman transformed this notion of heuristics by highlighting 
the cognitive biases that influence judgements. The theory that formalizes their 
work (see Chapter 1, Fig. 1.3) considers some of these factors, including the 
way in which subjects asymmetrically assess their prospects for loss and gain 
and risk aversion.

The Quick and the Slow

From his work with Tversky, Kahneman elaborated on the two- systems 
theory.7 According to him, human decision- making is the result of a compe-
tition between a fast, automatic system (System 1) that is prone to make mis-
takes and a slower, more demanding but also more reliable system (System 2). 
Both systems use heuristics, but the second compensates with anticipation. 
Kahneman himself never identified a neuroanatomical substrate for his theory, 
but many others have tried to place it in parallel with the theory of triune brain 
organization:8 the fast system being associated with the ‘reptilian brain’, while 

 5 Readers over 40 will remember the scandal of the ‘memory of water’ in the 1980s following 
the publication of the work of Benveniste who claimed that molecules of water retained an electro- 
magnetic trace of molecules in high dilution, even at infinitesimal concentrations (Coles 1988, 1989; 
Thomas 2007).
 6 Simon (1955).
 7 Kahneman (2012).
 8 A theory popularized by MacLean (1973) in the sixties that divides the brain into three stages of 
development; the reptilian brain, the limbic brain, and the neo- mammalian brain. Each stage adds 
new behavioural features to the ethogram. The reptilian brain corresponds significantly with the dien-
cephalon and the basal ganglia and is responsible for instinctive behaviours (aggression, dominance, 
territoriality, ritual displays, etc.). The limbic brain is involved in feeding, reproductive and parental 
behaviours, with the ability to display motivation and emotion. The neo- mammalian brain allows us 
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the slow system is identified as a product of the ‘neo- mammalian cortex’.9 In 
fact, our approach is quite the opposite: the slow system would be supported 
by the older reinforcement learning- dependent cortico- subcortical loop, while 
the fast system would result from cortical Hebbian associations (see Chapter 8, 
Fig.  8.3). This implies that shortcuts (heuristics) rely on cortical processes 
whilst deliberating decisions and actions, which rely on emotional and moral 
motivation, rather stand on a subcortical substrate. However, the identifica-
tion is incomplete. We saw earlier (Chapter 12) that the capacity to anticipate 
is underlied by a network encompassing the prefrontal cortex and the hippo-
campus. Therefore, System 2 also needs to interact with this network in order 
to be able to compensate with anticipation. Considering these anatomical 
constraints, our approach brings a fresh view to the psychology of decision- 
making and may help to unravel the neural correlates of cognitive bias.

Initial Bias and Beliefs

So far, we have assumed that when an agent is immersed in a new environment, 
he is genuine and has no history. The utility of the options available to him are 
unknown and his choice depends only on the noise generated by his decision- 
making system. But in fact, this is barely the case. Our decisions are very often 
biased a- priori, their origins multiple. These initial biases may result from a 
poor mental reconstruction of the situation. This may be having preferences 
for dimensions that are not relevant to a task. For example, it has been observed 
in two- armed bandit paradigms that animals have displayed a preference for a 
cue's colour, or a direction, two dimensions that are not relevant in our tests. 
They therefore do not choose according to the highest probability of reward.10 
In ‘beauty contests’, it is not uncommon that when the individual who gave the 
answer closest to the requested value is asked how she has defined her choice, 
the answer is: ‘it's my lucky number’. So wrong reasoning can bring a good so-
lution. In general, learning processes usually correct these biases, and animals 

to perform abstract thinking, planning, and, for the most advanced species, use language. Each level 
inhibits the lower one. The key to human neuropsychiatric pathology stems from defects in these inhi-
bition processes. Triune brain theory was widely accepted because of its elegant ability to link between 
structure and function, and its vague similarities with Freud's psychoanalysis theories. Despite being 
widely refuted by specialists in neural development and physiologists, this theory is still influential in 
cognitive sciences. For a more comprehensive critique of triune brain theory, see Boraud et al. (2018).

 9 E.g. Crosby (2015).
 10 Laquitaine et al. (2013).
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that choose early on the wrong criteria usually correct their mistakes after sev-
eral dozens of tests.11

The Anchoring Effect

Anchoring is the excessive influence of a first impression on judgements. It 
is one of the important elements of the framing effect underlying prospect 
theory. It can take different forms. A first example is that the price proposed at 
the beginning of a negotiation influences the outcome. Another example is the 
way in which a problem is stated (saving 200 out of 600 people or leaving 400 
to die)12 that modifies choice. A final example I will give is the influence of that 
first gain in a gambling game that is an important predictive factor in the devel-
opment of a gambling addiction.13

Amongst these three examples of anchoring effects, the last one is the easiest 
to predict from our model. The initial reward biases the system because the 
temporal difference δ(t) is very high. This results in a high modification of the 
gain of the cortico- striatal connections of the modules corresponding to the 
gaming behaviour in the orbitofrontal network which will therefore favour the 
selection of this type of behaviour (see Fig. 18.1).

The two other examples are more complex to formalize because they are 
more abstract in behavioural terms.

Regarding the former, we can nevertheless imagine that in the first case the 
anchoring phenomenon is explained by providing a mental representation to 
the cingular network which in turn provides a reference of utility. In the ab-
sence of other information, the temporal difference δ(t) is computed with re-
spect to this value, biasing the decisions of the subject accordingly.

For the second example, let’s remind ourselves to start with, that if one pro-
poses to choose between saving 200 people out of 600 for certain or having a 
one in three chance of saving 600 people, the subject prefers the first policy, 
whereas if the question is formulated ‘would you prefer to let 400 people die for 
certain or to have two chances out of three to see 600 people die’, the preference 
would be rather for the second proposal. This paradox is predicted by prospect 
theory (the combination of risk aversion and overvaluation of losses). Our ap-
proach does not bring much more. We can nevertheless model that the anchor 

 11 Ibid. 249.
 12 Kahneman and Tversky (1979); see also Chapter 1.
 13 Thaler and Johnson (1990).
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defines the reference against which the temporal difference is computed by the 
network. Thus, while the subject evaluates the outcome of his choices using an-
ticipation, he will estimate δ(t) as follows:

 • In the first case δ(t) = 0 (he hopes to save 200 people and he saves 200).
 • In the second case δ(t) < 0 (he hopes to save 600 but he saves only 200, 

probably less because of his poor estimation of probabilities).
 • In the third case δ(t) = 0 (he expects to see 400 people die and 400 die).

Fig. 18.1 The impact of the first gain. The subject who tries a gambling game 
for the first time knows that his chance of winning is low. The utility function 
is therefore almost zero. If, by chance (or by perversity on the part of the game 
provider), he wins a large sum on his first try, the temporal difference   
δ(t) = R (t + 1) - U (t) is much greater than zero and therefore the gain of the 
cortico- striatal connection associated with the game behaviour is greatly 
increased. This will result in a reinforced learning behaviour. This element is a 
significant risk factor for gambling addiction, but it is not the only one. In the 
majority of subjects, several successive negative temporal differences will be 
responsible for bringing the player back to reason.
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 • In the last case δ(t) > 0 (because he expects to see 600 people die, but ‘only’ 
400 die, or even less because of his poor estimation of probabilities).

The three anchoring effects described use slightly different mechanisms, 
but all involve the way in which the ‘critic system’ will influence the decision- 
making process.

The Dilution Effect

A (not truly politically correct) study provided students in sociology with a 
brief description of a ‘social worker of the middle class’ and asked them to de-
cide if it was highly probable or not that the character was a paedophile. One 
group of students was given relevant information only, while another group of 
students was provided with a mixture of both relevant and irrelevant informa-
tion.14 For example, they were offered the following pertinent information: ‘He 
was sexually abused by his father- in- law’, or ‘he has sadomasochistic fantasies’, 
or ‘he has a drinking problem’ . . . The irrelevant information could include the 
following: ‘He runs a hardware store’, or ‘he has an IQ of 110’, or ‘he lost two fin-
gers from his left hand’.15

Subjects who received both types of information felt that the individual was 
less likely to be a paedophile than subjects who received the relevant informa-
tion only. According to the authors, irrelevant information would make the 
individual appear less representative of a paedophile. They called this phe-
nomenon ‘the dilution effect’. This effect can be explained quite easily with 
our own model. We have proposed that mental representations are formed 
through competition mechanisms identical to those used in decision- making 
(see Chapters 11 and 12). In other words, our brain ‘decides’ on the contours 
of the mental representation that it builds. Consider that each piece of infor-
mation activates an elementary module in the cingulate circuit of students 
trying to build a mental representation of this social worker (see Fig. 18.2). 
If the information provided activates only circuits carrying relevant informa-
tion, the mental representation will conform more easily to the desired model. 
On the other hand, the more the information activates irrelevant modules, the 
weaker the interactions will be, and the more the information that will win 

 14 Nisbett et al. (1981).
 15 I  leave to the authors of this study the responsibility of the actual relevance of the information 
provided!



The Dilution Effect 125

the competitive process that governs the creation of this mental construct will 
move away from the archetype and so the probability of identifying it decreases.

Finally, what is our contribution to the debate? Through these three ex-
amples, we have shown that by dissecting the neurobiological substrate of 
decision- making— a change of state within a neuronal population made pos-
sible by the combination of stochastic and chaotic processes— we provide a 
physiological explanation for the heuristics in judgement that underlie what 
Dan Ariely calls the irrational predictability of our behaviours.16

Economists and psychologists have formalized the existence of these biases, 
while we have provided an explanation for some. We know that they are 
written in our nature, so it is not a matter of fighting against them, but rather of 

Fig. 18.2 The dilution effect. If only relevant information (in grey) is presented 
(in black) to the subject (A), changes in cortico- striatal gains will favour the 
creation of congruent mental representations (in grey) in its cingulate network 
(and associated hippocampus) with the sexual orientation of the individual 
described (B). If irrelevant information is presented jointly (C), the probability 
of congruence of the populations that will be consolidated decreases. The final 
representation may thus move away (D). I will let readers judge the good taste of 
the examples used by psychologists in this experiment.

 16 Ariely (2008). I recommend his TED talks, notably: http:// www.ted.com/ talks/ dan_ ariely_ asks_ 
are_ we_ in_ control_ of_ our_ own_ decisions [last accessed 17 May 2020].
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living with them. Based on these observations and detailed characterizations 
provided by studies in behavioural economics, it might be interesting to try to 
develop more relevant judgmental heuristics than those that come more nat-
urally to mind. The range of applications for such methods is vast: expert sys-
tems, economics, education, road safety, medicine, functional rehabilitation, 
and defence, to name a few.
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Pathologies of Decision- Making

Never put off till tomorrow what you can do the day after tomorrow just 
as well.1

Introduction

If we are not fully rational, we manage to pretend to be most of the time. 
Some individuals are distinguished by traits that influence their decision- 
making: impulsiveness, procrastination, stubbornness, etc. These behaviours 
are so common that they are not considered pathological. There are, however, 
cases in which the decision- making system is dysfunctional enough for this 
irrationality to go beyond socially acceptable norms. This is the field of neu-
rological and psychiatric syndromes of decision- making.

Obsessive Compulsive Disorders

Obsessive compulsive disorders (OCDs) are mental disorders characterized 
by the repeated appearance of intrusive thoughts— obsessions, anxiety— 
accompanied by repeated and ritualized behaviours— compulsions— which 
can have the effect of reducing anxiety. It affects about 2.5 per cent of the pop-
ulation. Obsessions and compulsions are not always associated. The individual 
suffering from OCD recognizes its irrational character but he cannot repress 
it and it reduces the time available to him for other activities. The Diagnostic 
and Statistical Manual of Mental Disorders (DSM- V) (the gold standard in the 
classification of psychiatric disorders) considers that an individual suffers from 

 1 This quote is usually attributed to Oscar Wilde. It seems to be an invention of one of his biographers 
while the original quotation is by Mark Twain who apocryphally attributes it to Benjamin Franklin. It 
is amazing how much useless information can be found on the Internet when you have procrastination 
tendencies ... well, I’ll go back to my book now.
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OCD if compulsive activities consume him for more than one hour per day. 
This is a way of recognizing that we all suffer more or less from obsessions and 
compulsive behaviours and that it is therefore only a question of the threshold 
of tolerance.

Physiopathological studies on human subjects or animal models of the di-
sease show hyperactivity in the orbitofrontal circuit (see Chapter 9, Fig. 9.2) in 
correlation with obsessions or verification behaviours. It has been shown in the 
orbitofrontal cortex, the ventral part of the caudate nucleus, the ventral part of 
the subthalamic nucleus, and ventral anterior and dorsomedial thalamus.2 It is 
postulated that this is a hyper excitability of the network that switches to a state 
of selection by a defect in the stabilization system. Our model makes it possible 
to explain it from the study of the dynamic states of the network as a func-
tion of the overall synaptic coupling strength of the positive feedback pathway 
(G+) and the lateral inhibition pathway (G- ). This hyper sensitivity causes an 
increase in the gain of the direct path (G+). This results in a transfer of the 
system into a regime where the activation of certain modules of the orbito-
frontal circuit is spontaneous (see Fig. 19.1). That's what generates obsessive 
ideas. Compulsive behaviours would aim to stimulate other cortical modules 
to switch the circuit to another state. This explanation is hypothetical but pro-
vides an interesting track.

Tourette’s Syndrome

Tourette's Syndrome is a pathology similar to OCD, with which it shares a cer-
tain comorbidity (which could be up to 80 per cent).3 It affects 1 per cent of 
adults and 0.4– 3.8 per cent of children under 18.4 It is characterized by behav-
ioural twitches— eyelid spasms, head movements, barking, grimaces etc.— and 
language stereotypes: coprolalia (compulsion to pronounce profanities), echo-
lalia (repetitions of the sentences of others), or palilalia (repetition of one's own 
sentences). The pathology is also characterized by functional anomalies that 
affect the motor circuit of the telencephalic loop.5 Less well characterized than 
OCD, it is more difficult to have a clear vision of the pathophysiological process 
implemented. However, due to its high comorbidity with OCD, it may be sug-
gested that these are similar mechanisms (see Fig. 19.1) but that they affect the 

 2 Guehl et al. (2008); Rotge et al. (2010); Welter et al. (2011); Rotge et al. (2012); Burbaud et al. (2013).
 3 Cavanna et al. (2009).
 4 Robertson (2011).
 5 Ganos et al. (2013).
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Fig. 19.1 Physiopathology of the telencephalic loop. The dynamic regimes 
(modes of operation) of the telencephalic loop represented as a phase diagram of 
a function of the gains of the positive feedback path (G+, on the x axis) and that of 
the gains of the signal path, inhibition (G- , y axis). Under physiological conditions 
(1), the system is able to choose by specifically activating a population of cortical 
neurons (C1 in the example). In the case of OCD or Tourette’s syndrome (2), 
C2 spontaneously activates without stimulus triggering stereotypical behaviour 
(OCD or tics). In the first case, the pathology reaches the orbitofrontal circuit, 
in the second, the motor circuit. A stimulus (compulsion in the case of OCD, 
focusing on tics) can stop unwanted activations by causing the activation of a 
module in competition, but the very unstable system can switch again when 
stopped. In the case of Parkinson's disease (3 and 4), the telencephalic loop is no 
longer able to choose between C1 and C2 in response to a stimulus. Note that 
there are two ‘parkinsonian’ conditions including one (4) in which the system 
oscillates. This accounts for oscillations that are often (but not always) found when 
the electrophysiological activity of patients or animal models of the disease are 
recorded (Leblois, Boraud et al. 2006).
The oscillation problem goes beyond the scope of this book, for more details readers can refer to Brown 
(2003); Leblois et al. (2006); Dejean et al. (2008); Degos et al. (2009); Dejean et al. (2012); Syed et al. 
(2012).
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motor circuit. Due to the hyperexcitability of the network, some motor mod-
ules activate spontaneously, triggering repetitive motor stereotypes. Here too, 
this hypothesis requires verification, but it provides a track to test.

Parkinson’s Disease

The pathology described by James Parkinson in 18176 is the flagship disease 
of the telencephalic loop. It is the second highest neurodegenerative disease in 
terms of frequency (behind Alzheimer’s) and affects 0.2 per cent of the popu-
lation (1 per cent of those aged over 65).7 It is one of the rare neurological syn-
dromes whose origin we know with certainty: it results from the degeneration 
of dopaminergic neurons in the substantia nigra.8

The establishment of treatment with L- DOPA, a precursor of dopamine, 
makes it possible to treat the symptoms of the disease but not to prevent its 
development, because the reasons why the neurons of the substantia nigra die 
faster than others are not yet known. These are probably multifactorial mech-
anisms. The disease has long been considered as a purely motor pathology that 
associates three symptoms: akinesia/ bradykinesia (difficulty initiating move-
ment and slowing down movement), rigidity, and tremor (which despite its 
association with the disease in modern folklore, affects only 30 per cent of 
patients).

In the last decade or so, improvements in the management of motor symp-
toms using pharmacological and surgical approaches has drawn the attention 
of clinicians to cognitive impairments, which are much more important and 
appear much earlier than initially thought.9 As an emblematic disease of the 
basal ganglia, Parkinson's disease has played a fundamental role in our under-
standing of the function of the telencephalic loop. Physiological and patho-
physiological approaches feed each other.

Our theoretical approach was originally designed to explain the pathophysi-
ology of Parkinson's disease. It relies on a property of dopamine release that we 
have discussed only very briefly so far: volume transmission (see Chapter 6). 
Dopaminergic neurons maintain a constant dopamine concentration in the 
striatum. This constant concentration— over which the phasic responses to 
the presentation of stimuli and which convey the temporal difference signal 

 6 Parkinson (1817).
 7 Agid (1991).
 8 Hornykiewicz (1966, 1974).
 9 Obeso et al. (2014).
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is superimposed— plays an important role in regulating the gain of cortico- 
striatal synapses, which therefore influences G+, the total gain of the posi-
tive feedback channel (see Fig. 19.1). The drop in dopamine concentration in 
Parkinson's disease leads to a decrease in the gain of cortico- striatal connec-
tions and modifies the overall properties of the telencephalic loop, which is 
no longer able to select one module over another. The system is blocked: the 
subject cannot move because his motor circuit is no longer able to ‘choose’ one 
movement over another.

The cognitive impairments described in patients with Parkinson's disease 
can be explained by the same mechanisms but applied to prefrontal or orbito-
frontal circuits. Our connectionist model allows us not only to reproduce the 
motor symptoms, but also the dysfunctions highlighted by pathophysiological 
studies. We can replicate with the model the changes in the mode of discharge, 
frequency, and coding of information by the neurons in the different structures 
of the motor circuit which have been demonstrated during almost half a cen-
tury of study on the disease, both in humans or using animal models.10

The Deep Brain Stimulation Paradox

For a long time, there appeared to be a contradiction between the fact that the 
telencephalic loop is involved in decision- making and clinical observations. 
Lesion or disruption by deep brain stimulation (DBS) of the GPi has been used 
for various therapeutic purposes, ranging from the improvement of dystonia to 
the treatment of Tourette’s syndrome. None of these approaches has reported 
any severe impairment in goal- oriented or automatic movement. But the model 
I have developed throughout this book solves the above conundrum: the basal 
ganglia play a critical role in the deliberative process that underlies learning, 
but they are not necessary for the expression of routine movements. It makes 
sense, therefore, that jamming the basal ganglia feedback in patients that have 
already learnt all the cognitive and motor skills they need in their daily lives, 
has no easily observable effect.11 However, our approach predicts that after 
pallidotomy or during stimulation, patients should have difficulty with com-
plex decision- making processes or learning new goal- oriented behaviours. 
Some preliminary experimental data seem to confirm these effects.12

 10 Boraud et al. (2001, 2002); Boraud et al. (2005); Leblois (2006); Leblois et al. (2006); Guthrie et al. 
(2013).
 11 Piron et al. (2016); Topalidou et al. (2018).
 12 Sage et al. (2003); Obeso et al. (2009).
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Hyperdopaminergic Syndromes

Our model also makes it possible to propose an explanation for another as-
pect of Parkinson's disease: the side effects of the treatments. To compensate 
for motor deficits, patients are given either L- DOPA, which is a precursor of 
dopamine, or dopamine agonists. Due to reasons of sensitivity or overdose, 
these treatments can result in some surprising side effects:  hyperactivity, 
hypersexuality, compulsive disorders, and various addictions, for example.13 
We propose to attribute to these symptoms an origin similar to that of OCD 
(see Fig. 19.1). The increase in the concentration of dopaminergic agonists acts 
as extra- synaptic dopamine at the orbitofrontal and prefrontal circuits and 
modifies the cortico- striatal gain. The system switches to the inappropriate se-
lection of compulsive and inappropriate behaviours.

After a honeymoon period of five to ten years, L- DOPA, for its part, causes 
the appearance of repetitive involuntary movements called dyskinesia.14 Here 
again, our approach proposes to explain these by permanent modifications of 
the cortico- striatal gain on the motor circuit, which leads to the involuntary se-
lection of motor sequences. What we do not explain, however, are the reasons 
why these side effects are expressed preferentially on some circuits rather than 
others and have such a variability of expression from one patient to another. 
These reasons deserve to be explored but go beyond the scope of this book.

It is perhaps ultimately in the pathophysiology that our approach gives the 
full measure of its interest. It is true that our original approach was aimed at 
explaining the motor mechanisms of Parkinson's disease. Since our approach 
has become generalized to decision- making processes, dialogue with the clin-
ical field has never totally broken. Modelling the dynamic properties of the 
telencephalic loop allows us to simulate pathological processes when they are 
known and to check how the system responds to these changes. Predictions 
from this theoretical approach have been confirmed so far in Parkinson's di-
sease, a motor disease, which becomes a decision- making deficit in the broad 
sense. It remains to be verified that this is also the case for other pathologies. 
This is not trivial because we do not have experimental models of other diseases 
as effective as the one we have for Parkinson's disease. It would be necessary to 
collect the neural correlates of the pathology in humans, which is problematic 
for obvious ethical reasons.

 13 Thobois et al. (2010).
 14 Rascol (2000).



How the Brain Makes Decisions. Thomas Boraud, Oxford University Press (2020). © Oxford University Press. 
DOI: 10.1093/oso/9780198824367.001.0001.

20
Free Will?1

Introduction

Are we making our decisions freely? Neuroscientists are often questioned 
about free will and, because I  am identified as a ‘specialist’ in the neurobi-
ology of decision- making, it also happens to me more than I have probably 
warranted.

The Libet’s Paradigm

To answer this question, we first need to define ‘free will’. I borrow the simplest 
definition from Descartes: ‘the power to elect and the freedom to choose’.2 In 
other words, the ability to choose independently from any exogenous deter-
minations. Neuroscience addresses this question from a deterministic point 
of view.3 The seminal experiment on this subject was proposed by Benjamin 
Libet in the early eighties.4 His aim was indeed to highlight that free will is 
only an illusion. The experiment involves asking a subject to follow the move-
ment of a needle on a stopwatch. The experimenter asks the subject to raise his 
hand when he wishes, and to note the exact moment when he became aware 

 1 I am indebted to Cedric Brun for discussion regarding this chapter.
 2 Descartes (1658).
 3 I will not enter here into the debate around the possibility to naturalize free will that has animated 
philosophy since David Hume.
 4 Libet (1999).
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of forming the intention. The subject is paired with an electroencephalogram 
recording. The experiment showed that the cerebral activity of the subject, in 
relation to the movement, changes before the subject is actually aware of his 
will to perform movement. Libet concluded that he had demonstrated the illu-
sion of free will.

More recently, Soon and colleagues5 tried to modernize this experiment 
using a fMRI paradigm in which the subjects had to perform voluntary add-
itions or subtractions on sets of numbers that were proposed to them. This ex-
periment showed that the changes in brain activity anticipated the choice made 
by the subject by several seconds, and they concluded that ‘the brain chose be-
fore they did’.

Conceptual Misleads

However, both experiments present several flaws that make the interpretation 
less clear- cut than inferred by Libet and his followers. First, they were framed 
in a way that no other outcome was possible. In a determinist framework, how 
can a conscious concept not be associated with an electrophysiological activity? 
How can we choose before our brain? We know now that a decision emerges 
from competition mechanisms that are necessarily activated before the diver-
gence point i.e. the decision per se. Therefore, a modification in brain activity 
must be registered before the decision itself and a fortiori the consciousness of 
the act.

For a long time, neurobiologists of decision- making tried to get rid of con-
scious processes by working with animals or doing subliminal experiments.6 
This tradition goes back to the beginning of experimental psychology;7 the 
main reason for it being that subjective experience is notoriously decorrelated 
from the real behaviour of the subject. This cautious approach avoided being 
misled by framing effects such as Libet’s experiment. However, it has been less 
scrupulously respected in recent decades.8 Besides the experiments about free 
will per se and the growing interest in the neurobiology of decision- making, 
which was originally limited to the study of preferences and the decision- 
making process in uncertainty, the field has progressively broadened out to 

 5 Soon et al. (2013).
 6 Pessiglione et al. (2008).
 7 See Chapter 1, note 21.
 8 The ability to carry out experiments with humans thanks to fMRI probably played a role in this 
evolution.
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include complex behaviours that imply conscious processes, such as theory of 
mind and moral judgement, etc. While many of these studies engender valu-
able knowledge about the evolutionary roots of these processes, we should be 
vigilant to the boundaries of the conclusions we can draw from them, and not 
go too far in extrapolation. The question of whether my brain chose before me 
cannot be addressed because I am my brain.9

While neuroscience has not convincingly addressed the question of free will 
up until now, it is legitimate to question the relevance of this discipline to do 
so. It is possible to study the causal relationship between a neuronal electrical 
activity, even complex and basic behaviours such as movement, perception, 
spatial orientation, or simple choices between a few options, if the dimensions 
of the problems can be reduced to a handful of scalable parameters by getting 
rid of conscious processes. For higher- level concepts such as agency, inten-
tionality, or free will, we can no longer neglect consciousness, and as long as 
nobody succeeds in reducing consciousness to a handful of measurable param-
eters,10 we will not be able to operationalize the concept satisfactorily.

There is another major flaw in the design of experiments about free will, 
which is the blurring of the lines between agency and intentionality. Agency is 
related to who is at the origin of the action. Intentionality is related to the con-
sciousness of acting and therefore is directedly related to moral responsibility. 
What Libet and his followers demonstrated is that a subject can be the actor of 
an action (he moves when his brain decides to move), but this agency reaches 
his consciousness later. The behaviour parameter actually considered is not so 
much the introspective report of the intention (intentionality) as the causality 
itself (agency).11

Back to Philosophy

More than half a century ago, Louis de Broglie pointed out that ‘Many scien-
tists have tried to make determinism and complementarity the basis of con-
clusions that seem to me weak and dangerous; for instance, they have used 
Heisenberg’s uncertainty principle to bolster up human free will, though his 

 9 To be more precise, the brain is a determinant part of what defines the self. The interactions be-
tween the brain and the rest of the body, the environment (including microbiotas), and surrounding 
society are also important components.
 10 Some try with limited success! A curious reader can have a look at Seth et al. (2006). I have to con-
fess that I am far from being convinced!
 11 Brass et al. (2019).
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principle, which applies exclusively to the behaviour of electrons and is the di-
rect result of microphysical measurement techniques, has nothing to do with 
human freedom of choice. It is far safer and wiser that the physicist remains on 
the solid ground of theoretical physics itself and eschews the shifting sands of 
philosophic extrapolations.’12 With a few adaptations, it is tempting to promul-
gate the same statement about neuroscience and free will.

For philosophers, indeed, the intuition of the necessity of free will is a pre- 
requisite to the concept of responsibility which is the basis of sociability and of 
our legal, political, and moral system. Despite this, philosophers did not wait 
for Libet to undermine the concept. For instance, for Spinoza, ‘only men are 
aware of their appetites and do not know the causes that determine them’.13 But 
then compatibilist positions emerged after him such as Hobbes14 or more re-
cently Dennett.15 They consist in combining the agency of the subjects and the 
thesis of determinism. To act freely means that our decisions are the products 
of external influences but they are our own external influences and they are 
not constrained by an external will. The debates seemed to close at this point. 
Paradoxically, the tentativeness of neuroscience to tackle this problem, even if 
inconclusive, has helped to clarify the philosophical debate. The controversy 
raised around the experiments of Libet and his followers allowed us to differ-
entiate between agency and intentionality, something that philosophers didn't 
clearly perceive before and which has importantly helped us to refine the con-
cepts. The legitimacy of neuroscience in the philosophical debate about free 
will is thus only guaranteed if it does not claim a form of universalism.

 12 Broglie (1956).
 13 Spinoza (2000, for the consulted edition).
 14 Hobbes (1999).
 15 Dennett (1991).
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Open Questions

Introduction

Like many theories in biology, our approach remains partly conjectural in-
sofar as it is not immune to contradiction by new experimental facts that dis-
credit it. For the sake of simplicity, I have also been guilty of simplifications and 
approximations in the text. In this chapter I would like to return to a certain 
number of details which I have previously, deliberately left out, but which will 
shed additional light now.

The Globus Pallidus Affair

The most frequent reproach for our model is that it ignores the external 
globus pallidus. This nucleus plays an important role in regulating the ac-
tivity of all other basal ganglia nuclei on which it is massively projected and 
is one of the key elements of the indirect pathway (see Chapter 5, Fig. 5.1), 
one of the three major pathways that crosses the basal ganglia. We ignored 
it in our model because it simplifies the interactions and the dynamic prop-
erties of the indirect pathway and is very similar to that of the hyper- direct 
pathway which we modelled.1 Introducing it into our model would not 
change its dynamic properties in depth (Leblois 2006). However, although it 
seems trivial and a little tedious, it would be necessary to confirm this con-
jecture, if only to dissect the conditions in which oscillations appear, which 
are one of the electrophysiological signatures of Parkinson's disease (see 
Chapter 19, Fig. 19.1).

 1 For discussion about the reason why we made this choice, see Leblois (2006); Leblois et al. (2006); 
Guthrie et al. (2013).
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From Perception to Decision- Making

Considering the specific properties of cortical columns allows us to briefly ad-
dress a substantial area of neuroscience that I have voluntarily ignored in this 
book up until now: perception. For those who work on sensory systems (vi-
sion, hearing, smell, etc.) the core question is ‘How does the brain distinguish 
between two stimuli?’ Researchers rely on the properties of cortical structures 
that they have also contributed to characterizing in large part,2 for it is mainly 
neuroscientists working on vision who have shown that cortical learning is one 
of the basic mechanisms of the distinction between two stimuli. However, fol-
lowing an interesting anchoring bias, researchers working on sensory systems 
tend to underestimate the role of subcortical structures. They propose a theory 
of decision- making based on a continuum of contrast mechanisms propagating 
from perception to action.3 However, in my opinion, there is a fundamental 
difference in distinguishing between two stimuli versus deciding between two 
options. In the first case it is a question of differentiating between two different 
inputs will be more appropriate: it is a simple matter of contrast and the cortical 
columns with their systems of lateral inhibition and positive feedback control 
are quite apt to do this. In the second case, you need an internal option gener-
ator, and this generator (noise) does not exist in cortical systems. In fact, most 
models of sensory systems use the cortex to increase the signal- to- noise ratio! 
Therefore, decision- making cannot be considered as a continuation of the per-
ception process. This is a different process with its own dynamics.

An Emotionless Brain?

Throughout this book, I  have deliberately avoided psychological consid-
erations, adopting an approach similar to that initially advocated by experi-
mental psychologists. As an experimentalist, it is very difficult for me to define 
and quantify emotions, and even moreso to identify them in animal models. 
I prefer to eliminate them by sticking to quantifiable scalars (such as value, 
utility, or expected utility). But it is difficult to talk about decision- making 
while ignoring the rich literature on the interactions between emotions and 

 2 Shepherd (2011).
 3 Cisek (2006); Shadlen and Kiani (2013).
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rationality4 that perpetrate the old debate of the Stoics and the Epicureans. 
Until recently, psychologists have tended to oppose a rational and calculating 
‘cold’ system versus an irrational and emotional ‘hot’ system.5 But this segrega-
tion is not resistant to neurobiology; the human uses the same brain structures 
to make a decision with both serenity and under the influence of emotions.6 
Besides, showing a preference is already a form of emotion. Therefore, there are 
no ‘cold’ decisions, but simply decisions that are influenced by different kinds 
of emotion. These add an extra dimension by modulating the scalars (utility, 
hope, etc.) on which the decision- making system is based to make its choices.

If emotions reflect the imbalances of homeostasis7 and our rationality is so 
limited, it would seem that neurobiology gives reason to Epicureans against 
Stoics: it would be better to trust his emotions (and stabilize his homeostasis) 
than his reason (which can easily be deceived).

 4 Including, not comprehensively: sadness (Lerner et al. 2013); regret (Coricelli et al. 2005); empathy 
(Andari et al. 2010); anger (Lerner and Keltner 2001; Bagneux et al. 2012); and fear (Lerner and Keltner 
2001) etc.
 5 Sloman (1996); Kahneman (2012).
 6 Seymour and Dolan (2008); Lerner et al. (2014).
 7 Homeostasis is the internal balance of a biological organism. All behaviours would have as ultimate 
objective the conservation of this homeostasis. For some neurobiologists, emotions are signals indi-
cating an imbalance that needs to be addressed (Vincent 1986).
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Conclusions

Toward a Natural History of (ir)rationality

It has been barely 30 years since Schultz’s, Newsome’s, and Movshon’s experi-
ments. During this lapse of time, neuroscientists— consisting of anatomists, 
electrophysiologists, behaviourists, neurologists, and psychiatrists— joined the 
community of psychologists and economists who studied rationality. Together, 
they were able to set up experimental paradigms to try to better understand the 
neurobiological foundations of the learning and decision- making processes 
(and, incidentally, to define their limits). The conceptual framework defined 
by all of these paradigms has been called neuroeconomics. Neuroeconomics 
is therefore the study of the neural correlates of rationality. As such, this book 
can be considered as an essay on neuroeconomics, but its originality lies in the 
approach I have adopted.

The classical neuroeconomic approach begins with an axiomatic postulate 
assuming that ‘such a process is described by such equation(s)’ and then seeks 
a neural correlate to the equation(s) during a task that combines a process of 
learning and decision- making. It is therefore a top- down approach that val-
idates a theoretical hypothesis and highlights the structures involved. This 
approach, which is ultimately only an extension of those used in psychology 
or experimental economics, to which an additional layer of neurobiological 
parameters has been added, has improved our knowledge, but not without its 
pitfalls. i) It is correlative and observing that the neural activity of a structure 
correlated with an algorithm does not necessarily imply that this structure is di-
rectly responsible for the underlying process.1 ii) The algorithm itself has only 
a descriptive value, it is not informative about how the process is performed by 
the neural population. iii) The theoretical argument generally reflects the be-
liefs of the author, usually with a more or less assumed teleologic background 
(see Chapter 10).

 1 This remark is true for France but does not stand for the UK or the US where pharmacological ma-
nipulation can be performed in healthy volunteers. See for the record a British study confirming the role 
of dopamine in learning processes (Pessiglione et al. 2006).
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In humans, these studies are conducted using fMRI. This method makes it 
possible to measure a global signal but does not provide information on its 
exact nature, and the spatial and temporal resolutions are limited. It also re-
sults in an overrepresentation of the role of the cortex compared to deep nuclei 
whose total volume rarely exceeds a handful of voxels. It thus leads us to ne-
glect the role of the latter in comparison to the former.

The dominant theories of neuroeconomics are heavily influenced by ma-
chine learning. Thus they tend to dissociate the process of decision- making 
(the actor) from that of evaluation (the critic) whereas the experimental para-
digms used generally amalgamate the two processes. If we take the example of 
the two- armed bandit task, when the values are initially unknown, the learning 
and decision- making processes depend on each other and it becomes difficult 
to determine if the subject does not optimize because their learning is incom-
plete or their decision- making process is deficient.

Our bottom- up approach makes it possible to overcome a number of these 
pitfalls. In posing our initial question: ‘How does a neural substrate decide?’, we 
built a decision- making structure from less than a dozen elementary units: the 
diachetron (see Appendix A).

We then showed that it is possible to give our system a learning rule from 
very simple biological processes (the three- component Hebbian rule). This al-
lowed us to show that what we called the diencephalic and telencephalic loops 
had a structure very close to the minimum decision- making machine and that 
dopamine gave them the ability to learn. We concluded that decision- making 
processes were governed by a combination of stochastic mechanisms and di-
vergent processes: a small random variation at the time of decision- making 
could cause a switch from one option to another. Noise is one of the essential 
features of the system that allows it to decide when there is no clear prefer-
ence that emerges, but suddenly, this results in a sub- optimal behaviour in eco-
nomic terms. This sub- optimality may also be an evolutionary advantage since 
it makes it possible to explore an environment spontaneously and thus to assess 
if the contingency rules are evolving.

As evolution progressed, the development of the cortex increased the 
number of possible behaviours and offered a greater diversity of options among 
which this elementary system worked. This development was accompanied by 
a complexification and a hierarchization, which produced the capacity to build 
mental representations and allowed us to anticipate. But since this system is 
not a de novo structure, the initial limitations persist and the presence of noise 
may explain some of the limitations of human rationality. Other limits are a by- 
product of the development of the cortex. It allows the emergence of automatic 
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processes that are necessary for skill acquisition and habitual behaviours, but 
these automatic processes also underlie some of the heuristics (such as false be-
liefs, anchoring, halo, etc.).

Our approach is not exclusive. We have shown that it is compatible with the 
algorithms of the automatic approach, even if the underlying symbolism (the 
actor- critic model) is to be handled with caution. It also provides a substrate 
for the phenomena highlighted by behavioural economists such as heuristics 
or the dilution effect. These last explanations are conjectural and would need 
to be analysed in more detail. Finally, our connectionist model has a signifi-
cant explanatory value with regard to the pathophysiology of decision- making 
processes.

This approach also provides new pathways to explore different areas. By ad-
dressing the problem of rationality from a dual connectionist and evolutionist 
perspective, it highlights that our brain is not capable of producing a purely 
rational process. The selection mechanisms that have governed the evolution 
of the central nervous system of vertebrates from lamprey to human have not 
been able to completely erase the intrinsic element of chance in the decision- 
making process. Homo sapiens is not ‘programmed’ to be a homo logicus as our 
Western culture would have us believe. If this is so it may be simply because 
pure logic is not an evolutionary edge and there is more interest in keeping a 
limited rationality than an absolute one.

When one sees the totalitarian drifting to which society, based on abso-
lute rationality, may lead, it is legitimate to think that a little irrationality does 
not hurt.
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APPENDIX A

The Diachetron

In order to illustrate the principles explained in Chapter 4, this Appendix proposes to de-
sign a decision- making machine that must choose between two options on demand. Let us 
specify our requirements: this imaginary organism, which we will call a Diachetron,1 must 
operate on biological principles with the most economical nervous system.

The Motor System

To be able to express a choice, our system is made of two motor units (Units 1 and 2) that 
allow it to perform two different actions (Action 1 and 2) and two excitatory motor neurons 
(neuron M1 and neuron M2), which activate Units 1 and 2 respectively. If the M1 neuron fires 
at a frequency greater than an activation threshold, which we arbitrarily chose to be equal to 
10 spikes, it activates Unit 1 which performs Action 1. In a similar way, if the neuron M2 fires 
at a frequency greater than or equal to 10 spikes, it activates Unit 2, which performs Action 2.

In order to transmit our request to make a decision, we must add a sensory system. It will 
be minimalist: a simple sensory neuron S that transforms an external stimulus (our request) 
into a train of spikes. This neuron will be excitatory and connected to M1 and M2 by con-
nections with an identical gain. When a stimulus is applied, it activates them in a similar 
way. To make this simple and economical (in real biological systems, the production of a 
spike has a significant energy cost) we will consider that our three neurons are phasic. Their 
intrinsic discharge frequency is zero, so they produce action potentials only if they are acti-
vated. Our Diachetron looks for now as in Fig. A1.

Our problem now boils down to activating one of the two motor neurons and keeping the 
other one below the threshold.

A first possibility is to activate them differentially by external stimuli. However, this is 
cheating since the decision is no longer made by our Diachetron, but by an outside interven-
tion. The solution must come from within.

A second solution would be that when applying a stimulus on the neuron S, one of the two 
motor neurons has a discharge frequency always higher than the threshold and the other 
always lower. This could be achieved by assigning different gains to the S- M1 and S- M2 
coupling. But again, there would be no real decision- making here, since our imaginary or-
ganism would always choose the same action. In fact, for the Diachetron to decide for itself, 
we cannot economize the interaction between neurons A and B.

The Decision- Making System

A glance at the literature confirms that the simplest system to obtain an imbalance between 
two neurons subjected to the same activation consists of two inhibitory neurons. We will 
therefore add A1 and A2, two inhibitory neurons, coupled reciprocally and symmetrically. 
So, if A1 is activated, it inhibits A2 and vice versa. For the sake of simplicity and economy, 

 1 Purists will forgive my dog Greek.
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these neurons will also be phasic. In the jargon of neuroscientists these two neurons exert 
lateral inhibition on each other. We connect our decision- making system to the motor 
system with symmetrical inputs: M1 coupling with A1 and M2 with A2. This results in a 
very stable architecture, A1 and A2 mutually inhibiting each other. Our decision- making 
system is not yet able to activate one of the two populations in a differential way. For this, we 
will have to involve an additional property: noise.

We will add a Gaussian noise B of 0.05 variance into neurons A1 and A2 of our 
Diachetron.2 It means that the variance in the distribution of spike occurrences of these 
neurons is 5 per cent higher than that of a Poisson process, which is physiologically quite ac-
ceptable. Thus, identical activation will induce a slightly different response from A1 and A2 
neurons. This difference is sufficient to break the balance and the activation state of the two 
neurons will diverge: one will be activated, the other will remain silent (Fig. A2). However, 
the system is relatively unstable: it can alternate from one state to another without modi-
fication of the stimulus. If the noise is too large, it can also be triggered in the absence of a 
stimulus, which is not in our specifications. It will therefore be necessary to find a solution to 
stabilize it. We will come back to this.

The Coupling

We will now re- connect our decision- making system to our motor system so the latter bene-
fits from the divergence between A1 and A2. We could save extra neurons by the feedback 

Fig. A1 First step of the Diachetron, the motor system. S, M1 and M2 neurons 
are excitatory. A stimulus applied on S leads to an identical response of M1 and 
M2. There is no choice since the two units pass the threshold (dashed line).

 2 A Gaussian noise is a stochastic process of which distribution follows a Gaussian law with a zero 
mean. In the case of our artificial neurons, this will cause a modification of the firing probability of 
our neuron as follows: P '(t) = B + P (t) if B + P (t) ≥0 or P '(t) = 0 if B + P (t) <0. P (t) = 1 /  F; F is the av-
erage mean firing rate of the neuron reduced to the time scale t; and B has a Gaussian distribution with 
mean=0 and variance=0.05 (for a noise at 5 per cent).
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couplings A1- M1 and A2- M2, but this solution, despite its elegance, does not work because 
it creates what is called a negative feedback loop on M1 neurons and M2: when activated, 
they receive equivalent inhibition, stabilizing them in an inactivated state.

We will now add two inhibitory neurons A'1 and A'2 between neurons A and M. A1 is 
coupled with A'1 which is coupled with M1. The architecture is symmetrical with respect to 
A2, A'2, and M2. For the system to work, we have to make sure that the neurons A' are tonic 
and have a non- zero basal activity (say 10 spikes). There are several reasons for this, the most 
intuitive being that it has to operate in two directions. Thus, if the A neuron is activated, the 
frequency of A' decreases (see the example in Fig. A3). If its initial discharge frequency was 
zero, the activation of A would have no effect on A'. This architecture also solves the stability 
problem that we encountered with the previous configuration (Fig. A2).

The A1- A'1- M1 and A2- A'2- M2 complexes form positive feedback control loops:  the 
synapses function as algebraic operators; two successive inhibitory synapses have the same 
effects as an activating synapse (− 1 × −1 = 1). This means that the neurons A1 and A2 exert 
an activating influence on themselves, amplifying the effects of an imbalance between the 
two neurons as they occur. The divergence between A1 and A2 will be faster and amplified. 
It will remain as long as the stimulus lasts. In addition, the negative tonus of neuron A', when 
no stimulus occurs, will act as a filter, which will maintain the inactive system by preventing 
an imbalance appearing in the absence of a stimulus.

Let’s summarize the dynamics of our network at this point (see Fig. A3).

Fig. A2 Second step of the Diachetron, the decision- making system. A1 and A2 
neurons are inhibitory. The presence of noise makes the A1- A2 system unstable. 
When a stimulus is applied to S, the system diverges after a certain lapse of time 
despite identical excitation by the M1- A1 and M2- A2 couplings: when one of A1 
or A2 is activated, the other one is inhibited. Note that the system is unstable and 
switches from one state to another, sometimes even in the absence of a stimulus. 
Note also that in the absence of feedback on M1 and M2, the response of A1 and 
A2 does not change with respect to the configuration.
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 •  At rest (without external stimulation) our system is silent (no neurons produce action 
potentials), the effects of noise are filtered by A'1 and A'2.

 •  When a stimulus activates the neuron S, the noise causes an imbalance between A1 and 
A2 which is amplified by the positive feedback loop A- A'- M- A. This results in an explo-
sive decoupling of the activity of the neurons A, A', and M. Thus, a differential activa-
tion of Units 1 and 2 is obtained. The system chooses one of the two actions randomly, 
with identical probability.

 •  When the stimulus is stopped, the system returns to its resting state, thanks to the in-
hibitory drive exerted by A' neurons on M neurons.

The Diachetron: A Dumb Decision- Making Engine . . .

We fulfilled our specifications with only seven neurons. This seems to be the minimum 
number for a virtual neural network that can choose between two options.3 Since our 

Fig. A3 Third step of the Diachetron, the coupling. When we apply a stimulus 
on S, the system diverges. In our example, A1 wins the competition (but in 50 per 
cent of the cases it will be A2). A'1 and A'2 transmit this divergence to M1 and M2 
and help to amplify and stabilize the divergence. M1 goes well above the threshold 
(dashed line) while M2 is inhibited. It took us seven neurons to run our Diachetron.

 3 For comparison, one of the smallest known neural networks is the nervous system of the 
Caenorhabditis Elegans, a small worm broadly used in science because its genome and physiology have 
been fully mapped. It consists of 279 neurons, of which only 90 belong to the decision- making system 
(Jarrell et al. 2012).
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system is symmetrical, it has a 50 per cent chance of choosing the A1 action and a 50 per cent 
chance of choosing the A2 action.

It is therefore not possible to determine a priori which action will be chosen. An acrimo-
nious reader might wonder why we struggled to invent such a complex device, replete with a 
mouthful of a name and making decisions at random, while the ‘executive decision- maker’ 
of Brazil (see Chapter 2, Fig. 2.2) would have solved any conflict between two options more 
elegantly? To answer this question, we will have to push our logic a little further.

For a Decision To Be Relevant, the Question Asked Must 
Be Relevant

For now, the actions A1 and A2 that our Diachetron is able to perform are abstract and 
equivalent. It is therefore perfectly justified to choose one or the other without any pref-
erence. Let us now transform the environment of our imaginary organism. We will now 
decide that one of the actions has a positive outcome: it brings a reward to our organism. 
The nature of this reward remains abstract for the moment. If desired, the reader can put 
here whatever motivates him the most at the time of reading (food, drink, sex, money, social 
status, etc.). The other option is neutral (no outcome). We will assign an arbitrary value of 
1 to the option that provides the reward and 0 to the option that provides nothing. The dif-
ficulty of the task is that we do not know which one is the most interesting. The system will 
have to learn this on its own. For this, we will use neural plasticity rules.

The Learning Process

In the late 1940s, neuropsychologist Donald Hebb stated the rule that bears his name 
and can be summarized as follows:4 if a neuron A is connected by a synapse to a neuron 
B and the two neurons increase their activity together, then the gain of the synapse that 
connects them will be increased. So, when neuron A will be excited again, the response of 
neuron B will be amplified. It will take 20 years for the underlying mechanism to be demon-
strated in the hippocampus by Lømo5 in the form of what he called long- term potentiation 
(LTP): a gradual increase in response from a post- synaptic neuron to the excitation of the 
pre- synaptic neuron that persists over time. Hebbian learning and LTP form the basis of 
learning processes in the nervous system.

To help our system to decide in a relevant way, it is necessary to strengthen the coupling be-
tween the neurons M and A associated with the action of value 1 (that which is rewarded) by 
Hebbian learning. Since it does not know which one it is (and also because the environment 
may change, but we will come back to this), the system must be symmetrical. Finally, it is neces-
sary to inform the system if a reward is provided. We will then start by adding a neuron R which 
is sensitive to the reward. This is our second ‘sensory’ neuron, that is to say that it informs the 
Diachetron about its interactions with the environment. This neuron is phasic and excitatory. If 
the action provides a reward, it is activated for a short time, otherwise it remains silent.

It is then necessary to condition the Hebbian learning at the M- A synapse to the presence 
of the reward, when provided. We will use an additional neuron (C). It will have a property 

 4 Hebb (1949).
 5 Anderson and Lømo (1966).
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that differentiates it from other neurons in the system: it will be a neuromodulator. If it in-
creases its activity, it does not change that of the post- synaptic neuron, but enhances the 
gain of co- activated synapses. This results in tri- component Hebbian learning. We will then 
couple neuron R to neuron C and neuron C to neurons A1 and A2 (see Fig. A4).

Thus, when one of the two actions result in a reward, the neuron R activates the neuron C 
which reinforces only the coupling between the two neurons corresponding to the selected 
action. The gain between the two activated neurons will change from an average state to a 
high state. The difference in gain between M1- A1 and M2- A2 is such that from now on the 
Diachetron will choose the rewarded action more often or even exclusively (see Fig. A5). 
For the price of two additional neurons, we have equipped our Diachetron with a learning 
ability. The ‘executive decision- maker’ is no longer random! Our system is able to optimize 
its behaviour without outside intervention.

A Too Well Adapted Engine

In our specifications, the Diachetron is now optimized, but this optimization is associated 
with a certain weakness: if by chance the context changes and the action associated with a 
reward is reversed suddenly, the Diachetron is no longer able to readjust. For this, we must 
introduce a devaluation mechanism for a chosen option if it is no longer rewarded. The 
simplest solution would be to add a mechanism for decreasing the M- A gain if an option is 

Fig. A4 Fourth step of the Diachetron, the learning system. In this example, the 
selected action causes a reward (here it is Action 1). Activation of the modulator 
neuron C reinforces the coupling M1- A1 because these two neurons are activated, 
but not the coupling M2- A2, with these two neurons being rapidly inactivated.
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Fig. A5 Reinforcement learning (tri- component Hebbian learning). The thin 
continuous curve shows discrete choice of the Diachetron between Action 1 
(top) and Action 2 (bottom) at each new trial (stimulus- response combination, 
shown by an arrow below the x axis) for the configuration represented in Fig. 
A4 (Action 1 rewarded). The gain of the M1- A1 coupling increases when the 
system is rewarded for the first time thus biasing the competition between A1 and 
A2 toward the former. As a result, Action 1 is consequently chosen most often. 
However, residual noise leads from time to time to the choice of Action 2.

chosen and not rewarded. The mechanisms for this type of solution exist in nature; they are 
grouped under the term extinction.

Among these mechanisms, we will focus on the mirror mechanism of LTP: long- term 
depression (aka anti- Hebbian learning), which causes two neurons that fire together under 
certain conditions to reduce their synaptic coupling. It is therefore perfectly legitimate to 
consider decreasing the gain of M- A if neuron C is no longer activated for a given action. We 
thus maintain the same network as for Fig. A4, but we add this anti- Hebbian process, which 
decreases the gain of the pair M- A corresponding to the unrequited action (Fig. A6). Thus, 
if we apply a change of condition after 20 tests, for example, it will quickly readjust to this 
new situation.

The Two- Armed Bandit Strikes Again

Our system is able to learn, unlearn, and re- learn in an environment whose contingency 
rules change. However, in the real world, our actions are not always rewarded in a binary 
way, because a certain degree of uncertainty still persists. Let's consider the case of the pred-
ator who charges at its prey: the latter can dodge at the last moment and thus postpone its 
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fate for a while. It will therefore be interesting to test our Diachetron in an uncertain envi-
ronment in order to validate its ability to adapt to the contingencies of a more ecological 
environment. As we saw in Chapter 1, behaviourists use the two- armed bandit paradigm to 
address the concept of uncertainty. It consists of asking a subject to choose between two op-
tions of different probability of reward (Pr). These contingencies are covert at the beginning 
of the test (see Fig. 1.2).

The reader will intuitively understand that if we submit our Diachetron to such a pro-
tocol, it will have difficulty learning the respective values of each option since the M- A and 
A- C couplings will vary according to the administration of the reward.6 For the system to 
improve its performance during learning, it is necessary to find a way to maintain a long- 
term memory of the consequences of the different actions performed. Again, the solution 

Fig. A6 Anti- Hebbian learning. The gain of the coupling M1- A1 increases in 
the same way as in the previous condition. On the other hand, the gain of M2- A2 
decreases the first time the system chooses Action 2 and is not rewarded. This 
mechanism further reinforces the bias in favour of choosing Action 1. When 
the contingency rule changes after 20 tries and Action 2 is rewarded, the system 
relearns quickly.

 6 In fact, his behaviour will be close to the ‘win- stay, loose- switch’ strategy sometimes described in 
the literature. However, here, it will not be purely of this type because of the noise that persists in the ac-
tivity of neuron A and which can still favour an action whose coupling M- A is not the most important.
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is simple and does not require additional neurons. It is enough to slightly modify the prop-
erties of the coupling of neurons M and A (see Fig. A7). We are going to make sure that this 
coupling can have several levels and be reinforced gradually each time a reward is admin-
istered, thus preserving a memory of the previous choices. In order to remain in a physio-
logically plausible domain, the gain between two neurons cannot vary infinitely and will be 
bounded between zero and a maximum value.7 If Pr(Action 1) and Pr(Action 2) varies, the 
system is able to detect and adapt (see Fig. A8). Therefore, our initial goal is reached with 
nine neurons and the very simple rules of plasticity.

Our solution is far from perfect. In particular, re- adaptation to new conditions takes al-
most twice as long as initial learning because the system must be unlearned to re- learn new 
conditions. We have also neglected a certain number of constraints such as the energy ex-
penditure required for each action, the delay that usually exists between an action and its 
consequences, perception problems that are here oversimplified, and so on. In short, our 

Fig. A7 The two- armed bandit task. In our example, Action 1 is rewarded 
three times out of four and Action 2 one time out of five. The gain of the two A- 
M couplings evolves gradually in stages according to the choices and rewards 
represented by the arrows at the top (in black when Action 1 is rewarded and in 
grey when Action 2 is rewarded). The coupling gain increases or decreases until an 
arbitrary threshold (which we introduced for the sake of plausibility). The dotted 
curve represents the probability that the system chooses Action 1 based on the 
previous choices. It is commonly known as the learning curve. Note that for our 
Diachetron, its kinetics are similar to those of the M1- A1 gain.

 7 See Chapter 17 for a natural solution for a system to limits itself.
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Diachetron is not likely to propel itself to the top of the evolutionary ladder, but it is honour-
ably fulfilling the task it has been assigned to.

The Take- Home Message of the Diachetron

This long Appendix, a bit tedious I admit, allows us to identify the major mechanisms that 
allow the nervous system to make goal- oriented decisions. It is probably useful to summa-
rize them now.

For a decision between two options to emerge from a neural network, an architecture 
consisting of at least nine neurons is required (see Fig. A4), but more importantly, it has to 
possess the following properties:

 1. This network must have an effector system acting on the environment that sets the 
possible options (M1 and M2) and a system (S) that initiates the behaviour and trig-
gers the sequence of phenomena that will allow the system to choose one of the two 
options.

 2. To choose, a mechanism of competition is necessary so that a population is activated 
and the other is inhibited. The simplest is made of reciprocally connected inhibitory 
neurons (A1 and A2).

Fig. A8 Rule modifications in the two- armed bandit task. When the 
contingency rule is reversed, the system must first bring the gains of the M1- 
A1 and M2- A2 coupling to their initial values before relearning the new 
contingencies. The Diachetron takes time to lose his old habits and acquire 
new ones.
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 3. To create an imbalance and to allow the system to switch one way or the other, requires 
noise in the system, that is to say imperfections in the generation of the spikes.

 4. The presence of noise makes the system unstable. A positive feedback mechanism 
helps to stabilize the system in three possible states: no choice, choice of option 1, 
choice of option 2 (loops A1- A'1- M1- A1 and A2- A'2 - M2- A2).

Equipped with these four principles, we obtain a system capable of choosing randomly. If 
we want the system to be capable of learning, two additional principles need to be integrated:

 5. A system of valuation for the consequences of the action chosen (R and C): if the two 
options are equivalent, there is no reason to prefer one over the other.

 6. Rules of learning and unlearning that allow facilitation of the appropriate decisions 
and a degree of plasticity if the rules of the contingencies between actions and rewards 
change (modification of the gain of the M- A connections).
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Glossary

Acetylcholine. Main excitatory neurotransmitter of the peripheral nervous system. In the 
central nervous system, it is present in the striatum. A neuron that releases acetylcholine 
is called a cholinergic neuron.

Anamniotes. This word of Greek origin designates the lower vertebrates whose embryo 
is devoid of amnion:  fish (in which I  include agnates for the sake of simplicity) and 
amphibians.

Basal ganglia. Sub- cortical nuclei of telencephalic and diencephalic origin. Since the 1990s 
it has been customary to organize them as a three- layer system consisting of two input 
structures (the striatum and the subthalamic nucleus), two exit structures (the internal 
globus pallidus and the substantia nigra pars reticulata) and an intermediate structure 
(the external globus pallidus). These archaic nuclei appeared with the first vertebrates. 
Their organization is detailed in Chapter  5. They are one of the core elements of the 
decision- making and learning system.

BG. Acronym for basal ganglia.
Bifurcation. Describes a process in which a small change in a physical parameter produces a 

major change in the organization of the system.
BOLD signal. Abbreviation for blood- oxygen- level- dependent signal. It refers to the signal 

collected in fMRI. It is an indirect measure of the neuronal activity of a structure.
CA1, CA2, CA3. Abbreviations for Corne d'Ammon 1, 2, and 3. They are subdivisions of the 

hippocampus.
Central nervous system. Subdivision of the nervous system corresponding to the enceph-

alon and the spinal cord. It computes and generates responses to stimulation of the pe-
ripheral nervous system.

Cingular loop. Subdivision of the telencephalic loop involved in close relationship with the 
hippocampus, in the building of a mental representation of the environment in mammals 
(see Figs. 17.2 and 19.1).

Coefficient of variation. In statistics, the coefficient of variation is the variance divided by 
the mean. Spike production is a stochastic process that is supposed to obey a Poisson 
distribution law, that is, its variance is equal to its mean. This is not the case in the basal 
ganglia (striatum and globus pallidus especially) where the coefficient of variation is sig-
nificantly greater than 1. This intrinsic variability is related to the noise in the system 
which is one important element of decision- making processes.

Contingency. The contingency rule is the degree of association between an action and a re-
ward. It is measured by a probability (P) between 0 and 1. It is explicit when it is known 
(this is the case in lotteries of economy) and implicit when it is unknown (as in the proto-
cols of the k- armed bandit). In the first case, the subjects can calculate the expectation, in 
the second case, they must estimate it from the consequences of their choices.

Cortex. The anterior and dorsal part of the telencephalon mantle, called the pallium in 
anamniotes, reptiles, and birds becomes the cortex in mammals. This change of terminology 
corresponds to a huge increase in its surface and a change of organization. It is organized in 
a modular way into mini functional units made up of six layers (five in some structures such 
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as the hippocampus) around a projection neuron (that is to say it communicates with other 
structures) and inter- neurons. This loosely cylindrical functional unit is called a column.

DA. Abbreviation for dopamine.
Diachetron. Dog Greek to designate the minimal decision- making engine described in 

Appendix A. It represents a system made up of the smallest possible number of neurons to 
choose between two options. It is a heuristic device that allows us to highlight the princi-
ples involved in the decision- making and learning processes.

Diencephalic loop. Network constituted by the thalamus and the basal ganglia. It is a neolo-
gism that I use in this book because there is no existing terminology to coin it. The name 
is not fully satisfactory because it is a network that combines elements of the dienceph-
alon and the telencephalon. Its architecture is described in Fig. 12.1.

Diencephalon. Medial subdivision of the brain consisting of the thalamus, the subthalamic 
nucleus, the hypothalamus, and the epiphysis.

Direct pathway. Pathway between the cortex and the GPi that passes through the stri-
atum. Its influence is inhibitory: its activation decreases the activity of GPi neurons (see 
Fig. 7.2).

Dopamine. This catecholamine is one of the main neuromodulators of the central nervous 
system. It is released by the neurons of the substantia nigra and the ventral tegmental 
area. It modulates the activity of its target neurons through two large families of receptors. 
It plays a key role in the learning process.

Ethogram. Also called an inventory of behaviours. It refers to the number and diversity of 
individual or social behaviours that a species can display.

Expected value. For a given lottery (A), the expected value E(A) = Probability × Value. This is 
the average of the expected gains over several repetitions (see Chapter 1). Rationality would 
require that between two options of different expected values, one chooses the highest one 
(provided one has the means to compute both of them). This is often not the case.

fMRI. Acronym commonly used as such to refer to functional magnetic resonance imaging 
methods.

GABA. Acronym for gamma- aminobutyric acid. It is the main inhibitory neurotransmitter 
of the brain. A neuron that releases GABA is called a gabaergic neuron. It plays a key 
role in the processes described in this book: without GABA, there would be no decision- 
making (see Chapters 4 and 5).

Globus pallidus. Gabaergic nucleus of the basal ganglia. It is functionally divided into an in-
ternal part (often abbreviated GPi) which is one of the main output structures of the basal 
ganglia and an external part (GPe) that is useless1...

Glutamate. Main excitatory neurotransmitter of the central nervous system. A neuron that 
releases glutamate is called a glutamatergic neuron.

Glycine. Neurotransmitter inhibitor of the spinal cord. A neuron that releases glycine is 
called a glycinergic neuron.

GPe. Acronym for the external globus pallidus (see globus pallidus).
GPi. Acronym for the internal globus pallidus (see globus pallidus).
Heuristic value. A  theory has a heuristic value when it is easily understood by a larger 

number.
Heuristics. Behavioural economists and cognitive psychologists use the term heuristics in 

judgement to describe intuitive mental operations that bias our reasoning (see Chapters 1 
and 18).

 1 This is a private joke; there is more and more evidence to show that it plays a key role in the dynamic 
properties of the basal ganglia. Moreover, evolution rarely conserves useless structures (see Chapter 21).
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Hippocampus. Anatomical structure belonging to the telencephalon located in the inner 
part of the temporal cortical lobe. Its name comes from the analogy that exists between 
its form and the sea horse (hippocampus in Latin). This structure is closely related to 
the cingulate network and plays a key role in memory and mental representation (see 
Chapter 12).

Hyper- direct pathway. Pathway between the cortex and the GPi that passes through the 
NST. Its influence is excitatory: its activation increases the activity of GPi neurons (see 
Fig. 7.2).

Indirect pathway. Pathway between the cortex and the GPi that passes through the striatum, 
the GPe and the NST. Its influence is excitatory: its activation increases the activity of GPi 
neurons (see Fig. 7.2).

Interneuron. Neuron that connects with one (or more) other neuron(s) of the same struc-
ture. It is found in particular in the cortical structures and in the striatum.

k- armed bandits. Experimental paradigm for studying the learning and decision- making 
processes. They are so called in reference to the nicknames of the slot machines in the 
US. The one- armed bandit designates a protocol in which the subject must associate an 
action (press a lever for example) with a reward whose contingency rule is statistical (for 
example, rewarded on average once in three trials) and implicit (that is, it ignores its value 
at the origin). In the plural, it designates a protocol in which the subject has to choose be-
tween two (two- armed- bandit task, in English) or several (k- armed bandit task) actions 
whose contingency rules are different. The optimum behaviour is to test the different op-
tions first to estimate their respective expectations, then focus on the action associated 
with the highest expectation. Herrnstein showed that it was almost never the adopted 
behaviour (see Chapter 1).

Lottery. An experimental paradigm in which the subject has to choose between several 
options whose contingency rules are statistical (for example, rewarded once every three 
trials on average) and explicit (i.e. the subject knows the value). In economics, lotteries 
are used to study the behaviour of individuals faced with multiple choices. It can be ‘real’ 
lotteries (choose between A, where you have two chances out of three to win 100 €, and B, 
where you have one chance out of three to win 200 €); or, it can be more abstract lotteries 
(choose between a policy that sacrifices 200 people out of 600, or another where there is 
one chance out of three that the 600 will die). Fortunately (or unfortunately, it depends on 
the case), most of the time, subjects do not experience the consequences of their choices 
in this type of experiment!

Medium spiny neuron. Projection neuron of the striatum. There is a tendency to call them 
striatal projection neurons (SPN).

Mesencephalon. Deep subdivision of the brain that consists of the tectum, raphe nucleus, 
and tegmentum.

Motor loop. Subdivision of the telencephalic loop in charge of motor behaviour in mam-
mals (see Fig. 17.2).

Myotome. Muscular segment of the lamprey body whose alternating contraction is respon-
sible for its displacement.

Neurotransmitter. Molecule that transmits information between two neurons at their 
contact area called the synapse. The neurotransmitter is released into the extracellular 
space between the two neurons, called the synaptic cleft, by the pre- synaptic neuron 
and binds to receptors located on the postsynaptic neuron. This chemical message will 
be retransformed by this binding into an electric message. There are excitatory neuro-
transmitters: their fixation leads to an increase in the firing frequency of the postsynaptic 
neuron, and inhibitory neurotransmitters which have the opposite effect.



160 Appendix B

Oculomotor loop. Subdivision of the telencephalic loop which controls the gaze orientation 
in mammals (see Fig. 17.2).

Orbitofrontal loop. Subdivision of the telencephalic loop involved in cognition in mam-
mals (see Figs. 17.2 and 19.1). The orbitofrontal network is rudimentary in rodents and 
develops mainly in primates.

Pallium. The anterior and dorsal mantle of the telencephalon in anamniotes, reptiles, and 
birds. It is organized into three layers.

Peripheral nervous system. Nerves and ganglia located outside the central nervous system 
whose function is to relay information between the former and the body.

Prefrontal network. Subdivision of the telencephalic loop involved in the advanced 
decision- making process in mammals (see Figs. 17.2 and 19.1). The prefrontal circuit is 
rudimentary in rodents and develops mainly in primates.

Projection neuron. Neuron of a structure (cortical area or sub- cortical nucleus) that con-
nects with one (or more) neuron(s) of one (or more) other structure(s).

Pyramidal neuron projection. Neuron of cortical areas.
Scalar. Used here in the sense of numerical value.
SNc. Acronym for substantia nigra pars compacta.
SNr. Acronym for substantia nigra pars reticulata.
Spikes/ s. Abbreviation for action potentials per second which is the unit of measurement 

for the firing rate of neurons. As a first approximation it can be considered that informa-
tion transmitted to a neuron is coded by its firing rate (see Chapter 3).

Striatum. The largest nucleus of the basal ganglia. It consists in several populations of 
gabaergic and cholinergic neurons. It is the main entrance structure of the basal gan-
glia. Its complex architecture gives it rich properties, all of which are still not well under-
stood, but as a simplification in our approach, we have reduced it to a single population 
of neurons. It is at the striatal level that reinforcement learning processes take place in 
vertebrates (see Chapter 5).

Subiculum. Subdivision of the hippocampus.
Substantia nigra. Nucleus of the mesencephalon that is functionally divided into two dis-

tinct structures. The substantia nigra pars reticulata is gabaergic and it is one of the output 
structures of the basal ganglia involved in the oculomotor loop. The substantia nigra pars 
compacta is mainly dopaminergic. It is the main source of dopamine released into the 
brain (see Chapter 6).

Subthalamic nucleus. The only nucleus of the basal ganglia, of which it forms one of the 
input structures, consisting of glutamatergic neurons.

Synaptic gain. The strength of the connection between two neurons is called synaptic 
gain:  the greater the gain, the greater the influence of the pre- synaptic neuron on the 
postsynaptic neuron. Sometimes we also talk about synaptic coupling.

Telencephalic loop. Network formed by the cortex, the basal ganglia, and the thalamus. It 
is a neologism because there is no existing terminology to coin it. Its architecture is de-
scribed in Figs. 8.2 and 17.2.

Telencephalon. Anterior subdivision of the brain. It consists of the olfactory bulb, pallidum 
striatum, and pallium (sometimes called mantle) which, in mammals, the dorsal and 
anterior part of is called the cortex and the ventral hippocampus. It was long believed 
that the development of the telencephalon was characteristic of mammals, but it is now 
known that it develops similarly in other taxon such as fishes and birds.

Thalamus. Subcortical nucleus which plays a key role as an interface between the sensory 
and the executive systems.
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Utility function. Often shortened to utility (U). This is a logarithmic function that modu-
lates the value given to an option based on its probability of occurrence. It has been for-
malized by Bernouilli and is used in economics to model the preferences of individuals 
(see Chapter 1).

Ventral tegmental area. Dopaminergic nucleus of the mesencephalon. It is functionally 
associated with the substantia nigra pars compacta. The ventral tegmental area innerv-
ates the prefrontal, orbitofrontal, and cingulate loops, whereas the substantia nigra pars 
compacta releases dopamine into the motor and oculomotor networks.

VTA. Acronym for ventral tegmental area.
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excitatory (glutamatergic) nucleus 39
executive decision- maker 20f
expected value 158
exploitation, exploration vs. 8– 9
external globus pallidus see GPe (external 

globus pallidus)
external stimuli, Diachreton 145
  
Farewell to Reason (Feyerabend) 81– 82
fast automatic system of 

decision- making 120– 21
fear mechanisms 46
feedback, positive see positive feedback
Ferrier, David 15– 16, 73
Feyerabend, P 81– 82
Fink, G R 18– 19
first gain gambling game example 122, 123f
flexible behaviour, decision- making 60
fMRI see functional magnetic resonance 

imaging (fMRI)

fornix, memory 87– 88
framing 11– 12
free will 133, 135

history of decision- making 3– 4
necessity of 136

functional brain mapping 15– 16
see also functional magnetic resonance 

imaging (fMRI)
functional loop, lamprey 42
functional magnetic resonance imaging 

(fMRI) 17– 18, 134, 141
beauty contest problem 99– 100
definition 158

  
GABA 30

definition 158
GABAergic neurons

striatum 38– 39
tonic neurons 39

Gage, Phineas 14– 15
gain increase/ decrease, thalamic (M) & 

striatal neurons (Str) 49
Gal, F J 17– 18
Gaussian noise, Diachreton 146
genetics 53
geography, decision- making 73– 74
Gilliam, Terry 20– 21
globus pallidus 137

definition 158
external see GPe (external globus 

pallidus)
internal see GPi (internal globus 

pallidus)
ventral part 112– 14

glutamate 29– 30, 36– 37
definition 158

glutamatergic (excitatory) nucleus 39
glycine 158
glycinergic inhibitory neurons 36– 37
God, existence of 4– 5
gorilla, self- recognition 89
GPe (external globus pallidus) 38, 39

definition 158
subthalamic nucleus, indirect (poly- 

synaptic) pathway 39
GPi (internal globus pallidus) 38, 

39, 72– 73
anticipation 95– 96
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definition 158
direct (monosynaptic) pathway 39
hyperdirect pathway 38f, 39

greedy algorithms 107– 8
grey matter, vertebrate brain 35
  
habituation 92– 93
head movements, rat anticipation 

models 93
Hebb, Donald 33, 149
Hebbian learning (reinforcement learning) 

7, 33, 149
algorithms 106– 7
conditioning of 149– 50
cortex 65
Diachreton 151f
dopamine 48
machine- learning approach 105
‘model- free’ algorithms 107– 8
salamanders/ newts 53– 55

Heisenberg’s uncertainty 
principle 135– 36

hemispheres, vertebrate brain 35
Herophilus of Alexandria 14– 15
Herrnstein, Richard 8, 51– 52
Hershberger, J 62– 63
heuristics 120, 158
heuristic value 158
hierarchical system of decision- making 

71f, 72
hippocampus 85– 87

actor network 112– 14
cingulate network and  definition 159
networks of rationality 96f

Hippocrates 14– 15
history of decision- making 3

brain structure 13
economics & contradictions 9– 10
economics vs. philosophy 5– 7
philosophy vs. reason 4– 5
rationality 10– 13
reason to free will 3– 4

HM case 85– 86, 87– 88
Hobbes, T 136
homeopathy 119– 20
horoscopes 119– 20
Houthakker, H S 6– 7
human brains 57– 60

Humphries, M D 114– 15
hyperdirect pathway 39– 40

definition 159
NST and GPi 38f, 39

hyperdopaminergic syndrome 129f, 132
hypothalamus

diencephalon 36
memory 87– 88

  
imaging

decision- making 73
see also functional magnetic resonance 

imaging (fMRI)
imitation neurons 90– 91
implementation 34
independence, violation of 9– 10
indirect (poly- synaptic) pathway 39– 40

definition 159
GPe and subthalamic nucleus 39

individualism 83
infant dependence, mammals 56– 57
information

coding 27f
decision- making 82
dilution effect 124
transfer of 25, 27f

inhibitory feedback loop, telencephalic 
loop 63– 64

inhibitory neurons 30
Diachreton 147

initial bias 121– 22
input structures, striatum & subthalamic 

nucleus 38
insula, memory 87– 88
intentionality 135
intermediary structure, external global 

pallidus 38
internal globus pallidus see GPi (internal 

globus pallidus)
interneurons 159
irrational animals 77– 78
irrational predictability of behaviour 125
  
juveniles, mammals 56– 57
  
Kahneman, Daniel 11– 12, 120– 21
Kant, Immanuel 4
k- armed bandits 159
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Khamassi, M 114– 15
killer whales, self- recognition 89
  
lamprey 35

decision- making network 61
diencephalic loop 41f, 42
effector system 42
evolution of 36– 37
functional loop 42
myotomes 36– 37
positive feedback loop 42, 43f
random decision- making engine 45f
selection mechanism 42, 43f, 44

language 58
Lapicque, Louis 15– 16
lateral habenula, actor network 112– 14
lateral inhibition 32
L- DOPA

hyperdopaminergic syndrome 132
Parkinson’s disease 130

learning 33– 34, 46
birds 56
cortex and 65– 67
definition 21
Diachreton 149– 50, 150f
diencephalic network 51f, 67– 68
dopamine and 49
model- based algorithms 108– 9, 109f
neuroeconomics 140– 41
plasticity and 67– 68

left brain, right brain opposition 18– 19
libertarianism 81– 82
Libet, Benjamin 133– 34
Libet’s paradigm 133– 34
life saving example, anchoring 

effect 122– 23
locomotor system, effector system in 31– 32
logos (rational discourse) 3– 4
Lømo, T 33
long- term depression see anti- Hebbian 

learning (long- term depression)
long- term potentiation (LTP) 33, 149

D1 antagonists 49
lottery 159
LTP see long- term potentiation (LTP)
  
M1 neurons, lamprey effector system 42
M2 neurons, lamprey effector system 42
machine learning

neuroeconomics 141

reinforcement learning 105
magnetic resonance imaging (MRI) see 

functional magnetic resonance 
imaging (fMRI)

magpie, self- recognition 89
mammals

decision- making network 62f
evolution of 56– 57

Market theory 5– 6
Markov Chain 106f, 106– 7
Markov decision- making process 

106f, 106– 7
Marshall, J C 18– 19
Maynard Keynes, John 98– 99
medial pallium, hippocampus as 87
medial prefrontal cortex, beauty contest 

problem 99– 100
medium spiny neurons 159
memory 85

brain structures 87– 88
networks 87– 88

mental representation 84, 119
anticipation 93– 94
cingulate circuit 124– 25, 125f

mesencephalon 35– 36
actor network 112– 14
definition 159

midbrain, substantia nigra 37
middle temporal (MT) visual area 94
mind, theory of 4, 59– 60, 98
mirror test, self- recognition 57
model- based learning algorithms 108– 9
‘model- free’ reinforcement learning 

algorithms 107– 8, 109f
monosynaptic pathway see direct 

(monosynaptic) pathway
Morgenstern, O 6– 7, 12– 13
motivation 46
motor behaviour, dopamine 47
motor circuit, telencephalic loop 

73– 74, 74f
motor loop 159
motor mechanisms, Parkinson’s 

disease 132
motor system, Diachreton 145, 146f
Movshon, Anthony 16– 18, 94, 140
M- Str (cortico- striatal synapses) 114
MT (middle temporal) visual area 94
multi- option system of decision- making 

70, 71f
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multitask system of decision- making 
70– 72, 71f

myotomes
definition 159
lamprey 36– 37

  
Nash equilibrium 98– 99
network dynamics, Diachreton 147
Neural Darwinism 67– 69
neurobiology 14

clinical medicine 14– 15
electrical properties of neurons 15– 16
phrenology 17– 18

neuroeconomics 140
machine learning 141

neuro- modulators 30
neurons 25, 26f

dopaminergic see dopaminergic 
neurons

electrical properties 15– 16
electrical properties of 15– 16
excitatory see excitatory neurons
firing frequency 26– 28, 27f
GABAergic see GABAergic neurons
glycinergic inhibitory neurons 36– 37
imitation neurons 90– 91
inhibitory see inhibitory neurons
interneurons 159
medium spiny neurons 159
phasic neurons 25– 26
projection neuron 160
pyramidal neurons see pyramidal 

neurons
reticulospinal neurons 37
striatal neurons (Str) see striatal 

neurons (Str)
telencephalic neurons 95– 96
thalamic neurons (M) 49
tonic neurons 39

neuroscience, relevance of 135
neurotransmitters 29

definition 159
excitatory neurotransmitters 29– 30
random release 32– 33
see also dopamine

Newsome, William 16– 18, 94, 140
Nicomachean Ethics (Aristotle) 3– 4
noise 29, 32– 33, 76

bifurcation and 77
lamprey functional loop 42– 44

normative approach to 
decision- making 18– 19

  
obsessive compulsive disorders (OCDs) 

127– 28, 129f
oculomotor loop

definition 160
telencephalic loop 73– 74, 74f

O’Keefe, John 86
olfactory bulb, telencephalon 36
One- Armed Bandit task 7– 8
operant conditioning 7
optimism 12– 13
option evaluation 101
orbitofrontal circuit

obsessive compulsive disorders 128
telencephalic loop 73– 74, 74f

orbitofrontal cortex
actor network 112– 14
obsessive compulsive disorders 128
rat models of anticipation 93– 94

orbitofrontal loop
anticipation 96f, 97
definition 160
utility 96– 97

output structures, internal globus pallidus 38
  
pain 46
pallidum, telencephalon 36
pallium

definition 160
evolution 54f
telencephalon 36
see also cortex

pallium- thalamus- basal ganglia loop see 
telencephalic loop

parallel decision- making 70– 72
Parkinson’s disease 129f, 130– 31

electrophysiology 137
motor mechanisms 132

pars compacta 48
pars reticulata 48
Pascal, Blaise 3– 5
pathologies of decision- making 127
Pavlovian conditioning task 110
Pavlovian learning 50f
pedunculo- pontine nucleus 112– 14
perception

decision- making to 138
stock market prices and 98– 99
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peripheral nervous system (PNS) 160
phasic neurons 25– 26
philosophy 4– 7
phrenology 17– 18
physiopathology, obsessive compulsive 

disorders 128
place cells 86

rat anticipation models 93– 94
plasticity 33

learning and 67– 68
PNS (peripheral nervous system) 160
pointing at target task 65– 67
poly- synaptic (indirect) pathway see 

indirect (poly- synaptic) pathway
positive feedback 33

Diachreton 147
lamprey 42, 43f

Positivism 7
prediction errors, dopamine 110– 11
preference

emotion as 138– 39
revealed 6– 7

prefrontal cortex 19
anticipation 100

prefrontal loop
anticipation 96f, 97
utility 96– 97

prefrontal network
definition 160
telencephalic loop 73– 74, 74f

primitive mechanisms, telencephalic loop 
superimposition 64– 65

procedural memory 85
progress, science as 81– 82
projection neurons 160
Prospect Theory 11– 12, 12f
pyramidal neurons

basal ganglia input 63
projection 160

  
random decision- making engine, lamprey 

44– 45, 45f
random dot experiment 16f, 16– 17
random neurotransmitter release 32– 33
raphe nuclei

actor network 112– 14
mesencephalon 35– 36

rational discourse (logos) 3– 4
rationalism 81– 82

rationality 76, 101
conception of 83
history of decision- making 10– 13
networks of 96f
obsession with 82
Western civilisation 119– 20

rat models, anticipation 93– 94
reactions, anticipation of 83
reason 81

history of decision- making 3– 5
representation and 82– 83

recognition processes 91
re- combinable system, decision- making 

71f, 72
reinforcement learning see Hebbian 

learning (reinforcement learning)
relevant decisions and questions, 

Diachreton 149
representation, reason and 82– 83
reptiles 55

decision- making network 61, 62f
Rescorla, R A 7– 8
resting, Diachreton 148
reticulospinal neurons, lamprey 37
revealed preference 6– 7
rewards 46

critic module 112, 113f
dopamine and 50f, 50– 51
dopaminergic neurons 95f, 112, 113f

Rhesus macaques, visuospatial 
transformation tasks 63

right brain, left brain opposition 18– 19
rigidity, Parkinson’s disease 130
risk aversion 6f, 9– 10
Rizzolatti, Giacomo 90– 91
‘room through the looking glass’ 62– 63
  
Samuelson, P A 6– 7
Savage, Leonard J. 9– 10
scalar 160
Schultz, Wolfram 94– 95, 140
science, progress as 81– 82
Scoville, William 85– 86
selection mechanisms

lamprey 42, 43f, 44
Neural Darwinism 68

self- awareness 4
self– others differentiation 90– 91
self- recognition 57, 89
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sensory system
CA1 activity 86
Diachreton 145

serotonin 30
Sharot, Tali 12– 13
shogi, chess vs. 99– 100
Shogi Grandmasters 100– 1
Simon, Herbert 10– 11, 120
Skinner, B F 7
Skinner’s box 7
slow reliable system, 

decision- making 120– 21
Smith, Adam 5– 6
SN see substantia nigra (SN)
SNc see substantia nigra pars 

compacta (SNc)
SNr (substantia nigra pars reticulata) 160
social groups, birds 55– 56
softmax algorithms 107– 8
spatial resolution, functional MRI 17– 18
spikes (action potentials) 25– 28, 27f

definition 160
production 28– 29

Spinoza, B D 136
spoken symbolic language 58
stimulus, Diachreton 148
STN see subthalamic nucleus (STN)
stochastic mechanisms, divergent processes 

and 141– 42
stock market prices, perception and 98– 99
Stoics 4– 5, 138– 39
striatal neurons (Str)

dopaminergic neurons 48– 49
gain with thalamic neurons (M) 49

striatum 38– 39
definition 160
dopaminergic neurons 95– 96
GPi, direct (monosynaptic) pathway 39
pyramidal neuron input 63
telencephalon 36

subcortical structures 19
subiculum

definition 160
hippocampus 85– 86

substantia nigra (SN) 48– 49
definition 160
midbrain 37

substantia nigra pars compacta (SNc) 48
actor network 112– 14

definition 160
stimulus- response association 94– 95

substantia nigra pars reticulata (SNr) 160
subthalamic nucleus (STN) 38, 39

definition 160
diencephalon 36, 37
GPe, indirect (poly- synaptic) 

pathway 39
obsessive compulsive disorders 128
pyramidal neuron input 63

Sutton, R S 107
synaptic gain (coupling) 29

definition 160
synaptic noise 77
synaptic plasticity 29
  
tectum, mesencephalon 35– 36
tegmentum, mesencephalon 35– 36
telencephalic loop 41– 42, 141– 42

actor– critic model 64f, 112– 14
anticipation 100
architecture of 63– 65, 64f
behaviour control 61
blocking in pointing at target task 65– 67
decision- making 72– 73
definition 41– 42, 160
diencephalic loop, 

superimposition on 74
physiopathology 129f
recognition processes 91
selection mechanism in Neural 

Darwinism 68
stochastic processes 77
structure 73, 74f

telencephalic neurons, utility and 95– 96
telencephalon 36, 53

basal ganglia interactions 62f
brain size ratio 57
definition 160
diversity generator in Neural 

Darwinism 68
teleology, variability and 76– 77
temporal difference (TD) computation 

110, 111f
dopaminergic neurons 112

temporal difference (TD) learning 107
temporality 92– 93
thalamic neurons (M), gain with striatal 

neurons 49
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thalamus 53– 55
definition 160
diencephalon 36
diversity generator in Neural 

Darwinism 68
lamprey 37
obsessive compulsive disorders 128

theory of mind 4, 59– 60, 98
Thorndike, Edward 7
three- component Hebbian rule 141– 42
Tolman, E C 84, 86
tonic neurons 39
Tourette’s syndrome 128– 30, 129f
Transformism 53
tremor, Parkinson’s disease 130
trial and error 93
tri- component Hebbian learning 34
Tversky, Amo 11– 12, 120– 21
Two- Armed Bandit problem 8– 9, 9f, 51– 52, 

95– 96, 141
Diachreton 151– 54, 153f, 154f
variability & teleology 76– 77

two option decisions 31– 32
two- option decisions, Diachreton 154
two- speed system, cortical learning 65, 66f
two- system theory of 

decision- making 120– 21
  

uncertainty in decision- making 6– 7
unconscious choice 74– 75
utility, brain areas 96– 97
utility function 6f, 92

definition 161
options of 94

  
variability, teleology and 76– 77
ventral tegmental area (VTA) 48– 49

actor network 112– 14
definition 161
stimulus- response association 94– 95

vertebrate brain 35– 36
vicarious trial and error 93
violation of independence 9– 10
visuo- motor coordination, diencephalic 

loop 61
visuospatial transformation tasks, Rhesus 

macaques 63
volume transmission, dopamine 47
von Neumann, J 4– 5, 6– 7, 12– 13
VTA see ventral tegmental area (VTA)
  
Wagner, A R 7– 8
weakness, Diachreton 150– 51
Wernicke’s area, language 58
Western civilisation, rationality 119– 20


