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Foreword

When I studied psychology between 1969 and 1975, I took a course on psychosomatic
diseases. The professor presented migraine as a typical example of disease which was
clearly a psychological problem without a biological basis.There were compelling argu-
ments, like migraine attacks triggered by stress and a strong co-morbidity with anxiety
disorders. How much has changed since these times?
When I started to see migraine patients as a young neurology resident, it became

immediately clear to me that migraine was clearly more than a psychological problem.
Why had the psychologists neglected the results from twin studies? The phenotype of
migraine attacks was extremely homogeneous across patients.
Now is the time to summarize the progress in the neurobiological basis of migraine

we have made in the last 40 years. The editors have recruited the best scientists and
clinicians in the field of migraine research for a display of amazing research results. We
are now able to assign all phases of a migraine attack, from prodromes, aura, headache,
autonomic symptoms, photo- and phonophobia and postdromes, to anatomical struc-
tures, modifications in the pain transmission andmodulation system and higher cortical
functions.
A major challenge is still the treatment of acute migraine attacks and migraine pre-

vention. Triptans were developed as attack treatment, under the assumption that they
would constrict dilated vessels in the dura and the base of the brain. Later, it turned out
that they have major effects on pain transmission in the trigemino-thalamic pathways.
We desperately need more effective and better tolerated drugs for migraine preven-
tion. The migraine-preventive properties of available medications like beta-blockers,
flunarizine, valproic acid, topiramate, amitriptyline and onabotulinum-toxin A were
detected “by chance” when these drugs were used for other indications in patients with
migraine. CGRP was identified as a major player in the pathophysiology of migraine. At
present, four antibodies against CGRP or the CGRP receptor are under development
for migraine prevention. This is a good example of translational research, where obser-
vations from pathophysiological studies have resulted in new treatment approaches.
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xxiv Foreword

Who should read this book? Anyone who is interested in migraine as a disease and
in migraine patients. I hope that many young researchers and clinicians will become
motivated to move into the very promising field of headache research.

Hans-Christoph Diener
Senior Professor of Clinical Neurosciences
Department of Neurology
University Duisburg-Essen
Essen Germany
E-Mail: hans.diener@uk-essen.de
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1

Functional anatomy of trigeminovascular pain
Karl Messlinger1 and Mária Dux2

1Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg,
Erlangen, Germany
2Department of Physiology, University of Szeged, Szeged, Hungary

1.1 Anatomy of the trigeminovascular system

Thetrigeminal system, consisting of afferent nerve fibersmostly arising from the trigem-
inal ganglion, conveys sensory information from extra- and intracranial structures to the
central nervous system via the fifth cranial nerve. The term “trigeminovascular system”
has been formed to describe the close morpho-functional relationship of trigeminal
afferents with intracranial blood vessels, originally in the context of vascular headaches
(Moskowitz, 1984). Nowadays, the termmay be extended to extracranial tissues, as well
as to the central projections of trigeminal afferents into the trigeminal nuclear brainstem
complex, as specified below.

1.1.1 Vascularization and innervation of the duramater encephali

Large arteries run in the outer (periosteal) layer of the dura mater, accompanied by one
or two venous vessels. In the human dura, arterial branches form arterio-venous shunts
and supply a rich capillary network of the inner (arachnoid-near) layer (Kerber andNew-
ton, 1973; Roland et al., 1987). The remarkable dense vascularization of the dura mater
is in contrast to the light red color of meningeal veins, suggesting very low oxygen con-
sumption that leaves other functional interpretations, such as thermoregulation, open
(Zenker and Kubik, 1996; Cabanac and Brinnel, 1985).
The meningeal innervation has been studied extensively in rodents, but there is gen-

eral agreement that the findings conform, in principle, with the human meningeal sys-
tem.Theduramater is innervated by bundles consisting of unmyelinated andmyelinated
nerve fibers (Andres et al., 1987), with diameters ranging from 0.1–0.4 μm (unmyeli-
nated) and from 1–6 μm (myelinated including myelin sheath) in rat (Schueler et al.,
2014).
Immunohistochemical observations indicate thatmost of the nerve bundles consist of

mixed afferent and autonomic fibers, which split up into smaller branches and, finally,
into single fibers. Trigeminal fibers, which originate in the ipsilateral trigeminal gan-
glion, and sympathetic fibers, predominantly arising from the ipsilateral superior cer-
vical ganglion, form dense plexus around the middle, anterior and posterior meningeal
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artery, suggesting a vasomotor function (Keller andMarfurt, 1991;Mayberg et al., 1984;
Uddman et al., 1989). An especially dense network of nerve fibers is found around dural
sinuses (Andres et al., 1987). In addition, a prominent system of cholinergic nerve fibers
originating from the otic and sphenopalatine ganglia surrounds mainly large meningeal
blood vessels (Amenta et al., 1980; Edvinsson and Uddman, 1981; Artico and Cavallotti,
2001).
Ultrastructural analyses of trigeminal fibers reveal the typical details of non-

corpuscular sensory endings, which can be extensively ramified, forming short bud-like
extensions or longer branches at the vessel wall, but also within the connective tissue
between blood vessels (Messlinger et al., 1993). In addition, at sites where the cerebral
(bridging) veins enter the sagittal superior sinus, non-encapsulated Ruffini-like receptor
endings have been described (Andres et al., 1987). Particular features of the sensory
endings (von Düring et al., 1990) are the free areas not covered by Schwann cells,
and the equipment with vesicles and a specific fibrous plasma (“receptor matrix”)
accumulating adjacent to the cell membrane of the free areas (Andres et al., 1987).
Functionally, the trigeminal and the parasympathetic fibers mediate arterial vasodi-

latation, and the postganglionic sympathetic nerve fibers mediate vasoconstriction
(Jansen et al., 1992; Faraci et al., 1989). The vasodilatation of meningeal arteries
induced by cortical spreading depression in rat was abolished after sphenopalatine
ganglionectomy (Bolay et al., 2002). There are multiple functional measurements of the
meningeal vasoregulation, employing video microscopy and laser Doppler flowmetry,
which all indicate regulation of meningeal arteries but obviously no venous vasoregu-
lation (Gupta et al., 2006; Kurosawa et al., 1995; Fischer et al., 2010; Williamson et al.,
1997).
The arterial vessels are accompanied by mast cells, arranged in a street-like manner

frequently close to nerve fiber bundles, suggesting signaling functions (Dimlich et al.,
1991;Dimitriadou et al., 1997; Keller et al., 1991). In addition, extensive networks of den-
dritic cells with access to the cerebrospinal fluid and resident macrophages exist in all
meningeal layers, suggesting competent immune functions within these tissue (McMe-
namin, 1999; McMenamin et al., 2003).

1.1.2 Extracranial extensions of themeningeal innervation

Postmortem tracings with DiI show two systems of trigeminal fibers transversing the rat
dura mater of the middle cranial fossa in a roughly orthogonal direction, one accompa-
nying the middle meningeal artery (MMA), and the other running from the transverse
sinus across the artery in a rostromedial direction (Strassman et al., 2004). Recent
neuronal tracing (Schueler et al., 2014) has revealed that the MMA accompanying fiber
plexus is formed by the spinosus nerve originating in the mandibular division (V3)
of the trigeminal ganglion, while the MMA crossing plexus arises from the tentorius
nerve originating in the ophthalmic division (V1). This innervation pattern conforms
to the historical observations on the human meningeal system described by Luschka
and Wolff’s group (Luschka, 1856; Ray and Wolff, 1940).
Previous retrograde tracing studies in cat and monkey aimed at the question of

whether intracranial structures may be innervated by divergent axon collaterals that
also supply facial skin to explain pain referred to the surface of the head (Borges and
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Moskowitz, 1983; McMahon et al., 1985), but these studies brought no evidence for
this hypothesis. Recently, however, it became clear that the rodent meningeal nerve
fibers may traverse the cranium, and may communicate with extracranial structures
such as the galea aponeurotica (Kosaras et al., 2009). Postmortem anterogradely traced
meningeal nerve fibers in rat and human preparations were found to split up in several
branches, some of which pass through sutures and along emissary veins and innervate
the periosteum and deep layers of pericranial muscles (Schueler et al., 2014). In vivo
retrograde tracing has confirmed this, and functional measurements have showed
that at least some of the nerve fibers innervating pericranial muscles are collaterals of
meningeal afferents innervating the dura mater (Schueler et al., 2013; Zhao and Levy,
2014).

1.1.3 Neuropeptides and their receptors in meningeal tissues

Immunohistochemical studies have identified various neuropeptides in nerve fibers
innervating the dura mater (O’Connor and van der Kooy, 1986; von Düring et al., 1990;
Keller and Marfurt, 1991; Messlinger et al., 1993) and blood vessels of the pia mater
in different species, including humans (Edvinsson et al., 1988; You et al., 1995). The
peptidergic nerve fibers form a dense network around blood vessels, but can also be
found in non-vascular regions of the dura mater (Messlinger et al., 1993; Strassman
et al., 2004).Meningeal nerve fibers immunoreactive for calcitonin gene-related peptide
(CGRP), substance P (SP) or neurokinin A (NKA) are considered to be afferents of the
trigeminal sensory system. A few nerve fibers immunopositive for pituitary adenylate
cyclase-activating polypeptide (PACAP) have been found in rat dura mater, some of
them colocalized with CGRP, indicating two likely sources of PACAP-containing fibers:
a minor sensory and a larger putatively parasympathetic one (Edvinsson et al., 2001).
SP-like immunoreactivity is found coexpressed with CGRP in a small proportion of thin
unmyelinated nerve fibers. However, the CGRP-immunoreactive nerve fibers outnum-
ber the SP-positive ones and, consequently, many CGRP-containing fibers display no
SP-immunoreactivity.Themajority of the CGRP-immunoreactive fibers are distributed
to branches of the anterior and middle meningeal arteries, and to the superior sagittal
and transverse sinuses (Keller and Marfurt, 1991; Messlinger et al., 1993).
Nerve fibers immunoreactive for neuropeptide Y (NPY), which aremost likely of sym-

pathetic origin, are also found located around cerebral and dural blood vessels of human
and rodents (Edvinsson and Uddman, 1981; Edvinsson et al., 1998). These nerve fibers
are similarly numerous in the cranial duramater (Keller et al., 1989).They formgenerally
more intimate contact with the blood vessel wall than sensory peptidergic fibers (von
Düring et al., 1990; Keller and Marfurt, 1991; Edvinsson et al., 1987). NPY potentiates
the vasoconstrictor action of noradrenaline (Jansen et al., 1992). In addition, a sparse
innervation of nerve fibers immunoreactive for vasoactive intestinal polypeptide (VIP),
most likely of parasympathetic origin, has been identified around dural and pial blood
vessels in different species (Keller and Marfurt, 1991; Edvinsson et al., 1998).
Release of VIP from the parasympathetic endings induces vasodilatation inmeningeal

tissues (Jansen et al., 1992). Nitric oxide synthase (NOS) immunoreactivity has been
identified in some trigeminal sensory neurons, and in parasympathetic postganglionic
fibers innervating pial arteries and proximal parts of the anterior and middle cerebral
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arteries. In some of these neurons, NOS is colocalized with VIP, implying a modulatory
role of nitric oxide (NO) on VIP-induced vasorelaxation (Nozaki et al., 1993).
Antibodies raised against two components of the CGRP receptor, the calcitonin

receptor-like receptor (CLR) and the receptor activity-modifying protein 1 (RAMP1),
mark smooth muscle of dural arterial blood vessels, as well as mononuclear and
Schwann cells (Lennerz et al., 2008). Also, some thicker CGRP-negative A-fibers of
rodent and human dura may express CLR and RAMP1 (Eftekhari et al., 2013). Binding
of CGRP to the vascular CGRP receptors in dural and pial tissues causes vasodilatation
and increased meningeal blood flow (Edvinsson et al., 1987; Kurosawa et al., 1995).
Endothelial cells of blood vessels in the dura mater and in cerebral blood vessels express
the neurokinin-1 (NK-1) receptor. SP acting at the NK-1 receptor appears to be mainly
responsible for plasma extravasation (Stubbs et al., 1992; O’Shaughnessy and Connor,
1993), but intravascular SP may also cause dilatation of cerebral microvessels (Kobari
et al., 1996).
Blockade of NK-1 receptors effectively reduces the plasma protein extravasation in

the rodent dura, acting most likely on postcapillary venules (Shepheard et al., 1993;
Lee et al., 1994). Both CGRP and NK-1 receptors are also expressed on the surface of
mononuclear cells, most of which may be mast cells (Ottosson and Edvinsson, 1997;
Lennerz et al., 2008). Release of CGRP and SP from peripheral terminals of meningeal
afferents may thus degranulate dural mast cells and release their vasoactive mediator
content, such as histamine (Schwenger et al., 2007). In addition, application of the neu-
ropeptide PACAP can degranulatemast cells, but the receptor typemediating this effect
is not yet clear (Baun et al., 2012). Mast cell degranulation is considered as a peripheral
component of headache pathophysiology (Levy, 2009), but vasodilatation and neuro-
genic plasma extravasation induced by SP release seems to be negligible in the genera-
tion or maintenance of headaches (Dux et al., 2012; see Figure 1.1).

Figure 1.1 Peripheral trigeminovascular structures of nociceptive transduction. Thin myelinated and
unmyelinated afferent fibers (A𝛿/C, yellow) of all trigeminal partitions and autonomic fibers, mostly
postsynaptic sympathetic (Sy, purple) and few parasympathetic fibers (Pa) innervate the cranial dura
mater and cerebral arteries, which run on the cortical surface through the subarachnoidal space.
Collaterals of meningeal A𝛿/C fibers transverse the cranium and innervate also periosteum and deep
layers of pericranial muscles. The inset shows multiple G-protein coupled receptors and ion channels
involved in sensory transduction and efferent functions of A𝛿 and C fibers: Voltage-gated sodium and
calcium channels (Nav, Cav) cause excitation and release of neuropeptides like CGRP and substance P
(SP), which can also be induced by opening of calcium conducting transient potential receptor
channels (TRPV1, TRPA1) activated by thermal and chemical stimuli. TRPV1 and acid sensing ion
channels (ASIC3) respond to low pH, purinergic receptor channels (P2X3) and receptors (P2Y) to
purines like ATP. CGRP activates CGRP receptors on arterial smooth muscle cells causing vasodilatation,
which is supported by vasodilatory substances like VIP released from parasympathetic fibers (Pa),
whereas vasoconstriction is caused by monoamines like norepinephrine (NE) released from
sympathtic efferents (Sy). SP induces mainly plasma extravasation through endothelial NK-1 receptors.
CGRP and SP can also degranulate mast cells (MC), thereby releasing tryptase (Try) that activates
afferent PAR-2 receptors and histamine (HA) that causes arterial vasodilatation through H2 receptors.
Vascular serotonin (5-HT1B) and afferent 5-HT1D/1F as well as cannabinoid (CB1) receptors are inhibitory,
acting against vasodilatation and neuropeptide release.
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1.1.4 Transduction channels and receptors in the trigeminovascular system

Chemosensitive meningeal afferents express different members of the transient recep-
tor potential (TRP) cation channel family. In rats, a dense network of TRP vanilloid
1 (TRPV1) channel expressing fibers has been identified (Huang et al., 2012). TRPV1
immunoreactivity is colocalized with CGRP in most of the afferents (Hou et al., 2002;
Dux et al., 2003), which has proved to be sensitive to capsaicin (Dux et al., 2007). TRPV1
cannot only be activated by exogenous substances like capsaicin or resiniferatoxin, but
also by noxious heat, acidic pH (pH< 5.3) and different endogenous compounds such as
somemembrane lipidmetabolites (anandamide, N-arachidonoyl-dopamine; Price et al.,
2004).
The TRP ankyrin 1 (TRPA1) ion channel is another member of the TRP receptor fam-

ily that is highly colocalized with TRPV1 receptors on trigeminal neurons innervating
the dura mater and activated by substances like mustard oil and cannabinoids (Salas
et al., 2009; Jordt et al., 2004). Recent observations indicate the activation of trigeminal
TRPA1 receptors as a link between the two major vasodilator mechanisms. Vasodilata-
tion induced by the production of NO in the vascular endothelium and by release of
CGRP from trigeminal afferents (Eberhardt et al., 2014) – that is, nitroxyl (HNO), the
one-electron-reduced sibling of NO, modifies cysteine residues of the receptor, leading
to activation of the ion channel and consequent release of CGRP. TRPA1 receptors can
also be activated by environmental irritants or a volatile constituent of the “headache
tree” – the umbellulone (Nassini et al., 2012). Given that TRPA1 receptors are expressed
not only on intracranial axons but also on their extracranial collaterals innervating (e.g.,
nasal mucosa, periosteum and pericranial muscles) (Schueler et al., 2014), nociceptive
stimulation of extracranial tissues may activate intracranial collaterals by an axon reflex
mechanism, release vasoactive neuropeptides in meningeal tissue, increase intracra-
nial blood flow, and contribute to the pathomechanisms of headaches (Schueler et al.,
2013).
Sensitization of meningeal nociceptors by a variety of blood- and tissue-borne agents

may be an important peripheral mechanism in the initiation of headaches (Burstein
et al., 1998a). The proteinase activated receptor 2 (PAR-2), activated through cleavage
by the serine protease tryptase released from stimulatedmast cells, amplifies the vasodi-
latation caused by sensory neuropeptides (Bhatt et al., 2010) and possibly also the central
transmission of nociceptive signals (Zhang and Levy, 2008). The effect of PAR-2 activa-
tion is at least partly mediated by TRPV1 and TRPA1 receptor sensitization (Dux et al.,
2009).
Acid-sensing ion channels (ASICs), predominantly the ASIC3 subtype responding

to low meningeal pH, has been identified on meningeal afferents (Yan et al., 2011).
ASICs are members of the ENaC/DEG (epithelial amiloride-sensitive Na+ channel and
degenerin) family of ion channels (Wemmie et al., 2006). Acidic metabolites may be
released by activated mast cells, or during ischemia developing as a consequence of cor-
tical spreading depression linked to the aura phase of migraine.
Purinergic P2Y receptors and P2X receptor channels activated by ATP are richly

expressed in trigeminal afferents, partly colocalized with TRPV1 receptors (Ichikawa
and Sugimoto, 2004; Ruan and Burnstock, 2003).The majority (52%) of retrogradely
labeled trigeminal ganglion neurons innervating the dura mater expresses either P2X2
or P2X3 or both receptors (Staikopoulos et al., 2007). ATP enhances the proton-induced
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CGRP release through P2Y receptors from the isolated rat dura mater (Zimmermann
et al., 2002). Conversely, CGRP caused delayed upregulation of purinergic P2X
receptors in cultivated trigeminal ganglion neurons (Fabbretti et al., 2006).
G-protein-coupled 5-HT1D/1F receptors are located on peripheral and central ter-

minals of meningeal afferents (Amrutkar et al., 2012; Buzzi and Moskowitz, 1991).
Their activation inhibits the release of neuropeptides and transmitters from the
trigeminal afferents, leading to attenuation of the central transmission of nociceptive
signals. Recent findings indicate the presence of 5-HT7 receptors on trigeminal
terminals. Vasodilatation induced by the activation of trigeminal 5-HT7 recep-
tors seems to be the result of CGRP release from nerve terminals (Wang et al.,
2014).
In the trigeminal system, cannabinoid CB1 receptor immunoreactive neurons are

found mainly in the maxillary and mandibular divisions of the trigeminal nerve (Price
et al., 2003). Activation of trigeminal CB1 receptors inhibits arterial blood vessel
dilatation induced by electrical stimulation of the dura mater (Akerman et al., 2004)
and CGRP release induced by thermal stimulation in an in vitro dura mater preparation
(Fischer and Messlinger, 2007). Activation of CB1 receptors may have a particular role
in the regulation of CGRP release from TRPV1 expressing neurons, since both recep-
tors can be activated by the same endogenous lipid metabolites as anandamide and
N-arachidonoyl-dopamine, acting on both TRPV1 and CB1 receptors with different
efficacies (Price et al., 2004; Figure 1.1).

1.2 Trigeminal ganglion

The trigeminal ganglion is located extracranially in the Meckel’s space and wrapped
with a duplicature of the cranial dura mater. It is subdivided into the ophthalmic (V1),
maxillary (V2) andmandibular (V3) division, and contains the cell bodies of the respec-
tive sensory trigeminal nerves. Furthermore, transition of nerve fibers of mesencephalic
trigeminal neurons has been found in all three partitions within the trigeminal nerve
(Byers et al., 1986).

1.2.1 Types of trigeminal ganglion cells

The number of trigeminal ganglion cells varies considerably. In human trigeminal gan-
glia, 20–35 thousand neurons and about 100 times more non-neuronal cells have been
counted (LaGuardia et al., 2000). Each cell body is surrounded by satellite glial cells,
other cell types are resident microglia-like macrophages (Glenn et al., 1993) and fibrob-
lasts. A functional crosstalk between neurons and macrophages and/or satellite glial
cells is assumed, at least in pathological states (Franceschini et al., 2012, 2013; Villa et al.,
2010).

1.2.2 Neuropeptides and their receptors in the trigeminal ganglion

The largest peptidergic neuron population in the trigeminal ganglion expresses
CGRP. In different species, including human, immunoreactivity for CGRP is found in
29–49% of trigeminal ganglion neurons (Alvarez et al., 1991; Eftekhari et al., 2010;
Lennerz et al., 2008), predominantly in small and medium-sized cells. Accordingly,
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CGRP immunoreactivity is preferably found in unmyelinated fibers of the trigem-
inal nerve (Bae et al., 2015). In a minor group of neurons, CGRP is coexpressed
with SP immunoreactivity (Lee et al., 1985), which has been found in up to 33% of
neurons (Del Fiacco et al., 1990; Prins et al., 1993; Prośba-Mackiewicz et al., 2000).
The isolectin IB4 from Griffonia simplicifolia, which binds to a subpopulation of
small trigeminal ganglion neurons, stains less than 25% of CGRP or SP immunore-
active neurons (Ambalavanar and Morris, 1992). Immunoreactivity for PACAP is
present in 29% of neurons, of which CGRP is coexpressed in 23% (Eftekhari et al.,
2015).
Immunoreactivity for the CLR and RAMP1 components of the CGRP receptor has

been found in Schwann and satellite cells, and in a large proportion of neurons, but
colocalization with CGRP is extremely rare (Alvarez et al., 1991; Eftekhari et al., 2010;
Lennerz et al., 2008). In vitro studies have provided evidence that CGRP release from
neurons can stimulate surrounding satellite cells to increase intracellular calcium, which
leads to an enhancement of purinergic (P2Y) receptors (Ceruti et al., 2011), expression
of different cytokines (Vause and Durham, 2010) and release of NO (Li et al., 2008). In
this way, CGRP could function as a paracrine factor to stimulate nearby glial cells and
neurons (Figure 1.2).
Human trigeminal ganglia express all three receptor subtypes of the VIP/PACAP

receptor family VPAC1, VPAC2 and PAC1 (Knutsson and Edvinsson, 2002). Pro-
vided that trigeminal ganglion neurons can release PACAP, the presence of PAC1
receptors on neuron somata suggests the possible existence of a signaling pathway for
PACAP-mediated communication between neighboring trigeminal sensory neurons
(Chaudhary and Baumann, 2002).

Figure 1.2 Trigeminal ganglion (TG) and structures in the trigeminal nuclear brainstem complex
(TBNC) subserving nociceptive transmission. While the central processes of most mechanoreceptive
A𝛽 fibers of the trigeminal ganglion (TG) project to the pontine subnucleus principalis (Vp), A𝛿 and C
fibers run down the spinal trigeminal tract terminating in the spinal trigeminal nucleus (Vsp).
Intracranial afferents terminate mainly in the trigemino-cervial complex (TCC), which is composed of
subnucleus caudalis (Vc) and the dorsal horn of the first cervial segments (C1-3), and some also in the
subnucleus interpolaris (Vi). The upper inset shows two trigeminal afferents with C fibers, wrapped by
Schwann cells (SC), and somata, surrounded by satellite glial cells (SGC). The neuropeptides CGRP and
PACAP are expressed by major proportions of TG neurons and may be released within the TG. VPAC
and PAC receptors are present on neurons. CGRP receptors are present on neurons not producing
CGRP, on SGC and SC, possibly enabling crosstalk between neurons and glia, which may include nitric
oxide (NO) release from SGC. The lower inset shows important neuronal elements of transmission.
Voltage-dependent conduction channels (Nav, Cav) subserve depolarisation and neurotransmitter
release. Glutamate (Glu), as the main transmitter, activates NMDA and non-NMDA receptor channels
and metabotropic glutamate receptors (mGluR) on second-order neurons, among them projection
neurons (PN) projecting to the thalamus and other nuclei involved in nociceptive processing.
Glutamate receptors are also found presynaptically, possibly modulating neurotransmitter and
neuropeptide release. The same function may apply to activating CGRP and purinergic (P2X3)
receptors and inhibiting 5-HT1 receptors, while SP may preferably act through postsynaptic NK-1
receptors. Inhibitory interneurons (IN) release GABA and other inhibitory neurotransmitters acting
pre- and postsynaptically through GABAA receptor channels and GABAB receptors.
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1.2.3 Representation of intracranial structures in the trigeminal ganglion

According to old anatomic observations in primates, all three divisions of the trigem-
inal nerve contribute to the innervation of the meninges (McNaughton, 1938), though
not equally. Tracing experiments using application of horseradish peroxidase (HRP) to
dural structures in the cat has confirmed this view (Steiger and Meakin, 1984). Affer-
ents around the middle meningeal artery are found projecting predominantly to the
ophthalmic division (V1) of the ipsilateral trigeminal ganglion, but to a minor extent
also to the maxillary (V2) and mandibular (V3) divisions (Mayberg et al., 1984). The
medial anterior cranial fossa and the tentorium cerebelli are represented mainly in V1,
the orbital region of the anterior cranial fossa in V2 (Steiger and Meakin, 1984). In the
rat, retrograde labeling with DiI of the dural spinosus nerve stains neuronal cell bodies,
preferably in the V3 and, to a lesser extent, in the V2 division (Schueler et al., 2014).
True blue application to the middle meningeal artery labels not only ipsilateral trigem-
inal ganglion cells, but also some neurons in the contralateral trigeminal ganglion and
in the dorsal root ganglion at the C2 level (Uddman et al., 1989).
HRP labeled cell bodies innervating the intracranial carotid and the middle cerebral

artery in the cat are located in the ophthalmic division of the trigeminal ganglion (Steiger
andMeakin, 1984). UsingWallerian degeneration in monkey, the vessels of the circle of
Willis are also found to be innervated by the V1 division, with a small maxillary con-
tribution (Simons and Ruskell, 1988). In the rat, retrograde HRP labeling around basal
intracranial arteries (Arbab et al., 1986) and true blue labeling of the middle cerebral
artery (Edvinsson et al., 1989) is found not only in the trigeminal ganglion, but also in
the first and preferably the second cervical spinal ganglion.

1.3 Trigeminal brainstem nuclear complex

1.3.1 Organization of the trigeminal brainstem nuclear complex

The trigeminal nerve enters the brain stem at the pontine level and projects to the
trigeminal brain stem nuclear complex (TBNC), which is composed of the principal
sensory nucleus (Vp) and the spinal trigeminal nucleus (Vsp). The bulk of myelinated
mechanoreceptive afferents projects to the Vp, while both large diameter and small
diameter fibers descend in the spinal trigeminal tract and project into the Vsp, which
is subdivided into the rostral subnucleus oralis (Vo), the middle subnucleus interpo-
laris (Vi), and the caudal subnucleus caudalis (Vc) (Olszewski, 1950). The Vc is often
referred to as the medullary dorsal horn (MDH), and some researchers emphasize its
anatomic and functional transition to the cervical dorsal horn, terming the Vc, includ-
ing the dorsal horn of the C1-C3 segments, trigeminocervical nucleus (TCN) (Goadsby
et al., 2001; Hoskin et al., 1999). Using transganglionic tracing, central trigeminal ter-
minals have been found throughout the TBNC and sparsely in the upper cervical dorsal
horn, even contralaterally (Marfurt, 1981; Figure 1.2).
Gobel et al. (1977) proposed a laminar subdivision of the MDH similar to Rexed’s

nomenclature of the spinal dorsal horn (Rexed, 1952), in which lamina I corresponds to
the marginal layer, lamina II to the substantia gelatinosa, and laminae III and IV to the
magnocellular region. The most ventral lamina V merges with the medullary reticular
formation without clear boundary (Nord and Kyler, 1968). Within the spinal trigeminal
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tract, some groups of neurons are termed interstitial islands of Cajal, or paratrigemi-
nal or interstitial nucleus (Phelan and Falls, 1989). These cells may be homologues to
laminae I and II neurons of the Vc, according to their nociceptive specific character and
small receptive fields (Davis andDostrovsky, 1988). Anatomical and electrophysiological
studies have demonstrated that the Vp and the subnuclei of the Vsp are topographically
organized in a largely ventrodorsal direction (Hayashi et al., 1984; Shigenaga et al., 1986;
Strassman and Vos, 1993). Mandibular afferents terminate preferentially in the dorsal
region, ophthalmic afferents terminate ventrally, and maxillary afferents terminate in
between.
Early anatomical and neurophysiological studies suggest that each subnucleus

receives information from all parts of the head (Kruger et al., 1961; Torvik, 1956). The
rostrocaudal axis of the face is represented from rostral to caudal in the TBNC in an
“onion-leaf-like” fashion (Yokota and Nishikawa, 1980; Jacquin et al., 1986). Labeling of
various mandibular nerves in the rat with HRP has revealed that the oral afferents tend
to terminate most heavily in the rostral TBNC, whereas the posterior perioral-auricular
afferents terminate preferentially in the caudal aspect of the complex (Jacquin et al.,
1988).
It is not entirely clear if a similar somatotopic distribution in ventrodorsal and rostro-

caudal directions exists for intracranial trigeminal structures.

1.3.2 Nociceptive afferent projections to the spinal trigeminal nucleus

The Vc is primarily responsible for processing nociceptive and temperature informa-
tion, whereas the Vp is involved in processing tactile information. Trigeminal tracto-
tomy (i.e., transection of the spinal trigeminal tract at the level of the obex) has been
found to relieve facial pain (Sjoqvist, 1938). Isolated lesions of the Vc cause complete
or partial loss of pain and temperature sensation on the ipsilateral side, whereas tac-
tile sensations remain nearly intact (Lisney, 1983). These clinical data have been sup-
plemented with a large body of neurophysiological evidence showing that the Vc is
essential for the perception of pain in trigeminal tissues. Since the loss of facial pain
sensation after trigeminal tractotomy is not complete, but frequently spares peri- and
intraoral areas, rostral parts of the TNBC may contribute to trigeminal nociception in
the oral region (Young, 1982). Similarly, behavioral responses to noxious orofacial stim-
ulimay persist following tractotomy orVc lesions in animals (Vyklický et al., 1977)while,
conversely, nociceptive responsiveness and intraoral pain may be diminished by more
rostral lesions of the trigeminal complex (Broton and Rosenfeld, 1986; Graham et al.,
1988).
The projection of nociceptive facial afferents to the spinal trigeminal nucleus has been

studied by a series of elegant experiments combining intraaxonal recordings in the Vsp
andHRP injections to examine the central terminations of labeled axons. Hayashi (1985)
found high-threshold mechanoreceptive A𝛿 afferents in the cat forming extensive ter-
minal arbors in superficial layers of the Vi as well as in lamina I and, to a lesser extent, in
outer lamina II of the Vc. Jacquin et al. (1986, 1988) confirmed these findings in the rat,
and localized a second termination area in laminae III to V of the Vc. In line with the
above findings, the sensory projection from the cornea, which is thought to be mainly
nociceptive, has been shown to be focused in the outer laminae of Vc (Panneton and
Burton, 1981).
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The projection of intracranial trigeminal afferents to the TNBC has not been studied
in detail by axonal tracing, but functional data suggest a similar distribution as for the
facial nociceptive afferents.

1.3.3 Functional representation of meningeal structures in the spinal trigeminal
nucleus

Electrophysiological studies in the cat have shown that the cranial meninges are mainly
represented in Vc, but also in Vi and Vo (Davis and Dostrovsky, 1988). The neurons in
Vc are preferentially located in the ventrolateral (ophthalmic) portion of the nucleus.
Nearly all Vc neurons with meningeal afferent input evoked from the middle meningeal
artery and the superior sagittal sinus (SSS) have facial receptive fields located in the
ophthalmic division, whereas a considerable proportion of neurons in Vo and Vi have
facial receptive fields in maxillary and mandibular areas. These neurons are typically
nociceptive, responding either exclusively (nociceptive-specific) or at a higher rate of
action potentials (wide-dynamic range) to noxious mechanical stimuli.
Another cluster of neurons with input from the SSS has been found to be located

in the dorsal horn of the upper cervical spinal cord, particularly in C2 (Lambert et al.,
1991; Storer and Goadsby, 1997). This meningeal representation is largely confirmed
by measuring regional blood flow and metabolism, using the 2-deoxyglucose method,
and by c-fos expression following electrical and mechanical stimulation of dural struc-
tures (Goadsby and Zagami, 1991; Hoskin et al., 1999; Kaube et al., 1993). Remarkably,
two-thirds of the neurons in the upper cervical cord of the cat have convergent input
from the superior sagittal sinus and the occipital nerve (Angus-Leppan et al., 1997), and
a similar convergent input has been found in the rat (Bartsch and Goadsby, 2003).
In the rat, the number of neurons activated by electrical stimulation of dural sites

(sinus transversus or parietal dura mater) peaks in the caudal Vc, but there is another
cluster around the obex level corresponding to the Vi/Vc region (Burstein et al., 1998b;
Schepelmann et al., 1999). Intracellular labeling has shown that such neurons give rise to
an extensive axonal projection system that arborizes at multiple levels of the Vc and the
caudal part of the Vi (Strassman et al., 1994a).Thewidespreadmeningeal representation
extending from upper cervical to medullary levels has also been confirmed by immuno-
cytochemical labeling for c-fos (Strassman et al., 1994b). As in the cat, most of these
neurons have convergent cutaneous input, and their facial receptive fields are located
in periorbital, frontal or parietal areas – that is, the same areas in which the patients of
the early investigators like Ray andWolff (1940) felt head pain elicited by stimulation of
supratentorial dural structures. It appears possible that neurons in the Vc/C1-2 region
are most important in signaling nociceptive information to higher centers of the CNS,
whereas the Vi/Vc regionmay bemore involved in autonomic andmotor reflexes, as has
been suggested for neurons with corneal afferent input (Meng et al., 1997).

1.3.4 Efferent projections from the spinal trigeminal nucleus

There have been numerous reports about efferent projections from the spinal trigeminal
nucleus to higher centers of the CNS in various species (Stewart and King, 1963; Tiwari
and King, 1973; Ring and Ganchrow, 1983; Van Ham and Yeo, 1992). Old data in the
cat used reversible block of nuclei and antidromic stimulation to show that neurons in
the Vc are mainly relayed in the contralateral ventroposteromedial nucleus (VPM) to
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neurons projecting into the somatosensory cortex (Rowe and Sessle, 1968), which has
recently been confirmed (Lambert et al., 2014). In addition, projections from the Vc
to the contra- and ipsilateral nucleus submedius and the intralaminar nuclei centralis
medialis and lateralis have been identified by HRP tracing in the rat (Peschanski, 1984).
Using tracing techniques, projections to the nucleus of the solitary tract (Menétrey

and Basbaum, 1987), facial nucleus (Hinrichsen and Watson, 1983), the contralateral
inferior olivar complex (Huerta et al., 1983), the parabrachial and the Kölliker-Fuse
nucleus (Cechetto et al., 1985; Panneton et al., 1994), the tectum and the cerebellar cor-
tex (Steindler, 1985; Yatim et al., 1996) and even the ventral cochlear nucleus (Haenggeli
et al., 2005) have been identified. Neurons with intracranial afferent input in the Vc and
the cervical dorsal horn at the level of C1 have been found projecting to the hypotha-
lamus, which may be of significance regarding endocrine and rhythmic disorders in
migraine (Malick and Burstein, 1998; Malick et al., 2000).
In addition to the ascending projections, spinal trigeminal neurons have been seen

projecting ipsilaterally to all levels of the spinal cord and forming an extensive network of
efferent connections, whichmay be important formotor reflexes associated with cranial
pain (Ruggiero et al., 1981; Hayashi et al., 1984).

1.3.5 Neuropeptides and their receptors in the trigeminal nucleus

Corresponding to the distribution of nociceptive afferent terminals visualized by
neuronal tracing, SP and CGRP immunoreactive nerve fibers are localized in different
species, including humans, preferentially in Vc and in the caudal part of Vi, but less
in Vo and Vp (Boissonade et al., 1993; Helme and Fletcher, 1983; Pearson and Jennes,
1988; Tashiro et al., 1991). The nerve fibers are mainly located in outer laminae I and II
(substantia gelatinosa) of the Vsp, where CGRP immunoreactivity appears most dense
(Lennerz et al., 2008; Tashiro et al., 1991). SP immunoreactivity is also found in deeper
layers (IV/V; Salt et al., 1983). Also in the human trigeminal tract, the proportion of
nerve fibers immunoreactive for CGRP is higher than that immunoreactive for SP
(Smith et al., 2002).
In contrast, another study revealed a rich supply of SP and a moderate supply of

CGRP- and PACAP-immunoreactive nerve fibers in the human Vc and dorsal horn at
the C1-2 level (Uddman et al., 2002). After trigeminal rhizotomy in the cat, most of
the CGRP immunoreactive fibers disappeared throughout the TBNC, whereas a certain
number of SP immunoreactive fibers remained intact (Henry et al., 1996; Tashiro et al.,
1991), suggesting that these are of central origin. SP immunoreactive fibers originating
fromneurons in lamina I of theMDHhave been found projecting into the hypothalamus
(Li et al., 1997) and to the solitary tract (Guan et al., 1998).
Morphological and functional data suggest that neuropeptides are implicated in the

trigeminal nociceptive processing within the Vsp. Following electrical stimulation of
the trigeminal ganglion in the rat, depletion of CGRP, SP and NKA immunoreactiv-
ity have been observed in the ipsilateral medullary brainstem (Samsam et al., 2000).
Noxious stimulation causes CGRP release from medullary brainstem slices (Jenkins
et al., 2004; Kageneck et al., 2014). Microiontophoretic injections of CGRP into the cat
trigeminocervical complex at C1/2 level increases the firing of second order neurons
to electrical stimulation of the dura mater or glutamate injection, reversed by CGRP
receptor blockade (Storer et al., 2004a).
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Electron microscopy in the cat Vsp has revealed CGRP immunoreactivity within the
substantia gelatinosa in axon terminals presynaptic to dendritic profiles (Henry et al.,
1996). Immunoreactivity for CLR and RAMP1, components of the CGRP receptor, has
been observed associated with terminals of trigeminal afferents in the rat trigeminal
tract entering Vsp (Lennerz et al., 2008). Neither CGRP nor its receptor components
have been identified in cell bodies of the Vsp. The functional interpretation of these
findings is that CGRP-releasing terminals of primary afferents synapse at CGRP
receptor-expressing central axons of trigeminal neurons. The action of CGRP within
the trigeminal nucleus is most likely a presynaptic effect, whereby distinct terminals of
primary afferents control the neurotransmitter release in other populations of primary
afferents (Messlinger et al., 2011; Figure 1.2).
Stimulation of the rat dura mater with acidic solution provokes release of immunore-

active SP in the rat medullary trigeminal brain stem measured with the microprobe
technique (Schaible et al., 1997). Henry et al. (1980) found that iontophoretical
administration of SP in the cat Vc selectively activates nociceptive neurons. In the
rat, iontophoretically applied SP has predominantly excitatory actions on both noci-
ceptive and non-nociceptive nucleus caudalis neurons (Salt et al., 1983). Selective
blockade of the receptors for SP (NK-1) or NKA (NK-2), as well as NMDA and
non-NMDA receptors (see below) reduced the expression of c-fos protein follow-
ing corneal stimulation in the rat Vc (Bereiter and Bereiter, 1996; Bereiter et al.,
1998).

1.3.6 Channels and receptors involved in synaptic transmission in the trigeminal
nucleus

Trigeminal afferents projecting to the spinal trigeminal nucleus release glutamate as
primary excitatory neurotransmitter, binding to glutamate receptors of various types
expressed pre- and postsynaptically. Activation of NMDA and non-NMDA receptors of
second order neurons seems to play a dominant role in the transmission of nociceptive
information (Leong et al., 2000). Blockade of NMDA receptors reduces c-fos expression
in the Vsp following stimulation of the superior sagittal sinus in the cat (Classey et al.,
2001). Ultrastructural data suggest that kainate receptors mediate nociceptive trans-
mission postsynaptic to SP-containing afferents, but may also modulate the presynaptic
release of neuropeptides and glutamate in the trigeminal nucleus (Hegarty et al., 2007).
Metabotropic glutamate receptors seem to be involved in the mechanisms of long-term
potentiation in the Vsp (Youn, 2014). Recent expression studies show that glutamatergic
neurons in the Vsp projecting to the thalamus differ from projecting neurons in the Vp
by their exclusive equipment with vesicular glutamate transporter VGLUT2 (Ge et al.,
2014).
Agonists of the 5-HT1B/1D/1F receptors, which act on central terminals of meningeal

afferents, modulate glutamate release (Choi et al., 2012) that may play a central
role in trigeminovascular activation, central sensitization and cortical spread-
ing depression (Amrutkar et al., 2012). Glutamatergic kainate receptors may
also be targets of the migraine prophylactics topiramate (Andreou and Goadsby,
2011).
Immunohistochemical observations indicate that GABA receptors are involved in

both pre- and postsynaptic inhibitory mechanisms of synaptic transmission in the
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Vc (Basbaum et al., 1986). GABA receptor activation has been shown to decrease
c-fos expression in the Vc following intracisternal application of capsaicin (Cutrer
et al., 1995), and to attenuate the activity of neurons in the TNC, following electrical
stimulation of cat sinus sagittalis (Storer et al., 2004b).
Purinergic receptors have long been assumed to be involved in nociceptive trans-

duction but also transmission in the spinal trigeminal system (Burnstock, 2009).
Throughout the whole TBNC, thin nerve fibers immunoreactive for P2X3 receptors are
seen, mostly colocalized with the nonpeptidergic marker IB4, and sometimes with SP
immunoreactivity (Kim et al., 2008). The distribution is most dense in the superficial
laminae of Vc, especially in the inner lamina II, and appears in electron microscopic
sections presynaptic to dendrites or postsynaptic to axonal endings, suggesting different
modes of nociceptive transmission (Figure 1.2).
A direct descending orexinergic projection, terminating in the spinal and trigemi-

nal dorsal horn (Hervieu et al., 2001; Marcus et al., 2001), is considered to play a role
in central pain modulation. Orexin is believed to have a major role in modulating the
release of glutamate and other amino acid transmitters dependent on the wake-sleep
rhythm (Siegel, 2004). In an animal model of trigeminovascular nociception, systemi-
cally administered orexin A was found to significantly inhibit nociceptive responses of
neurons in the TNC to electrical stimulation of the dura mater surrounding the middle
meningeal artery (Holland et al., 2006).
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Physiology of the meningeal sensory pathway
Andrew M. Strassman and Agustin Melo-Carrillo
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Harvard Medical School, Boston, Massachusetts, USA

2.1 Role of the meningeal sensory pathway in headache

Anatomical studies inman and animals have shown that the intracranialmeninges (dura
and pia) receive a sensory innervation that originates from cells in the trigeminal, as well
as the upper cervical dorsal root ganglia (see Chapter 1).This innervation supplies both
the major branches of the Circle of Willis, which carry the blood supply to the brain, as
well as the major dural venous sinuses which carry a large portion of the venous outflow
from the brain. A very large body of evidence now strongly supports the view that this
sensory innervation is critically involved in mediating the headache of migraine (see
Chapter 1 and Chapter 7).
One seminal piece of evidence was the finding that direct stimulation of the meninges

can evoke painful headache-like sensations in awake human neurosurgical patients (Fay,
1935; Ray and Wolff, 1940). The meninges were the only intracranial tissue from which
pain could be evoked in these studies, and pain was the only sensation that could be
evoked, regardless of whether the stimulus was electrical, mechanical, or thermal. The
pain was typically referred to a region within the trigeminal or, in some cases, the upper
cervical dermatomes, depending on the stimulus site. In these respects, the sensory
properties of themeningeal innervation are similar to those of certain visceral organs, in
that the sensations that can be evoked are primarily painful, and the pain can be referred
to a somatic region that is spatially separate from the stimulus site.
Although extracranial tissues of the head and face can also give rise to pain, the

meninges seem to stand apart in consistently evoking headache-like, referred pain.
These properties prompted Moskowitz to propose the meninges as the trigeminal
analog of the visceral organs of the body (Moskowitz, 1991). Beginning especially with
Moskowitz’s reformulation of its potential role in headache within the framework
of modern neurobiology (Moskowitz, 1984), the meningeal sensory innervation has
become the focus of intensive research into its basic anatomical and physiological
properties. This chapter will give an overview of the major findings from research
on the physiology of the meningeal sensory pathway, as well as some of the current
unresolved questions and controversies.

Neurobiological Basis of Migraine, First Edition. Edited by Turgay Dalkara and Michael A. Moskowitz.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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2.2 Nociceptive response properties of peripheral
and central neurons in the meningeal sensory pathway

Electrophysiological studies of the meningeal sensory pathway have, so far, focused on
the innervation of the dura rather than the pia (i.e., proximal branches of the Circle
of Willis), probably owing to the greater accessibility and ease of delivering controlled,
localized stimuli. Such studies have shown that the primary afferent neurons that inner-
vate the dura display response properties broadly similar to those of nociceptive neu-
rons that innervate other tissues of the body, and this sensory information is conveyed
centrally to neurons in the medullary and upper cervical dorsal horn that also receive
convergent sensory input from facial receptive fields.

2.2.1 Primary afferent neurons

Electrophysiological studies of primary afferent neurons that innervate the dura have
recorded discharge activity, either from the neurons’ axons in the nasociliary nerve
(Bove and Moskowitz, 1997) or, in most studies, from the neurons’ cell bodies in the
trigeminal ganglion (Dostrovsky et al., 1991; Strassman et al., 1996; Strassman and
Raymond, 1999; Levy and Strassman, 2002b; Levy et al., 2004; Zhang et al., 2013; Zhao
and Levy, 2015; see Strassman and Levy (2006) for a more detailed review). These
studies have identified neurons with axons that conduct in the A-delta and C-fiber
range that display sensory response properties consistent with a nociceptive function
and, thus, have been termed meningeal nociceptors (Levy and Strassman, 2002a). Such
neurons can be activated by mechanical, thermal, or chemical stimulation of the dura,
and individual neurons have been shown to respond to all three modalities (Bove and
Moskowitz, 1997), as is found for polymodal nociceptors in other tissues.
Neurons display one or more spot-like mechanical receptive fields to punctate (von

Frey) stimuli that can be distributed at vascular sites on the dura (transverse sinus,
middle meningeal artery), as well as dural sites away from any major blood vessels
(Strassman et al., 1996; Bove and Moskowitz, 1997; Strassman and Raymond, 1999;
Zhao and Levy, 2015). Neurons could also be activated by traction (Dostrovsky et al.,
1991), whereas intraluminal distention produced by rapid infusion of normal saline is
ineffective. Mechanical and thermal response thresholds are much lower than those
of cutaneous nociceptors, but are consistent with a nociceptive function for a deep
tissue. Thus, the neurons’ response thresholds to temperatures of less than 42∘C (Bove
and Moskowitz, 1997) are lower than those of cutaneous nociceptors. However, they
are consistent with a nociceptive function for intracranial tissues, since they might
potentially allow the neurons to detect conditions such as fever or heat stroke, which
can be associated with headache. Mechanical response thresholds to punctate stimuli
are also much lower than those of cutaneous nociceptors, with the lowest thresholds
being just above the normal range of intracranial pressures (Levy and Strassman, 2002b;
Strassman and Levy, 2006).
In addition to thermal and mechanical stimuli, meningeal nociceptors can also be

activated by a variety of chemical stimuli, in common with nociceptors innervating
other tissues. These chemicals, applied topically to the dura, include hypertonic saline,
KCl, capsaicin, acidic buffer, pH-neutral buffer solutions of low or high osmolarity,
serotonin, PGI2, ATP, and a mixture of inflammatory mediators given in combination
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Table 2.1 Stimuli or agents that activate cranial meningeal nociceptors.

Mechanical
Traction on superior sagittal sinus Dostrovsky et al, 1991
Stroking with blunt probe or indenting with punctate probe
within dural receptive fields away from or overlying dural
blood vessels (superior sagittal or transverse sinus, or middle
meningeal artery)

Bove and Moskowitz, 1997;
Strassman et al., 1996; Levy and
Strassman, 2002a, 2002b

NOTE: no response to intravascular distention produced by rapid infusion of normal saline into
the superior sagittal sinus (Strassman et al., 1996)

Thermal
Heating to 39∘C or higher; cooling to 25–32∘C Bove and Moskowitz, 1997

Chemical
Infusion into superior sagittal sinus of 400 mM hypertonic
saline

Strassman et al., 1996

Topical application to the dura of:
Potassium chloride, hypertonic saline (>500 mOsm), high
osmolarity sucrose solution (>600 mOsm), low osmolarity
buffer (<200 mOsm), capsaicin, acidic buffer(pH 5), mixture
of inflammatory mediators (bradykinin, serotonin,
histamine, PGE2), ATP

Strassman et al., 1996; Bove and
Moskowitz, 1997; Levy and
Strassman, 2002a; Zhao and Levy,
2015

Mast cell mediators: serotonin, PGI2, histamine, agonist for
proteinase-activated receptor 2; no response to PGD2 and
leukotriene C4

Zhang et al., 2007; Zhang and
Levy, 2008

TNF-alpha: mechanical sensitization, but not activation, via
dural endothelial vascular cyclooxygenase and p38 MAP
kinase

Zhang et al., 2011

Systemic administration of mast cell degranulating agent Levy et al., 2007
Sumatriptan, i.v. or topical application to the dura (transient
activation)

Strassman and Levy, 2004;
Burstein et al., 2005

NOTE: no response to vasodilatation induced by dural application or systemic administration
of CGRP (Levy et al., 2005)

Headache-related stimuli
Cortical spreading depression: delayed activation Zhang et al., 2010
Intravenous nitroglycerin: delayed mechanical sensitization,
but not activation, via dural arterial ERK phosphorylation

Zhang et al., 2013

(histamine, bradykinin, serotonin, and prostaglandin E2) (Strassman et al., 1996; Bove
and Moskowitz, 1997; Zhang et al., 2007; Zhao and Levy, 2015). Hypertonic saline also
activates neurons when infused into the dural venous sinuses, showing that the dural
nerve endings could be accessed by chemicals on either the intra- or extraluminal side
of the dural venous sinuses.
One additional, crucial property of meningeal nociceptors, in common with noci-

ceptors in other tissues, is chemically induced sensitization, expressed as an enhanced
sensitivity to mechanical stimuli (Chapter 7, Figure 7.2). Activation and mechanical
sensitizationmay occur together or independently inmeningeal nociceptors, depending
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Table 2.2 Meningeal vs cutaneous vs corneal nociceptor response thresholds.

Meningeal nociceptors Cutaneous nociceptors Corneal nociceptors

Mechanical (punctate indenting stimulation)
25 kPa, C fibers, guinea pig
(Bove and Moskowitz, 1997)
16 kPa, C fibers; 10 kPa, slow
A fibers, rat (Levy and
Strassman, 2002b)

approximately 60 kPa, C
fibers, rat (Schlegel et al.,
2004)

39 kPa, A-delta fibers, cat
(Belmonte and Giraldez, 1981)

Note: 1 kPa = 1 mN/sq.mm. = approx. 0.1 g/sq.mm.

Heat
39∘C, C fibers, guinea pig
(Bove and Moskowitz, 1997)

45–46.5∘C, C fibers, rat
(Martin et al., 1988; Rau et al.,
2007; Cuellar et al., 2010)

41.5∘C, A-delta fibers, cat
(Belmonte and Giraldez, 1981)
41.2∘C, A-delta fibers, rabbit
(MacIver and Tanelian, 1993)

Cold
25–32∘C, C fibers, guinea pig
(Bove and Moskowitz, 1997)

4.6∘C, A-delta fibers, rat
(Simone and Kajander, 1997)

32∘C, C-fibers, cat (Gallar et al.,
1993)
<2∘C decrease from baseline,
thermosensitive C-fibers, rabbit
(MacIver and Tanelian, 1993); rat
(Hirata and Meng, 2010)

on the neuron and the sensitizing agent. Mechanical sensitization may consist of either
an increase in suprathreshold responses, an increase in threshold responses, or both
(Levy and Strassman, 2002a, 2004; Levy et al., 2008; Zhang et al., 2011b, 2012; Burstein
et al., 2014).
One study found evidence that the pattern of mechanical sensitization differed for

different subpopulations of meningeal nociceptors (Levy and Strassman, 2002a). That
study used a cAMPanalog, rather than inflammatorymediators, as the sensitizing agent,
in order to selectively activate only one of the intracellular signaling pathways impli-
cated in primary afferent sensitization – the cAMP/PKA cascade. Unlike the actions of
inflammatory mediators, the cAMP analog produced selective sensitizing effects that
were subpopulation-specific, in that individual neurons exhibited an increase in either
threshold responses or suprathreshold responses, but not both. The two subpopula-
tions so defined by these two patterns of sensitization also differed in their baseline
mechanosensitivity and conduction velocity; the neurons that exhibited an increase in
threshold responses had higher baseline thresholds and lower conduction velocities.
These differences between the two subpopulations show parallels with the differences
found between two subpopulations of presumed nociceptive dorsal root ganglion cells
that are distinguished by their voltage gated membrane currents (Scroggs et al., 1994;
Petruska et al., 2000), and are suggestive of different subpopulation-specificmechanisms
of sensitization (Strassman and Levy, 2006; see further discussion below).
The property of mechanical sensitization is of great relevance for understanding

the clinical symptoms of migraine (see Chapter 7), in particular, those symptoms that
indicate the presence of an exaggerated intracranial mechanosensitivity. In migraine, as
well in certain headaches that accompany intracranial pathologies such as meningitis,
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the headache is worsened by coughing, straining, or sudden head movement (Blau and
Dexter, 1981). Such activities would be expected to increase intracranial pressure, or
otherwise change the distribution of mechanical forces within the intracranial space
(Williams, 1976). The throbbing quality of migraine headache has been attributed to
arterial pulsations, which produce a pressure pulse that propagates throughout the
intracranial space (Daley et al., 1995). Post-dural puncture headache has a positional
dependence that suggests the involvement of a gravity-induced displacement of
intracranial tissue (Wolff, 1963). Each of these symptoms is evidence of an intracranial
mechanosensitive sensory system that, during clinically occurring headaches, can
develop abnormally elevated sensitivity that results in activation and generation of pain
by normally innocuous intracranial mechanical forces.

2.2.2 Central neurons (dorsal horn and thalamus)

Sensory inputs from the head and face are transmitted centrally to neurons in the
medullary and upper cervical dorsal horn (see Chapter 1). Sensory inputs from the
dura converge centrally on a subpopulation of dorsal horn neurons that also receive
inputs from a facial receptive field, which is commonly in the periorbital region, and
is usually nociceptive, either wide-dynamic-range or nociceptive specific (Strassman
et al., 1986; Davis and Dostrovsky, 1986, 1988d; Angus-Leppan et al., 1994; Burstein
et al., 1998). Such convergence of peripheral sensory inputs from separate deep and
superficial tissues onto individual dorsal horn neurons is also found in neurons of
the spinal dorsal horn (Blair et al., 1981), and is regarded as the neural basis for the
phenomenon of referred pain originating from deep or visceral tissues.
The facial receptive fields of dorsal horn neurons that respond to dural stimulation

are consistent with a role for these neurons in mediating the pain evoked by dural stim-
ulation, in that their distribution strongly overlaps with the area of dural-evoked pain
referral in humans, and the receptive fields are primarily nociceptive. In addition, sen-
sitization of such central neurons, which can be induced by sustained nociceptive input
such as fromdural application of inflammatorymediators, results in a state of prolonged
neuronal hypersensitivity, with marked enhancement of the responses to stimulation of
both the facial and the dural receptive fields. This phenomenon of central sensitization
of dorsal horn neurons with convergent inputs from deep tissues is thought to be the
basis for the phenomenon of referred visceral hyperalgesia and, in the meningeal sen-
sory pathway, provides a mechanism to explain the facial cutaneous allodynia that can
occur in migraine (Chapter 7, Figure 7.3).
Dorsal horn neurons that receive dural inputs can be activated by potentially nox-

ious forms of mechanical and chemical meningeal stimulation, including traction or
distension of dural blood vessels (Davis and Dostrovsky, 1988c, 1988d; Lambert et al.,
1991, 1992; Kaube et al., 1992) and dural or subarachnoid application of bradykinin and
other algesic or inflammatory agents (Davis and Dostrovsky, 1988a; Ebersberger et al.,
1997; Burstein et al., 1998). In addition to the dorsal horn, neurons that respond to dural
stimulation are also found inmore rostral parts of the spinal trigeminal nucleus, nucleus
interpolaris and oralis (Davis andDostrovsky, 1988d).The responses of neurons in these
more rostral regions are reduced by cold block applied to the medullary dorsal horn,
indicating that inputs reach these neurons in part via a relay in the dorsal horn (Davis
and Dostrovsky, 1988b).
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Neurons that respond to dural stimulation are present in both superficial and deep
laminae of the dorsal horn. Studies that used expression of c-fos as an anatomicalmarker
for neuronal activation found neuronal labeling following dural stimulation in a rela-
tively restricted laminar distribution – primarily in dorsal horn laminae I and V – but in
a widespread rostrocaudal distribution that extended from medullary to upper cervical
levels (Kaube et al., 1993; Strassman et al., 1994). Intracellular labeling of dorsal horn
lamina V neurons that are activated by dural stimulation revealed a subpopulation with
an extensive system of axonal projections to multiple levels of the dorsal horn and the
caudal part of trigeminal nucleus interpolaris (Strassman et al., 1994). These extensive
intratrigeminal projections might contribute to the rostrocaudally widespread distribu-
tion of neuronal activation found in the c- fos studies.
Electrophysiology studies have also examined neurons that are activated by dural

stimulation in the thalamus, where they have been found within or at the periphery of
the ventroposteromedial nucleus, the posterior nucleus, and the intralaminar nuclei
(Davis and Dostrovsky, 1988c; Zagami and Lambert, 1990; Angus-Leppan et al., 1995;
Burstein et al., 2010; Noseda et al., 2010a). As in the dorsal horn, most of the neurons
had receptive fields on the face that often included the ophthalmic region. Thus, the
convergent dural and facial inputs that are present in dorsal horn neurons are also
found in thalamic neurons, as expected, since the dorsal horn is a major source of inputs
to the thalamus. However, the thalamic neurons with dural and facial receptive fields
are also activated by light, indicating an additional, unexpected convergent input to
these somatosensory neurons from visual pathways (Noseda et al., 2010b). This visual
input is of great clinical significance for understanding the mechanism of photophobia,
or exacerbation of headache by light – one of the defining characteristics of migraine
(see Chapter 7).
As is found for other nociceptive dorsal horn neurons, dorsal horn neurons in

the meningeal sensory pathway are subject to multiple descending modulatory
influences from higher levels of the neuraxis, including the periaqueductal gray,
acting through CGRP, cannabinoids, and the 5HT 1B/D receptor (Strassman et al.,
1986; Knight and Goadsby, 2001; Knight et al., 2003; Bartsch et al., 2004; Akerman
et al., 2013; Pozo-Rosich et al., 2015), and the hypothalamus, acting through somato-
statin, dopamine (D(2) receptor) and orexin A(OX(1) receptor) (Bartsch et al., 2004,
2005; Holland et al., 2006; Bergerot et al., 2007; Charbit et al., 2009).
A critical question is to what degree thesemodulatory systems differentially target the

meningeal sensory pathway. Such specificity would presumably be required for theories
of migraine that propose a central modulatory mechanism as the initiator of the attack,
in order to be able to explain why the pain of migraine is specifically a headache, rather
than a pain in other parts of the body. Such specificity would also be important for pos-
sible therapeutic strategies that make use of these neurochemical modulatory systems.

2.3 Activity of neurons in the meningeal sensory pathway
under conditions associated with headache: CSD
and nitroglycerin

The studies described above examined activity of neurons in the meningeal sensory
pathway in response to direct stimulation of their receptive fields in the dura or the facial
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skin, using stimuli that are generally known to be effective for activating nociceptive
neurons, but are not specifically related to conditions associated with the generation of
headache. Such studies have investigated the consequences of activating the nociceptive
pathway that is believed to mediate the pain of migraine, but they do not, themselves,
directly shed light on the question of how this pathway might become activated during
a clinically occurring headache in humans.
More recently, activity in this sensory pathway has been studied during experimen-

tal manipulations that are potentially more relevant to conditions associated with the
generation of a headache. A key difference in these studies is that the experimental
manipulation does not, itself, directly activate themeningeal nerve endings but, instead,
serves to initiate an endogenous process that somehow generates the eventual excita-
tory neural stimulus. One such finding, of critical importance to current theories of
migraine, was the recent demonstration of a delayed activation of both primary affer-
ent nociceptors and dorsal horn neurons, following the induction of cortical spreading
depression (CSD) (Chapter 7, Figure 7.1) (Zhang et al., 2010, 2011a; Zhao and Levy,
2015); an earlier study by Bolay et al. (2002) had provided indirect evidence for such
activation based on a delayed increase in dural blood flow). The spreading depression
theory of migraine, originally proposedmore than 70 years ago, hypothesized that CSD,
a slowly propagating wave of altered activity in the cerebral cortex, was the basis for
the migraine aura (see Chapter 16). It was further hypothesized that CSD produced the
headache of migraine by activatingmeningeal sensory nerve fibers, but a major obstacle
in further understandingwas the difficulty in finding direct neurophysiological evidence
that such activation occurred (Lambert et al., 1999; Ebersberger et al., 2001), as well as
conflicting evidence from c-fos studies (Moskowitz et al., 1993; Ingvardsen et al., 1997).
One striking aspect of the CSD-induced activation of neurons in the meningeal sen-

sory pathway is that it occurs at a characteristic delay that is comparable to the typical
delay between the migraine aura and onset of headache, as proposed in the CSD the-
ory of migraine. A major remaining question is how to account for such a long delay in
activation, since the delay is much longer than the time required for propagation of the
CSD wave across the cortex. If the trigeminal activation were, in fact, produced by the
release of excitatory chemicals (e.g., potassium, glutamate) that accompanies the CSD
wave, as has been hypothesized, then no such delay would be expected.
A recent study supports the idea that the delayed trigeminal activation, as reflected

in dural blood flow levels, results from a cascade in which the initial brief CSD-induced
depolarization of cortical neurons induces the activation of pannexin 1 megachannels
and the release of the pro-inflammatory molecule high-mobility group box 1 which, in
turn, triggers activation and sustained release of inflammatory mediators from corti-
cal astrocytes (Karatas et al., 2013). One further question is whether the CSD-induced
activation of neurons in the dorsal horn might occur through a purely central mech-
anism, such as via descending cortical projections, rather than through the activation
of meningeal nerve endings (Lambert et al., 2011). An ongoing technical problem that
must be considered in the interpretation of all such studies of CSD-induced neuronal
activation of the meningeal sensory pathway is the possibility of a false positive find-
ing resulting from an artifactual direct excitatory action of the CSD-initiating stimulus
(e.g., potassium chloride) on the meningeal sensory nerve endings, independent of the
CSD wave.
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Another headache-associated condition which has been used as a test stimulus for
activation of the meningeal sensory pathway is intravenous infusion of nitroglycerin or
related nitric oxide donor molecules. This treatment induces in migraineurs a delayed
headache that reproduces the features of the subject’s spontaneously occurringmigraine
attacks (Iversen et al., 1989; Thomsen et al., 1994), including relief by triptans (Iversen
and Olesen, 1996), and elevation of blood levels of CGRP (calcitonin gene-related pep-
tide) (Juhasz et al., 2003). Neurophysiological studies have shown that such infusion
induces a sensitization of primary afferent neurons (Zhang et al., 2013) and activation of
dorsal horn neurons (Koulchitsky et al., 2004, 2009) in the meningeal sensory pathway.
These findings are of great significance as the first direct neurophysiological demonstra-
tion that the meningeal sensory pathway is activated or sensitized by a treatment that
causes headache in humans, and with a similar time course, thereby strengthening the
evidence in support of the role of this pathway in headache.
As with the CSD findings described above, a key open question is: how do the nitric

oxide donor molecules cause these delayed excitatory effects? The delay means that the
nitric oxide is not acting as a direct excitatory agent on the neurons, because it has a
short half-life, and so is no longer present in the body at the time the effects start to
appear. Therefore, these agents must instead be serving as a trigger for an endogenous
process that results in the neuronal effects.There is evidence that nitroglycerin infusion
is followed by a delayed meningeal inflammation (Reuter et al., 2001, 2002), and that
the sensitizing effects onmeningeal nociceptors are dependent specifically on activation
within meningeal arterial cells of a signaling cascade that involves phosphorylation of
extracellular signal-related kinase (ERK) (Zhang et al., 2013).

2.4 Role of blood vessels in activation of the meningeal
sensory pathway

The original idea of Wolff (1963) – that the pain of migraine results from dilatation
of intra- or extracranial blood vessels and consequent mechanically evoked excitation
of perivascular sensory nerve fibers – ultimately suffered from a failure of support-
ing evidence, and has largely been replaced by new concepts about the role of vascu-
lar mechanisms in migraine (Strassman and Levy, 2006; Dodick, 2008; Brennan and
Charles, 2010). Neurophysiology studies have demonstrated that dural vasodilatation
induced by local or systemic administration of CGRP has no detectable effect on activ-
ity or mechanosensitivity of dural nociceptors (Levy et al., 2005). More generally, there
appears to be no evidence that physiological vasodilatation is capable of activating sen-
sory neurons, or producing pain, in any body tissue. Instead, current evidence on the
role of blood vessels in migraine has focused on other factors, such as the generation of
inflammatory mediators (Zhang et al., 2013).
However, it should be noted that neurophysiological studies of the meningeal sen-

sory pathway have focused on the dural innervation, and the sensory properties of the
pial innervation are unexplored. Although the dural sensory innervation is referred to
as the trigeminovascular system, it is not specifically vascular in its anatomical distri-
bution, in that it supplies both vascular and nonvascular dural territories (Strassman
et al., 2004) and, in fact, the number of sensory nerve endings in the dura is greater at
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non-vascular sites (Messlinger et al., 1993). Unlike the dural innervation, the pial sen-
sory innervation has a specifically vascular distribution, along the proximal branches of
the major cerebral arteries, and so might potentially have different properties than the
dural innervation, with respect to the effects of vasodilatation.

2.5 Unique neuronal properties of the meningeal sensory
pathway

One ongoing question is whether the neurons of themeningeal sensory pathway display
any properties that distinguish them from nociceptive neurons in sensory pathways
from other tissues. As outlined above, the neurons of the meningeal sensory pathway
display sensory response properties in common with nociceptive neurons of sensory
pathways from other body tissues, such as: sensitivity to noxious forms of stimulation,
including algesic chemicals and inflammatory mediators; central convergence of
nociceptive somatic input; and peripheral and central sensitization. Also, in common
with nociceptors in other tissues, dural primary afferent neurons exhibit resistance to
tetrodotoxin (Strassman and Raymond, 1999), a property which is conferred by a type
of voltage-gated sodium channel that is, remarkably, expressed only by nociceptors,
and not any other population of peripheral or central neuron.
In general, the neuropeptides and receptors that have been identified in themeningeal

primary afferent neurons are common to other sensory innervations, including the neu-
ropeptide CGRP, and the receptor for triptans, 5-HT1D. Furthermore, the percentage
of neurons that express the 5-HT1D receptor is no greater in trigeminal ganglion than
in dorsal root ganglia (Potrebic et al., 2003). However there is some recent evidence
that the axonal density of 5HT1D receptors (in distinction from the number of express-
ing neurons) does differ between tissues, and may be greater in the meninges than in
extracranial tissues (Harriott and Gold, 2008). There is also an enrichment of CGRP in
meningeal sensory neurons, compared with trigeminal ganglion neurons that innervate
extracranial tissues (O’Connor and van der Kooy, 1988).
Although meningeal primary afferent neurons display sensory signaling properties

that are typical of nociceptive neurons in other tissues, there is recent evidence that the
ionic mechanisms underlying these properties can differ for nociceptor populations,
and that meningeal nociceptors, in particular, display distinctive membrane properties
(Harriott and Gold, 2009). Compared with afferent neurons that innervate extracranial
tissue (temporalis muscle), dural primary afferents exhibit higher baseline conductance,
indicative of larger number of open ion channels, and greater excitability in response to
intracellular current injection (Harriott and Gold, 2009).
Most strikingly, dural primary afferent neurons display a mechanism of inflammatory

mediator-induced sensitization that is unique among primary afferent populations that
have been examined thus far (Vaughn and Gold, 2010).This mechanism of sensitization
is dependent on a type of chloride channel that is apparently unique to dural nocicep-
tors, insofar as it has not been described in previous studies of nociceptors or any other
neuronal population. A phenomenon that is common among other nociceptor popula-
tions, enhancement of tetrodotoxin-resistant sodium current (NaV1.8), is also present,
but apparently does not make a significant contribution to sensitization in dural noci-
ceptors.This dual finding, of a type of ion channel, and amechanismof sensitization that
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is apparently unique to dural nociceptors, is potentially of great therapeutic significance,
since it offers a possible target for selective pharmacological blockade of sensitization of
the dural afferent pathway. It should be noted that these findings are from in vitro stud-
ies of dissociated cells, and it would be of great interest to investigate this mechanism
further in vivo.
Aside from such differences in intrinsic neuronal properties, the signaling properties

of the meningeal sensory pathway are bound to the distinctive properties of the tissue
that it innervates. The intracranial tissues are unusual, in being enclosed within a rigid
structure and, thus, subject to compressive forces that do not routinely occur in other
tissues. The close proximity to the central nervous system endows the meningeal nerve
endings with the capacity to detect central disturbances such as those caused by CSD, as
well as epileptic seizure, which can be associated with the occurrence of a migraine-like
headache (Ekstein and Schachter, 2010).
The dura is well endowed with inflammatory cells such as mast cells and, as noted

above, develops an inflammatory reaction with a distinctive delayed time course, fol-
lowing administration of headache-causing agents such as nitroglycerin. As discussed by
Levy (see Chapter 6), meningeal nociceptors are strongly activated by mast cell degran-
ulation (Levy et al., 2007) and mast cell mediators (Zhang et al., 2007). Systemic admin-
istration of mast cell degranulators produces a regionally selective distribution of dorsal
horn activation, restricted to two distinct peaks at the medullary and sacral level, indi-
cating a selective nociceptive action on afferents in a specific subset of tissues (Levy et al.,
2012).The activation inmedullary dorsal hornwas attenuated by prior depletion of dural
mast cells, indicating that dural afferents were the primary source of the medullary acti-
vation. It is not yet knownwhether this selectivity results from tissue-specific differences
in the properties of the mast cells (e.g., density, type of mediators) or the nociceptors.

2.6 Intracranial vs extracranial mechanisms of migraine: new
findings

While this review has focused on the sensory pathway from intracranial tissues, the
question of intra- versus extracranial contributions to migraine has been discussed,
since the original studies ofWolff (Ray andWolff, 1940) up to the present time. Recently,
a reformulation of this question has been prompted by novel anatomical evidence that
the peripheral axons of dural primary afferent neurons can give rise to axonal branches
that, after coursing distally through the dura, exit the cranium through calvarial sutures
to innervate extracranial tissues, particularly the sutures themselves and the overlying
periosteum (Kosaras et al., 2009; Schueler et al., 2013; Burstein et al., 2014; Zhao and
Levy, 2014).
A detailed electrophysiological analysis showed that the majority of the periosteal

innervation is supplied by extracranial nerves, as previously believed, but about 30%
of the periosteal afferent axons instead originate from axonal branches that enter the
sutures via an intracranial trajectory through the underlying dura and, in these neurons,
the periosteal receptive field is always restricted to the region immediately overlying a
suture (Zhao and Levy, 2014). The presence of a population with such dual intra- and
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extracranial receptive fields in the dura and the sutures means that extracranial stimuli
that reach the area of the sutures could activate a subset of the neurons that constitute
themeningeal sensory pathway and, thus, potentially produce sensory effects and symp-
toms at least partly in common with those produced by intracranial stimuli.
There is also some evidence that intracranial afferents can innervate other extracranial

tissues beyond the immediate vicinity of the sutures (Kosaras et al., 2009; Schueler et al.,
2013), but the degree of such innervation that has been documented thus far is extremely
sparse. It may be noted that a much larger population of primary afferent neurons with
divergent intracranial and extracranial (e.g., facial) branches is present at early stages of
development, but is eliminated by selective cell death prior to adulthood (O’Connor and
van der Kooy, 1986).
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Meningeal afferent ion channels and their role in migraine
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3.1 Meningeal afferents and migraine pain

Among the hypotheses proposed for the pain phase of migraine, activation of afferent
nociceptors innervating the cranial meninges is the most widely accepted (Levy, 2010),
but it is not clear what events lead to activation of these neurons. Prior preclinical stud-
ies show that dural afferents are mechanically sensitive (Kaube et al., 1992; Strassman
et al., 1996; Levy and Strassman, 2002), consistent with the worsening of headaches due
to changes in intracranial pressure. Receptors or structures on meningeal afferent end-
ings that convey mechanical sensitivity to these neurons have yet to be fully described
(though some potential candidates will be described below). Chemical sensitivity of
dural afferents has also been described, and intracranial and circulating levels of var-
ious inflammatory mediators are significantly higher during migraine attacks (Sarchielli
et al., 2001; Perini et al., 2005). Among the stimuli capable of activating or sensitiz-
ing dural afferents are capsaicin, mustard oil, hypotonic solutions, or an inflammatory
soup (IS) (Strassman et al., 1996; Bove and Moskowitz, 1997; Wei et al., 2011; Edel-
mayer et al., 2012). In addition, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6),
and interleukin-1β (IL-1β) can also act to sensitize dural afferents (Zhang et al., 2011,
2012; Yan et al., 2012) (see Chapter 6).
This chapter will now focus on ion channels that may contribute to the activation and

sensitization of dural afferents (Figure 3.1). Ion channels are responsible for generating
and maintaining neuronal excitability, and dysfunction or dysregulation of ion channels
on dural afferents can potentially contribute to the pathophysiology of migraine pain.

3.2 Transient receptor potential (TRP) channels
and headache

TRP channels have been extensively studied for their role in pain, given their ability
to detect stimuli such as temperature, changes in extracellular osmolarity, pH, and an
extensive list of natural products (Liu et al., 2003; Karai et al., 2004; Ramsey et al.,
2006). Among the subtypes of TRP channels are TRPC, TRPM, TRPV, TRPA, TRPP,
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Figure 3.1 Ion channels expressed on dural afferents contribute to afferent signaling from the
meninges. The dura mater is populated with a variety of cell types including mast cells, fibroblasts, and
blood vessels. Release of substances from these cells can lead to sterile inflammation and recruitment
of environmental irritants or other factors into the dura through blood vessels. Increased levels of
pro-inflammatory mediators, endocannabinoids, endovanniloids, lipids, environmental irritants,
glutamate, ATP, or H+ ions within the dura activate ion channels on trigeminal afferents innervating
the dura. Mechanical stimuli can also act on the dura subsequent to changes in intracranial pressure.
Channels activated by these stimuli include TRPs, ASICs, P2X, Glutamate, and Cl– channels.
Depolarization of dural afferent terminals can lead to action potentials and afferent signaling through
recruitment of voltage-gated Na+ channels. Action potential firing can be modulated in these neurons
by the activity of K+ channels such as BK, KCNQ, and TRESK.

and TRPML members (Vriens et al., 2009; Holzer and Izzo, 2014). TRP channels are
generally excitatory, as they allow the influx of Na+ and Ca++ into neurons (Ramsey
et al., 2006), and they have been investigated in the context of many sensory systems
(Numazaki and Tominaga, 2004). Although much attention has been focused on TRP
channels in pain outside the head, more recent studies have been building a case for
these channels in headache disorders (Dussor et al., 2014).

3.2.1 TRPA1

TRPA1 is thought to contribute to various forms of pain (Zygmunt andHogestatt, 2014),
and its expression on peripheral sensory neurons has been extensively documented
(Jordt et al., 2004). TRPA1 may be a sensor for extreme cold temperature (Story et al.,
2003), although this has been the subject of much debate (Caspani and Heppenstall,
2009). There was recently some degree of clinical validation given to a role for TRPA1
in human pain, following identification of a gain-of-function mutation in TRPA1 in
humans with familial episodic pain syndrome (Kremeyer et al., 2010). This condition
is a rare disorder, characterized by upper limb pain but, unlike most other forms of pain



�

� �

�

3 Meningeal afferent ion channels and their role in migraine 51

(exceptmigraine), this type of pain is often preceded by a prodrome phase, and triggered
by fasting and physical stress.
One of the primary reasons for interest in TRPA1 for headache is its activation

by environmental irritants such as formaldehyde (McNamara et al., 2007), chlorine
(Bessac and Jordt, 2008), cigarette smoke extract (Andre et al., 2008), and acrolein
(Bautista et al., 2006), natural plant products, such as isothiocyanates from mustard
(Jordt et al., 2004), cinnamaldehyde from cinnamon (Bandell et al., 2004), allicin from
garlic (Bautista et al., 2005), and endogenous oxidative and nitrative stress products
such as 4-hydroxynonenal (Trevisani et al., 2007), nitro-oleic acid (Taylor-Clark et al.,
2009), and reactive prostaglandins (Materazzi et al., 2008). Many TRPA1 activators on
this list are well-known migraine triggers (Wantke et al., 2000; Irlbacher and Meyer,
2002; Kelman, 2007; Nassini et al., 2012).
Several recent preclinical studies have suggested a role for TRPA1 in the pathophysi-

ology of migraine. The findings that TRPA1 is expressed (Huang et al., 2012) and func-
tional (Edelmayer et al., 2012) on dural afferents in rodents supports the possibility of a
contribution from this channel in headache disorders. TRPA1 agonists, including mus-
tard oil and acrolein, can increase dural blood flow in a CGRP-dependent manner when
given intranasally (Kunkler et al., 2011), and repetitive exposure to acrolein can sensi-
tize these responses (Kunkler et al., 2015).This suggests that activation of dural afferent
nerve endings (the likely source of CGRP) can occur following environmental exposure
to agents inhaled through the nose.
Using a behavioral model of migraine, dural application of mustard oil produced

signs consistent with headache, including cutaneous facial allodynia and decreased
exploratory locomotor behavior (Edelmayer et al., 2012). Additionally, induction of
CSD in rats leads to increased lipid peroxidation in the cortex, meninges, and TG,
and application of hydrogen peroxide to the meninges activates afferent signaling
via TRPA1 (Shatillo et al., 2013). These studies provide preclinical data supporting a
potential role for dural TRPA1 in increased blood flow, CGRP-dependent neurogenic
inflammation, and headache.
Additional evidence supporting a role for TRPA1 in headache disorders comes from

individuals who develop cluster-like headache attacks when exposed to the “headache
tree” or U. californica (Nassini et al., 2012). The volatile oils from this tree contain a
substance known as umbellulone, an agonist of TRPA1, which can produce many of
the same effects of mustard oil, including increased dural blood flow and CGRP release
(Nassini et al., 2012). Dural application of umbellulone also produced cutaneous facial
allodynia and decreased exploratory behavior (Edelmayer et al., 2012). How umbel-
lulone is able to provoke headache in humans exposed to this substance is unclear.
Two studies have shown effects of TRPA1 activators (including umbellulone) within the
dura after nasal administration (Kunkler et al., 2011; Nassini et al., 2012), supporting
a general concept where inhaled substances can promote headache either via access
to the meninges, or via intraganglionic transmission in the trigeminal ganglia (Kunkler
et al., 2014).
These studies suggest that TRPA1 antagonists may have efficacy for environmental

irritant-induced headaches, but there may also be potential for these therapeutics to
treat migraine. Feverfew is a common herbal remedy for migraine, and one active
ingredient in this herb, parthenolide, was recently found to be a TRPA1 partial agonist
(Materazzi et al., 2013). Rather than acting as an antagonist, parthenolide is capable of
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acting as a desensitizing agonist, leading to functional block of the channel. When rats
were pre-treated with parthenolide to desensitize TRPA1, subsequent administration
of mustard oil onto the dura produced significantly smaller headache-like responses
than when mustard oil application was preceded by vehicle (Materazzi et al., 2013).
These studies lend further support to the potential of TRPA1 as a therapeutic headache
target. Ultimately, efficacy of this approach awaits development of compounds suitable
to test this hypothesis in human migraineurs.

3.2.2 TRPM8

Another TRP channel that has gained attention in the migraine literature recently is
TRPM8. TRPM8 has long been known to be the sensor of cool temperatures (below
26∘C), but it also responds to chemicals such as menthol and the supercooling agent
icilin. Primary afferent sensory neurons express TRPM8 mRNA (McKemy et al., 2002;
Peier et al., 2002) and, relevant to migraine, its expression is found in trigeminal ganglia
(Nealen et al., 2003). Within the trigeminal system, the most clear role for TRPM8 is
in detection of cold stimuli in the oral cavity and head (Kim et al., 2014) but, surpris-
ingly, the channelmay also participate in the detection of odorants (Lubbert et al., 2013).
Less clear is the endogenous function of TRPM8 expression on deep-tissue afferents,
such as those in the colon and bladder (Mukerji et al., 2006; Harrington et al., 2011), as
these nerve endings are, generally, not exposed to decreased temperature in the range of
TRPM8 detection. These studies may imply an alternate sensory function for the chan-
nel. Although the endogenous activator is not clear, various lipids, or the growth factor
artemin, have been proposed (Lippoldt et al., 2013; Sousa-Valente et al., 2014).
The interest in TRPM8 in relation to migraine is largely based on results of

genome-wide association studies (GWAS) performed on migraine patients. Multiple
studies have found variants in the TRPM8 gene in migraine patients (An et al., 2013;
Ghosh et al., 2013; Chasman et al., 2011,2014; Fan et al., 2014; Freilinger et al., 2012),
which is highly suggestive of a role for this channel in migraine. It remains to be
determined whether, and how, these genetic variants impact the function/expression
of the channel, as studies have not yet been performed.
In terms of preclinical data supporting a role for TRPM8 in migraine, the studies are

few in number.There is controversy surrounding whether TRPM8 is expressed in dural
afferents, since little to no expressionwas observed in one study (Huang et al., 2012), but
another found expression to depend on the region of the dura examined (Newsom et al.,
2012). More recently, it was shown that application of the TRPM8 agonist icilin to the
dura produced cutaneous facial allodynia in rats (Burgos-Vega et al., 2015). This behav-
ioral response was attenuated in the presence of sumatriptan, as well as a nitric oxide
synthase (NOS) inhibitor.The ability of these agents to attenuate allodynia suggests that
the state produced by TRPM8 activation within the dura is migraine-like, as sumatrip-
tan is the gold standard in migraine treatment, and NOS inhibitors showed efficacy in
a small human migraine trial (Lassen et al., 1998, 2003). However, the endogenous role
for TRPM8 activation during migraine is not clear.

3.2.3 TRPV1

TRPV1 is best known as themolecular sensor of noxious heat (above 42∘C) and a sensor
for plant extracts like capsaicin (Caterina and Julius, 2001). In addition to activation by
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heat and capsaicin, TRPV1 activity is potentiated by low pH (extracellular) (Jordt et al.,
2000), suggesting a broad role for the channel in pain due to injury or inflammation,
and it can also bemodulated downstream of other receptor signaling systems, including
bradykinin, serotonin, prostaglandin and prokineticin receptors (Julius, 2013).
In relation to migraine, genetic variants in TRPV1 have been shown (Carreno et al.,

2012). However, like TRPM8, it is not yet clear how these variants contribute to chan-
nel expression and/or function. TRPV1 is expressed on dural afferent fibers (Shimizu
et al., 2007) and trigeminal ganglion neurons retrogradely labeled from the dura (Huang
et al., 2012). Functional activation of TRPV1 within the dura leads to dilation of dural
vessels (Akerman et al., 2003), initiation of afferent signaling (Strassman et al., 1996;
Bove andMoskowitz, 1997; Schepelmann et al., 1999), activation of intracellular kinases
in trigeminal ganglion neurons (Iwashita et al., 2013), and headache-like behavioral
responses (Yan et al., 2011). Activity of TRPV1 is decreased following application of
sumatriptan to cells (Evans et al., 2012), and TRPV1-mediated behavioral responses
are also sensitive to sumatriptan (Loyd et al., 2012), suggesting TRPV1 modulation as
one mechanism by which sumatriptan has efficacy for migraine. Also, recent studies in
humans show increased expression of TRPV1 in arteries taken from the scalp of chronic
migraine patients but not healthy controls (Del Fiacco et al., 2015).
Similar to other TRP channels, the endogenous mechanisms that may activate

TRPV1 during migraine are not known. Potential endogenous activators include
endocannabinoids such as anandamide (Zygmunt et al., 1999), endovanilloids such
as N-arachidonoyl-dopamine (NADA) (Huang et al., 2002), and lipid products of
the lipoxygenase pathway (Hwang et al., 2000), any of which may be present in the
dura, and may contribute to migraine pain. TRPV1 is also modulated downstream
of bradykinin (Chuang et al., 2001), nerve-growth factor (Chuang et al., 2001), and
prostaglandin (Moriyama et al., 2005) receptor signaling.
There have been several attempts to develop therapeutics based on modulation of

TRPV1. Civamide, an intranasal TRPV1 agonist (presumably acting via desensitization
of the channel or the entire nerve terminal), was found to be effective for both migraine
and cluster headaches (Diamond et al., 2000), and intranasal capsaicin is also efficacious
for migraine (Fusco et al., 2003). Preclinically, TRPV1 antagonists have shown variable
results in several headache models. Systemic capsazepine, a TRPV1 antagonist, blocked
capsaicin-induced vasodilation in the dura (Akerman et al., 2003), and another systemic
TRPV1 antagonist, SB-705498, also decreased dural afferent activity after stimulation
of the dura (Lambert et al., 2009). In other, similar experiments, however, the TRPV1
antagonist A993610 given systemically showed no efficacy (Summ et al., 2011).
Most problematic for arguing a contribution of TRPV1 to migraine is the failure of

a TRPV1 antagonist (SB-705498) against migraine in a human Phase II study (Palmer
et al., 2009).This compound also had no efficacy on photo- or phonophobia.The incon-
sistent results of TRPV1 antagonists in preclinical models, as well as the failed human
trial, cast doubt on the future of this target for migraine therapeutics.

3.2.4 TRPV4

As mentioned above, dural afferents are mechanically sensitive (Ray and Wolff, 1940;
Kaube et al., 1992; Strassman et al., 1996; Levy and Strassman, 2002).The additional sen-
sitivity of dural afferents to changes in extracellular osmolarity (Strassman et al., 1996)
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suggests a role for TRPV4 in afferent signaling, as this channel has been proposed to be
both a mechano and an osmosensor (Liedtke et al., 2000; Watanabe et al., 2002; Liedtke
et al., 2003; Vriens et al., 2004). Trigeminal ganglion neurons express the mRNA for
TRPV4 (Kitahara et al., 2005), and the channel appears to be functional on these neu-
rons (Chen et al., 2008a, 2008b). These studies suggest that TRPV4 may contribute to
the mechanosensitivity of dural afferents but, until recently, preclinical headache exper-
iments assessing a role for TRPV4 had not been conducted.
In a 2011 study, TRPV4-like currents were demonstrated on dural afferents in vitro

in response to hypotonic solutions and the TRPV4 activator 4αPDD (Wei et al., 2011).
This study also showed headache-like behavioral responses in response to hypotonic
stimulation of the dura, and effect blocked by a TRPV4 antagonist. These studies more
directly implicate TRPV4 in processes contributing to headache, and suggest that this
channel may contribute to mechanoactivation of dural afferents by changes in intracra-
nial pressure, or other events known to worsen headache, such as coughing, sneezing,
or routine physical activity (Burstein et al., 2000).

3.3 Acid-sensing ion channels

Acid-sensing ion channels (ASICs) are cation channels, closely related to epithelial
sodium channels (ENaC), that respond to decreased extracellular pH. There are four
ASIC subunits and several splice variants (Deval et al., 2010; Sherwood et al., 2012;
Wemmie et al., 2013; Zha, 2013), and they are half-maximally activating by pHs
between 4.0 and 6.8 (Deval et al., 2010). There is expression of ASICs throughout
the central (Grunder and Chen, 2010; Wemmie et al., 2003) and peripheral nervous
systems, including on primary afferent sensory neurons necessary for pain signaling
(Alvarez de la Rosa et al., 2002; Wemmie et al., 2013). ASICs are thought to contribute
to pain states such as angina, intermittent claudication, and arthritis.
Several prior studies implicate ASICs in migraine-related processes (for further

review, see Dussor, 2015), and they may contribute to activation of dural afferents
(Burstein, 2001). In vivo electrophysiological studies from the late 1990s found that
dural afferents respond to pH 4.7 in rats (Burstein et al., 1998), pH 5.0 in guinea pigs
(Bove and Moskowitz, 1997), while another rat study examined responses to pH 6.1
in (Schepelmann et al., 1999). Later studies examined the release of CGRP from both
the dura and trigeminal ganglia in response to pH 5.4–5.9, and the ganglia release was
blocked by the ASIC3 antagonist APETx2 (Zimmermann et al., 2002; Durham and
Masterson, 2013). Vasodilation in the meninges and afferent signaling in the TNC
following electrical stimulation of the dura were both blocked by the ASIC antagonist
amiloride (Holland et al., 2012).
Recently, it was found that dural afferents generate ASIC currents at pH 6.0 and

pH 7.0 (Yan et al., 2011) that were blocked by amiloride. Further, dural afferents that
respond to pH 6.0 also respond to the ASIC3 activator GMQ, and ASIC3 labeling
was found on dural afferents (Yan et al., 2013). Using a preclinical behavioral headache
model, pH 5.0, 6.0, and 6.4 produced headache-like responses when applied to
the dura, and both amiloride and APETx2 blocked these responses. These studies are
some of the most direct evidence published thus far for a role of ASIC signaling within
the meninges.
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ASICs may also contribute to migraine-related processes, such as cortical spreading
depression (CSD: for review of CSD see Pietrobon and Moskowitz, 2014). Holland and
colleagues showed in preclinical studies that CSD events were blocked by amiloride,
and the ASIC1a blocked PcTx1 (Holland et al., 2012). However, this study went on
to examine a potential contribution of ASICs to migraine in humans. In seven other-
wise treatment-resistant migraine patients, four had substantial improvement in both
headache severity and aura frequency. Althoughmany questions remain from this small
trial, these findings suggest that ASICs may contribute to migraine in humans, and they
may be potential targets for novel therapeutics.

3.4 Glutamate-gated channels

Numerous studies suggest a role for glutamate-mediated signaling within the meninges
and in the afferent system projecting from the meninges. In the dura, vasodilation fol-
lowing electrical or chemical stimulation was blocked by NMDA, AMPA, and kainate
antagonists (Chan et al., 2010). In theTG, glutamate is co-expressed onneurons that also
express several serotonin 5-HT1 receptors (Ma, 2001) suggesting that triptans (acting
on 5-HT1 receptors) may produce their therapeutic effects due to decreased glutamate
release from TG afferents. 5-HT application inhibits the evoked release of glutamate
from cultured TG neurons, an effect blocked by a 5HT1b/1d antagonist (Xiao et al.,
2008) and, in theTNC,multiple studies have shown a role for glutamate signaling related
to migraine (Mitsikostas and Sanchez del Rio, 2001).
Glutamate receptors contribute to CGRP release within the TNC (Kageneck et al.,

2014). Activation of 5-HT1b and/or 5-HT1d receptors with sumatriptan or more selec-
tive agonists can inhibit glutamate release from pre-synaptic neurons (Jennings et al.,
2004; Choi et al., 2012), while activation of TNC neurons following dural stimulation
is inhibited in the presence of a kainate receptor antagonist (Andreou et al., 2015).
Finally, stimulation of the dura with an inflammatory cocktail causes an initial decrease
in glutamate levels in the TNC, followed by a marked and prolonged increase (Oshin-
sky and Luo, 2006). Similarly, in animals subjected to repetitive stimulation of the dura
with an inflammatory cocktail, there is a large increase in extracellular glutamate fol-
lowing administration of a nitric oxide donor (Oshinsky and Gomonchareonsiri, 2007).
Together, these studies suggest that glutamate signaling at multiple sites throughout the
dural afferent system can contribute to the pathophysiology of migraine.

3.5 ATP-gated channels

ATP acts as an extracellular neurotransmitter in part by signaling through ligand-gated
ion channels known as P2X receptors (Burnstock, 2000). There are seven known sub-
types of P2X channels. P2X3 has received a great deal of attention in the pain research
field (Ford, 2012), as it is highly expressed on primary afferent nociceptors (Chen et al.,
1995; North, 2002; Burnstock, 2006). About half of dural afferents express P2X2, P2X3 or
both (Staikopoulos et al., 2007). Further, P2X3 can be upregulated by nerve growth fac-
tor (NGF), which is elevated in the cerebrospinal fluid of chronic daily headache patients
(Sarchielli et al., 2001).
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In preclinical studies, NGF increases P2X3 currents in trigeminal ganglia (Simonetti
et al., 2006), and neutralization of tonic NGF levels decreases these currents (D’Arco
et al., 2007). Another migraine-related factor that can influence P2X3 is CGRP, which
has been found to increase expression and currents (Fabbretti et al., 2006). Finally,
familial-hemiplegic migraine (FHM) Type 1 is a rare subtype of migraine due to
mutations in voltage-gated calcium channels. In a mouse genetic model of FHM1, there
was found to be increased membrane expression of P2X3 (Gnanasekaran et al., 2011).
These studies all suggest a contribution of P2X channels to migraine pathophysiology,
but more work is needed to further explore this link.

3.6 K+ channels

Preclinical studies have implicated several types of K+ channels inmigraine-related pro-
cesses. Calcium-activated K+ channels open following a rise in intracellular calcium
(and, in some, cases a change in voltage). The large conductance calcium-activated K+

channel, named BK orMaxiK, is widely expressed in the nervous system, and opening of
this channel reduces neuronal excitability and neurotransmitter release (Gribkoff et al.,
2001).These channels are also expressed on primary sensory neurons, and BK knockout
mice have increased pain behaviors (Lu et al., 2013). In relation to migraine, BK mRNA
and protein is found within the TG and TNC (Wulf-Johansson et al., 2010). The BK
blocker iberiotoxin caused an increase inCGRP release fromTNC in this study. Another
study found that the BK opener NS1619 inhibited vasodilation in the dura, and direct
application of this compound to the TNC inhibited afferent activity, following dural
stimulation (Akerman et al., 2010). These studies suggest that targeting BK channels
may have therapeutic potential for migraine.
Twin-pore or two-pore domain potassium channels are responsible for the leak K+

currents that are the basis of the restingmembrane potential (Enyedi and Czirjak, 2010).
This family contains 15 members that are primarily voltage insensitive but can be mod-
ulated by intracellular pH, membrane stretch, lipids, and anesthetics. A recent study
identified a mutation in KCNK18 (aka TRESK) in members of a family suffering from
migraine with aura, but not in non-migraine family members (Lafreniere et al., 2010),
while another study found additional genetic variants in this channel in a distinct pop-
ulation of migraineurs (Rainero et al., 2014).
TRESK is highly expressed in theTGofmice, aswell as humans (Lafreniere et al., 2010;

Lafreniere and Rouleau, 2011). Functionally, expression of mutated TRESK channels
in TG lowers the threshold for activation and increases the firing frequency of action
potentials (Liu et al., 2013). This occurs with mutations found migraine patients, but
not in other channel mutants that are not associated with migraine (Guo et al., 2014).
Although these studies suggest a potential role for TRESK in afferent signaling from
themeninges (andmigraine pain), other studies have shown loss-of-functionmutations
in TRESK in both migraine patients and healthy controls (Andres-Enguix et al., 2012).
Thus, it remains unclear whether, and how, this channel contributes to migraine.
Another K+ channel that may contribute to dural afferent signaling andmigraine pain

is KCNQ. KCNQ, also known as Kv7 (Kv7.1-Kv7.5) that generates M-current, is a K+

channel opened at sub-threshold voltage that is non-inactivating, and decreases repeti-
tive action potential firing (Brown and Passmore, 2009). Although this channel is found
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in sensory neurons, little attention has been paid to whether it may contribute to signal-
ing in the trigeminal system. Recently however, systemic administration of ezogabine,
a KCNQ opener, was found to decrease the spontaneous activity of dural afferents and
to decrease their activation, if given before induction of CSD (Zhang et al., 2013). Ezo-
gabine is currently FDA-approved for partial onset seizures, andmay offer an additional
option for the treatment of migraine.

3.7 Other ion channels that may contribute to dural afferent
signaling

A variety of other ion channelsmay contribute to dural afferent signaling, but these have
been the subject of fewer focused studies. Although voltage-gated calcium channelsmay
contribute to migraine, particularly FHM type 1, they have been reviewed elsewhere
(Pietrobon, 2012) and are discussed in a separate chapter in this book. Several stud-
ies implicate changes in voltage-gated Na+ channels in modulation of signaling from
the dura. Exposure of dural afferents to interleukin-6 (IL-6), a cytokine elevated dur-
ing migraine attacks (Fidan et al., 2006; Sarchielli et al., 2006), increases excitability of
these neurons and increases association of extracellular signal-regulated protein kinase
(ERK) with the Na+ channel Nav1.7 (Yan et al., 2012). ERK phosphorylation of Nav1.7
is known to sensitize the channel (Stamboulian et al., 2010), suggesting that increased
Na+ channel activity in the presence of IL-6 contributes to enhanced signaling from the
dura. Application of IL-6 to the dura of rats produced headache-like behavior that was
blocked following inhibition of ERK (Yan et al., 2012). Additionally, a cocktail of PGE2,
bradykinin and histamine, applied to dural afferents, depolarized the resting membrane
potential and decreased the action potential threshold (Harriott and Gold, 2009), the
latter most likely mediated by an increase in tetrodotoxin-resistant voltage-gated Na+
currents (Vaughn and Gold, 2010). However, this cocktail also activated a previously
unrecognized depolarizing Cl– current thatmay be responsible for themembrane depo-
larization (Vaughn and Gold, 2010).
Finally, GABAA has been implicated in migraine-related processes in the dura as well

as the TNC. Plasma protein extravasation within the rat dura following stimulation of
the TGwas reduced by sodium valproate or muscimol, an effect blocked by the GABAA
antagonist bicuculline (Lee et al., 1995). Intracisternal capsaicin administration to
guinea pigs caused c-fos expression in the TNC that was decreased by valproate
administration and blocked by bicuculline (Cutrer et al., 1995). These studies, together,
show that numerous other ion channels may be modulated by the processes present
within the dural afferent pathway during migraine, and these channels may be targets
for novel therapeutics.

3.8 Conclusions

Migraine is one of the most prevalent disorders on the planet, and is one of the
leading causes of pain and disability. Although triptans revolutionized the treatment of
migraine when introduced several decades ago, they still leave most migraine patients
with either residual symptoms, or completely untreated. CGRP-based therapeutics
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hold great promise, but it is yet unclear whether these agents will have efficacy in
a larger fraction of migraine patients than triptans. Thus, there is a great need for
additional novel therapeutics.
The studies described here make a compelling case that numerous ion channels con-

tribute to the pathophysiology of migraine. Mutations in TRPM8 and TRESK identi-
fied by GWAS implicate these channels in common forms of migraine, and preclinical
studies are beginning to uncover how these channels contribute to the disorder. Data
from humans exposed to the “headache tree” and the efficacy (albeit limited) of natural
products, such as feverfew, suggest that there may a contribution of TRPA1 to primary
headache disorders. Preclinical studies support this concept, butmorework is necessary
to better understand how TRPA1 may play a role in migraine.
These examples of translation from human observations to animal studies are paral-

leled with studies examining a role for ASICs in migraine, which originated with ani-
mal experiments. These animal findings were translated into humans through the use
and efficacy of amiloride in treatment-resistant migraine patients. This bi-directional
translation between humans and animals is necessary for continued progress toward
a greater understanding of the pathophysiology of migraine and development of new
therapeutics. Although there is a clear contribution of the brain to migraine, the recent
demonstration that antibodies against CGRP have efficacy for migraine, and the poor
access of antibodies to the CNS, argue that mechanisms such as those described above,
which can mediate a peripheral contribution to migraine pain, should continue to be
the focus of future studies. Without these types of studies, migraine will remain one of
the most disabling conditions on the planet, as increases in the understanding of the
disorder will be slow.
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4.1 Introduction

This chapter describes our current understanding of the ascending and descending
central nervous system pathways that are relevant for nociceptive processing in the
trigeminal system. Such knowledge has emerged from a large body of pre-clinical and
clinical evidence, showing complex interactions between bottom-up and top-down
mechanisms that are essential for the discrimination of noxious information and
pain perception. Special emphasis is given here to central components of the
trigeminovascular system as neural substrates for migraine pain.

4.2 Ascending trigeminal nociceptive pathways

Activation of primary afferents by tissue-damaging events in the skin, muscle, joint and
viscera, as well as in specialized structures of the cranio-facial and oral territories such
as cornea, meninges and dental pulp, conveys nociceptive signals to second-order neu-
rons in the spinal and medullary dorsal horn, respectively. Based on the anatomical and
functional properties of such neurons, ascending pathways carrying nociceptive infor-
mation to brainstem, midbrain, and forebrain regions have been associated with the
ultimate experience of pain.
Such pathways originate mainly from two discrete laminated structures in both

spinal and medullary dorsal horns: the superficial layer (lamina I) that contains neurons
activated specifically by mechanical and thermal noxious inputs; and the deep layers
(lamina V–VI) that contain neurons activated by noxious and innocuous inputs. Their
anatomical and functional differences suggest that these neuronal populations play
different roles in the processing of nociceptive information. Similarly, and depending
on their higher order targets, the axonal fibers of projecting neurons travel along the
spino/trigemino-bulbar, spino/trigemino-hypothalamic and spino/trigemino-thalamic
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tracts, as well as indirect spino/trigemino-reticulo-thalamic tracts. While spinal and
trigeminal inputs to the thalamus are mainly contralateral, projections to the pons and
midbrain present contralateral dominance, and those to reticular areas are bilateral.
Spinal and trigeminal mechanisms involved in nociception share many structural

and functional properties that are described below.There are, however, special features
in the nociceptive processing from specialized structures innervated by trigeminal
sources. For example, a higher level of complexity arises from the cornea, tooth pulp,
and the meninges, mainly due to their dual representation and widespread afferent
termination within the brainstem trigeminal sensory complex. As described in previous
chapters, noxious input from these and other cranio-facial-oral tissues is conveyed
through trigeminal ganglion neurons, whose central processes enter the brainstem via
the trigeminal tract. These primary afferents reach the spinal trigeminal nucleus and
upper cervical spinal cord to activate second-order neurons (Figure 4.1) (see Chapter 1).

4.2.1 Ascending nociceptive pathways from the superficial laminae of the dorsal
horn

4.2.1.1 Spino/trigemino-bulbar projections
As illustrated in Figure 4.2, second-order neurons in lamina I project to several areas of
the CNS that are important for sensory, affective, endocrine, and autonomic functions
involved in homeostasis. A significant target in the brainstem, only described for trigem-
inal (but not spinal) projections, is the superior salivatory nucleus (SSN). This cluster
of cholinergic preganglionic neurons provides parasympathetic innervation to cerebral
vasculature, lacrimal glands, nasal and palatine mucosa, through the pterygopalatine
ganglion (PPG) (Contreras et al., 1980; Spencer et al., 1990b). Accordingly, and criti-
cal for understanding the autonomic symptoms frequently seen in migraine and other
primary headaches, activation of the SSN could contribute to protein extravasation and
release of inflammatory mediators that activate and sensitize meningeal nociceptors,
as suggested by the increased parasympathetic tone observed during migraine attacks
(Yarnitsky et al., 2003).
Other major brainstem areas receiving the densest projections from lamina I are the

lateral parabrachial area (PB; about 50% of lamina I projecting neurons) and the ven-
trolateral periaqueductal gray matter (PAG, about 25% of lamina I projecting neurons).
A large proportion of lateral PB neurons is driven by A𝛿 and C fibers, and responds
to thermal and mechanical stimuli within noxious ranges (Bernard and Besson, 1990).
A smaller proportion of these neurons is also responsive to cooling. The nociceptive
(lateral) PB area projects densely to the central nucleus of the amygdala and the bed
nucleus of the stria terminalis, which are probably involved in anxiety and reactions to
fear. It also projects to the hypothalamic ventromedial nucleus, which participates in
food intake (Bernard et al., 1995).
In the context of migraine, it has been suggested that loss of appetite during an attack

could be mediated by the trigeminal-PB circuit. Since noxious stimulation of the dura
increases the number of c-fos-positive neurons in the Sp5C, PB, and hypothalamic ven-
tromedial nucleus (VMH), and the involvement of this circuit in suppression of feeding
behavior is possible. In addition, PB- and VMH-activated neurons express the anorectic
peptide cholecystokinin (Malick et al., 2001). More medial and dorsal areas of the PB
also receive scarce ascending projections from the nucleus of the solitary tract, which is
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Figure 4.1 Anatomical organization of
the trigeminal brainstem sensory
complex. After entering the trigeminal
tract, most afferents pass caudally,
while giving off collaterals that
terminate in the subdivisions of the
spinal trigeminal nucleus and upper
cervical cord to activate second-order
neurons. The spinal trigeminal sensory
nucleus (Sp5) consists of three
subnuclei (oralis, Sp5O; interpolaris,
Sp5I; and caudalis, Sp5C). A𝛿 and C
primary afferents fibers terminate
somatotopically in a dorsal-ventral
fashion, with mandibular afferents
ending dorsally (V3), maxillary fibers
projecting centrally (V2), and
ophthalmic fibers innervating the
ventral-most aspect of Sp5 (V1). At this
level, convergence onto a single
neuron receiving input from different
primary afferents has been proposed to
explain referral of pain and the
difficulty in precisely localizing the
painful focus. For example, migraine
patients experiencing an attack
commonly refer to their headaches as
localized in the periorbital/frontal area;
however, the precise source of pain is
unknown, and can hypothetically
originate from remote intracranial
and/or extracranial pain-sensitive
structures. C1 – first cervical segment of
the spinal cord; Cu – cuneate nucleus;
Pr5 – principal sensory trigeminal
nucleus. Villanueva and Noseda (2012).
Reproduced by permission of Elsevier. Cu
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involved in visceral nociception and autonomic regulation, andwhich has been linked to
nausea and vomiting duringmigraine (Hargreaves and Shepheard, 1999).Thus, PB path-
ways provide a substrate for integration of somatic/visceral nociceptive afferent activity
and an indirect relay to higher forebrain regions involved in autonomic, emotional and
neuroendocrine functions.
Closely related are the lateral and ventrolateral columns of the PAG. These receive

mainly lamina I projections from spinal and trigeminal areas onto functionally different
groups of neurons.Their activation produces antinociceptive, cardiovascular and defen-
sive reactions, such as decrease in blood pressure, hyporeactive immobility, avoidance
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Figure 4.2 Schematic representation of
the main ascending projections from
superficial medullary trigeminal
neurons. Lamina I trigeminal medullary
neurons send nociceptive and thermal
signals to the spinal, bulbar, and
telencephalic regions implicated in
autonomic, emotional, and
somatosensory processing. Rather than
subserving only pain processing, these
circuits could contribute to sustaining
basic emotional and motivational
states. Abbreviations:
AStr – amygdalostriatal transition area;
cc – corpus callosum; CeLC – central
amygdaloid nucleus – lateral capsular
part; Cg – cingulate cortex;
CL – centrolateral thalamic nucleus;
CM – central medial thalamic nucleus;
ECu – external cuneate nucleus;
fx – fornix; GP – globus pallidus;
Gr – gracile nucleus; ic – internal
capsule; icp – inferior cerebellar
peduncle; Ins – insular cortex;
IOn – inferior olive nucleus; LC – locus
coeruleus; LH – lateral hypothalamic
nucleus; LRn – lateral reticular nucleus;
LV – lateral ventricle; mcp – middle
cerebellar peduncle; ml – medial
lemniscus; mlf – medial longitudinal
fasciculus; 7n – facial nucleus;
opt – optic tract; PAG – periaqueductal
gray; PBel – lateral parabrachial
nucleus – external part; PBil – lateral
parabrachial nucleus – internal part;
PC – paracentral thalamic nucleus;
pf – parafascicular thalamic nucleus;
PF – prefrontal cortex; Po – posterior
thalamic nuclear group; POH – preoptic
hypothalamic region; PoT – posterior
thalamic triangular nucleus;
PVN – paraventricular hypothalamic
nucleus; QVL – ventrolateral quadrant;
S1 – primary somatosensory cortex;
S2 – secondary somatosensory cortex;
scp – superior cerebellar peduncle;
SRD – subnucleus reticularis dorsalis;
3V – third ventricle; 4V – forth ventricle;
Ve – vestibular nucleus;
VMH – ventromedial hypothalamic
nucleus; VMl – ventromedial thalamic
nucleus, lateral part; VPM – ventral
posteromedial thalamic nucleus.
Villanueva and Noseda (2012).
Reproduced by permission of Elsevier.
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behavior, and vocalization, as well as a more general emotional state of fear and anxiety
(Lovick, 1993; Bandler and Depaulis, 1991).
Ascending pathways from these areas to the hypothalamus and medial thalamus have

also been described (Mantyh, 1983).Therefore, this lamina I-PAG pathway could partic-
ipate in feedback mechanisms involved in the autonomic, aversive, and antinociceptive
responses to strong nociceptive stimulation. In the context of migraine, activation of the
PAG and nearby nuclei in the dorsolateral pons have been reported during attacks, and
this is likely involved in descendent modulation of pain among other adaptive functions
(see below).

4.2.1.2 Spino/trigemino-hypothalamic projections
The hypothalamus is associated with a variety of autonomic, neuroendocrine, and
affective reactions to pain arising from any part of the body. Somatosensory and
visceral ascending information from spinal and trigeminal sources likely influences
these complex functions through direct pathways from brainstem nuclei, such as the
nucleus of the solitary tract, medullary lateral reticular formation, PB and the PAG
(Saper and Loewy, 1980; Sawchenko and Swanson, 1981; Beitz, 1982; Menetrey and
Basbaum, 1987). Sparse, direct afferents from superficial and deep laminae of spinal
and trigeminal dorsal horn have also been described using retrograde/anterograde
labeling and antidromic mapping. Those areas receiving direct input are the anterior
(AH), lateral (LH), posterior (PH) and mediodorsal (MDH) hypothalamic areas, as well
as perifornical (PeF), paraventricular (PVN) and lateral preoptic (LPO) nuclei (Burstein
et al., 1987; Cliffer et al., 1991; Newman et al., 1996; Malick et al., 2000; Gauriau and
Bernard, 2004a). Thus, independently of the origin, hypothalamic activation through
nociceptive ascending pathways likely disrupts the regular rhythmicity of sleep, food
intake, thermoregulation, arousal and emotional reactions, among other functions.
In the context of migraine, the hypothalamus appears as a pivotal structure in the pre-

monitory symptoms that precede the headache phase such as fatigue, yawning, sleepi-
ness, irritability, hunger and craving, as they likely originate in the hypothalamus (see
Chapter 12). Moreover, this diencephalic region appears to play an equally fundamental
role in modulation of pain through its dense descending projections to the spinal and
trigeminal dorsal horns (see below).

4.2.1.3 Spino/trigemino-thalamic projections
Oneof themost studied and relevant systems for pain perception is the spino/trigemino-
thalamic pathway. Many anatomical areas of the rat, monkey and human thalamus are
innervated by spinal and trigeminal lamina I neurons (around 15% of lamina I projecting
neurons). In the rat, these thalamic targets include the posterior complex (Po), posterior
triangular (PoT), ventral posterolateral (VPL), and ventral posteromedial (VPM) nuclei
(Gauriau and Bernard, 2004c; Noseda et al., 2008).
Axonal terminations are observed in the PoT, a caudal thalamic nucleus that conveys

nociceptive input to the secondary somatosensory cortex, as well as tactile and noci-
ceptive input to the insular cortex and amygdala (Gauriau and Bernard, 2004c). More
rostrally, labeled terminals are distributed mainly in the dorsal aspect of Po, VPM and
VPL thalamic nuclei. Early studies have shown that these regions convey tactile and
nociceptive input to the primary and secondary somatosensory cortices, and could par-
ticipate in the sensory-discriminative aspect of pain.
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Amore recent set of studies found that neurons located mainly in the dorsal aspect of
the VPM and Po are activated by noxious stimulation of the trigeminally-innervated
skin, dura (Burstein et al., 2010; Noseda et al., 2010b, 2011) and tooth pulp (Zhang
et al., 2006). Accordingly, individual trigeminovascular neurons in VPM project mainly
to trigeminal areas of the primary (S1) and secondary (S2) somatosensory and insu-
lar cortices. Interestingly, populations of neurons responding to noxious stimulation of
dural and facial receptive fields have also been recorded in other, non-VPM/Po thala-
mic nuclei (i.e., lateral posterior (LP) and lateral dorsal (LD) thalamic nuclei). Altogether,
these dura-sensitive neurons in Po, LP and LDproject tomultiple cortical areas involved
in sensory, motor, affective, associative, and cognitive functions.
Such extensive trigemino-thalamo-cortical network suggests that nociceptive signals

are widely processed throughout the cortex, and consistent with themultiple symptoms
experienced ictally by migraineurs (Noseda et al., 2010b, 2011). This evidence is also in
agreement with human functional imaging studies that showed activation of the VPM
and dorsal thalamic areas following noxious thermal stimulation of the face (DaSilva
et al., 2002), and during spontaneous migraine (Burstein et al., 2010).
In the monkey, thalamic regions receiving spinal and trigeminal input include an area

within the suprageniculate/posterior complex named the posterior part of the ventro-
medial nucleus (VMpo), the ventral caudal part of the medial dorsal/parafascicular
nuclei (MDvc/Pf), and the VPM (Ralston and Ralston, 1992; Craig, 2004). Electro-
physiological recordings in anesthetized and awake monkeys have revealed important
differences between these thalamic lamina I targets. Accordingly, they not only encode
different intensities of noxious stimuli, but also many neurons in the MDvc/Pf and
VMpo present modality specificity and exhibit either nociceptive or thermal responses.
The cutaneous receptive fields of VMpo cells in monkeys are restricted (Craig et al.,

1994), whereas those from MDvc/Pf cells are often very large. Both the receptive fields
boundary and the magnitude of their evoked responses change along with the monkey’s
behavioral state (Bushnell andDuncan, 1987, 1989; Bushnell et al., 1993; Bushnell, 1995).
These features may indicate that MDvc/Pf cells are better suited for the integration of
behavioral reactions and, thus, are strongly implicated in the affective-emotional aspects
of pain. This suggestion is supported by their cortical connectivity and by functional
imaging studies.
Neurons in the VMpo project to the posterior insular cortex, the only brain area that,

when stimulated, elicits pain in humans (Ostrowsky et al., 2002; Craig, 2014), and have
been implicated in the affective components of pain on the basis of its projections to
various limbic structures, such as the amygdala and perirhinal cortex. Neurons in the
MDvc/Pf nuclei project, in turn, to area 24 of the cingulate cortex, the activity of which
appears to be more selectively modulated by noxious stimuli. In fact, this is a function-
ally heterogeneous area, constituted by adjacent zones implicated in attentional, motor,
and autonomic reactions that might allow it to elicit various behavioral reactions (Vogt,
2005).
In contrast, clinical data have shown that other ventral posterior thalamic areas, not

necessarily including the VMpo, also play a key role in relaying thermo-algesic signals
along the spinothalamic system to the cortex (Montes et al., 2005). This region, known
as the ventral posterior thalamic complex (VP), projects to S1, and imaging studies have
shown that noxious and innocuous stimuli similarly activate the contralateral S1, thus
indicating the co-existence of pain and tactile representation in this area (Chen et al.,
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2002). Furthermore, single-unit recordings from the VP in humans have shown that
neurons could be activated by noxious stimuli, and that direct stimulation of this region
induces thermal and/or painful sensations (Lenz and Dougherty, 1997). In the monkey,
theVP area contains amajority ofWDRneurons,whose receptive fields are notmodified
by the behavioral state and are smaller than those of spinal or medullary dorsal horn
projecting neurons, suggesting a potential role in spatial discrimination (Bushnell et al.,
1993; Bushnell, 1995).

4.2.2 Ascending nociceptive signals from the deep laminae of the dorsal horn

4.2.2.1 Spino/trigemino-reticulo-thalamic projections
Except for a few anterograde studies (Gauriau and Bernard, 2004a; Noseda et al., 2008),
most of the data available on the precise projection sites of nociceptive neurons in lam-
inae V–VI come from retrograde tracing. As illustrated in Figure 4.3, laminae V–VI
neurons project to brainstem reticular areas, these being among their densest targets. A
key role of the medullary reticular formation as a relay for nociceptive signals has been
suggested, since the majority of anterolateral quadrant ascending axons in both ani-
mals and humans terminate within this area (see references in Villanueva and Nathan,
2000). Accordingly, numerous findings indicate that nociceptive input to the thalamus
is relayed within the caudal medullary reticular formation (Villanueva et al., 1998; Vogt,
2005).
The old proposal that the reticular formation does not play a specific role in the pro-

cessing of pain was challenged by data obtained in the rat and monkey, showing that
neurons within the medullary subnucleus reticularis dorsalis (SRD) respond selectively
to the activation of A𝛿 and C fibers from the whole body surface. They also encode the
intensity of noxious stimuli, and are activated via ascending pathways in the anterolateral
quadrant (Villanueva et al., 1990, 1996).
Axonal projections of SRD neurons terminate in the parafascicular and ventromedial

thalamus (VMl) which, in turn, conveys nociceptive input from the entire body surface
to layer I of the whole dorsolateral neocortex (Monconduit et al., 1999; Desbois and
Villanueva, 2001). VMl neurons have fine discriminative properties, as shown by their
selective responsiveness to calibrated noxious stimuli. They have the ability to precisely
encode different types of cutaneous stimuli within noxious ranges, and can be activated
by innocuous stimuli only under conditions of experimental allodynia. Because the
thalamic VMl lacks topographical discrimination, as illustrated by their “whole-body”
receptive field to widespread noxious stimuli of cutaneous, muscular, or visceral origin,
it may constitute an important nociceptive target of the originally termed “ascending
reticular activating system” (Herkenham, 1986).
This spino/trigemino-reticulo-thalamo-cortical network could allow any painful stim-

uli to modify cortical activity in a widespread manner, since cortical interactions in
layer I are considered to be a key substrate for the synchronization of large ensem-
bles of neurons across cortical territories in association with conscious states. In this
respect, layer I input may act as a “mode switch” by activating a spatially restricted
low-threshold zone in the apical dendrites of layer V pyramidal neurons, evoking regen-
erative potentials propagating toward their somata which, in turn, could switch layer V
neurons into burst-firing mode (Larkum and Zhu, 2002). This hypothesis fits with the
facts that painful stimuli can elicit widespread cortical activation in humans, and that
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Figure 4.3 Schematic representation of
the main ascending projections from
deep medullary trigeminal neurons.
Deep lamina trigeminal medullary
neurons are able to convey a variety of
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increasing stimulus intensity increases the number of brain regions activated, including
the ventral posterior and medial thalamic regions, as well as their targets in the pre-
frontal, premotor, and motor cortices (Derbyshire et al., 1997; Apkarian et al., 2009).

4.3 Trigeminovascular pain is subject to descending control

A complex interplay between central neural networks involved in descending facilita-
tory and inhibitory responses to a given noxious stimulus is essential for the ultimate
experience of pain. These endogenous systems, mainly originating from the brainstem,
hypothalamus and cerebral cortex, are strongly influenced by behavioral, cognitive and
emotional factors that are relevant for the survival of the individual. Under pathological
conditions, however, dysfunctional engagement of these descending pathways certainly
contributes to the transformation from acute to chronic pain states. In disorders such as
migraine, this could contribute to the generation of episodic painful states in susceptible
individuals, and to the evolution from acute to chronic migraine.

4.3.1 Descendingmodulation from the periaqueductal gray (PAG) and the rostral
ventromedial medulla (RVM)

Early systematic studies of what was originally termed “stimulation-produced analge-
sia” in animals showed that localized microstimulation of the ventral PAG or RVM
effectively elicited strong behavioral antinociceptive effects when noxious stimuli are
applied anywhere in the body (Oliveras and Besson, 1988). Moreover, activation of the
PAG by direct ascending lamina I projections produces cardiovascular and temperature
changes, as well as defensive reactions, fear and anxiety (Oliveras and Besson, 1988;
Bandler et al., 1991). Since the PAG projects minimally to the spinal cord, but densely
to the RVM, the latter constitutes the main direct link for descending modulation to
all levels of spinal and trigeminal dorsal horns. RVM descending projections innervate
superficial dorsal horn neuronswhich, in turn,modulate the activity of deep lamina cells
at the origin of the spinal and trigeminal ascending nociceptive pathways, suggesting a
broader modulatory role by the PAG-RVM system (Basbaum and Fields, 1978; Holstege
and Kuypers, 1982; Suzuki et al., 2002; Fields et al., 1995; Mason, 2001; see Figure 4.4).
In the field of migraine, the role of this circuit is controversial, since early reports

that described delayedmigraine-like pain in patients undergoing electrode implantation
near the PAG (Raskin et al., 1987), and an imaging study showing activation of the brain-
stem in spontaneous migraine (Weiller et al., 1995).These reports were used to propose
the concept of the PAG as a “migraine generator”. In theory, dysfunctional brainstem
areas, including the PAG, could either enhance or suppress trigeminovascular neuronal
activity at the origin of migraine-like pain via “on” and “off” cells in the RVM (Porreca
et al., 2002). In this regard, facilitatory influences mediated by RVM neurons have been
reported in an animalmodel ofmigraine pain, through the assessment of cutaneous allo-
dynia as amanifestation of central sensitization (Edelmayer et al., 2009). Furthermore, it
has been shown that evoked neuronal activity in Sp5C is inhibited by PAG stimulation
(Knight and Goadsby, 2001), and that blocking the P/Q-type calcium channels in the
PAG facilitates the activity of Sp5C nociceptive neurons (Knight et al., 2002).
Conversely, several neuroimaging studies reporting brainstem activation in migraine

patients do not include the PAG as an activated region during spontaneous or induced
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attacks. Activation has been found however, in nearby nuclei in the dorsolateral
pons (DLP), which includes the mesencephalic trigeminal nucleus, principal sensory
trigeminal nucleus, PB, vestibular nucleus, inferior colliculus, LC, and cuneiform
nucleus (Weiller et al., 1995; Bahra et al., 2001; Afridi et al., 2005; Moulton et al., 2008;
Stankewitz and May, 2011). This complex pattern of activation does not appear to be
specific to migraine (Dunckley et al., 2005; Becerra et al., 2006; Keltner et al., 2006;
Linnman et al., 2012), and reflects a potential role in facial and muscle tenderness,
abnormal tactile sensation, motion sickness, nausea, altered auditory perception and,
more importantly, modulation of pain. These functional and anatomical studies are
consistent with a broader modulatory role of the PAG-RVM circuit, and suggest
an absence of topographically specific modulation necessary for eliciting selectively
migraine headache.

4.3.2 Diffuse noxious inhibitory controls (DNIC)

In contrast to segmental controls, heterosegmental controls are elicited mainly by
noxious stimuli. These inhibitions are mediated by a supraspinal loop with signals that
ascend to the brainstem and then descend again to effect inhibition in the spinal (Le
Bars et al., 1979) and trigeminal dorsal horn (Dickenson et al., 1980; Villanueva et al.,
1984). More recently, in clinical contexts, DNIC has been termed “conditioned pain
modulation” (CPM), since a number of studies have shown common anatomical and
functional features in animals and humans. The supraspinal structures responsible for
DNIC include the rat SRD in the caudal-dorsal medulla, which contains a homogeneous
population of neurons activated exclusively by noxious stimuli applied to any region
of the body, which precisely encode the intensity of these stimuli (Villanueva et al.,
1988, 1996). Moreover, lesions of the caudal medulla reduce DNIC in both animals and
humans (De Broucker et al., 1990).
DNIC mechanisms have been proposed to facilitate the extraction of nociceptive

information by increasing the signal-to-noise ratio between a pool of dorsal horn
neurons that are activated from a painful focus, and the remaining population of
such neurons, which are simultaneously inhibited. DNIC appears to mediate noxious
“counter-stimulation” phenomena (“pain inhibits pain”) by mutual inhibition between
pathways that generate sensation and by nocifensive responses, in the event that painful
stimuli are applied simultaneously at two separate loci. For example, pain due to an
injury on the foot is usually suppressed when the hand is immersed in painful ice-cold
water. Likewise, DNIC reduces both spinal (Roby-Brami et al., 1987) and trigeminal
reflexes (Maillou and Cadden, 1997).
Human brain imaging studies, combined with psychophysics and electrophysiology,

have shown an important contribution of cortical regions in the regulation of pain sup-
pression by DNIC (Piche et al., 2009; Sprenger et al., 2011). Studies in chronic pain
patients suggest that such higher-order CNS mechanisms, in addition to the brainstem
loops associated with DNIC/CPM, could also be implicated in counter-stimulation phe-
nomena. For example, the effects of counter-stimulation are altered in neuropathic pain
patients, suggesting that DNIC mechanisms differ in health and disease (Bouhassira
et al., 2003).
Furthermore, the effects of DNIC on temporally and spatially summated pain are

reduced fromnormal in dysfunctional pain states, such as painful trigeminal conditions,
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including temporomandibular disorder and trigeminal neuropathic pain (King et al.,
2009; Leonard et al., 2009). Indeed, these observations suggest that the reduced ability
of CPM to inhibit pain in chronic pain patients could be, in part, due to a dysfunction of
the DNIC system itself (Yarnitsky, 2010). Moreover, some studies suggest that such dis-
turbances could also contribute to head pain processing, as illustrated by a reduction in
DNIC in patients with chronic tension-type headache (Pielsticker et al., 2005; Cathcart
et al., 2010), and loss of DNIC acting on trigeminovascular Sp5C neurons in an animal
model of medication overuse headache (Okada-Ogawa et al., 2009).

4.3.3 Hypothalamic links for the descending control of trigeminovascular pain

In addition to the ascending pathways to the hypothalamus described above, many
hypothalamic areas send back direct projections to the spinal and trigeminal dorsal
horns, as well as indirect projections through brainstem structures involved in noci-
ceptive processing, such as the PAG, LC, PB and RVM (Saper et al., 1976; Holstege,
1987; Robert et al., 2013). Inhibitory influences of hypothalamic stimulation on spinal
nociception and pain behavior have been shown in various studies (Carstens, 1982,
1986; Carstens et al., 1983; Carr and Uysal, 1985; Aimone and Gebhart, 1987; Tasker
et al., 1987; Aimone et al., 1988). In recent years, the necessity to better understand
these mechanisms has reemerged, due to the involvement of the hypothalamus in
the pathophysiology of some primary headaches, as illustrated by functional imaging
studies showing increased hypothalamic activity in patients experiencing trigeminal
autonomic cephalalgias (TACs) (May et al., 1998; Matharu et al., 2004), and evidence
suggesting that hypothalamic regions also become activated during migraine (Denuelle
et al., 2007).
Hypothalamic regulation of primary headaches has been linked to the characteristic

cranial parasympathetic features of TACs, such as conjunctival injection, lacrimation,
nasal congestion and ptosis (Goadsby and Lipton, 1997), and the premonitory symp-
toms frequently experienced by migraineurs, such as sleep-wake cycle disturbances,
changes in mood, appetite, thirst, and urination (Giffin et al., 2003). In this respect, ani-
mal studies have shown direct anatomical connections between the hypothalamus and
Sp5C (Hancock, 1976; Malick et al., 2000; Gauriau and Bernard, 2004b; Robert et al.,
2013), as well as the presence of neurons expressing c-fos in several hypothalamic nuclei
mediating these functions after dural stimulation (Malick et al., 2001; Benjamin et al.,
2004).
A recent study showed that the paraventricular hypothalamic nucleus (PVN),

a key link of both neuroendocrine and autonomic integration of stress responses
(hypothalamic-pituitary-adrenal; HPA axis) likely acts as a hub, simultaneously coor-
dinating and regulating trigeminovascular pain and stress mechanisms (Robert et al.,
2013). Descending projections from the PVN are confined to laminae I/II of the Sp5C,
the ventrolateral PAG and the SSN, which regulate lacrimal glands, nasal mucosa and
cerebral vasculature via the PPG (Spencer et al., 1990a).
During migraine and TACs attacks, PPG cells may reflexively stimulate lacrimation

and mucous secretion in the nasal and oral cavities, and induce vasodilation and local
release of inflammatorymolecules in various intracranial structures.This, in turn, could
activatemeningeal nociceptors and drive Sp5Cneurons, contributing to headache. Con-
versely, experimental depression of PVNcells using theGABAA-receptor agonistmusci-
mol inhibits both the basal activity of Sp5C neurons and activity evoked by nociceptive
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input from the meninges (Robert et al., 2013). Interestingly, the cluster of PVN neu-
rons that project to Sp5C/SSN cells is densely supplied with corticotrophin-releasing
hormone (Simmons and Swanson, 2009).
Such evidence has led to the hypothesis that both HPA and trigeminovascular activi-

ties are processed in parallel by the PVN, which is further supported by data indicating
that GABAA-R-mediated inhibition of the excitatory output of PVN cells onto Sp5C
neurons is significantly reduced in a model of acute restraint stress (Robert et al., 2013).
Indeed, acute stress reduces the potency of GABAA-R inhibitory synapses impinging on
parvocellular PVN neurons by downregulating the transmembrane anion transporter
KCC2 (Hewitt et al., 2009). Loss of inhibition due to changes in the expression of KCC2
could constitute a major maladaptive mechanism by which some primary headaches
may be generated primarily within the PVN.

4.3.4 The cortex as amajor source of descendingmodulation

Behavioral responses associated with endogenous feeling states (interoception), includ-
ing processing of autonomic inputs related to homeostatic regulations, pain and emo-
tions, are thought to be modulated in a hierarchical manner at multiple forebrain levels.
A first level of regulation occurs within the hypothalamus, somatosensory cortices and
insula. A second level involves prefrontal and cingulate cortices (Critchley et al., 2001;
Craig, 2005). The importance of behavioral context on pain perception suggests that
powerful endogenous control of nociception originates in the cortex. Indeed,most noci-
ceptive relayswithin theCNS are under corticofugalmodulation. In contrast to descend-
ing controls from brainstem areas, cortical modulation often occurs in the absence of a
painful stimulus, including effects of distraction, hypnosis, catastrophizing and antici-
pation/placebo (Apkarian et al., 2005; Colloca and Benedetti, 2005; Tracey andMantyh,
2007).
The main modulatory function of the cortex is highly dependent on its reciprocal

interaction with thalamic relays, since there are nearly ten times as many fibers project-
ing downstream from the cortex to the thalamus as there are in the ascending direction
from the thalamus to the cortex (Deschenes et al., 1998). The function of this massive
feedback network has not been fully elucidated, but it has been shown that inactivation
of S1 results in rapid changes in the receptive field properties of somatosensory thalamic
neurons, and a significant reduction in their ability to reorganize their receptive fields
following reversible deafferentation of trigeminal primary afferents (Krupa et al., 1999).
Under pathological circumstances, however, maladaptive changes induced by periph-

eral injury, deafferentation and progressive changes in both the chemistry andmorphol-
ogy of the brain may occur. This idea is supported by the fact that facial maps of the
phantom handmay be present immediately after amputation (Borsook et al., 1998), and
by studies in healthy subjects showing that local anesthesia of the thumb increases the
perceived size of the unanesthetized lips by approximately 50% (Gandevia and Phegan,
1999). Anatomo-functional studies also indicate that descending influences fromS1 cor-
tex are required to discriminate between innocuous and noxious somatosensory input at
thalamic level by engaging specific, GABAergic-mediated, corticothalamic modulation
(Monconduit et al., 2006).
In addition to cortico-thalamic networks, early electrophysiological studies showed

that stimulation of S1 cortex inhibits the evoked responses of a proportion of medullary
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nociceptive neurons in the Sp5C (Sessle et al., 1981). Although the mediating pathways
have not been identified, the seminal work of Dubner and colleagues has shown that
corticofugal controls are likely involved in the modulation of neurons in the Sp5C by
behaviorally significant stimuli in trained monkeys. This type of “task-related” modula-
tion may produce a greater neuronal response than that produced by equivalent stimuli
in the absence of the relevant behavioral state (Bushnell et al., 1984). From the anatom-
ical point of view, some studies have described direct, descending projections from the
cerebral cortex to the spinal trigeminal sensory nucleus in the rat (Jacquin et al., 1990;
Desbois et al., 1999; Noseda et al., 2010a) and in humans (Kuypers, 1958; Figure 4.4).
A recent study in the rat reported that these projections are restricted within the S1

and insular cortices, and terminate in the Sp5C division innervated by the ophthalmic
branch of the trigeminal nerve. This study also showed that cortical spreading depres-
sion (CSD)-related influences on insula and S1 produce, respectively, an enhancement
and an inhibition of activity in Sp5C neurons evoked by the stimulation of meningeal
nociceptors. These changes were shown to selectively affect meningeal (interoceptive)
nociceptive input, rather than cutaneous (exteroceptive) tactile input onto Sp5C neu-
rons. In this respect, the existence of a direct relationship between cortical excitabil-
ity changes and modifications of brainstem trigeminovascular neuronal activities was
established. Therefore, consistent with both the topographic localization (ophthalmic)
of these networks and the painfulness of migraine attacks, it was hypothesized that such
corticofugal influences could contribute to the development of migraine pain (Noseda
et al., 2010a).
More recently, Theriot and colleagues demonstrated that CSD induces also a reduc-

tion of both electrophysiological and hemodynamic activations in the somatosensory
cortex evoked by somatosensory stimulation of the corresponding peripheral fields
(Theriot et al., 2012). Electrophysiological responses to somatosensory inputs were
enhanced at the receptive field center, but suppressed in surround regions. Because
such sharpening on chronic timescales could be used as a marker of sensory plas-
ticity, these observations suggest that the profound alterations of sensory processing
associated with CSD could contribute to chronic migraine-related sensitization. These
findings shed new light on the role of corticofugal mechanisms and suggest that they
may constitute a direct, topographically organized, “top-down” processing mechanism
at the origin of migraine headache.

4.4 Conclusions

Taken together, these studies support the concept that CNS mechanisms that pro-
cess trigeminovascular pain do not consist only of a bottom-up process, whereby a
painful focus modifies the inputs to the next higher level. Indeed, a number of CNS
regions mediate subtle forms of plasticity by adjusting neural maps downstream
and, consequently, altering all the modulatory mechanisms as a result of sensory,
autonomic, endocrine, cognitive and emotional influences. Disturbances in normal
sensory processing within these loops could lead to maladaptive changes and impaired
craniofacial functions at the origin of primary headaches.
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The role of trigeminal afferents, and specifically the durovascular innervation, has long
been advanced as important to the neurobiology of vascular head pain, including the
pathogenesis of migraine headaches (e.g., Moskowitz, 1984). In his influential paper
on the visceral organ brain, Moskowitz (1991) emphasized similarities between visceral
pain and migraine headache, and migraine is, indeed, more similar to pain arising from
internal organs than pain arising from other tissues (Moskowitz, 1991). As discussed
in the following sections, visceral pain and migraine share characteristics of referral of
sensations and sensitization of receptive endings in their respective tissues, likely asso-
ciated with similar underlying mechanisms. However, important differences highlight
the fact that this analogy should be made with caution, as the differences will likely
continue to dictate different therapeutic strategies for the treatment of migraine and
visceral pain.

5.1 Organization of innervation

The internal organs are innervated by two sets of sensory nerves with cell bodies in dor-
sal root or vagal nodose/jugular ganglia, making the innervation of the viscera unique
among tissues in the body. All organs in the thoracic and abdominal cavities are inner-
vated by nerves with cell bodies located bilaterally in dorsal root ganglia (DRG) (i.e.,
they are innervated by “spinal nerves”). The spinal (central) terminations of these neu-
rons are located principally in the superficial laminae of the spinal dorsal horn, but also
in the intermediolateral cell column/sacral parasympathetic nucleus. All organs in the
thoracic, and some organs in the abdominal cavities, are also innervated by the vagus
nerve, the cell bodies of which are located in the nodose or jugular ganglia1, with central
terminations in the nucleus tractus solitarius (NTS) in the brainstem medulla.
In contrast to the relatively dense innervation of skin, the numbers of sensory (affer-

ent) neurons innervating internal organs are few. However, their central terminations
are more widely distributed than other somatic inputs, including spinal segments both

1 In primates, these ganglia are clearly distinguishable, the jugular being smaller and superior to the nodose,
but in rodents they are not easily separable.
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above and below the segment of entry and the contralateral spinal cord. The dual but
sparse innervation of organs, coupled with significant central arborization in the spinal
cord, contribute to several key features of visceral pain that distinguish it from most
other types of pain, namely localization and referral.
Unlike innervation of internal organs by two nerves, the sensory innervation of the

head is contained within the three divisions of one nerve – the trigeminal nerve. The
divisions of the trigeminal nerve innervate all tissues in the head except the brain, but
including the dura and dural vasculature. The cell bodies of their afferent terminals are
located in trigeminal ganglia positioned bilaterally at the level of the pons. Furthermore,
in contrast to visceral organs that receive bilateral innervation, the dura and dural vas-
culature, like the majority of other craniofacial structures on either size of midline, only
receive innervation arising from the ipsilateral trigeminal ganglion. Several other fea-
tures of the trigeminal system make innervation of the dura/dural vasculature distinct
from that of the viscera.
First, the trigeminal ganglia are somatotopically organized, such that the somata of

neurons innervating a particular area of the head are located within the ganglia in rel-
atively close proximity to neurons innervating adjacent areas. This is in contrast to the
spinal and nodose ganglia, which appear to have no somatotopic organization. Given
evidence of intra-ganglionic communication via the release of transmitters within the
ganglia following the activation of afferent terminals (Matsuka et al., 2001), this form of
cross-talkmay become a source of signal amplification where, as hypothesized by Devor
et al. (2002), this amplification may underlie a triggered attack of trigeminal neuralgia.
Second, while the axons of proprioceptive afferents are contained in branches of

the trigeminal nerve, the somata giving rise to these axons are actually located in the
brainstem, in the mesencephalic nucleus of the fifth cranial nerve. This is in contrast to
spinal dorsal root ganglia, where the somata giving rise to proprioceptive afferents are
co-localized with other types of sensory neurons. The functional implications of the
spatial isolation of these two types of neurons in the trigeminal system, at least in the
context of nociceptive processing, has yet to be elucidated. However, this organization
does appear to facilitate the integration of sensory information arising from bi-lateral
structures, such as the eyes and the muscles of mastication.
Third, the central terminals of trigeminal afferents are organized in a rostro-caudal

orientation, with proprioceptive and non-nociceptive afferents terminating rostrally in
themesencephalic nucleus and primary ormain sensory nucleus, respectively, and deep
touch, pain and temperature-sensitive afferents, terminating in the spinal trigeminal
nucleus. This latter structure is further subdivided, and spread rostral-caudally into
nucleus oralis, interpolaris and caudalis; the majority of nociceptive afferents terminate
in nucleus caudalis. This is in contrast to the dorsal-ventral termination pattern of
sensory input to the spinal cord. The result is a significantly greater distance between
the non-nociceptive and nociceptive terminals in the trigeminal system, which will
necessarily change the timing of interactions between these afferent types thought to be
necessary for phenomena such as mechanical allodynia and referred pain, as described
below (see also Chapter 1).
Finally, somewhere between a difference and a similarity is the embryological

origin of the sensory innervation of the head and viscera. That is, spinal ganglia are
derived from neural crest cells, while the cells in the nodose ganglia are derived from
ectodermal placode cells. The result is that the two nerves innervating most viscera are
embryologically distinct. Similarly, the trigeminal ganglia are a mix of both neural crest
and placode-derived cells. Unfortunately, it is not yet possible to identify these two cell
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types in the adult and, consequently, it is not possible to determine whether the two
cell types give rise to distinct or overlapping patterns of innervation. As a result, the
functional consequences of the mixed embryological origin of trigeminal ganglia have
yet to be determined. However, differences between spinal and nodose ganglia, with
respect to the dependence of afferent phenotype on specific trophic factors (i.e., many
properties of peptidergic afferents in spinal ganglia depend on NGF (Bennett, 2001),
while the properties of nodose ganglia neurons depend on BDNF (Winter, 1998)),
suggest that changes in the trophic factor milieu may have very different consequences,
depending on the embryological origin of the afferents present.
While pain is a sensory phenomenon, there is compelling evidence to suggest that

autonomic efferent fibers contribute to the pain of injury. Because of their role in medi-
ating components of both neuropathic (Perl, 1999) and inflammatory (Raja, 1995) pain,
sympathetic efferents have received considerably more attention than parasympathetic
efferents. This is not necessarily so in the context of migraine, where there is evidence
that disruption of parasympathetic outflow can abort a migraine attack (Khan et al.,
2014). And while the vascular hypothesis of migraine has largely fallen under the weight
of negative evidence (Goadsby, 2009; but see Karatas et al., 2013), migraine attacks may
be associated with “parasympathetic” features, such as congested sinuses and increased
tearing (Gass and Glaros, 2013), as well as mast cell degranulation. Importantly, mast
cell degranulation has been implicated in migraine (Levy, 2009), and can be driven by
cholinergic receptor activation (Messlinger et al., 2011). Nevertheless, in contrast to the
relatively dense sympathetic innervation (at least in the rodent) of the dura, the parasym-
pathetic innervation of this structure appears to be relatively sparse (Artico et al., 1998).
Additional evidence in support of a potential role for sympathetic innervation of the

dura in migraine comes from the observations that sympathetic postganglionic neu-
ron terminals may be a rich source of prostaglandin E2 (PGE2), a mediator implicated
in migraine. Prostaglandins are implicated in migraine both by the therapeutic effi-
cacy of COX inhibitors and the increases in PGE2 detected in blood (Sarchielli et al.,
2000) and saliva (Tuca et al., 1989) during a migraine attack. There is also evidence
that PGE2 can sensitize dural afferents (Harriott and Gold, 2009). More recently, it
has been shown that the serotonin 1D receptor, a target for the anti-migraine triptan
drugs, is present on cranial sympathetic efferents (Harriott and Gold, 2008). Further-
more, there is also evidence that norepinephrine, a primary sympathetic mediator, can
sensitize dural afferents (Wei et al., 2015). Indirect support for the role of sympathetic
efferents in migraine comes from the prophylactic efficacy of beta-adrenergic receptor
antagonists and alpha-adrenergic receptor agonists for the treatment of migraine (Sil-
berstein, 2009), as well as evidence of sympathetic dysregulation in migraineurs (Sauro
and Becker, 2009).
While it has been hypothesized that dysregulation of parasympathetic efferent activity

may contribute to the co-morbidity of visceral pain and headache, as well as the transi-
tion of cyclic vomiting in children and adolescents to migraine in adults (Han and Lee,
2009), evidence in support a role for either sympathetic or parasympathetic efferents
in visceral pain is far less direct than that for their roles in migraine. Importantly, the
efferent innervation of visceral structures is more complex than in cranial structures.
Collateral branches of afferents can directly influence secretory and motor neurons in
autonomic ganglia close to an organ, thus adding a layer of complexity to interpretation
of the roles of sympathetic or parasympathetic efferents in visceral pain. For example,
the celiac ganglia, one of the largest autonomic ganglia, not only receives cholinergic
input from preganglionic fibers, but receives adrenergic fiber input as well.
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5.2 Common features of visceral pain and headache

With respect to both visceral pain and migraine, because the principal sensations that
arise from the internal organs and dura are discomfort and pain, nociceptors are consid-
ered themain class of sensory neurons innervating those tissues.Nociceptors respond to
and encode noxious intensities of stimuli, and are characterized by their ability to sensi-
tize (discussed below). Nociceptors do not uniformly have high thresholds for activation
and, in fact, many are naturally activated by low, non-noxious intensities of stimulation
but, uniquely, encode intensity into the noxious range.
This is clearly evident for visceral pain, which is commonly associated with discomfort

and pain in response to normally non-noxious stimuli. However, this has been a more
difficult feature to assess for dural afferents, both because of how little is known about
what constitutes a physiologically relevant stimulus, and the difficulty in applying these
stimuli to dural afferents without a significant amount of tissue injury needed to access
their peripheral terminals. Nevertheless, the available evidence suggests that dural affer-
ents are likely to normally encode chemical stimuli, such as a decrease in pH from the
non-noxious, into the noxious range (Yan et al., 2011).

5.2.1 Referred sensations

Visceral pain is typically diffuse in character and is difficult to localize. Importantly, it is
not commonly felt at the source, but rather is referred (or “transferred”) to other somatic
structures. Referred sensations are generally described as “deep pains” that are gener-
ally, but not necessarily, present in somatic structures overlying the visceral organ. For
example, pain associated with kidney stones is often described in the muscles of the
lower back, whereas the pain of a heart attack may be present in the jaw, the left shoul-
der and/or the arm. Although innervation of the head is not as complex as that of the
internal organs, the pain of migraine can be similarly diffuse, although laterality and
periorbital localization are used as diagnostic criteria.
Additionally, both the location and the quality of referred visceral pain are generally

quite different from that of the referred pain of migraine. The referred pain of migraine
is generally cutaneous, and its character is commonly described as a tactile allodynia,
or pain in response to normally non-painful mechanical stimulation of skin in the
ophthalmic division of the trigeminal innervation. Interestingly, in further contrast
to visceral pain (hypotheses concerning the basis for the comorbidity of IBS and
fibromyalgia notwithstanding), the area of migraine-induced allodynia increases
with increasing number and severity of migraines, such that some migraineurs may
experience full body allodynia during their migraine attacks (Lipton et al., 2008; Louter
et al., 2013). In addition, both headache and pain arising from internal organs are
generally associated with exaggerated autonomic responses.
Referred visceral sensation arises in part due to convergence of independent visceral

and somatic (i.e., non-visceral) inputs onto the same second order neurons in the spinal
dorsal horn, a mechanism advanced by Ruch (1961) as the “convergence–projection”
theory of referred visceral sensation. Most, if not virtually all, second order spinal
neurons that receive input from one organ also receive input from either a non-visceral
tissue (i.e., viscero-somatic convergence) and/or another organ (i.e., viscero-visceral
convergence). There is considerable experimental evidence in support of such
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convergence, which is also advanced as contributing to the diffuse, difficult-to-localize
character of visceral pain.
An earlier hypothesis proposed that referred visceral sensations arose from sensory

axons derived from a single sensory neuron cell body in a dorsal root ganglion, one
axon innervating skin and the other an internal organ. This so-called dichotomiz-
ing/bifurcating axon mechanism of referred sensation was initially dismissed for lack
of convincing anatomical evidence, but it has gained new support, largely based on the
availability of better nerve tracing tools. For example, innervation of two organs by one
dorsal root ganglion neuron has been established in rodents for many organs, including
colon and bladder, colon and uterus, and prostate and bladder. Although the reported
proportion of visceral sensory neurons innervating two organs is small (10–20% of
total organ innervation), there clearly exist two potential contributing mechanisms for
referral of visceral sensations.
The referral and localization of migraine pain to the eye, forehead, temple and neck

is likely due to a comparable convergence of inputs onto trigeminal subnucleus cau-
dalis neurons in the brainstem, as suggested by the seminal observation of Penfield and
McNaughton (1940) and Ray andWolff (1940), whose patients described the pain asso-
ciated with arterial and dural stimulation as pain in these regions of the ophthalmic
division. Whether referral of headache pain can also arise from “dichotomizing axons”
is less certain. Existing anatomical evidence is very limited, although there is also evi-
dence to suggest that at least some of the “referral” may be due to unique features of the
trigeminal nerve. One of these, as noted above, is the somatotopic organization of the
ganglion, providing an anatomical substrate for the activation of neurons innervating
adjacent structures.
Furthermore, while early anatomical tracing studies apparently failed to provide sup-

port for dichotomizing trigeminal axons, at least some evidence for this possibility was
provided upon reevaluation. One study reported finding one trigeminal ganglion neu-
ron per animal (rat) that innervated the middle cerebral artery (MCA) and the forehead
(O’Connor and Van der Kooy, 1986). The authors did report, however, that a signifi-
cant proportion of trigeminal ganglion neurons that innervated theMCA had collateral
projections to branches of the middle meningeal artery and to surrounding dura. In
addition, these and other authors (Borges andMoskowitz, 1983; O’Connor and Van der
Kooy, 1986) noted that artery-innervating neurons in the trigeminal ganglion often had
a forehead-innervating neuron nearby, which may provide a substrate for referred pain,
as suggested above, and as has been suggested in the viscera (Brumovsky and Gebhart,
2010).
More recently, it has been demonstrated that a subpopulation of dural afferents give

rise to branches that pass through the cranial sutures (Kosaras et al., 2009). The dif-
ferential distribution of these fibers has been hypothesized to account for the differing
perceptions of the nature of the pain and, in particular, as to whether it is perceived as
imploding or exploding (Kim et al., 2010). More relevantly, the presence of these fibers
has been suggested to account for the therapeutic efficacy of botulinum neurotoxin type
A,which is thought to gain access to the relevant fibers through these branches (Burstein
et al., 2014). Notably, whether dichotomizing (bifurcating) axons and/or intraganglionic
neuronal (satellite cell?) interactions underlie referred sensations from the viscera or in
migraine, a peripheral mechanism(s) evidently plays a key role in referral of sensations
(and in sensitization, as well).
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All that said, the available evidence suggests that the tactile allodynia associated with a
migraine attack necessarily involves changes in trigeminal subnucleus caudalis neurons
(Sandkuhler, 2009; Peirs et al., 2015) or higher brain centers (Burstein et al., 2010) to
enable low threshold sensory input to engage nociceptive circuitry.Thus, the differences
between visceral pain and migraine with respect to the prevalence of allodynia suggests
that there is a fundamental difference between the two with respect to the underlying
neural circuitry engaged.

5.2.2 Sensitization

An essential property of nociceptors innervating all tissues is their ability to sensitize,
defined as an increase in response magnitude to a noxious intensity of stimulation
and a reduction in stimulus threshold for activation. Often, the size of the peripheral
receptive field increases in area and, occasionally, spontaneous or ongoing activity may
develop. Sensitization thus represents an increase in neuron excitability, which can be
short in duration (e.g., during a migraine attack) or long-lasting (e.g., associated with
many chronic visceral pain disorders).
There is a potentially important distinction to make here with respect to the time

course of changes in afferent excitability – in particular, long lasting changes in excitabil-
ity. That is, there is reasonable evidence to suggest that, at least for conditions such as
post-infectious irritable bowel syndrome, persistent pain and sensitivity is due, at least
in part, to the persistent sensitization of visceral afferents. In contrast, most cases of
migraine are episodic, where there may be days, weeks, months or even years between
attacks.This suggests that, in contrast to persistent sensitization of visceral afferents, the
acute sensitization, necessary for the manifestation of the migraine, resolves between
attacks.
On the other hand, there is clearly something unique about migraineurs, as stimuli

such as nitroglycerine are able to generate a migraine in the majority of migraineurs,
yet produce no comparable pain syndrome in non-migraineurs (Afridi et al., 2004). Fur-
thermore, severe stress, such as that sufficient to produce post-traumatic stress disorder
(PTSD) and, even more commonly, the combination of a mild traumatic brain injury
in combination with PTSD, results in the emergence of episodic, and even chronic,
migraine-like headaches.This implies that there is a “threshold” that dividesmigraineurs
from non-migraineurs, belowwhich the acute sensitization of dural afferents results in a
migraine attack. Whether this “threshold” is established by intrinsic properties of dural
afferents remains to be determined. However, the available evidence would suggest that
this is not likely to be the case.
Functional visceral pain disorders (e.g., irritable bowel syndrome, chronic pelvic pain

syndrome, etc.) and migraine share several characteristics. Both are more common in
women, with an onset at menarche and a reduction in prevalence and severity of symp-
toms (if not the complete elimination) with menopause. Both exist in the absence of
an apparent pathobiology, where lesions, tissue inflammation, or obvious pathology are
typically not evident.They are also episodic in nature, waxing andwaning in both occur-
rence and intensity, but are commonly triggered by foods, or too little exercise or sleep,
where stress is the most common trigger for both (although, in contrast to visceral
pain, migraines triggered by a stressful event generally develop with a delay after stress
resolution).
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Peripheral contributions to chronic pain states are commonly discounted, despite
growing evidence of their importance. For example, ongoing afferent input is present
in chronic pain conditions, ranging from neuropathic pain (Ochoa et al., 2005) to
fibromyalgia (Serra et al., 2014), and essential for most (e.g., Haroutounian et al.,
2014). With respect to chronic, functional visceral pain states, silencing afferent
activity by intra-rectal instillation of a local anesthetic (lidocaine) significantly reduced
reported patient discomfort and pain, their responses to provocative organ distension
and hypersensitivity to palpation in the abdominal area of referred sensation for
the duration of action of the local anesthetic (Verne et al., 2003; Price et al., 2009).
Longer-lasting effects were produced by daily intra-vesical instillation of lidocaine for
five consecutive days; significant attenuation of symptoms in interstitial cystitis/painful
bladder syndrome (IC/PBS) patients were sustained for up to 15 days after initiating
the daily intra-vesical treatment (Nickel et al., 2009).
In a subsequent study, continuous intra-vesical infusion of lidocaine for two weeks

produced clinically meaningful reductions in pain, urgency and voiding frequency in
IC/PBS patients which, remarkably, were maintained for several months after the infu-
sion device was removed (Nickel et al., 2012).These experimental outcomes, in which a
drug effect was restricted to a peripheral locus of action, confirm the significant contri-
bution of persistent, on-going afferent activity to pain and discomfort in these visceral
pain conditions. Notably, the results suggest that re-setting afferent excitability can lead
to long-lasting effects, including relief of persistent pain.
Corresponding evidence is not available for migraine patients. However, indirect evi-

dence, based on the efficacy of relatively recent therapeutic interventions, is consis-
tent with an essential role for nociceptive durovascular afferents in the manifestation
of migraine. First, while botulinum toxin A (BonTA) is approved for the treatment of
chronic migraine, it only appears to work in a subpopulation of migraineurs – those
who describe theirmigraines as “imploding” (Kim et al., 2010). As noted above, Burstein
and colleagues hypothesized that this subpopulation is enriched in dural afferents that
penetrate cranial sutures, enabling the toxin access to the relevant afferent fibers.
Second, the recent success of the CGRP antibodies in the prevention of migraine

(Wrobel Goldberg and Silberstein, 2015) argues for a peripheral pain generator, as the
available evidence suggests that antibodies do not have access to the central nervous sys-
tem (Vermeersch et al., 2015).While the role of the persistently sensitized nociceptor in
migraine is also not as well developed as that for visceral pain, evidence for rebound and
medication overusemigraine suggest that a persistent increase in nociceptor excitability
may contribute to the manifestation of migraine as well.
The concept of a “primed” nociceptor, where an inciting stimulus can drive persistent

changes in the afferent that enable a dramatic increase in the duration of the response to
a subsequent challenge (Reichling and Levine, 2009), is a relatively new concept in the
pain community. Such a mechanism has been proposed to contribute to the emergence
of chronic pain, where the altered signaling in the primed afferent enable the emer-
gence of persistent pain, in response to what should normally be a transient episode of
hypersensitivity. While such a change may contribute to the manifestation of persistent
visceral pain, particularly in the context of a previous trauma or infection, it has yet
to be determined whether comparable mechanisms underlie persistent sensitization of
visceral afferents. However, with the exception of chronic migraine, which neverthe-
less appears to emerge via distinct processes other than those underlying nociceptor
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priming, the episodic nature ofmigraine argues against nociceptor priming as an under-
lying mechanism of this pain syndrome.
In contrast, relatively transient sensitization of nociceptive afferents as a mechanism

of pain and hypersensitivity was observed in some of the very first studies of this afferent
population (Bessou et al., 1971). This process clearly contributes to the manifestation
of visceral hypersensitivity (Feng et al., 2012b), and the available pre-clinical evidence
suggests that this is also true for migraine. For example, in rats, bathing the dura
with an inflammatory soup (IS; PGE2, histamine, serotonin, bradykinin and protons)
produces, depending upon the concentration of IS constituents and pH, sensitization
of meningial afferents (Strassman et al., 1996) and a reduction in periorbital pressure
thresholds (hypersensitivity) (Oshinsky and Gomonchareonsiri, 2007; Edelmayer
et al., 2012).
However, data from the study of isolated dural afferent cell bodies in vitro suggests that

the mechanisms underlying IS-induced sensitization are relatively unique, and involve
an increase in a Ca2+-dependent Cl– conductance, in addition to changes in Na+ and
K+ currents (Vaughn and Gold, 2010). Also, while a similar Na+ current appears to con-
tribute to the sensitization of visceral afferents (Gold et al., 2002), the extent to which
comparable channels underlie the sensitization of dural and visceral afferents has yet to
be fully evaluated.

5.2.3 Potential sensitizers

Given evidence reviewed above about sensitized input from the visceral and dural neu-
rovascular innervations, the question arises as to what endogenous molecules in tissue
contribute to and/or sustain altered afferent input? There is considerable documen-
tation that serotonin, neuropeptides, post-ganglionic autonomic neurotransmitters, a
variety of immune cell mediators and so on, play a role, either as activators or sensitiz-
ers of afferent receptive endings. Serotonin receptor agonists and antagonists are used
clinically in the treatment of IBS and nausea (5-HT3 antagonists, 5-HT4 agonist) and
headache (5-HT1 agonists), as are substance-P/neurokinin and calcitonin gene-related
peptide receptor antagonists. Both strategies can be effective in some cases, but neither
is uniformly efficacious.
Just as there are “different” classes of IBS (constipation-predominant, diarrhea-

predominant and alternating), not all migraines are alike (with and without aura,
imploding and exploding), suggesting the likelihood of heterogeneity in the mecha-
nisms underlying visceral hypersensitivity and migraine. However, the phenotyping of
pain syndromes continues to improve. There is also an increased appreciation that the
heterogeneity in phenotype is likely to reflect heterogeneity in mechanism which is, in
turn, likely to account for the differential sensitivity to therapeutic interventions. As
these trends take root, it will be interesting to determine the extent to which there is
overlap in subpopulations of visceral pain and migraine patients.

5.2.4 Immune system involvement in visceral pain andmigraine

In the gut, the role of immune-competent cells and their products have been long appre-
ciated as likely sensitizers/primers of afferent endings and contributors to visceral pain.
Most of the focus has been on pro- (e.g., IL-1, IL-6, IL-12, IL-18, TNF-𝛼, IFN𝛾 ,)- and
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anti- (e.g., IL-4, IL-10) inflammatory cytokines, although it must be recognized that a
given cytokinemay be pro- or anti-inflammatory, depending on the target cell, activating
signal and other factors (Cavaillon, 2001).
Several reviews have described the role(s) of immune cells in the viscera as con-

tributing to visceral pain states (e.g., Van Nassauw et al., 2007; Camilleri et al., 2012;
Feng et al., 2012a; Murphy et al., 2014), and there is a growing body of evidence to
suggest that immune cells in the dura play a critical role in triggering a migraine attack.
Immune cell mediators, such as TNF𝛼 and IL-1𝛽, are increased in the internal jugular
blood of migraineurs during a migraine attack (Perini et al., 2005; Sarchielli et al., 2006).
Migraine-provocative stimuli, such as GTN drive mast cell degranulation and the
activation of macrophages in the rat dura, have a delay comparable to that seen between
GTN administration and the migraine attack in migraineurs (Reuter et al., 2001).
Degranulation of dural mast cells has been shown to sensitize dural afferents (Levy
et al., 2007).
We have recently demonstrated that the dura is enriched in a variety of both

lymphoid-derived as well as myeloid-derived immune cells, and that the relative
proportion of immune cells is increased by stress, as is the balance in the expression
of pro- and anti-inflammatory mediators in these cells, which are shifted toward a
pro-inflammatory phenotype (McIlvried et al., 2015). Importantly, with receptors
for a variety of mediators released during stress, as well as receptors for gonadal
hormones, immune cells are ideally situated to contribute to the sex difference in the
manifestation of migraine, in addition to the role of stress as a trigger for migraine
attacks.

5.3 Summary and conclusions

The suggestion that visceral pain could be used as an analogy to enable us to understand
migraine was provocative at the time. However, while there continues to be several lines
of evidence in support of it, a growing body of evidence highlighting important differ-
ences between visceral pain andmigraine suggest that this analogy should bemade with
caution. There are marked differences in the innervation of the underlying structures.
There are also important differences in the mechanisms underlying sensitization of the
respective nociceptive afferents, and the neural circuitry engaged during the manifesta-
tion of pain. Additional differences inmechanisms and neural circuitry are suggested by
differences in the clinical presentation of visceral pain and migraine. Consequently, and
probably most importantly, as we noted from the outset, these differences will likely
continue to dictate different therapeutic strategies for the treatment of migraine and
visceral pain.

5.4 Acknowledgement

This work is supported by 1R01NS083347 (MSG) and R01 DK093525 and R01
NS035790 (GFG).



�

� �

�

102 Neurobiological Basis of Migraine

References

Afridi SK, Kaube H, Goadsby PJ (2004). Glyceryl trinitrate triggers premonitory symptoms
in migraineurs. Pain 110: 675–680.

Artico M, De Santis S, Cavallotti C (1998). Cerebral dura mater and cephalalgia:
relationships between mast cells and catecholaminergic nerve fibers in the rat.
Cephalalgia 18: 183–191.

Bennett DL (2001). Neurotrophic factors: important regulators of nociceptive function.
Neuroscientist 7: 13–17.

Bessou P, Burgess PR, Perl ER, Taylor CB (1971). Dynamic properties of mechanoreceptors
with unmyelinated (C) fibers. Journal of Neurophysiology 34: 116–131.

Borges LF, Moskowitz MA (1983). Do intracranial and extracranial trigeminal afferents
represent divergent axon collaterals? Neuroscience Letters 35: 265–270.

Brumovsky PR, Gebhart GF (2010). Visceral organ cross-sensitization – an integrated
perspective. Autonomic Neuroscience: Basic & Clinical 153: 106–115.

Burstein R, Jakubowski M, Garcia-Nicas E, Kainz V, Bajwa Z, Hargreaves R, Becerra L,
Borsook D (2010). Thalamic sensitization transforms localized pain into widespread
allodynia. Annals of Neurology 68: 81–91.

Burstein R, Zhang X, Levy D, Aoki KR, Brin MF (2014). Selective inhibition of meningeal
nociceptors by botulinum neurotoxin type A: therapeutic implications for migraine and
other pains. Cephalalgia 34: 853–869.

Camilleri M, Lasch K, Zhou W (2012). Irritable bowel syndrome: methods, mechanisms,
and pathophysiology. The confluence of increased permeability, inflammation, and pain
in irritable bowel syndrome. American Journal of Physiology – Gastrointestinal and Liver
Physiology 303: G775–785.

Cavaillon JM (2001). Pro- versus anti-inflammatory cytokines: myth or reality. Cellular and
Molecular Biology (Noisy-le-Grand, France) 47: 695–702.

Devor M, Amir R, Rappaport ZH (2002). Pathophysiology of trigeminal neuralgia: the
ignition hypothesis. Clinical Journal of Pain 18: 4–13.

Edelmayer RM, Ossipov MH, Porreca F (2012). An experimental model of
headache-related pain. Methods in Molecular Biology 851: 109–120.

Feng B, La JH, Schwartz ES, Gebhart GF (2012a). Irritable bowel syndrome: methods,
mechanisms, and pathophysiology. Neural and neuro-immune mechanisms of visceral
hypersensitivity in irritable bowel syndrome. American Journal of
Physiology – Gastrointestinal and Liver Physiology 302: G1085–1098.

Feng B, La JH, Schwartz ES, Tanaka T, McMurray TP, Gebhart GF (2012b). Long-term
sensitization of mechanosensitive and -insensitive afferents in mice with persistent
colorectal hypersensitivity. American Journal of Physiology – Gastrointestinal and Liver
Physiology 302: G676–683.

Gass JJ, Glaros AG (2013). Autonomic dysregulation in headache patients. Applied
Psychophysiology and Biofeedback 38: 257–263.

Goadsby PJ (2009). The vascular theory of migraine – a great story wrecked by the facts.
Brain 132: 6–7.

Gold MS, Zhang L, Wrigley DL, Traub RJ (2002). Prostaglandin E(2) Modulates TTX-R
I(Na) in Rat Colonic Sensory Neurons. Journal of Neurophysiology 88: 1512–1522.

Han DG, Lee CJ (2009). Headache associated with visceral disorders is “parasympathetic
referred pain”. Medical Hypotheses 73: 561–563.



�

� �

�

5 Visceral pain 103

Haroutounian S, Nikolajsen L, Bendtsen TF, Finnerup NB, Kristensen AD, Hasselstrom JB,
Jensen TS (2014). Primary afferent input critical for maintaining spontaneous pain in
peripheral neuropathy. Pain 155(7): 1272–9.

Harriott AM, Gold MS (2008). Serotonin type 1D receptors (5HTR) are differentially
distributed in nerve fibres innervating craniofacial tissues. Cephalalgia 28: 933–944.

Harriott AM, Gold MS (2009). Electrophysiological Properties of Dural Afferents in the
Absence and Presence of Inflammatory Mediators. Journal of Neurophysiology 101:
3126–3134.

Karatas H, Erdener SE, Gursoy-Ozdemir Y, Lule S, Eren-Kocak E, Sen ZD, Dalkara T
(2013). Spreading depression triggers headache by activating neuronal Panx1 channels.
Science 339: 1092–1095.

Khan S, Schoenen J, Ashina M (2014). Sphenopalatine ganglion neuromodulation in
migraine: what is the rationale? Cephalalgia 34: 382–391.

Kim CC, Bogart MM, Wee SA, Burstein R, Arndt KA, Dover JS (2010). Predicting migraine
responsiveness to botulinum toxin type A injections. Archives of Dermatology 146:
159–163.

Kosaras B, Jakubowski M, Kainz V, Burstein R (2009). Sensory innervation of the calvarial
bones of the mouse. Journal of Comparative Neurology 515: 331–348.

Levy D (2009). Migraine pain, meningeal inflammation, and mast cells. Current Pain and
Headache Reports 13: 237–240.

Levy D, Burstein R, Kainz V, Jakubowski M, Strassman AM (2007). Mast cell degranulation
activates a pain pathway underlying migraine headache. Pain 130: 166–176.

Lipton RB, Bigal ME, Ashina S, Burstein R, Silberstein S, Reed ML, Serrano D, Stewart WF
(2008). Cutaneous allodynia in the migraine population. Annals of Neurology 63:
148–158.

Louter MA, Bosker JE, van Oosterhout WP, van Zwet EW, Zitman FG, Ferrari MD,
Terwindt GM (2013). Cutaneous allodynia as a predictor of migraine chronification.
Brain 136: 3489–3496.

Matsuka Y, Neubert JK, Maidment NT, Spigelman I (2001). Concurrent release of ATP and
substance P within guinea pig trigeminal ganglia in vivo. Brain Research 915: 248–255.

McIlvried LA, Borghesi LA, Gold MS (2015). Sex-, Stress-, and Sympathetic
Post-Ganglionic Neuron-Dependent Changes in the Expression of Pro- and
Anti-Inflammatory Mediators in Rat Dural Immune Cells. Headache 55: 943–957.

Messlinger K, Fischer MJ, Lennerz JK (2011). Neuropeptide effects in the trigeminal
system: pathophysiology and clinical relevance in migraine. The Keio Journal of Medicine
60: 82–89.

Moskowitz MA (1984). The neurobiology of vascular head pain. Annals of Neurology 16:
157–168.

Moskowitz MA (1991). The visceral organ brain: implications for the pathophysiology of
vascular head pain. Neurology 41: 182–186.

Murphy SF, Schaeffer AJ, Thumbikat P (2014). Immune mediators of chronic pelvic pain
syndrome. Nature Reviews Urology 11: 259–269.

Nickel JC, Moldwin R, Lee S, Davis EL, Henry RA, Wyllie MG (2009). Intravesical
alkalinized lidocaine (PSD597) offers sustained relief from symptoms of interstitial
cystitis and painful bladder syndrome. BJU International 103: 910–918.

Nickel JC, Jain P, Shore N, Anderson J, Giesing D, Lee H, Kim G, Daniel K, White S,
Larrivee-Elkins C, Lekstrom-Himes J, Cima M (2012). Continuous intravesical lidocaine



�

� �

�

104 Neurobiological Basis of Migraine

treatment for interstitial cystitis/bladder pain syndrome: safety and efficacy of a new
drug delivery device. Science Translational Medicine 4: 143ra100.

O’Connor TP, Van der Kooy D (1986). Cell death organizes the postnatal development of
the trigeminal innervation of the cerebral vasculature. Brain Research 392:
223–233.

Ochoa JL, Campero M, Serra J, Bostock H (2005). Hyperexcitable polymodal and
insensitive nociceptors in painful human neuropathy. Muscle Nerve 32: 459–472.

Oshinsky ML, Gomonchareonsiri S (2007). Episodic dural stimulation in awake rats: a
model for recurrent headache. Headache 47: 1026–1036.

Peirs C, Williams SP, Zhao X, Walsh CE, Gedeon JY, Cagle NE, Goldring AC, Hioki H, Liu
Z, Marell PS, Seal RP (2015). Dorsal Horn Circuits for Persistent Mechanical Pain.
Neuron 87: 797–812.

Penfield W, McNaughton F (1940). Dural headache and innervation of the dura mater.
Archives of Neurology and Psychiatry 44: 43–75.

Perini F, D’Andrea G, Galloni E, Pignatelli F, Billo G, Alba S, Bussone G, Toso V (2005).
Plasma cytokine levels in migraineurs and controls. Headache 45: 926–931.

Perl ER (1999). Causalgia, pathological pain, and adrenergic receptors. Proceedings of the
National Academy of Sciences of the United States of America 96: 7664–7667.

Price DD, Craggs JG, Zhou Q, Verne GN, Perlstein WM, Robinson ME (2009). Widespread
hyperalgesia in irritable bowel syndrome is dynamically maintained by tonic visceral
impulse input and placebo/nocebo factors: evidence from human psychophysics, animal
models, and neuroimaging. NeuroImage 47: 995–1001.

Raja SN (1995). Role of the sympathetic nervous system in acute pain and inflammation.
Annals of Medicine 27: 241–246.

Ray BS, Wolff HG (1940). Experimental studies on headache. Archives of Surgery 41:
813–856.

Reichling DB, Levine JD (2009). Critical role of nociceptor plasticity in chronic pain. Trends
in Neurosciences 32: 611–618.

Reuter U, Bolay H, Jansen-Olesen I, Chiarugi A, Sanchez del Rio M, Letourneau R,
Theoharides TC, Waeber C, Moskowitz MA (2001). Delayed inflammation in rat
meninges: implications for migraine pathophysiology. Brain 124: 2490–2502.

Ruch TC (1961). Pathophysiology of pain. In: Ruch, TC et al. (eds). Neurophysiology, pp.
350–368 Philadelphia: Saunders.

Sandkuhler J (2009). Models and mechanisms of hyperalgesia and allodynia. Physiological
Reviews 89: 707–758.

Sarchielli P, Alberti A, Codini M, Floridi A, Gallai V (2000). Nitric oxide metabolites,
prostaglandins and trigeminal vasoactive peptides in internal jugular vein blood during
spontaneous migraine attacks. Cephalalgia 20: 907–918.

Sarchielli P, Alberti A, Baldi A, Coppola F, Rossi C, Pierguidi L, Floridi A, Calabresi P
(2006). Proinflammatory cytokines, adhesion molecules, and lymphocyte integrin
expression in the internal jugular blood of migraine patients without aura assessed
ictally. Headache 46: 200–207.

Sauro KM, Becker WJ (2009). The stress and migraine interaction. Headache 49:
1378–1386.

Serra J, Collado A, Sola R, Antonelli F, Torres X, Salgueiro M, Quiles C, Bostock H (2014).
Hyperexcitable C nociceptors in fibromyalgia. Annals of Neurology 75: 196–208.

Silberstein SD (2009). Preventive migraine treatment. Neurologic Clinics 27: 429–443.



�

� �

�

5 Visceral pain 105

Strassman AM, Raymond SA, Burstein R (1996). Sensitization of meningeal sensory
neurons and the origin of headaches. Nature 384: 560–564.

Tuca JO, Planas JM, Parellada PP (1989). Increase in PGE2 and TXA2 in the saliva of
common migraine patients. Action of calcium channel blockers. Headache 29: 498–501.

Van Nassauw L, Adriaensen D, Timmermans JP (2007). The bidirectional communication
between neurons and mast cells within the gastrointestinal tract. Autonomic
Neuroscience: Basic & Clinical 133: 91–103.

Vaughn AH, Gold MS (2010). Ionic mechanisms underlying inflammatory
mediator-induced sensitization of dural afferents. Journal of Neuroscience 30:
7878–7888.

Vermeersch S, Benschop RJ, Van Hecken A, Monteith D, Wroblewski VJ, Grayzel D, de
Hoon J, Collins EC (2015). Translational Pharmacodynamics of Calcitonin Gene-Related
Peptide Monoclonal Antibody LY2951742 in a Capsaicin-Induced Dermal Blood Flow
Model. Journal of Pharmacology and Experimental Therapeutics 354: 350–357.

Verne GN, Robinson ME, Vase L, Price DD (2003). Reversal of visceral and cutaneous
hyperalgesia by local rectal anesthesia in irritable bowel syndrome (IBS) patients. Pain
105: 223–230.

Wei X, Yan J, Tillu D, Asiedu M, Weinstein N, Melemedjian O, Price T, Dussor G (2015).
Meningeal norepinephrine produces headache behaviors in rats via actions both on
dural afferents and fibroblasts. Cephalalgia 35(12): 1054–64.

Winter J (1998). Brain derived neurotrophic factor, but not nerve growth factor, regulates
capsaicin sensitivity of rat vagal ganglion neurones. Neuroscience Letters 241: 21–24.

Wrobel Goldberg S, Silberstein SD (2015). Targeting CGRP: A New Era for Migraine
Treatment. CNS Drugs 29: 443–452.

Yan J, Edelmayer RM, Wei X, De Felice M, Porreca F, Dussor G (2011). Dural afferents
express acid-sensing ion channels: a role for decreased meningeal pH in migraine
headache. Pain 152: 106–113.



�

� �

�

107

6

Meningeal neurogenic inflammation and dural mast cells in
migraine pain
Dan Levy

Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical
School, Boston, Massachusetts, USA

6.1 Introduction

About 10% of the global adult population has active migraine (Stovner et al., 2007). It
is generally accepted that migraine headache is mediated by a cascade of nociceptive
events – the persistent activation and increased sensitivity of pain sensitive afferents that
innervate the intracranial meninges and their related large blood vessels (Levy, 2012;
Olesen et al., 2009), and the subsequent sensitization of nociceptive dorsal horn neu-
rons in the upper cervical spinal cord and trigeminal nucleus caudalis, followed by the
activation of pain centers in the thalamus and cortex (Noseda and Burstein, 2013). The
endogenous factors that promote the activation and sensitization ofmeningeal nocicep-
tors, the first step in this cascade, remain incompletely understood.
Tissue injury associated with local inflammation is a major driver of nociceptors’

activation, sensitization and pain. Although migraine is not accompanied by any
detectable tissue injury or pathology, a major migraine hypothesis implicates local
meningeal inflammation as a key event that mediates the activation and sensitization
of meningeal nociceptors (Burstein, 2001; Levy, 2010; Strassman and Raymond, 1997).
Numerous clinical findings gathered over the years have provided key, yet indirect,
support for the inflammatory hypothesis of migraine. Among those are higher levels of
inflammatory mediators in the cephalic venous outflow (Perini et al., 2005; Sarchielli
et al., 2006) and the ability of corticosteroids and non-steroidal-anti-inflammatory
drugs to abort migraine pain (Klapper, 1993; Woldeamanuel et al., 2015).
Landmark pre-clinical studies, including ours, provided further indirect support for

this hypothesis by showing that meningeal nociceptors can become persistently acti-
vated and sensitized following stimulation with inflammatory mediators (Strassman
et al., 1996; Zhang et al., 2007, 2010b), and that these nociceptive responses can pro-
mote the sensitization of central trigeminal and thalamic nociceptive neurons (Noseda
and Burstein, 2013) with ensuing development of cephalic tactile hypersensitivity (Edel-
mayer et al., 2009; Oshinsky and Gomonchareonsiri, 2007) – a major clinical feature of
migraine (Lipton et al., 2008).
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6.2 The neurogenic inflammation hypothesis of migraine

The inflammatory hypothesis of migraine, originally proposed more than 35 years ago
(Moskowitz et al., 1979), implicates sterile meningeal inflammation as a key source of
migraine headache. In their landmark hypothesis paper, Moskowitz et al. (1979) pro-
posed that “The headache phase of migraine may develop as a result of an abnormal
interaction (and perhaps an abnormal release) of vasoactive neurotransmitters from the
terminals of the trigeminal nerve with large intracranial and extracranial blood vessels”.
The meningeal process implicated in this hypothesis was neurogenic inflammation

(NI), a peripheral response comprised primarily of increased capillary permeability,
leading to plasma protein extravasation (PPE), arterial vasodilatation and activation of
resident immune cells. NI results from activity-dependent release of vasoactive sub-
stances, in particular substance P (SP) and calcitonin gene-related peptide (CGRP) from
peripheral nerve endings of primary afferent nociceptors.This release occurs through an
“axon reflex” process, where action potentials from activated nociceptors are transmit-
ted antidromically and invade peripheral end branches (Holzer, 1988). Key support for
theNI hypothesis ofmigraine came from the early findings that dural and pial blood ves-
sels are innervated by trigeminal sensory nerves that express vasoactive neuropeptides
(Mayberg et al., 1981) – findings which also led to the conceptualization of the trigemi-
novascular system and its role in migraine headache (Moskowitz, 1984). See Table 6.1.

6.3 Meningeal neurogenic plasma protein extravasation
and migraine

A seminal study in animals described the development of meningeal PPE in the dura
mater, following electrical stimulation of the trigeminal ganglion (Markowitz et al.,
1987). The subsequent findings that anti-migraine drugs, including ergot alkaloids and
triptans, could block this experimental meningeal PPE (Buzzi et al., 1995; Markowitz
et al., 1988), suggested a possible role for this process in mediating migraine headache.
Currently, large clinical data supporting meningeal PPE during migraine are missing.
However, one imaging study, conducted on a single migraine patient, has shown an
increase inmeningeal vascular permeability during an attack (Knotkova and Pappagallo,
2007). In agreement with studies on non-cranial tissues (Lynn, 1988), animal studies
also implicated SP and its neurokinin 1 receptor (NK1-R) in mediating meningeal
neurogenic PPE (Polley et al., 1997; Shepheard et al., 1993). However, available clinical
data does not support a role for SP in migraine pain.
A small study reported the absence of SP release into the intracranial circulation dur-

ing migraine (Friberg et al., 1994). More importantly, in clinical trials, NK1-R antago-
nists did not abort migraine headache (Diener and Group, 2003; Goldstein et al., 1997).
While such negative data argues against the involvement of SP and meningeal neuro-
genic PPE in migraine pain, the possibility that the doses of NK1-R antagonists used in
that studies were suboptimal and thus did not reach biologically active plasma levels was
considered (Diener and Group, 2003; Moskowitz and Mitsikostas, 1997). The possibil-
ity that during migraine SP action does play a role in the NI response, but only during



�

� �

�

6 Meningeal neurogenic inflammation and dural mast cells in migraine pain 109

Table 6.1 Major arguments for and against the contribution of meningeal NI to migraine headache.

Pros Cons

Neurogenic meningeal PPE
1) Meningeal afferents express SP, and its

release promotes meningeal PPE
2) Meningeal PPE is evoked by CSD, a puta-

tive migraine trigger
3) Meningeal PPE could, theoretically,

lead to elaboration of pro-nociceptive
molecules in the vicinity of meningeal
nociceptors, promoting their activation
and sensitization

4) Experimental meningeal PPE is inhibited
by abortive migraine drugs, which do not
readily cross the BBB

1) Limited evidence for meningeal PPE during
migraine

2) No evidence for intracranial release of SP
during migraine

3) NK1-R antagonists do not abort migraine
pain

4) In animal models, neurogenic PPE is not
associated with activation or sensitization of
nociceptors

Neurogenic meningeal vasodilatation
1) Evidence for vasodilation of intracranial

arteries during spontaneous migraine
2) Some abortive anti-migraine drugs are

vasoconstrictors
3) Meningeal afferents express CGRP and

its release promotes meningeal vasodi-
latation

4) CGRP infusion triggers migraine-like
headache, accompanied by intracranial
vasodilatation

5) Meningeal vasodilatation is evoked by
CSD, together with the activation of
meningeal nociceptors

6) CGRP-R antagonists, with limited BBB
penetrability, are affective as abortive
migraine drugs

1) Intracranial meningeal vasodilation is not
always associated with the development of
migraine headache

2) Inconsistent finding of elevated CGRP lev-
els within the intracranial circulation during
migraine

3) Anatomical localization of meningeal affer-
ents does not support their activation by
vasodilatation

4) CGRP and other vasodilators do not activate
meningeal nociceptors

Meningeal MC degranulation
1) Administration of the MC degranulating

agent 48/80 into the cranial circulation
promotes migraine-like headache

2) Inhibition of MC degranulation is pro-
phylactic in some migraine patients

3) A sizable number of MC is localized to
the dura mater, with many cells in close
apposition to meningeal afferents that
express CGRP and SP

4) Evidence for dural MC degranulation fol-
lowing stimulation of TG afferents

5) CGRP and SP degranulate meningeal
MCs

6) Dural MC degranulation can activate the
migraine pain pathway

1) No data on SP evoked meningeal MC
degranulation in humans, or NK1-R expres-
sion on human meningeal MCs

2) Human dural MCs do not express the
required CGRP receptor component CLR

3) Meningeal nociceptor activation requires an
intense level of MC degranulation, which
may be higher that that achieved during NI.
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its early stages, may also be entertained. Thus, blocking NK1-R at a later stage – when
meningeal NI andmigraine headache are already developed –may not serve as an affec-
tive abortive treatment regimen. A role for SP in more chronic migraine conditions may
be worthy of further consideration.

6.4 Meningeal neurogenic vasodilatation and migraine

Arterial vasodilation – another major characteristic of experimental meningeal
NI – has also been advocated for many years as a key cause of migraine headache. The
theory that vasodilatation plays a role in migraine headache was largely based on the
early observations of Graham and Wolff (1938), who described a close relationship
between the decrease in pulsation amplitude of the temporal artery and the decline
of headache intensity following treatment with the vasoconstrictor agent ergotamine.
The later observation that intracranial arteries are pain-sensitive (Ray and Wolff, 1940)
extended the extracranial vascular hypothesis to the intracranial vasculature – the idea
that dilatation of meningeal arteries is a major source of migraine headache (Wolff,
1963). The earlier demonstration of migraine-related changes in middle cerebral artery
blood flow, congruent with vasodilation, and which were reversed by sumatriptan
(Friberg et al., 1991), further added support to this hypothesis. A recent study was
nevertheless less conclusive, demonstrating vasodilation of intracranial arteries, albeit
not of substantial magnitude (Amin et al., 2013).
Key studies in rodents have led researchers to suggest that peripheral CGRP release

and its ensuing vascular action is the primary driver of neurogenic meningeal vasodila-
tion (Edvinsson et al., 1987).The view that cephalic vasodilatation in migraine is neuro-
genicallymediated received strong support from the findings of Goadsby and colleagues
(Goadsby and Edvinsson, 1993; Goadsby et al., 1990); the study demonstrated elevated
levels of CGRP in the extra-cerebral circulation during amigraine attack.These findings,
however, could not be replicated in a later study (Tvedskov et al., 2005).
Despite the inconclusive findings of increased CGRP levels within the intracranial

circulation during a migraine attack (Friberg et al., 1994; Sarchielli et al., 2000),
the findings that sumatriptan normalized the elevated CGRP levels observed in the
extra-jugular vein, concomitant with headache relief (Goadsby and Edvinsson, 1993),
further promoted the notion that CGRP, and possibly cranial neurogenic vasodilatation,
contribute to migraine headache. That infusion of CGRP could trigger migraine-like
headache (Asghar et al., 2011; Hansen et al., 2010; Lassen et al., 2002), accompanied
by a unilateral dilatation of the middle meningeal and middle cerebral arteries during
unilateral headaches, and bilateral dilatation of these vessels during bilateral headaches
(Asghar et al., 2011; Hansen et al., 2010; Lassen et al., 2002), also suggested a peripheral
role for CGRP and its related meningeal vasodilation in migraine headache – especially
since, like SP, CGRP does not cross readily into the brain.
Whether meningeal vasodilatation plays a causative role in migraine, or is merely an

epiphenomenon – a secondary event arising from the activation of intracranial trigemi-
nal afferents and the ensuingmeningeal release of vasodilatory neuropeptides – remains
a hotly debated subject (Charles, 2013). According to the “vascular theory”, intracranial
vasodilatation (but possibly also extracranial) leads to the activation of nociceptors that
innervate these vessels, with ensuing headache (Vecchia and Pietrobon, 2012).
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A key process that could hypothetically mediate the activation of meningeal
nociceptors by arterial vasodilatation is the stimulation of mechanosensitive stretch
receptors located within the dilated vessels’ wall. Anatomical studies in animals suggest,
however, that most of the sensory innervation of the dura terminates in the connective
tissue, far from the vessels (Messlinger et al., 1993). The sensory innervation of the
intracranial pia also predominantly terminates in the outermost layer of the adventitial
leptomeninx of the pia (Fricke et al., 1997) and, thus, is also unlikely to become activated
by dilatation.
Our own animal studies, showing that administration of vasoactive agents, includ-

ing CGRP, failed to activate nociceptors with dural peri-vascular receptive field (Levy
et al., 2005; Levy and Strassman, 2004; Zhang et al., 2013), further suggesting that dural
vasodilation per se is not nociceptive. While the nociceptive effect of pial vasodilation
remains unknown, the demonstration of only a slight dilatation of intracranial arteries
during migraine attacks, that was not reduced by effective treatment with sumatriptan
(Amin et al., 2013), further argues against the nociceptive effect of intracranial vasodi-
latation in migraine. Finally, the finding that infusion of vasoactive intestinal peptide to
migraineurs evoked a marked cephalic vasodilatation, but not a migraineous headache
(Rahmann et al., 2008), is also congruent with the notion that a provoked intracranial
vasodilation is not nociceptive in migraine.

6.5 Neurogenic mast cell activation in migraine

Another key feature ofNI is the activation of immune cells (Chiu et al., 2012).Of particu-
lar interest to migraine are mast cells (MCs) – resident cells which, during an inflamma-
tory response, become activated and undergo degranulation (the extrusion and release
of preformed granule-associatedmediators). ActivatedMCs are pro-inflammatory: they
release a host ofmediators, such as histamine, serotonin, the pro-inflammatory cytokine
TNF-alpha and proteases (Mekori and Metcalfe, 2000).
A role for MCs in meningeal NI is supported by the finding of a sizeable popula-

tion of MCs within the intracranial dura mater of animals (Dimlich et al., 1991; Keller
and Marfurt, 1991; Strassman et al., 2004) and humans (Artico and Cavallotti, 2001).
In their original hypothesis, Moskowitz et al. (1979) proposed that the release of SP
during migraine could also contribute to inflammation and headache by acting upon
MCs. Indeed, later studies found that stimulation of the trigeminal ganglion, at a level
that produces dural PPE (presumably mediated by meningeal SP action), also promoted
morphological changes in dural MCs, suggestive of degranulation (Dimitriadou et al.,
1991, 1992).
These findings, together with data showing the presence of dural MCs in close appo-

sition to terminals of dural afferents that express SP and CGRP (Rozniecki et al., 1999;
Strassman et al., 2004), provided further indirect support for the ability of trigeminal
axon reflex to activate intracranial dural MCs, and the notion of MC involvement in
meningeal NI and headache.The activation of MCs’ NK1-R is thought to promote their
degranulation by SP (Foreman, 1987).
In animal studies related to migraine, SP action has been shown to activate dural MCs

(Ottosson and Edvinsson, 1997; Rozniecki et al., 1999). While it is not known whether
SP can activate human dural MCs, the ineffectiveness of NK1-R antagonists in aborting
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migraine pain suggest that SP may not activate MCs in migraine, or that the levels of
SP-evoked MC degranulation, if it occurs, may not contribute to migraine headache.
In addition to SP, CGRP also promotes MC degranulation in experimental animals,

although with less potency than SP (Piotrowski and Foreman, 1986). In studies related
to migraine, in vitro stimulation of rodent’s meningeal MCs with CGRP induced 5-HT
and histamine release (Ottosson and Edvinsson, 1997; Rozniecki et al., 1999). The
MC-degranulating effect of CGRP may, nonetheless, be rodent-specific. Rodent MCs
express the required components of the CGRP receptor system, calcitonin receptor-like
receptor (CLR) and receptor activity-modifying protein 1 (RAMP1 (Eftekhari et al.,
2013; Lennerz et al., 2008; Rychter et al., 2011). Human dural MCs were shown to
express only RAMP1, however (Eftekhari et al., 2013).
Pituitary adenylate cylcase-activating polypeptide (PACAP), another sensory neu-

ropeptide, may also promote meningeal neurogenic MC degranulation (Baeres and
Moller, 2004; Baun et al., 2012). A recent clinical study demonstrated the expression
of the PACAP receptor VPAC1R on human skin MCs (Seeliger et al., 2010). Whether
PACAP can promote the degranulation of human dural MCs is currently unknown.
While the notion that MCs degranulation is secondary to the nociceptive release of

neuropeptides has been held for many years, the concept that MC degranulation itself,
with or without NI, is pro-nociceptive has been considered in a variety of inflammatory
pain models (Coelho et al., 1998; Ribeiro et al., 2000) and various painful inflammatory
conditions (Barbara et al., 2007; Nigrovic and Lee, 2007; Theoharides and Cochrane,
2004). While not directly related to meningeal NI, a causative role for MCs in migraine
headache was already considered more than 50 years ago (Sicuteri, 1963). In that study,
injection of aMC degranulating agent into the cranial circulation gave rise to a migrain-
ous headache. In a later study, Monro and colleagues (Monro et al., 1980, 1984) further
implicated MCs in migraine by documenting potent migraine prophylactic action of
the MC-stabilizing agent cromolyn in a subset of patients. Additional indirect lines of
evidence further supporting the involvement of MCs in migraine came from studies
showing elevated plasma levels of histamine, tryptase and TNF-alpha during migraine
(Heatley et al., 1982; Olness et al., 1999; Perini et al., 2005).
To explore the potential contribution of meningeal MCs to migraine headache, we

examined in animals whether dural MC degranulation could promote the activation
of peripheral and central nociceptive pathways implicated in migraine headache (Levy
et al., 2007). In that study, we found that the dural MC degranulation promoted per-
sistent activation of the majority of meningeal nociceptors, as well as of nociceptive
neurons in the trigeminal nucleus caudalis (Levy et al., 2007). These findings indicated
that duralMC degranulation could serve as a powerful peripheral pro-nociceptive stim-
ulus, capable of triggering the activation of the peripheral and central components of the
migraine pain pathway. Our finding that activation of dural MCs was also associated
with the development of cephalic tactile hypersensitivity (Levy et al., 2011) provided
further indirect evidence for the role of duralMCs inmigraine pain. Further exploration
suggested that the MCmediators – serotonin, prostacyclin (PGI2), tryptase, TNF-a and
histamine – are likely to contribute to the MC-related meningeal nociception (Zhang
et al., 2007, 2010b; Zhang and Levy, 2008).
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6.6 Endogenous events that could promote meningeal NI
in migraine

One critical unknown aspect of the NI hypothesis of migraine is the identity of the
endogenous event that leads to the initial activation of meningeal nociceptors. One
event, which was hypothesized to promote this initial activation more than 30 years ago
(Moskowitz, 1984), is cortical spreading depression (CSD) – a cortical event thought to
mediate the aura phase of migraine. A landmark study in rodents provided support for
this hypothesis, by showing the development of persistent dural vasodilatation and PPE
following a single CSD event. These events were dependent upon an intact trigeminal
nerve and activation of NK1-R, implicating a role for CSD in promoting meningeal NI
(Bolay et al., 2002).
The finding that, in the wake of CSD, meningeal vasodilatation was also linked to the

activation of the sphenopalatine ganglion (Bolay et al., 2002), contributed to the notion
of confluence of action between trigeminal afferents and parasympathetic efferents in
meningeal NI. More recently, CSD has been shown to promote dural MC degranula-
tion in a mouse model (Karatas et al., 2013), further suggesting the development of
meningeal NI following CSD. Our recent studies provided direct evidence that a single
CSD event, triggered in the visual or motor cortices, can indeed promote the activation
of meningeal nociceptors (Zhang et al., 2010a; Zhao and Levy, 2015). further suggesting
that CSD may be the initial endogenous event that promotes meningeal NI.

6.7 Anti-migraine drugs and meningeal NI

As indicated above, support for the NI hypothesis of migraine came from studies show-
ing the ability of migraine-aborting drugs to block experimentally evoked meningeal
NI. One key mechanism that was proposed to underlie the actions of the anti-migraine
agents tripans and dihydroergotamine is the inhibition of meningeal neuropeptide
release from their dense core vesicles, through the activation of presynaptic 5HT1B/D
receptors on meningeal nociceptors (Buzzi and Moskowitz, 1991). Our own finding
that administration of therapeutic doses of sumatriptan leads to the activation and
sensitization of meningeal nociceptors, rather than inhibit them (Burstein et al., 2005;
Strassman and Levy, 2004), suggests, however, that the anti-migraine action of at least
sumatriptan may not be related to inhibition of meningeal NI.
An alternative mechanism that was proposed to mediate the anti-migraine effects of

triptans and ergots is their binding to presynaptic 5HT1B/D receptors located on the
central endings of meningeal nociceptors in the dorsal horn, and the subsequent inhi-
bition of the central release of the vasoactive neuropeptides, which also serve as pain
neurotransmitters (Arvieu et al., 1996). This central inhibitory effect of sumatriptan
has been suggested to arrest the communication between meningeal nociceptors and
second-order dorsal horn neurons in the trigeminal nucleus caudalis (Levy et al., 2004),
thus blocking migraine headache.
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While evidence for penetration of abortive migraine drugs such as sumatrip-
tan into the brain is lacking in experimental animals and humans, the possibility
that the blood-brain barrier is breached in migraine, for example because of CSD
(Gursoy-Ozdemir et al., 2004) or central neuroinflammation (Skaper et al., 2014)
and, therefore, allows the penetration of triptans, as well as other anti-migraine
agents, should be entertained. Another peripheral mechanism that was attributed to
anti-inflammatory effects of sumatriptan in the meninges is the inhibition of neuro-
genic dural MC degranulation (Buzzi et al., 1992). The finding that MCs also express
the 5HT1B/D receptors (Kushnir-Sukhov et al., 2006) points, nonetheless, to a potential
direct inhibitory effect on MCs – one that does not necessary involve an axon reflex
and release of neuropeptides.
The cumulative preclinical and clinical finding pointing to the involvement of CGRP

in meningeal vasodilatation and migraine headache has greatly facilitated the develop-
ment of novel CGRP receptor antagonists as potential anti-migraine drugs (Durham,
2004). The finding that such antagonists (the gepants olcegepant (Olesen et al., 2004)
and telcagepant (Ho et al., 2010)) were effective in aborting migraine pain rekindled
the notion of meningeal NI, in particular CGRP-evoked meningeal vasodilation and
MC activation as critical mediators of migraine headache (Russo, 2015). While the role
of CGRP in mediating meningeal vasodilatation has been considered most relevant to
migraine (Asghar et al., 2011), the pre-clinical findings of CGRP actions in numerous
brain regions, some of which could potentially mediate migraine headache, including
the trigeminal nucleus caudalis (Fischer et al., 2005), the thalamus (Summ et al., 2010)
and periaqueductal gray (Pozo-Rosich et al., 2015) raise the possibility of additional or
alternative mechanisms of action for CGRP in migraine.
The relative small molecular size of the gepants, which could potentially penetrate

the blood-brain barrier, and the high dose required to treat migraine, were sug-
gested to indicate a possible central anti-migraine action of CGRP (Edvinsson, 2015;
Tfelt-Hansen and Olesen, 2011). However, the finding that systemic administration
of these agents at an efficacious dose achieved only low receptor occupancy within
a human brain (Hostetler et al., 2013), and that a high dose of these agents was also
required to block cutaneous NI (Sinclair et al., 2010), is congruent with peripheral
CGRP action in migraine (Tfelt-Hansen and Olesen, 2011).
The very recent findings that monoclonal antibodies against CGRP – large molecules

that do not readily cross the blood-brain barrier – block meningeal neurogenic vasodi-
latation (Zeller et al., 2008) and, most importantly, are also affective as prophylactics in
chronic migraine (Bigal et al., 2015), provide a further argument for a peripheral role
for CGRP, potentially as a mediator of meningeal NI and pain in migraine. The notion
that chronic CGRP inhibition by antibodies serves to downregulate the expression of
molecules that participate in triggering the process of migraine pain (including CGRP
itself and its receptors) also requires some consideration.

6.8 Is meningeal NI a pro-nociceptive event in migraine?

A key, yet unanswered question, related to the role that meningeal NI might play in
migraine, is whether this response is actually pro-nociceptive? Remarkably, the evi-
dence for pro-nociceptive effects of NI in both animals and humans is patchy, at best.
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In rodents, cutaneous NI evoked by antidromic electrical stimulation failed to activate
or sensitize cutaneous nociceptors (Reeh et al., 1986). However, electrical stimulation
of skin nociceptors, which evoked a localized increase in blood flow, promoted cuta-
neousmechanical hyperalgesia (Doring et al., 2014).The possibility that central changes
related to the intense activation of nociceptors required for the elicitation of the axon
reflex (i.e., central sensitization) (LaMotte et al., 1992), rather than NI, contributed to
this nociceptive effect, must also be entertained.
As indicated above, the pro-nociceptive effects of meningeal neurogenic vasodilata-

tion and PPE are doubtful. The degranulation of a large number of dural MC undoubt-
edly is pro-nociceptive. A lower level of meningeal MC degranulation, provoked by
meningeal axon reflex,may also be nociceptive.That a relatively lower level ofmeningeal
MC degranulation, induced following systemic infusion of the migraine trigger nitro-
glycerin (Pedersen et al., 2015; Reuter et al., 2001), was not sufficient to promote acti-
vation of meningeal nociceptors (Zhang et al., 2013), argues nonetheless otherwise.The
possibility that neurogenic meningeal MC degranulation is pro-nociceptive should not
be abandoned completely, however. In migraineurs, a higher density of meningeal MCs,
potentially due to endocrine changes, such as fluctuation in female sex hormones (Boes
and Levy, 2012), or increased propensity of these immune cells to become activated
in response to meningeal axon reflex, could potentially result in a robust nociceptive
effect that could contribute to the activation of meningeal nociceptors and the genesis
of migraine headache.
In the wake of CSD, meningeal nociceptors become briefly activated during the

passing of the CSD wave under their receptive field (Zhao and Levy, 2015). This is
followed by a delayed and more persistent activation phase (Zhang et al., 2010a; Zhao
and Levy, 2015). It has been proposed that the initial brief nociceptor activation pro-
motes meningeal NI (Bolay et al., 2002; Karatas et al., 2013), which is then responsible
for the development of the delayed and persistent nociceptor activation (Bolay et al.,
2002; Levy, 2012). Our recent studies (Zhang et al., 2011; Zhao and Levy, 2015) argue,
however, against the role of meningeal NI, in particularly meningeal vasodilatation
and MC degranulation, in mediating this nociceptive response following CSD. We
found a similar persistent nociceptor activation following excision of the parasym-
pathetic sphenopalatine ganglion – the ganglion whose activation was critical to the
CSD-evoked meningeal neurogenic vasodilatation. In addition, CSD-evoked persistent
nociceptor activation was also observed in craniotomized animals, a preparation in
which the majority of dural MCs are already in a state of degranulation prior to the
induction of CSD (Levy et al., 2007).

6.9 Conclusions

Theconcept ofNI undoubtedly had a tremendous impact onmigraine research, and pro-
vided an important roadmap for the development of neuropeptide and receptor driven
therapies for migraine (see Table 6.2). While meningeal NI continues to be regarded
as a causal factor in migraine headache (Noseda and Burstein, 2013; Pietrobon and
Moskowitz, 2012; Russo, 2015), direct evidence for the occurrence ofNI duringmigraine
and its role in meningeal nociception are limited at best. Future studies may provide
better direct evidence for the presence of the various features of meningeal NI, or lack
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Table 6.2 Impact of the neurogenic inflammation concept on migraine research progress.

Concepts/findings References

The concept of NI inspired the discovery and
conceptualization of the trigeminovascular
system – the trigeminal sensory innervation of
the cerebral meninges and their related large
blood vessels

Moskowitz et al., 1979; Mayberg et al., 1981;
Moskowitz, 1984

NI suggested neuropeptides as well as receptors
on trigeminovascular afferents as therapeutic
targets

Moskowitz et al., 1979; Liu-Chen et al., 1983a;
Moskowitz et al., 1983; Liu-Chen et al., 1983b;
Moskowitz, 1984

The concept that CSD depolarizes
trigeminovascular neurons and promotes
subsequent meningeal NI and headache

Moskowitz, 1984; Bolay et al., 2002; Zhang
et al., 2010a

Experimental implication of neuropeptides in
meningeal NI

Markowitz et al., 1988

The notion that sensory neuropeptides as well as
receptors on trigeminovascular afferents can be
targeted for migraine therapy

Moskowitz et al., 1979; Moskowitz, 1984;
McCulloch et al., 1986; Goadsby et al., 1988;
Goadsby et al., 1990

Animal models of NI provided the first evidence
for pre-junctional 5-HT1 (triptan) receptors on
trigeminovascular afferents and that triptan
action inhibited neuropeptide release and NI

Buzzi and Moskowitz, 1990; Buzzi and
Moskowitz, 1991; Buzzi et al., 1991

Called attention to the potential role of
neurogenic dural MC degranulation in migraine

Moskowitz et al., 1979; Dimitriadou et al.,
1991; Buzzi et al., 1992

The notion of NI provided a confluence of
action between trigeminal afferents and the
parasympathetic efferent innervation.

Bolay et al., 2002

thereof, during a migraine attack and, most importantly, whether they constitute active
players in driving migraine pain, rather than simply epiphenomena.
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Sensitization and photophobia in migraine
Aaron Schain and Rami Burstein

Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical
School, Boston, Massachusetts, USA

7.1 Introduction

Migraine headache is commonly associated with signs of exaggerated intracranial
and extracranial mechanical sensitivities, and photophobia. Patients exhibiting signs
of intracranial hypersensitivity testify that their headache throbs, and that mundane
physical activities that increase intracranial pressure (such as bending over or coughing)
intensify the pain. Patients exhibiting signs of extracranial hypersensitivity report that,
during migraine, their facial skin hurts in response to otherwise innocuous activities,
such as combing, shaving, letting water run over their face in the shower, or wearing
glasses or earrings (termed, here, cephalic cutaneous allodynia). Many of these patients
also testify that, during migraine, their bodily skin is hypersensitive, and that wearing
tight cloth, bracelets, rings, necklaces and socks, or using a heavy blanket, can be
uncomfortable and/or painful (termed extracephalic cutaneous allodynia).
This review will summarize the evidence that supports the following cascade of

events: the development of throbbing pain in the initial phase of migraine, mediated by
sensitization of peripheral trigeminovascular neurons that innervate the meninges; the
development of cephalic allodynia propelled by sensitization of second-order trigemi-
novascular neurons in the spinal trigeminal nucleus, which receive converging sensory
input from the meninges as well as from the scalp and facial skin; and the development
of extracephalic allodynia mediated by sensitization of third-order trigeminovascular
neurons in the posterior thalamic nuclei, which receive converging sensory input from
the meninges, facial and body skin. It will also summarize our current understanding
of the neuronal substrate of photophobia.

7.2 Experimental activation of trigeminovascular pathways

About one-third of migraines are preceded by aura – a reversible, transient cortical
event that reflects cortical spreading depression (CSD) (Lashley, 1941; Lauritzen, 1994).
Direct electrophysiological evidence for the activation of trigeminovascular neurons by

Neurobiological Basis of Migraine, First Edition. Edited by Turgay Dalkara and Michael A. Moskowitz.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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Figure 7.1 Electrophysiological recordings, showing delayed activation of meningeal nociceptors (top
panel) and central trigeminovascular neurons (bottom panel) by cortical spreading depression.
(Adapted from Zhang et al., 2010, 2011).

CSDwas reported recently (Zhang et al., 2010, 2011; Figure 7.1). A potential explanation
for how meningeal nociceptor activation begins after CSD has been proposed recently
(Karatas et al., 2013). In this study, various experimental approaches were performed
in mice to demonstrate that CSD causes the opening of neuronal Panx1 megachannels,
resulting in a cascade of events that leads to the release of proinflammatory molecules
in the meninges.
The use of proinflammatory molecules in studying the pathophysiology of migraine

gained popularity several years ago (Edelmayer et al., 2012; Oshinsky and Gomonchare-
onsiri, 2007; Strassman et al., 1996; Wieseler et al., 2010), when it became apparent
that, like many types of prolonged or chronic pain, migraine can also be associated with
long-lasting activation and sensitization of peripheral nociceptors and central nocicep-
tive neurons in the dorsal horn. This model involves prolonged activation and subse-
quent sensitization of the trigeminovascular system, in response to a brief exposure of
the dura to a mixture of inflammatory agents, consisting of serotonin, bradykinin, his-
tamine, and prostaglandin (Strassman et al., 1996). These agents activate and sensitize
somatic and visceral nociceptors in the rat (Beck and Handwerker, 1974; Davis et al.,
1993; Mizumura et al., 1987; Neugebauer et al., 1989; Steen et al., 1992), and are potent
algesics in humans (Armstrong et al., 1957; Guzman et al., 1962; Hollander et al., 1957;
Sicuteri, 1967), capable of inducing headache (Sicuteri, 1967).
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Figure 7.2 Sensitization of meningeal nociceptors believed to mediate the throbbing nature of
migraine pain. Left panel: Schematic representation of peripheral sensitization and periorbital
throbbing pain in human; fMRI evidence showing activation of the trigeminal ganglion during
migraine. Right panel: Electrophysiological recording of a neuron in the rat TG, showing increased
responsiveness to mechanical stimulation of the dura after topical application of inflammatory
mediators (IS). (Adapted from Jakubowski et al., 2005; Noseda and Burstein, 2013).

7.3 Peripheral sensitization

Using this animal model, it was found that a brief chemical irritation of the dura acti-
vates and sensitizesmeningeal nociceptors (first-order trigeminovascular neurons) over
a long period of time, rendering them responsive to mechanical stimuli to which they
showed only minimal or no response prior to their sensitization (Figure 7.2) (Strass-
man et al., 1996). During migraine, such peripheral sensitization is likely to mediate the
throbbing pain and its aggravation during routine physical activities, such as coughing,
sneezing, bending over, rapid head shake, holding one’s breath, climbing up the stairs, or
walking. By the end of migraine, whenmeningeal nociceptors are presumably no longer
sensitized, their sensitivity to fluctuations in intracranial pressure returns to normal,
and the patient no longer feels the throbbing.

7.4 Central sensitization: medullary dorsal horn

Brief stimulation of the dura with inflammatory agents also activates and sensitizes
second-order trigeminovascular neurons located in the medullary dorsal horn that
receive convergent input from the dura and the skin (Burstein et al., 1998). In this
paradigm, the central trigeminovascular neurons develop hypersensitivity in the
periorbital skin, manifested as increased responsiveness to mild stimuli (brush, heat,
cold), to which they showed only minimal or no response prior to their sensitization
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representation of central sensitization of spinal trigeminovascular neurons and cephalic cutaneous
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migraine. Right panel: electrophysiological recording of a neuron in the rat SpV, showing increased
responsiveness to innocuous and noxious stimulation of the skin and the corresponding receptive field
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(Figure 7.3, right panel). The induction of central sensitization by intracranial stimula-
tion of the dura, and the ensuing extracranial hypersensitivity, is taken to suggest that a
similar process may occur in patients during migraine (Figure 7.3).
Extracranial hypersensitivity during migraine was first noted in 1873 (Liveing, 1873)

and later documented in the 1950s (Selby and Lance, 1960; Wolff et al., 1953). At that
time, extracranial hypersensitivity was ascribed to “hematomas that develop hours after
onset of headache as a result of damage to vascular walls of blood vessels such as the
temporal artery” (Wolff et al., 1953), or “widespread distension of extracranial blood
vessels or spasm of suboccipital scalp muscles” (Selby and Lance, 1960). The current
view, however, is that extracranial hypersensitivity is amanifestation of central neuronal
sensitization, rather than extracranial vascular pathophysiology.
Recent quantitative stimulation applied to the surface of the skin showed that pain

thresholds to mechanical, heat, and cold skin stimuli decrease significantly during
migraine in the majority of patients (Burstein et al., 2000). This skin hypersensitivity,
termed cutaneous allodynia, is typically found in the periorbital area on the side of the
migraine headache. Patients commonly notice cutaneous allodynia during migraine
when they become irritated by innocuous activities such as combing, shaving, taking
a shower, wearing eyeglasses or earrings, or resting their head on the pillow on the
headache side. Ipsilateral cephalic allodynia is likely to be mediated by sensitization of
trigeminovascular neurons in the medullary dorsal horn that process sensory inputs
from the dura and periorbital skin.
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7.5 Central sensitization: thalamus

In the course of studying cephalic allodynia during migraine, we unexpectedly found
clear evidence for allodynia in remote skin areas outside the innervation territory of
the trigeminal nerve (Burstein et al., 2000). In discussing of that study, we propose
that ipsilateral cephalic allodynia is mediated by sensitization of dura-sensitive neu-
rons in the medullary dorsal horn, because their cutaneous receptive field is confined to
innervation territory of the ipsilateral trigeminal nerve (Burstein et al., 1998; Craig and
Dostrovsky, 1991; Davis andDostrovsky, 1988; Ebersberger et al., 1997; Strassman et al.,
1994; Yamamura et al., 1999), and that extracephalic allodyniamust bemediated by neu-
rons that process sensory information that they receive from all levels of the spinal and
medullary dorsal horn. Our search of such neurons focused on the thalamus, since an
extensive axonalmapping of sensitized trigeminovascular neurons in the spinal trigemi-
nal nucleus revealed projections to the posterior (PO), the ventral posteromedial (VPM)
and the sub-parafascicular (PF) nuclei.
In 2010, we reported that topical administration of inflammatory molecules to

the dura sensitized thalamic trigeminovascular neurons that process sensory infor-
mation from the cranial meninges and cephalic and extracephalic skin (Burstein
et al., 2010). Sensitized thalamic neurons developed ongoing firing and exhibited
hyper-responsiveness (increased response magnitude) and hypersensitivity (lower
response threshold) to mechanical and thermal stimulation of extracephalic skin areas
(Figure 7.4, right panels). Relevant to migraine pathophysiology was the finding that, in
such neurons, innocuous extracephalic skin stimuli that did not induce neuronal firing
before sensitization (e.g., brush) became as effective as noxious stimuli (e.g., pinch) in
triggering large bouts of activity after sensitization was established.
To understand better the transformation of migraine headache into widespread,

cephalic and extracephalic allodynia, we also studied the effects of extracephalic brush
and heat stimuli on thalamic activation registered by fMRI during migraine in patients
with whole-body allodynia (Burstein et al., 2010). Functional assessment of blood
oxygenation level-dependent (BOLD) signals showed that brush and heat stimulation
at the skin of the dorsum of the hand produced larger BOLD responses in the posterior
thalamus of subjects undergoing a migraine attack with extracephalic allodynia than
the corresponding responses registered when the same patients were free of migraine
and allodynia (Figure 7.4, left panel).

7.6 Temporal aspects of sensitization and their implications
to triptan therapy

Central sensitization can be either activity-dependent or activity-independent (Ji et al.,
2003). The induction of sensitization in second-order trigeminovascular neurons,
using chemical stimulation of the rat dura, is activity-dependent, as evidenced by
lidocaine blockade of afferent inputs from the dura and subsequent sensitization. Once
established, however, sensitization of the second-order trigeminovascular neurons
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becomes activity-independent, as it can no longer be interrupted by lidocaine on the
dura (Burstein et al., 1998).
Translating these findings in the context of migraine with allodynia, it appears that

central sensitization depends on incoming impulses from the meninges in the early
phase of the attack, and maintains itself in the absence of such sensory input later on.
This view is strongly supported by the effects of the anti-migraine 5-HT1B/1D agonists,
known as triptans, on the induction and maintenance of central sensitization in the rat
(Burstein and Jakubowski, 2004), and the corresponding effects of early and late triptan
therapy on allodynia during migraine (Burstein et al., 2004).
In the rat, triptan administration concomitant with chemical irritation of the

dura effectively prevents the development of central sensitization (Figure 7.5a).
Similarly, treating patients with triptans early – within 60 minutes of the onset of
migraine – effectively blocks the development of cutaneous allodynia (Figure 7.5c–d).
However, neither central neuronal sensitization in the rat, nor cutaneous allodynia in
patients, can be reversed by late triptan treatment (two hours after the application of
sensitizing agent to the dura in the animal model, and four hours after the onset of
migraine in allodynic patients) (Figure 7.5b–d). Most importantly, central sensitization
appears to play a critical role in the management of migraine headache of allodynic
patients. While non-allodynic patients can be rendered pain-free with triptans at any
time during an attack, allodynic patients can be rendered pain-free only if treated with
triptans early in the attack – namely, before the establishment of cutaneous allodynia
(Burstein et al., 2004) (Figure 7.5c–d).

7.7 Modulation of central sensitization

A growing body of evidence suggests that migraine patients are mostly non-allodynic
during the first years of their migraine experience, yet are eventually destined to develop
allodynia during theirmigraine attacks in later years (Burstein et al., 2004; Burstein et al.,
2000; Mathew, 2003). It is, therefore, possible that repeated migraine attacks over the
years have cumulative adverse consequences on the function of the trigeminovascular
pathway, including a susceptibility to develop central sensitization.
The threshold for a central trigeminovascular neuron to enter a state of sensitization

depends on the balance between incoming nociceptive signals and their modulation
by spinal and suprabulber pathways. Many of the modulatory suprabulber pathways
converge on the periaqueductal gray (PAG) and rostral ventromedial medulla (RVM)
(Fields, 1999). Recent imaging studies have shown that the PAG is activated during
migraine (Weiller et al., 1995), and that it is depositedwith abnormally high levels of iron
in patients with a long history of migraine, suggesting abnormal neuronal functioning
(Welch et al., 2001).
Abnormal PAG functioning can either enhance activity of RVMneurons that facilitate

pain transmission in the dorsal horn, or suppress activity of RVM neurons that inhibit
pain transmission in the dorsal horn (Porreca et al., 2002). This may enhance excitabil-
ity and, therefore, promote responses of second-order trigeminovascular neurons to
incoming nociceptive signals from the meninges, resulting in a reduced threshold for
entering a state of central sensitization. Furthermore, the transition from episodic to
chronic migraine that occurs in some patients over the years may involve a shift in the



�

�

S
pi

ke
s/

se
c

Baseline

1 h after IS

Brush

Pressure

(8)

(22)

0

150

(55)

(87)

0

150

2 h after IS

1 h after Suma

2 h after Suma

(69) (107)

0

150

(60) (118)

0

150

(62) (127)

0

150

0

75

0

75

0

75

0

75

0
0 01 20 03 40 50

75

Brush

Pressure

(3)

(27)

(3)

(32)

(2)

(27)

(4)

(59)

(5)

(17)

Time (sec)
0 10 20 30 40 50

Time (sec)

Baseline

1 h after IS + Suma

2 h after IS + Suma

3 h after IS + Suma

4 h after  IS + Suma

(a) (b) (c) (d)

Attack I:
Early triptan
treatment

Pain-
free

Attack II:
Late triptan
treatment

P
ai

n 
sc

or
e 

(V
A

S
)

C
ol

d 
an

d 
H

ea
t

pa
in

 th
re

sh
ol

d 
(°

C
)

M
ec

ha
ni

ca
l

pa
in

 th
re

sh
ol

d 
(g

)

B 1 2 3 44 5 B 1 2 3 4 5 6

10

8

6

4

2

0

150

100

50

0

48

44

40

36

32

24

16

8

10

8

6

4

2

48

44

40

36

32

24

16

0

150

100

50

0

8

Hours after onset of migraine painHours after onset of migraine pain

Attack I:
Early triptan
treatment

Pain-
free

Attack II:
Late triptan
treatment

Figure 7.5 Sumatriptan effects on central sensitization, migraine pain intensity and periorbital skin sensitivity, in the presence and absence of central
sensitization and cutaneous allodynia at the time of treatment. The development of central sensitization is prevented by early (a), but not by late (b)
sumatriptan administration. Early and late sumatriptan treatment render a non-allodynic patient pain-free (c) whereas, in the allodynic patient (d), sumatriptan
is effective in terminating the headache when administered early, but not when administered late. (Adapted from Burstein and Jakubowski, 2004 and Burstein
et al. 2004).



�

� �

�

7 Sensitization and photophobia in migraine 133

underlying pathophysiology, from transient to a chronic state of sensitization. Altered
functions of modulatory suprabulber pain pathways can contribute to this progression
in migraine pathophysiology.

7.8 Neural substrate of migraine-type photophobia

There are few definitions of photophobia in the literature that refer to several
light-induced neurological symptoms, including exacerbation of headache, hypersen-
sitivity to light, and ocular discomfort/pain. These symptoms are not due to a fear of
light, as the term “phobia” might suggest, but have been associated with intracranial
pathologies such as migraine, meningitis, subdural hemorrhage, and intracranial
tumors, as well as disorders of the anterior segment of the eye, such as uveitis, cyclitis,
iritis, and blepharitis (Aurora et al., 1999; Digre and Brennan, 2012; Kawasaki and
Purvin, 2002; Lamonte et al., 1995; Welty and Horner, 1990). In the last few years, new
insights into the mechanisms of light-induced neurological symptoms have emerged.
The perception of migraine headache is uniquely intensified during exposure to ambi-

ent light (Kawasaki and Purvin, 2002; Liveing, 1873). This migraine-type photophobia,
commonly described as exacerbation of the headache by light, is experienced by nearly
90% ofmigraineurs with normal eyesight (Drummond, 1986; Liveing, 1873;Miller, 1985;
Selby and Lance, 1960). Clinical observations in partially blind migraineurs suggest that
the exacerbation of headache by light depends on photic signals from the eye that con-
verge on trigeminovascular neurons somewhere along its path.
The critical contribution of the optic nerve tomigraine-type photophobia is best illus-

trated inmigraine patients lacking any kind of visual perception due to complete damage
of the optic nerve. Such patients report that light does not hurt them during migraine,
that their sleep cycle is irregular, and that light does not induce pupillary response.
Conversely, exacerbation of headache by light is preserved in blind migraineurs with
an intact optic nerve, partial light perception but no sight, due to severe degeneration
of rod and cone photoreceptors (Noseda et al., 2010).
Retinal projections to the brain constitute two functionally different pathways. The

first allows the formation of images by photoactivation of rods and cones, and the second
allows regulation of biological functions, such as circadian photoentrainment, pupillary
reflex, andmelatonin release by activation of intrinsically photosensitive retinal ganglion
cells (ipRGCs) containing melanopsin photoreceptors (Freedman et al., 1999; Klein and
Weller, 1972; Lucas et al., 2001). Activation of ipRGCs is achieved not only by virtue
of their unique photopigment, melanopsin (Berson et al., 2002; Provencio et al., 1998),
but also extrinsically by rods and cones (Guler et al., 2008). It is therefore likely that
all retinal photoreceptors contribute to migraine-type photophobia in migraineurs with
normal eyesight.
Integrating existing knowledge of the neurobiology of the trigeminovascular system

and the anatomy of visual pathways, the following information is available:
a) Light enhances the activity of thalamic trigeminovascular neurons.
b) A subgroup of light/dura-sensitive neurons, located mainly in the LP/Po area of the

posterior thalamus, receive direct input from RGCs.
c) The axons of these neurons project to cortical areas involved in the processing of pain

and visual perception (Figure 7.6).
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Such convergence of photic signals from the retina onto the trigeminovascular
thalamo-cortical pathway has been proposed as a neural mechanism for the exacerba-
tion of migraine headache by light (Noseda et al., 2010). Further evidence supporting
the existence of such pathway in humans comes from imaging studies and probabilistic
tractography that shows blood oxygen-level dependent (BOLD) responses in the pulv-
inar (LP/Po area in the rat) of patients undergoing a migraine attack with extracephalic
allodynia (Burstein et al., 2010), and direct pathways from the optic nerve to the
pulvinar (Maleki et al., 2012).
Some migraineurs describe photophobia as abnormal intolerance to light. Such

a description of photo-hypersensitivity suggests that the flow of nociceptive signals
along the trigeminovascular pathway converges on the visual cortex and alters its
responsiveness to visual stimuli. Indeed, the visual cortex appears to be hyperexcitable
in migraineurs, and may be the neural substrate of abnormal processing of light
sensitivity (Denuelle et al., 2011).
The discovery of light/dura-sensitive thalamic neurons, located outside the VPM

nucleus, that project directly to the primary and secondary visual cortices (Noseda
and Burstein, 2011; Noseda et al., 2010), provides an anatomical substrate for the
induction of abnormal intolerance to light during migraine (Figure 7.6). Additionally, a
transgenic mouse model of migraine-related light-aversion or increased sensitivity to
light has been recently developed.This genetically engineeredmodel presents increased
sensitivity to CGRP, due to overexpression of the human receptor activity-modifying
protein 1 (hRAMP1), and provides strong behavioral evidence of aversion to light
following intracerebroventricular administration of CGRP (Recober et al., 2009, 2010).
Another clinical entity falling into the definition of photophobia is ocular discomfort

or pain induced in the eye by exposure to bright light (Noseda and Burstein, 2011).More
appropriately termed photo-oculodynia, this type of photophobia is thought to originate
from indirect activation of intraocular trigeminal nociceptors. As proposed byOkamoto
et al. (2010), bright light causes pain in the eye through activation of a complex neu-
ronal pathway involving the olivary pretectal nucleus, the SSN and the sphenopalatine
ganglion, which drives parasympathetically-controlled vasodilatation and mechanical
deformation of ocular blood vessels. In turn, this activates trigeminal nociceptors and
second-order nociceptive neurons in the SpVC. Lack of evidence for induction of vasodi-
latation by light in the human retina question this formulation.
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8.1 Introduction

The frequency of attacks in individuals with episodic migraine is predictive of the
risk to eventual transformation to chronic migraine. Repeated or frequent activation
of nociceptors can result in neural plasticity, which increases synaptic strength and
amplification of innocuous signals – mechanisms commonly referred to as central
sensitization. Central sensitization could contribute to migraine episodes, following
exposure to normally sub-threshold migraine triggers. Dysfunction of descending pain
modulatory circuits may promote the maintenance of states of central sensitization.
Decreased descending inhibition, or possibly enhanced descending pain facilitation,
has been repeatedly observed in patients with functional pain disorders, including
migraine. It is now appreciated that neural plasticity in these circuits can also arise
from overuse of drugs for acute migraine treatment, which can produce medication
overuse headache. Collectively, both clinical and preclinical studies suggest that
repeated episodic migraine, and medications used to acutely treat migraine, promote
dysfunction in central pain modulation, to establish or maintain a “pain memory” that
may lead to migraine chronification.
Here, we review the role of central pain modulatory circuits that may promote the

pain associated with migraine, and how these circuits may be influenced by overuse of
abortive medications, possibly resulting in medication overuse headache (MOH). We
suggest that adaptationswithin central descending painmodulatory circuits amplify sig-
nals from the periphery promoting chronification of migraine. We review human data
assessing conditioned painmodulation (CPM) responses inmigraineurs, and in patients
with MOH, and complement the interpretation of these findings with data from mech-
anistic investigations in preclinical models.
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8.2 Pharmacotherapy of migraine

Successful pharmacological treatment of migraine is difficult to achieve. Acute
treatment of migraine commonly relies on the use of over-the-counter (OTC) pain
relievers, such as acetaminophen, ibuprofen, naproxen, and other non-steroidal
anti-inflammatory drugs (NSAIDs). While these drugs have established clinical effi-
cacy, many patients show little or no response to them, which is reflected in the high
numbers needed to treat (NNT) values, ranging from 7 to 12, required in order to
achieve a two-hour pain-free response (Becker, 2015). For patients who do not respond
to OTC medications, the triptans are the drug of choice for treating acute migraine
(Becker, 2015). While these drugs have demonstrated clinical efficacy, the NNT values
to achieve a two-hour pain-free response for orally administered triptan formulations
range from 3 to 12, suggestive of suboptimal efficacy for this class of drugs (Becker,
2015). In addition to the OTC drugs and the triptans, opioids and barbiturates are
sometimes used to treat migraine, and have shown clinical efficacy (Marmura et al.,
2015), but with significant clinical drawbacks (see below).
Approximately 25 years after the triptan drugs revolutionized the treatment of

migraine (Goadsby et al., 2002; Lipton et al., 2004), recent data from randomized clini-
cal trials (RCTs) evaluating blockade of CGRP signaling promise a similar seismic shift
in migraine therapy. RCTs have demonstrated that the CGRP antagonists olcagepant,
telcagepant, and MK-3207 have all showed efficacy in acute treatment of migraine
(Hoffmann and Goadsby, 2012; Silberstein, 2013) (see Chapter 9).
Although the precise mechanisms through which CGRP antagonists may block

migraine are not completely understood, the use of [11C]MK-4232 as a CGRP recep-
tor PET tracer demonstrated that telcagepant achieved only low central receptor
occupancy at efficacious doses (Hostetler et al., 2013). This result suggests that the
peripheral actions of CGRP are sufficient to promote migraine pain, a conclusion
supported by the demonstrated clinical efficacy of anti-CGRP antibody strategies.
Whether increased brain penetration of CGRP receptor antagonists during migraine
attacks contributes to their efficacy remains to be evaluated (Hostetler et al., 2013).
Unfortunately, concerns about hepatic toxicity with repeated administration have
currently delayed further development of small molecule CGRP antagonists for the
long-term treatment of migraine (Olesen and Ashina, 2011; Silberstein, 2013). Recent
studies with BI 44370 TA suggest that this toxicity may not be a class effect, and further
clinical studies are ongoing (Hoffmann and Goadsby, 2012; Negro et al., 2012).
The role of CGRP in migraine is also supported by multiple clinical trials with CGRP

antibodies, directed either at the peptide or at theCGRP receptor. A recent RCTdemon-
strated that the monoclonal CGRP antibody ALD403 reduced the number of headache
days in patients with frequent (i.e., 5–14 migraine days per 28-day period) episodic
migraine (Dodick et al., 2014a).The efficacy of ALD403 in preventing episodic migraine
was confirmed in a recent Phase II RCT (Sun-Edelstein and Rapoport, 2016). A 12-week
RCT demonstrated that LY2951742, also a monoclonal antibody to CGRP, reduced the
frequency of episodic migraine (Dodick et al., 2014b).
Phase II RCTs have also shown that the CGRP antibody TEV-48125 shows efficacy

against episodic and chronic migraine, with acceptable safety and tolerability profiles
(Bigal et al., 2015a, 2015b). AMG 334 is a CGRP receptor antibody that was demon-
strated to be effective in Phase II RCT (Sun et al., 2016) for migraine prevention in
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patients with episodic migraine. Collectively, these RCTs have shown that blockade of
CGRP activity is efficacious both for the acute and preventive treatment of migraine.
Nonetheless, the continued examination of safety concerns should be of highest priority.

8.3 Medication overuse headache (MOH) and migraine
chronification

MOH, formerly called rebound headache, is an important risk to consider during the
management of episodic migraine. Although acute therapy may be effective, the fre-
quency ofmigraine headache can increase over time, until episodicmigraine transforms
into chronicmigraine (“chronification”). Chronicmigraine is characterized by the occur-
rence of headache on 15 or more days per month (Olesen et al., 2006), of which at
least eight days per month meet criteria for migraine, with or without aura, and/or the
headache responds to amigraine specificmedication such as a triptan or ergot. Approx-
imately 14% of episodicmigraine sufferers can be expected to develop chronicmigraine,
representing 1.3% to 5.1% of the global population (Katsarava et al., 2011; Diener, 2012).
Non-modifiable risk factors that are associated with chronic headache (>15 days per

month) in those with migraine include female sex, age, low education, low socioeco-
nomic status, and head injury (Diamond et al., 2007; Bigal and Lipton, 2009; Ashina
et al., 2010). In addition, risk factors that can be modified, such as stressful life events,
sleep disturbances, obesity, depression, and increased caffeine consumption have been
identified (Bigal et al., 2007; Bigal and Lipton, 2009; Ashina et al., 2010). Importantly,
not all therapeutics present similar risks of developing MOH.
Approximately 50–75% of patients with chronicmigraine have a history ofmedication

overuse (Bahra et al., 2003; Diamond et al., 2007; Bigal and Lipton, 2009; Diener, 2012).
Opioids and products that contain barbiturates, such as butalbital, are commonly used
in the abortive management of migraine, but present a high likelihood of development
of MOH and should be avoided (Tepper, 2012). The use of butalbital for as little as five
days per month, or of opioids for eight days per month, is associated with a high risk
of MOH (Biagianti et al., 2014). The odds ratios for developing MOH after a year of
butalbital or of opioid use are 2.06 and 1.48, respectively (Tepper, 2012). While opioids
and barbiturates present the highest risk, MOH also occurs with triptans after ten days
of use per month, and with NSAIDS after 15 days of use per month (Tepper, 2012). The
potential for small molecule CGRP antagonists to produce MOH when used in excess
is not known.
There continues to be considerable debate as to whether patients should be initially

managed with early discontinuation, early discontinuation plus preventive therapy, or
preventive therapy without early discontinuation of the overused medication (Chiang
et al., 2015). The treatments employed in MOH are primarily a combination of patient
information on the disease, and detoxification from the overused drug (Chiang et al.,
2015).
Discontinuation of the overused medication is a common treatment method for

MOH. However, discontinuation is complicated by high rates of treatment failure and
relapse because patients would have the same number of migraine headaches as they
did initially, consequently repeating the same pattern of treatment that ultimately led
to the development of MOH (Diener, 2012).Therefore, reducing the baseline frequency
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of migraine is important in order to prevent a recurrence of MOH. Recent RCTs have
shown that migraine-preventive medications, especially onabotulinum toxin A and
topiramate, may be effective in reducing headache and migraine days in patients with
chronic migraine and MOH, but only onabotulinum toxin A is approved currently in
the United States for chronicmigraine (Diener et al., 2011; Sun-Edelstein and Rapoport,
2016).
The prevalence of psychiatric disorders, such as obsessive-compulsive disorders,

depression, and anxiety is increased in patients with MOH, complicating treatment
and impacting the relapse rate (Diener et al., 2011; Katsarava et al., 2011; Diener,
2012). Indeed, a large proportion of patients with MOH meet the diagnostic criteria
for substance dependence (Biagianti et al., 2014; Fuh et al., 2005). The complications of
treatingMOH and chronicmigraine necessitate close evaluation of the pathophysiology
and underlying mechanisms.
There is a growing awareness that the drugs used to treat migraine can, themselves,

promote neural adaptations that affect susceptibility to initiating factors for migraine
and subsequent pain processing. Consequently, there exists a need formultiple research
strategies, including brain imaging (Lai et al., 2015), in clinical and preclinical investi-
gations (De Felice et al., 2010a, b; Meng et al., 2011), in order to understand better the
underlying mechanisms of migraine and of MOH as brain disorders.
Brain imaging techniques, such as magnetic resonance imaging (MRI), magnetic res-

onance angiography (MRA) and positron emission topography (PET), have played a
substantial role in advancing understanding of the neurological mechanisms involved in
both primary and secondary headache syndromes. However, the use of functional imag-
ing still faces technological challenges, due to the temporal limitations of the imaging
techniques (seconds to minutes), and the duration of a single migraine, which ranges
from hours to days (May, 2009).
The use of neuroimaging technology has facilitated the testing of hypotheses, and

has increased our understanding. An early PET study showed increased cerebral blood
flow in the brainstem and in the cingulate, auditory and visual cortices, during sponta-
neous migraine attacks (Weiller et al., 1995). This increased blood flow was reduced
in most areas, except the brainstem, by treatments with sumatriptan (Weiller et al.,
1995). Later studies, however, have established that primary headache syndromes are
likely not related to vasodilation (Goadsby, 2009a, 2009b; Sprenger and Goadsby, 2010).
No changes in cerebral artery diameters or cerebral blood flow were observed during
induced (Schoonman et al., 2008) or spontaneous migraine (Amin et al., 2013). These,
and other observations, have resulted in growing consensus that migraine is a disorder
of the brain, with secondary changes in blood flow related to underlying brain activity
(metabolic-flow coupling).
Consistent with the idea that migraine is a disorder of the central nervous system,

cutaneous allodynia develops in about 80% of migraineurs during individual headaches
(Burstein et al., 2000a, 2000b). Additionally, in response to a cutaneous stimulation of
the hand, migraineurs show larger fMRI BOLD (blood oxygenation level-dependent)
signals in the posterior thalamus during a migraine attack, when compared to a
migraine-free period (Burstein et al., 2010). Similarly, preclinical observations have
demonstrated hyperexcitability of sensory neurons in the posterior thalamus of rats,
in response to innocuous and noxious stimulation of the paw following chemical
stimulation of the dura mater (Burstein et al., 2010). These findings suggest that
sensitization of thalamic neurons mediates the spreading of cutaneous allodynia in
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migraineurs by processing nociceptive information from the cranial meninges with
sensory information for the skin (Burstein et al., 2010). Collectively, both clinical and
preclinical findings demonstrate the contribution of central sensitization to migraine
(see chapter 7).

8.4 Central circuits modulating pain

The experience of pain varies greatly between individuals, and has long been recognized
to consist of sensory, affective and cognitive dimensions (see Navratilova and Porreca,
2014 for review).The pain experienced during the headache phase of migraine is multi-
dimensional. Multiple regions of the brain are activated during migraine, including the
primary and secondary somatosensory cortex (S1, S2), anterior cingulate cortex (ACC),
prefrontal cortex (PFC), amygdala, thalamus, cerebellum and the mesolimbic reward
circuit, which includes the ventral tegmental area (VTA) and nucleus accumbens (NAc)
(Akerman et al., 2011; Ossipov et al., 2014).
The somatosensory cortices are believed to encode the sensory components of pain,

while the cortical and limbic systems (ACC, PFC, amygdala, VTA and NAc) encode
emotional and motivational responses, and are involved in the contextual features of
pain. Importantly, while the activation of nociceptors usually elicits sensations of pain
in humans, the relationship between nociception and pain is not linear (Fields, 1999;
Price, 2000). It is now appreciated that many factors can influence pain, including emo-
tional state, degree of anxiety, level of attentiveness, past experiences, memories, and
context resulting in either enhancement or suppression of the pain experience (Fields,
2004).These factors engage central descending painmodulatory circuits that either pos-
itively or negatively influence sensory inputs, to determine the outcome of nociceptor
activation.
Descending pain modulatory circuits have been shown to be opioid-sensitive,

and relevant to the perception of pain and pleasure in normal and chronic pain
states (Ossipov et al., 2010, 2014). The actions of many non-opioid pain-relieving
drugs, including anti-migraine medications, may ultimately depend on the release of
endogenous opioids in cortical regions and engagement of descending pain inhibitory
mechanisms (Navratilova et al., 2015, 2016).
Neurons from the prefrontal cortex, anterior cingulate cortex, amygdala and sensory

and motor cortices project significantly to the periaqueductal grey, which has recipro-
cal connections to the amygdala, hypothalamus, nucleus tractus solitarius, parabrachial
nucleus, and rostral ventromedial medulla (RVM). The periaqueductal grey (PAG) also
receives ascending nociceptive input from the dorsal horn and parabrachial nucleus
(Heinricher and Fields, 2013).The input to the PAG from cortical and sub-cortical areas
puts it in a prime position to merge the sensory, cognitive, and affective components
of pain. The combination of inputs from higher brain areas and indirect output to the
spinal and medullary dorsal horns makes the PAG the primary integration center for
descending modulation of pain.
The output of the PAG is to the rostral ventromedial medulla (RVM, encompass-

ing the nucleus raphe magnus, the nucleus reticularis gigantocellular-pars alpha, and
the nucleus paragigantocelluraris lateralis), and to the A7 noradrenergic nucleus, which
both project directly to the dorsal horn of the spinal cord and to the trigeminocervical
complex (Heinricher and Fields, 2013).ThePAGalso projects directly to the ventral horn
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of the spinal cord, where it exhibits control of defensive motor responses. Stimulating
the periaqueductal grey causes a strong analgesic response, which can be reversed by
naloxone; the antinociceptive activity of the PAG is thus mediated, at least in part, by
opioid receptors (Fields, 2004). Activation of the PAG also activates RVM neurons, and
produces nocifensive behaviors in rats. Activation of the PAG, therefore, directly con-
trols motor responses to threatening stimuli, including noxious stimuli, and indirectly
alters nociceptive input through projections to the RVM, serving a major role in pain
onset and offset.
Projections from the RVM directly target the dorsal horn of the spinal cord and

the trigeminal nucleus caudalis (Takemura et al., 2006). In the RVM there are three
well-characterized populations of neurons called ON, OFF, and NEUTRAL cells
(Fields, 1999, 2000; Fields et al., 1999). Animal studies using single unit electrophysiol-
ogy recordings have shown that ON cells fire a burst of action potentials right before
an animal responds to a noxious stimulus. OFF cells have high levels of tonic activity
and cease firing right before a response to a noxious stimulus occurs. The NEUTRAL
cells do not change firing rate during administration of noxious stimuli, and they are
thought to modulate the other cells in the RVM.
Descending modulation of pain is bidirectional; pain signals can be inhibited or

enhanced by these pathways. ON cells facilitate pain signals, whereas OFF cells inhibit
pain signals. Mu (𝜇)-opioid receptors are mostly found on the ON cells, whereas kappa
(𝜅)-opioid receptors are mainly found on OFF and NEUTRAL cells. Opioid anal-
gesics directly inhibit ON cells, and they indirectly, through inhibition of GABAergic
interneurons, excite OFF cells (De Felice et al., 2011b; Heinricher and Fields, 2013).
The region of the RVM includes the nucleus raphe magnus, which is a major source of
serotonergic projections to the spinal cord, and it has generally been thought that these
serotonergic projections may correspond to the functioning of RVMON and OFF cells.
However, attempts to identifyONorOFF cells by neurotransmitter types have yielded

contradictory results.Work fromDickenson and colleagues (Suzuki et al., 2004; Bee and
Dickenson, 2007, 2009; Asante and Dickenson, 2010; Sikandar et al., 2012) has shown
that descending serotonergic projections can modulate both inhibition and facilitation
of nociceptive responses, although this has not been definitively tied to either ON or
OFF cell activity and, indeed, may be secondary to such activity. Serotonin release in
the spinal cord can be either pronociceptive or antinociceptive, depending on which
serotonin receptors are activated. Activation of 5-HT1A, 5-HT1B, 5-HT1D, and 5-HT7
receptors tend to promote antinociception, whereas the 5-HT2A and 5-HT3 receptors
are pronociceptive (Green et al., 2000; Suzuki et al., 2004; Sasaki et al., 2006; Dogrul
et al., 2009; Rahman et al., 2009).
Recent studies employing electrophysiology, retrograde tracers and siRNA have led

to the conclusions that most OFF cells and neutral cells are GABAergic, as are approxi-
mately one-half of the ON cells (Foo and Mason, 2003; Kato et al., 2006; Winkler et al.,
2006; Wei et al., 2010). Moreover, only a small subset of neutral cells has been found
to be serotonergic. Most recently, studies with viral vectors identified neurons project-
ing from the RVM, and coursing through the dorsal lateral funiculus and terminating
in laminae I, II and V of the spinal dorsal horn, as expressing GABA and enkephalin
(Zhang et al., 2015). Activation of these neurons reduced behavioral responses to noci-
ception, whereas silencing their activity enhanced nociceptive responses. Thus, these



�

� �

�

8 Central circuits promoting chronification of migraine 145

dual GABAergic/enkephalinergic neurons function in a manner consistent with OFF
cells (Zhang et al., 2015).
The clinical features of the premonitory phase of migraine, as well as imaging studies,

have indicated the involvement of the hypothalamus (May, 2003; Maniyar et al., 2014).
A small number of neurons located in the lateral and posterior hypothalamus produce
orexins, including orexin-A and orexin-B, which may contribute to migraine-related
symptoms (Rainero et al., 2011; Ebrahim et al., 2002). The orexin receptors, orexin
receptor 1 (OX1) and orexin receptor 2 (OX2), are G-protein coupled and are 64%
homologous. Moreover, the rat and human OX1 and OX2 receptors demonstrate
94 and 95% homology, respectively. This suggests a high level of conservation across
mammalian species, making this system a strong candidate for translational research
(Sakurai et al., 1998).
Orexin-B preferentially targets OX2 receptors, whereas orexin-A targets both OX1

andOX2 (Rainero et al., 2011). OX1 andOX2 are found in themesencephalic trigeminal
nucleus, in addition to dorsal horn of the spinal cord (Holland et al., 2005). Addition-
ally, lamina I of the dorsal horn has a high density of orexin fibers, suggesting a role of
orexin in pain transmission (Sarchielli et al., 2008). OX1 and OX2 are also found in the
VTA, NAc, and locus coeruleus, and are distributed throughout the descending pain
modulatory circuits, including the PAG and RVM.
Orexin-A has been shown to induce analgesia in animal models of acute and inflam-

matory pain states, and when directly applied to the PAG, it reduces pain in the second,
but not the first, phase of the formalin test (Yamamoto et al., 2002). Importantly, activa-
tion of OX1 by orexin-A reduces neurogenic dural vasodilation, which in turn reduces
release of CGRP (Holland et al., 2005).
Taken together, these data indicate that orexinsmay play a role in central amplification

related to the descending modulatory system. Measurements of orexin-A in patients
with chronic migraine without MOH, and patients with MOH, showed significantly
higher levels in the CSF of MOH patients and, to a lesser extent, in patients with
chronic migraine, compared with control subjects (Sarchielli et al., 2008). Additionally,
in the MOH patients, there was a significant positive correlation of orexin-A levels and
monthly drug intake. Elevated levels of orexin, and of corticotropin releasing factor
suggested potential dysregulation of endocrine and autonomic regulation of migraine
(Sarchielli et al., 2008). Filorexant (MK-6069), a dual OX1/OX2 receptor antagonist,
has been evaluated for potential migraine preventative effects. As orexin is important
in maintaining wakefulness, the antagonist was evaluated as a once-daily dose taken at
night. However, no significant difference between the active treatment and placebo was
reported for the change from baseline in mean monthly migraine days (Chabi et al.,
2015; Diener et al., 2015).

8.5 Evaluation of descending modulation: diffuse noxious
inhibitory controls and conditioned pain modulation

Descending modulation is important for adaptive behaviors promoting survival. The
connections between higher brain areas and the brainstem nuclei that modify pain sig-
nals allow evaluation of context and decisions that benefit survival of the organism. Inhi-
bition of pain signals and escape is a preferred outcome in circumstances where further
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harm to the organism would occur if focus was directed to the injury. This is likely the
neural correlate of stress-induced analgesia, and likely underlies the phenomenon of
“pain inhibiting pain”. This phenomenon was first described in animals (Le Bars et al.,
1979; Villanueva and Le Bars, 1995), and was termed “diffuse noxious inhibitory con-
trols” or DNIC. Human studies refer to DNIC as conditioned pain modulation (CPM)
(Nir and Yarnitsky, 2015).
CPM occurs in the absence of distraction, and the analgesic component of distraction

is additive with CPM (Moont et al., 2010). It is believed that CPM may help prevent
further injury at the site of the most severe injury when multiple injuries are present.
DNIC has been characterized with single unit electrophysiological recordings, showing
that dorsal horn neurons that responded to noxious stimulation were inhibited when a
second noxious stimulus was applied to a remote area of the body in rats (Dickenson
and Le Bars, 1983).
Production of DNIC in animals involves an interaction between several brainstem

structures, the dorsal reticular nucleus (DRt), the RVM, and the PAG. In humans, CPM
is assessed by application of a noxious conditioning stimulus, combined with the appli-
cation of a noxious test stimulus. The threshold to the test stimulus alone is first deter-
mined, and then the efficacy of the CPM response can be determined from the change
in pain ratings to the test stimulus when the conditioning stimulus is co-administered.
When the CPM response is efficient, the pain rating of the test stimulus will decrease.
Deficiencies in this system are evident when there is a lack of change in pain rating to
the test stimulus in the presence of the conditioning stimuli.Thus, CPM in humans, and
DNIC in animals, can be used as a quantitative estimate of the efficiency of descending
pain modulation.
Assessment of DNIC or CPM has important implications, particularly in functional

pain conditions (i.e., pain states in which no obvious injury is identifiable), including
migraine as well as inMOH. Clinical studies have shown thatmany chronic or recurrent
pain conditions may be due, in part, to a dysfunction of endogenous pain modulation
andCPM.Deficient or absent CPMhas been demonstrated in idiopathic pain state, such
as fibromyalgia, irritable bowel syndrome, temporomandibular joint disorders, whiplash
injury, and chronicmigraine and other headache disorders, aswell as in the development
of chronic pain after injury (Berman et al., 2008; Jensen et al., 2009; Yarnitsky, 2010;
Lewis et al., 2012; Loggia et al., 2014).
Recently, it was shown that the efficacy of the DNIC response in rats after exper-

imental neuropathic pain was predictive of recovery (Peters et al., 2015). Rats with
less efficient DNIC had a slower recovery from postoperative sensitivity, suggesting a
role for endogenous descending inhibitory pathways in promoting recovery or limiting
the central consequences of the injury (Peters et al., 2015). Assessment of DNIC or of
CPMmay also prospectively predict the risk of development of chronic pain. Yarnitsky
and colleagues were able to predict which patients were most likely to develop chronic
post-thoracotomy pain by pre-operative assessment of CPM, and suggested that an
inefficient CPM was likely responsible for contributing to the development of chronic
pain (Yarnitsky et al., 2008).
Numerous studies support the concept that a dysfunction of endogenous pain

modulation and loss of CPM may be related to headache chronification. CPM has
been shown to be impaired in chronic and/or widespread pain conditions, including
chronic migraine (de Tommaso et al., 2007; Perrotta et al., 2010). A small study of
female migraineurs and controls used a single CPM protocol and found no difference
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between the groups during the menstrual cycle (Teepker et al., 2014). However, when
a repeated testing protocol was used, in spite of normal initial responses, a waning of
CPM was seen in patients with episodic migraine that was not observed in normal
subjects (Nahman-Averbuch et al., 2013). Patients with greater degrees of CPMwaning
also reported less pain reduction from migraine medication (Nahman-Averbuch et al.,
2013). It was suggested that migraine was associated with a subtle dysfunction of pain
inhibitory systems, and may require more sophisticated testing protocols to test more
accurately for loss of CPM (Nahman-Averbuch et al., 2013).
Development of chronic tension-type headache has also been associated with dys-

functional CPM (Pielsticker et al., 2005; Sandrini et al., 2006). Serrao and colleagues
found that the conditioned stimulus significantly depressed the nociceptive reflex area
in normal individuals, indicative of a normal CPM response (Serrao et al., 2004). In con-
trast, there was a significant increase in the RIII reflex area of individuals with chronic
tension-type headache or episodic migraine, indicative of pain facilitation (Sandrini
et al., 2006).
Dysfunction of descending pain modulation may also promote medication overuse

headache. Perrotta and colleagues found that patients with either MOH or episodic
migrainewithout aura showed an alteredCPMresponsewhen compared to normal con-
trol subjects (Perrotta et al., 2010). CPM improved inMOH patients after withdrawal of
the drug that producedMOH in the first place, suggesting that a propensity to develop-
ing MOHmay be due to a dysfunction of endogenous pain inhibitory systems, and that
this dysfunction may also contribute to episodic migraine as well (Perrotta et al., 2010).
It should be noted that patients with traumatic brain injuries (TBI) who also developed
chronic post-traumatic headache (PTH) were demonstrated to have deficient CPM rel-
ative to TBI patients without headache (Defrin et al., 2015).
Changes in CPM have generally been interpreted as a loss of descending inhibition.

Boyer et al. (2014) found that repeated application of inflammatory mediator to the rat
dura mater elicited a persistent cephalic and extracephalic allodynia, which was accom-
panied by increased Fos expression in the trigeminal system and impairment of the
DNIC response. Importantly, the increase in central sensitization, and the loss of the
DNIC response, was suggested to reflect a mechanism that could elevate the risk for
developing chronic migraine (Boyer et al., 2014). While the changes in CPM have been
interpreted as an attenuation of descending inhibition, an equally plausible interpreta-
tion is that an apparent loss of inhibition could reflect enhanced descending facilitation,
something that has been difficult to assess in humans.
Descending facilitation is highly adaptive, as it causes sensitivity to prevent further

damage to an injured site (Porreca et al., 2002; De Felice et al., 2011a, 2011b). The likely
contribution of dysfunction in descending pain modulation in cephalic pain, and MOH
has also been supported in preclinical studies. Meng and colleagues found that rats with
sustained morphine-induced sensitization, a model of MOH, had a loss of the DNIC
response in medullary dorsal horn neurons (Okada-Ogawa et al., 2009). Medullary dor-
sal horn neurons that responded to stimulation of the dura mater were inhibited by
application of noxious stimulation of the tail of normal rats, indicating the presence of
DNIC. After exposure to sustained morphine, however, the DNIC response of these
dural-sensitive medullary dorsal horn neurons was absent. Administration of lidocaine
into the RVM, which abolishes descending facilitation, restored the DNIC response in
the morphine-exposed rats, suggesting that the apparent loss of inhibition was due to
enhanced facilitation (Okada-Ogawa et al., 2009).
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Dysfunction of CPM/DNIC pain modulation, and increased facilitation from the
RVM, may lead to sensitization of the trigeminovascular system, which can promote
susceptibility to migraine pain. Rodent models of medication overuse headache have
shown that the persistent exposure of rats to opioids or triptans promotes pronocicep-
tive adaptations that can enhance pain signaling through descending pain modulatory
circuits. The sustained exposure of morphine or of triptans (i.e., sumatriptan or nara-
triptan) to rats, either by constant infusion or repeated injections, produces enhanced
sensitivity to light touch applied in the periorbital area, reflecting cutaneous allodynia
(De Felice and Porreca, 2009; De Felice et al., 2010a, 2010b; Okada-Ogawa et al., 2009).
Although response thresholds return to a normal baseline level after 14 days, a state
of latent sensitization exists, since exposure to known triggers of migraine in humans
(i.e., nitric oxide [NO] donor or bright light stress) will precipitate behavioral signs of
cutaneous allodynia.
Treatment of rodents with opioids or triptans to induce enhanced susceptibility to

putative migraine triggers may be analogous to hyperalgesic priming. The underlying
consequence of exposure to the drug is to induce plasticity in primary afferent nocicep-
tors, as well as within the central nervous system, resulting in increased susceptibility
to normally subthreshold inputs.
Levine and colleagues developed the concept of “hyperalgesic priming” in order to

explore themolecular mechanisms underlying the transition from acute to chronic pain
(Reichling and Levine, 2009). Persistent exposure to opioids or triptans increased the
expression of CGRP and of neuronal nitric oxide synthase (nNOS), but not of substance
P, in the trigeminal ganglia (De Felice and Porreca, 2009; De Felice et al., 2010a, 2010b).
Importantly, the increased expression of CGRP and nNOS in trigeminal ganglion neu-
rons persists long after discontinuation of either opiate or triptan exposure, and after
behavioral responses to light touch have normalized.
Together, these findings suggest that these persistent changes in CGRP and

nNOS expression could underlie latent sensitization (De Felice et al., 2010a). The
co-administration of an nNOS inhibitor, NXN-323, prevented the upregulation of
nNOS and of CGRP, and the nNOS inhibitor given after induction of latent sensitization
blocked the development of cutaneous allodynia induced by bright-light stress (De
Felice et al., 2010a). Plasticity within the central nervous system was suggested when
triptan exposure reduced the stimulation threshold to elicit a CSD event, and this
was blocked by topiramate (Green et al., 2013). Taken together, these studies provide
evidence that chronic headache conditions, including MOH and migraine, may be
associated with dysfunction of endogenous pain modulatory systems.

8.6 Conclusions

It is recognized that the frequency of migraine attack is the best predictor of a transition
to chronic migraine (Lipton, 2009), and that many migraineurs will progress from
low-frequency episodic headache stage to high-frequency and, eventually, chronic
migraine (Bigal and Lipton, 2008). The consequences of repeated attacks and noci-
ceptive input to the central nervous system likely establish a state of sustained central
sensitization that can result in amplification of subthreshold inputs (migraine triggers),
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resulting in a full-blown migraine attack. Such neural plasticity can be viewed as a type
of “pain memory”.
Multiple mechanisms of central sensitization and pain amplification have been

demonstrated, including neural adaptations in descending pain modulatory mecha-
nisms. Pre-clinical studies have demonstrated that enhanced descending facilitation
promotes the expression of chronic neuropathic pain (Porreca et al., 2002) and,
importantly, descending inhibitory mechanisms protect against the expression of
chronic neuropathic pain in injured animals (De Felice et al., 2011b). The induction
of latent sensitization by drugs promoting MOH also produces analogous neural
adaptations that promote enhanced susceptibility to sub-threshold triggers, mediated
through descending pain modulatory circuits, as demonstrated by prevention of stress-
or NO-donor induced cutaneous allodynia following RVM blockade with bupivacaine
(unpublished observations). Importantly, deficits in descending pain modulation
have repeatedly translated across species, supporting the role of these circuits in
chronification of pain and migraine, and revealing new approaches for development of
novel therapies for migraine treatment.
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Triptans to calcitonin gene-related peptide
modulators – small molecules to antibodies – the evolution
of a new migraine drug class
Richard J. Hargreaves

Biogen, Cambridge, Massachusetts, USA

9.1 Introduction

Migraine is an heterogeneous disorder that affects 12–15% of the population [1]. Indi-
vidualmigraineurs trymany different classes of compounds in order to find the drug that
best ameliorates their migraine headaches. Over-the-counter analgesics provide benefit
for some patients, but many still experience more severe or frequent migraine attacks
that are ineffectively treated, leading them to prescriptionmedicines for the acute treat-
ment and prevention of migraines [2].
The serotonin 5-HT1B/1D receptor agonist drug class (Triptans) revolutionized the

acute treatment of migraine. However, many migraine patients, especially those with
co-existing cardiovascular risk factors, hesitated to take Triptans because of cardio-
vascular and cerebrovascular concerns [3] that the 5-HT1B receptor component in
their pharmacology caused vasoconstriction, and the theoretical risk that the Triptans
potentiate serotonin in the brain, causing serotonin syndrome. Reviews of clinical
experience have, however, found that cardiovascular events, while present, are relatively
rare [4], and there is inadequate evidence data to determine the real risk of serotonin
syndrome [5].
It is estimated that 40% of migraine sufferers could benefit from prophylactic therapy,

but only 13% are taking existing therapies. This is perhaps because currently approved
preventative treatments have modest efficacy, and are often associated with safety or
tolerability issues. Onabotulinum toxin A is the only drug approved to treat chronic
migraine [6, 7].
Thus, there remains a large unmet medical need for migraineurs, and a need to have

new classes of acute treatment and preventative anti-migraine drugs. This chapter dis-
cusses the evolution of the CGRPmodulatory class of drugs that offers a unique solution
for migraine patients.

9.2 Trigeminovascular system – migraine physiology
and pharmacology

The pharmacology and physiology of the trigeminovascular systems that are activated
during migraine pain, and the role of central pathways in modulating activity in the
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trigeminal dorsal horn, are now well understood [8–11]. The sensory neuropeptide
calcitonin gene-related peptide (CGRP) is a 37 amino acid peptide that exerts its
biological action through activation of the CGRP receptor, a member of the family B
G-protein-coupled receptors.
CGRP has been implicated strongly in the pathogenesis of migraine [12], and the jour-

ney to establish CGRP as a migraine target has recently been reviewed by Edvinsson,
one of the pioneers in the field of neuropeptide research [13]. Intravenous infusion of
human CGRP peptide induces migraine-like headache in migraineurs. It has been doc-
umented that CGRP levels are elevated in saliva, cerebrospinal fluid, and blood in the
external jugular vein during migraine attacks. Moreover, elevated jugular vein blood
CGRP levels have been reported to be normalized by Triptan treatment concomitant
with migraine headache relief. Recent investigations have also provided some evidence
that CGRP levels are elevated inter-ictally in migraineurs, raising the interesting possi-
bility that the trigeminovascular system in patients could be “primed” to respond at a
lower threshold than those individuals who do not suffer attacks [14, 15].
CGRP containing nerve fibers and CGRP receptors are widely distributed through the

trigeminovascular sensory system, and are present peripherally in the pain-producing
meningeal tissues on blood vessels, on trigeminal neurons, and centrally on neurons in
the trigeminal dorsal horn pain signal relay centers of the brainstem. The physiological
actions of CGRP include vasodilatation, trigeminal sensitization and activation of sec-
ond order sensory neurons in the brain stem, as part of trigeminal sensory pain signal
transmission [16, 17].
CGRP is released alongside substance P and glutamate when sensory nerves are

activated. Seminal studies from the laboratories of Moskowitz [18] and Goadsby and
Edvinsson [19, 20] have showed pre-clinically that the anti-migraine agents dihydroer-
gotamine and sumatriptan attenuated elevated levels of CGRP in the saggital sinus
and jugular vein plasma during electrical stimulation of the trigeminal ganglion and
superior saggital sinus, respectively. Similarly, sumatriptan was also shown to reduce
meningeal extravasation, mediated by substance P acting at neurokinin 1 receptors,
evoked by electrical trigeminal ganglion stimulation [21]. This effect, on a proven
biomarker of sensory nerve activation, has given further support to the peripheral
trigeminal inhibitory effects of the serotonin agonist class.
Subsequent pharmacological studies focused on modulation of CGRP release in the

meninges by the Triptan acute anti-migraine agents.Williamson, in theMerck Research
Laboratories, developed an intra-vital microscopy model [22] to monitor meningeal
blood vessel diameter in response to electrical stimulation of the dura mater [23]. In
an elegant series of preclinical studies, he showed first that the vasodilatation was medi-
ated exclusively by CGRP release from trigeminal sensory afferents as it was blocked
by the antagonist peptide CGRP8-7 fragment, but not by a substance P receptor antag-
onist. Next, he showed that sumatriptan and rizatriptan inhibited electrically evoked
vasodilatation, but not vasodilatation caused by exogenous administration of substance
P or CGRP, proving that their mode of action was on trigeminal sensory nerve termi-
nals to inhibit neuropeptide release [24, 25]. Subsequent, immuno-histochemical and
preclinical pharmacological studies from the Merck labs supported the hypothesis that
the inhibition of sensory neuropeptide release by Triptans in the meninges was likely
to be mediated through activation of 5-HT1D receptors on trigeminal sensory nerve
endings, and not the 5-HT1B receptors that predominated on blood vessels [26, 27].
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In the late 1990s, Cumberbatch and Williamson [28] used the intravital meningeal
microscopy technique, with electrophysiology recordings of second order sensory
neurons in the trigeminal nucleus caudalis, to investigate whether circulating CGRP
acting peripherally on a chronically sensitized trigeminal system could influence
susceptibility to a migraine headache attack. In these experiments, they showed that
exogenous intravenous administration of a 1 μg/kg bolus (at a concentration of 1 μg/ml)
of CGRP (tracked using intravital microscopy of dilated meningeal blood vessels)
could sensitize the trigeminal system, such that the responses to non-nociceptive
sensory inputs (evoked by vibrissal stimulation) to convergent second order sensory
neurons in the brain stem that received convergent sensory input from the dura became
exaggerated. This enhanced response was blocked by a 5-HT1B/1D “triptan” agonist
molecule.
At the time, it was suggested that these data supported the hypothesis that vasodi-

lation in the meninges is capable of sensitizing the trigeminal system. However, subse-
quent research has suggested other potential explanations. First, there is no doubt that
CGRP released or applied centrally will activate trigeminal neurons – the question is,
can CGRP access its central receptors from the periphery? CGRP is a large polar pep-
tide that is excluded from the brain by the blood-brain barrier, so it seems unlikely that
it penetrates to central CGRP receptors to exert sensitizing effects. Second, it is known
that there is no blood-brain barrier at the level of the trigeminal ganglion or peripheral
cranial blood vessels, raising the possibility that the exogenous CGRP acts directly in
the periphery to cause sensitization through activation of CGRP receptors on trigeminal
neuronal cell bodies or perivascular trigeminal sensory nerves [29, 30].
A peripheral role for CGRP in migraine would be consistent with the trigeminal

inhibitory action of clinically effective 5-HT1B/1D agonist Triptan molecules, and
the observation that CGRP receptor antagonists that do not penetrate the brain give
migraine headache pain relief (see below Section 5). To date, however, there is no
direct evidence showing that CGRP does, or does not, activate trigeminal neurons, nor
whether the observed effects of CGRP on trigeminal sensitivity are direct or indirect.
These are areas for future study, especially as there are marked temporal differences in
the effects seen in these short pre-clinical experiments, compared to the time taken for
exogenous CGRP to trigger migraine in humans [31, 32].

9.3 Small molecule CGRP receptor antagonists

Understanding the pharmacology of trigeminal inhibition by the serotonin 5-HT1B/1D/1F
receptor Triptan agonists that underpins their remarkable clinical efficacy [33], together
with the lack of clinical efficacy of substance P neurokinin-1 receptor antagonists [34,
35], confirmed the pre-clinical and clinical physiological studies identifying CGRP, not
substance P, as the critical sensory neuropeptide involved in migraine pain pathophysi-
ology [36]. In addition to the promise of clinical efficacy, one of the great attractions of
the CGRPmodulatory approach was that it has the potential to avoid the cardiovascular
risk associated with the Triptan class of drugs. Unlike the Triptans, CGRP antagonism
is neutral on the vasculature in the absence of CGRP tone [37]. CGRP modulation thus
held the promise of delivering a therapy that could be safe to use in migraine patients
with Triptan contraindications (previousmyocardial infarction, angina or stroke).These
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observations have provided the catalyst for many CGRP modulator drug discovery and
development programs.
Pre-clinical studies in vitro in human coronary arteries [38, 39], and in vivo in cardiac

physiology and models of myocardial ischemia [40] and chronic heart failure [41],
showed that CGRP antagonism had no intrinsic action on cardiac vascular smooth
muscle. Moreover, CGRP antagonism, unlike sumatriptan, had no effect on payback
myocardial reactive hyperemic responses in conscious dogs [42]. It is noteworthy that
the prototype serotonin 5-HT 1B/1D agonist sumatriptan also increased the severity of
myocardial ischemia during atrial pacing in dogs with coronary artery stenosis [43].
Clinical studies with telcagepant (MK-0974) showed that it had no effect on sponta-

neous ischemia in cardiovascular patients [44], did not affect exercise time in patients
with stable angina [45], did not affect nitroglycerin-induced vasodilatation in healthy
men [46], nor have a hemodynamic interaction with sumatriptan [47]. A partially com-
pleted study of telcagepant in patients with migraine and stable coronary artery disease
also supported the safety of the CGRP receptor antagonist mechanism [48].
The clinical efficacy of the small molecule CGRP receptor antagonists acutely against

migraine has provided unequivocal support for the hypothesis that CGRP is a key player
in migraine pathophysiology. To date, five different small molecule CGRP receptor
antagonists have been tested for the acute treatment of migraine, and all have been
shown to be effective (BIBN4096BS [49], MK-0974 [50], MK-3207 [51] BMS927711
[52], BI-44370TA [53].
The most extensively studied molecule to data is telcagepant [54], which today,

through new publications, despite its discontinuation, continues to provide important
insights into migraine mechanisms and the potential benefits and limitations of CGRP
modulation for the treatment of migraine. In addition to acute migraine treatment,
telcagepant has been studied with chronic daily dosing for migraine prevention [55]
and seven days of dosing peri-menstrually for menstrual migraine [56]. The prevention
studies showed similar efficacy, but with much improved tolerability to topiramate (as
judged by comparison to a separate but similarly designed clinical trial of topiramate)
and a reduction of peri-menstrual headaches (note: primary endpoint of monthly
headache days was not significant with this dose regimen).
How, then, does the clinical efficacy of CGRP receptor antagonists in acute migraine

compare to the Triptans that are now the current standard of care? Direct comparative
randomized clinical trials of small molecule CGRP antagonists with the Triptans are
very scarce. The only published studies to date have compared telcagepant with riza-
triptan 10mg [57] and zolmitriptan 5mg [58] in acute migraine treatment, and have
shown similar efficacy on the two-hour pain-free endpoint, but withmarkedly improved
tolerability profile.
Tfelt-Hansen has, however, commented, on the basis of a “meta-analysis” of all CGRP

antagonist trials, that the CGRP mechanism may be inferior in efficacy to the Triptans
[59–61]. In a subsequent commentary on Triptans versus small molecule CGRP
receptor antagonists Pascual, like Tfelt-Hansen, argued that there may be an inherent
limit to the response one can expect from CGRP receptor antagonists [62], and that a
meta-analysis of all “gepant” clinical trials suggests that themaximal acute anti-migraine
efficacy of the small molecule CGRP receptor antagonists, as judged by the two-hour
pain-free endpoint, is still “somewhat inferior to that of the most efficacious Triptans”.
These viewpoints were, however, countered by Ho and Bigal [63, 64] who suggested
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that the conclusions undervalued the potential usefulness of a new drug class with
novel mechanism of action and the potential to help many patients with unmet
medical needs.

9.4 Current status of small molecule CGRP receptor
antagonist programs

Unfortunately, several of the small molecule CGRP receptor antagonists in develop-
ment have been discontinued for safety, due to evidence of drug induced liver injury.
Despite their structural chemical diversity, telcagepant (MK-0974) and MK-3207
showed increases in liver enzyme (ALT) levels several times the upper limit of normal
and, with MK-3207, delayed liver-test abnormalities [51, 55, 56]. It should be noted
that, with telcagepant, these effects were not seen during intermittent use for the
acute treatment of migraine [65], but only after chronic or intensive use for migraine
prevention or menstrual migraine. BI-44370 TA was also discontinued, but there has
been speculation (but no formal reports) of whether this was also due to hepatotoxicity.
These liver toxicity data has raised questions over whether the CGRP receptor blocking
mechanism was inherently flawed as a therapeutic approach. However, the diverse
presentation of the liver injury caused by the different CGRP molecules suggested that
the hepatotoxicity could be due to the specific chemistry of each of these molecules.
In Merck, despite the setbacks, belief that the liver toxicity was structural, and not

mechanism-based, drove the continuation of the CGRP receptor antagonist drug dis-
covery programs, which eventually yielded the novel small molecule drug candidates
MK-1602 (which has been evaluated in Phase 2 studies for acute migraine treatment)
and MK-8031 (a candidate for phase 2 trials in migraine prevention). MK-1602 was
shownonwww.clinicalTrials.gov in 2012 to have enrolled 834 patients, and to have com-
pleted a dose-finding study in acute migraine treatment, using dosages of 1, 10, 25, 50
or 100mg doses [66]. The results of this study have now been published [67].
The Merck CGRP antagonist small molecules have been licensed to Allergan/Pfizer

who, it can only be assumed, evaluated the extent of hepatic de-risking as part of their
diligence before making such a significant investment, and who will, no doubt, mon-
itor liver function intensively in upcoming chronic dosing trials. The perception that
drug-induced liver injury may be a predictable class effect of small molecule CGRP
receptor antagonists persists, however, with a recent editorial from Gottshalk contin-
uing to highlight potential mechanisms of liver toxicity [68].This concern has, however,
now been definitively addressed by long-term data from clinical studies, with the CGRP
receptor blocking antibody AMG-334 after 52 weeks [69] where no liver abnormalities
have been observed.
The relatively benign safety profile of AMG-334 [70] gives additional support for the

suggestion that the drug-induced liver injury seen with the early CGRP receptor antag-
onists was molecule-based, not mechanism-based. These additional safety data were
probably important in TEVA’s decision to partner with Heptares on the development of
small molecule CGRP receptor antagonists [71], in a strategic move into acute migraine
treatment that is complimentary to TEV48125, their monoclonal antibody (see below),
which is in Phase 3 clinical trials for migraine prevention.
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The Triptan market for oral acute treatment of migraine will essentially be generic by
the time a smallmolecule CGRP antagonist is launched.TheCGRPmechanism is clearly
differentiated from Triptans on the basis of improved tolerability and safety profile, as
it is a non-vasoconstrictor non-serotonergic mechanism that will not have lingering
concerns over cardiovascular side-effect liability and serotonin syndrome. Tomaximize
success, it will be key to consider strategies to differentiate the efficacy, in addition to
tolerability and safety, of the CGRP antagonist MK-1602 from the Triptans. These may
include improvement over the 24-hour Triptan sustained efficacy profile, as well as use
by Triptan non-responders and efficacy in Triptan-excluded populations.
Other acute anti-migraine approaches are now entering Phase 3 clinical trials. CoLu-

cid Pharmaceutical’s non-vasoconstrictor centrally acting serotonin 5-HT1F receptor
selective agonist Lasmiditan faces a similar challenge to CGRP antagonism in differ-
entiating from the Triptan class through efficacy, as well as CNS tolerability [72]. As a
centrally acting serotonergic agonist it may, like the Triptans, have to address the issue
of CNS serotonin syndrome. The development of small molecule orally administered
CGRP receptor antagonists such as MK-8031 for migraine prevention has the potential
to provide an alternative to current prophylactic medications, with flexibility in dosing
compared to CGRP, modulating anti-body infusions or injections (see below). Thor-
ough de-risking and monitoring for hepatic liability will no doubt have to be a feature
of long-term exposure in prevention clinical trials.

9.5 Unraveling the site of action of small molecule CGRP
receptor antagonists using clinical pharmacology and brain
imaging

As with so many aspects of medical science, definitive clinical observations drive our
interpretation and re-evaluation of experimental laboratory investigations that, in turn,
generate new hypotheses for study. Let us consider how this cycle has played out for the
CGRP modulator class.
CGRP receptors are distributed peripherally and centrally in the trigeminovascular

system. Two important clinical pharmacodynamic assays were developed to assess the
pharmacology of CGRP receptor antagonism and the relative roles of peripheral and
central CGRP receptors in the anti-migraine therapeutic response to small molecule
CGRP receptor antagonists. The first was the capsaicin-induced dermal vasodilatation
assay (CIDV), in which capsaicin, applied to the intact forearm skin, triggers release
of CGRP via activation of the TRPV1 receptor on sensory nerve fibers and, in turn,
causes vasodilatation through its effects on CGRP receptors on blood vessels [73–75].
This response can bemeasuredwith laser Doppler, and its inhibition provides ameasure
ofCGRP antagonism in the periphery.The second assaywas enabled by the development
of a novel PET imaging tracer, [11C]MK-4232, as a key pharmacological tool to visual-
ize CGRP receptors in the brain. This tracer, which is highly specific for CGRP recep-
tors, was used to determine whether a small molecule CGRP antagonist, telcagepant
(MK-0974), engaged central CGRP receptor sites at clinically effective anti-migraine
doses [76].
The PET data, together with CIDV-based estimates of the peripheral activity of CGRP

receptor antagonists, showed that small molecule CGRP receptor antagonists that
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effectively saturated (>90% inhibition) peripheral responses, but did not engage central
sites at and significantly above clinically effective anti-migraine doses, could relieve
migraine pain [77, 78]. This observation had three potentially important implications
for our understanding of migraine pain:
• First, that migraine pain is, at least in part, peripheral in origin, since non-brain pen-

etrant drugs could relieve it.
• Second that, as a consequence, it was likely that the key site of action for the Trip-

tans was most probably trigeminal inhibition, with consequent prevention of CGRP
release in the periphery, not centrally – despite the fact that the adverse event profile
of Triptans showed evidence for some CNS effects.

• Third, preliminary case reports of [11C]MK-4232 PET studies of the occupancy of
central CGRP receptors by telcagepant (MK-0974), between and during migraine
attacks, showed no evidence for increased occupancy by telcagepant during an attack,
suggesting that the blood-brain barrier remains intact during migraine, and does not
allow drug entry to CNS target sites [79].
It remains unknown whether accessing central sites will deliver greater efficacy as

today’s CGRP modulator drugs are generally excluded from reaching therapeutic levels
in the brain.

9.6 Biologic approaches to CGRP modulation

Concerns over the hepatotoxic liability of small molecule CGRP receptor antagonists,
and the demonstration that peripherally restricted molecules were clinically efficacious
against acute and chronic migraine, has added huge impetus to the development of bio-
logic antibody approaches to CGRPmodulation as potentialmigraine therapeutics.This
area has been intensely reviewed in the recent literature [see 80, 81, 82, 83, 84, 85].

9.6.1 Early experimental studies with CGRP antibodies

In the late 1980s, immuno-neutralization studies with CGRP antisera conducted in
Graham Dockray’s laboratory highlighted the central role of the of CGRP in neu-
rogenic inflammation [86–88]. Subsequently, in 1993–1995, Keith Tan conducted
immune-blockade studies in vitro and in vivo with an anti-calcitonin gene-related
peptide monoclonal antibody and its Fab’ fragment in theMerck Research Laboratories
at Terling’s Park in the UK. His in vitro experiments [89] first selected antibody candi-
dates that could block the neurotransmitter role of CGRP in vitro, and these were then
subsequently examined in vivo [90] for their ability to inhibit skin vasodilatation evoked
by CGRP released from sensory nerve fibers as a result of anti-dromic stimulation of
the saphenous nerve.
This assay has similar pharmacology to the activation of sensory nerves and conse-

quent CGRP release thought to occur in migraine, and to the capsaicin-induced dermal
vasodilatation studies that were more recently used to study the peripheral pharmaco-
dynamic modulation of CGRP clinically by small molecule and CGRP antibodies. Tan’s
in vivo studies showed that a Fab’ CGRP antibody fragment was most active, producing
a blockade of vasodilatation equivalent to that produced by the CGRP receptor peptide
antagonist CGRP8-37, whereas the full-length CGRP mAb was inactive over the short
time course of his experiments.
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These findings proved that neutralizing approaches could be used to modulate the
peripheral activity of the CGRP peptide and, interestingly, that the size of the biologic
agent could affect the time-course of pharmacological activity, presumably by differ-
ential rate of access to the high levels of CGRP released into the synaptic cleft during
the short acute time course (30 minutes) of these experiments. This pharmacodynamic
observation indicated that full-length CGRP mAbs would be unlikely to have value in
acute, compared to chronic, settings where there ismore time for equilibration, allowing
them to realize their pharmacological effects. This interpretation aligns with the inves-
tigation of CGRP mAbs for chronic migraine prevention, rather than acute migraine
reversal.

9.6.2 CGRP antibody therapeutics

Antibody drug administration is invasive, being either subcutaneous or intravenous and,
as such, they are notwell suited to frequent administration – for example, as acute symp-
tomatic therapies, where small molecules are generally preferred especially when speed
of onset is important.
Antibody drugs, however, have several important advantages over small molecule

drug candidates, especially in chronic indications:
1) They have long-circulating plasma half lives leading to monthly/infrequent adminis-

tration improving adherence.
2) Unlike small molecules, they lack active metabolites, as they are not degraded in the

liver.
3) As antibodies are not hepatically metabolized, they have no metabolic drug-drug

interactions to contend with.
4) Their exquisite target selectivity minimizes off-target pharmacology, leading to low

toxicity and relatively benign tolerability profiles.
There are currently four CGRP antibody drug candidates that have shown efficacy in

the prevention of frequent episodic migraine. These are the CGRP ligand neutralizing
antibodies TEV48125 (previously Labrys LBR-101) [91], LY2951742 [92] and ALD-403
[93], and the CGRP receptor antibody AMG-334 [70]. TEV48125 has completed and
published successful Phase 2B clinical trials in chronic migraine, using SC monthly
administration [94]. Positive topline Phase 2B results were also recently released by
Alder for ALD-403, given IV quarterly in chronic migraine [95]. The other antibody
candidates have included the chronic migraine indication in their Phase 3 clinical
programs. LY 2951742 is the only candidate currently in Phase 3 clinical trials for the
treatment of episodic [96] and chronic cluster headache [97].
TEV48125 was discovered at Rinat as RN-307, and was subsequently transferred to

Pfizer in a 2006 buyout of the company, before being spun out from Pfizer to Labrys,
where it became LBR101. Teva acquired LBR101 in a 2014 buyout of Labrys, after it had
completed only Phase 1 clinical studies, reflecting their confidence in the mechanism
delivering meaningful efficacy. In an interesting approach, Arteus, a biotech funded
by Atlas Ventures and Orbimed, licensed the Eli Lilly program for LY2951742 and
obtained clinical proof of concept for migraine prevention, resulting in Lilly exercising
their option to take the drug back for late stage development. In contrast, ALD-403
and AMG-334 have been discovered and developed by their parent companies Alder
Pharmaceuticals and Amgen, respectively.
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9.6.3 Comparing the CGRPmodulators clinically

The latest disclosed clinical data for the four antibody candidates confirm their efficacy
in preventing frequent episodic migraine [70, 91–93]. To date, only Alder have studied
intravenous administration in frequent episodic and chronic migraine with quarterly
administration [93, 95] and only Teva have successfully completed Phase 2B trials SC
with monthly dosing in chronic migraine [97].
It is too early to tell which of the antibodies will have the best clinical efficacy profile,

as the clinical trials for each are different, which makes true comparisons between them
impossible. Factors to watch out for when comparing the emerging efficacy profiles of
the CGRP antibodies are summarized in Table 9.1. It is also worthwhile remembering
that the clinical efficacy data for all the antibodies uses placebo-adjusted responses in
migraine day reductions, and this is that this is effectively a “double delta” readout, with
subtraction first from baseline headache days and then from placebo.

Table 9.1 Factors to consider when comparing clinical trials with CGRP antibodies.

Mechanism CGRP ligand neutralizing vs. CGRP receptor neutralizing
Differences in tolerability and safety profiles

Dosing route Intravenous vs. subcutaneous – monthly or quarterly
• How frequent – how many injections to deliver active doses

Headache definitions Frequent episodic migraine and chronic migraine ICDH-2 or ICDH3
• Migraine days vs. headache days

Severity Baseline number of migraine days at entry
• Important for hyper-responder analyses

Study periods Lead-in and baseline periods, long-term data
• Potential to affect placebo and drug response, long term efficacy

Inclusion criteria Baseline headache days
• More or less severe migraine population being treated
• Use of standard preventatives

Exclusion Criteria Previous use of anti-CGRP antibodies or Botox – common
• Lack of response to preventatives, limited exposure to opiates and

barbiturates
Concomitant medications Use of rescue and other prophylaxis medications

• Clinical trial restrictions vs. likely real life scenarios

Placebo Size and variability of placebo response
• Use of non-placebo adjusted response data to describe trial outcomes

Response Reduction in moderate to severe migraine days
• Reduction in migraine hours
• Responder rate
• Reduction in use of preventative medications

Hyper-responders Contribution of hyper-responders to overall clinical benefit
• Response data without patients with > 75% and 100% reduction in

migraine days
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Perhaps the most remarkable finding in the clinical trials of all the CGRP anti-
bodies has been evidence for a significant number of migraine patients who are
hyper-responders to prolonged CGRP modulation. In these trials, some patients have
had an unprecedented drop of > 75% in their migraine headache days or, amazingly,
complete resolution of their migraine headache attacks. Interestingly, too, recent data
from Lilly suggests that the onset of action of LY2951742 is as early as one week after
dosing [98], and treated patients meeting < 50% response criteria after one month
could go on to continue their improvement in subsequent months, with a proportion
becoming hyper-responders [99].
Data with AMG334 also showed a significant percentage of hyper-responders. Com-

pany communications [100] have reported that 62% of the AMG334 patients demon-
strated a greater than 50% reduction in migraine days after monthly treatment for 52
weeks, with 38% getting a 75% or better response and one in five declaring that they
were free of migraines. We need now to do more research to deconstruct migraine and
the characteristics of the patients in the clinical trials in order to understand the reasons
underlying these hyper-responders further.
It remains to be proved whether the three CGRP neutralizing anti-bodies (TEV48125,

LY2951742 andALD-403) aremore similar than different. It is worth remembering that,
for the CGRP ligand antibodies, the doses required for efficacy will be a product of the
drug concentration needed to give sustained neutralization of CGRP and the clearance
rate, or plasma half-life, of the antibody-ligand conjugate. For the neutralizing antibod-
ies, it is therefore differences in half-life and bioavailability by SC or IM routes, rather
than affinity for CGRP (as all are reported to have similarly high binding, despite never
having been tested head-to-head) that will be the key to dose, duration of action and
dosing intervals.
Other key differentiators may ultimately relate to their pharmaceutical, rather than

pharmacological, properties (viscosity, needle size required for delivery, and suitability
for novel delivery devices) that drive the ability to deliver the drug in different formats,
IV versus SC/IMand, consequently, whether quarterly, as well asmonthly dosing, is pos-
sible to pursue. In contrast, the clinical pharmacodynamic profile of the CGRP receptor
anti-body AMG-334 may well differ, due to its alternative mechanism of action. For
the CGRP receptor antibody, duration of action will be a function of the dose required
to sustain blocking concentrations above the turnover rate of the drug-CGRP recep-
tor complex, and this is likely to differ from the plasma half-life of the drug itself. The
turnover rate of the CGRP receptor complex is currently unknown, but higher doses
of AMG-334 than those studied to date may be required to saturate this CGRP recep-
tor turnover process and give improved efficacy. Similar to the neutralizing antibodies,
the pharmaceutical properties of the antibody will also be important for dosing and
delivery.
It is a rare and exciting time for patients to have four novel antibody therapeutics

directed at the same pathophysiology and therapeutic indication competing for a
first-to-market advantage. The race is now on for the three CGRP ligand-neutralizing
antibodies TEV48125, LY2951742 and ALD-403, which will attempt to differentiate
themselves from one another and the CGRP receptor antibody AMG-334 in late phase
clinical trials. From public company disclosures, it is very likely that, in 2016–2017,
all the mAbs will be in the midst of Phase 3 clinical trials in frequent episodic and
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chronic migraine using SC monthly dosing regimens and, additionally, will be explor-
ing the possibility of dosing every three months on a quarterly schedule. To date,
only ALD403 is being developed for the IV route with quarterly administration. On
these timelines, it is conceivable that these molecules could be filed and launched in
2018–2019.

9.6.4 Safety and tolerability of the CGRP antibodies

The consequences of long-term CGRP system blockade were previously unknown but,
to date, all four CGRP antibodies look generally safe and well tolerated [70, 91–94].The
final profiles await the outcomeof longer-term studies, with greater numbers of patients,
to see whether there are differences between the CGRP-ligand neutralizing and CGRP
receptor antibodies. To date, there is no evidence for the hepatotoxicity liability that
was seen with small molecule CGRP antagonists in chronic daily use, indicating that
this adverse safety finding was, indeed, most likely to have been molecule-based and
not mechanism-based in nature. Moreover, there is no evidence for the cardiovascular
adverse effects, whose specter plagued the Triptan drug class [101].
Notably, the unremarkable 12-month open label extension safety data recently

released by AMGEN on their CGRP receptor antibody AMG334 [100] given at 70mg,
was very reassuring for the prospects of all the Phase 3 trials, given that it has a similar
mode of action to the receptor blocking small molecule antagonists. In the Phase 3
studies it will be important to watch for signals of immunogenicity, and the presence
of neutralizing and anti-drug antibodies that could underlie increased clearance or
inactivation of the therapeutic antibody, leading to inefficacy. These properties may
vary between the CGRP ligand and receptor antibody candidates since, for circulating
peptides such as CGRP, rather than receptors that are not shed into the circulation,
neutralizing antibodies may well exist before drug administration. In Phase 2 studies
reported to date, if anti-drug antibodies have been found, then these were detectable
before drug administration and did not generally increase in titer significantly after
exposure – but more data is required from optimized immunoassays run on larger
numbers of samples from the Phase 3 trials.

9.7 Summary and conclusion

It is now 25 years since the discovery of the Triptans, the last new class of drugs to
advance the treatment of migraine headaches.The physiological and clinical pharmaco-
logical evidence implicating CGRP in the trigeminovascular system in migraine pain is
now proven.The need for better migraine preventative agents has long been unsatisfied,
as inefficacy and lack of tolerability drive poor adherence to therapy [102, 103].
The journal Science recently featured CGRP as the molecule at the heart of migraine

science [104]. CGRP modulators have the potential to provide differentiated, effective
and improved therapy for acutemigraine treatment and prevention of frequent episodic
and chronic migraine. The availability of injectable biologics and small molecule oral
CGRP modulators will provide flexible dosing options for patients, physicians and
payers.
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Levi P. Sowers1,2, Annie E. Tye3 and Andrew F. Russo1–3

1Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242
2VA Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52242
3Neuroscience Program, University of Iowa, Iowa City, IA 52242

10.1 Introduction

Calcitonin gene-related peptide (CGRP) plays a pivotal role in migraine pathogenesis,
and the development of CGRP-mutant mouse models has been fruitful in the ongoing
delineation of the role of CGRP in migraine (Villalon, 2009; Ho, 2010; Russo, 2015a).
Here, we review the currentmousemodels with altered CGRP signaling, and the lessons
learned from each of these models.

10.2 Modeling migraine

Modeling migraine in a mouse poses unique challenges, not the least of which is the
question: how can we tell if a mouse has a migraine? At present, we cannot know for
sure that a mouse has a headache. However, we can measure the headache-associated
symptoms, such as sensitivity to light and touch.
The past decade has witnessed the development of animal models designed to

study migraine-related processes. These models can be broadly categorized in two
paradigms: those using anesthetizing agents to elucidate the relevant molecular
pathways and anatomical networks; and those assessing behavioral output in response
to experimental manipulation in awake animals (Romero-Reyes, 2014).
Of course, the obvious drawback of models using anesthesia is the inability to assess

pain-related behavior. Behavioral tests have been developed to measure sensitivity to
touch and light, and both tests have their advantages and disadvantages. Touch sensi-
tivity is measured by fairly straightforward von Frey filament applications but is limited,
in that it is a nociceptive reflex response. On the other hand, light sensitivity is an oper-
ant response that likely involves higher brain integration, but the assay is more subject
to experimental confounders. Both touch and light sensitivity will be emphasized in the
following discussion of CGRP mouse models.

Neurobiological Basis of Migraine, First Edition. Edited by Turgay Dalkara and Michael A. Moskowitz.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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10.3 Calcitonin gene-related peptide (CGRP) in migraine

CGRP is a widely expressed neuropeptide that has a potent vasodilatory effect. It
functions as a regulator of cardiovascular tone, with a specific role in protecting
tissues against ischemic damage (Benarroch, 2011; Russell, 2014; Russo, 2015a). In
addition, CGRP plays a major role both in the development of peripherally-mediated
neurogenic inflammation and in centrally-mediated neuromodulation of nociceptive
inputs (Moskowitz, 1979, 1984, 1993; Mayberg, 1981, Liu-Chen, 1983; van Rossum,
1997; Benarroch, 2011; Raddant, 2011; Russo, 2015a; and see Figure 10.1).
Two isoforms of CGRP, αCGRP and βCGRP, are expressed from neighboring genes

(Amara, 1985; Mulderry, 1988). The peptides have nearly identical sequences and func-
tions. αCGRP is the isoform implicated in migraine, due to its relative prevalence in the
trigeminal nerve. The remainder of this chapter will refer to αCGRP simply as CGRP,
unless noted otherwise.
It is now well accepted that CGRP contributes to migraine pathophysiology. Serum

CGRP levels are elevated during migraine, and this increase can be reversed with
sumatriptan (Goadsby, 1990, 1993; Juhasz, 2005). CGRP is also elevated in people
with chronic migraine (Cernuda-Morollon, 2013). Injection of CGRP causes delayed
onset of headache, but this is only seen in migraineurs (Lassen, 2002; Hansen, 2010).

Mast cells

Dural vessel

S1/S2 V1/V2

Po

PAG

SpVAmg

Hyp

RMg

TG

Figure 10.1 Potential sites of CGRP action. CGRP could be acting at both peripheral and central sites.
CGRP release in the periphery may act during migraine to activate the spinal trigeminal nucleus
leading to pain. CGRP release in the brain could be acting on a number of possible target nuclei to
induce both sensory abnormalities and pain. Abbreviations: Amg – amygdala; Hyp – hypothalamus;
TG – trigeminal ganglion; PAG – periaqueductal gray; Po – posterior thalamus; Rmg – raphe magnus;
SpV – spinal trigeminal nucleus; S1, S2 – somatosenstory cortex; V1, V2 – visual cortex.
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Notably, while there are other vasodilators that may be sufficient to induce headache
(e.g., PACAP and nitroglycerin), this is not a property of all vasodilators, specifically
VIP (Rahmann, 2008).
Finally, CGRP has become a target for the treatment of migraine (Olesen, 2004; Ho,

2008; Connor, 2009; Diener, 2011; Hewitt, 2011; Marcus, 2014). Small-molecule CGRP
receptor antagonists have been shown to be quite effective in treating migraine but,
although promising, production of these inhibitors was discontinued, due to liver toxi-
city following daily doses over two months (Ho, 2014). Recent developments in human-
izedmonoclonal antibodies have beenmore fruitful (Dodick, 2014a, 2014b; Bigal, 2015a,
2015b; Sun, 2016). Promising data indicate that these antibodies have the potential to
be used as a prophylactic treatment for migraine (see Chapter 9).

10.4 What has CGRP manipulation in mice taught us about
migraine?

The objective of this section is to review the current state of migraine research, using
mouse models that affect CGRP signaling (Table 10.1).The CGRPmutants include both
loss and gain of function models that affect either the CGRP ligand or CGRP receptor.

10.4.1 CGRP ligandmousemodels

To date, several lines of 𝛼CGRP knockout mice have been generated, which are
described below. However, to our knowledge, there have not been any 𝛽CGRP
knockouts, nor have there been any lines that overexpress CGRP.
A handful of CGRP knockout mouse models have been developed, with a few key

differences that can help hone in on the functional roles played by CGRP in migraine
pathophysiology. CGRP and calcitonin (CT) are alternative splicing products of the
CALCA gene, so creative engineering of themouseCalca gene has created bothαCGRP-
and calcitonin (CT)/αCGRP-knockout models. In addition, the functionally indistinct
βCGRP is expressed from a separate gene. Although migraine-specific studies have yet
to be undertaken in CGRP knockout models, other phenotypes, including pain, have
been characterized to some degree (Zhang, 2001).
Nociceptive responses in two lines of CGRP knockout mice have been reported.

CT/αCGRPknockout display normal baseline responses to noxious heat stimuli (Zhang,
2001). However, prolonged peripheral inflammation induced by kaolin/carrageenan has
resulted in no secondary hyperalgesia to heat in the knockout mice, while a significant
decrease in paw withdrawal latency has been observed in wild type counterparts
(Zhang, 2001). These results are interesting in terms of migraine, because they suggest
that CGRP may underlie central sensitization in migraine pain.
Likewise, another strain of αCGRP knockout mice, made by targeted disruption of

exon 5 of the CT/αCGRP gene, display reduced edema formation and nociception in
response to chemical pain associated with inflammation (Salmon, 2001). Moreover,
these mice display a lack of ATP-induced in vivo thermal hyperalgesia and reduced
morphine analgesia (Salmon, 1999; Devesa, 2014). These data suggest that CGRP is
involved with the transmission of pain associated with neurogenic inflammation.
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Table 10.1 Mouse models that affect CGRP signaling.

Model Background Phenotype Reference

αCGRP−∕− 129Sv Reduced sound-evoked activity and
vestibulo-ocular reflex; bone loss due to
decreased formation; normal
cardiovascular and neuromuscular
development; enhanced colitis in a model
of inflammatory bowel disease

Lu 1999, Maison
2003, Schinke
2004, Thompson
2008, Luebke 2014

αCGRP−∕− 129Sv x
C57Bl/6

Increased HR and high BP due to
increased peripheral vascular resistance;
antigen challenge decreased bronchial
hyperresponsiveness; reduced
leukotrienes in lungs; decreased
insulin-like growth factor release;
impaired blood flow after hind limb
ischemia

Oh-hashi 2001,
Aoki-Nagase 2002,
Zhao 2010,
Mishima 2011

αCGRP−∕− 129Sv x
C57Bl/6

Suppressed wound healing; reduced
tumor-angiogenesis

Toda 2008a, Toda
2008b

αCGRP−∕− C57Bl/6 Reduced morphine analgesia; attenuated
pain response to chemical pain and
inflammation; reduced morphine
withdrawal signs; prevented ATP-induced
thermal hyperalgesia; increased
angiotensin II-induced hypertension and
oxidative stress

Salmon 1999,
Salmon 2001,
Devesa 2014,
Smillie 2014

CT/αCGRP−∕− 129Sv x
C57Bl/6

Increased BP; decreased β-CGRP mRNA;
increased bone formation

Gangula 2000,
Hoff 2002

RAMP1−∕− C57Bl/6 x
BALBc

Hypertensive but normal HR; increased
serum CGRP and pro-inflammatory
cytokines

Tsujikawa 2007

RAMP1−∕− BALBc Increased LPS-induced inflammation Mikami 2014
hRAMP1
over-expression

C57Bl/6 x
129Sv

Global hRAMP1 overexpression resulted
in increased CGRP-induced vasodilation;
decreased angiotensin II-induced
hypertension and endothelial dysfunction.
Nervous system hRAMP1 overexpression
(nestin/hRAMP1) resulted in
light-aversive behavior; mechanical
allodynia; reduced motility in the dark;
lean body mass due to increased
sympathetic activation of brown fat

Recober 2009,
Marquez de Prado
2009, Recober
2010, Sabharwal
2010, Chrissobolis
2010, Zhang 2011,
Fernandes-Santos
2013

RAMP2−∕− 129Sv Die in utero due to intersitial lymphedema Dackor 2007,
Fritz-Six 2008

RAMP2−∕− C57Bl/6 Die in utero due to abnormal angiogenesis
(edema/hemorrhage)

Yamauchi 2014

RAMP2+∕− C57Bl/6 Reduced neovascularization; increased
vascular permeability; delay in CBF
recovery; increased
inflammation/oxidative stress; increased
neuronal death

Ichikawa-Shindo
2008, Igarashi
2014

(Continued)
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Table 10.1 (Continued)

Model Background Phenotype Reference

RAMP2
over-expression

B6D2F1 Smooth muscle overexpression resulted in
normal basal BP and HR; enhanced
response to AM; not protected from
angiotensin II-induced hypertension and
cardiac hypertrophy

Tam 2006, Liang
2009

DI-VE-RAMP2−∕−
DI-LE-RAMP2−∕−

C57Bl/6 x
BALBc

Vascular structural abnormalities;
spontaneous vascular inflammation and
organ fibrosis

Yamauchi 2014

RAMP3−∕− C57Bl/6 x
BALBc

Delayed lymphatic drainage; intestinal
lymphatic vessels reduced in size; more
severe lymphedema; increased leukocytes
and mast cells

Yamauchi 2014,
Dackor 2007

CTR+∕− C57Bl/6 Increased bone formation and mass Davey 2008
Calclr−∕− 129s6/SvEv Die in urtero due to extreme hydrops

fetalis; display extreme interstitial edema
Dackor 2006

Other neurological abnormalities arise inmice lacking CGRP. A recent report showed
the loss of αCGRP resulted in vestibular abnormalities. Specifically, the mice showed a
reduced vestibulo-ocular reflex (Luebke, 2014). In addition, thesemice displayed abnor-
mal growth of cochlear neural responses with increasing stimulus levels (Maison, 2003).
These results are interesting, because many migraine patients can display vestibular
abnormalities during migraine (Stolte, 2015).
In contrast to pain phenotypes, the effect of CGRP loss on the cardiovascular system

has yielded conflicting results in different knockout strains. Two lines showed a delete-
rious effect on resting parameters. A αCGRP knockout strain showed increased arterial
pressure, heart rate, and peripheral vascular resistance (Oh-hashi, 2001). In addition,
these mice displayed decreased bronchial hyper-responsivity to an antigen challenge
and decreased insulin-like growth factor release (Aoki-Nagase, 2002; Zhao, 2010). Sim-
ilarly, mice that lacked both CT and αCGRP had increased resting blood pressure (Gan-
gula, 2000). Conversely, two other strains lacking αCGRP had no changes in resting
cardiovascular parameters (Lu, 1999; Smillie, 2014).
The reason for these differences is not known, but may be due to different approaches

used to knockout αCGRP or genetic backgrounds. However, one of the latter CGRP
knockout mice did have enhanced hypertension and aortic hypertrophy following
angiotensin II-induced hypertension, suggesting that CGRP helps maintain vascular
health in response to physiological challenges (Smillie, 2014). These phenotypes
are important to note concerning migraine, due to the development of monoclonal
antibodies targeted against CGRP, which will reduce CGRP levels over the long-term.
Interestingly, the CGRP knockout strain that showed a resting cardiovascular pheno-

type (Oh-hashi, 2001) also had elevated sympathetic nervous activity.This phenotype is
possibly consistent with elevated CGRP contributing to sympathetic nervous hypoac-
tivity in migraine (Peroutka, 2004). This same CGRP knockout strain showed other
vascular phenotypes. Upon unilateral limb ischemia, CGRP knockout mice displayed



�

� �

�

180 Neurobiological Basis of Migraine

impaired blood flow recovery and decreased capillary density. These data suggest that
CGRP contributes to angiogenesis in response to ischemia (Mishima, 2011).
Other phenotypes may or may not be important for migraine research, but should be

noted. Specifically, one αCGRP–/– mouse line displayed an abnormal bone phenotype,
along with enhanced colitis, in a model of inflammatory bowel disease (Schinke,
2004; Thompson, 2008). Another showed decreased wound healing and reduced
tumor-associated angiogenesis (Toda, 2008a, 2008b). Finally, the αCGRP–/– mice
developed by Oh-hashi et al. (2001) were shown to have decreased insulin-like growth
factor release in multiple areas of the body (Harada, 2007).

10.4.2 CGRP receptor mutant mousemodels: CLR, CTR, and the RAMPs

The classical receptor for CGRP consists of a heteromeric complex of calcitonin
receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and
receptor component protein (RCP) (Poyner, 2002). Recent evidence shows that CGRP
also binds to the amylin receptor, which is composed of RAMP1 and the calcitonin
receptor (CTR) (Walker, 2015). Two receptors that bind the CGRP-like peptide
adrenomedullin can be formed by the binding of CLR with RAMP2 or RAMP3
(Poyner, 2002). Although these receptors can also bind CGRP, the binding occurs with
much lower affinities. It is likely that these interactions are less important in migraine
pathophysiology, as clinically effective antagonists specifically target CLR/RAMP1 and
not CLR/RAMP2 or CLR/RAMP3. Furthermore, injection of adrenomedullin into
human migraineurs fails to induce migraine (Petersen, 2009).

10.4.2.1 Calcitonin receptor-like receptor (CLR)
Calcitonin receptor-like receptor knockout (Calcrl–/–) mice have major defects, includ-
ing in the cardiovascular system, but die in utero so, therefore, migraine-like symptoms
have not been studied (Dackor, 2006).

10.4.2.2 Calcitonin receptor (CTR)
Although the CT receptor is not viewed as the canonical receptor for CGRP, CGRP can
bind the CTR/RAMP1 complex with comparable affinity, as seen with CLR/RAMP1
(Walker, 2015). Given the presence of CTR/RAMP1 complexes in the rodent and human
trigeminal ganglion, the possibility that CTR may contribute to migraine remains an
open question, although no link has been discovered (Walker, 2015). To date, the only
phenotype reported for CTR knockout mice involved abnormal calcium homeostasis
(Davey, 2008).

10.4.2.3 hRAMP1 overexpressingmice
Studies suggest that migraineurs are particularly sensitive to CGRP, which led our lab-
oratory to speculate whether CGRP receptor overexpression in mice could recapitu-
late a migraine-like phenotype. Our lab developed a CGRP-sensitized mouse model
by overexpressing the rate-limiting component of the CGRP receptor, RAMP1 (Russo,
2015b). Gene transfer studies using human RAMP1 (hRAMP1) in cultured trigeminal
neurons and vascular smooth muscle cells demonstrated that RAMP1 is functionally
rate-limiting (Zhang, 2006, 2007). In contrast, overexpression of RCP did not have any
detectable effect on CGRP receptor activity (unpublished data).
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To generate a mouse model, the approach was to use double-transgenic mice that
express hRAMP1 under the control of the neuronal and glial-specific nestin promoter
in a Cre-dependent manner.The transgenic nestin/hRAMP1mice had an up to twofold
increase in the level of RAMP1 (combination of endogenous mouse RAMP1 and trans-
genic hRAMP1) in the nervous system (Zhang, 2007).
The nestin/hRAMP1 mice have proven to be a valuable tool in the elucidation of

CGRP’s role in migraine symptomology. The mice showed two migraine relevant phe-
notypes in the light aversion assay (Recober, 2009a, 2010; Kaiser, 2012):

1) intracerebroventricular injection of CGRP caused nestin/hRAMP1 mice to go into
the dark; and

2) once in the dark, they displayed reducedmotility, which was not seen in the light side
of the chamber.

The latter observation is reminiscent of the behavior of human migraineurs, who will
actively seek out a darkened room where they can rest quietly.
It was then askedwhether intracerebroventricular CGRP in combinationwith a bright

light stimulus (27 000 lux, which approximates a sunny day)would be sufficient to induce
light aversion in wild type (C57Bl/6J) mice. After a habituation period, which served to
reduce the natural exploratory drive, a significant reduction in time spent in the light
by wild type mice was seen, similar to that with nestin/hRAMP1 mice (Recober, 2009a;
Kaiser, 2012).
To support the idea that these mice were experiencing migraine-like phenotypes,

rizatriptan was used to treat light-aversive behaviors in both the nestin/hRAMP1
mice and C57Bl/6J mice. Pre-treatment led to a significant reduction in light-aversive
behaviors and also restored normal motility in these mice (Recober, 2009b; Kaiser,
2012).
In addition to the light-dark assay, mechanical allodynia was tested in order to assess

pain thresholds in the nestin/hRAMP1 mice. Mechanical allodynia is a problem for
many migraineurs. In fact, 40–50% of patients experience sensitization to cutaneous
stimuli (Burstein, 2000; LoPinto, 2006) (see Chapter 7).While this mechanical allodynia
is predominant in the facial region, 36% of patients report having allodynia in extra-
cephalic regions. Following intrathecal CGRP administration in nestin/hRAMP1 mice,
therewas a significant decrease inwithdrawal thresholds to vonFrey filaments (Marquez
de Prado, 2009). Moreover, capsaicin increased mechanical responses in both wild type
and nestin/hRAMP1 mice, but a higher dose was required in wild type mice (Marquez
de Prado, 2009).
Cardiovascular phenotypes were also observed in these mice. In mice with global

hRAMP1 overexpression, the mice displayed increased CGRP-induced vasodilation
and decreased angiotensin II-induced hypertension and endothelial dysfunction
(Chrissobolis, 2010; Sabharwal, 2010). It was also found that the nestin/hRAMP1
mice displayed an unexpected lean body mass phenotype, which was likely caused by
increased sympathetic activation of brown fat metabolism, due to increased amylin and
CGRP activity (Zhang, 2011; Fernandes-Santos, 2013).
From the nestin/hRAMP1 mice, it was determined that CGRP and its receptor could

induce migraine-like phenotypes, including reduced motility, light-aversive behaviors,
and mechanical allodynia (Marquez de Prado, 2009; Recober, 2010). When taken
together, these data demonstrate that CGRP may be a significant player in migraine
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pathophysiology, and suggests that CGRP could contribute to central sensitization in
migraine.

10.4.2.4 RAMP1 knockout
Ramp1–/– mice appear normal and display normal fertility. Ramp1–/– mice do not dis-
play a vasodilatory response to CGRP, compared with wild type counterparts, which
confirms that CGRP’s effects are mainly through receptors containing RAMP1. As with
some of theCGRP knockoutmice, theRamp1–/– mice show elevated blood pressure, rel-
ative to controls (Tsujikawa, 2007). These data illustrate the importance of RAMP1 in
maintaining normal blood pressure. In addition, experiments in Ramp1–/– mice suggest
that CGRP could act as an anti-inflammatory agent in response to lipopolysaccharide
injection in mice (Tsujikawa, 2007). Another pedigree of Ramp1–/– mice also had an
impaired immune phenotype, with attenuated asthma-like responses (Li, 2014). Like the
CGRP knockout mice, the Ramp–/– strains show conflicting cardiovascular phenotypes.
Li et al. showed that their Ramp1–/– mice had normal blood pressure indistinguishable
from wild type controls.

10.4.2.5 RAMP2 overexpression
Mice overexpressing RAMP2 in vascular smooth muscle had normal basal arterial
blood pressure and heart rate; relative to wild type controls; but were not protected
from Angiotensin II-induced hypertension and cardiac hypertrophy (Tam, 2006; Liang,
2009). CLR/RAMP2 forms a receptor that mainly binds adrenomedullin, although
CGRP can bind weakly to CLR/RAMP2. Treating the RAMP2 overexpressing mice
with adrenomedullin resulted in increased vasodilation when compared to wild type
mice. In contrast, CGRP injection in these mice did not show any differences compared
to wild type mice.

10.4.2.6 RAMP2 knockout
Multiple lines of Ramp2–/– mice are embryonic-lethal. These mice fail to form proper
vasculature, and die early in embryonic development (Dackor, 2007; Fritz-Six, 2008;
Ichikawa-Shindo, 2008). To overcome this, drug-inducible tissue specific Ramp2
knockouts were developed to examine the role of RAMP2 in vascular and lymphatic
endothelial cells (DI-VE-RAMP2–/– and DI-LE-RAMP2–/–, respectively) (Yamauchi,
2014). Both models displayed structural abnormalities in the vasculature, spontaneous
vascular inflammation, and organ fibrosis.
These data are in agreementwith a number of studies that strongly link RAMP2 to vas-

cular development (Yamauchi, 2014).HeterozygousRamp2+/– mice had a slight increase
in baseline blood pressure and blunted vasodilatory responses to adrenomedullin, and
normalCGRP responses (Ichikawa-Shindo, 2008). In contrast, a heterozygousRamp2+/–

model displayed an outwardly normal phenotype, although reduced fertility (Igarashi,
2014). After experimentally induced occlusion of the middle cerebral artery, these mice
showed delayed recovery of cerebral blood flow, increased inflammation and oxidative
stress, and increased neuronal death (Igarashi, 2014).

10.4.2.7 RAMP3 knockout
Ramp3–/– mice are normal at birth, and have and show no developmental problems
or aberrations in blood pressure or heart rate. However, in a model of post-operative
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lymphedema (Yamauchi, 2014), Ramp3–/– mice exhibited delayed lymphatic drainage,
possibly due to reduced lymphatic vessel diameter, as well as increased lymphedema
with concurrent increases in leukocyte and mast cell populations (Yamauchi, 2014).

10.5 Conclusions

In general, the phenotypes of CGRPmutant mice are consistent with CGRP being a key
player in hypersensitivity to some stimuli that are associatedwithmigraine.With respect
to nociceptive stimuli, mice lackingCGRP andmicewith elevatedCGRP receptors show
decreased and increased responses, respectively. Likewise, mice with elevated CGRP
receptors show increased sensitivity to light. CGRP mutant mice also tend to show a
lack of compensation to vascular challenges in the absence of CGRP activity, which
is mirrored by increased resilience to some of those same challenges when the recep-
tor is overexpressed. Whether, or how, these vascular functions contribute to migraine
remains an open question. Future studies onCGRPmousemodels will allow us to define
the mechanisms by which CGRP is acting in migraine pathophysiology.
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11.1 Overview of migraine

Migraine is a collection of symptoms that may include headache, malaise, nausea, vom-
iting, hypersensitivity to several modes of sensory input (light, sound smell), and often
disquieting focal neurological symptoms.Migraine attacks can be variable from one suf-
ferer to another, or even within a given individual, with some attacks predominated by
neurological symptoms and others by severe head pain. It is clear thatmigraine is a brain
disorder that, at its essence, reflects lowered activation thresholds for the trigeminocer-
vical pain system and for a human form of cortical spreading depression, which under-
lies the transient focal neurological symptoms of migraine. Migraine is common, with
an estimated one-year prevalence of 7% of men and 18% of women in the USA. [1].
Migraine may appear in early childhood, but most often starts in late childhood or early
adolescence, gradually increasing to peak prevalence in the 30s or 40s, and decreasing
as age increases [2].
The disorder occurs in both episodic and chronic forms, as established by the Inter-

national Headache Society.The occurrence of headaches for 15 or more days per month
for three months or more constitutes chronic migraine, if the headaches are classifi-
able as migraine for at least eight days per month. In episodic migraine, there are less
than 15 headache days per month. In our experience, the most common presentation of
chronic migraine is daily or almost daily low-grade headaches, with full-blownmigrain-
ous attacks superimposed for two or more headache days per week. The centerpiece of
the migraine syndrome is a headache that occurs in most attacks.

11.2 Migraine prodrome

About 60% ofmigraineurs report that at least some of their attacks are preceded by neck
stiffness, food cravings, vague symptoms such as fatigue and yawning, or mood changes

Neurobiological Basis of Migraine, First Edition. Edited by Turgay Dalkara and Michael A. Moskowitz.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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Modified Blau 1992

Clinical Phases of a
Migraine Attack
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HEADACHE

Figure 11.1 Classical progression of the migraine attack (Modified from Blau 1992) [9].

from two up to 48 hours prior to the onset of migraine headache (see Figure 11.1) [3, 4].
In a prospective electronic diary-based study, the most common prodromal symptoms
were a feeling of tiredness, difficulty concentrating and neck stiffness [5].

11.3 The migraine headache is the centerpiece of the
syndrome

Migraine patients have varied descriptions of their headaches. In most cases, the pain is
sufficient to disrupt normal activities, although the intensity ranges frommerely annoy-
ing to disabling. Headache intensity may vary to some degree from attack to attack.The
severity of a migraine headache is often worsened by routine physical activity. Migraine
headaches are typically unilateral, or at least more severe on one side. However up to
40% of patients have attacks in which the pain is bilateral, or even holocephalic, from
the beginning.
When unilateral, the pain consistently occurs on the same side in only about 20%

of patients. The quality of the pain may be pressure-like, throbbing, or a combination
of both. In many patients, the throbbing appears only as the intensity of the pain
reaches a moderately severe level. In patients with chronic migraine, there may also be
intermittent jabbing pain, which is usually experienced in the area where the pain has
been most intense.
When occurring episodically, the headache generally escalates from mild pain to a

more severe level over an hour or two. In many patients, the more severe headaches are
accompanied by nausea, which may range frommild queasiness and anorexia, to severe
prolonged vomiting and retching. Vomiting occurs in about one third of patients [4].In
addition, migraine headaches are also frequently associated with heightened sensitivity
to light, sound and smells.
In adults, untreated episodic attacks persist for at least four hours, and may continue

for up to three days. In the chronic form of migraine, the patient has some degree
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of low-grade headache, with or without nausea or light/sound sensitivity, every day
or almost every day, with less common full-blown migraine attacks superimposed
on a background of daily headaches. As a result, when asked the duration of their
headaches, patients with chronic migraine may respond that their headaches last for
weeks or months. In addition to head pain, patients also frequently experience a feeling
of malaise or extreme fatigue during an attack.These symptoms are often unresponsive
to acute migraine treatments, and may be misinterpreted by the patient as a side-effect
of their abortive headache medication.
Migraine headache is based on recurrent activation of the trigeminocervical pain sys-

tem (TCPS). In migraineurs, the activation threshold for head pain is altered, to the
extent that the TCPS can be falsely and repeatedly activated by triggering factors in the
internal or external environment that represent no immediate threat to the brain (see
(Table 11.1)).
The International Headache Society has codified the characteristics of the migraine

headache into a set of diagnostic criteria for migraine without aura [4].

Table 11.1 Common environmental triggers
for migraine.

• Certain foods or food additives
• Menstrual cycle
• Barometric pressure or weather change
• Sleep pattern disturbance
• Bright or glaring light
• Loud noises
• Strong smells
• Fasting or missing a meal
• Physical exertion
• Stress or release from stress
• Alcohol

A) At least five attacks fulfilling criteria B–D
B) Headache attacks lasting 4–72 hours (untreated or unsuccessfully treated)
C) Headache has at least two of the following four characteristics:

1) unilateral location
2) pulsating quality
3) moderate or severe pain intensity
4) aggravation by or causing avoidance of routine physical activity (e.g. walking or climbing

stairs)
D) During headache at least one of the following:

1) nausea and/or vomiting
2) photophobia and phonophobia

E) Not better accounted for by another ICHD-3 diagnosis

Figure 11.2 Migraine without aura [4].
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11.4 Migraine aura

Approximately 30% of migraine sufferers experience one or more transient focal neuro-
logical symptoms, known as themigraine aura [6].Themigraine aura develops gradually
(in more than four minutes), and persists for up to one hour. The typical aura emanates
most often from the cerebral cortex. New aura types proposed in the IHCD 3 beta [4]
would arise from brain stem and retina.The classical aura types include: visual, sensory,
language and motor symptoms (see Figure 11.3).
Typical auras include transient visual, sensory and language disturbance.

11.4.1 Visual aura

The classical migraine visual aura begins with a small area of visual disturbance lateral
to the point of visual fixation. This disturbance is homonomous, and may be an area of
visual loss or a bright spot.The visual disturbance has a positive phase, followed by a neg-
ative phase. The positive phenomena include a visual disturbance that slowly expands,
over five minutes to one hour, to involve a hemifield or quadrant of vision [7]. The
expandingmargin of the visual disturbancemay have the appearance of zigzagging lines
or geometric shapes, known as fortification spectra because of their similarity to walls of
amedieval town, inwhich fortification lineswere arranged at right angles to one another.
As the aura progresses, it may assume a sickle or “C” shape, with shimmering edges

(scintillations), with or without color. The negative phase consists of a complete lack
of image left in the wake of the expanding scintillations – an area of visual loss called
a scotoma [8]. Colored dots, bean-like forms, bright bars, simple flashes (phosphenes),
specks, white dots, curved lines, or other geometric formsmay also be seen [6, 8]. Vision
returns centrally as the disturbance spreads to the periphery [7] (See Figure 11.4).

11.4.2 Sensory aura

Just as in the visual aura, the sensory usually has both positive symptoms (spreading
or migratory paresthesias), followed by numbness, a negative symptom [7]. The classic

A) At least two attacks fulfilling criteria B and C
B) One or more of the following fully reversible aura symptoms:

1) Visual
2) Sensory
3) Speech and/or language
4) Motor
5) Brain stem
6) Retinal

C) At least two of the following four characteristics:
1) At least one aura symptom spreads gradually over fiveminutes, and/or two ormore symptoms

occur in succession
2) Each individual aura symptom lasts 5–60 minutes
3) At least one aura symptom is unilateral
4) The aura is accompanied, or followed within 60 minutes, by headache

D) Not better accounted for by another ICHD-3 diagnosis, and transient ischemic attack has been
excluded

Figure 11.3 Migraine with aura [4].
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Figure 11.4 Representation of the classical migraine visual aura. Note the positive visual hallucination
(fortification spectra), followed by negative visual phenomena (scotoma).

term for sensory aura, cheiro-oral, describes the typical appearance of tingling, followed
by numbness that starts in the hand and then migrates up the arm to involve the face,
lips, and tongue. Sensory aura may also involve the leg, foot, or body as well [10]. In
many instances, what a patient is calling “weakness” in an arm or leg by the patient may
actually be clumsiness that arises when proprioception is lost in the context of a sensory
aura. Therefore, it is very important, whenever a patient complains of “weakness”, to
clarify whether it is clumsiness associatedwith the sensory aura, or true weakness which
is much rarer [7].

11.4.3 Language aura

Almost as common as sensory aura is language disturbance, the third type of migraine
aura. This symptom can be quite distressing for the patient, given the impact it has on
comprehension and communication due to word-finding difficulties, and a decreased
ability to read or write [10]. It should be remembered that cheiro-oral sensory changes
can cause a slurring speech disturbance arising from loss of sensation in the tongue, and
should not be confused with a language aura [10].
Word-finding difficulty is themost common type of language aura, but expressive and

receptive language impairment can certainly occur [11]. Apraxia, proper name agnosia,
transient amnesia, and prosopagnosia have all been attributed to language aura in the
literature [12]. When headache patients are asked if they have any trouble thinking or
talking during an attack, they may report non-specific cognitive issues that do not meet
the criteria for language aura. Cognitive symptoms, such as impairment of attentional
performance, lack of concentration, mental “cloudiness” or “fuzziness” may be separate
from language aura, and can also be seen in migraine without aura (and other headache
types) [13]. Therefore, in order to assign the correct diagnosis, the astute clinician will
need to evaluate the details of the language disturbance carefully.
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11.4.4 Duration of typical aura

Typical migraine aura gradually appears, spreads and resolves over a period of 5–60
minutes for each aura symptom. If a patient has more than one type of typical aura,
they typically occur in succession, and not simultaneously. If a typical migraine aura
persists for longer than an hour (but less than one week), it is then termed probable
migraine with aura [4]. However, a recent review found that 12–37% of migraine aura
sufferers report that at least some of their aura symptoms last longer than an hour
[14]. In addition, cases of aura lasting days and weeks have been well documented [15].
Such prolonged auras have formerly been called “complicated migraine”; however the
ICHD-3 beta classification refers to them as persistent aura without infarction when
they persist for more than a week [4].

11.4.5 Motor aura or hemiplegic migraine

In the past, episodes of unilateral motor weakness during migraine attacks were
referred to as motor aura, until the term motor aura was replaced by the Hemiplegic
migraine aura subtype in ICHD-2, soon after genetic mutations underlying motor
aura were identified. Motor aura differs from the typical aura types, in that there is a
much longer average duration of motor weakness in hemiplegic migraine. In attacks of
hemiplegic migraine, unilateral weakness frequently lasts from hours to days – much
longer than the 60 minutes or less associated with the other aura types. In addition, the
symptoms of motor aura do not have obvious positive and negative phases that spread
with time, and no twitching or migratory spasm is noted prior to weakness by patients
with hemiplegic migraine. However, there does seem to be sequential weakness of body
areas during attacks of hemiplegic migraine [10]. It is also important to note that all
patients with hemiplegic migraine also have typical auras in the context of their attacks
(See Figure 11.5).

Migraine with motor aura (hemiplegic migraine)

A) At least two attacks fulfilling criteria B and C
B) Aura consisting of both of the following:

1) Fully reversible motor weakness
2) Fully reversible visual, sensory and/or speech/ language symptoms

C) At least two of the following four characteristics:
1) At least one aura symptom spreads gradually over fiveminutes, and/or two ormore symptoms

occur in succession.
2) Each individual non-motor aura symptom lasts 5–60 minutes, and motor symptoms last <

72 hours.
3) At least one aura symptom is unilateral.
4) The aura is accompanied, or followed within 60 minutes, by headache

D) Not better accounted for by another ICHD-3 diagnosis, and transient ischemic attack and stroke
have been excluded.

Figure 11.5 The ICHD3 beta lists the following criteria for the diagnosis of migraine with motor aura
(hemiplegic migraine) [4].
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Migraine with brainstem aura (previously basilar migraine)

A) At least two attacks fulfilling criteria B–D
B) Aura consisting of visual, sensory and/or speech/ language symptoms, each fully reversible, but

no motor or retinal symptoms
C) At least two of the following brainstem symptoms:

1) Dysarthria
2) Vertigo
3) Tinnitus
4) Hyperacusis
5) Diplopia
6) Ataxia
7) Decreased level of consciousness

D) At least two of the following four characteristics:
1) At least one aura symptom spreads gradually over five minutes, and/or two or more symp-

toms occur in succession
2) Each individual aura symptom lasts 5–60 minutes
3) At least one aura symptom is unilateral
4) The aura is accompanied, or followed within 60 minutes, by headache

E) Not better accounted for by another ICHD-3 diagnosis, and transient ischemic attack has been
excluded.

Figure 11.6 Migraine with brainstem aura (previously basilar migraine) [4].

11.5 Proposed aura types

11.5.1 Brainstem aura

The proposed IHCD3 criteria include aura symptoms arising from the brainstem, as
opposed to the cortex [4]. Weakness is not a feature of migraine with brainstem aura.
Most patients with this type of aura present in early adolescence, and their aura reverts
to a more typical aura in their 40s and 50s [16]. This subtype of aura was previously
termed basilar migraine, as it was thought to be related to spasm and/or compromised
blood flow in the basilar artery territory [17]. As a result, patients with hemiplegic and
basilar-type migraine were excluded from clinical trials involving triptans and, as such,
triptans are contraindicated in these patients. Multiple small case series have been per-
formed showing these drugs may be safe in this condition, but determining risk would
require the exposure of large numbers of patients [18] (See Figure 11.6).

11.5.2 Retinal aura

The most recent proposed criteria also include an aura type consisting of symptoms of
monocular visual loss. This type of aura would be termed retinal aura [4] . Patients may
have difficulty distinguishing a hemianopia from vision loss from one eye. It is critical to
ask patients if they alternately covered one eye. This type of aura is extremely rare, and
other causes of monocular vision loss should be investigated before making this diagno-
sis. Proposed pathophysiology for this aura type is thought to be a spreading depression
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Retinal aura

A) At least two attacks fulfilling criteria B and C
B) Aura consisting of fully reversible monocular positive and/or negative visual phenomena (e.g.,

scintillations, scotomata or blindness) confirmed during an attack by either or both of the fol-
lowing:
1) Clinical visual field examination
2) The patient’s drawing (made after clear instruction) of a monocular field defect

C) At least two of the following three characteristics:
1) The aura spreads gradually over five minutes
2) Aura symptoms last 5–60 minutes
3) The aura is accompanied, or followed within 60 minutes, by headache

D) Not better accounted for by another ICHD-3 diagnosis and other causes of amaurosis fugax have
been excluded.

Figure 11.7 Retinal aura [4].

of the retina, or vasospasm of retinal arterioles [19]. Permanent vision loss has been
described in some patients meeting the criteria [20] (See Figure 11.7).

11.5.3 Migraine aura versus other causes of neurological deficit

There are characteristics of visual and sensory auras that are helpful in differentiating
migrainous aura from symptoms related to cerebral ischemia. Both sensory and visual
auras have a slow migratory or spreading quality, in which symptoms slowly spread
across the affected body part or the visual field, followed by a gradual return to nor-
mal function in the areas first affected after 20–60 minutes. This spreading quality is
not characteristic of an ischemic event [7], in which neurological deficits tend to appear
suddenly and are simultaneously experienced in several body parts.
The recognition of these characteristics was a seminal observation that led to the

formulation of the neurogenic theory of migraine aura [22]. In addition, although a
migratory patternmay also be seen in partial seizure disorders, the progression of symp-
toms in a partial seizure is much more rapid. It is also notable that neither ischemia
nor seizure-based symptoms are associated with the return of function in the areas of
the cortex which were first affected, even as symptoms are simultaneously appearing in
newly affected areas. Lastly, in contrast to transient ischemic attacks, migrainosus aura
is stereotypic and repetitive.
In migraine aura where more than one aura symptom occurs, different neurological

symptoms occur one after the other, and not simultaneously (e.g., visual and sensory
symptoms). Some patients experience all three typical auras in sequence during a single
attack [7]. In over 20 years of asking patients to describe their aura, none have reported
the appearance of all aura types at the same time [7]. In contrast to migraine aura, the
simultaneous appearance of multiple types of neurological symptoms is, however, fairly
common in cerebral ischemia.

11.6 Postdrome

In the majority of patients, the resolution of the migraine headache, often occurring
during a period of sleep, is followed by a wide constellation of continuing symptoms.
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Patients report malaise, fatigue, and variable mood changes, including both depressed
and euphoricmoods, persistent soreness in the area affected by the headache (hypersen-
sitivity), or transient pain with sudden head movement or trivial stimulations, such as
shaving or combing of hair (allodynia), impaired or slowed thinking, or gastrointestinal
symptoms [21]. These symptoms can last hours to days, and can vary from one attack
to the other, both in intensity and quality. This final phase is termed the migraine post-
drome, although patients often refer to it as the migraine “hangover.”

11.7 Status migrainosus

Some individuals are prone to have migraine attacks that persist for longer than 72
hours despite treatment. These attacks are classified as status migrainosus. During sta-
tus migrainosus, headache-free periods of less than four hours (sleep not included)
may occur infrequently, and often follow treatment with analgesics. Status migrainosus
is frequently associated with prolonged analgesic use, which occasionally necessitates
in-patient treatment for the control of pain and associated symptoms. Success in effec-
tively treating status migrainous is inconsistent and, despite aggressive medical therapy
with serotonin agonists, antiemetics, analgesics and even sedation, patients may leave
the hospital with the headache resolving spontaneously at a later time. This pattern
suggests that, in some patients, the migraine attacks reverberate and persist within the
central nervous system until an intrinsic inhibitory system finally suppresses them.

Summary

Theclinical features ofmigraine represent awide array of symptoms, including pain acti-
vation, focal neurological deficits, vegetative dysfunction andmood alteration.Themost
successful lines of research into the neurobiology of migraine originate in, and must
always return for validation, to the clinical migraine syndrome as it occurs in humans.
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The premonitory phase of migraine
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Migraine is a highly disabling disorder of the brain (Akerman et al., 2011; Global
Burden of Disease Study, 2015), characterized by episodes of moderate to severe
headache, often accompanied by a constellation of non-headache symptoms (Headache
Classification Committee of the International Headache Society, 2013). Excluding
migraine aura, non-headache symptoms have been associated with three phases of
attack: the premonitory phase; the headache phase; and the postdrome. Sometimes,
the term prodrome has been used, although, since this includes the premonitory phase
and the aura phase (Headache Classification Committee of the International Headache
Society, 2013), it is both misleading and unhelpful in terms of understanding the
pathophysiology of migraine. Characterization of the phenotype of the premonitory
phase, and understanding its neurobiology, would provide a very significant step
towards understanding migraine better in toto.

12.1 What is the premonitory phase? Towards a definition

Premonitory symptoms are defined in ICHD-3-beta as: “symptoms preceding and fore-
warning of a migraine attack by 2–48 hours occurring before the aura in migraine with
aura and before the onset of pain in migraine without aura” (Headache Classification
Committee of the International Headache Society, 2013). This definition is clearly fun-
damentally flawed, as it means all symptoms between two hours and headache onset are
in limbo, which can account for nearly half of patients (Kelman, 2004). Moreover, when
the premonitory phase is triggered, the symptoms occur well within two hours (Afridi
et al., 2004), consistent with the Kelman (2004) timeline.
Operationally, we have considered premonitory symptoms to be those appearing

before pain that are not clearly aura symptoms (Maniyar et al., 2015). A further
complexity is that the symptoms are not limited to the premonitory phase, but can also
last during the headache and postdromal phases (Giffin et al., 2003). This illustrates the
parallel nature of the biology of the migraine attack (Goadsby, 2002), and the potential
independence from the pain of symptoms such as photophobia and phonophobia.
The most frequent symptoms present in the headache phase, excluding symptoms

Neurobiological Basis of Migraine, First Edition. Edited by Turgay Dalkara and Michael A. Moskowitz.
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mentioned in the ICHD criteria of migraine, are: tiredness; stiff neck; blurred vision;
irritability; difficulty with thoughts; difficulty with reading and writing; and difficulty
with concentration (Giffin et al., 2003). Most frequent premonitory symptoms present
in the postdromal phase are: asthenia; tiredness; stiff neck; light sensitivity; noise
sensitivity; thirst; difficulty with concentration; and difficulty with thoughts (Giffin
et al., 2005; Quintela et al., 2006).

12.2 How common are premonitory symptoms?

Although premonitory symptoms that warn of an impending migraine headache have
been recognized for many years, their population prevalence is uncertain. Early esti-
mates of premonitory symptoms have varied from below 10% to 88% (Drummond and
Lance, 1984; Waelkens, 1985; Rasmussen and Olesen, 1992; Russell et al., 1996; Kel-
man, 2004; Schoonman et al., 2006).Themost comprehensive large scale adult study has
recently reported that 77% of a cohort of 2223 migraine patients reported premonitory
symptoms (Laurell et al., 2015). Similarly, it is reported that two-thirds of a pediatric
cohort had one or more premonitory symptoms (Cuvellier et al., 2009). While these
studies were cross-sectional, and the adult study was questionnaire-based, the preva-
lence fits with the authors’ experience that at least 80% of patients in tertiary clinics have
the symptoms. Sometimes they occur with the headache phase, and this can obfuscate
their identification. Amajor limitation of these studies has been the retrospective nature
of the approaches.

12.3 Do premonitory symptoms reliably predict a migraine
attack?

Giffin and colleagues (2003) used hand-held diaries to study prospectively premonitory
symptoms heralding headache attacks. Seventy-six subjects completed a four-center
clinic-based study. Participants were instructed to keep diaries for three months, and
they recorded a total of 803 attacks, recording potential premonitory symptoms. The
investigators evaluated how often premonitory symptoms were followed by headache
over the next 72 hours. The most common premonitory symptom was tiredness,
reported in 72% of sessions with premonitory symptoms, followed by difficulty with
concentration (51%), and stiff neck (50%). We summarize the prevalence of all symp-
toms in figure 12.1. When premonitory symptoms were reported in the electronic
diaries, they were followed on 72% of occasions by a migraine headache within 72
hours. For 82% of patients, premonitory features were followed by a migraine headache
within 72 hours more than 50% of the time.
To assess the probability of headache following a symptom, the authors calculated

prevalence ratios, the proportion of time a symptom was followed by headache over 72
hours, and the proportion of time that theywere not followed by headache. Interestingly,
yawning, emotional changes and difficult in reading and writing were the most predic-
tive for a migraine headache. In a prospective study with a paper diary, Quintela et al.
(2006) assessed the predictive value of premonitory symptoms, defining “true” premon-
itory symptoms as those experienced the day before the headache had started, but only
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Figure 12.1 Proportion of attack with a non-headache feature reported in the “premonitory phase”
(n= 803, based on Giffin et al., 2003. Reproduced by permission of Wolters Kluwer Health, Inc.).

if they were not reported as present in a questionnaire completed in a pain-free period.
The most common individual true symptoms were anxiety (46%), phonophobia (44%),
irritability (42%), unhappiness and yawning (40%) and asthenia (38%).

12.4 Premonitory symptoms in individuals

The mean number of premonitory symptoms reported per person varied from 0–21,
with a median of 10, in a study by Schoonman et al. (2006). It is notable that Schoon-
man and colleagues inquired about the presence of 12 symptoms, while Quintela and
colleagues used a checklist with 28 symptoms (Quintela et al., 2006). In the Schoonman
study, only gender influenced the number of premonitory symptoms (women reported
a mean of 3.3 symptoms, compared with a mean of 2.5 in men (P = 0.01)), while the
effects of age, education, migraine subtype, and mean attack frequency did not alter
the symptom frequencies. In the Quintela study, “true” premonitory symptoms were
more frequent in patients experiencing migraine with aura episodes, and less in those
who were not using preventives. The median duration of premonitory symptoms was
reported as two hours in a large clinic-based study (Kelman, 2004).

12.5 Intra-patient variability of the premonitory phase

It has been demonstrated that the features of a migraine attack, including the number
and type of premonitory symptoms, are not stereotyped in patients (Viana et al., 2016).
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In the study by Quintela et al. (2006), the consistency of premonitory symptoms in the
60 patients who had completed the questionnaire for three attacks was analyzed. Con-
sistency was reviewed only for those premonitory symptoms which were present in at
least one attack in more than 25% of patients. In these patients, premonitory symptom
consistency in at least two out of three migraine attacks ranged from 25–83% (mean
63%) and, in three out of three, attacks ranged from 6–53% (mean 30%). Concentration
difficulties, unhappiness, anxiety and yawning were the most consistent premonitory
symptoms.

12.6 Difference between patients with and without
premonitory symptoms

Kelman (2004) studied a total of 893 migraine patients, of which 33% reported
prodrome (sic – i.e., premonitory) symptoms. Patients with premonitory symptoms
differed from patients without them in having more triggers as a whole, and more
individual triggers, including alcohol, hormones, light, not eating, perfume, stress, and
weather changes.They also had longer duration of aura, a longer time between aura and
headache, and more aura with no headache. Regarding headache, they had longer time
to peak of headache, longer time to respond to triptan, longer maximum duration of
headache, and more headache-associated nausea. With regard to other symptoms, they
had headache-associated running of the nose or tearing of the eyes, more postdromal
symptoms, and longer duration of postdromal symptoms.

12.7 Premonitory symptoms in children

Cuvellier et al. (2009) retrospectively studied with a questionnaire the prevalence of 15
predefined premonitory symptoms in a clinic-based population. In 103 children and
adolescents fulfilling the ICHD-2 criteria for pediatric migraine (Headache Classifica-
tion Committee ofThe International Headache Society, 2004), at least one premonitory
symptom was reported by 69 (67%). The most frequently reported premonitory symp-
toms were face changes, fatigue and irritability, and the median number of premonitory
symptoms reported per subject was two. Age, migraine subtype, with or without aura,
and mean attack frequency per month had no effect on the number of premonitory
symptoms reported per subject. the authors concluded that premonitory symptoms are
frequently reported by children and adolescents with migraine, and that face changes
seem to be a premonitory symptom peculiar to pediatric migraine. The latter needs
consideration as a cranial autonomic symptom (Goadsby and Lipton, 1997).

12.8 Premonitory symptoms and migraine triggers

Some premonitory symptoms raise challenging questions regarding the nature of mi-
graine triggers.
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Chocolate is considered one of the most common food that can trigger a migraine
attack. Yet, when compared to carob in a double-blind study, chocolate failed to demon-
strate any significant triggering effect (Marcus et al., 1997). Food cravings are clearly
present as premonitory symptoms (Giffin et al., 2003), so is the attribution of the trig-
ger, because the behavior or eating is linked to migraine. The latter is plausibly linked
to hypothalamic region activation in the premonitory phase of migraine (Maniyar et al.,
2014b). Moreover, as an example, hypothalamic feeding and thirst mechanisms related
to neuropeptide Y (NPY – Stanley and Leibowitz, 1984, 1985; Bellinger and Bernardis,
2002)may play a role in the early disengagement of descending brainmodulatorymech-
anisms that are facilitating the attack. It can be shown that NPY inhibits nociceptive
trigeminovascular activation in the trigeminocervical complex (Martins-Oliveira et al.,
2013), which may be at the basis of this link to behavioral change.
Similarly, light is considered bymany patients to be a trigger yet, when patients claim-

ing light triggering were carefully studied, no patients could be triggered (Hougaard
et al., 2013). Given photophobia occurs in the premonitory phase (Giffin et al., 2003),
and can be shown to be associated with excess activation of the visual cortex, com-
pared to patients without photophobia (Maniyar et al., 2014a), it is again plausible that
the patient mistakes the premonitory phase photic sensitivity for light as a trigger. An
understanding of these phenomenamay be greatly useful to patients and biologists alike
(Goadsby and Silberstein, 2013).

12.9 Premonitory symptoms and pathophysiological studies

As the premonitory phase is the first segment of amigraine attack, evaluating the activity
of central nervous system in this frame time is of vital importance to understand the
pathophysiology of migraine.
Electrophysiological studies have consistently shown lack of habituation of cortical

responses to various stimuli, that increases progressively in the period before the
headache and normalizes with headache, consistent with the notion that the premon-
itory phase is likely to entail events key to migraine generation (Schoenen et al., 2003).
Maniyar and colleagues (2014b) performed positron emission tomography (PET)

scans with H2
15O in eight patients to measure cerebral blood flow as a marker of

neuronal. They conducted scans at baseline, in the premonitory phase without pain,
and during migraine headache, in eight patients. They used glyceryl trinitrate (nitro-
glycerin) to trigger premonitory symptoms (Thomsen et al., 1994; Afridi et al., 2004)
and migraine headache in patients with episodic migraine without aura, who habitually
experienced premonitory symptoms during spontaneous attacks. By comparing the
first premonitory scans in all patients to baseline scans in all patients, it was found
there were activations in the posterolateral hypothalamus, midbrain tegmental area,
periaqueductal grey, dorsal pons and various cortical areas, including occipital, tem-
poral and prefrontal cortex. The authors concluded that brain activations, in particular
in the hypothalamic region, seen in the premonitory phase of migraine attacks, can
explain many of the premonitory symptoms, and may provide some insight into why
migraine is commonly activated by a change in homeostasis.
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12.10 Treatment during the premonitory phase

There have been few clinical trials where the ability of a medication taken during pre-
monitory symptoms to prevent the expected migraine attack has been tested. Such tri-
als are obviously difficult to do, as patients with premonitory symptoms must first be
recruited, the reliability of their premonitory symptoms determined, and then the med-
ication must be tested.
The classically quoted study in this area is of Waelkens (1982), who studied dom-

peridone taken during the premonitory phase in a double-blind, placebo-controlled,
crossover fashion. Nineteen patients, all with what was termed “classical” migraine that
included “sensory or psychic intolerance” prior to pain, treated 76 attacks during the
study. Patients had warning symptoms 7–48 hours (median 24) before headache onset,
and all had severe headache. Medication was taken at the first warning sign, and each
patient treated four attacks, two with placebo and two with domperidone 30 mg, in
random order. No aura or headache was experienced in 66% of attacks treated with
domperidone, compared with 5% of attacks treated with placebo (P < 0001).
In second study, Waelkens (1984) examined further the ability of domperidone

taken during the premonitory phase to prevent migraine attacks. The study included
19 patients, 18 of whom had migraine with aura. The patients took three doses of
domperidone (20, 30 or 40 mg) in a blind fashion and in random order. Each patient
treated two attacks with each dose. Taken at the very first appearance of the early
warning symptoms, the 20 mg, 30 mg and 40 mg doses prevented, respectively, 30%,
58% and 63% of the expected attacks. There was a suggestion that domperidone was
more effective when taken early, even 12 hours, before attack onset. It did not seem
to work nearly as well when taken within one hour of attack onset. Waelkens (1985)
subsequently noted that, whether symptoms continued during the attack or ceased as
headache began, the domperidone effect was no different.
Luciani et al. (2000) assessed naratriptan for efficacy when taken in response to

premonitory symptoms, performing an open-label study in 20 patients. In the trial,
patients recorded diaries for three episodes of premonitory symptoms, and these were
followed by headache 100% of the time. During the treatment phase of the trial, patients
were instructed to take naratriptan 2.5 mg during the premonitory phase when they
felt headache was inevitable. Each patient treated up to six premonitory phases. While
headache followed the premonitory phase 100% of the time during the baseline phase,
during the open-label treatment phase, only 40% of the treated premonitory phases
were followed by headache. Moreover, the results suggested that headache prevention
seemed to be more reliable when medication was taken more than two hours before
headache onset, and those headaches that did occur appeared milder than those during
the baseline phase.

12.11 Conclusion

The premonitory phase of migraine offers a very rich opportunity to study the biology
of the condition in the attack’s earliest phase. It has the distinct advantage of not having
pain, somechanisms identified and explored do not have the simple explanation of being
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a response to pain. The premonitory phase further offers insights to patients in terms
of differentiating triggering from the earliest stages of their attacks. Even if we have no
treatments, if it is clear an attack is possible, the patient can prepare by minimizing
aggravating factors and making sure treatments are available when headache strikes. As
we understand the biology of this phase, we will no doubt develop therapies that, for
many, will enable patients to avoid the disabling suffering of the pain of migraine.
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The genetic borderland of migraine and epilepsy
Isamu Aiba and Jeffrey Noebels

Developmental Neurogenetics Laboratory, Department of Neurology, Baylor college of Medicine, Houston, Texas, USA

13.1 Introduction

“While migraine is to be classed with the epilepsies, provisionally, as a ‘discharging
lesion’, it would be as absurd to classify it as ordinary epilepsy as to classify whales
with other mammals. A whale is in law a fish, and in zoology a mammal.”

J. Hughlings Jackson, Lecture before the Harveian Society, 1879.

Over a century has elapsed since Jackson exhorted neurologists to divide these
two episodic disorders, whose overlapping clinical features made their diagnosis “by
no means an easy matter”, into separate phenomena for scientific study. Gowers, his
contemporary, agreed they were co-occupants of a clinical “borderland” of epilepsy,
yet emphasized the large difference between them in the tempo of their transcerebral
spread (Gowers, 1906). Leao later described the wave of cortical depression and
vasoreaction in cortex (Leao, 1947) that matched the speed of the expanding scotoma
mapped by Lashley during his own migraine (Milner, 1958), and clinical imaging
studies since that time have cemented this relationship (Hadjikhani et al., 2001).
While the naturally occurring sequence of molecular events that trigger the human

phenomenon remain unclear to this day, animal studies have pinpointed the early phase
of neuronal hyperexcitability due to rises in extracellular potassium and glutamate in the
seconds preceding the leading edge of the wave, thereby identifying a brief moment of
molecular overlap between the electrogenesis of epileptic discharges and the dramatic
silencing of neurons in a migrainous aura. Within this framework, recent genetic dis-
coveries have now positioned these network excitability shifts into a commonmolecular
borderland, and raise fascinating questions regarding their shared pathogenesis.

13.2 Gene-linked comorbidity

Long considered a major island in the archipelago of epilepsy comorbidity, migraine
headache, with particular emphasis on the clinical aura as a prodrome or aftermath of
a seizure, is now a key entry point into the search for the additional genes and molec-
ular mechanisms underlying both disorders. As might be expected of two of the most

Neurobiological Basis of Migraine, First Edition. Edited by Turgay Dalkara and Michael A. Moskowitz.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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commondiagnosesmade in pediatric and adult neurology clinics, headache and seizures
each feature a broad spectrum of diagnostic subtypes and rich individual clinical vari-
ation, while their distinction may still be arrived at with difficulty. Whether of primary
therapeutic or simply anecdotal clinical interest, comorbid syndromes have dramatically
escalated the isolation of single gene-linked epilepsy phenotypes (Noebels, 2015a).
It is noteworthy that the very first gene isolated for epilepsy, the syndrome of

myoclonic epilepsy with ragged-red fiber myopathy (MERRF), bearing a mitochondrial
DNA tRNA-Lys mutation (Shoffner et al., 1990), is also linked to migraine (Zeviani
et al., 1993), pointing to a shared metabolic substrate. Interestingly, in both migraine
and epilepsy syndromes, it is the characteristic aura and its cerebral localization, rather
than the subsequent headache or convulsive episode, that facilitated the initial genetic
discoveries. For example, in migraine, the frontal lobe aura of hemiplegia, known since
the 19th century (see Whitty, 1953), ultimately led to cloning the first migraine with
aura gene, a pore-forming subunit of the voltage-activated calcium channel,CACNA1A,
for familial hemiplegic migraine (FHM1) (Ophoff et al., 1996). In epilepsy, the unusual
auditory aura reported in cases of autosomal dominant lateral temporal lobe epilepsy
(ADLTE) led to isolation of the first gene for epilepsy with aura, the secreted protein
LGI1 that interacts with the KCNA1 potassium channel, a key gene for temporal lobe
seizures (Kalachikov et al., 2002; Schulte et al., 2006).
While auras feature prominently in the classification of headache (Headache Classi-

fication Committee of the International Headache, 2013), they are less emphasized in
the epilepsy classification (Berg et al., 2010) and, unlike migraine, the electrophysiology
of auras preceding seizure is relatively unexplored. The pathophysiology of an aura in
migraine now centers on concurrent alterations in network excitability and blood flow,
culminating in spreading depolarization (SD) (Pietrobon and Moskowitz, 2013). How-
ever, this relationship is not well established in the auras of epilepsy, which are assumed
to represent local irritability in, or near, a seizure focus prior to its spread.Why an aura is
not a consistent feature of epilepsy is not known, but cortical recruitment at the onset of
a seizure ranges from nearly instantaneous in primary generalized epilepsies to a speed
of ≈ 4mm/sec in secondary recruitment from a cortical seizure focus – about 60 times
faster than SD (Martinet et al., 2015).

13.3 The challenge of dissecting seizure and aura excitability
defects

Ictal events of migraine and epilepsy are considered separable, since extracellular K+

ceiling levels attained during an experimental seizure (12–15mM) fall far short of those
typically found during experimental SD (30–50mM) (Somjen, 2002). However, these in
vivo values are obtained from artificially triggered events in normal adult cortex, rather
than spontaneous seizures or migraine aura in brains with the chronic disorder. Sim-
ilarly, an in silico model of the intervening excitability spectrum using physiological
parameters and a Hodgkin-Huxley formalism has been proposed (Wei et al., 2014).
However, cellular excitability, oxygen extraction, and neurovascular coupling are not

monotonically linked, and display non-linear tipping points that are mediated by aber-
rant vasoreactivity, membrane depolarization block, mitochondrial function, and failed
homeostasis of the extracellular milieu. These parameters are all altered in a mutant,
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anesthetized or injured brain or injured brain. Dynamic interactions between SD and
experimental seizure foci represent a complex function of reverberatingwaves and reen-
trant thresholds (Koroleva and Bures, 1979, 1980, 1983). More realistic disease models
of human pathophysiology are needed to compare the spectrum of underlying mecha-
nisms directly.
Even with a broader range of appropriate models, deciphering the aura mechanisms

of epilepsy and migraine poses numerous challenges to dissect early phase pathophysi-
ology from other network synchronization defects. Spreading depolarization may lead
to a seizure, or may appear following one, and the amplitudes and propagation dis-
tances of the depolarizing wave vary. When examined in patients, extensive monitoring
is required to capture a spontaneous attack (Hartl et al., 2015), DC-coupled EEG record-
ings requiring intracranial electrodes are not feasible, and non-invasive indirect assays
may be ambiguous.
When reproduced in experimental models, the thresholds for SD and seizures depend

on the stimuli and metabolic substrates selected, and are subject to other experimental
variables (see Chapter 19). Finally, aura thresholds, whether due to a single gene muta-
tion or acquired brain injury, are not static, but vary with brain maturity and tissue
remodeling. Given the pleiotrophic effects of channel mutations in different neuronal
circuits, one can anticipate that different genes and vascular lesions contributing to the
biology of migraine aura will ultimately explain the spectrum of individual patterns and
triggers, as found in stroke (Dreier and Reiffurth, 2015) and epilepsy (Noebels, 2015b).
Despite this complexity, once a monogenic disorder is isolated, tracing the cellular

and functional expression of the mutated gene in experimental models is a reliably
informative route to elucidate causative mechanisms and therapeutic targets. Condi-
tional expression of epilepsy gene mutations within cortical microcircuitry is a new
approach to define essential determinants of network synchronization. For example,
cell type specific ablation of CACNA1A, the gene encoding the P/Q-type calcium
channel that underlies both seizures and FHM1, reveals that at least two interneuron
populations – parvalbumin and somatostatin – collaborate to structure an EEG seizure
pattern into convulsive or spike-wave absence phenotypes, depending on the balance
of transmitter release at their synapses (Rossignol et al., 2013). The SCNA1 sodium
channel has been conditionally mutated in these same interneuron types, producing
alternative temperature-sensitive seizure and behavioral phenotypes (Rubinstein et al.,
2015a). Since SD also shows laminar and regional properties (Gniel and Martin, 2010),
similar strategies, using selective knockin mutations of migraine genes in cortical
glia and neuronal cell types, may help to further pinpoint critical network excitability
threshold relationships.
In this chapter, we review the remarkable genetic overlap emerging between human

migraine with aura and various monogenic ion channel epilepsies. We also describe
new insights into mechanisms linking SD in the brainstem to a novel “aura” comorbid-
ity phenotype, sudden unexpected death, themost common cause of premature lethality
in epilepsy. Inmodels of this syndrome, two genes for hemiplegic migraine (CACNA1A,
SCN1A) lead to SD-linked postictal collapse of cardiorespiratory homeostasis in experi-
mentalmodels, and in vitro studies reveal a lower SD threshold in themutant brainstem.
Finally, we draw attention toMAPT, a shared protective gene for epilepsy and SD. Abla-
tion of MAPT, the gene encoding Tau, a microtubule binding protein, corrects the SD
threshold and prolongs survival in SUDEP mutant mouse models.
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13.4 Clinical overlap of migraine with aura and epilepsy
phenotypes

13.4.1 Classification and co-prevalence

Relationships between these entities have been recently reviewed (Verrotti et al., 2011;
Rogawski, 2012; Nye and Thadani, 2015). Migraine and seizures are episodic events,
defined by their differing patterns of abnormal neuronal excitability, speed of onset,
spread, and predilection for specific brain regions. While individual syndromes have
distinct ages of onset, individuals with epilepsy have a 4.5 times higher lifetime risk of
developing migraine over the general population (Toldo et al., 2010), resulting in an
approximately 20% prevalence rate in this group (Oakley and Kossoff, 2014). Likewise,
the risk of epilepsy among those with migraine is strongly associated, and a history of
migraine with aura (but not without aura) increases the risk of epilepsy over three-
fold in later life (Ludvigsson et al., 2006). Up to 25% of children with epilepsy experi-
ence migraine (Kelley et al., 2012). In contrast, seizures are uncommon in the younger
migraine population, andmost cases of migraine (>80%) occur in the absence of routine
EEG abnormality (Martens et al., 2012).

13.4.2 Timing

The definition of “ictal headache” is being refined (Parisi et al., 2015). Migraine in
epilepsy patients may occur either in the absence of an ongoing seizure (“interictal
migraine”) or as a headache accompanying one (“peri-ictal migraine”). Given the sub-
jective symptoms and the possibility of concurrent interictal EEG spiking or subclinical
seizure discharges, these entities cannot be firmly dissociated without electrographic
evidence. The incidence of peri-ictal migraine is high (>60%) in individuals with
epilepsy (Kanemura et al., 2013). Headache arises at various phases; it appears during
the pre-ictal phase in about 5–15% of cases, during the postictal phase in 40–70% of
cases, and overlaps in the remainder (Yankovsky et al., 2005; Parisi et al., 2012). Like the
ictal phase, the pre-ictal period of a cortical seizure may be associated with transient
hyperemia and vascular inflammation (Cai et al., 2008).
The syndromic classification system of the epilepsies centers on age of onset, elec-

troclinical seizure semiology, relation to fever, imaging findings, cognitive dysfunction,
genetics, and drug profile (Berg et al., 2010).There are over 20 recognized epilepsy syn-
dromes and seizure types, but many more epilepsies are now recognized and defined
genetically, often by their comorbid status with developmental cognitive delay (over
160 entries in OMIM for “epileptic encephalopathy”). The fraction of seizures with pre-
monitory auras depends on the region affected and consistency of the symptomatic
description. In temporal lobe epilepsies, about 23/40 patients have reported aura-like
subclinical seizures, and half of those showed electroclinical correlates (Sperling and
O’Connor, 1990). In a second study, 67% of 244 patients reliably reported an aura, and
80% of these lasted one minute or less. In occipital epilepsies, visual symptoms are
present in only half of patients, while no TLE patients reported visual auras (Appel et al.,
2015; Punia et al., 2015).
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13.4.3 Migraine aura and headache arise from distinct pathways and triggers

Migraine auras are typically congruent with the pain in terms of laterality and tem-
poral precedence. However, these engage independent sensorimotor vs. nociceptive
pathways, with variable duration and thresholds. Unlike pain, auras are not triggered
by nitroglycerin, even in migraineurs with aura (Christiansen et al., 1999), nor are
they relieved by sumatriptan (Rose, 1994), further evidence that the aura is not a
primarily vascular event. In experimentally naïve animals, a single SD produces a
biphasic sequence suggesting multiple vascular reflex waves following depressed
cortical excitation (Chang et al., 2010).

13.4.4 Gender, estrogen, and interictal excitability phenotype inmigraine aura
and epilepsy

A key issue is whether migraines and seizures arise from a normal or elevated base-
line excitability state, and whether gender or hormones affect this baseline and, hence,
co-incidence. Migraine has a clear gender difference, with higher female prevalence
(Chai et al., 2014). In contrast, there is little similar evidence in epilepsy, except for
X-linked forms (Veliskova, 2006), and little difference in peri-ictal migraine prevalence.
Both migraine frequency (Victor et al., 2010) and juvenile onset epilepsies increase

after puberty in both sexes, and may be associated with the menstrual cycle (Herzog,
2015). Direct modulation by estrogen and progesterone contribute to the excitability
shift (Borsook et al., 2014), although the biological complexity of fast (membrane)
versus slow (genomic) estrogen receptor effects on neurons (Arevalo et al., 2015), glia
(Acaz-Fonseca et al., 2014), and the neurovascular unit limit our understanding of this
modulation. For example, 𝛽-estradiol facilitates experimentally triggered SD within 60
minutes, and is fully reversible in rodent neocortical brain slices, suggesting a direct
membrane pathway (Sachs et al., 2007; Chauvel et al., 2013), but slower genomic effects
have not been systematically explored.
Despite an excitatory role for estrogen in the adult brain, the contribution to

seizure incidence is not always clear, and studies reveal both pro-convulsive (NMDA
receptor-mediated) and anti-convulsive (GABA receptor-related) effects in human and
animal studies (Veliskova, 2006; Tauboll et al., 2015). Age is also important, since early
estradiol exposure in the neonatal period prevents gene-linked epilepsy, but aggravates
seizures in adults (Olivetti et al., 2014).
In contrast to simplemigraine, the brain inmigraine with aura shows interictal hyper-

excitability. Human transcranial magnetic stimulation (TMS) studies reveal decreased
stimulus thresholds (van derKamp et al., 1996; Aurora et al., 1999). Visual evoked poten-
tial studies also show elevated amplitudes to interictal photic stimuli (Demarquay and
Mauguiere, 2015), while FHM1mousemodels show interictal hyperexcitability (Vecchia
et al., 2015). In epilepsy, due to its vast monogenic heterogeneity, the presence of inter-
ictal brain excitability is too variable to characterize, beyond commenting that, while
interictal EEG spikes are a diagnostic hallmark of all epilepsy, they are not uniformly
present at all times.
By convention, mouse channelopathy models of epilepsy all show variable degrees of

interictal spiking. Interestingly, some epilepsy andmigraine human cases show interictal
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and ictal autonomic (QT interval) disturbances (Duru et al., 2006;Anderson et al., 2014).
The basis for the eponymic lateralization of migraine aura in a bilaterally expressed
channelopathy or ion pump deficiency is not understood. SD in visual auras can be
lateralized (Hougaard et al., 2014), as is the hyperemia of hemiplegia auras in FHM2
(Blicher et al., 2015; Iizuka et al., 2012). Nevertheless it is unclear why mutation of a
ubiquitously-expressed P/Q calcium channel or ATPase subunit would selectively lower
SD threshold in a single hemisphere beyond the passive constraint that, once triggered,
SD is unable to cross the midline via white matter tracts.

13.4.5 Pharmacological overlap

Antiepileptic (AED) pharmacology is a mainstay of migraine prophylaxis, implying that
the balance of cortical network excitability is essential in both conditions (Oakley and
Kossoff, 2014; Schiefecker et al., 2014). Clinically effective AEDs span various nominal
categories, namely sodium channel blockers, histone deacetylase inhibitors, and AMPA
receptor blockers. However, each drug has its own off target effects, and there is substan-
tial individual variation and pharmacoresistance in both disorders (Parisi et al., 2007;
Bogdanov et al., 2011). In addition to AEDs, some studies report anti-migraine effi-
cacy of non-pharmacological antiepileptic interventions that target interictal excitabil-
ity, including the ketogenic diet (Stafstrom and Rho, 2012; Di Lorenzo et al., 2015) and
vagal nerve stimulation (Cecchini et al., 2009; Goadsby et al., 2014; Chen et al., 2015).

13.5 Acquired and genetic etiologies of migraine with aura
and epilepsies

13.5.1 Epilepsy

Acquired epilepsies comprise about one-third of all seizure disorder etiologies, and
the large remainder, until recently labeled ‘idiopathic’, are now considered genetic
(Figure 13.1). Heredity is a major cause of epilepsy, and the epilepsy genome is rapidly
expanding (Noebels, 2015a). The Online Catalog of Mendelian Inheritance in Man
(OMIM, NIH) now lists over 175 human genes in dbSNP monogenically linked to
epilepsy and, of these, ion channelopathy, both voltage- and ligand-gated, remains the
largest category, although a rich biological diversity of other genes is also recognized
(Lerche et al., 2013; Noebels, 2003). Sporadic de novo mutations found in clinical
exomes account for a majority of new gene discovery in epilepsy, while the remainder
arises from family studies and reverse genetic approaches in animal models. The
“missing inheritance” is likely due to complex non-Mendelian patterns of pathogenic
alleles, with a significant influence of modifier genes, particularly within the ion channel
subunit gene family itself (Klassen et al., 2011).
While many epilepsy genes show allegiance to a particular seizure type, chan-

nelopathies significantly depart from this rule. Most channels display allelic
heterogeneity, giving rise to more than one seizure type, depending on the rela-
tive gain or loss of function in the channel protein. Pleiotrophy of CACNA1A is clearly
seen in patients and mouse models of FHM1, where a gain of P/Q-type calcium current
enhances glutamate transmitter release, producing convulsive seizures, hemiplegic
migraine, and a low threshold for cortical SD (Tottene et al., 2009), while reduced P/Q
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Figure 13.1 Estimated proportion of clinically discoverable and genetically driven etiologies of
epilepsy and migraine with aura. Left: In epilepsy, about on-third of cases are secondary to
demonstrable brain injury. The remainder are due to genetic mutations, either monogenic or in
complex patterns of inheritance. Monogenic causes of seizures exceed 150; each are still considered
individually rare forms of epilepsy. Many epilepsy syndromes are exclusively genetic, and show
extensive locus heterogeneity (modified from Thomas et al., 2014). Right: In migraine with aura, a
similar architecture of acquired causes is plausible, although the overall contributions of both acquired
and genetic syndromes are unknown. A likely difference will be in the proportion of vascular etiologies.

current in the tottering mouse and other loss of function alleles (Noebels, 1979, 2012)
produce thalamocortical spike-wave absence epilepsy, and a high threshold for cortical
SD (Ayata et al., 2000). A second feature of channelopathies is their locus heterogeneity,
where several genes for distinct channel subunits all contribute to clinically similar
syndromes, and this pattern is emerging in migraine with aura.

13.5.2 Migraine

In migraine with aura, there is less information on the range of acquired etiologies and
their cellular neuropathology. Using epileptogenesis as amodel, a secondary pathogenic
cascade leading to migraine with aura is likely to resemble that in brain injuries causing
epilepsy, albeit in altered proportions. OMIM currently shows 118 entries for migraine
loci (34 linked to known genes in dbSNP). In migraine with aura, familial pedigrees
have led to the isolation of three genes so far. Many cases of FHM are reported without
mutation of these genes, indicating that further simple and complex gene discovery can
be expected.
Migraine with aura is highly heritable (≈60%) (Russell et al., 2002) and the underlying

genetics are under active exploration (Tolner et al., this book). Genomic association
studies (Chasman et al., 2011; Anttila et al., 2013) revealed 12 SNPs in genes associated
withmigraine, including PRDM16,MEF2D,TRPM8, PHACTR1,ASTN2, LRP1,AJAP1,
TSPAN2, FHL5, C7orf10 andMMP16. Later studies have validated some of these genes
(i.e., LRP1, PRDM16, MMP16 and TRPM8) in different ethnic groups (An et al., 2013;
Esserlind et al., 2013; Ghosh et al., 2013, 2014; Fan et al., 2014; Ran et al., 2014; Sintas
et al., 2014), but polymorphisms in TRPM8 and LRP1 are also associated with migraine
without aura (Freilinger et al., 2012) (see Chapter 14).
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A large number of genes for migraine are linked to vascular biology and inflammation
(Malik et al., 2015). Systematic and cell type specific analysis may help refine candidate
gene sets (de Vries et al., 2015; Eising et al., 2015), but the biological overlap of these
genes and their prevalence in epilepsy patients is not yet established. The PRRT2 gene
was initially isolated in cases of infantile convulsions, and also paroxysmal dyskinesia
with migraine (Ebrahimi-Fakhari et al., 2015). This gene encodes a membrane protein
with proline transporter properties that may interact with SNAP25 (Nobile and Striano,
2014), a presynaptic protein linked to epilepsy (Zhang et al., 2004). PRRT2, like others
listed above, awaits further biological and functional characterization in a geneticmodel
system.

13.6 Migraine aura is linked to specific genes with locus
and allelic heterogeneity

Three genes – FHM1 (CACNA1A), FHM2 (ATP1A2), and FHM3 (SCN1A) – are now
securely linked to genetic migraine with aura (Figure 13.2). They are rare causes, not
typically detected in GWAS studies. Dominant allele-specific mutations in these genes
favor cellular depolarization, with gain of function in P/Q-type calcium current, loss
of ATPase activity, and altered sodium channel kinetics. Like all channel subunits, the
genes contain multiple functional domains giving rise to significant allelic heterogene-
ity, and various loss of function and dominant negative gain of function mutations are
responsible for multiple phenotypes.

CACNA1A shows multiple allele-specific phenotypes, ranging from convulsions,
hemiplegic migraine, aphasia, ataxia, and coma to absence epilepsy and episodic
dyskinesias in the loss of function alleles (Noebels, 2012). Not much information exists
on de novo variants, but a sporadic loss of function CACNA1A allele with epilepsy has
been reported (Zangaladze et al., 2010). There is a low genetic contribution of P/Q
channel mutation to most migraine (Ferrari et al., 2015), and the penetrance of variants
in migraine with aura is still poorly understood. In a study of genetically identical but
not genotyped twin pairs, 12 monozygotic twins were discordant for an aura, while the
headache phase was similar, if not identical (Kallela et al., 1999).
FHM3 shows similar genetic complexity. A very large dataset for genotype-phenotype

correlation has been assembled for SCN1A, the predominant gene linked to the epilepsy
of pediatric Dravet Syndrome (DS), where over 1200 mutations are known (Meng et al.,
2015). Interestingly, this correlation shows that severity is dependent on the mode of
mutation inheritance, as well as the mutant allele. Most de novo mutations produce
severe DS epileptic encephalopathy cases, while inherited variants show weaker “gener-
alized epilepsy with febrile seizures (“GEFS+”) phenotypes. Mutations in the ortholo-
gous gene SCN8A are a recent and less frequent cause ofDS (Wagnon andMeisler, 2015).
Functional analysis of SCN1A in migraine cases reveals a mixed spectrum of

decreased current, trafficking, and inactivation defects that may produce net excitatory
or inhibitory effects, depending on the cell type and circuit (Kahlig et al., 2008), similar
to the variation in DS. Functional analysis of DS mutations in heterologous systems and
mice on different genetic backgrounds (Rubinstein et al., 2015b) show that answers may
differ from those obtained in induced pluripotent stem cells containing the patient’s
own genomic variant profile (Liu et al., 2013).
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Figure 13.2 Monogenic voltage-gated ion channel genes of migraine with aura and epilepsy, plotted
along the voltage trace of their excitability defect; the slow, minutes-long depolarizing trajectory of
the spreading cortical wave (Left), or the millisecond kinetics of action potential electrogenesis.
Shared genes are in red; all confirmed ion channel genes for migraine with aura lower the threshold
for spreading depolarization, yet also produce robust epilepsy phenotypes with abnormal neuronal
burst firing.

13.7 Correspondence of regional brain susceptibility
for migraine in genetic epilepsy syndromes

Classic migraine auras include nausea, vomiting, photophobia, photopsia, visual sco-
tomata, hemiparesis, hemisensory deficit, aphasia, and vertigo. Auditory aura has been
described as a rare migraine aura variant (Whitman and Lipton, 1995). The aura in a
single patient may vary even in a monogenic syndrome such as FHM, which can be
occasionally mistaken for basilar artery territory migraine (Haan et al., 1995).
Auras in epilepsy are related to seizure type and location. While occipital lobe

epilepsy is relatively uncommon (≈1%), occipital seizures are frequently associated
with migraine-like visual auras (photophobia, fortification spectra, micropsia) (Ito
et al., 2004), and both migraine and seizures can be triggered by visual stimulation.
In Lennox-Gastaut Syndrome (LGS), a genetic childhood epilepsy, visually evoked
occipital seizure activity is common (Caraballo et al., 2009), and about 50% of LGS
patients experience peri-ictal migraine headache (Wakamoto et al., 2011), likely due to
local seizure or spike activity (Andermann and Zifkin, 1998; Shu et al., 2013).
The GABA receptor 𝛽3 subunit GABABR3 is one of several candidate genes for LGS

(Papandreou et al., 2015). Similarly, migraine and occipital seizures are a common
(≈2/3) comorbidity of Panayiotopoulos syndrome (PS), a genetically-undefined epilepsy
(Andermann and Zifkin, 1998; Clarke et al., 2009). POLG mutations impair polymerase
gamma, a mitochondrial DNA that maintains the mitochondrial genome, and are also
associated with occipital epilepsy and migraine (Janssen et al., 2015).
In frontocentral cortical regions, Juvenile Myoclonic Epilepsy (JME) is a common

(≈4–10%) generalized spike-wave epilepsy syndrome, with myoclonic and absence
seizures arising in the second decade. Most patients are photosensitive and have
migraine (Schankin et al., 2011). JME has a strong genetic contribution, and at least
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40% of cases show a positive family history (Welty, 2006). Four genes are linked to JME,
including EFHC1, GABRD, GABRA1, and CACNB4.

Rolandic Epilepsy, also known as benign partial epilepsy of childhoodwith centrotem-
poral spikes (BECTS), is a juvenile seizure syndrome with frequent migraine. Candidate
genes have been identified (Lal et al., 2015; Reinthaler et al., 2015), and one is near, but
not within, the ATP1A2 gene in the FHM locus (Addis et al., 2014).
In temporal lobe epilepsies (TLE), olfactory perceptions often precede seizures,

activating the amygdala and the uncus in the parahippocampal gyrus (“uncinate fits”).
These auras feature autonomic, abdominal/visceral, and nausea, likely through central
autonomic projections from forebrain to medullary brainstem centers, such as vagal
nerve nuclei and area postrema. In a study of 876 auras in 400 patients with mesial TLE,
12 categories were assigned (Dupont et al., 2015). Most common were autonomic,
abdominal, experiential (déjà vu, confusion), followed by non-specific somatosensory,
visual and auditory perceptual, gustatory, olfactory, and vestibular. A majority (≈65%)
of these cases reported complex aura profiles with more than one type. While human
TLEs have only a few solid monogenic links (LGI1, RELN), a larger number of causative
genes for TLE have been identified in mouse mutant models, including Glyt1, Kcna1,
and Kcnmb4.
These human comorbid epilepsy/migraine syndromes lend support for gene-directed

regional control of excitability and SD threshold. Understanding how specific regions
are selectively vulnerable to mutations in a particular gene will require considering how
distributions of gene expression, heteroplasmy of mitochondrial DNA, and vasoreactiv-
ity combine with local cortical synaptic neurochemistry and connectivity.

13.8 Are SD thresholds plastic?

A hallmark of experimental epileptogenesis is the kindling phenomenon, where chronic
stimulation progressively lowers seizure threshold, although there is less evidence for
this phenomenon in humans than in rodent models (Bertram, 2007). An important
aspect of comorbidity is to understand whether migraine episodes might lower the
threshold for seizures, or vice versa. Current evidence provides no support for this
relationship and, in fact, shows that chronically epileptic brain is more resistant to
SD. In a study of convulsant kindling in rats, seizures initially triggered SD although,
with repeated stimulation, the cortical SD threshold increased (Koroleva et al., 1993).
Similarly, rats with pilocarpine-induced epilepsy showed a higher SD threshold than
naïve animals (Guedes and Cavalheiro, 1997).
In the first study of spreading depression threshold in genetic mouse models,

Tottering mutant mice with a Cacna1a loss of function mutation showed an ele-
vated threshold for SD, despite frequent spontaneous spike-wave seizures, and the
SD threshold in stargazer mice with similar seizures arising from mutation of a
separate gene was unaffected (Ayata et al., 2000). The SD threshold is therefore
independent of this seizure type. An elevated SD threshold in chronic epileptic brain
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has also been reported in human cortical slices in vitro using K+ bath-evoked SD
(Maslarova et al., 2011). Acute seizure foci prevent invasion of SD (Bures et al.,
1975), and vice versa (McIntyre and Gilby, 2008). Finally, daily repetitive SD generation
raises, rather than lowers, the threshold for subsequent SD in rat cortex (Sukhotinsky
et al., 2011). These studies suggest that neither an acute nor a prolonged history of
seizures or SD is likely to promote its counterpart in patients.

13.9 Spreading depolarization in cardiorespiratory
brainstem regions, a candidate mechanism of SUDEP

Migraine aura and seizures share postictal autonomic instability, and may modulate
headache pain by activating central autonomic pathways that reach pontine trigeminal
and medullary cardiorespiratory brainstem centers. A more tragic outcome of a seizure
is Sudden Unexpected Death in Epilepsy (SUDEP), a forensic diagnosis affecting about
10–15% of those with epilepsy (Thurman et al., 2014; Massey et al., 2014). Monitored
cases show severe autonomic deregulation, and die within hours after a seizure during
a period of apneas, bradycardia, and cardiac asystoles (Ryvlin et al., 2013).
SUDEP has been linked to cardiac LQT gene mutations responsible for sudden death,

including the potassium channels KCNQ1 (Goldman et al., 2009) and Kv1.1 (Glasscock
et al., 2010), as well as SCN1A1 in Dravet Syndrome (Sakauchi et al., 2011).
Migraine and autonomic deregulation are a common comorbidity of Panayiotopou-

los Syndrome (Parisi et al., 2005), and life-threatening cases have been reported (Dirani
et al., 2015). Autonomic imbalance, arrhythmias and sudden cardiac death have been
reported in migraineurs (May et al., 2015; Monroe et al., 2015). Alternating hemiple-
gia of childhood (AHC), an infantile form of hemiplegic migraine with seizures due
to ATP1A2/3 (Swoboda et al., 2004; Clapcote et al., 2009), is a further addition to the
epilepsy/migraine/autonomic borderland. Mutations in the ATP1A3 gene, expressed in
heart and brain, lead to episodic hemiplegia and cardiac repolarization defects, seizures
(Jaffer et al., 2015), and prolonged SD (Hunanyan et al., 2015). Migraine also increases
the risk of vagalmediated autonomic deregulation, producing vagal syncope (Thijs et al.,
2006; Vallejo et al., 2014) and cardiac arrhythmias (Aygun et al., 2003;Melek et al., 2007).
These genes, and other channel-interacting genes linked to SUDEP (Qi et al., 2014),
alter excitability within central and peripheral parasympathetic pathways and the heart,
promoting cardiorespiratory dysfunction.
Since the risk ofmonogenic SUDEP is congenital, yet SUDEP events occur throughout

the lifespan (Thurman et al., 2014), an unexplained feature of gene-linked SUDEP is why
younger individuals are not preferentially affected, and even why the first seizure is not
lethal. Geneticmousemodels of SUDEPwith sodium and potassium channelopathy dis-
play vagallymediated peri-ictal cardiac arrhythmias and apneas and, in the Kv1model of
SUDEP, about 50% die by one month of age, while those that survive young adulthood
live a normal lifespan (Glasscock et al., 2010; Kalume et al., 2013). If hyperexcitabil-
ity in autonomic pathways were a simple direct mechanism of mortality, early seizures
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would be fatal events.Therefore both human and animal data imply the participation of
a second, independent threshold for a life-threatening seizure.

13.10 Brainstem SD is a “second hit” leading to SUDEP

To test whether SD might be the critical event terminating a lethal seizure, two genetic
SUDEP mouse models were studied (Aiba and Noebels, 2015). Evoked cortical seizures
in urethane-anesthetized Kv1 KO mice produced SD in dorsal medulla accompanied
by apneas, arrhythmias, and cardiorespiratory arrest in over half of the experiments,
while cortical seizures never produced brainstem SD or death in wild type adult mice
(Figure 13.3). Interestingly, brainstem SD has a low threshold in immature wild type
brain that increases during adolescence (Richter, Rupprecht et al., 2003; Funke, Kron
et al., 2009).
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Figure 13.3 Brainstem SD is related to sudden death in SUDEP mouse models. Left: terminal SD
recorded from medullary cardiorespiratory nuclei in a Kv1 KO mouse model of SUDEP. After repeated
seizures following cortical application of 4aminopyridine, severe irreversible apnea and cardiac
arrhythmia only commenced with the onset of brainstem SD. Right: serial photos of IOS signal
showing SD-induced transparency change (dark) in brainstem slice of Kv1 mouse, following oxygen
and glucose deprivation (OGD). In coronal slices of medulla, a depolarizing wave reliably initiated at
the rim of the solitary tract nucleus (NTS) (upper left frame), and invaded adjacent vagal nerve nuclei
(lower right frame). Lower: in vitro brainstem slices from both Kv1–/– and Nav1–/– mutants showed a
strikingly reduced SD threshold (red) compared to wild type slices (black) induced by OGD. Aiba et al.
(2015). Reproduced from Science Translational Medicine.
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13.11 Tau ablation prevents seizures, SUDEP and brainstem
SD threshold in models of SUDEP

Deletion of the gene for the microtubule-associated protein tau (MAPT) prevents
inherited epilepsy, and prolongs survival in mouse and fly models of Kv1 and Scn1a
hyperexcitability (Holth et al., 2013; Gheyara et al., 2014). In vitro analysis of brainstem
SD threshold in Kv1 KO/tau KO double mutants showed that loss of tau rescues the
lowered SD threshold phenotype (Aiba and Noebels, 2015). This is the second gene
(along with CACNA1A loss of function) (Glasscock et al., 2007) that is known to correct
the hyperexcitability phenotype of Kv1 SUDEP, and predicts an interesting array of SD
modifier genes.

13.12 Conclusion

Genes for a small subset of voltage-gated ion channels and regulators of cellular depolar-
ization identify sharedmolecular pathways for seizures andmigraine auras, and confirm
that the “borderland” designation of these comorbid disorders is well founded. Future
research can define the edges of this genetic borderland and, ultimately explain why
some epilepsy genes possess or lack a migraine aura-like component, and what devel-
opmental features tilt the brain toward either phenotype. By providing a broad spectrum
of models for individual electroclinical syndromes, regional brain thresholds, and phar-
macological selectivity, the experimental study of these genes can reveal critical insights
into the molecular and network complexity of both conditions, and strategies to lower
the risk for premature death.
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Migraine is a common, debilitating brain disorder that affects over 15% of the general
population – women three times more often than men (Goadsby et al., 2002; Headache
Classification Committee of the IHS, 2013). In 30% of patients, attacks may be pre-
ceded by neurological aura symptoms (i.e., transient visual, sensory, motor or speech
disturbances), the likely consequence of a wave of neuronal and glial depolarization
called cortical spreading depression (CSD) (Lauritzen, 1994). The presence of an aura
defines the two main migraine types: migraine with aura (MA), and migraine without
aura (MO). Activation of the trigeminovascular system is likely responsible for migraine
headaches (Goadsby et al., 2002).
The aim of this chapter is to discuss the status of molecular genetic findings in

migraine, both in rare monogenic forms of migraine, such as familial hemiplegic
migraine (FHM), and in the common complex polygenic forms (i.e., MA and MO).

14.1 Migraine is a genetic disease

Migraine shows strong familial aggregation and is amultifactorial (i.e., complex) genetic
disorder (Russell andOlesen, 1995; Stewart et al., 1997, 2006), inwhich genetic and envi-
ronmental factors seem to play an equally important role (Mulder et al., 2003). There is
debate whetherMA andMO should be considered separate disease entities, or different
expressions of one disease. Several epidemiological studies have suggested thatMA and
MO are distinct disorders (Russell et al., 1996, 2002), whereas other studies suggested
the existence of a migraine continuum with pure MA and pure MO on both ends of
the clinical spectrum (Kallela et al., 2001; Nyholt et al., 2004; Ligthart et al., 2006). The
latter view seems more in line with clinical observations that headache characteristics
are identical in MA and MO, and that many patients experience both types of attacks
during their lifetime. Genetic studies may shed light on the debate as they may reveal
migraine susceptibility genes that may be shared by both migraine types.

Neurobiological Basis of Migraine, First Edition. Edited by Turgay Dalkara and Michael A. Moskowitz.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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Figure 14.1 Different categories of genetic variation exist, based on the frequency and effect size of
the allele. Mendelian monogenic disorders are caused by rare alleles with high effect sizes. A classical
linkage approach (combined with Sanger sequencing of candidate genes to identify the causal
mutation) was used to identify migraine genes, but has been replaced by next generation sequencing.
For polygenic common forms of migraine typically common variants with a low effect size are
identified. Hypothesis-free genome-wide association studies (GWAS) have been successful in
identifying such variants, and have replaced the candidate gene association approach. Adapted from
Tolner et al. (2015) and reproduced by permission of Wolters Kluwer Health, Inc.

14.2 How to identify genes for migraine?

For many disorders, including migraine, there are two main categories of diseases when
considering their genetic architecture: rare monogenic forms; and common genetically
complex, oligogenic or polygenic forms. With respect to monogenic forms of migraine,
most prominent is Familial Hemiplegic Migraine (FHM), an autosomal dominant sub-
type of MA, characterized by a transient hemiparesis during the aura and headache
characteristics that are identical to those found with the common forms of migraine
(Thomsen et al., 2002). Other rare monogenic disorders exist in which migraine is a
prominent clinical feature, such as, for example, Cerebral Autosomal Dominant Arteri-
opathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), characterized
by mid-adult onset of vascular dementia and stroke (Joutel et al., 1996), and Familial
Advanced Sleep Phase Syndrome (FASPS), characterized by abnormal sleep-wake cycles
(Brennan et al., 2013). As the approaches to identify genes for the various categories
differ (Figure 14.1), they are discussed separately in the next paragraphs.

14.3 Gene identification in monogenic Familial Hemiplegic
Migraine

The classical linkage approach in migraine research was applied to large families in
which the disorder showed a clear monogenic pattern of inheritance. Several hundreds
of polymorphic genetic markers, evenly spread over the genome, with alleles that allow
tracking of them from one generation to the next, were tested for co-segregation with
disease in a family-based setting. The causal gene mutation was then identified in
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the genomic region shared by affected individuals, often after tedious sequencing of
protein-coding regions of individual genes.
More recent technical developments, referred to as next generation sequencing

(NGS), allow parallel sequencing of all protein coding regions (“exome sequencing”)
or the whole genome (“whole genome sequencing”) in a single experiment, which has
given an enormous boost to gene identification for monogenic disorders (Kuhlen-
baumer et al., 2011). Knowledge of mutations in genes of monogenic disorders can be
directly applied for clinical diagnosis, because these mutations have a high effect size.
In other words, the presence of a mutation in an individual has a very high probability
of revealing the molecular cause of the disorder that may or may not yet be present.
The traditional approach has been very successful for familial hemiplegic migraine

(FHM), with currently three undisputed genes identified – CACNA1A (FHM1) (Ophoff
et al., 1996), ATP1A2 (FHM2) (De Fusco et al., 2003), and SCN1A (FHM3)
(Dichgans et al., 2005) – that encode subunits of voltage-gated calcium channels,
sodium-potassium ATPases, and voltage-gated sodium channels, respectively. Com-
bined knowledge on these FHM gene products reveals the importance of the tripartite
synapse and, therefore, neurotransmission in the pathophysiology of the disease
(Figure 14.2; Ferrari et al., 2015; Tolner et al., 2015).
Genotype-phenotype correlations of mutation carriers have shown a spectrum of

associated symptoms, in addition to hemiplegic migraine, ranging from cerebellar
ataxia, seizures, to mild head trauma induced cerebral edema that can be fatal (De Vries
et al., 2009). Genetic studies have also been performed in isolated cases of sporadic
hemiplegic migraine (SHM) (i.e., patients with no first- or second-degree family
members suffering from hemiplegic migraine). A study in 105 SHM patients and their
first-degree family members (Thomsen et al., 2003) indicated that:
i) more than half of the patients also had non-hemiplegic MA attacks;
ii) one-third had additional MO attacks; and
iii) first-degree relatives had an increased risk of MA.
Genetic analyses in SHMpatients revealed only very fewmutations in one of the FHM

genes (De Vries et al., 2007; Gallanti et al., 2011; Thomsen et al., 2008), indicating that
most patients have the disease because of:
i) a yet unidentified hemiplegic migraine gene;
ii) an interplay of multiple genetic variants with a small effect size, similar to what is

the case for the common migraine forms; or
iii) a non-genetic cause.
Still, patientswith an early age of onset, andwho exhibit additional neurological symp-

toms such as ataxia, epilepsy or intellectual inabilities, carry, in approximately 75% of
cases, an (in most cases) de novo mutation in CACNA1A or ATP1A2 (Riant et al., 2010).
Recently, truncating deletions in the PRRT2 gene, which encodes a proline-rich trans-

membrane protein, were identified in a few patients with (hemiplegic) migraine, as a
result of which PRRT2 was put forward as the fourth hemiplegic migraine gene (Riant
et al., 2012). However, as the same (or very similar) PRRT2 deletions were also found in
several hundred patients with paroxysmal kinesigenic dyskinesia (PKD), benign familial
infantile convulsions (BFIC) and infantile convulsion choreoathetosis (ICCA), without
signs of migraine, the relation of PRRT2 and migraine seems far from straightforward
(Pelzer et al., 2014).
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Figure 14.2 Products of the Familial Hemiplegic Migraine (FHM) genes FHM1 (CACNA1A), FHM2
(ATP1A2), and FHM3 (SCN1A) genes play important roles in the tripartite synapse. FHM1 mutations
cause a gain-of-function of CaV2.1 calcium channels (red) that are located at presynaptic terminals of
glutamatergic and GABAergic neurons. When an action potential reaches the presynaptic terminal,
CaV2.1 channels open, allowing Ca2+ to enter, trigger vesicle fusion and glutamate release into the
synaptic cleft, which causes subsequent activation of post-synaptic receptors and action potential
generation. FHM2 mutations cause loss-of-function of α2-isoform containing Na+/K+-ATPases (grey)
that are located in astrocytic membranes, where they assist in removing extracellular K+ and
generating a Na+ gradient required for the uptake of glutamate from the synaptic cleft. FHM3
mutations cause loss-of-function of NaV1.1 voltage-gated sodium channels (blue) that are located on
inhibitory interneurons. NaV1.1 channels serve to initiate and propagate action potentials.
Gain-of-function mutations in CaV2.1 (FHM1) and loss-of-function mutations in the Na+/K+-ATPase
(FHM2) and NaV1.1 (FHM3) will each generate a net increase of general neuronal excitability. Tolner
et al. (2015), with permission from Wolters Kluwer Health, Inc).

14.4 Functional studies of gene mutations in monogenic
Familial Hemiplegic Migraine

The large effect sizes of gene mutations in monogenic FHM allow their functional
characterization in cellular and transgenic animal models. Most cellular studies have
shown that FHM1mutations exert gain-of-function effects by shifting neuronal CaV2.1
channels’ voltage-dependence towards more negative membrane potentials, while
enhancing channel open probability (Pietrobon, 2010), although loss-of-function
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effects have also been reported (Cao et al., 2004; Tao et al., 2012). Loss of glial Na+/K+

ATPase function seems the most likely mechanism for FHM2 mutations (Tavraz
et al., 2008) (see Chapter 15).
Most FHM3mutations seem to exert loss-of-function effects of NaV1.1 sodium chan-

nels, which appear primarily to affect inhibitory neurons, but gain-of-function effects
have also been proposed (Kahlig et al., 2008; Cestèle et al., 2008). Evenmore astounding,
when expressed in neurons, partial rescue from abnormal protein folding can transform
mutant protein from a loss-of-function to a gain-of-function mutation (Cestèle et al.,
2013). Whether, and to what extent, this transition also occurs in vivo remains to be
established, as no FHM3 knock-in (KI) mouse model is currently available to test this.
Taken together, the cellular studies of FHM mutations predict increased neurotrans-
mitter and potassium ion levels at the synaptic cleft (Figure 14.2), especially after high
intensity neuronal firing, which would facilitate CSD (Somjen, 2001).
Effects of FHM1 and FHM2 mutations have also been investigated at the organismal

level, by introducing pathogenic human FHM mutations in the endogenous Cacna1a
or Atp1a2 gene, respectively. Two transgenic FHM1 KI mouse models have been
generated, expressing the gain-of-function missense mutations R192Q or S218L in
the Cacna1a gene (van den Maagdenberg, 2004; van den Maagdenberg et al., 2010).
Mutant mice homozygous for the S218L mutation exhibit the complex phenotype of
cerebellar ataxia and spontaneous seizures that is also part of the clinical phenotype in
S218L patients (Stam et al., 2009), whereas mutant R192Q mice, like patients with this
mutation (Ophoff et al., 1996), do not exhibit these additional clinical features.
A migraine-relevant feature is the susceptibility to CSD that, at least in animals, has

been shown to activate brainstem and other centers of the brain relevant for the acti-
vation of headache mechanisms (Bolay et al., 2002; Zhang et al., 2011b; Karatas et al.,
2013). In FHM1R192Q and S218L mutant mice, the susceptibility to experimentally
induced CSD is increased (van den Maagdenberg, 2004; van den Maagdenberg et al.,
2010; Eikermann-Haerter et al., 2009). These features were:

i) more prominent in the severer S218L mutant (capturing the difference in clinical
severity when compared to R192Q mutants);

ii) more pronounced in homozygous versus heterozygous animals; and
iii) in line with the female preponderance in migraineurs – more pronounced in

female than male mutant mice (with no gender difference in wild type animals)
(Eikermann-Haerter et al., 2009).

Heterozygous FHM2 KI mice, which express the mutant Atp1a2 product due to a
loss-of-function W887R missense mutation, also display an increased CSD susceptibil-
ity (Leo et al., 2011). Similar to homozygous Atp1a2 knock-outmice (James et al., 1999),
homozygous FHM2 KI mice are not viable.
Only the FHM1 mouse models were studied in greater detail, which resulted in con-

siderable insight in pathophysiological mechanisms of hemiplegic migraine and, to a
certain extent, also common forms of migraine (for reviews, see Ferrari et al. (2015) and
Tolner et al. (2015)). Neurobiological studies in cortical brain slices of FHM1R192Q
and S218L KI mice demonstrated enhanced neuronal calcium influx as a direct con-
sequence of hyperactivity of CaV2.1 channels (Tottene et al., 2009; Vecchia et al., 2015)
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which, when normalized, resulted in normalization of CSD characteristics in brain slices
of R192Q mutants (Tottene et al., 2009). CSD waves in mutant animals were shown to
travel to subcortical brain regions and, in S218L mice, could even reach thalamus or
re-enter the cortex (Eikermann-Haerter et al., 2011a).
Studies in Calyx of Held brainstem neurons in brain slices and in vivo indicated

that S218L-mutated CaV2.1 channels cause an increase of basal intracellular [Ca2+],
which is suggested to be the dominant factor causing a gain-of-function at the synaptic
level (Di Guilmi et al., 2014). Investigations in cerebellar slices of R192Q and S218L
mice indicated that FHM1-mutated channels are already in a facilitated state at rest
(Adams et al., 2010). This is underscored by a recent Ca2+ imaging study in the
somatosensory cortex of heterozygous S218L mice, which revealed an altered synaptic
morphology compatible with stronger synapses and a hyperexcitability phenotype
(Eikermann-Haerter et al., 2015).These data support the concept that FHM1mutations
cause a CaV2.1 gain-of-function, leading to cerebral hyperexcitability that could also
explain the more severe neurological deficits associated with the S218L mutation in
patients.
Given the widespread expression of CaV2.1 channels throughout the nervous system,

it remains quite an enigma why the hyperexcitability phenotype associated with
FHM1 mutations causes no severer phenotype than an episodic disease like migraine.
Some important light was shed by studies suggesting that functional effects of FHM1
mutations may be neuron type-specific. For example, the absence of an effect of FHM1
mutations on cortical fast-spiking cortical interneurons, in comparison to the clear
gain-of-function effect observed for excitatory pyramidal neurons (Inchauspe et al.,
2010; Tottene et al., 2009), is likely due to the expression of interneuron-specific Cav2.1
channels, whose gating properties are not modified by the FHM1 mutation (Vecchia
et al., 2014). Context-dependency may cause different effects of FHM1 mutations
across brain regions, and could result in dynamic disturbances in the balance between
excitation and inhibition in neuronal circuits (Vecchia and Pietrobon, 2012), which can
be speculated to underlie the observed phenotypes.
Behavioral changes suggestive of spontaneous unilateral head pain have been iden-

tified in FHM1 mutant mice, typified as an increased amount of head grooming, with
unilateral oculotemporal strokes and increased blink rates with one eye closed (Chanda
et al., 2013). These behaviors appeared to be novelty or restraint stress induced, and
could be normalized by serotonergic anti-migraine drugs (Goadsby et al., 2002), suggest-
ing involvement of trigeminal pain pathways. Further evidence for spontaneous head
pain in FHM1 mice was obtained from using the so-called mouse grimace scale, an
objective measure of facial pain expression in mice (Langford et al., 2010); in addi-
tion, FHM1mice displayed signs of photophobia by displaying light-avoidance behavior
(Chanda et al., 2013).
Insight into molecular pain-related mechanisms in FHM1 mice came from investi-

gating the functionality of purinergic receptors (Köles et al., 2011) – more specifically,
P2X3 receptors that are mostly expressed by nociceptive sensory neurons and partic-
ipate in transduction of pain signals (Giniatullin and Nistri, 2013), and P2Y receptors,
which are proposed as new targets for analgesic and antimigraine drugs (Magni and
Ceruti, 2013). Trigeminal (TG) sensory neurons of R192Q mice revealed excessively
enhanced ATP-gated purinergic P2X3 receptor activity, due to constitutive activation
of P2X3 receptors in TGs of mutant mice (Nair et al., 2010). Notably, TG neurons of
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R192Q mice exhibited increased release of various soluble migraine-relevant media-
tors, such as CGRP, BDNF and TNFα, already at baseline (Hullugundi et al., 2013). The
enhanced baseline activity of P2X3 receptors could explain why further potentiation of
these receptors by exogenous CGRP or TNFα was not observed.
The combination of enhanced purinergic activity and soluble “migraine mediators”

(Giniatullin et al., 2008) may underlie the abnormal cytokine and chemokine profiles
and activatedmacrophages observed for TGneurons of R192Qmice (Franceschini et al.,
2013). When FHM1 TG neurons were co-cultured with satellite glial cells, mimicking
their native environment, an increased CGRP release at baseline, and upon neuronal
activation, resulted in potentiation of glial P2Y receptors and subsequent glial cell acti-
vation (Ceruti et al., 2011). The observed neuro-inflammatory state of TGs in FHM1
mice with constitutively activated purinergic receptors in both neurons and glial cells
could facilitate pain signal transduction, given the proposed role of inflammatory pain
mediators, including TNFα on meningeal nociceptors, for development of head pain
(Zhang et al., 2011a). Such a cascade was recently proposed to be triggered by CSD via
activation of neuronal Pannexin channels (Karatas et al., 2013).
Given the enhanced susceptibility of FHM1mice to CSD (van denMaagdenberg et al.,

2004, 2010; Eikermann-Haerter et al., 2009), the baseline inflammatory characteristics
of TG in FHM1 mice may convert acute activation of trigeminal pathways by CSD into
a chronic trigeminal pain state reflecting headaches of long duration. If, indeed, in vitro
findings from TG neurons would translate to the in vivo level, FHM1 mice could serve
as a valuable model for investigating effects of existing and novel migraine drugs, which
may involve modulation of CGRP and inflammatory pathways (Wrobel Goldberg and
Silberstein, 2015; Russo, 2015).

14.5 Genetic studies in monogenic disorders in which
migraine is a prominent part of the clinical phenotype

Other rare monogenic disorders in which migraine is prevalent may provide useful
additional insight in pathophysiological mechanisms involved inmigraine (Figure 14.3).
The clearest example is Cerebral Autosomal Dominant Arteriopathy with Subcortical
Infarcts and Leukoencephalopathy (CADASIL), which is caused by mutations in the
NOTCH3 gene that plays an important role in vascular smooth muscle cells of small
blood vessels of the brain (Joutel et al., 1996). Some one-third of CADASIL patients have
migraine with aura (Dichgans et al., 1998), supporting involvement of a vascular com-
ponent in migraine pathophysiology. Another clear example is Familial Advanced Sleep
Phase Syndrome (FASPS), which is causal by missense mutation in the casein kinase 1𝛿
(CSNK1D) gene. All eight patients from two FASP families also suffered from migraine
with aura (Brennan et al., 2013).
The mutant gene product of CK1D, a known regulator of circadian rhythms, seems

to cause vascular dysfunction through abnormal astrocytic signaling. Both CADASIL
and FASP are monogenic disorders that link abnormal vascular and, in the case of
FASP, are also glial, dysfunction to migraine pathophysiology. Transgenic mice in which
CADASIL or FASPS mutations were overexpressed, similar to what was found for
mice that express FHM1 mutations, showed a reduced threshold for CSD (Brennan
et al., 2013; Eikermann-Haerter et al., 2011b). Exactly how mutations in NOTCH3 or
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Figure 14.3 Genes and pathways involved in Familial Hemiplegic Migraine (FHM), common forms
of migraine, and other disorders in which migraine is prominent. Arrows connect genes to the
presumed function of that gene. Adapted from Tolner et al. 2015 and reproduced with permission
from Wolters Kluwer Health, Inc.

CSNK1D cause vascular phenotypes that might explain the occurrence of migraine in
mutation carriers is not yet known.
There is one example of a presumed monogenic gene identification in pure familial

common non-hemiplegic migraine (Lafrenière et al., 2010). In KCNK18, which encodes
the TRESK protein, and was selected as candidate gene for targeted sequencing because
of its role in controlling neuronal excitability, a truncating non-functional F139WfsX24
mutationwas identified that could explain all migraine cases in amultigenerational fam-
ily with migraine with aura. As several rare TRESK variants, including a variant that,
like the F139WfsX24 mutation, showed complete loss of function, were also observed
in control individuals, KCNK18 is now regarded a genetic modifier of a migraine phe-
notype, and not the direct cause (Andres-Enguix et al., 2012).

14.6 Genome-wide association studies in common polygenic
migraine

For the identification of genetic factors for common polygenic disorders, traditionally
a candidate gene approach has been used that tested the distribution of alleles (DNA
variants) at one location in a single candidate gene that had been selected on prior
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knowledge of migraine pathophysiology. Evidence for causality of the DNA variant (and
the gene it belongs to) should come from statistical differences in allele frequencieswhen
comparing cases and controls. Most studies used only a few hundred cases, or even
fewer, but still many claims for migraine susceptibility genes were made (for review, see
De Vries et al. (2009)), despite the fact that, in virtually all studies, no efforts were made
to replicate findings in independent cohorts.
Since a few years ago, the candidate gene approach has been replaced by the

hypothesis-free genome-wide association (GWA) approach. GWA studies (GWAS)
test up to several million common variants (single-nucleotide polymorphisms – SNPs),
covering the whole genome for association with a trait, in very large cohorts of patients
and controls (at least several thousands). The distribution of allele frequencies between
cases and controls is compared for each SNP. To correct sufficiently for multiple testing,
P-values below 5 × 10–8 are considered to be genome-wide significant. Effect sizes
of variants identified through GWAS tend to be very low, so GWAS results have no
relevance to very little for clinicians and patients, as yet. This may be different when
many tens, to perhaps hundreds, of DNA variants associated with migraine have been
identified in the future.
Several GWAS have been performed for migraine. Two studies focused on patients

that were collected by specialized headache clinics (Anttila et al., 2010; Freilinger et al.,
2012). One study focused on patients with MA, and identified a single associated DNA
variant that linked to the MTDH gene (Anttila et al., 2010). The other study focused
on MO, and identified six loci that led to MEF2D, TGFBR2, PHACTR1, ASTN, TRPM8
and LRP1 as the likely susceptibility genes (Freilinger et al., 2012). Combining genotyped
samples of those studies with those of a large population-based GWAS (Chasman et al.,
2011), and several additional cohorts, yielded an enormous data set, with over 23 000
cases and 100 000 controls, which was used for a meta-analysis by the International
Headache Genetics Consortium (Anttila et al., 2013).
The meta-analysis yielded 13 migraine susceptibility loci, with genes involved in neu-

ronal pathways (MTDH , LRP1, PRDM16, MEF2D, ASTN2, PHACTR1, FHL5, MMP16),
metalloproteinases (MMP16, TSPAN2, AJAP1) and vascular pathways (PHACTR1,
TGFBR2, C7orf10) (Figure 14.3). The genetic associations detected by migraine GWAS
are statistically very robust (with successful replication in many independent cohorts),
though they explain only very little of the genetic variance and, therefore, they hardly
have predictive value. The GWAS data set gives a unique opportunity to re-evaluate
findings from candidate gene association studies. None of the previously reported
associated gene variants could be replicated in a large GWAS data set of over 5000
cases and 13 000 controls (De Vries et al., 2015) which, in retrospect, suggests that
candidate gene association studies yielded false-positive results, likely due to the fact
that these studies were heavily underpowered.

14.7 Future directions in genetic migraine research

Several novel approaches and methodologies are now available that will further the
identification of genetic factors in migraine and the understanding of their functional
consequences. The most relevant ones are discussed below.
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14.7.1 Future avenues of genetic research

Although an increasing number of genetic migraine susceptibility variants have been
identified, considerable efforts are still needed to fully harvest from GWAS. The main
obstacle is that GWAS hits at the moment are SNPs that merely “tag” the disease locus,
implying that the identified associated SNP is not the disease-causing variant, but in
linkage disequilibrium with the real variant. Hence, it is doubtful whether many of the
current associated SNP variants are, in fact, the real causal variants and do pinpoint the
causal genes. Fine-scale mapping of each GWAS locus would enable the identification
of truly functional variant(s) – that is, those variants with the greatest effect sizes and/or
lowest P-value.
Expensive efforts are needed to perform large-scale targeted sequencing of a locus to

first capture all variants and, to a certain extent, this can be overcome by imputation
with publically available 1000 Genomes Project data (Abecasis et al., 2012). Subsequent
genotyping of rare variants (using custom-made chip arrays), and haplotyping efforts
in large cohorts, is expected to prioritize variants, but this is not straightforward at the
moment (Edwards et al., 2013).
A second major obstacle is that the majority of GWAS hits will not affect amino acid

sequences in encoded proteins. Instead, they are located in intronic or intergenic regions
more likely to have subtle influences on gene regulation. A popular approach is to per-
form pathway-based analyses to examine GWAS signals of a group of genes involved
in the same (or similar) biological process(es), to explore pathways affected by multi-
ple GWAS hits (Wang et al., 2010). Mining of gene expression databases (The GTEx
Consortium, 2013; http://www.gtexportal.org/), databases of the NIH Roadmap Epige-
nomics Roadmap project (TheNIHRoadmap EpigenomicsMapping Consortium, 2010;
http://www.roadmapepigenomics.org), and the Allen Brain Atlas project (Hawrylycz
et al., 2012; www.brain-map.org) can be of use to obtain relevant (functional) infor-
mation from GWAS hits, even when the associated variants are not in a protein-coding
region.
A third major obstacle is to investigate the functional consequences of associated

SNPs (or linked genes) with respect to disease-relevant pathways.There are several lay-
ers of complexity:

i) the initially associated SNP may not be the causal variant in a GWAS locus (so fine
mapping is needed to confirm/identify the true causal variant);

ii) there may bemultiple SNPs, in multiple combinations (i.e., onmultiple haplotypes),
in aGWAS locus that confer actualmigraine risk (the combination of SNPs on a hap-
lotype may be particularly relevant when specific variants can increase or decrease
disease risk);

iii) the associated/causal SNPmay be not evolutionary conserved (problemsmay occur
when a model system is used that is non-human).

There are sufficient challenges to functionally study the importance of GWAS hits to
understand migraine pathophysiology, as only the combined effect of multiple variants
is regarded sufficient to cause the disease (unlike in monogenic forms of migraine, for
which a single mutation suffices). Even when all migraine susceptibility genes would
have been identified (and there may be many hundreds), the issue remains which com-
bination in a given patient will cause disease. For obvious reasons, it will be a force
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majeure to perform such investigation by modulating the genome in cellular or animal
(e.g., zebrafish or mouse) models.

14.7.2 Novel sequencing strategy for gene identification

Genetic research in migraine will certainly benefit from recent breakthroughs in
massive parallel DNA sequencing, such as next generation sequencing (NGS), which
allows cost-efficient sequencing of all protein-coding regions (“exome”), or the complete
genome (“whole genome”) in a single experiment. Despite successes in many genetic
studies (Stranneheim and Wedell, 2016), more sophisticated procedures for data pool-
ing, bioinformatic filtering and variant prioritization methods need to be developed to
identify disease-related DNA variants among a huge number of non-related variants,
especially when used on larger sets of patients with monogenic or complex polygenic
forms of migraine. Novel technologies are emerging, but remain challenging at the
moment, to help harvesting from recent GWAS discoveries.
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15.1 Introduction

Migraine is a common episodic neurological disorder with complex pathophysiology.
It is generally recognized that: i) most migraine attacks start in the brain; ii) migraine
headache depends on the activation and sensitization of the trigeminovascular pain
pathway; and iii) cortical spreading depression (CSD) is the neurophysiological cor-
relate of migraine aura (Lauritzen, 1994 ; Noseda and Burstein, 2013; Pietrobon and
Moskowitz, 2013, 2014).
CSD is a slowly propagating wave of rapid and nearly complete depolarization of brain

cells, that lasts about oneminute and silences brain electrical activity for severalminutes
(Pietrobon andMoskowitz, 2014). It is characterized by collapse of ion homeostasis and
profound disruption of transmembrane ionic gradients, plus release of neurotransmit-
ters and other molecules from cellular compartments. Experimental induction of CSD
in normallymetabolizing brain tissue requires intense depolarizing stimuli that increase
the extracellular concentration of potassium ions [K+]e above a critical threshold.
As inferred from modeling, initiation of the positive feedback cycle that ignites CSD

requires the generation of a net inward current, as a consequence of the activation of a
sufficient number of voltage-gated and/or [K+]e-dependent channels. Net inward cur-
rent leads to membrane depolarization and increase of [K+]e which, in turn, leads to
further activation of voltage-gated and/or [K+]e-dependent channels, further depolar-
ization, and an increase in local [K+]e. This results in complete neuronal depolarization
if the removal of K+ from the interstitium, mainly due to glial reuptake mechanisms,
does not keep pace with its release (Somjen, 2001; Pietrobon and Moskowitz, 2014).
Although the nature of the ion channels that are crucial to initiate CSD remains incom-
pletely understood, there is strong pharmacological evidence thatNMDA receptors play
a key role in CSD initiation (Pietrobon and Moskowitz, 2014).
Experiments in rats have shown that a single CSD can lead to a long-lasting increase in

ongoing activity of dural nociceptors and central trigeminovascular neurons, regardless
of the cortical region it arises from (Bolay et al., 2002; Zhang et al., 2010, 2011; Zhao and
Levy, 2015).The activation process possibly involves CSD-induced opening of neuronal
pannexin1 megachannels, resulting in a downstream cascade of events that may lead to
release of proinflammatory molecules in the meninges via glia limitans (Karatas et al.,
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2013).These findings are consistent with, and support, the idea that CSDnot only causes
migraine aura but may also trigger the mechanisms underlying migraine headache.
The mechanisms of the primary brain dysfunction(s) underlying the susceptibility to

CSD ignition in the human brain and the onset of a migraine attack remain largely
unknown, and these are major open issues in the neurobiology of migraine.
Migraine is a complex genetic disorder, with heritability estimates as high as 50% and

a likely polygenic multifactorial inheritance (Russell and Ducros, 2011; Ferrari et al.,
2015). Three large genome-wide association studies and a subsequent meta-analysis
have identified a few risk factors for both migraine with and without aura (Ferrari et al.,
2015). However, most of our current molecular understanding of migraine comes from
studies of familial hemiplegic migraine (FHM), a rare monogenic autosomal dominant
form of MA (Russell and Ducros, 2011; Ferrari et al., 2015).Three FHM causative genes
have been identified, all encoding ion channels or transporters (Ophoff et al., 1996; De
Fusco et al., 2003; Dichgans et al., 2005). Additional FHM genes certainly exist, and
remain to be identified (Thomsen et al., 2007).
Apart from the motor aura and the possible longer duration of the aura, typical FHM

attacks resemble MA attacks, and both types of attacks may alternate in patients and
co-occur within families.This suggests that FHM andMAmay be part of the same spec-
trum, and may share some pathogenetic mechanisms, despite clinical observations that
the response to infusion of CGRP and glyceriltrinitrate seems to differ (Ashina et al.,
2013; Ferrari et al., 2015). Some FHMpatients can also have atypical severe attacks (with
signs of diffuse encephalopathy, confusion or coma, prolonged hemiplegia and in a few
cases seizures) and/or permanent cerebellar symptoms (Russell and Ducros, 2011).
This chapter will focus on:

i) the physiological role of the proteins encoded by the three known FHM genes and
the functional consequences of FHMmutations; and

ii) the insights into the mechanisms underlying susceptibility to CSD and initiation of
migraine attacks obtained from the functional analysis of FHMmouse models.

15.2 FHM genes and functional consequences of FHM
mutations

FHM type 1 (FHM1) is caused by missense mutations in CACNA1A, the gene encoding
the pore-forming subunit of neuronal CaV2.1 (P/Q-type) voltage-gated calcium (Ca)
channels (Ophoff et al., 1996; Pietrobon, 2013) (Figure 15.1). These calcium channels
are widely expressed in the nervous system, including all structures implicated in the
pathogenesis of migraine, and play a dominant role in controlling neurotransmitter
release; the somatodendritic localization of CaV2.1 channels points to additional
postsynaptic roles, for example, in neural excitability (Pietrobon, 2013). In particular,
in different areas of the cerebral cortex, excitatory synaptic transmission at pyramidal
cell synapses, and inhibitory synaptic transmission at both fast-spiking (FS) and
somatostatin-expressing interneuron synapses, depend predominantly or exclusively
on P/Q-type Ca channels (Pietrobon, 2013 and references therein; Rossignol et al.,
2013) (see Chapter 14).
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Figure 15.1 Prevalent location of FHM proteins in brain cells and effect of FHM mutations on their
function. The CaV2.1 channels (the mutant proteins in FHM1) are located at the active zones of both
excitatory and inhibitory synaptic terminals throughout the brain. FHM1 mutations produce
gain-of-function of the CaV2.1 channels in excitatory cortical pyramidal cells, but do not affect the
CaV2.1 channels in multipolar cortical inhibitory interneurons. In the adult brain, the α2 Na+, K+

ATPases (the mutant proteins in FHM2) are located almost exclusively in astrocytes, where they are
colocalized with glutamate transporters in astrocyte processes surrounding excitatory, but not
inhibitory, synapses. The NaV1.1 channels (the mutant proteins in FHM3) are located in cortical
inhibitory interneurons, especially at the axon initial segment, and play an important role in
interneuron (but not pyramidal cell) excitability, particularly in sustaining high-frequency firing. FHM3
mutations produce gain-of-function of NaV1.1 channels in cortical interneurons.

Analysis of the single channel properties of mutant recombinant human CaV2.1
channels (Tottene et al., 2002; Pietrobon, 2013) and of the P/Q-type calcium current
in different neurons of knock-in (KI) mice carrying FHM1 mutations, revealed that
the mutations produce gain-of-function of CaV2.1 channels, mainly due to increased
channel open probability and channel activation at lower voltages (van den Maagden-
berg et al., 2004, 2010; Tottene et al., 2009; Inchauspe et al., 2010; Fioretti et al., 2011;
Gao et al., 2012). FHM1 mutations also reduce the G protein-mediated inhibitory
modulation of recombinant Cav2.1 channels, an effect that, if confirmed in neurons,
may lead to further gain of function during neuromodulation (Melliti et al., 2003; Weiss
et al., 2008; Serra et al., 2009).
The gain-of-function effect of FHM1 mutations may be dependent on the specific

CaV2.1 splice variant and/or auxiliary subunit (Mullner et al., 2004; Adams et al.,
2009). The expression of specific CaV2.1 splice variants and/or auxiliary subunits in
different types of neurons may underlie some interesting neuron-specific effects of
FHM1 mutations recently uncovered in trigeminal and cortical neurons. In trigeminal



�

� �

�

254 Neurobiological Basis of Migraine

ganglion neurons of FHM1 KI mice, the P/Q-type calcium current was increased in
small capsaicin-insensitive trigeminal ganglion neurons not innervating the dura, but
was unaltered in small capsaicin-sensitive neurons innervating the dura (Fioretti et al.,
2011). Congruently, depolarization-evoked CGRP release from the dura was unaltered
in FHM1 KI mice, whereas CGRP release from trigeminal ganglia was enhanced
(Fioretti et al, 2011).
In contrast with the increased current density and left-shifted activation gating of

the CaV2.1 channels in cortical pyramidal cells and other excitatory CNS neurons from
FHM1 KI mice (van denMaagdenberg et al., 2004, 2010; Tottene et al., 2009; Inchauspe
et al., 2010; Gao et al., 2012), the current density and activation gating of the CaV2.1
channels expressed in cortical multipolar (mainly FS) inhibitory interneurons were
barely affected by the FHM1 mutation (Vecchia et al., 2014). Congruently, cortical
excitatory synaptic transmission was enhanced in FHM1 KI mice whereas, in striking
contrast, inhibitory neurotransmission at FS (and other multipolar) interneuron
synapses was unaltered (Tottene et al., 2009; Vecchia et al., 2014, 2015) (Figure 15.1).
Neuron-specific effects of FHM1mutations on action potential (AP)-evokedCa influx

may also result from different shape and duration of APs in different neurons. Although
in cortical pyramidal cells, the shift to lower voltages of mutant CaV2.1 channel acti-
vation resulted in increased AP-evoked Ca current, a similar activation shift of mutant
CaV2.1 channels at the Calyx of Held synaptic terminals did not alter the AP-evoked
Ca current (Inchauspe et al., 2010). The different durations of the AP in pyramidal cells
and Calyx (1.8 vs 0.44ms AP half width) may largely explain the different effects of the
FHM1 mutation on the AP-evoked Ca current (Inchauspe et al., 2010). The demon-
stration of neuron-specific alterations of CaV2.1 channels and/or AP-evoked Ca influx
has an important implication for familial migraine mechanisms, in that it may help to
explain why amutation in a calcium channel that is widely expressed in the nervous sys-
tem produces the specific neuronal dysfunctions leading to migraine (see next section).
FHM type 2 (FHM2) is caused by (mainly missense) mutations in ATP1A2, the gene

encoding the α2 subunit of the Na+, K+ ATPase (NKA) (De Fusco et al., 2003; Bøttger
et al., 2012; see Figure 15.1). In the brain, this isoform is expressed primarily in neurons
during embryonic development and at time of birth, but almost exclusively in astrocytes
in the adult (Pietrobon, 2007 and references therein). While the ubiquitous α1 NKA is
thought to fulfill households tasks, the α2 NKA is thought to have specific important
roles in clearance of K+ and glutamate released during neuronal activity and in astro-
cyte Ca2+ homeostasis (Pietrobon, 2007). Although the lower affinity of the α2 NKA
for extracellular K+ makes it better geared to respond efficiently to activity-dependent
increases of [K+]e, compared with α3 and α1, the relative contribution of the differ-
ent NKA isoforms in K+ clearance from the extracellular medium remains unclear, and
might vary in different conditions (D’Ambrosio et al., 2002; Ransom et al., 2000; Larsen
et al., 2014).
An important role of the α2 NKA in glutamate clearance by astrocytes is suggested

by its colocalization with the glial glutamate transporters in astrocytic processes sur-
rounding glutamatergic synapses in the adult somatosensory cortex (Cholet et al., 2002)
and the evidence of physical and functional coupling of the α2 NKA with glial gluta-
mate transporters (Pellerin and Magistretti, 1997; Rose et al., 2009; Illarionava et al.,
2014). A specific role of α2 NKA in the regulation of intracellular Ca2+, particularly
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in the endoplasmic reticulum, is suggested by the colocalization of the α2 NKA with
the Na+/Ca2+ exchanger, in microdomains that overlie subplasmalemmal endoplasmic
reticulum in cultured astrocytes (Pietrobon, 2007 and references therein).
FHM2mutations cause complete or partial loss-of-function of recombinant α2 NKA,

due to loss or reduction of catalytic activity or impairment of plasmamembrane delivery
and/or protein degradation (Pietrobon, 2007; Boettger et al, 2012).The α2 NKA protein
is barely detectable in the brain of homozygous FHM2 KI mice, and strongly reduced in
the brain of heterozygous mutants (Leo et al., 2011; Figure 15.1).
FHM type 3 (FHM3) is caused by missense mutations in SCNA1A, the gene encoding

the pore-forming subunit of neuronal NaV1.1 voltage-gated sodium channels (Dichgans
et al., 2005; Figure 15.1). NaV.1.1 channels are highly expressed in cortical inhibitory
interneurons, especially at the axon initial segment, and play an important role in
interneuron (but not pyramidal cell) excitability, particularly in sustaining interneuron
high-frequency firing (Yu et al., 2006; Ogiwara et al., 2007). Indeed loss-of-function
mutations in NaV.1.1 channels and consequent selective impairment of firing in
inhibitory interneurons cause a spectrum of epilepsy syndromes (Catterall et al., 2010).
Conflicting findingswere obtained from the analysis of the functional consequences of

FHM3 mutations on recombinant human NaV1.1 channels expressed in non-neuronal
cells, pointing to either gain- or loss-of-function effects of FHM3mutations, depending
on the mutation and/or the laboratory (Cestèle et al., 2008; Kahlig et al., 2008). How-
ever, recently, it has been shown that the L1649Q mutant Nav1.1 channel, which was
non-functional when expressed in a non neuronal cell line because of lack of plasma
membrane delivery, shows an overall gain-of-function phenotype, and could sustain
high-frequency firing better than theWT channel when expressed in cortical interneu-
rons (Cestèle et al., 2013). This interesting finding suggests that FHM3 is most likely
associated with gain-of-function of NaV1.1 channels and consequent selective hyperex-
citability of cortical interneurons (Figure 15.1).

15.3 Insights into the mechanisms underlying susceptibility
to cortical spreading depression and initiation of migraine
attacks from the functional analysis of FHM mouse models

Three different FHM mouse models have been generated by introducing the human
FHM1R192Q or S218L and FHM2W887R mutations into the orthologous genes (van
den Maagdenberg et al., 2004, 2010; Leo et al., 2011). While mutations R192Q and
W887R in humans cause typical FHM attacks (Ophoff et al., 1996; De Fusco et al.,
2003), mutation S218L causes a particularly dramatic clinical syndrome (Kors et al.,
2001). Whereas homozygous R192Q and heterozygous S218L and W887R KI mice do
not exhibit an overt phenotype, homozygous S218Lmicemodel themain features of the
severe S218L clinical syndrome (van den Maagdenberg et al., 2010).
The investigation of experimental CSD, elicited either by electrical stimulation of the

cortex in vivo or by focal application of high KCl in cortical slices, revealed a lower
threshold for CSD initiation and an increased velocity of CSD propagation in both
FHM1 and FHM2KImice (van denMaagdenberg et al., 2004, 2010; Tottene et al., 2009;
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Leo et al., 2011). Moreover, a single CSD, elicited by brief epidural application of high
KCl, more readily propagated into the striatum and produced more severe and
prolonged motor deficits (including hemiplegia) in FHM1, compared with WT mice
(Eikermann-Haerter et al., 2009b, 2011).
In agreement with the higher female prevalence in migraine, the velocity of propa-

gation and the frequency of CSDs, elicited by continous epidural high KCl application,
were larger in female than in male FHM1 mouse mutants. The sex difference was abro-
gated by ovariectomy and enhanced by orchiectomy, suggesting that female and male
gonadal hormones exert reciprocal effects on CSD susceptibility (Eikermann-Haerter
et al., 2009a, 2009b). However, no gender differences in the electrical threshold for CSD
induction and the velocity of CSD propagation were found in FHM2 KI mice (Leo et al.,
2011).The frequency of CSDs was also increased in FHM1 KI mice after administration
of the stress hormone corticosterone, but not after acute restrain stress (Shyti et al.,
2015).
In homozygous FHM1 KI mice carrying the mild R192Q or the severe S218L muta-

tion, the strength of CSD facilitation, as well as the severity of the post-CSD neurolog-
ical motor deficits and the propensity of CSD to propagate into subcortical structures,
were all in good correlation with the strength of the gain-of-function of the CaV2.1
channel and the severity of the clinical phenotype produced by the two FHM1 muta-
tions (Kors et al., 2001; van den Maagdenberg et al., 2004, 2010; Tottene et al., 2005;
Eikermann-Haerter et al., 2009b, 2011). Propagation of CSD to the hippocampus and
thalamus, and repetitive CSD events following a single CSD-inducing stimulus, were
observed only in S218Lmutants (van denMaagdenberg et al., 2010; Eikermann-Haerter
et al., 2011). These unique CSD features might account for the severe attacks, with
seizures, coma and cerebral edema, typical of patients with the S218L mutation.
Although FHM3 mouse models are not yet available, the report that FHM3 in two

unrelated families co-segregates with a new eye phenotype, with clinical features similar
to experimental spreading depression in retina (Vahedi et al., 2009), suggests that the
ability to facilitate CSD is likely also shared by FHM3 mutations.
As a whole, the studies of experimental CSD in FHM KI mice strengthen the view

of CSD as a key player in the pathogenesis of migraine. Moreover, the investigation of
the mechanisms underlying the facilitation of experimental CSD in FHM1 KI mice has
provided insights into the mechanisms of initiation of CSD, and into the mechanisms
that may make the brain of migraineurs susceptible to “spontaneous” CSDs.
The study of cortical synaptic transmission in FHM1 KImice revealed enhanced exci-

tatory transmission, due to enhanced action potential-evoked Ca influx throughmutant
presynaptic CaV2.1 channels and enhanced probability of glutamate release at cortical
pyramidal cell synapses (Tottene et al., 2009; Vecchia et al., 2015). CSD rescue experi-
ments in R192Q KI mice support a causative relationship between increased glutamate
release at cortical excitatory synapses and facilitation of (both initiation and propa-
gation of) experimental CSD (Tottene et al., 2009). In fact, the facilitation of CSD in
acute cortical slices of homozygous R192Q KI mice was completely eliminated when
AP-evoked glutamate release at pyramidal cell synapses was brought back toWT values
by partially inhibiting the CaV2.1 channels (Tottene et al., 2009).
In good correlation with the similar gain-of-function of the neuronal P/Q-type Ca2+

current and the similar facilitation of experimental CSD in heterozygous S218L and
homozygous R192Q KI mice (van den Maagdenberg et al., 2010), the gain-of-function
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of evoked excitatory neurotransmission in cortical pyramidal cells in microculture was
quantitatively similar in heterozygous S218L and homozygous R192Q KI mice (Tottene
et al., 2009; Vecchia et al., 2015). This good correlation is consistent with the conclu-
sion that enhanced glutamate release at cortical pyramidal cell synapses may explain
the facilitation of experimental CSD in heterozygous S218L KI mice, as directly shown
in homozygous R192Q KI mice.
The data are consistent with, and support, a model of CSD initiation in which a local

regenerative [K+]e increase, [K+]e-induced opening of presynaptic CaV2.1 channels, and
consequent glutamate release and activation of NMDA receptors (and possibly activa-
tion of postsynaptic CaV2.1 channels), are key elements in the positive feedback cycle
that ignites CSD (Tottene et al., 2009; Pietrobon and Moskowitz, 2014; Figure 15.2).
Moreover, the findings are consistent with a model of CSD propagation in which inter-
stitial K+ diffusion initiates this positive-feedback cycle in contiguous dendritic regions
(Tottene et al., 2009; Pietrobon and Moskowitz, 2014).
This model and, in general, the specific requirement of CaV2.1 channels in the initi-

ation and propagation of CSD (induced by electrical stimulation or brief pulses of high
K+), are further supported by the findings that:

i) in the spontaneous mouse mutants leaner and tottering, which carry loss-
of-function mutations in cacna1a (Pietrobon, 2010), the electrical threshold for
CSD induction in the cerebral cortex in vivo was greatly increased, and the velocity
of CSD propagation, as well as K+-evoked glutamate release (as measured by
microdyalisis), were reduced, compared with WT mice (Ayata et al., 2000);

ii) after blockade of either the CaV2.1 channels or the NMDA receptors, CSD could not
be induced in cortical slices of WT mice, even using largely suprathreshold stimuli
(Tottene et al., 2011).

In contrast with the larger facilitation of CSD and the larger neuronal P/Q-type Ca2+
current in homozygous S218L compared with heterozygous S218L KI mice (van den
Maagdenberg et al., 2010), the strength of excitatory transmission at cortical pyramidal
cell synapses is similar in homozygous and heterozygous S218L KI mice, reflecting
a similar AP-evoked presynaptic Ca influx (Vecchia et al., 2015). This suggests the
existence of compensatory changes in homozygous S218LKImice that prevent excessive
AP-evoked Ca influx and glutamate release. Moreover, these findings suggest that the
larger facilitation of experimental CSD in homozygous, compared with heterozygous
S218L KI mice is due to gain-of-function of CaV2.1-dependent mechanisms different
from evoked glutamate release at cortical pyramidal cell synapses (Vecchia et al., 2015).
Gain-of-function of CaV2.1-dependent mechanisms different from evoked-glutamate
release should also underlie the unique cortical susceptibility to repetitive CSD events,
and the unique propensity of CSD to spread into subcortical structures observed in
S218L (both larger in homozygous than heterozygous mice), but not in R192Q KI mice
(van den Maagdenberg et al., 2010; Eikermann-Haerter et al., 2011).
A specific feature of cortical synapses in S218LKImice not observed inR192QKImice

is the presence of a fraction of mutant CaV2.1 channels that is open at resting poten-
tial in cortical excitatory synaptic terminals, as revealed by the reduced frequency of
spontaneous miniature excitatory postsynaptic currents (mEPSCs) after specific block
of CaV2.1 channels in cortical slices from heterozygous and homozygous S218L (but not
R192Q) KI mice (Vecchia et al., 2015).
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Figure 15.2 A model of CSD initiation. (a) A schematic diagram of the initiation mechanisms of
experimental CSD induced by a focal electrical or brief K+ pulse stimulation. In this model,
CaV2.1-channel dependent release of glutamate from cortical excitatory synapses and activation of
NMDA receptors have a key role in the generation of the net inward current necessary to initiate the
positive feedback cycle that ignites CSD. The glial reuptake mechanisms play a dampening role, by
mediating both K+ and glutamate clearance. (b) In FHM1, CaV2.1 channel activation and glutamate
release are larger at any given depolarization and [K+]e increase. As a consequence, the positive
feedback cycle is amplified, and a smaller depolarizing stimulus is necessary to open a sufficient
number of CaV2.1 channels and release enough glutamate and open enough NMDA receptors to
initiate the positive feedback cycle that ignites CSD.
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An even larger reduction of mEPSCs frequency after specific block of CaV2.1
channels as well as an increase in basal [Ca2+]i in synaptic terminals were measured
at Calyx of Held synapses in brainstem slices from homozygous S218L KI mice (Di
Guilmi et al., 2014). In R192Q KI mice, mEPSCs frequency at both cortical and Calyx
synapses was similar to that at WT synapses (Tottene et al., 2009; Inchauspe et al.,
2012), indicating that presynaptic CaV2.1 channels carrying the R192Q mutation
are closed at resting potential. Interestingly, an increase of baseline [Ca2+]i in axonal
boutons and shafts in layer 2/3 of cerebral cortex in heterozygous S218L KI mice in
vivo was recently revealed by elegant Ca imaging, using a FRET-based Ca indicator
(Eikermann-Haerter et al, 2015). Probably as a consequence of the increase in baseline
[Ca2+]i, these mice also showed some alterations in axonal and dendritic morphology
in the resting state, including slightly larger boutons (Eikermann-Haerter et al., 2015).
It would be important to perform similar experiments in R192Q KI mice, to verify
whether, as predicted by the work in cortical slices, the increase in baseline [Ca2+]i is a
specific feature of S218L KI mice that might contribute to explain some of the unique
features of the in vivo CSD in these mice.
A larger facilitation of CSD in homozygous compared to heterozygous S218L KI mice

is expected (even with similar AP-evoked glutamate release in the two genotypes) if
a larger fraction of mutant CaV2.1 channels opens at subthreshold depolarizations
induced by local [K+]e rise in homozygous S218L KI mice. Moreover, in these mice,
the increase in basal [Ca2+]i and Ca2+ influx, at negative voltages sub-threshold for AP
generation through presynaptic and postsynaptic mutant CaV2.1 channel, may con-
tribute to lower the threshold for CSD induction through additional mechanisms that
remain to be elucidated. For example, in addition to NMDA receptors, [Ca2+]i-activated
cationic channels could contribute to the net self-sustaining inward current necessary
to initiate the positive feedback cycle that ignites CSD (Somjen et al., 2009; Pietrobon
and Moskowitz, 2014).
Moreover, the unique metabolic burden put on cortical neurons by the constant basal

Ca2+ influx that is specifically produced by the S218L mutation may contribute to the
unique features of CSD in S218L KI mice, by, for example, prolonging the transient
hypoxia and slowing the recovery of cerebral flow after CSD (Pietrobon andMoskowitz,
2014). Since another peculiarity ofmutant S218LCa2+ channels, besides the particularly
low threshold of activation, is the incomplete inactivation during prolonged depolariza-
tions (Tottene et al., 2005), a larger increase of [Ca2+]i during CSD in cortical neurons
may also contribute to a slower recovery from CSD in S218L KI mice.
The mechanisms underlying the facilitation of CSD in FHM2 and FHM3 have not yet

been experimentally investigated. One may predict that a reduced rate of K+ clearance
and/or a reduced rate of glutamate clearance due to loss-of-function of the α2 NKA
pump would lower the threshold for CSD induction and increase the velocity of CSD
propagation. It is not straightforward to envisage how gain-of-function of NaV1.1 chan-
nels in interneurons and consequent selective hyperexcitability of cortical interneurons
may facilitate CSD in FHM3.
In migraineurs, CSD is not induced by experimental depolarizing stimuli, but arises

“spontaneously”, probably in response to specific triggers that somehow create, in the
cortex, the conditions for initiation of the positive feedback cycle that overwhelms
the regulatory mechanisms controlling cortical [K+]e and ignites CSD. Insights into
how this might occur have been provided by the differential effect of FHM1 mutations
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on synaptic transmission and short-term synaptic plasticity at cortical excitatory and
inhibitory synapses (Tottene et al., 2009; Vecchia et al., 2014, 2015). This finding
suggests that, very likely, the neuronal circuits that dynamically maintain a tight
balance between excitation and inhibition during cortical activity are altered in FHM1.
Functional alterations in these circuits are expected to lead to dysfunctional regulation
of the cortical excitatory-inhibitory balance and, hence, to abnormal processing of
sensory information (Vecchia and Pietrobon, 2012).
A plausible working hypothesis is that dysregulation of the cortical excitatory-

inhibitory balance may, under certain conditions (e.g., in response to migraine triggers
such as intense, prolonged sensory stimulation), lead to hyperactivity of cortical
circuits, that may create the conditions for the initiation of “spontaneous” CSDs (e.g.,
by increasing [K+]e above a critical value). Similar mechanisms might underlie the
susceptibility to CSD in FHM2, given that in the cerebral cortex the α2 NKA is localized
in glial processes surrounding glutamatergic, but not GABAergic synapses (Cholet
et al., 2002).
It is certainly possible that FHM mutations produce parallel dysfunctions in subcor-

tical areas that might also contribute to the altered regulation of cortical function and
in general to the disease in a way that remains to be established (e.g., by altering cortical
neuromodulation by monoaminergic projections and/or by favoring hyperexcitability
of trigeminovascular pathways).
Similar mechanisms may underlie the abnormal regulation of cortical (and possi-

bly subcortical) function in some common migraine subtypes, for which there is indi-
rect evidence consistent with enhanced cortical glutamatergic neurotransmission and
enhanced cortico-cortical or recurrent excitatory neurotransmission (Pietrobon and
Moskowitz, 2013, and references therein). Some of the susceptibility loci for MA and
MO recently identified in genome-wide association studies appear also consistent with
the idea of migraine as a disorder of glutamatergic neurotransmission and/or dysreg-
ulated brain excitatory-inhibitory balance (Ferrari et al., 2015). Given the wide clinical
and genetic heterogeneity ofmigraine, differentmolecular and cellularmechanisms that
remain largely unknownmaywell underlie the impaired regulation of brain function and
the susceptibility to CSD in different migraineurs.
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Bøttger, P., Doğanl𝚤, C., and Lykke-Hartmann, K. (2012). Migraine- and dystonia-related
disease-mutations of Na+/K+-ATPases: Relevance of behavioral studies in mice to
disease symptoms and neurological manifestations in humans. Neuroscience &
Biobehavioral Reviews 36: 855–871.

Catterall, W.A., Kalume, F., and Oakley, J.C. (2010). NaV1.1 channels and epilepsy. Journal
of Physiology 588: 1849–1859.

Cestèle, S., Scalmani, P., Rusconi, R., Terragni, B., Franceschetti, S., and Mantegazza, M.
(2008). Self-limited hyperexcitability: Functional effect of a familial hemiplegic migraine
mutation of the Na(v)1.1 (SCN1A) Na+ channel. Journal of Neuroscience 28:
7273–7283.

Cestèle, S., Schiavon, E., Rusconi, R., Franceschetti, S., and Mantegazza, M. (2013).
Nonfunctional NaV1.1 familial hemiplegic migraine mutant transformed into gain of
function by partial rescue of folding defects. Proceedings of the National Academy of
Sciences 110: 17546–17551.

Cholet, N., Pellerin, L., Magistretti, P.J., and Hamel, E. (2002). Similar perisynaptic glial
localization for the Na+,K+-ATPase alpha 2 subunit and the glutamate transporters
GLAST and GLT-1 in the rat somatosensory cortex. Cerebral Cortex 12: 515–525.

D’Ambrosio, R., Gordon, D.S., and Winn, H.R. (2002). Differential role of KIR channel and
Na(+)/K(+)-pump in the regulation of extracellular K(+) in rat hippocampus. Journal of
Neurophysiology 87: 87–102.

De Fusco, M., Marconi, R., Silvestri, L., Atorino, L., Rampoldi, L., Morgante, L., et al.
(2003). Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit
associated with familial hemiplegic migraine type 2. Nature Genetics 33: 192–196.

Di Guilmi, M.N., Wang, T., Inchauspe, C.G., Forsythe, I.D., Ferrari, M.D., van den
Maagdenberg, A.M., et al. (2014). Synaptic gain-of-function effects of mutant Cav2.1
channels in a mouse model of familial hemiplegic migraine are due to increased basal
[Ca2+]i. Journal of Neuroscience 34: 7047–7058.

Dichgans, M., Freilinger, T., Eckstein, G., Babini, E., Lorenz-Depiereux, B., Biskup, S., et al.
(2005). Mutation in the neuronal voltage-gated sodium channel SCN1A in familial
hemiplegic migraine. Lancet 366: 371–377.

Eikermann-Haerter, K., Baum, M.J., Ferrari, M.D., van denMaagdenberg, A.M., Moskowitz,
M.A., and Ayata, C. (2009a). Androgenic suppression of spreading depression in familial
hemiplegic migraine type 1 mutant mice. Annals of Neurology 66: 564–568.

Eikermann-Haerter, K., Dilekoz, E., Kudo, C., Savitz, S.I., Waeber, C., Baum, M.J., et al.
(2009b). Genetic and hormonal factors modulate spreading depression and transient
hemiparesis in mouse models of familial hemiplegic migraine type 1. Journal of Clinical
Investigation 119: 99–109.

Eikermann-Haerter, K., Yuzawa, I., Qin, T., Wang, Y., Baek, K., Kim, Y.R., et al. (2011).
Enhanced subcortical spreading depression in familial hemiplegic migraine type 1
mutant mice. Journal of Neuroscience 31: 5755–5763.



�

� �

�

262 Neurobiological Basis of Migraine

Eikermann-Haerter, K., Arbel-Ornath, M., Yalcin, N., Yu, E.S., Kuchibhotla, K.V., Yuzawa, I.,
et al. (2015). Abnormal synaptic Ca2+ homeostasis and morphology in cortical neurons
of familial hemiplegic migraine type 1 mutant mice. Annals of Neurology 78: 193–210.

Ferrari, M.D., Klever, R.R., Terwindt, G.M., Ayata, C., and van den Maagdenberg, A.M.J.M.
(2015). Migraine pathophysiology: lessons from mouse models and human genetics. The
Lancet Neurologyogy 14: 65–80.

Fioretti, B., Catacuzzeno, L., Sforna, L., Gerke-Duncan, M.B., van den Maagdenberg, A.M.,
Franciolini, F., et al. (2011). Trigeminal ganglion neuron subtype-specific alterations of
Ca(V)2.1 calcium current and excitability in a Cacna1a mouse model of migraine.
Journal of Physiology 589: 5879–5895.

Gao, Z., Todorov, B., Barrett, C.F., van Dorp, S., Ferrari, M.D., van den Maagdenberg, A.M.,
et al. (2012). Cerebellar ataxia by enhanced Ca(V)2.1 currents is alleviated by
Ca2+-dependent K+-channel activators in Cacna1a(S218L) mutant mice. Journal of
Neuroscience 32: 15533–15546.

Illarionava, N.B., Brismar, H., Aperia, A., and Gunnarson, E. (2014). Role of Na,K-ATPase
α1 and α2 Isoforms in the Support of Astrocyte Glutamate Uptake. PLoS One 9: e98469.

Inchauspe, C.G., Urbano, F.J., Di Guilmi, M.N., Forsythe, I.D., Ferrari, M.D., van den
Maagdenberg, A.M., et al. (2010). Gain of function in FHM-1 Ca(V)2.1 knock-in
mice is related to the shape of the action potential. Journal of Neurophysiology 104:
291–299.

Inchauspe, C.G., Urbano, F.J., Di Guilmi, M.N., Ferrari, M.D., van den Maagdenberg, A.M.,
Forsythe, I.D., et al. (2012). Presynaptic CaV2.1 calcium channels carrying familial
hemiplegic migraine mutation R192Q allow faster recovery from synaptic depression in
mouse calyx of Held. Journal of Neurophysiology 108: 2967–2976.

Kahlig, K.M., Rhodes, T.H., Pusch, M., Freilinger, T., Pereira-Monteiro, J.M., Ferrari, M.D.,
et al. (2008). Divergent sodium channel defects in familial hemiplegic migraine.
Proceedings of the National Academy of Sciences of the United States of America 105:
9799–9804.

Karatas, H., Erdener, S.E., Gursoy-Ozdemir, Y., Lule, S., Eren-Kocak, E., Sen, Z.D., et al.
(2013). Spreading depression triggers headache by activating neuronal Panx1 channels.
Science 339: 1092–1095.

Kors, E.E., Terwindt, G.M., Vermeulen, F.L., Fitzsimons, R.B., Jardine, P.E., Heywood, P.,
et al. (2001). Delayed cerebral edema and fatal coma after minor head trauma: role of the
CACNA1A calcium channel subunit gene and relationship with familial hemiplegic
migraine. Annals of Neurology 49: 753–760.

Larsen, B.R., Assentoft, M., Cotrina, M.L., Hua, S.Z., Nedergaard, M., Kaila, K., et al.
(2014). Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to hippocampal K+

clearance and volume responses. Glia 62: 608–622.
Lauritzen, M. (1994). Pathophysiology of the migraine aura. The spreading depression

theory. Brain 117(Pt 1), 199–210.
Leo, L., Gherardini, L., Barone, V., De Fusco, M., Pietrobon, D., Pizzorusso, T., et al. (2011).

Increased susceptibility to cortical spreading depression in the mouse model of familial
hemiplegic migraine type 2. PLoS Genetics 7: e1002129.

Melliti, K., Grabner, M., and Seabrook, G.R. (2003). The familial hemiplegic migraine
mutation R192Q reduces G-protein-mediated inhibition of P/Q-type (Ca(V)2.1) calcium
channels expressed in human embryonic kidney cells. Journal of Physiology 546:
337–347.



�

� �

�

15 Lessons from familial hemiplegic migraine and cortical spreading depression 263

Mullner, C., Broos, L.A., van den Maagdenberg, A.M., and Striessnig, J. (2004). Familial
Hemiplegic Migraine Type 1 Mutations K1336E, W1684R, and V1696I Alter Cav2.1
Ca2+ Channel Gating: evidence for beta-subunit isoform-specific effects. Journal of
Biological Chemistry 279: 51844–51850.

Noseda, R., and Burstein, R. (2013). Migraine pathophysiology: anatomy of the
trigeminovascular pathway and associated neurological symptoms, cortical spreading
depression, sensitization, and modulation of pain. Pain 154(Suppl 1): S44–53.

Ogiwara, I., Miyamoto, H., Morita, N., Atapour, N., Mazaki, E., Inoue, I., et al. (2007).
Nav1.1 Localizes to Axons of Parvalbumin-Positive Inhibitory Interneurons: A Circuit
Basis for Epileptic Seizures in Mice Carrying an Scn1a Gene Mutation. The Journal of
Neuroscience 27: 5903–5914.

Ophoff, R.A., Terwindt, G.M., Vergouwe, M.N., van Eijk, R., Oefner, P.J., Hoffman, S.M.G.,
et al. (1996). Familial hemiplegic migraine and episodic ataxia type-2 are caused by
mutations in the Ca2+ channel gene CACNL1A4. Cell 87: 543–552.

Pellerin, L., and Magistretti, P.J. (1997). Glutamate uptake stimulates Na+,K+-ATPase
activity in astrocytes via activation of a distinct subunit highly sensitive to ouabain.
Journal of Neurochemistry 69: 2132–2137.

Pietrobon, D. (2007). Familial hemiplegic migraine. Neurotherapeutics 4: 274–284.
Pietrobon, D. (2010). CaV2.1 channelopathies. Pflügers Archiv 460: 375–393.
Pietrobon, D. (2013). Calcium channels and migraine. Biochimica et Biophysica Acta 1828:

1655–1665.
Pietrobon, D., and Moskowitz, M.A. (2013). Pathophysiology of migraine. Annual Review of

Physiology 75: 365–391.
Pietrobon, D., and Moskowitz, M.A. (2014). Chaos and commotion in the wake of cortical

spreading depression and spreading depolarizations. Nature Reviews Neuroscience 15:
379–393.

Ransom, C.B., Ransom, B.R., and Sontheimer, H. (2000). Activity-dependent extracellular
K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. Journal of
Physiology 522 Pt 3: 427–442.

Rose, E.M., Koo, J.C., Antflick, J.E., Ahmed, S.M., Angers, S., and Hampson, D.R. (2009).
Glutamate transporter coupling to Na,K-ATPase. Journal of Neuroscience 29: 8143–8155.

Rossignol, E., Kruglikov, I., van den Maagdenberg, A.M.J.M., Rudy, B., and Fishell, G.
(2013). CaV2.1 ablation in cortical interneurons selectively impairs fast-spiking basket
cells and causes generalized seizures. Annals of Neurology 74: 209–222.

Russell, M.B., and Ducros, A. (2011). Sporadic and familial hemiplegic migraine:
pathophysiological mechanisms, clinical characteristics, diagnosis, and management.
Lancet Neurology 10: 457–470.

Serra, S.A., Fernandez-Castillo, N., Macaya, A., Cormand, B., Valverde, M.A., and
Fernandez-Fernandez, J.M. (2009). The hemiplegic migraine-associated Y1245C
mutation in CACNA1A results in a gain of channel function due to its effect on the
voltage sensor and G-protein-mediated inhibition. Pflügers Archiv 458: 489–502.

Shyti, R., Eikermann-Haerter, K., van Heiningen, S.H., Meijer, O.C., Ayata, C., Joëls, M.,
et al. (2015). Stress hormone corticosterone enhances susceptibility to cortical spreading
depression in familial hemiplegic migraine type 1 mutant mice. Experimental Neurology
263: 214–220.

Somjen, G.G. (2001). Mechanisms of spreading depression and hypoxic spreading
depression-like depolarization. Physiological Reviews 81: 1065–1096.



�

� �

�

264 Neurobiological Basis of Migraine

Somjen, G.G., Kager, H., and Wadman, W.J. (2009). Calcium sensitive non-selective cation
current promotes seizure-like discharges and spreading depression in a model neuron.
Journal of Computational Neuroscience 26: 139–147.

Thomsen, L.L., Kirchmann, M., Bjornsson, A., Stefansson, H., Jensen, R.M., Fasquel, A.C.,
et al. (2007). The genetic spectrum of a population-based sample of familial hemiplegic
migraine. Brain 130: 346–356.

Tottene, A., Fellin, T., Pagnutti, S., Luvisetto, S., Striessnig, J., Fletcher, C., et al. (2002).
Familial hemiplegic migraine mutations increase Ca(2+) influx through single
human CaV2.1 channels and decrease maximal CaV2.1 current density in neurons.
Proceedings of the National Academy of Sciences of the United States of America 99:
13284–13289.

Tottene, A., Pivotto, F., Fellin, T., Cesetti, T., van den Maagdenberg, A.M., and Pietrobon, D.
(2005). Specific kinetic alterations of human CaV2.1 calcium channels produced by
mutation S218L causing familial hemiplegic migraine and delayed cerebral edema and
coma after minor head trauma. Journal of Biological Chemistry 280: 17678–17686.

Tottene, A., Conti, R., Fabbro, A., Vecchia, D., Shapovalova, M., Santello, M., et al. (2009).
Enhanced Excitatory Transmission at Cortical Synapses as the Basis for Facilitated
Spreading Depression in Ca(v)2.1 Knockin Migraine Mice. Neuron 61: 762–773.

Tottene, A., Urbani, A., and Pietrobon, D. (2011). Role of different voltage-gated Ca2+
channels in cortical spreading depression: specific requirement of P/Q-type Ca2+
channels. Channels (Austin) 5: 110–114.

Vahedi, K., Depienne, C., Le Fort, D., Riant, F., Chaine, P., Trouillard, O., et al. (2009).
Elicited repetitive daily blindness: a new phenotype associated with hemiplegic migraine
and SCN1A mutations. Neurology 72: 1178–1183.

van den Maagdenberg, A.M., Pietrobon, D., Pizzorusso, T., Kaja, S., Broos, L.A., Cesetti, T.,
et al. (2004). A Cacna1a knockin migraine mouse model with increased susceptibility to
cortical spreading depression. Neuron 41: 701–710.

van den Maagdenberg, A.M., Pizzorusso, T., Kaja, S., Terpolilli, N., Shapovalova, M.,
Hoebeek, F.E., et al. (2010). High cortical spreading depression susceptibility and
migraine-associated symptoms in Ca(v)2.1 S218L mice. Annals of Neurology 67: 85–98.

Vecchia, D., and Pietrobon, D. (2012). Migraine: a disorder of brain excitatory-inhibitory
balance? Trends in Neurosciences 35: 507–520.

Vecchia, D., Tottene, A., van den Maagdenberg, A.M.J.M., and Pietrobon, D. (2014).
Mechanism underlying unaltered cortical inhibitory synaptic transmission in contrast
with enhanced excitatory transmission in CaV2.1 knockin migraine mice. Neurobiology
of Disease 69: 225–234.

Vecchia, D., Tottene, A., van den Maagdenberg, A.M.J.M., and Pietrobon, D. (2015).
Abnormal cortical synaptic transmission in CaV2.1 knockin mice with the S218L
missense mutation which causes a severe familial hemiplegic migraine syndrome in
humans. Frontiers in Cellular Neuroscience 9. https://doi.org/10.3389/fncel.2015.00008

Weiss, N., Sandoval, A., Felix, R., Van den Maagdenberg, A., and De Waard, M. (2008). The
S218L familial hemiplegic migraine mutation promotes deinhibition of Ca(v)2.1 calcium
channels during direct G-protein regulation. Pflügers Archiv 457: 315–326.

Yu, F.H., Mantegazza, M., Westenbroek, R.E., Robbins, C.A., Kalume, F., Burton, K.A., et al.
(2006). Reduced sodium current in GABAergic interneurons in a mouse model of severe
myoclonic epilepsy in infancy. Nature Neuroscience 9: 1142–1149.



�

� �

�

15 Lessons from familial hemiplegic migraine and cortical spreading depression 265

Zhang, X., Levy, D., Noseda, R., Kainz, V., Jakubowski, M., and Burstein, R. (2010).
Activation of meningeal nociceptors by cortical spreading depression: implications for
migraine with aura. Journal of Neuroscience 30: 8807–8814.

Zhang, X., Levy, D., Kainz, V., Noseda, R., Jakubowski, M., and Burstein, R. (2011).
Activation of central trigeminovascular neurons by cortical spreading depression.
Annals of Neurology 69: 855–865.

Zhao, J., and Levy, D. (2015). Modulation of intracranial meningeal nociceptor activity by
cortical spreading depression: a reassessment. Journal of Neurophysiology 113(7):
2778–2785.



�

� �

�

267

16

From cortical spreading depression to trigeminovascular
activation in migraine
Turgay Dalkara1 and Michael A. Moskowitz2

1Department of Neurology, Faculty of Medicine and Institute of Neurological Sciences and Psychiatry Hacettepe
University, Ankara, Turkey
2Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA

16.1 CSD causes the visual aura

Spreading depression (SD) is a transient wave of collective depolarization of neurons
and glia which, once initiated, propagates across the gray matter of brain at rate of
2–6mm/min (Somjen, 2001; Pietrobon and Moskowitz, 2014). This wave is associated
with a transient depression of ongoing local electrical activity (e.g., EEG), and with
cerebral blood flow (CBF) changes characterized by hyperemia, during the wave and
long-lasting oligemia afterwards (Leao, 1944a, 1944b; Lauritzen et al., 1982; and see
Chapters 15 and 19).
Lashley, by carefully drawing the progress of his own visual aura, calculated that the

physiological correlate must propagate with a speed of 3mm/min in his own occipital
cortex (Lashley, 1941). A few years later, Leao proposed that SD that he discovered in the
rabbit cortexmight be the cause of slowly propagating visual aura inmigraine (Leao and
Morrison, 1945). Much later, Milner pointed to the similarity between Lashley’s obser-
vations andLeao’s discovery, in a short communication published in 1958 (Milner, 1958).
Unlike experimental animals, DC potential changes and spreading depression of the
EEG activity between adjacent channels caused by SD are difficult to detect in humans
by scalp recordings. Hence, the hypothesis was met with skepticism, especially on the
grounds that human cortex had a much higher threshold for SD induction, compared
with the rodent and canine brains commonly used in laboratory studies (Gloor, 1986).
The first convincing evidence in favor of a role of SD in migraine aura came about 40

years later, from SPECT studies registering CBF during induced migraine attacks (Ole-
sen et al., 1981). A wave of oligemia was observed to spread from the occipital lobe to
anterior regions of the human brain. This observation was later supported by a PET
blood flow study (Woods et al., 1994) and perfusion MR studies (Cutrer et al., 1998;
Sanchez del Rio et al., 1999), showing the presence of oligemia within the occipital lobe
concordant with the side of visual symptoms, as well as by recording of the magnetic
field induced by focal DC potential shifts propagating across the cortex with magne-
toencephalography (Bowyer et al., 2001).
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(a)

(b)

(c)

Figure 16.1 Spreading suppression of cortical activation during migraine aura. (a) A drawing showing
the progression over 20 minutes of the scintillations and the visual field defect affecting the left
hemifield, as described by the patient. The fixation point appears as a small white cross. The red line
shows the overall direction of progression of the visual percept. The front of the scintillation at
different times within the aura is indicated by a white line. (b) A reconstruction of the same patient’s
brain, based on anatomical MR data. The posterior medial aspect of occipital lobe is shown in an
inflated cortex format. In this format, the cortical sulci and gyri appear in darker and lighter gray,
respectively, on a computationally inflated surface. MR signal changes over time are shown to the
right. (c) The MR maps of retinotopic eccentricity from this same subject, acquired during interictal
scans. As shown in the logo in the upper left, voxels that show retinotopically specific activation in the
fovea are coded in red (centered at 1.5∘ eccentricity). Parafoveal eccentricities are shown in blue, and
more peripheral eccentricities are shown in green (centered at 3.8∘ and 10.3∘, respectively). The figure
and legend were reproduced from Hadjikani et al., (2001). Proceedings of the National Academy of
Sciences of the USA 98: 4687–92, with permission.

Compelling evidence was provided by blood oxygenation level-dependent (BOLD)
MR, showing characteristics of SD in synchrony with onset and progress of the retinal
aura percept that was recorded by the patient while inside the magnet (Hadjikhani
et al., 2001) (Figure 16.1). MR of this patient suffering a visual aura demonstrated
an initial focal increase in BOLD signal within extrastriate cortex, possibly reflect-
ing the SD-induced vasodilation. This BOLD change progressed with a speed of
3.5± 1.1mm/min through the occipital cortex, in close correspondence to the
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retinotopic march of the visual percept. The BOLD signal then decreased, possibly due
to the oligemia following the initial vasodilation.
Not only the baseline BOLD signal but also phasic BOLD increases in response to

flickering visual stimuli (checkerboard image) were suppressed during the oligemic
phase, possibly due to ongoing cortical SD (CSD)-induced microcirculatory dysfunc-
tion (Ostergaard et al., 2015). Like SD, this spreading phenomenon did not cross the
prominent sulci, and stopped at the parieto-occipital sulcus. Interestingly, the time
course of CBF changes associated with CSDs in the rat and with the migraine aura
was strikingly similar, strongly suggesting an association between the two phenomena.
Hence, the best current approach to study CSD in humans appears to record the
SD-associated CBF changes, given that other techniques, such as magnetoencephalog-
raphy, have limitations (for example, when detecting deep and penetrating occipital
cortical activity (Lauritzen et al., 2011)).
A good correlation reportedly exists between the surface and epidural record-

ings obtained from surgically-operated patients suffering from recurrent spreading
depolarization waves due to vascular or trauma induced brain injury (Drenckhahn
et al., 2012; Hartings et al., 2014). However, movement and environmental artifacts
frequently complicate detection of surface EEG or DC potential changes. An indirect
but highly supportive line of evidence invoking CSD (as the biological substrate of
migraine aura) comes from results in transgenic animals. Mutated mice that express
human FHM mutations in CACNA1A and ATP1A2 genes exhibit low CSD induction
thresholds (Eikermann-Haerter et al., 2009; Leo et al., 2011; and see Chapters 14 and
15). Interestingly, as in FHM patients, the CSD threshold is even lower in females than
in males, and in mice bearing the S218L mutation that leads to a more severe clinical
phenotype (Eikermann-Haerter et al., 2009).

16.2 SD may underlie transient neurological dysfunctions
preceding attacks

SD can be evoked in almost all gray matter regions of the central nervous system in
experimental animals. The CA1 sector of the hippocampal formation, followed by the
neocortex has the lowest SD induction threshold (Somjen, 2001). Although there is sub-
stantial evidence about the putative role of occipital SDs inmigraine visual aura, the role
of SD in other regions of the human brain remains largely speculative. SDs originating
from, or propagating to, other parts of the cortex may underlie unilateral paresthesias
over the lips, face or hand, as well as difficulty in finding words (Vincent andHadjikhani,
2007; and see Chapters 11 and 17). It is also likely that hippocampal SDs might account
for transient amnesia preceding headache attacks (Paolino and Levy, 1971; Calandre
et al., 2002; Vincent and Hadjikhani, 2007).
Subcortical spread of SD might account for hypothalamic and other limbic symp-

toms (e.g., food cravings or mood changes) seen just before the headache (Krivanek
and Fifkova, 1965; Huston and Bures, 1970; Eikermann-Haerter et al., 2011). Studies in
rodents show that propagation of SD to subcortical brain regions is better observedwith
anesthetics that do not profoundly suppress neuronal excitability, suggesting that the
subcortical spread might be a prevalent phenomenon in unanesthetized human brain
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(Eikermann-Haerter et al., 2011). Further research is needed to investigate these inter-
esting possibilities in migraine patients.
Another area requiring study is the potential differences between CSD associated

with migraine aura and CSD induced in experimental animals (Dahlem et al., 2015).
For example, SD induction and propagation should be impacted by the presence of
a highly convoluted human cortex with prominent gyri and deep sulci, and a high
astrocyte-to-neuron ratio. As noted above, it is generally accepted that the human brain
is relatively more resistant to CSD induction, whereas the propagation speed seems
to be unaltered, as inferred from spread of CBF changes across the cortex in imaging
studies, and from estimates of propagation speed of the visual percept (Hadjikhani
et al., 2001; Somjen, 2001).
Recent studies on the convoluted swine brain have demonstrated that the SD propa-

gation could assume several irregular forms other than the radial spread, including the
reverberating SDs, which re-enter to the gyrus of origin by circulating around a sulcus
(Santos et al., 2014). However, their presence and significance (e.g., in prolonged aura) in
migraine remains to be determined. Relatively mild neurological dysfunctions observed
during aura also requires a better understanding, and suggest that CSDs in humans
might involve only part of the cortical layers and/or spread in a narrow gyral path, rather
than engulfing a whole lobe (Richter and Lehmenkuhler, 1993; Dahlem et al., 2015).

16.3 Does SD cause headache?

SDwas first posited as a trigger for migraine headache on the basis of clinical and exper-
imental observations (Moskowitz, 1984). For example, the visual aura (experienced as a
contralateral visual hallucination) and hemi-cranial pain (experienced most often ipsi-
lateral to the dysfunctional hemisphere, and a source for ipsilateral trigeminovascular
activation) suggests that the occipital perturbation underlying the aura could also cause
headache (Olesen et al., 1990).The first experimental support for this long-known rela-
tionship between aura and headachewas provided by detection of c-fos immunostaining
(an indirect but histologically detectable marker of intense neuronal activation) in the
trigeminal nucleus caudalis after CSD (Moskowitz et al., 1993; Figure 16.2g). Later, hip-
pocampal SDs were also shown to cause c-fos expression in trigeminal nucleus caudalis
(Kunkler and Kraig, 2003). Demonstration of the dilation of MMA and dural mast cell
degranulation ipsilateral to CSD provided further support for activation of the trigemi-
novascular system by CSD (Bolay et al., 2002; Karatas et al., 2013; Figure 16.2a-f ).
Direct evidence was obtained by electrophysiological recording of discharging noci-

ceptive neurons following CSD in the trigeminal ganglion (first order neuron) and spinal
trigeminal nucleus (second order neuron) (Zhang et al., 2010, 2011; Zhao and Levy,
2015; and see Figures in Chapter 7). Consistent with these findings, ultra-high resolu-
tion PET imaging reportedly showed increased 2-deoxyglucose uptake in brain regions
associatedwith processing and transmitting nociceptive inputmany hours after evoking
CSD (Cui et al., 2015).
CSDs have also been shown to induce pain-like behavior, as assessed by grimace scale

in the mouse (Langford et al., 2010; Karatas et al., 2013; Figure 16.2h, i). This behavioral
model has been an important step in demonstrating the algesic potential of the CSD
in unanesthetized animals, contrary to the previous reports, which concluded that the
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Figure 16.2 CSD activates the trigeminovascular system. A single CSD induced by pinprick can lead to
dilatation of the middle meningeal artery (MMA). (a) Laser speckle images of the cortex illustrate the
blood flow changes in cortical blood vessels and MMA in a rat under anesthesia. Hot colors show an
increase in blood flow compared with baseline. Twenty minutes after induction of a single CSD with a
pinprick, the cortex is hypoperfused (blue), whereas blood flow in the MMA is increased (yellow-red).
(b) The MMA flow increase (red line) peaks around 15–20 min after CSD and lasts about one hour,
during which the cortical blood (blue line) remains oligemic. (c) Plasma protein extravasation: leakage
of IV-administered HRP in a rat whole-mount dura preparation illustrates plasma protein extravasation
from dural vessels after CSD. (d–f ) Mast cell degranulation: incubation of dura with methylene blue
reveals mast cells (arrowheads) along the course of MMA in a mouse; scale bar = 100 μm (d).
Degranulated mast cells (f ) can easily be distinguished from resting cells (e) with loss of blue
cytoplasmic granules. (g) c-fos immunoreactivity appears in the trigeminal nucleus caudalis one hour
after KCl-induced CSDs. The majority of the labeled cells (arrows) are located in the superficial layers
(laminae I and II). (h, i) Pain-related behavior: (h) normal mouse facial appearance; (i) facial expression
of a mouse suffering from pain. a, b, c were reproduced from Bolay et al. (2002); d, e, f, from Karatas
et al. (2013); h, i, from Langford et al. (2010) and a-i from Erdener and Dalkara (2014), with permission.



�

� �

�

272 Neurobiological Basis of Migraine

CSD might not cause aversive behavior, based on observation of the relatively indirect
pain-related behaviors in rodents (Koroleva and Bures, 1993).
The mouse and rat grimace scales demonstrated that rodents surprisingly, have facial

expressions displaying their discomfort during pain (Langford et al., 2010; Sotocinal
et al., 2011). The model was first developed by monitoring the severe pain induced by
intraperitoneal acetic acid administration, and then it was shown to be sensitive enough
to detect the CSD-induced headache and its reversal by rizatriptan (Langford et al.,
2010). The scoring of CSD-induced facial expressions seems to have the potential to
screen analgesic as well as anti-migraine medications such as triptans.
Interestingly, dilatation of the MMA, firing of the first and second order trigeminal

neurons and the distressful facial expressions emerged about 15–20 minutes after CSD,
in line with the typical time lag between the migraine aura and headache, further sup-
porting the view of a causal relationship between the CSD and headache (Bolay et al.,
2002; Zhang et al., 2010, 2011; Karatas et al., 2013; Zhao and Levy, 2015).
This time lag between the aura andheadache also provides some clues about themech-

anisms of CSD-induced migraine headache. The transient (a few minutes) elevation of
potassium, protons, NO, ATP and arachidonic acid in the extracellular environment
during CSD can activate the perivascular nociceptive nerves by diffusing to the CSF, as
suggested by very brief discharges observed in some nociceptors during CSD before the
appearance of delayed persistent activation (Zhang et al., 2010; Zhao and Levy, 2015).
However, such activation is expected to lead to a transient headache during the aura, not
15–20 minutes later. This brief elevation may contribute to the headache seen simulta-
neously with the beginning of aura (Russell and Olesen, 1996; Hansen et al., 2012), and
participate in sensitizing trigeminovascular afferents to subsequent more intense and
sustained stimulation (Bernstein and Burstein, 2012).
Unfortunately, clinical studies investigating the relationship between the aura and

headache onset did not consider changes in the intensity and characteristics of the
headache, which are known to vary over time (see Chapter 11). Indeed, electrophysio-
logical recordings in the rat show that C-fiber activation emerges with a longer latency
than A𝜕-fiber activation after CSD (Zhao and Levy, 2015), and mechanosensitivity
appears after development of nociceptor sensitization (Bernstein and Burstein, 2012),
which better conforms with the progress of headache characteristics after the aura,
rather than its presence or absence.
CSD propagating down to subcortical regions might also directly modulate ascending

inputs from the second or third order nociceptive neurons (Noseda et al., 2010), but this
would not be limited to inputs from trigeminal nociceptive fibers. Direct electrophysi-
ological recordings from the rat brain stem trigeminocervical complex neurons showed
that CSD could modulate meningeal nociceptive activity by inhibiting or enhancing
their firing, depending on the cortical origin of the descending projections (e.g., occipital
V1, sensory S1, S2 or insula) (Noseda et al., 2010; see Chapter 4).
Recently, CSD induced either by a single pinprick or epidural KCl application was

found to initiate a parenchymal inflammatory signaling cascade, triggering the release of
inflammatory mediators into the subarachnoid space, and stimulating the perivascular
trigeminal nociceptors (Karatas et al., 2013; Figure 16.3).
Activation of the trigeminovascular system (monitored by the MMA dilatation)

peaked about 15–20 minutes after CSD, and was blocked by inhibiting the cascade at
several steps with pharmacological or molecular means. The signaling cascade began
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Figure 16.3 Stressed neurons may induce headache by activating the trigeminovascular system via a
complex parenchymal signaling cascade. The schema illustrates the cascade of events that take place
within 30 minutes after CSD induction. CSD leads to transient opening of pannexin1 (Panx1) channels
on neurons, as evidenced by propidium iodide (PI) influx (red circles), with subsequent activation of
caspase-1 and release of pro-inflammatory mediators (e.g., HMGB1, IL-1β). This causes NF-κB
translocation to nucleus, and induces COX2 and iNOS expression in astrocytes. Cytokines, prostanoids
and NO are then continuously released to subarachnoid space, via astrocytes forming the glia limitans
and, hence, promote sustained activation of the trigeminal nerve fibers around pial vessels. Trigeminal
fiber collaterals innervating the middle meningeal artery initiate a sterile dural inflammation,
accompanied by mast cell degranulation, whereas the trigeminoparasympathetic reflex causes the
late and sustained MMA dilation. Red T-bars indicate the steps where the cascade was interrupted
with inhibitors. It is likely that, over the course of the inflammation, several other cytokines as well as
microglia are activated, and the cells illustrated above may assume other roles (for example, NF-κB
may also be activated in neurons). The figure and legend were reproduced from supplementary Figure
S6 (Karatas et al., 2013). Reproduced with the permission of The American Association for the
Advancement of Science.

with opening of the neuronally expressed pannexin-1 large-pore channels, which led
to caspase-1 activation, possibly by formation of the inflammasome complex and
release of IL-1β and high mobility group box-1 protein (HMGB1) (see also Eising et al.
(2016) and Takizawa et al. (2016)).These pro-inflammatory mediators then activate the
NF-κB pathway in astrocytes, which induces expression of the inflammatory enzymes
and causes release of their products to the subarachnoid space by way of glia limitans
(Figure 16.3).
These findings are in line with numerous independent in vivo rat studies, showing

robust increases in expression of TNF-alpha, NF-κB, Cox-2 and several interleukins,
including IL-1β, in the cortex within hours following KCl-induced repeated CSDs
(Caggiano et al., 1996; Jander et al., 2001; Yokota et al., 2003; Horiguchi et al., 2005;
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Thompson and Hakim, 2005; Viggiano et al., 2008; Ghaemi et al., 2016). Pannexin-1
channels have been proposed to open at high concentrations of extracellular potassium
and glutamate, and of intracellular calcium, as well as by cellular swelling, low pO2 and
activation of P2X7 channels with extracellular ATP (Ma et al., 2009; Chiu et al., 2014;
Jackson et al., 2014).
However, there are still controversies about the generalizability of each of these factors

detected under specific in vitro conditions to neurons in situ. Under resting condi-
tions, the opening probability of pannexin-1 channels is low (or opens in a low con-
ductance state), possibly because their unusually large conductance, if opened, may
jeopardize the physiological transmembrane ion gradients. Therefore, their activation
by the above non-resting physiological conditions (all of which are present during CSD)
and their close association with inflammasome formation may serve to detect neuronal
stress and then alarm, by activating the parenchymal inflammatory cascade. Unlike the
brief release of vasoactive mediators to extracellular space coincident with CSD, the
above-summarized inflammatory signaling ismore compatible with the appearance and
development of sustained headache 15–60min after the aura.

16.4 Human data supporting the parenchymal inflammatory
signaling

Supporting a role for parenchymal inflammatory signaling in migraine headache, the
levels of IL-1β, IL-6, TNF-alpha, PGE2 and nitrite in internal jugular blood were report-
edly elevated within the first hour of migraine attack (Sarchielli et al., 2000, 2004, 2006).
The increase was maximal at the first-hour blood sampling point, and then declined.
Since the internal jugular vein in humans drains mainly the brain parenchyma (unlike
the internal jugular vein in the rat, which is a rather thin vessel compared to the external
jugular vein, which mainly provides the cerebral venous drainage (Szabo, 1995)), these
observations suggest production of cytokines in brain parenchyma during a migraine
attack as the above outlined hypothesis proposed (Karatas et al., 2013).
It should be noted that the patients in the above reports were studied in the absence

of typical visual auras during migraine without aura (MO) attacks, but they clearly
document a parenchymal source of cytokines coincident with the beginning ofmigraine
headache. Activation of the parenchymal inflammatory signaling during MO headache
suggests that migraine with aura (MA) and MO may use a common signaling pathway
to induce headache, even if the initiating mechanisms exhibit dissimilarities (Purdy,
2008). These are not surprising, as both migraine subtypes share very similar headache
features, and are treated with the same drugs, including NSAIDs. By contrast, cytokine
measurements in peripheral blood during migraine attacks, despite several positive
reports, have generally led to inconclusive results, possibly due to plasma volume
dilution of relatively small absolute increases in cytokine levels, even in jugular blood,
plus the timing of blood sampling (Durham and Papapetropoulos, 2013).
Migraine attacks are also a complaint of patients with cyropyrin-associated periodic

syndrome (CAPS), in which IL-1β is overproduced due to mutations in NLRP3, a
component protein of the inflammasome (Kitley et al., 2010; Miyamae, 2012). These
patients also experience rash, fever, malaise, arthralgia, myalgia, conjunctivitis and
non-migrainous headache usually induced by cold. Anti-IL-1β treatment provides relief
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for headaches in CAPS (Kitley et al., 2010; Miyamae, 2012). However, caution is needed
in interpreting these observations in favor of activation of the parenchymal pathway.
This is because the headache may also be caused by overactivation of inflammasome
in dural mast cells, as suggested by dysregulated IL-1β production in skin mast cells in
neonatal mice with the CAPS-associated Nlrp3 mutation (Nakamura et al., 2012), or
by aseptic meningitis seen in the most severe form of this disease (Kitley et al., 2010;
Miyamae, 2012).

16.5 Meningeal neurogenic inflammation amplifies
the parenchymal signal

Clinical observations suggest that some migraine headache attacks may be initiated
directly from meninges; for example, on activation of mast cells in allergic diseases or
direct activation of TRPA1 channels by umbellulone, a volatile oil from the “headache
tree” (U. californica) (Monro et al., 1984; Nassini et al., 2012). Further supporting this
view, headaches directly starting from meninges, such as during subarachnoid hemor-
rhage or meningitis, show several characteristic features of migraine headache, includ-
ing its throbbing nature and photo/phonophobia, and sometimes they are alleviated by
sumatriptan (Lamonte et al., 1995; Rosenberg and Silberstein, 2005).
Recent success obtainedwith antibodiesmodifying theCGRPpathway clearly demon-

strate the important role of meningeal neurogenic inflammation mediated by CGRP in
producingmigraine headache, since these large macromolecules do not have significant
CNS penetration and, hence, act mainly on peripheral targets (see Chapter 9). Prompt
alleviation of migraine headache, as well as photo/phonophobia by sumatriptan that is
also poorly BBB permeable, is in line with the anti-migraine effect of CGRP antibodies,
and underscores the putative role of neurogenic inflammation in the headache phase of
migraine (Moskowitz et al., 1979; Figure 16.4).
Experimental data have not only established the presence of large networks of

neuropeptide-containing meningeal afferents in most vertebrates, including man
(See Chapter 1), but calcium-dependent neuropeptide release from these meningeal
fibers (Moskowitz et al., 1983), as well as evidence for modulation of neurogenic
inflammation by ergot alkaloids (Saito et al., 1988), the triptans (Buzzi and Moskowitz,
1990), and non-steroidal anti-inflammatory drugs (Buzzi et al., 1989). Although, to
date, these meningeal networks have received most attention for their role in migraine,
in other tissues, neurogenic inflammation is part of an integrative protective response
between the peripheral nervous system and the adaptive and innate immune systems,
in response to tissue danger signals (Chiu et al., 2012).
The parenchymal and meningeal inflammatory signaling cascades seem to be tightly

regulated, as they do not lead to overt inflammation characterized by infiltration of
leukocytes. The rapid decline in the elevated level of inflammatory mediators in the
internal jugular vein of migraine patients supports this idea (Sarchielli et al., 2006). It
is likely that the algesic signals arise from the parenchymal inflammatory cascade, and
are amplified by the meningeal neurogenic inflammation, which may sustain the activa-
tion of the nociceptors for development of the sensitization and a lasting headache (see
Chapters 6 and 7). Microglia may also take part in the parenchymal inflammatory sig-
naling, although present experimental evidence suggests that this is a relatively delayed



�

� �

�

276 Neurobiological Basis of Migraine

RIGHT

transaxial

ControlMigraine Attack

Accumulation of Tc-99m HSA in Migraine

transaxial

3 h pi 3 days post

coronal coronal

Figure 16.4 Left: diagram used by the patient to mark the location of the headache epicenter. Right:
accumulation of Tc-99m HSA in migraine attack three hours after the intravenous application of 10
mCi of Tc-99m human serum albumin, and three days after the attack (control). The region of
increased uptake three hours after the injection corresponded to the diagram where the subject
localized her migraine pain epicenter. pi = post-intravenous application. Reproduced from Knotkova
and Pappagallo (2007), with permission.

event, perhaps contributing to the prolonged headache. For instance, it has been shown
thatmicroglia are activated 7–13 hours after repeated SDs in hippocampal slice cultures
prepared from P8-10 rat pups (Grinberg et al., 2011), as well as starting three days after
repeated KCl-induced CSDs in the rat cortex in vivo (Cui et al., 2009).
Aura attacks without headache suggest that parenchymal signaling initiated by a sin-

gle CSD may not always be strong enough to activate the nociceptors innervating the
meninges. Although there is direct experimental evidence showing activation of the
trigeminovascular system with a single or multiple CSDs in rodents (Bolay et al., 2002;
Zhang et al., 2010, 2011; Karatas et al., 2013; Zhao and Levy, 2015), some experimental
evidence, based on c-fos expression in the brain stem or on pain-related behaviors, sug-
gests that a single CSD may also not always be noxious in rodents (Koroleva and Bures,
1993; Akcali et al., 2010). This conforms with the idea that there may be a threshold to
translate the parenchymal stress to neurogenic inflammation and lasting headache.

16.6 Understanding human CSD and migraine without aura

Migraine triggers in general do not reliably “trigger” migraine attacks and the attacks,
for example, of visual aura, may not be accompanied by headache in a minority
of patients (Aiba et al., 2010; Hoffmann and Recober, 2013). Furthermore, there is
a small group of patients who experience only aura without headache (Headache
Classification Committee of the International Headache Society, 2013). This suggests
that CSD-induced algesic signals have to reach a threshold intensity (concentration) to
induce pain.
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According to Dahlem’s modeling, some CSDs may loose their wave front and spread
within a narrow strip of cortex after the initial radial propagation (Dahlem, 2013). A
reduced volume of depolarized tissue may, therefore, decrease its algesic potential by
reducing the concentrations of cytokines reaching the subarachnoid space, although
they may still cause a spreading sensory percept (see also Chapter 17). Moreover, some
people may have a higher headache threshold for a number of reasons, as the pres-
ence of people who never suffer from headache suggests. For example, their parenchy-
mal inflammatory response may not be strong enough to initiate the meningeal neuro-
genic inflammation, or the neurogenic inflammationmay have a higher threshold.These
thresholds may also be modulated by several factors (e.g. hormonal) (Levy, 2009; see
Chapter 6). Not infrequently, migraineurs describe transient neurological dysfunctions
other than visual aura, such as paresthesias, which are not always followed by headache
(Russell and Olesen, 1996; Vincent and Hadjikhani, 2007; DeLange and Cutrer, 2014),
andmight represent these “subthreshold, non-painful” CSDs as restricted to a small strip
of gray matter.
Experimental studies monitoring CSD with CBF changes over the whole surface of

the cortex have disclosed that CBF changes do not always propagate radially along a
predictable pathway, even in lissencephalic animals – a feature that was not well appre-
ciated, with previous electrophysiological studies recording the CSD propagation with
two electrodes (Brennan et al., 2007). The recent observations on the gyrencephalic
swine brain are interesting in this regard, and point to a necessity to understand the
likely unique features of human CSD (Santos et al., 2014). These approaches may also
help explore the possibility that MO and MA share a comparable electrophysiological
substrate, as suggested by the therapeutic success of a similar spectrum ofmigraine pro-
phylactic drugs in both conditions.
The neuronal stress sensed by pannexin-1 large-pore channels, and conveyed by the

inflammatory signaling to be reported as headache, may also be experienced during
intense neuronal activity under suboptimal homeostatic conditions (e.g., caused by sleep
deprivation), as has recently been demonstrated in the mouse by combining prolonged
whisker stimulationwith inhibition of glycogen use (Karatas et al., 2015). In otherwords,
this alarming pathway initiated during CSD could potentially be activated by other con-
ditions that may trigger MO attacks.
Studies on FHM mutations suggest that increased potassium levels at the synaptic

cleft during high-intensity neuronal firing could initiate CSD if the potassium concen-
tration exceeds an estimated threshold of 12mM (Lothman et al., 1975; Heinemann
and Lux, 1977; Pietrobon and Moskowitz, 2014; Tang et al., 2014). Due to the limited
extracellular space in the CNS, potassium ions may reach peri-synaptic concentrations
sufficiently high to activate pannexin-1 channels during intense synaptic activity, espe-
cially in the presence of ATP release that stimulates P2X7 receptors (Jackson et al.,
2014). Unlike FHM mutations creating a potential to trigger collective depolarization
of a large cohort of neurons (i.e., SD) (Vecchia and Pietrobon, 2012), the more restricted
potassium rise around synapses of a smaller neuronal assembly during intense neu-
ronal activity may lead to pannexin-1 activation without SD induction, hence, headache
without aura.
The presence of several forms of transient neurological abnormalities preceding

attacks of MO, such as the experience of seeing bright colors, or difficulty remembering
proper names (Vincent and Hadjikhani, 2007; DeLange and Cutrer, 2014), suggests that
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an SD-like phenomenon, which causes a milder functional disturbance and does not
propagate, may initiate an MO attack (Dahlem, 2013). A PET study, showing a propa-
gating wave of oligemia without focal neurological symptoms (aura) but with headache
in a MO patient, suggests that these SD-like phenomena can sometimes propagate
without inducing overt neurological dysfunction (aura) (Woods et al., 1994).We should
also note that considering a high rate of transient amnesia reported by MO patients
(Vincent and Hadjikhani, 2007), it is likely that hippocampal SDs may trigger headaches
as well (Paolino and Levy, 1971; Calandre et al., 2002; Kunkler and Kraig, 2003).

16.7 Potential of CSD models to understand migraine
and drug development

Despite expected differences inCSDs generatedwithin gyrencephalic and lissencephalic
brains, experimental studies in small laboratory animals still hold promise as a tool to
understand how a noxious brain event like CSD could cause transient neurological dys-
functions such as aura and headache in migraine patients. In fact, CSDs evoked in rats
have been instrumental in exploring a common mechanism of migraine prophylactic
drugs (Ayata et al., 2006), and could more realistically model trigeminovascular activa-
tion than models using direct chemical or electrical stimulation (Erdener and Dalkara,
2014).
One major goal, then, is to develop genetically engineered mice in which CSDs

spontaneously emerge, or can be evoked by minimally invasive triggers (e.g., such as
after exposure to blue light) (Houben et al., 2016).The use of such CSDmodels in awake
animals, plus their evaluation by telemetric methods as well as recently developed
behavioral tests assessing pain and allodynia, could open a new era in development of
acute anti-migraine and prophylactic drugs (Chanda et al., 2013; De Felice et al., 2013;
Romero-Reyes and Ye, 2013; Erdener and Dalkara, 2014).
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Mathematical modeling of human cortical spreading
depression
Markus A. Dahlem

Department of Physics, Humboldt University of Berlin, Berlin, Germany

17.1 Introduction

We are looking back tomore than 50 years of mathematical models of cortical spreading
depression (CSD). In general, computational neuroscience uses abstract models formu-
lated inmathematical language to interpret data and guide a principled understanding of
the nervous systems in health and disease. The complexity of neural systems can make
it difficult to assess the value of such models, because they have to abstract from the
details and incorporate only the aspects that are considered to be important, yet what
is important may only be known in hindsight.
With regard to this difficulty, however, a computational model is often not fundamen-

tally different from animal models. In particular, in animal models of pain, the efficacy
of a drug is often first demonstrated in humans and then in the animal model, which
is called backward validation [41]. Unlike animal models, a computational model can
be deliberately and intentionally changed in any manner – that is, components can be
modified or added in any sequence. Therefore, one can feature backward validation
by making the computational science process cyclic. In fact, many cycles have been
completed in the last 50 years of CSD research. Moreover, experiments on pain using
non-human animals, or even human subjects pose great ethical problems. Computer
models are an attractive – but limited – remedy for this problem.
Last, but not least, experimental animal models and clinical studies have become

increasingly sophisticated, and have given rise to an abundance of biological data across
a range of spatial and temporal scales, extending from molecules to whole brain, and
from sub-milliseconds of channel gating to several hours of attack duration, and even
years in changes in headache history. Accurate biophysical, multi-scale computational
models can help to integrate diverse data sets and to unify information.
In this chapter, we will provide various examples of two classes of computer models

of CSD, all without trying to parse mathematical details; these can be found in the cited
original literature.The common theme that runs through these examples is to elucidate
how the respective objective of the model determines the chosen level of abstraction.
First, we introduce microscopic models that include cellular and cytoarchitec-

tonic detail. Such models can address questions related to the electrophysiological
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characterization of membrane properties during CSD. In the second part, which builds
on the first part by further abstraction, we introduce macroscopic models that describe
large scale pattern formation in cortical tissue and, with that, we address questions
raised by the neurological manifestation of CSD. We end with some predictions from
this computational science approach.

17.2 Microscopic models: cellular and cytoarchitectonic
detail

A key question addressed by microscopic models concerns which properties of the
neuronal membrane contribute to the ignition of CSD. In this case, the computational
science process begins by identifying the following physiological observations to be
selected for a working model.

17.2.1 Physiological observations: persistent depolarization

Sustained inward currents can drive a persistent depolarization of the neuronal mem-
brane. Such a phenomenon underlies not only spreading depression (CSD), but also
tonic-clonic seizure discharges. In both cases, the sustained inward currents add up to
a suprathreshold input. The threshold can initially be defined as the minimal current
amplitude of, in principle, infinite duration (in practice, several tens of milliseconds suf-
fice), that results in periodic firing – the so-called rheobase current.
When positive electric charge (such as sodium ions) flows into neurons, this defines

an inward current. It is unclear whether the inward current during CSD occurs by the
same pathways that are involved in normal cellular functioning, such as the generation
of action potentials (but this case in some abnormal mode of operation of these known
active channels) or, alternatively, if at least some part of the inward current is carried by
an ion flow through unknown channels.

17.2.2 Workingmodel: sustained inward currents

How can experimental data on the available electrophysiological measurements [43] be
quantitatively interpreted? For this purpose, a computer model was developed [28] to
test a hypothesis – namely, that the persistent depolarization is generated by the coop-
erative action of several known channels, and that blocking any one of the channels can
slow down CSD or decrease its intensity, but not prevent it. The step towards a working
model is the simplification of the observed cellular system into its quantifiable factors.
Among these quantifiable factors are five active membrane currents, two passive elec-

trical properties (leak currents), and active pumping of sodium ions (Na+) and potas-
sium ions (K+). These five active membrane currents are: the transient and persistent
Na+ currents; a delayed rectifier K+ current; a transient K+ current; and aNMDA recep-
tor mediated current. Furthermore, the cell morphology of a hippocampal CA1 neuron,
in terms of geometrical properties of its soma and apical dendrite, is included as part of
this working model of CSD.
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17.2.3 Physiological mechanism: excitability

Theclassical Hodgkin andHuxley (HH) framework ofmembrane electrophysiology [24]
is used to represent the working model as a mechanistic model. This framework for-
mulates membrane electrophysiology, considering the equivalent electrical circuit for a
patch of membrane as a fixed capacitance (lipid bilayer) and, in parallel, voltage-gated
conductances (ion channels) with, in series, batteries (ion gradients). The voltage-gated
ion channel kinetics are described by independent conformational transitions of the
channel subunits. The voltage-gating provides the necessary nonlinearity for threshold
behavior. Models resulting from the HH framework are also called conductance-based
neuron models.
TheHHmodel of action potentials is one of the most successful models in mathemat-

ical biology. It is worthwhile to look into this more fully, due to the great significance
and relationship between action potentials and spreading depression.
TheHHmodel describes the underlyingmechanismof a single spike as a phenomenon

of excitability. The reasons for its success can be understood from two connected per-
spectives. First, cellular transmission of action potentials is one of themost fundamental
processes in biology. Second, far beyond the generation of action potentials is the phe-
nomenon of excitability. How this is related to the onset of rhythmic activity, such as
bursting, is important to a whole host of other problems outside membrane physiol-
ogy and even biology, including physics, chemistry, sociology, and engineering. Because
the HH model was the first precise biophysical model of excitability, its mathematical
structure serves as representative of a whole class of excitable phenomena in various
areas, and it set much of the terminology and the way we classify excitable and bursting
systems [27].
These two connected perspectives can be irritating when it comes to modeling CSD

as an excitable phenomenon, because action potentials set not only the terminology, but
also generic forms ofmathematicalmodels for excitability, such as the famous FitzHugh-
Nagumo model and others [2, 15, 23, 42, 44, 55]. For this reason, we explicitly note that
action potentials and spreading depression share many elements that constitute two
distinct and separate kinds of excitable phenomena. In particular, they take place on
very different space- and timescales. In fact, the very purpose of the computer models
developed by Kager, Wadman, and Somjen (KWS), described in the following, was to
study how these elements are interlaced, but lead to two distinct excitable phenom-
ena. Excitability means that, while small perturbations return immediately to rest, a
stronger – but still brief – stimulus can trigger a large excursion that, eventually, also
reverts to the resting state without the need of further input.
An action potential is caused in the neural membrane by a small amplitude depo-

larization. By definition, the size of the rheobase current can be taken as an inversely
proportionate measure of this kind of membrane excitability. In the case of an action
potential, the “excursion”, as an essential act constituting excitability, is the change of
the membrane potential towards a positively polarized state that eventually repolarizes
to the negatively polarized resting state. Such a spike lasts 1/1000th of a second. During
this period, ions are exchanged across the nerve cell membrane, but only to a negligible
degree.
Spreading depression, on the other hand, is caused in the neural membrane by

sustained depolarization. Changes in ion concentrations have to become significant to
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Figure 17.1 Simulated time course of CSD on short and long timescales and the “plane of excitability”
of CSD models. (a) The black line is the transmembrane potential Vm simulated in the cell soma; the red
and blue lines are the Nernst potentials of sodium and potassium, respectively. High-frequency
discharges caused by an applied depolarizing stimulation current of 0.15 nA amplitude, lasting one
second (black bar), followed by sustained after-discharges (first spiking and then, after a
depolarization block at ≈ 1.7 seconds, by non-spiking currents. (b) As in (a), but on a longer timescale;
note that even after 80 seconds the Nernst potentials have not completely recovered. The orange and
yellow bar at the top mark the distinct phases in the “plane of excitability”. (c) The “plane of
excitability” of CSD models. The plane is spanned by extracellular potassium ion concentration [K+]e
and potassium ion clearance (measured in mM with virtual reference to the extracellular volume). The
resting state is marked by a white square. If a depolarizing stimulation current takes [K+]e beyond the
dashed line, sustained after-discharges occur and significant potassium ion clearance sets in (orange).
At a maximum value of cleared potassium, the membrane potential is driven quickly back by the
electrogenic pump to near its resting state (see inset). Shortly after this, the neural membrane is
functionally no longer significantly impaired, but re-uptake of the lost potassium takes several tens of
minutes (yellow).

maintain this depolarization. For example, a high-frequency series of action potentials
can result from, and cause, persistent depolarization. The hallmarks of the excursion in
the case of spreading depression are the energy draining pathological after-discharges
that let neurons starve from a transient loss of transmembrane ion gradients.
The original HH framework did not account for changes in ion concentrations,

but it can be extended in a rather straightforward manner for this purpose, and then
translated into a computational model. Ion currents also determine ion concentra-
tion changes by considering the morphology of the cytoarchitecture by only two
parameters – the volume fraction between intracellular and interstitial space, and the
volume-to-surface-area ratio of the cell.The intra- and extracellular ion concentrations,
in turn, determine the Nernst potentials, which are part of the original HH framework.
We shall refrain from presenting mathematical equations of the cellular CSDmodels.

These can be found in the cited literature and, to a certain degree, source code can be
found in open source code repositories [25]. Instead, we present the simulations in terms
of time series (see Figure 17.1).
Let us first comment on the number of rate equations. In the first KWSmodel [28], the

morphology of the neuron was represented by 201 electrically coupled compartments.
For each compartment, a set of extended HH equations is solved with possibly varying
parameters. Such a set consists of the following rate equations; one for the transmem-
brane voltage Vm coming form the Kirchhof law of the equivalent electrical circuit for
a patch of membrane; one for each channel’s type of subunit with a gated conforma-
tional transition; and one for each ion concentration in the neuronal, extracellular, glial,
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and vascular milieu (to the extent that these are included). Cell volume swelling can add
another rate equation.

17.2.4 Results, modeling iterations, and interpretation

17.2.4.1 Increasing physiological detail
Thefirst of a series of KWSmodels [28] simulated the time course of CSD, similar to the
time course shown in Figure 17.1. This simulation has been interpreted in such a way
that currents through ion channels that are normally present in neuronal membranes
can generate the depolarization state in CSD. Although the onset of CSD can be delayed,
in particular if either the persistent sodium or the NMDA mediated current is varied
to the extent that it becomes insufficient, the deficit is eventually compensated by the
remaining conductance.
Naturally, many factors that also play important roles in CSD have not been included

in this first generation. Therefore, further components and features have been added to
the working model: more complete representations of ions and channels, and osmotic
cell volume changes [29]; calcium ions and calcium currents, calciummembrane trans-
port, an intracellular calcium buffer, and a calcium-dependent potassium current [30];
and voltage-dependent channels in the glial membrane [59, 60]. With each new KWS
model generation,more elaborate hypotheses could be tested and comparedwith exper-
imental evidence. We refer the interested reader to references [28–30, 59, 60].
The objective of the various ever more detailed model generations, including those

of other groups [40], was to make a number of differences visible in the time course
of CSD, given more physiological detail, but also to highlight common features shared
among all models.Themost important of these is that all simulations demonstrated the
independence of the CSD process from the strength of the triggering stimulus, confirm-
ing that it is an excitable phenomenonwith all-or-none character, without the need of an
unknown channel. However, one should not omit to mention that this does not exclude
an unknown conductance, and another model predicts its importance in specific den-
dritic domains [37].

17.2.4.2 Model reconciliation
The original HH model for action potentials has four dynamical variables. Until
recently, extended HH systems which can model CSD ranged between nine and several
hundreds of dynamical variables in multi-compartment models, as introduced in the
last section.
Various reduction techniques and assumptions have been used to reduce aCSDmodel

to four dynamical variables, while still retaining adequate biophysical realism in mod-
eling action potentials, tonic-clonic seizure discharges, and spreading depression [25].
These reduction techniques help to reconcile various CSD models and to ensure the
consistency between them, by reducing the development and propagation of errors. For
instance, the so-called “fixed leak” current is naturally eliminated, and will no longer
obfuscate the nature of recovery in CSD models.
A reduced CSD model is tractable for a detailed fast-slow analysis and bifurcation

analysis using continuation software. These computational analyzing methods reveal
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fundamental properties of CSD in the “plane of excitability”, focusing on principal acti-
vator and inhibitor functions (see Figure 17.1c). These analyzing methods also lead to
creating a computationally efficient model, needed to study the influence of molecu-
lar changes upon cellular and whole-cortex CSD models. For instance, the functional
connection between genetic findings in familial hemiplegic migraine and physiological
functions on the level of the cell is an area of particular interest for computational studies
[13]. They complement studies that experimentally identify and characterize this con-
nection in heterologous cellular systems. Further examples, extending this approach to
whole-cortex models, are given in the following sections.
From the reconciled model, two findings stand out, and they guide a principle under-

standing of CSD. First, although neurons still have access to metabolic energy that, in
principle, can be used to re-establish the loss of the transmembrane ion gradients, the
neuronal ion pumps alone are insufficient to counterbalance the currents through both
leak and open voltage-gated channels [26]. Second, we identified one variable of partic-
ular importance to overcome this recovery problem. The potassium ion clearance, and
re-uptake by some reservoirs provided by the nerve cell surroundings, play a crucial
mechanistic role in recovery (Figure 17.1c). We therefore suggest describing the new
type of CSD excitability as a sequence of two fast processes, with constant total ion con-
tent in the neural parenchima separated by two slow processes of ion clearance (loss)
and re-uptake (gain) by the neurovacular unit [25].

17.3 Macroscopic models: large scale spatiotemporal
phenomenology

Macroscopic CSD models are reliant upon the cellular models and reuse the knowl-
edge gained by them.The perspective, however, changes from physiology to neurology.
The following is the only fundamental question addressed by macroscopic models, it
requires examination of clinical issues that have many ramifications. In which patterns
does CSD spread over the cerebral cortex in humans?The working model for that ques-
tion starts by identifying clinical manifestations ofmigraine with aura as the expressions
of the pattern-forming neural activity during CSD.

17.3.1 Clinical manifestation: march of migraine aura symptoms

Migraine auras are windows on the visual areas in posterior cortex [66]. The march of
visual symptoms prompt the key question formulated byWilkinson, namely whether, in
migraine, “the spreading depression process engulfs all of posterior cortex […] or alterna-
tively, the activation directly due to spreading depression is much more limited in extent,
and the rest of the spreading activation in adjacent cortical areas represents synaptic
activation through feed-forward and feedback circuitry.”
An all-engulfing CSD wave illustrates in many migraine textbooks a full-scale attack

(cf. Figure 17.2a).This picture originates from the review by Lauritzen [36], and is based
on regional cerebral blood flow, as measured by the xenon 133 injection technique [47],
but it lacks backing from functional magnetic resonance imaging [19]. The occurrence
of an all-engulfingCSDpattern in human cortex has been called into question [8, 10, 12].
It was suggested that instead, in the human cortex, CSD propagates radially outwards



�

� �

�

17 Mathematical modeling of human cortical spreading depression 293

(a)

(b)

Figure 17.2 Possible patterns of the spread of CSD in a full-scale attack in human cortex (from left to
right). (a) All-engulfing CSD wave stopping at the central sulcus (color code as in Figure 17.1, red and
orange collapsed). (b) Starting from a “hot spot”, a solitary localized CSD breaks away in one direction
and is surrounded by activation through synaptic circuitry (green). The wave segment either
propagates along a single continuous path (outlined by dashed line), or is occasionally interrupted,
jumps, and reappears in new hot spots at more distant areas, due to the increased non-local synaptic
activity (not shown) – see text.

only for a couple of minutes or less and, if longer lasting in a full-scale attack, then CSD
propagates only as a localized small wave segment breaking out in one direction [7, 11]
(see Figure 17.2b).
Strong evidence for localized CSD wave segments comes from the march of migraine

aura symptoms, both within the visual cortex, as a single sensory modality, and across
sensory and cognitive modalities. First, the spatio-temporal development of migraine
aura symptoms in the visual field is often localized [10, 18, 35, 48, 66] (see Figure 17.3a),
and there can be a large variety of localized visual symptoms [20]. Second, aura symp-
toms follow distinctly variable paths from attack to attack when mapped onto the cor-
tical surface across sensory and cognitive modalities [64] (see Figure 17.2b).
The reformed propagation pattern shown in Figure 17.2, including radially

outward-spreading CSD for the first few minutes, and possibly non-local jumps
through synaptic circuitry, might consistently explain how such a profound neuro-
physiological event as CSD could cause such minor neurological symptoms or, in some
cases, possibly no symptoms at all [6]. It also suggests that our understanding of how
CSD relates tomigraine with andwithout aura is limited in this respect by inappropriate
small animal models (but cf. Reference [56]) – hence the need for a complementary
computational approach.

17.3.2 Workingmodel: activator inhibitor type description in two spatial
dimensions

How can the clinical observations of the march of aura symptoms be interpreted quan-
titatively? A working model simplifies the observed cortical pattern formation process
in terms of activator-inhibitor systems in two spatial dimensions (2D), which provides
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Figure 17.3 Clinical evidence for localized CSD waves. (a) Propagation pattern of self-reported visual
field defects during migraine with aura in the lower right visual field quadrant. The time in minutes
starts from the first recognition of the migraine aura phase. (b) Human artificially inflated cortical
surface, obtained by magnetic resonance imaging (MRI) with add-on aura symptoms (lateral view).
The pattern follows contiguous cortical areas successively affected, as indicated by the arrow. Modified
from [64]. Reproduced by permission of Sage Publications.

the quantifiable factors to model self-organized activity patterns in the human cortex,
on a spatial scale of centimeters and a temporal scale of up to hours.
The quantifiable factors in macroscopic models are lump variables. Such a deliberate

simplification gives rise to a high degree of abstraction. Lump variables take the role
of an activator and an inhibitor, defined by their respective lump rate functions. Fur-
thermore, other parts of macroscopic working models are cortical functional domains
and anatomical landmarks, with an averaged effect of the laminar and cellular tissue
heterogeneity and cortical vascularization.

17.3.3 Physiological mechanism: spatiotemporal self-organization

There are various mechanistic ways that activator-inhibitor systems can form corti-
cal activity patterns. Understanding these mechanistic principles of self-organization,
and interpreting these patterns in mechanistic terms, remains a key task of computa-
tional neuroscience.The important principles for CSD in the human cortex are, broadly
speaking, described by reaction-diffusion systems and the neurovascular coupling of
neural fields. During normal functioning of the brain, so-called neural fields models
describe large-scale dynamics of spatially structured neural networks formed by synap-
tic connections [1, 4, 67]. The central step from a microscopic cellular description to a
macroscopic (continuum) level is conducted in a sequence of approximations. It takes
the voltage-based description of spiking neurons and synaptic and dendritic processing
to an activity-based description of neural populations.
These concepts of neural field models still apply in some cases of neurological disor-

ders, such as epilepsy. It is unclear, however, how an activity-based description can be
rigorously developed under conditions of CSD. During CSD, the energy-draining patho-
logical after-discharges let neurons starve due to a transient loss of transmembrane
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ion gradients. Neurons can only recover on a rather long timescale, compared to their
discharge activity, by metabolizing chemical energy to restore these gradients (see
Figure 17.1).
Notwithstanding, our knowledge of the cellular processes during CSD allows a new

formulation including, but not limited to, neural field models. The central element is
diffusion, due to which the hallmark of CSD emerges – its slow speed.

17.3.4 Results of modeling iterations: from fronts to pulses to solitary localized
structures

17.3.4.1 The speed of the front
The first mathematical CSD model, which can be considered the starting-point of a
series of macroscopic models introduced below, dates back to the year 1959. Based on
mathematical methods developed by Alois Huxley, Alan Hodgkin provided a handwrit-
ten manuscript (a transcript and annotated version is in preparation for the Journal of
Neurophysiology) that gives an order of magnitude calculation of the speed of CSD.
The model supports Grafstein’s hypothesis [5, 17], stating that release of K+ into the

cortical extracellular space is the critical self-propagating event in CSD. To bemore pre-
cise, the model supports that any extracelluar diffusive species that has similar release
and removal rates and a similar diffusion coefficient to those of potassium ions can
explain the remarkable slow spread of CSD. Whether or not extracellular K+ is consid-
ered a mere coadjuvant on the chain reaction does not affect this essential result, that
is, that a reaction-diffusion (RD) process critically determines the speed of CSD – see
References [61] and [22] for an up-to-date discussion of this hypothesis.
To sum up, in the context of macroscopic models, “potassium” should be considered a

lump variable. In a more detailed microscopic (i.e., cellular) description, the ion home-
ostasis in general, and potassium homeostasis in particular, is determined by vascular,
neuronal, and glial cells and their milieu, as described in the first part.The spatial spread
of ions, which determines pattern formation in continuummodels and, in particular, the
speed ofCSD is, in addition to the extracellular diffusion, also critically governed via spa-
tial buffering, achieved by the glial syncytium and by the neurovscular unit. Therefore,
at least two relevant potassium ion concentrations need to be considered for the spread
of CSD.
Furthermore, charged particles like potassium ions cannot diffuse independently,

since they must be accompanied by counter-ions to keep the bulk milieu electroneutral.
The lump approach considers all this as an integrated system that works in concert,
such that an activator can be called “potassium” because the nonlinear release and
removal rate function linked to extracellular K+ leads to a threshold that triggers a
self-activating positive feedback loop, as proposed by Grafstein [16, 17].
The original RD model formulates the potassium rate function by a third-order poly-

nomial describing the nonlinear release with a positive feedback loop in a generic form.
The particular values for the three steady states, the roots of the rate function (locations
at which the function equals zero), are chosen at resting level concentration, threshold
concentration and maximum concentration. The actual values that Hodgkin used were
for the extracellular elevation of potassium.The location of the roots should be adjusted,
the threshold concentration is sometimes now called ceiling level [21] and lies at around
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10mM, and the maximum concentration is about 55mM. Together with diffusion, this
yields the RD equation:

𝜕u
𝜕t

= f (u) + Du
𝜕
2

𝜕x2 u (17.1)

The potassium ion concentration (i.e., the activator) is called u, the function f(u) is the
third order polynomial, and the parameter Du is the diffusion coefficient of potassium
ions in the brain. The space variable is x.
The state of cortical tissue at a maximum concentration of about 55mM is further

away from the 10mM ceiling level than the resting state value at around 3mM. The
differences to the ceiling level are 45mM and 7mM, respectively. These differences are
called basins of attraction. In RD systems, the state with the lager basin of attraction
wins, and eventually recruits tissue in the state with the smaller one into its state at a
fixed speed of millimeters per minute, according to mathematical analysis. While the
third order polynomial f(u) in Equation 17.1, suggested by Hodgkin and Huxley, is a
generic top-down description, seemingly focusing solely on potassium ion concentra-
tion, a similar form is now derived from the bottom-up cellular CSDmodel within their
extended conductance-based HH framework [26].

17.3.4.2 Propagation and zigzag percepts
Reggia and Montgomery have built a hybrid model – a reaction-diffusion (RD) model
coupled to neural field dynamics [49, 50]. This was the first computational model that
originally aimed at reproducing the typical zigzags of the fortification pattern experi-
enced as visual field defects during migraine with aura (Figure 17.4a). One part of this
model is similar to the previous RD model based on potassium dynamics, described in
Equation 17.1.

(a) (b) (c)

X
Y

Z X
Y

Z

(d)

Figure 17.4 Simulations of zigzag patterns experienced during visual migraine aura and spread of
CSD in human cortex. (a) The spread of CSD, with patterns of intense cortical activity in white. The
cerebral cortex was modeled as a two-dimensional array of hexagonally tessellated volume elements
(figure from [49]) Reproduced by permission of Elsevier. (b) The zigzag percept based on the pinwheel
structure of iso-orientation domains in cortical feature map excided by a CSD wave [9]. (c)-(d)
Simulation of CSD on an individually shaped cortical surface, obtained by MRI from a migraine sufferer
who has drawn his visual field defects, as shown in Figure 17.3a. The blue surface is the left primary
visual cortex, located in the calcarine sulcus (CS). The lower quadrant of the right visual hemifield is
mapped onto the dorsal bank of CS and onto the cuneus. (c) Start of simulation with CSD (red) located
at the occipital pole about 10 mm into the medial convexity. (d) Near the end of simulation; the line
marks the path of the localized CSD takes on the cuneus [50]. Richter and Lehmenkühler (1993).
Reproduced by permission of Elsevier. For animated version of (b) please use the link,
https://www.youtube.com/watch?v=GFvuC9dxY9I.
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TheRDsystemalso included an inhibitor tomodel thewave back inCSD,which recov-
ers the resting state by driving the maximum extracellular potassium ion concentration
back to the resting state concentration (note, we call the inhibitor v although, in the
original paper, it was called r, for the “resequestration” of ions);

𝜕v
𝜕t

= 𝜀g(u, v) (17.2)

with the generic rate function g(u, v) being linear in both its arguments u and v, and
introducing the time scale separation 𝜀 << 1, which renders the dynamics of the
inhibitor v slow.1 This was not the first such model that describes CSD as a pulse (a
solitary wave with front and back); see the work by Tuckwell, Miura, and others for a
microscopic cellular description [40, 62, 63, 68].
One reason we put emphasis on the macroscopic model by Reggia and Montgomery

[49, 50] is that it directly links with later models that also describe the spread of CSD
in 2-D on macroscopic scales. For the sake of completeness, the early cellular automata
model from Reshodko and Bureš, whichmodeled reverberating CSD in 2-D, should also
be mentioned [52], as well as a paper by Wiener and Rosenbluth [65] that describes a
mathematical model for similar re-entry patterns in 2D in cardiac arrhythmia. In the
beginning of their article, the authors made the connection to the brain, and possibly to
CSD: “Nervous elements and cardiac and other striate muscle fibers are excitable. […]
The laws which apply to the muscle fibers are also applicable to the nerve fibers.” Arturo
Rosenblueth clearly knew about the 2-D phenomenon of CSD, since he was one of the
supervisors of Aristides Leão [58].
Another reason to consider the model by Reggia and Montgomery [49, 50] in some

detail is that this model focuses on the neurological symptoms caused by CSD in
migraine (Figure 17.4a). To this end, the distinguishing and novel feature in the model
is that the RD model is coupled to a neural network. This network simulates the lateral
long-range connections, a non-local coupling beyond diffusion. The neural network is
merely used to predict the visual field defects during migraine with aura.The activity in
the neural network dynamics is not fed back to the actual RD equations (Equations 1.1
and 1.2). In this perspective, the neural field is like an epiphenomenon of CSD. More
recently, there has been a shift to examine their interaction.
Each network node (cortical cells or populations of cells) has an associated activation

level a(t), which is transferred via synaptic connections to other nearby cells. The acti-
vation level a(t) represents the mean firing rate of neurons at time t. Within the neural
network, lateral coupling is modeled by “Mexican hat” interactions – that is, cortical
cells excite nearby cells and inhibit cells more distant. The formulation of the neural
network dynamics in terms of the activation level a(t) was not developed specifically
to simulate visual field effects in migraine with aura. Rather, it was developed and used
to study a variety of issues related to cortical dynamics and reorganization of sensory
cortical feature maps [51].
An alternative approach to model the zigzag pattern was suggested later by Dahlem

et al. [9]. If one merely considers the synaptic activity as an epiphenomenon, one can

1 Note that the new variable v is coupled to the potassium dynamics u by simply subtracting v in the rate
function – hence, v is called an inhibitor, as it inhibits the release of potassium ions. Due to the occurrence of
a second variable, a new rate function, ̃f (u, v) = f (u) − v., is introduced, and Equation 17.1, in combination
with Equation 17.2, should be adopted accordingly; we drop, however, the tilde in the following.
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replace the neural network model, and more easily and precisely consider the effect of
an advancing RD wave using a specific sensory cortical feature map that organizes the
feature of orientation preferences of neurons in iso-orientation domains around a pin-
wheel structure [3]. Such amodel could realistically simulate visual field effects as zigzag
percepts (Figure 17.4b).
Thismodel alsomakes specific predictions about the zigzags rotation features. Similar

suggestions, but without proposing a mathematical model that can simulate zigzag pat-
terns, were made before by Richards [53] and Schwartz [57] – namely, that the zigzags
can be explained with reference to the layout of functional domains of orientation pref-
erences in the primary visual cortex and, therefore, keen observations of visual migraine
aura actually pre-empted the discovery of a pinwheel structure [3] in human cortex.

17.3.4.3 Propagation of solitary localized patterns
Let us recapitulate the preceding pattern formation principles that build on each other
and need to be further expanded to explain the march of symptoms shown in Figure
17.3.
A reaction-diffusion system with a single activator species, which has an activation

threshold that triggers a positive feedback loop, provides a mechanistic explanation of
front propagation (Section 17.3.4.1, with Equation 17.1). A reaction-diffusion system
with one activator, together with its inhibitor, which is usually, but not necessary, immo-
bile, provides a mechanistic explanation of pulse propagation – that is, a solitary single
wave with front and back (Section 17.3.4.2, with Equations 17.1 and 17.2). Without fur-
ther assumptions, the latter system can only explain an all-engulfing CSD wave in the
human cortex.
What is the next pattern formation principle? There is one more needed, assuming

that the spread of a CSD wave during a full-scale migraine attack is not all-engulfing
(as shown in Figure 17.2a) but is, instead, spatially limited to a narrow cortical pathway
(as shown in Figure 17.2b), and further assuming that any taken pathway is not deter-
mined by territorial conditions, such as cytoarchitecture or vascular. Certainly, we have
to take into account the influence of territorial heterogeneity. However, in a computa-
tional science process, we must first develop a high level of conceptual coherence, and
try to deduce the patterns from a few fundamental principles.
Indeed, it is well known how stable solitary localized structures arise due to mecha-

nisms of self-organization.There is a vast body of literature of activator-inhibitormodels
describing propagating “spots” in a variety of different systems, such as semiconductor
material, gas discharge phenomena, and chemical systems [31, 34, 38, 39, 45, 46]. A
plausible hypothesis is that the same generic principles apply to propagation of CSD if
it propagates as a localized structure.
Inspired by such a generic model [34], which shows propagation of spots in 2-D by

global inhibition, we suggest the following expansion to the reaction-diffusion system
of activator inhibitor type described by Equations 17.1 and 17.2 [7, 11]:

𝜕u
𝜕t

=

activator rate function
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

f (u, v)
⏟⏟⏟

front reaction

+ Du

(
𝜕
2

𝜕x2 + 𝜕
2

𝜕y2

)
u

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

diffusion

(17.3)
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𝜕v
𝜕t

=

inhibitor rate function
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝜀

⏟⏟⏟

slow

⎛⎜⎜⎜⎜⎜⎝
g(uv)
⏟⏟⏟

back reaction

+ ∫ k(x, y)a(t) dxdy
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

non-local coupling

⎞⎟⎟⎟⎟⎟⎠
(17.4)

The activator equation is unchanged (Equation 17.1 → Equation 17.3), except that
Fick’s diffusion term is now in its 2-D form. The inhibitor equation is expanded by a
non-local coupling term reminiscent of a neuronal field.

17.3.5 Interpretation of pattern formation principles

The value of a computational science strategy emerges when we can test predictions
obtained from a coherent and efficient explanation for the clinical phenomenology.
Therefore, we need to be comprehensible about both the intended purpose and
the further consequences of a non-local term that represents, in a CSD model, the
activation level of a neural field. Before we can make verifiable clinical predictions in
the next section, the physiological interpretation of the fundamental principles in the
model is critical.
To put it very clearly, the development of the macroscopic CSD model described by

Equations 17.3 and 17.4 is pursued in a targetedmanner to produce localized structures.
Therefore, the prediction cannot be that CSD exists as a localized structure. Also, the
statement that large-scale neural activity is not a mere epiphenomena in itself fails to
suffice as a sufficiently clear prediction. Rather, if CSD propagates as a localized solitary
wave, then we predict that these patterns are caused by a non-local coupling term with
well-defined features. Therefore to tackle the prediction, the interpretation of this term
is crucial. However, before we do that, let usmention – to further raise confidence in this
approach – that the macroscopic CSD model is able to describe CSD in curved cortical
geometry [14, 33] and, in particular, in personalized simulations using individual MRI
scanner readings (see Figure 17.4c–d).
We have already encountered non-local neural fields twice before.Themodel by Reg-

gia andMontgomery [49, 50] introduced a neural field to model the zigzag percept, and
Wilkinson raised the question of whether there is spreading activation in the synaptic
circuitry, which can be thought of as synonyms for a neural field [66].
In the model described by Equations 17.3 and 17.4 [7, 11], which successfully sim-

ulated personalized the aura features shown in Figure 17.3a by the spread shown in
Figure 17.4c–d, the long-range coupling did not assume a “Mexican hat” connectiv-
ity – that is, nearby excitation and distant inhibition, but the feedback effect of the
activation level a(t) spread out by a global inhibition. In mathematical terms, the kernel
function k(x, y) in Equation 17.4 was taken as a constant (i.e., k(x, y)= K ), and not as the
difference of two Gaussians.
The interpretation is that, with respect to the tissue susceptibility to CSD, the synaptic

footprint does not determine the quality of the feedback to the RD model. Any activ-
ity transferred to both synaptic populations (excitatory and inhibitory) will drive the
neurovascular unit (NVU) equally. It is the feedback of the NVU, as a lump concept,
that preconditions the tissue at risk to be recruit into the CSD state. In other words, we
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propose that the NVU, in turn, has a neuroprotective effect on the CSD surrounding
tissue once the blood flow rises (hyperemia – see the work by Olesen [47]), due to
increased activity levels in either population. A generic version of such a physiologi-
cal mechanism describes the activity level a(t) in a vastly simplified form, namely by
the Heaviside function H(u) that assumes one, if the activator is over a threshold, and
otherwise zero.
It still remains to be tested how the fast-spreading activity in the neural field influences

the CSD dynamics. If, for example, the localized solitary CSD wave propagates with
occasional non-local jumps, the fast-spreading activity cannot exclusively be neuropro-
tective. This may yield an inverted “Mexican hat” coupling effect – that is, nearby inhi-
bition (mandate for localization), and distant excitation or additional cortico-thalamic
excitatory interactions.

17.3.6 Clinical predictions

The clinically relevant supplement to the fundamental question addressed by macro-
scopic CSD models is: are the characteristics of different forms of propagating CSD
waves related to the major sub-forms migraine without aura (MO) and migraine with
aura (MA) and, if so, how? If CSD is localized, its noxious signature [32] could signifi-
cantly vary with both the size of affected cortical surface area at any one time, and the
location of this area with respect to gyral, sulcal, and laminar position (see Figure 17.5).
In addition to the personalized simulations (Figure 17.4c–d), we performed statistical

analysis of the spatio-temporal development in a flat area of the cortex. These simu-
lations of Equations 17.3 and 17.4 were initiated by 8000 different initial conditions,
representing homeostatic perturbations, caused by local hyperactivity in pinwheelmaps
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Figure 17.5 (a) Schematic representation of a cortical cross-section with meninges and skull; not to
scale. The effect of CSD and its noxious signature could significantly vary with overall size of affected
area and CSD’s gyral, sulcal, and laminar location. (b) Spatiotemporal signatures of CSD. The model
parameters are chosen such that only transient waves exist; note that we have scaled the
dimensionless model such that the units of time are roughly corresponding to minutes, surface area to
cm2, and the speed of CSD to about 3 mm/min. Four stereotypical courses are depicted: (1)
Subthreshold – CSD dies out quickly without initial spread. (2) Suprathreshold – CSD dies out after a
few minutes, because the front does not break open. This form putatively corresponds to migraine
without aura (MO). (3) Suprathreshold – CSD propagates for more than 20 min as a localized wave. The
maximal affected area at any one time is below a pain threshold. This form putatively corresponds to
typical aura without headache (MxA). (4) As before, but maximal affected area at any one time is above
a pain threshold, corresponding to migraine with aura (MA). (c) Statistical analysis of 8000 events
following a local random perturbation of the homogeneous steady state – see text (figure from [7]).
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[3], triggering CSD [11] (see Figure 17.5b–c). Based on this, we predict that certain fea-
tures related to shape, size, and duration of CSD determine the aura phase, while others
determine the pain phase in migraine. We firstly divide the subtype MA into its two
sub-forms, “typical aura with migraine headache” and “typical aura without headache”,
with the latter being referred to as MxA. Together with MO, we consider three forms
and predict that each has a specific signature of CSD. Characteristic for these signa-
tures are the spatio-temporal patterns, as shown by prototypical simulations in Figure
17.5b(1)–(4) and, furthermore, its course in the gyrified human cortex and laminar loca-
tion [54], as illustrated in Figure 17.5a.
In particular, we predict that a sufficiently large surface area must be instantaneously

affected by CSD. Only then can CSD lead into the pain phase in migraine. If the maxi-
mal instantaneously affected area is too small, the cascade of subsequent events causing
sustained activation of trigeminal afferents [32] is not initiated.The rational behind this
suggestion is that the flow of substances in the direction perpendicular to the cortical
surface into the pain-sensitive meninges should be significantly convergent in order to
reach noxious threshold concentration and initiate central sensitization of second order
neurons.The flow driven by a small affected area is sufficiently diluted and, therefore, is
tolerated. This makes a prediction that can be tested by noninvasive imaging.
Furthermore, only if CSD assumes a spatio-temporal form that is long-lasting enough

(>5 minutes) and, therefore, also propagating further (>1.5 cm beyond the initial large
hot spot), will CSD cause noticeable aura symptoms. In fact, this is not a prediction. It
merely reflects the diagnostic criteria of migraine aura given by the International Clas-
sification of Headache Disorders: “focal neurological symptoms that usually develop
gradually over 5–20 minutes”. Thus, any neurological events that last less than five min-
utes are not usually diagnosed as migraine aura.
To summarize, the modeling approach suggest that the primary objective in

research relating CSD to migraine pain should be directed to obtain a measure of
the different noxious signatures that are transmitted into the meninges and drive the
migraine-generator network into the pain state – that is, central sensitization.
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18.1 Introduction

Cortical spreading depression (CSD) is a commonly used model for migraine aura in
animal studies. CSD is a transient, self-propagating wave of cellular depolarization in
the cerebral cortex that causes a massive increase in extracellular K+ and glutamate,
and increase in intracellular Ca2+ in neurons and astrocytes [1]. This disturbance
of ionic homeostasis is accompanied by a spreading wave of arteriolar diameter
changes, commonly featuring vasoconstriction, followed by partial relaxation and
further sustained constriction in most species [2, 3]. Results in cortical slices suggest
that these vascular changes result from astrocytic Ca2+ waves [4, 5] causing release
of vasoactive metabolites of arachidonic acid (AA) – specifically, a vasoconstrictive
messenger 20-hydroxyeicosatetraeonic acid (20-HETE). In support of this hypothesis,
an in vivo study using 2-photon Ca2+ imaging has demonstrated that vasoconstriction
occurs when astrocytic Ca2+ wave invades a perivascular endfoot and is inhibited
upon pharmacological interference targeted to prevent the refill of intracellular Ca2+
stores [6].
An increase in intracellular Ca2+ is also known to trigger an increase in mitochon-

drial oxidative phosphorylation [7] and, therefore, inO2 demand. In agreement with this
expectation, a number of in vivo rodent imaging studies have indicated that CSD may
induce an increase in O2 demand exceeding vascular O2 supply [3, 8]. Notably, com-
bining 2-photon imaging of the reduced nicotinamide adenine dinucleotide (NADH)
with point measurements of the partial pressure of O2 (pO2) in tissue and vasodila-
tion/perfusion measurements, Takano et al. concluded that hypoxia was observed even
in the presence of an increase in cerebral blood flow (CBF) [8].
The abovementioned studies underscore the importance of microscopic imaging

technology for in vivo mechanistic investigation of pathophysiology. Below, we will
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consider a number of microscopic methods for neurovascular and neurometabolic
imaging in the context of open questions in the study of CSD.

18.2 Large-scale imaging of vascular dynamics
with microscopic resolution

Even in the absence of spreading fronts of neuronal activity, cerebral arteries and arteri-
oles can propagate dilation and constriction along the vessel, and this holds true for both
pial and parenchymal vessels. Two-photon imaging in anesthetized rats and mice has
revealed that, during normal neurovascular coupling, the initial dilation occurs below
layer IV, suggesting that at least some of the underlying mechanisms can be specific
to the infragranular layers [9, 10]. In CSD, however, a number of documented mecha-
nisms specifically localize to the brain surface, including activation of pial nociceptors
and local neurogenic inflammation [11–13].
Therefore, spatiotemporally resolved microscopic measurements of concrete physio-

logical parameters on the brain surface are of interest in CSD. Among these are mea-
surements of blood oxygenation, diameter and blood flow velocity in pial vessels. These
types of measurements can be performed with a relatively simple optical setup, using a
CCDcamera as a detector. In contrast to scanning opticalmethods, such as confocal and
2-photon microscopy, a CCD camera captures a 2-D image “at once”, leading to higher
affordable frame rate. The disadvantage, however, is the lack of true depth resolution:
the signal at every pixel represents a weighted sum of the response through the whole
depth of light penetration, with the highest sensitivity to the cortical surface [9, 14].
Blood oxygenation can be quantified by measuring the hemoglobin absorption at

multiple wavelengths of light, using Optical Intrinsic Signal Imaging (OISI) [15, 16].
Recently, the laboratory of Elizabeth Hillman refined CCD-based technology to
determine total hemoglobin, indicative of vasodilation, in the surface vasculature
[17–19]. Using high resolution (256 × 256) and high-speed CCD imaging (30 frames
per second), they were able to measure an increase in the total hemoglobin within
individual surface vessels across a large field of view (3 × 3mm). With this setup, they
demonstrated that the same pial artery can propagate the response both upstream and
downstream, depending upon the location of the neuronal response. Applied to CSD,
this technology would allow a detailed study of propagated dilation and constriction
along surface arterioles, and may provide an effective test bed for experimental (e.g.,
pharmacological or optogenetic) interventions in cases where cellular resolution or
sampling of deep tissue is not required.
Relative blood flow changes can be measured with Laser Speckle Contrast Imaging

(LSCI) [2, 20, 21] by exploiting the dynamic fluctuations that moving red blood cells
(RBC) impose on the random interference pattern of the reflected laser light. Due to its
simplicity, imaging speed, and large field of view (FOV), LSCI has been invaluable for
investigating CBF changes during spreading depolarizations (SDs). For example, LSCI
was utilized to characterize the tri-phasic CBF response during SD [22], and to inves-
tigate the vasoconstrictive neurovascular coupling during ischemic depolarizations,
which contributes to hemodynamic progression in acute focal cerebral ischemia [23].
In combination with OISI, LSCI was utilized to assess the impact of SDs under different
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Figure 18.1 Combined OISI and LSCI in CSD. (a) Schematic of instrument used for combined OISI and
LSCI. (b) Time-lapse images of hemodynamic and metabolic changes during CSD. For more details
see [3]. Reproduced by permission of SAGE.

physiological and pharmacological manipulations [3, 24–26], as well as to investigate
mechanisms of triggering SD [27] (Figure 18.1).
In spite of its significant utility, LSCI does not resolve the microvasculature, and does

not quantify absolute blood flow. Recent studies suggest that baseline flow is impor-
tant to understand some aspects of SD, such as tissue susceptibility to SD triggering,
SD duration, and polymorphic appearance of CBF transients during SD [27–29]. Fur-
thermore, knowledge about the relation between SD and capillary flow patterns may be
essential, both for understanding the impact of SD on tissue viability and for developing
novel treatments [6, 30, 31].
This gap in imaging technology can be overcome by Optical Coherence Tomography

(OCT), which can provide rapid, depth-resolved imaging of absolute blood flow in indi-
vidual cortical arterioles and venules over a large FOV, as well as imaging of RBC flux
in capillaries [32, 33]. In addition, OCT can assess both tissue scattering, a hallmark of
cellular changes associated with depolarizations [34], and tissue motility. These mea-
surements may have an important role in investigating SD impact on tissue viability.
Compared to 2-photon microscopy, the advantages of OCT include:
1) increased penetration depth through the thinned skull of mice;
2) >1mm penetration depth through a cranial window;
3) reliance on endogenous contrast (i.e. optical scattering) instead of exogenous con-

trast agents; and
4) improved volumetric image acquisition speed.

18.3 Combining measurements of single-vessel diameter
with imaging and quantification of intracellular Ca2+

in neurons and astrocytes

In vivo measurements of parenchymal vessel diameter typically requires 2-photon
microscopy and an intravascular fluorescent agent (e.g., fluorescein isothiocyanate
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Figure 18.2 Calcium imaging and quantification. (a) Field of view (FOV) 200 μm below the surface,
with perivascular astrocytes labeled by OGB (green) and sulforhodamine 101 (SR101, red). Neurons are
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Response to puffs of 1 mM glutamate in layer II/III. The injection micropipette contained glutamate
and a blue dye. Right: calcium signal time-courses. (d) Quantification of astrocytic calcium in vivo with
2-photon FLIM. Top: A composite image of OGB and SR101. A “spiral” sampling trajectory within a
single astrocytic cell body is shown on the right. Bottom: FLIM and fluorescence intensity time-courses
in response to puff of 1 mM ATP.

(FITC)-labeled dextran [9, 35]). When used with synthetic or genetically encoded Ca2+
indicators [48], 2-photon vascular measurements can be combined with imaging of
intracellular Ca2+ in neurons and astrocytes [36]. Dilation can also be estimated from
the expansion of unlabelled vascular cross-section, outlined by the astrocytic endfoot
stained with sulforhodamine-101 (Figure 18.2a).
The role of astrocytic Ca2+ activity deserves a special note in the context of CSD.

Astrocytic Ca2+ waves appear secondary to neuronal depolarization (for a recent review
see [37]), although itmay be required for theCSD-associated vasoconstriction [6]. Inter-
estingly, the same study showed that, in the absence of CSD, spontaneous increases
in astrocytic Ca2+ did not impact vessel diameter. This finding was recently corrob-
orated by Bonder and McCarthy, who produced Ca2+ surges using selective stimula-
tion of astrocytic Gq-GPCR cascades with a designer receptors exclusively activated by
designer drugs system (DREADD) [38].
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It remains unclear why astrocytic Ca2+ increases produce vasoconstriction in the
presence of CSD, while spontaneous astrocytic Ca2+ activity has no vasoactive effect. It
is possible that CSD produces a much larger increase in the absolute intracellular Ca2+
concentration necessary to trigger the synthesis and release of the gliotransmitters
driving vasoconstriction (e.g., arachidonic acid metabolite 20-HETE). Evaluation of this
possibility requires quantitative Ca2+ measurements with sufficient temporal resolution
to reconstruct dynamic Ca2+ signaling events.
Under 2-photon excitation, quantification of Ca2+ can be provided by genetically-

encoded Ca2+-sensitive Fluorescence Resonance Energy Transfer (FRET) probes [39],
or Fluorescence Lifetime Imaging Microscopy (FLIM) [40]. Notably, a commonly used
synthetic Ca2+ indicator, Oregon Green 488 BAPTA-1AM (OGB), displays an increase
in fluorescent decay lifetime when bound to Ca2+ [41], and can be used for 2-photon
FLIM in vivo [42]. Using optimal laser scanning trajectories, this technology can be
successfully employed to obtain the absolute level of Ca2+ with cellular resolution in
a dynamic regime (Figure 18.2d).
Combined with pharmacological and genetic tools, quantitative imaging of Ca2+ in

astrocytesmay help to unravel the complexity of astrocytic Ca2+ activity. In CSD, poten-
tially, the role of Ca2+ may be harmful rather than helpful, limiting blood supply and
ATP availability for neuronal activity. Suppression of this excitability in turn may pre-
vent the CSD-induced vasoconstriction while not interfering with other vital astrocytic
functions such as K+ uptake [43, 44].

18.4 NADH autofluorescence: an endogenous marker
of energy metabolism

NADH is the principal electron carrier in glycolysis, the tricarboxylic acid (TCA) cycle,
and the mitochondrial respiratory chain. NADH is generated both during glycolysis in
the cytosol and the TCA cycle in the mitochondria, and it is oxidized to NAD+ in the
electron transport chain during oxidative phosphorylation (respiration). The rates of
NADHproduction and its oxidation toNAD+ accelerate with an increase in the demand
for metabolic energy that accompanies an increase in neuronal activity. However, dur-
ing a transient metabolic response to neuronal perturbation, the rates are mismatched,
leading to transient increases or decreases in the NADH/NAD+ ratio. Importantly, the
NADH molecule is fluorescent, while NAD+ is not. Therefore, a change in the ratio of
NADH/NAD+ can be observed as a change in NADH fluorescence.
Early cortical surface imaging studies have indicated that, under normal physiological

conditions in anesthetized animals, NADH fluorescence decreases in response to
an increase in neuronal activity, and increases during a respiratory arrest [45, 46].
Two-photon imaging of NADH is consistent with these observations [47, 48]. Interpre-
tation of NADH fluorescence observations, however, has remained ambiguous, due to
its role in both glycolysis (within the cytosol) and respiration (within themitochondria).
Recently, the first genetically encoded NADH probes have been developed, providing a
possibility of specific targeting to the cytosol or mitochondria [49, 50]. While 2-photon
imaging of these probes has not been attempted yet, studies in cell cultures have
estimated a difference of over two orders of magnitude between the mitochondrial and
cytosolic NADH (≈30 μM and ≈ 0.15 μM, respectively), supporting the notion that
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intrinsic NADH signals are largely of mitochondrial origin [51]. Thus, glycolysis may
be largely invisible to intrinsic NADH imaging.
Another two probes that may provide new insights into the role of glycolysis and

oxidative phosphorylation in meeting the energy needs are genetically encoded FRET
sensors for lactate and pyruvate, developed by the laboratory of Felipe Barros [52–54].
In vivo 2-photon imaging of the lactate probe, targeted to cortical astrocytes, revealed
a rapid decrease in the intracellular lactate upon direct cortical stimulation, followed
by an overshoot [54]. This result is consistent with previously hypothesized astrocytic
lactate release upon an increase in neuronal activity [55]. However, whether this lac-
tate serves a metabolic fuel for neurons or messenger/neuroprotective agent remains
unclear [56].
In CSD, in vivo 2-photon NADH imaging revealed an increase in NADH fluorescence

in between capillaries, even in the presence of blood flow increase. Assuming that the
signal reflected an increase in cytosolic glycolysis, the authors concluded that “tissue
hypoxia associated with CSD is caused by a transient increase in O2 demand exceed-
ing vascular O2 supply.” This conclusion, however, may also hold in the case that all the
detected fluorescence originates from mitochondria, because an increase in the mito-
chondrial NADH/NAD+ ratio can serve as an indication of O2 deficit.

18.5 Direct imaging of molecular O2 in blood and tissue

Numerous questions important for understanding CSD are related to tissue
oxygenation:

• Does CSD cause tissue hypoxia, and what is the level of hypoxia during different
phases of CSD?

• How large is the mismatch between oxygen supply and demand during CSD?
• How does CSD influence the cerebral metabolic rate of O2 (CMRO2), and are the

effects of CSD on tissue detrimental?
• What is the relation between tissue oxygen supply and triggering of CSD and the

resultant impact on tissue?
• What are the effective strategies for manipulating CSD?

Addressing these questions requires direct measurements of molecular O2 within
capillary domains. Recently, these types of measurements became possible, due to
development of a new microscopic imaging technology, termed “2-photon phos-
phorescence lifetime microscopy” (2PLM), which combines O2-sensitive two-
photon-enhanced phosphorescent nanoprobes with 2-photon microscopy [57]. This
method uses phosphorescence quenching to quantify absolute O2 concentration
[58, 59], and is uniquely capable of measuring the partial pressure of O2 (pO2) in intact
cerebral cortex, because 2-photon excitation is confined to the focal spot, reducing
out-of-focus signals, minimizing photodamage, and allowing measurements deeper in
the brain’s interstitial space and vasculature with high resolution [60–66].
2PLM measurements have revealed that cortical arterioles are responsible for up

to 50% of oxygen extraction at rest [64], and that the tissue pO2 landscape is largely
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Figure 18.3 Two-photon imaging of O2 concentration in the brain. (a) Mouse cortical microvascular
pO2 measurements, using 2PLM overlaid with microvascular structures [64]. pO2 measurements in
anesthetized mice were performed down to 450 μm below the cortical surface. Scale bar = 200 μm.
(b) A grid of intravascular and tissue pO2 values measured by 2PLM in a rat somatosensory cortex,
superimposed on the vascular reference image [67]. pO2 in cortical tissue exhibits significant
heterogeneity, while the pO2 landscape is dominated by the oxygen diffusion from the penetrating
arterioles. (c–d) Capillary pO2 and oxygen saturation (SO2) histograms. (c) Histograms of mouse
capillary pO2 measured by 2PLM during normoxic normocapnia (solid bars) and normoxic
hypercapnia (empty bars). (d) Mouse capillary SO2 histograms, calculated based on data from (c),
using Hill’s equation [64]. Reproduced by permission of Nature Publishing Group.

dominated by oxygen diffusion from arterioles (Figure 18.3) [60, 67]. In addition,
both pO2 in tissue distant from arterioles, and pO2 in the capillary network, are very
heterogeneous (Figure 18.3). Such heterogeneity suggests that, in spite of the relatively
small oxygen extraction fraction from capillaries in the brain cortex, some capillary
segments and tissue in their proximity may always have low oxygenation. These tissue
regions may be particularly vulnerable to decreases in CBF and/or increases in CMRO2.
Since CSD may be associated with simultaneous transient CBF decrease and CMRO2
increase [3, 68], this double perfusion and metabolic impact on tissue may lead to
formation of transiently hypoxic tissue regions.
2PLM monitoring of tissue PO2 in capillary domains may help unravel critical ques-

tions about themismatch betweenO2 supply and demand during CSD. In addition, pO2
measurements enable estimation of CMRO2, which is another key physiological param-
eter for understanding CSD impact on tissue [69]. Finally, pO2 and CBF measurements,
in combinationwith the assessment of additional functionalmarkers such asNADHand
Ca2+ concentration, will help us gain a more complete understanding of this complex
phenomenon.
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18.6 Employing optogenetics to study inter-cellular
communication

Optogenetics is a tool of indisputable significance to neuroscience, from the subcel-
lular to systems level [70–72]. Optogenetics is only starting to make inroads into the
study of CSD, and holds great potential in multiple aspects of this complex disorder,
including novel ways of triggering the CSD wave [73], as well as dissecting its electro-
physiological and neurovascular mechanisms. For example, an overwhelming majority
of studies on astrocytic Ca2+ surges [74–76] have focused on the effects downstream
from activation of metabotropic glutamate receptors (mGluRs) [77]. However, astro-
cytes express a large repertoire of G-protein coupled receptors (GCPRs), not only for
glutamate but also for acetylcholine (ACh), noradrenaline (NA), somatostatin (SST)
and vasoactive intestinal peptide (VIP), which can, potentially contribute to the astro-
cytic Ca2+ wave in CSD. Addressing these non-glutamatergic signaling pathways with
respect to astrocytic Ca2+ activity is challenging, because different neuronal cell types
are wired together and are co-activated during circuit activity. Optogenetics, however,
allows selective stimulation of a particular cell type (e.g., ACh-positive interneurons
[78]). To ensure the specificity, one would have to prevent propagation of activation
to other neuronal cell types – for example, using pharmacological means. Optogenet-
ics has already been applied by a number of laboratories, including our own, to study
neurovascular/hemodynamic effects [10, 79–84].

18.7 Conclusions and outlook

Above, we emphasized a number of “ready for primetime” technologies for microscopic
imaging of vascular, metabolic, and neuroglial parameters, and specific manipulation of
brain activity of relevance to CSD research. This list is less than comprehensive. More-
over, both optical instrumentation and optical probes continue to develop rapidly. This
growth is likely to experience acceleration in the near future, in light of the BRAIN ini-
tiative focused on providing new tools for neuroscience [85, 86]. One of the key goals
of the initiative is large-scale imaging with microscopic resolution. In this respect, one
“method to watch” is photoacoustic microscopy [87]; another is lightsheet microscopy
[88, 89]. Extending the field of view of 2-photon microscopy is also being explored [90].
The efforts to engineer novel optical instrumentation are paralleled by development

of novel optical probes/reporters of specific physiological processes. We already
mentioned, above, reporters of Ca2+, NADH, lactate, pyruvate, and O2. Significant
progress has also been made towards detecting other metal ions, neurotransmitters
(glutamate, NO), H+, reactive O2 species, and other biomolecules, such as matrix
metalloproteinases (for a recent review, see [91]).
To conclude, a substantial arsenal of already available tools for both imaging and

manipulation of the relevant physiological processes provides exciting opportunities for
exploring the CSD in vivo. We hope that this chapter will find its way into the hands of
CSD investigators, and will serve as a motivation to utilize these newmethods and form
interdisciplinary collaborations. On our side, we deeply believe that a breakthrough
in the mechanistic understanding of this physiological phenomenon, as well as many
others, will emerge at this interface of biology/medicine and technology/engineering.
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Ness TV, Mateo C, Cheng Q, Weldy KL, Razoux F, Vandenberghe M, Cremonesi
JA, Ferri CG, Nizar K, Sridhar VB, Steed TC, Abashin M, Fainman Y, Masliah E,
Djurovic S, Andreassen OA, Silva GA, Boas DA, Kleinfeld D, Buxton RB, Einevoll
GT, Dale AM, Devor A, Elife. (2016). May 31;5. pii: e14315. doi: 10.7554/eLife.14315.

11 Karatas H, et al. (2013). Spreading depression triggers headache by activating neu-
ronal Panx1 channels. Science 339(6123): 1092–1095.

12 Zhang X, et al. (2010). Activation of meningeal nociceptors by cortical spreading
depression: implications for migraine with aura. Journal of Neuroscience 30(26):
8807–8814.

13 Bolay H, et al. (2002). Intrinsic brain activity triggers trigeminal meningeal afferents
in a migraine model. Nature Medicine 8(2): 136–142.

14 Polimeni JR, Granquist-Fraser D, Wood RJ, and Schwartz EL (2005). Physical limits
to spatial resolution of optical recording: clarifying the spatial structure of cortical
hypercolumns. Proceedings of the National Academy of Sciences of the United States
of America 102(11): 4158–4163.



�

� �

�

316 Neurobiological Basis of Migraine

15 Dunn AK, et al. (2003). Simultaneous imaging of total cerebral hemoglobin con-
centration, oxygenation, and blood flow during functional activation. Optics Letters
28(1): 28–30.

16 Kohl M, et al. (2000). Physical model for the spectroscopic analysis of cortical intrin-
sic optical signals. Physics in Medicine and Biology 45(12): 3749–3764.

17 Bouchard MB, Chen BR, Burgess SA, and Hillman EM (2009). Ultra-fast multispec-
tral optical imaging of cortical oxygenation, blood flow, and intracellular calcium
dynamics. Optics Express 17(18): 15670–15678.

18 Chen BR, Bouchard MB, McCaslin AF, Burgess SA, and Hillman EM (2011).
High-speed vascular dynamics of the hemodynamic response. Neuroimage 54(2):
1021–1030.

19 Chen BR, Kozberg MG, Bouchard MB, Shaik MA, and Hillman EM (2014). A critical
role for the vascular endothelium in functional neurovascular coupling in the brain.
Journal of the American Heart Association 3(3): e000787.

20 Draijer M, Hondebrink E, van Leeuwen T, and Steenbergen W (2008). Review of
laser speckle contrast techniques for visualizing tissue perfusion. Lasers in Medical
Science 24(4): 639–651.

21 Dunn AK, Bolay H, Moskowitz MA, and Boas DA (2001). Dynamic imaging of cere-
bral blood flow using laser speckle. Journal of Cerebral Blood Flow and Metabolism
21(3): 195–201.

22 Ayata C, et al. (2004). Pronounced hypoperfusion during spreading depression in
mouse cortex. Journal of Cerebral Blood Flow and Metabolism 24(10): 1172–1182.

23 Shin HK, et al. (2006). Vasoconstrictive neurovascular coupling during focal
ischemic depolarizations. Journal of Cerebral Blood Flow and Metabolism 26(8):
1018–1030.

24 Shin HK, et al. (2007). Normobaric hyperoxia improves cerebral blood flow and oxy-
genation, and inhibits peri-infarct depolarizations in experimental focal ischaemia.
Brain 130(Pt 6): 1631–1642.

25 Shin HK, et al. (2008). Mild induced hypertension improves blood flow and oxygen
metabolism in transient focal cerebral ischemia. Stroke 39(5): 1548–1555.

26 Jones PB, et al. (2008). Simultaneous multispectral reflectance imaging and laser
speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral
ischemia. Journal of Biomedical Optics 13(4): 044007.

27 von Bornstadt D, et al. (2015). Supply-Demand Mismatch Transients in Susceptible
Peri-infarct Hot Zones Explain the Origins of Spreading Injury Depolarizations.
Neuron 85(5): 1117–1131.

28 Sukhotinsky I, et al. (2010). Perfusion pressure-dependent recovery of cortical
spreading depression is independent of tissue oxygenation over a wide physiologic
range. Journal of Cerebral Blood Flow and Metabolism 30(6): 1168–1177.

29 Sukhotinsky I, Dilekoz E, Moskowitz MA, and Ayata C (2008). Hypoxia and
hypotension transform the blood flow response to cortical spreading depression
from hyperemia into hypoperfusion in the rat. Journal of Cerebral Blood Flow and
Metabolism 28(7): 1369–1376.

30 Unekawa M, Tomita M, Tomita Y, Toriumi H, and Suzuki N (2012). Sustained
decrease and remarkable increase in red blood cell velocity in intraparenchymal
capillaries associated with potassium-induced cortical spreading depression. Micro-
circulation 19(2): 166–174.



�

� �

�

18 Tools for high-resolution in vivo imaging of cellular and molecular mechanisms 317

31 Ostergaard L, Dreier JP, Hadjikhani N, Jespersen SN, Dirnagl U, Dalkara T (2015).
Neurovascular coupling during cortical spreading depolarization and depression.
Stroke 46(5): 1392–401.

32 Lee J, Wu W, Lesage F, and Boas DA (2013). Multiple-capillary measurement of
RBC speed, flux, and density with optical coherence tomography. Journal of Cerebral
Blood Flow and Metabolism 33(11): 1707–1710.

33 Srinivasan VJ, et al. (2011). Optical coherence tomography for the quantitative study
of cerebrovascular physiology. Journal of Cerebral Blood Flow and Metabolism 31(6):
1339–1345.

34 Kohl M, Lindauer U, Dirnagl U, and Villringer A (1998). Separation of changes in
light scattering and chromophore concentrations during cortical spreading depres-
sion in rats. Optics Letters 23(7): 555–557.

35 Nizar K, et al. (2013). In vivo Stimulus-Induced Vasodilation Occurs without IP3
Receptor Activation and May Precede Astrocytic Calcium Increase. Journal of Neu-
roscience 33(19): 8411–8422.

36 Grienberger C and Konnerth A (2012). Imaging calcium in neurons. Neuron 73(5):
862–885.

37 Pietrobon D and Moskowitz MA (2014). Chaos and commotion in the wake of corti-
cal spreading depression and spreading depolarizations. Ature Reviews Neuroscience
15(6): 379–393.

38 Bonder DE and McCarthy KD (2014). Astrocytic Gq-GPCR-linked IP3R-dependent
Ca2+ signaling does not mediate neurovascular coupling in mouse visual cortex in
vivo. Journal of Neuroscience 34(39): 13139–13150.

39 Thestrup T, et al. (2014). Optimized ratiometric calcium sensors for functional
in vivo imaging of neurons and T lymphocytes. Nature Methods 11(2):
175–182.

40 Lakowicz JR, Szmacinski H, Nowaczyk K, Berndt KW, and Johnson M (1992). Fluo-
rescence lifetime imaging. Analytical Biochemistry 202(2): 316–330.

41 Wilms CD, Schmidt H, and Eilers J (2006). Quantitative two-photon Ca2+ imaging
via fluorescence lifetime analysis. Cell Calcium 40(1): 73–79.

42 Kuchibhotla KV, Lattarulo CR, Hyman BT, and Bacskai BJ (2009). Synchronous
hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Sci-
ence 323(5918): 1211–1215.

43 Kuffler SW (1967). Neuroglial cells: physiological properties and a potassium medi-
ated effect of neuronal activity on the glial membrane potential. Proceedings of the
Royal Society of London. Series B, Biological Sciences 168(1010): 1–21.

44 Ransom CB, Ransom BR, and Sontheimer H (2000). Activity-dependent extracellular
K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. Journal
of Physiology 522 Pt 3: 427–442.

45 Lothman E, Lamanna J, Cordingley G, Rosenthal M, and Somjen G (1975).
Responses of electrical potential, potassium levels, and oxidative metabolic activity
of the cerebral neocortex of cats. Brain Research 88(1): 15–36.

46 Mayevsky A (1984). Brain NADH redox state monitored in vivo by fiber optic sur-
face fluorometry. Brain Research 319(1): 49–68.

47 Baraghis E, et al. (2011). Two-photon microscopy of cortical NADH fluorescence
intensity changes: correcting contamination from the hemodynamic response. Jour-
nal of Biomedical Optics 16(10): 106003.



�

� �

�

318 Neurobiological Basis of Migraine

48 Yaseen MA, et al. (2013). In vivo imaging of cerebral energy metabolism with
two-photon fluorescence lifetime microscopy of NADH. Biomedical Optics Express
4(2): 307–321.

49 Zhao Y, et al. (2011). Genetically encoded fluorescent sensors for intracellular
NADH detection. Cell Metabolism 14(4): 555–566.

50 Hung YP, Albeck JG, Tantama M, and Yellen G (2011). Imaging cytosolic
NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell
Metabolism 14(4): 545–554.

51 Shuttleworth CW (2010). Use of NAD(P)H and flavoprotein autofluorescence
transients to probe neuron and astrocyte responses to synaptic activation. Neuro-
chemistry International 56(3): 379–386.

52 San Martin A, et al. (2013). A genetically encoded FRET lactate sensor and its use to
detect the Warburg effect in single cancer cells. PLoS One 8(2): e57712.

53 San Martin A, et al. (2014). Imaging mitochondrial flux in single cells with a FRET
sensor for pyruvate. PLoS One 9(1): e85780.

54 Sotelo-Hitschfeld T, et al. (2015). Channel-mediated lactate release by K+-stimulated
astrocytes. Journal of Neuroscience 35(10): 4168–4178.

55 Pellerin L and Magistretti PJ (2012). Sweet sixteen for ANLS. Journal of Cerebral
Blood Flow and Metabolism 32(7): 1152–1166.

56 Barros LF (2013). Metabolic signaling by lactate in the brain. Trends in Neuro-
sciences 36(7): 396–404.

57 Finikova OS, et al. (2008). Oxygen microscopy by two-photon-excited phosphores-
cence. Chemphyschem 9(12): 1673–1679.

58 Rumsey WL, Vanderkooi JM, and Wilson DF (1988). Imaging of phosphores-
cence: a novel method for measuring oxygen distribution in perfused tissue. Science
241(4873): 1649–1651.

59 Vanderkooi JM, Maniara G, Green TJ, and Wilson DF (1987). An optical method for
measurement of dioxygen concentration based upon quenching of phosphorescence.
Journal of Biological Chemistry 262(12): 5476–5482.

60 Sakadzic S, et al. (2010). Two-photon high-resolution measurement of partial pres-
sure of oxygen in cerebral vasculature and tissue. Nature Methods 7(9): 755–759.

61 Devor A, et al. (2011). “Overshoot” of O(2) is required to maintain baseline tis-
sue oxygenation at locations distal to blood vessels. Journal of Neuroscience 31(38):
13676–13681.

62 Devor A, et al. (2012). Functional imaging of cerebral oxygenation with intrinsic
optical contrast and phosphorescent O2 sensors. Optical imaging of cortical circuit
dynamics Neuromethods, ed Springer), in press.

63 Lecoq J, et al. (2011). Simultaneous two-photon imaging of oxygen and blood flow
in deep cerebral vessels. Nature Medicine 17, 893–898.

64 Sakadzic S, et al. (2014). Large arteriolar component of oxygen delivery implies a
safe margin of oxygen supply to cerebral tissue. Nature Communications 5: 5734.

65 Parpaleix A, Goulam Houssen Y, and Charpak S (2013). Imaging local neuronal
activity by monitoring PO(2) transients in capillaries. Nature Medicine 19(2):
241–246.

66 Gagnon L, et al. (2015). Quantifying the Microvascular Origin of BOLD-fMRI from
First Principles with Two-Photon Microscopy and an Oxygen-Sensitive Nanoprobe.
Journal of Neuroscience 35(8): 3663–3675.



�

� �

�

18 Tools for high-resolution in vivo imaging of cellular and molecular mechanisms 319

67 Devor A, et al. (2011). “Overshoot” of O2 is required to maintain baseline tissue
oxygenation at locations distal to blood vessels. Journal of Neuroscience 31(38):
13676–13681.

68 Sakadzic S, et al. (2009). Simultaneous imaging of cerebral partial pressure of oxy-
gen and blood flow during functional activation and cortical spreading depression.
Applied Optics 48(10): D169–177.
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19.1 Introduction: spreading depression and migraine

Spreading depression (SD) is a wave of near-complete neuronal and glial depolariza-
tion that slowly propagates in nervous tissue at a speed of ≈ 3mm/min [1–5]. The loss
of transmembrane ion gradients (i.e., K+ efflux, Na+ influx), and all spontaneous or
evoked synaptic activity and action potentials (i.e., electrocorticogram depression), is
accompanied by unregulated release of countless neurotransmitters, neuromodulators
and other chemicals [5–7], massive Ca2+ influx, cell swelling, and dendritic beading [8,
9], all of which can last up to aminute ormore. As a consequence, SD induces severe and
long-lasting (minutes to hours) local metabolic and hemodynamic changes [10–12].
Once SD is triggered by a sufficiently intense depolarizing event, extracellular K+

rapidly rises from ≈ 3mM to > 30mM, which then diffuses out to adjacent cells to trig-
ger the same depolarization cycle [5, 13]. In this manner, SD propagates in brain tissue
by way of contiguity. The depolarization also depends critically on glutamate release
[14–16]. In order for SD to develop and propagate, high neuronal density and low extra-
cellular volume fraction are required. Because of this, SD is limited to the gray matter
structures, and never propagates far into the white matter [5, 17]. Indeed, SD propa-
gation can be lamina-specific [18, 19], and inversely correlates with the cortical myelin
content [20].
Different regions of the cortex are differentially susceptible to SD [3, 17, 21, 22],

suggesting that cytoarchitecture or local receptor expression can modulate this
self-propagating regenerative process [23, 24]. SD is an evolutionarily conserved
property of central nervous systems of all animals studied to date, from insects to
human [25–29]. Amongmammals, lissencephalic species appear to bemore susceptible
to develop and sustain SD than gyrencephalic species [30–35], though little objective
comparison has been done.
Spreading depression is thought to be the physiological substrate of themigraine aura.

Migraine is classified as being with or without aura, based on the presence of transient
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neurological signs or symptoms (e.g., visual, sensory,motor, or speech disturbances) that
develop in up to one-third of patients prior to headache onset, and last 5–60 minutes
[36]. Since the discovery of SD by Leão, the similarities between the electrophysiological
properties of SD and the symptomatology of aura have suggested that SD is the elec-
trophysiological event underlying migraine aura, implicating a role for SD in migraine
pathogenesis [2, 5, 36–38]. Today, an overwhelming amount of evidence supports this
notion, including:

• the congruence of cerebrovascular changes during migraine with aura and during SD
[39, 40];

• similarities between the direction of modulation of migraine and of SD by the same
genetic, hormonal and pharmacological factors; and

• probable common triggers for migraine and SD [37].

A large body of data also indicates that SD can activate inflammatory and nociceptive
pathways and trigger headache [41–45]. It remains to be seen whether SD also triggers
migraine without a “perceived” aura, at least in a subset of patients [46]. Also, “gold stan-
dard” electrophysiological evidence of SD in migraine is still elusive, mainly because of
ethical constraints on intracranial recordings. However, it has been conclusively demon-
strated, using such recordings, that SD occurs in brain injury states [47].
Over the past decade, SD attracted considerable attention for its translational rele-

vance. Experimental SDmodels have been used to examine basicmigrainemechanisms,
test genetic and hormonal modulators, and screen physiological and pharmacological
interventions that suppress SD. Here, we provide a critical overview of such models,
with their strengths and weaknesses, to better appreciate study quality and interpret the
data, and with recommendations to improve intra- and inter-laboratory reproducibility
to facilitate future meta-analyses.

19.2 In vivo and in vitro models of SD susceptibility

The comprehensive investigation of a disease requires both whole-system and reduc-
tionist models; the former increase the likelihood of disease-relevance, while the latter
are better suited to determining mechanisms. In vivo and in vitro SD models provide
complementary approaches to this basic mechanism of migraine.
CSD was first discovered in an in vivo preparation in rabbit [3]. For over 70 years of

SD research, work inwhole animal preparations has been the predominant technique. In
vivo models can be challenging and time-consuming, due to microsurgical preparation
and maintenance of stable systemic physiological conditions under anesthesia. Never-
theless, they are essential in preclinical therapeutic testing. In vivomodels have been, for
the most part, limited to cerebral cortex, because of ease of access. Most studies have
been in rodents, but a wide variety of species, from locust to pigeon, catfish, cat, and
monkey have been used [25, 25–27, 29, 48].
There is a fair amount of interspecies variability in SD susceptibility. Although species

differences in SD susceptibility and their determinants have not been systematically
studied, in general, the larger the brain, the lower the SD susceptibility (e.g., mouse
vs. rat), and gyrencephalic species (e.g., cats, swine) are less susceptible to SD than
lissencephalic species (e.g., rodents). Gyrencephalic models might simulate SD in
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human brain better, but studies from lissencephalic species have successfully recapitu-
lated the clinical phenomenology, and have been used to dissect pathophysiology and
screen for migraine therapeutics.
The key advantage of in vivo models is that they examine SD in situ, in a networked,

perfused brain. Any brain activity necessarily involves vascular activation, but SD stands
out, compared with normal activity and even extreme activity like seizures, in its per-
turbation of the vasculature. Leão first observed that the vascular concomitants of SD
were likely to “condition” the wave [49], and much subsequent experimental evidence
has borne this out [10–12, 50–53]. Though perfused whole brain in vitro preparations
exist [54], and the basic mechanisms of vascular activation have been examined in brain
slices [55, 56], it is clear that only whole-animal preparations can capture the whole
ensemble of SD-associated neurovascular phenotypes.

In vitro models also have a long history in SD research. Arguably, the first “in vitro”
model was Bernice Grafstein’s use of a disconnected slab of cat cortex for her seminal
work on the role of potassium in SD propagation [57]. Though dissimilar to most later
techniques, in that it used a whole decerebrate animal, the experiment itself was con-
ducted on a 1.0 × 0.5 cm piece of tissue that had been disconnected from surrounding
tissue (except for vascular connections to preserve viability).The next in vitro technique
was the isolated retina. Though the retina, unlike the conventional slice, is a complete
biological circuit, its characteristics are very similar to those of brain slices. In contrast to
the human retina, the chick retina is avascular, and its size and thickness are comparable
to brain slices.
In the late 1950s and early 1960s, first toad, and then chick retina, were found to sup-

port SD [58, 59]. These were the first SD recording techniques that allowed systematic
analysis of the optical changes in tissue generated by the wave; SD in retina generates
a concentric series of changes in reflectance as it propagates through the retina. These
changes are now typically referred to as optical intrinsic signal (see below). The chick
retina was also the first platform on which the pharmacology of CSD could be system-
atically examined [60].
In the late 1970s and 1980s, tissue slice techniques, which had been in place for other

organs since the 1920s, became viable for brain [61]. As mainline neuroscience devel-
oped slice preparations, these were adopted as well by CSD researchers. Like retina,
brain slice preparations showboth optical and electrophysiological changes duringCSD,
and these have been used to investigate its phenomenology and mechanism with great
precision. The first use of modern brain slice recording techniques in SD was a seminal
paper by Snow, Taylor, and Dudek in 1983 [62], using both optical imaging and single
cell electrophysiology to examine SD.
Thekey advantages of the brain slice over awhole-animal preparation relate to control.

Variables such as anesthesia, temperature, hydration, and blood pressure are eliminated,
and near complete control of temperature, oxygenation, pH, ionic, and pharmacological
environment can be obtained. Access to cellular resolution imaging and electrophysiol-
ogy is relatively easy in a slice and, due to environmental control and the limited nature of
the network sampled, higher quality electrophysiological recordings can be performed
in a slice than in vivo.
Another advantage of slice preparations is that they can be used to sample parts of the

nervous system inaccessible (at least for now) to in vivo techniques, or to examine char-
acteristics that conventional electrode recordings would not allow. For example, slice
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techniques have been used to examine SD propagation and its effects on synaptic trans-
mission in the amygdala [63]. Slices from brainstem have been used to test hypotheses
regarding the possible role of SD in sudden infant death, and sudden death in epilepsy
[64–67].
Finally, brain slice techniques can be used to perform basic investigation of human

tissue in a manner that would be unethical in situ. Human cortical tissue is routinely
removed during epilepsy surgery, and survives well in vitro, allowing induction of SD
and examination of its effects on network excitability [68, 69]. A caveat is that the tissue
is from patients with significant baseline disruptions in cortical excitability. Neverthe-
less, the technique offers access to cellular resolution recording in humans that would
otherwise not be available.
Of course, a brain slice is not a networked nervous system; it is literally just a slice of it.

Undermost circumstances (the thalamocortical slice is an exception), only local circuits
(e.g., within cortex, hippocampus, or brainstem, but not between them) can be sampled.
For whole-nervous-system diseases like headache, this is a major limitation. However
for pursuit of cellular mechanisms, the brain slice has few rivals in its resolving power.

19.3 Experimental preparations

19.3.1 In vivo preparations

In vivo SD experiments can take a variety of approaches. Most use anesthesia, although
awake preparations have also been used [70–75]. An emphasis on awake techniques in
contemporary neuroscience will likely lead to more awake SD preparations in the near
future. This makes sense, because migraine aura can only be “perceived” by the awake
brain.
For anesthetized technique, a variety of anesthetics can be used, and each has their

own considerations (see below). Typically, the animal is restrained in a stereotaxic frame,
with comprehensive physiological monitoring (heart rate, respiratory rate, blood pres-
sure, blood gases or capnography), because these physiological variables can affect SD
susceptibility. The skull is exposed, and in the simplest preparations, electrodes (active
and ground at a minimum) are placed through burr holes (Figure 19.1).
Larger craniotomies can bemade to accommodate either more or different electrodes

or probes, topical perfusion of drugs, or to allow for imaging [51, 76]. Finally, thin skull
preparations give a non-invasive approach to image underlying cortex [50, 51]. Either
an additional burr hole or a craniotomy can be used to induce SD, either focally or by
exposure of a larger region (e.g., a cortical window made from a craniotomy) to the
stimulus (Figure 19.2).
For awake preparations either the animal is woken during surgery, or an initial surgery

allows placement of recording equipment – typically either implanted electrodes or
closed cortical windows for imaging.

19.3.2 In vitro preparations

Brain slice techniques [61] involve the sacrifice of the animal under deep anesthesia,
followed by removal of the brain into a cutting solution which is chilled, and whose
ionic composition reduces the risk of excitotoxic damage. The slice is glued to a stage,
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Figure 19.1 Experimental preparations and detection of CSD. (a) In vivo and in vitro approaches are
both available to detect CSD, can take advantage of similar methods, and are complementary. In vivo
preparations use either burr holes, craniotomies, or thin skull preparations, in wild type or transgenic
animals. In vitro preparations use brain slices from diverse brain regions. Electrophysiology, wide field
optical techniques, or microscopy techniques can all be used to detect CSD. Schematics show
detection with electrodes; optical detection with CCD cameras, with light delivery by LED for optical
intrinsic signal imaging and by laser for laser speckle contrast imaging; and microscopy. Not shown are
magnetic resonance imaging and magnetoencephalographic techniques, which can also be used (see
text). (b) Simultaneous detection of CSD, with potassium sensitive electrode and field potential. (c)
Detection of a single neuron’s depolarization during CSD, with whole cell recording. (d) Imaging and
field potential recording of CSD using two photon microscopy. Genetically encoded fluorophores for
neuronal calcium (GCaMP5, driven by Synapsin1 promoter) and extracellular glutamate (iGluSnFR)
both show propagation of wave in vivo. (e) Detection and pharmacological manipulation of CSD, with
optical intrinsic signal imaging and field potential. Left panel shows a CSD prior to treatment with the
NMDA receptor antagonist MK-801; right panel shows a smaller “partial” CSD after. Traces show OIS
and field potential response over the whole experiment. There is a reduction in frequency of CSD with
MK-801. However, note that imaging captures a CSD that is not detected by electrode, because it does
not propagate far enough to reach the electrode (“Partial CSD”). Abbreviations: CCD – charge coupled
device camera; LFP – local field potential; K+ – potassium sensitive electrode; OIS – optical intrinsic
signal; LSCI – laser speckle contrast imaging; CBV – cerebral blood volume; CBF – cerebral blood flow;
2PM – two-photon microscopy; Ca2+ : calcium imaging.



�

� �

�

326 Neurobiological Basis of Migraine

(a)

Induction methods
Electrical (tonic, phasic), Chemical (Potassium chloride, Glutamate, Glutamate Agonists, Ouabain), Mechanical (pinprick, TBI),

Metabolic (O2/Glucose deprivation), Vascular (stroke, microembolism), Optogenetic

I I

I) focal:
burr hole,microfluidics

II) diffuse:
bath perfusion, systemic

II

in vivo in vitro

II

(b)

Electrical Induction (tonic) Chemical Induction (KCI),
LFP detection, and Treatment

Mechanical Induction (TBI)
100 1600 μc

KCI

Control

2 mm

0 s (impact)
16 s
34 s

SPD
80 mg/kg

400 s
–4 mV

(c) (d)

Figure 19.2 Induction of CSD. (a) As with detection of CSD, similar induction techniques can be used
in vivo and in vitro. A variety of induction methods are listed. In vivo schematic shows (I) focal induction
with optogenetics (laser diode) and with delivery of concentrated KCl, either through tubing or a
cotton ball to a burr hole; (II) diffuse delivery of threshold concentrations of KCl (or other inducing
substance) over a wider cranial window. In vitro schematic shows similarly focal and diffuse
approaches, with microfluidics or more conventional tubing for focal induction with KCl, and bath
perfusion for a more global approach. (b) CSD thresholding with tonic electrical stimulation.
Increasing intensity square current pulses are delivered until CSD is induced (seen on field potential
trace). (c) Continuous induction and CSD counting with tonic delivery of KCl through a burr hole.
Upper trace shows CSD in control conditions; lower trace shows reduced number (and amplitude) of
CSD on treatment with sec-Butylpropylacetamide (SPD), a drug under investigation as a migraine
preventive. (d) Mechanical induction of CSD with controlled cortical impact (CCI). Typical mechanical
induction of CSD is with pinprick, but this is a stimulus that is difficult to replicate (see text); CCI is a
more replicable technique. This experiment also highlights the fact that traumatic brain injury (TBI)
causes CSD. TBI is also associated with post-traumatic headache, but little is known about how the
effects of TBI (CSD or other) generate these migraine-like headaches.

which is immersed in cutting solution on a vibratome, and the brain is then sliced, most
commonly coronally, although horizontal and angulated slices (e.g., thalamocortical
slices) are also used.The desired region of brain (e.g., somatosensory cortex, hippocam-
pus) is isolated, either by pre-cutting the brain to expose selected regions, or by the slic-
ing itself. Brain slices range from 150–450 μm in thickness; thin slices are better able to
absorb oxygen and nutrients from the bath; thick slices preservemore local connections.
Once the desired slices are cut, they are moved to a recording solution (oxygenated,

pH-adjusted, osmolarity adjusted artificial cerebrospinal fluid, including glucose) that is
warmed either to room or body temperature, and is allowed to rest prior to experimen-
tation. For the experiment, the slice is placed in a recording chamber – usually under
a microscope – on a rig that includes both camera and electrophysiological recording
equipment (Figure 19.2). Recording chambers come in many varieties, but are of two
types: submerged chambers completely immerse the slice in recording solution [77],
while interface chambers immerse the slice up to the top surface, leaving the top surface
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exposed to humidified oxygen [62, 63, 78–83]. Submerged chambers offer the most
control over pharmacology, while interface chambers offer greater exposure to oxygen
and can result in “healthier” slices, with behavior more resembling in vivo preparations.
Induction of SD can either be focal [84–86] or can involve whole-slice exposure to the
stimulus [76, 78]. Recording is with electrophysiological techniques (extracellular or
intracellular), optical techniques, or both.

19.4 Methods to trigger SD

Experimentally-evoked SD requires intense depolarizing stimuli to ignite (Figure
19.2). This fact highlights one of the greatest remaining mysteries in the study of
migraine – that most SD models involve stimuli that are difficult to imagine in an
awake behaving human being. An increase of extracellular K+ above a critical threshold
concentration (12mM) [87, 88] in a minimum critical volume of brain tissue (ranging
from 0.03–0.06mm3 in mouse cortex in vitro to 1mm3 in rat cortex in vivo) is required
[85, 89]. This can be achieved by:

a) direct electrical stimulation;
b) topical application of depolarizing substances, such as high concentrations of K+,

excitatory amino acids, Ca2+ channel openers, and Na+/K+-ATPase inhibitors;
c) mechanical distortion of tissue, with or without penetrating injury; and
d) hypoxia or ischemia, such as microembolization or topical endothelin-1 application

[5, 78, 90–92].

Each approach has its strengths and weaknesses, and different techniques may have
different pharmacological profiles [4, 93]. For example, traumatic SD (i.e., needle prick)
is reportedly prevented by Na+ channel blockade, but topical K+-induced SD is not [94].
Moreover, there is a distinct pharmacological difference between focal and whole-bath
induction of SD in brain slices: focally induced SD is readily inhibited by calciumchannel
and NMDA receptor blockade, while bath-induced SD is not [4]. Therefore, a compre-
hensive investigation of interventions to suppress SD should, ideally, include more than
one form of SD induction to be conclusive.
Electrical stimulation is one of the most direct methods to assess SD susceptibility in

vivo [88, 93, 95–100], as well as in vitro [101]. Stimulation can be delivered as escalating
steps of single square wave pulses at an interval of every 4–5min until an SD is evoked
(Figure 19.2). The product of stimulus current (mA) and duration (ms) yields the total
threshold charge required to trigger SD, expressed inmicroCoulombs. An alternative to
single square wave pulses is high-frequency train stimulation with escalating intensity
and/or duration.This mode of SD induction may require action potentials and synaptic
transmission to build the depolarization required for SD induction and, therefore, may
show a different pharmacological sensitivity profile than single square pulses. On the
other hand, large tonic current discharge heats the tissue and electrolyzes water, causing
thermal and mechanical effects that need to be taken into account.
It is interesting to note that thresholds obtained with tonic current are approximately

an order of magnitude lower than those obtained with tetanic stimulation [95, 97–100].
This may be due to the larger thermal and mechanical effects of tonic stimulation,
and the activation of inhibitory networks by tetanic stimulation. Although electrical
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stimulation threshold is a gold standard in SD susceptibility models, it is also sensitive
to many potential confounders, such as stimulus electrode properties (e.g., unipolar
or bipolar, size, shape and tip separation, insulation, and duration of use) and the
physical conditions of contact with the tissue that determine the stimulus geometry
(e.g., presence of dura, bleeding, conductive solutions), increasing the coefficient of
variation of the charge threshold [93].
As a corollary to electrical stimulation, intense neuronal activity such as during

seizures, or significant afferent pathway stimulation, can also trigger SD. This was
first noted by Leão when he induced contralateral SD by electrically stimulating the
ipsilateral hemisphere, presumably inducing SD by activation of transcallosal fibers
[3]. Blockade of potassium channels with 4-aminopyridine or GABAergic activity
with bicuculline is commonly used to generate epileptiform activity; these stimuli
also induce SD [102, 103]. In an audiogenic epilepsy model, auditory stimulation
evokes both seizures and SD; audiogenically driven SD appears to be involved in the
subsequent development of seizures [104–107]. Seizure activity also appears to be able
to induce SD under certain conditions; seizures provoked by cortical application of
4-aminopyridine in animals with mutations associated with sudden death in epilepsy
(SUDEP) lead to a slow, negative DC potential shift, reminiscent of SD in the dorsal
medulla [64].
Chemically, topical application of concentrated KCl is most commonly used to eval-

uate SD susceptibility (Figure 19.2). In one model, a suprathreshold concentration of
KCl (e.g., 300mM for mice and 1M for rats, or a fixed weight KCl crystal) is applied
continuously onto the cortex to trigger repetitive SDs, the frequency of which shows
good correlation with the electrical threshold [93]. Alternatively, escalating concentra-
tions of topical or microdialysate KCl can be administered until an SD is triggered at a
threshold concentration [76]. Lastly, escalating moles or volumes of a fixed concentra-
tion of KCl solution can be administered using iontophoresis or pneumatic injection,
via a micropipette, until an SD is triggered [51, 86, 97]. Other depolarizing neurotrans-
mitter receptor agonists have also been used to evoke SD, such as glutamate [15] or
N-methyl-D-aspartate [70].
It is also important to consider the size of a stimulus – is it focal, or does it cover a wide

area?This is the case for both in vivo and in vitro preparations.Thresholding can be done
with both a focal approach [50, 51, 96–98] or a more diffuse approach, in which a whole
craniotomy is bathed in elevated K+ solution [76]. The same is true in brain slices: both
focal [86] and global [78, 83] thresholding can be used (Figure 19.2). Once again, the
techniques are not equivalent: in brain slices, the pharmacology of the SD response is
different for focal vs. global induction. In particular, SD propagation can be blockedwith
calcium channel and NMDA receptor blockade for focal induction, but this is not the
case for global induction [4]. Given the generally focal onset and concentric propagation
of migraine aura, it is likely that focal induction is more relevant, while global induction
may be most relevant for ischemic or brain injury models.
Mechanical stimuli have beenused to assess susceptibility toCSD [94].However, espe-

cially with needle prick, it is difficult to determine a threshold by escalating mechanical
stimulus intensity.The needle size, angle, speed, depth, and strength of insertion are not
easily standardized, reproducibility might vary largely between operators and settings,
and repeated threshold testing is problematic because of cumulative injury. We do not
typically use these methods, because of these factors.Themechanism of mechanical SD
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induction is unknown, but studies suggest a role for voltage-gated Na+, AMPA subtype
of glutamate receptors, and GABA receptor activity in the perfusion changes accompa-
nying the wave [94, 108].
It is worth noting that mechanical stimulation can be relatively precisely controlled,

the best example of this being in controlled cortical impact (CCI) traumatic brain injury.
ModernCCI devices [109] can be programmed to deliver very replicable stimuli through
the use of voice-coil-controlled pistons. Given the induction of SD with pinprick, it is
likely not surprising that CCI reliably generates SD [110] (Figure 19.2). Future attempts
at mechanical induction of SD might benefit from either CCI models or techniques
based upon them.
Ischemic or hypoxic events can trigger SD. The most obvious example is the gen-

eration of peri-infarct depolarizations by various stroke models [111, 112]. However,
smaller ischemic injuries – for example, via treatment with the vasoconstrictor
endothelin-1, or delivery of microemboli – can also trigger SD [90, 91, 113–115], and
may be helpful for our understanding of the pathogenesis of aura and its comorbidity
with ischemic stroke.
Persistent ischemia can trigger recurrent SDs via supply-demandmismatch transients

[111], which can be suppressed by migraine prophylactic drugs [116]. The primary
mechanism of SD onset in the hypoxic/ischemic brain is likely anoxic depolariza-
tion, due to failure of Na+/K+ ATPase. This can be mimicked by Na+/K+ ATPase
inhibitors (e.g., ouabain) to trigger SD [78, 117, 118]. Overall, the translational value of
hypoxic/ischemic SD induction in migraine is not clear. Speculatively, small reversible
areas of ischemia, perhaps occasioned by microemboli, could lead to ignition of CSD
in migraine without causing lasting damage [91]. However, thus far, studies in human
examining potential causes of microemboli, like patent foramen ovale [119], and trials
of patent foramen ovale closure [120], do not support this hypothesis.

19.5 Methods to detect CSD

Because SD is associatedwith profound ionic, hemodynamic,metabolic and cell volume
changes, there are numerous methods to detect SD (Figure 19.1). The gold standard is
the detection of a large (15–20mV when recorded by intracortical glass micropipettes),
extracellular direct coupled (DC; frequency < 0.05Hz) slow potential shift lasting up to
a minute, with concurrent and prolonged (several minutes) suppression of the electro-
corticographic activity (ECoG). The DC potential shift is observed both in vivo and in
brain slices [5]. Single unit recordings often detect a brief neuronal spike burst prior to
the DC shift [121, 122]. An alternative way to detect the large field potential changes
of SD is the use of fluorescent voltage-sensitive dyes, which can be imaged with either
cameras or microscopes [113, 123]. The massive extracellular ion shifts of SD (i.e., K+

increase, Na+, Ca2+ and pH decrease) can also be measured, either in vivo or in vitro,
using ion-selective electrodes [12–14, 25, 118].
SD causes large changes in visible light either reflected or transmitted from the cortex.

These changes have been used since Leão to detect the hemodynamic changes associ-
ated with CSD [49] and, indeed, the largest change in optical signal for SD in vivo is due
to changes in perfusion [10]. However, other mechanisms also cause changes in optical
signal. SD is associated with significant swelling of neuronal cell bodies and beading
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of dendritic processes. These changes alter light scattering properties and thus overall
reflectance, and are the major component of optical signal in brain slice recordings
[124, 125]. Finally, SD causes changes in the intrinsic fluorescence of the brain, which is
due to fluorescent components of oxidative metabolism (NADH and flavoproteins) that
undergo reduction during the SD wave [9, 126, 127].
For in vivo preparations, the reflectance signal is dominated by hemoglobin, which

is a major absorber of light at visible wavelengths. Increases in blood volume are
observed as a darkening of the tissue, while decreases show brightening [50, 51].
Typically, imaging is done with the reflected light filtered at one of the isosbestic
wavelengths of hemoglobin (e.g., green 530 nm light). At these wavelengths, absorption
from oxy- and deoxy-hemoglobin is equal, so the signal is an accurate readout of blood
volume, uncontaminated by oximetric changes. On the other hand, changes in oxy-
and deoxy-hemoglobin can also be measured, by collecting light at wavelengths where
the two moieties differ in absorption [12, 128].
Other techniques deployed in vivo measure blood flow (as opposed to blood volume

and oxygenation, above) during SD. Laser Doppler flowmetry measures the changes in
laser light scatter at a point source [129], and laser speckle flowmetry extends the tech-
nique to two dimensions, allowing images of blood flow to be generated [50].
To all the above techniques, SD evokes a complexmultiphasic hemodynamic response

in the tissue. The prototypical response has four distinct phases that vary depending
on the species, systemic physiology and detection methods [10, 12, 50, 51, 53, 93, 130,
131].The hemodynamic response and accompanying changes in tissue oxygenation and
metabolic state can be used to detect SD occurrence under normal systemic physiolog-
ical conditions.
Two-photon microscopy allows the imaging of fluorescence from a very thin plane of

tissue, up to hundreds of micrometers deep into tissue, at subcellular spatial resolution.
It can be deployed in vitro as well as in vivo, but its primary advantage is recording cel-
lular level activity in the living (even awake) brain at depth. Two-photon imaging can
be used to record calcium and glutamate activity during SD [9, 14, 132], and the cur-
rent generation of fluorophores are typically delivered in a genetically-encodedmanner,
allowing specific cell types (e.g., neurons vs. astrocytes) to be imaged [14].
Vessel-impermeant dyes (typically fluorescein or rhodamine dextran) can be used to

image vascular diameter and blood flow [132]. The membrane swelling and dendritic
beading that occur during the SD wave can be directly imaged from fluorescent cells
[9, 133]. Finally, the intrinsic fluorescence of the electron carriers NADH and NADPH
can be imaged with two-photon preparations, though these (and other) signals can be
contaminated by the very large hemodynamic transients of SD [9, 126].
Diffusion-weighted (DWI) and magnetization transfer MRI have been used to

study the spatiotemporal properties of SD in vivo, mostly in gyrencephalic brains [30,
134–136], and recently in rodents with the advent of high-field MRI [114, 115]. The
transmembrane ion and water shifts during SD are similar to those during anoxic
depolarization; therefore, diffusion-weighted MRI changes during SD resemble acute
ischemic stroke. However, because SD is a propagating wave of depolarization that
lasts only about a minute in any given region, DWI changes are less dramatic than
during stroke. Combined with the spatial and temporal averaging of relatively slow
image acquisition times, SD can be difficult to detect on MRI. However, MRI has
the distinct advantages of being non-invasive and three-dimensional, compared with
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electrophysiological and optical methods. Moreover, MRI has the potential to be
directly translatable between animal and human work.
High-field blood oxygenation level-dependent (BOLD) or spin-lock fMRI have been

used to image neurovascular coupling during SD in rodents [137–139]. In humans, fMRI
has demonstrated BOLD signal changes consistent with SD, which is time-locked to the
onset and propagation of the visual percept of aura [39, 40].
Magnetoencephalography (MEG) can detect magnetic field shifts during SD in

lissencephalic rabbit [31], gyrencephalic swine [140], and humans [32, 141, 142].
However, availability and low spatial resolution have thus far restricted its applications.

19.6 SD susceptibility attributes

The term SD susceptibility is defined as the ease with which SD can be initiated and
its propagation sustained in a given brain tissue. The stimulus intensity threshold to
evoke SD is among the most relevant attributes of SD susceptibility. Depending on the
stimulus modality, threshold can be measured in, for example, electrical charge inten-
sity, volume or concentration of a depolarizing agent, or mechanical pressure. Electrical
charge intensity to evoke SD correlates well with the threshold concentration of topical
KCl [93, 95, 97], and inversely with the frequency of SDs upon continuous topical KCl
stimulation [96].
One caveat for determining SD threshold is propagation failure; when the distance

between stimulation and recording sites is too long, an SD initiated by threshold stim-
ulus may fail to propagate to the recording site and may be undetected, prompting
continued escalation of the stimulus intensity. Hence, longer distance between the stim-
ulation and recording sites might lead to higher perceived SD thresholds, which should
be kept in mind when comparing studies. A solution to this problem is to combine opti-
cal and electrophysiological approaches [50, 97] (Figure 19.1).
An alternative and complementary SD susceptibility attribute has been the frequency

of SDs triggered during continuous topical application of suprathreshold concentra-
tions of depolarizing agents [96, 143]. This attribute is less sensitive to the condition of
the underlying tissue and, thus, yields lower coefficients of variation when compared
with the threshold [93]. It can, however, be confounded by changes in the refractory
period after an SD during which a second SD cannot be triggered, likely determined
by neuronal excitability, Na+/K+ pump activity, and extracellular K+ and glutamate
clearance by glial cells [4], and it can be affected by genetic and systemic physiological
factors.
For example, hypotension prolongs SD duration and thereby the refractory period,

thus lowering SD frequency [144–146]. This does not mean reduced SD susceptibility,
since the cumulative depolarization duration (i.e., the sum of the durations of all SDs
triggered during the test period) may, in fact, stay the same or increase. Hence, when
SD frequency is the endpoint, it is mandatory to make sure the physiological conditions
of study animals are monitored and maintained. Extending the concept further, a tissue
that has a very low threshold for SD, and a long refractory period after the event, might
have fewer SD induced by continuous stimulation than control tissue.
It is clear that the readouts for continuous stimulation and thresholding are quite dif-

ferent, though they both give an index of susceptibility. It is important to distinguish
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whether SD number or threshold are being reported, because they are not necessarily
equivalent.
SD propagation speed is another commonly measured parameter. SD propagation

speed can be calculated using the distance and the latency of SD appearance between
two recording sites, and shows good correlation with the SD threshold and frequency
[93]. Alternatively, it can be measured using imaging, by generating a kymograph (dis-
tance vs. time) plot of the advancing wavefront [51]. The sensitivity, specificity, positive
predictive value and negative predictive value are 67%, 76%, 84% and 56%, respectively,
for propagation speed in predicting the susceptibility to CSD [93].
However, susceptibility and velocity are certainly not identical parameters, and they

do not always correlate. For example, in the casein kinase 1 delta mutant model of
migraine, velocitywas not significantly increased inmutantmice, though both threshold
and number of SD were significantly different [98]. It should be noted that the propa-
gation speed gradually decreases with each successive SD. Hence, it is recommended
to measure the propagation speed of only the first SD, taking care not to accidentally
induce one or more SDs during experimental preparation. Having two recording sites
or imaging also allows the calculation of propagation failure rate, which may also reflect
CSD susceptibility, although the predictive value remains to be studied.
The amplitude and duration of theDC shift do not correlatewell with the susceptibility

to SD [93]. As noted above, systemic physiology can affect SD duration. SD amplitude
is less affected by systemic physiology or other confounders, and is the last SD attribute
that decreases with SD susceptibility (i.e., least sensitive), and is only rarely used as a
primary endpoint [147]. It has been our practice to not include DC potential shifts <
5mV in amplitude in SD frequency calculations, assuming that small amplitudes are not
a result of technical problems, such as poor electrode positioning. However, if imaging
is available, such artifacts can be distinguished from real but small SD events (Figure
19.1). If these small amplitude SDs are to be counted, a concomitant ECoG suppression
must be sought, to differentiate from electrical noise.
Other properties of SD are less commonly studied, but are worthy of further

investigation. The pattern of propagation of SD can be measured if multiple locations
are recorded (either with multiple electrodes, or with imaging). It is known that SD
does not propagate uniformly [22], and tends to avoid certain regions of cortex (e.g.,
retrosplenial cortex) [17, 21], but systematic investigation of SD propagation from
different cortical regions has not yet been performed. There is also evidence that SD
propagates differently in different cortical layers [19, 148], and that different regions
of cortex may be differentially susceptible to the event [123, 149]. With the increasing
use of 2-D and 3-D techniques, it is likely that more information will emerge on these
properties. Meanwhile, it is important, when comparing SD, that induction and record-
ing locations are as identical as possible, to avoid the possible confound of differential
susceptibility.
In summary, SD threshold and frequency are recommended susceptibility attributes

that can be determined in the same animal, and even in the same hemisphere. Other SD
attributes, including propagation speed, duration, and amplitude, are complementary.
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19.7 Recommended quality measures for experimental
models of migraine aura

19.7.1 Anesthesia

Conventional in vivo SD susceptibilitymodels are routinely performed under anesthesia
to ensure standard and stable systemic and electrophysiological parameters and reliable
stimulus delivery.However, anesthesia can directly suppress SD susceptibility [150–158]
and, unfortunately, regimens that are most convenient and best preserve systemic phys-
iology are also the ones that directly suppress SD susceptibility (e.g., inhalational anes-
thetics, ketamine/xylazine). In addition, it is important to choose an anesthetic regimen
that does not interfere with the intervention to be tested. For example, barbiturate anes-
thesia when testing a GABA agonist, and ketamine when testing an NMDA receptor
antagonist, would be less than ideal. Because of potential cardiorespiratory suppressive
effects, systemic physiology should bemonitored and, if needed, mechanical ventilation
should be performed.

19.7.2 Systemic physiology

Arterial blood pressure, blood gas and pH, blood glucose, and body temperature are crit-
ical for in vivo studies of SD, and should be monitored and controlled carefully during
experiments. As mentioned above, hypotension can significantly prolong the SD dura-
tion [145, 146]. Interestingly, hypoxia does not appear to affect SD susceptibility unless it
is severe [159]. The effect of hypercapnia on SD has not been specifically characterized,
but respiratory acidosis may suppress SD susceptibility, as do other causes of acido-
sis [93, 160]. Hypoglycemia prolongs SD duration [144, 161], whereas hyperglycemia is
known to suppress SD susceptibility [144, 162]. Hypothermia has also been shown to
inhibit SD susceptibility [163–165].

19.7.3 Surgical preparation andmaintenance

Inadvertent tissue injury must be minimized during experimental preparation. Cool
saline irrigation during drilling can prevent overheating. Artificial CSF or normal
saline, and mineral oil, should be used to prevent cortical drying during preparation
and maintenance, respectively. Local anesthesia can minimize activation of trigeminal
nociceptive afferents in the scalp or periosteum during cranial surgery, when down-
stream nociceptive effects of SD are going to be studied. Tissue exposure to blood
should be avoided. In rats or larger species, dura should be gently incised, or removed,
to standardize stimulation; in mouse, this step is typically omitted, because mouse dura
is very thin and is permeable to drugs.

19.7.4 Pharmacokinetic factors

As in any in vivo drug testing, therapeutic paradigmsmust take into account the absorp-
tion, bioavailability, distribution, metabolism, and excretion, as well as CNS penetration
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of the drug candidate. It should be kept inmind that acute efficacy of a single dosemay be
different than after chronic treatment for many days, weeks or even months. The ther-
apeutic paradigm should also model the intended mode of clinical treatment, such as
chronic prophylaxis, preemptive prophylaxis, or acute abortive. Lastly, clinical transla-
tion will be greatly facilitated by using a clinically relevant route of administration (e.g.,
oral, intravenous, or subcutaneous rather than topical or intracerebroventricular). In
slice preparations, where drugs are delivered via tubing to the slice chamber, it is impor-
tant to note whether the drug is soluble in aqueous solutions and, at the other extreme,
to what extent it might penetrate or bind to laboratory tubing. For some drugs, a change
to more rigid but impermeable tubing (e.g., Teflon) is necessary to allow proper delivery
and washout of drugs.

19.7.5 Induction and recording considerations

Differential susceptibility to SD in different brain regions or cortical layers is a real
consideration, so both stimulus and recording locations should be maintained as iden-
tical as possible; this includes not only the location, but the depth of stimulation or
recording devices. In the case of brain slices, it is important that the slices come from
the same region (e.g., somatosensory cortex vs. visual or motor cortex), in order that
comparisons be valid. For focal KCl stimulation, it is important to make sure that the
KCl solution does not spread beyond where it is intended, since this can affect both
number of SD elicited, as well as affect electrophysiological readouts (e.g., if KCl solu-
tion reaches a ground electrode). For electrical stimulation, electrode parameters must
be strictly maintained (impedance, tip separation for bipolar electrodes, active contact
area) and, given the currents involved, cleaning biological debris off the electrodes is
also important.

19.8 Future directions

Among the next steps in the development and refinement of models of migraine aura
should be a focus on methods that allow experimentation on unanesthetized animals,
such as electrophysiological recordings in awake freely moving animals using implanted
wireless devices, or habituation to an immobilized state on a stereotaxic frame during
stimulation studies. Genome-wide association studies and next-generation sequenc-
ing may identify novel migraine risk variants [166–169], leading to the development
and characterization of novel genetically modified rodent models for pathophysiologi-
cal investigations, although none of the genetic variants has yet been linked specifically
to migraine aura.
As mentioned above, there is little known about the differential susceptibility and

propagation of SD in different regions of the brain. There is an unmet need for novel
neurobehavioral experimental models (e.g., facial expression, pain and anxiety behav-
ior [170]) to link SD to downstream nociceptive activation and complex behavior pat-
terns related to the postdrome, and to help explain interesting post-SD observations
and resolve controversies [44, 74, 171]. Finally, one of the greatest unanswered ques-
tions in headache is how SD, a massive depolarization, can arise in uninjured brain.The
development of more “naturalistic” models of SD induction is a major priority.
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There is also much insight to be gained by the use of tools from other, related fields of
neuroscience.The use of in vivo cellular resolution techniques (two-photonmicroscopy
[8, 9, 14, 132], in vivo whole cell recording [122]) is in its infancy for SD. Brain slice tech-
niques have been incompletely exploited; for example, there is a robust literature on
combined vascular and neural recording from brain slices [55, 56] that is highly relevant
to SD studies. Brain slice recordings can also help understand the effects of SD on dif-
ferent regions of brain (e.g., brainstem [64] or thalamus and other subcortical regions).
New techniques, such as functional ultrasound, allow both recording [172] and stim-

ulation [173] at depth, and in rodent models the whole brain can be sampled, allowing
for the investigation of network effects of SD. Miniaturized microscopes and remote
telemetry [174, 175] can now be deployed in awake behaving animals, expanding the
possibilities for recording of spontaneous or “naturalistically” induced SD. Finally, the
revolution in genetically encoded indicators, optogenetics, chemogenetics, tissue clear-
ing, and other tools for functional circuit mapping, has barely reached the SD field
[176–180]. There is much to look forward to.
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Human models of migraine
Jakob Møller Hansen and Messoud Ashina

Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Faculty of Health and Medical Sciences,
University of Copenhagen, Copenhagen, Denmark

20.1 Introduction

Over the past decades, there has been tremendous progress in the understanding of
migraine pathophysiology and treatment, but much remains to be learned concerning
migraine-initiating mechanisms. Because migraine attacks are fully reversible, and
amendable to therapy, the headache- or migraine-provoking property of endogenous
signaling molecules can be tested in a human model. If a naturally occurring substance
can provoke migraine in humans, then it is possible, although not certain, that blocking
specific pathways will be effective in the treatment of migraine. Iversen et al. (1989)
validated and introduced the experimental model of glyceryl trinitrate (GTN)-induced
headache in healthy volunteers. Since then, several studies have demonstrated that
humanmodels offer unique possibilities to study migraine pathophysiology and explore
the mechanisms of action of existing and future anti-migraine drugs.
The use of the human migraine model has been extensively reviewed (Ashina et al.,

2013; Arulmani et al., 2006). This chapter will focus on the most promising molecu-
lar targets so far, review and discuss the use of provocation experiments to understand
functional consequences of migraine genes, and finally suggest where future studies are
needed.

20.2 The first steps: GTN and the NO-hypothesis

Since the middle of the 19th century, when nitrates were introduced for the acute
treatment of angina (Murrell, 1879), and factory workers were exposed accidentally
to nitrates (McGuinness and Harris, 1961), it has been known that that GTN induces
headache (Hering, 1849; Tfelt-Hansen and Tfelt-Hansen, 2009; Hughes and Dake,
1888). GTN is a donor of nitric oxide (NO). The relation between GTN-headache and
migraine propensity was explored by Sicuteri and colleagues, who reported a striking
difference in the sensitivity to sublingual GTN between healthy controls and migraine
patients (Sicuteri et al., 1987).

Neurobiological Basis of Migraine, First Edition. Edited by Turgay Dalkara and Michael A. Moskowitz.
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Figure 20.1 The human provocation model. In the main version of this model, patients with migraine
are randomly allocated to receive intravenous infusion (25 min) of “target substance” or placebo
(isotonic saline) in a double-blind, crossover design. Headache intensity is recorded on a verbal rating
scale from 0 to 10 (0 – no headache; 1 – a very mild headache (including a feeling of pressing or
throbbing); 5 – moderate headache; 10 – worst imaginable headache). At predefined intervals,
hemodynamic variables are recorded (mean velocity of blood flow in the middle cerebral artery by
transcranial Doppler with hand-held 2 MHz probes; diameter of the frontal branch of the superficial
temporal artery by a high-resolution ultrasonography unit). With the addition of other imaging
modalities, such as high-field MRI, even more detailed information can be collected on the vascular
response of the cephalic circulation. The subjects are asked to complete a headache diary every hour
until 10 hours after discharge. The diary includes headache characteristics and accompanying
symptoms necessary to classify the headache according to ICHD-III. Heart rate and blood pressure are
measured continuously throughout the study for safety. Olesen et al. (2009). Reproduced with
permission of SAGE.

Using intravenous GTN, Olesen’s migraine research group from Copenhagen inves-
tigated and validated the model by providing important details, such as headache time
profile, pain characteristics and accompanying symptoms (Ashina et al., 2013).The typ-
ical provocation experiment would be set up as a double-blind, crossover study with
patients randomly allocated to receive intravenous infusion of the target substance or
placebo (isotonic saline) (Figure 20.1).
It was thus demonstrated that patientswithmigrainewere hypersensitive toNO– that

is, migraineurs developed significantly stronger headache after GTN infusion than both
patients with tension-type headache and healthy subjects (Olesen et al., 1993). When
tested in patientswithmigrainewithout aura (MO) (Thomsen et al., 1994),most patients
reported an immediate headache duringGTN infusion but, importantly, 80% of patients
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developed a delayed headache several hours after the infusion stopped, fulfilling crite-
ria of the International Classification of Headache Disorders for a migraine attack (The
International Classification of Headache Disorders, 2013). Other routes of GTN admin-
istration (e.g., sublingual) can be used, but results are more variable, and the rate of
migraine induction is reduced (Sances et al., 2004) – see also table 20.1.
Collectively, these studies clearly suggest that GTN may trigger a genuine migraine

attack in migraine sufferers, and that NO plays a crucial role in migraine pathogenesis.
The success of themodel led to increased focus on possible down-streammediators of

the migraine-inducing capabilities of NO. NO activates intracellular soluble guanylate
cyclase and, thus, catalyzes the formation of cyclic guanosine monophosphate (cGMP)
(Garthwaite et al., 1988). Sildenafil (Viagra®) is a highly selective inhibitor of phosphodi-
esterase 5 (PDE 5), themajor enzyme responsible for the breakdownof cGMP. Inhibition
of PDE 5 results in accumulation of cGMP, and the effect of sildenafil could, therefore,
mimic the effects of NO, such as activation of soluble guanylate cyclase and increased
cGMP formation.
This hypothesis was tested in the human experimental model, where 12 patients

with migraine without aura were administered sildenafil 100mg or placebo in a
double-blind, placebo-controlled crossover study (Kruuse et al., 2003). Sildenafil
induced delayed migraine-like attack in ten out of 12 patients, compared with two out
of 12 after placebo, an effect comparable to that of GTN.Thus, it appears that sildenafil
triggered experimental migraine is induced via a cGMP-dependent mechanism – see
also table 20.1.
Interestingly, blood flow velocity in the middle cerebral artery (MCA), regional cere-

bral blood flow in the territory of the middle cerebral artery, and the diameters of radial
and temporal artery, were unaffected by sildenafil (Kruuse et al., 2003).
Arterial dilatation may cause headache (Nichols et al., 1990), and GTN infu-

sion does cause a more pronounced dilation of extra- and intracerebral arteries in
migraine patients than in controls (Thomsen et al., 1993). The onset of the immediate
GTN-induced headache in healthy volunteers is correlated to dilation of the MCA
(Tegeler et al., 1996), but vasodilatation outlasts the headache (Tegeler et al., 1996;
Iversen et al., 2008). A post-hoc analysis of a series of human experiments found no
linear relationship between experimental immediate headache and dilatation of the
intra- and extra cerebral arteries (Ashina et al., 2011). The current understanding,
also backed by other studies (Ahn, 2010; Amin et al., 2013; Rahmann et al., 2008), is
therefore that vascular changes, though present, are unlikely to be the primary cause
for head pain in migraine (Charles, 2013).
Brain imaging research in the last two decades has contributed significantly to advanc-

ing our knowledge of the neurobiology of human models of migraine. Using modern
brain imagingmethods, particularly positron emission tomography (PET) (Ashina et al.,
2013), MR angiography (Amin et al., 2013) and functional MRI (Schwedt et al., 2015),
researchers have investigated biological markers in migraine (Ashina et al., 2013).
PET studies showed brainstem activation during GTN-induced attacks (Afridi

et al., 2005b; Bahra et al., 2001), similar to activation reported during spontaneous
migraine attacks (Weiller et al., 1995; Afridi et al., 2005a). Furthermore, GTN induces
premonitory symptoms (Afridi et al., 2004) similar to premonitory symptoms reported
during spontaneous migraine attacks (Giffin et al., 2003). Using the GTN model,
combined with PET, a recent study reported brain activation in hypothalamus during
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Table 20.1 Percentages of migraine patient-reported migraine-like attacks in experimental studies.

Compound Dose
Migraine-like
attacks (%) References

Glyceryl
trinitrate (GTN)

Migraine with
aura

intravenous
0.5 μg/kg/min

50–67 Afridi et al., 2004;
Christiansen et al.,
1999

sublingual
0.9 mg

40.9 Sances et al., 2004

Migraine
without aura

intravenous
0.5 μg/kg/min

80–83 Afridi et al., 2004;
Thomsen et al.,
1994

sublingual
0.6mg / 0.9 mg

66.7 /
82.1

Sicuteri et al.,
1987; Sances et al.,
2004

Hemiplegic
migraine

intravenous
0.5 μg/kg/min

12.5–30 Hansen et al.,
2008a, 2008c,
2010b

Histamine intravenous
0.5 μg/kg/min
intravenous
0.1 mg
arterial 0.1 mg
(carotid)

70
78
77

Lassen et al., 1995
Northfield, 1938
Northfield, 1938

PDE 5 (Sildenafil) 100mg per os 83 Kruuse et al., 2003

PDE 3 (Cilostazol) 200mg per os 86 Guo et al., 2014

Dipyridamole intravenous
0.142mg/kg/min

50 Kruuse et al., 2006

Calcitonin
gene-related
peptide (CGRP)

Migraine with
aura

intravenous
1.5 μg/min

57 Hansen et al.,
2010a

Migraine
without aura

intravenous
2 μg/min

33–75 Lassen et al., 2002;
Asghar et al., 2011

Hemiplegic
migraine

intravenous
1.5 μg/min

9–22 Hansen et al.,
2011, 2008b

Vasoactive intestinal peptide (VIP) intravenous
8 pmol/kg/min

0–18 Amin et al., 2014;
Rahmann et al.,
2008

Pituitary adenylate cyclase activating intravenous 66–73 Schytz et al., 2009;
polypeptide (PACAP-38) 10 pmol/ kg/min Amin et al., 2014

Prostaglandins Prostaglandin
E2

intravenous
0.4 μg/kg/min

58 Antonova et al.,
2012

Prostaglandin
I2

intravenous
10 ng/kg/min

50 Wienecke et al.,
2009a
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the premonitory phase, notably at a time point when the patients were totally pain-free
(Maniyar et al., 2014).
Collectively, the experimental studies indicate that NO is involved both in the initi-

ation of, but also throughout, the duration of a migraine attack. Based on the reliable
and robust migraine-inducing effects of GTN, the anti-migraine action of non-selective
nitric oxide synthase (NOS) inhibitor, N(G)-mono-methyl-L-arginine (L-NMMA) was
examined, and it was demonstrated that NOS inhibition was effective in treating spon-
taneous migraine attacks (Lassen et al., 1997). Clinical trials of selective inhibition of
inducible nitric oxide synthase for acute (Van der Schueren et al., 2009) and prophy-
lactic (Hoivik et al., 2010) migraine treatment were negative. This drug class has not
yet been developed into available therapy, and NOS inhibitors still have to prove their
usefulness in migraine treatment.
In conclusion, the GTN model of migraine has led to a number of important obser-

vations, but more studies are still needed to dissect its role in the migraine cascade.
The precise mechanisms of NO-induced migraine are still not fully clarified. Given

the ability of NO to penetrate the blood-brain barrier, migraine induction is complex
and may include both peripheral and central pain pathways. The imaging studies of
NO-provocation do not support the hypothesis of vasodilatation per se as the primary
source of pain in GTN-induced immediate headache.

20.3 Calcitonin gene-related peptide (CGRP)

CGRP is a 37-amino-acid neuropeptide identified in the early 1980s (Amara et al., 1982;
Rosenfeld et al., 1983). Animal models of headache and pain suggest the modulatory
role of CGRP in nociceptive transmission (Sun et al., 2003, 2004; Mao et al., 1992; Levy
et al., 2005; Oku et al., 1987; Russo, 2014).
Studies in migraine patients have showed elevation of CGRP during (Goadsby et al.,

1990) and outside of migraine attacks (Ashina et al., 2000). However, Tvedskov et al.
challenged these reports, showing no changes in plasma CGRP in the external jugular
vein during migraine attacks, compared with outside of attacks (Tvedskov et al., 2005).
The strongest human evidence supporting the role of CGRP in migraine has derived
from provocation experiments. In a double-blind crossover study, 𝛼-CGRP (2 μg/min)
or placebo was infused for 20 minutes in 12 patients suffering from migraine without
aura (Lassen et al., 2002). During the following 11 hours, all patients experienced
headaches after human 𝛼-CGRP and only one patient after placebo and, in three
patients, the delayed headache fulfilled the IHS criteria for migraine without aura
(Lassen et al., 2002). Subsequent studies confirmed that CGRP is, indeed, a trigger of
migraine (table 20.1).
The vascular effects of CGRP-infusion in healthy volunteers was investigated with

high-resolution 3-Tesla MRI: CGRP causes significant dilation of the extra cerebral
middle meningeal artery (MMA), but not of the intra cerebral MCA, compared with
placebo (Asghar et al., 2010). Interestingly, the headache-aborting effect of sumatriptan
was associated with constriction of the MMA, but not MCA. Furthermore, in contrast
to GTN-induced migraine (Schoonman et al., 2008), CGRP-induced migraine without
aura was associated with dilatation of extra- and intracerebral arteries, and headache
laterality corresponded to the side of vasodilatation (Asghar et al., 2011). This suggests
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Figure 20.2 Different types of perivascular nerves and their transmitters (modified from Hamel, 2006).
Schematic representation of the different types of perivascular nerves and their origin from the
superior cervical (SCG), sphenopalatine (SPG), or otic (OG) or trigeminal (TG) ganglion. The most
relevant neurotransmitters also discussed in the text are; CGRP, calcitonin gene-related peptide; NOS,
nitric oxide synthase; PACAP, pituitary adenylate-cyclase activating polypeptide and VIP, vasoactive
intestinal polypeptide. See also Figure 1.1 in chapter 1. Hamel et al. (2006). Reproduced by permission
of American Physiological Society.

that perivascular release of vasoactive substances, and activation of perivascular
sensory afferents, are an integral part of migraine pathophysiology – see Figure 20.2.
The downstream effector of CGRP involves cyclic AMP signaling (Jansen-Olesen

et al., 1996). Phosphodiesterase 3 is one of the most important cAMP-degrading
enzymes in cerebral arteries, and its activity can be blocked by cilostazol, thus
leading to cyclic AMP accumulation. In a provocation study, where 14 migraine
patients without aura were examined in a double-blind, placebo-controlled crossover
study, cilostazol induced delayed migraine-like attacks in 12 patients (86%), com-
pared with two (14%) patients after placebo. This strongly suggests that intracellular
cAMP-accumulation plays a crucial role in migraine induction (Guo et al., 2014) – see
also table 20.1.
The importance of CGRP in migraine pathogenesis was underlined after large ran-

domized controlled trials confirmed that CGRP antagonists are effective in a subsets of
patients in treating acute migraine attacks (Ho et al., 2008a, 2008b; Olesen et al., 2004;
Connor et al., 2009), and also in migraine prophylaxis (Ho et al., 2014).
The exact pathways involved in CGRP-induced migraine attacks and mechanisms

of action of CGRP antagonists are not fully clarified, but may involve both peripheral
and central site of action (Summ et al., 2010; Sixt et al., 2009). The newest addition to
CGRP-based migraine treatment has been the finding that monoclonal antibodies to
CGRP are effective in migraine prophylaxis (Sun et al., 2016; Bigal et al., 2015;Dodick
et al., 2014a, 2014b). Interestingly, both the anti-migraine action of the CGRP antibod-
ies and their large molecular weight point to a peripheral site of action for CGRP in
migraine.
TheCGRP studies show that it is possible to go from animal studies, based on anatomy

andphysiology, into human experimental studies, and on to clinical trials to yield awork-
ing drug, based on stringent translational thinking (and, as always, a certain amount of
serendipity).
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The finding that CGRP causes headache and migraine in MA and MO, and that
CGRP antagonism may both abort and prevents migraine attacks is a testament to the
validity of the human migraine model. Future human experimental studies with CGRP
in conjunction with imaging may help to unravel the site of action of both CGRP and
CGRP-based migraine treatment.

20.4 Vasoactive intestinal peptide (VIP) and pituitary
adenylate cyclase activating polypeptide (PACAP)

The CGRP studies clearly underlined that neuropeptides are implicated in the patho-
physiology of primary headaches. Vasoactive Intestinal Peptide (VIP) and Pituitary
Adenylate Cyclase-Activating Polypeptide (PACAP) are both vasoactive peptides
belonging to a family of structurally related peptides (Sherwood et al., 2000). They
are both found in perivascular parasympathetic nerve fibers (Jansen-Olesen et al.,
2004), and PACAP is also found in trigeminal nerve fibers surrounding cerebral blood
vessels (Baeres and Moller, 2004). Their release regulates cerebrovascular tone and
hemodynamics of the brain (Gulbenkian et al., 2001). Studies of VIP in double-blinded
placebo-controlled crossover studies, in both healthy volunteers (Hansen et al., 2006)
and migraine patients, (Rahmann et al., 2008; Amin et al., 2014) showed a very modest
headache/migraine induction rate (Table 20.1).
In healthy volunteers, PACAP-infusion induced vasodilatation similarly to VIP, but

longer-lasting (Birk et al., 2007; Amin et al., 2012), and in migraine patients without
aura, PACAP induced both sustained cephalic vasodilatation and migraine attacks
(Schytz et al., 2009).
In a randomized head-to-head comparison study of intravenous administration of

PACAP and VIP, more patients (73%) reported migraine-like attacks after PACAP38
than after VIP (18%) (Amin et al., 2014; see also table 20.1). PACAP-induced migraine
was associated with sustained dilatation of extra cranial arteries and elevated plasma
PACAP before the onset of migraine-like attacks. The exact pro-nociceptive mecha-
nisms of PACAP are still notmapped out in details, but central sensitization (Tuka et al.,
2012) or mast cell degranulation could be involved (Baun et al., 2012).
Two receptors, VPAC1 (Hosoya et al., 1993) and VPAC2 (Lutz et al., 1993), are acti-

vated with equal affinity by PACAP and VIP, but a third receptor, PAC1, is selectively
activated by PACAP (Harmar et al., 1998). The migraine induction by PACAP-38, in
contrast to VIP, suggests that the shared VIP/PACAP receptors (VPAC1 and VPAC2)
are unlikely to be causal for induction of migraine, but points toward an important role
for the PACAP-selective PAC1 receptor. PACAP has a much higher affinity for the PAC1
receptor, and it can, therefore, be speculated that the migraine induction by PACAP38
may result from activation of the PAC1 receptor, which may be an interesting future
anti-migraine drug target (Schytz et al., 2010; Amin et al., 2014).

20.4.1 Prostaglandinmodel

In the last decade, the role of prostaglandins (PGs) in the generation of headache in
healthy volunteers and migraine sufferers has been systematically investigated in the
humanmigraine model.The intravenous administration of vasodilating prostaglandins,
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such as PGI2 (prostacyclin), PGE2 and PGD2, induced headache in healthy volunteers,
and PGI2 triggered migraine-like attacks in migraine patients (Wienecke et al., 2008,
2009a, 2009b, 2011). Interestingly, the infusion of PGE2 caused immediate migraine-like
attacks, accompanied by vasodilatation of the middle cerebral artery and insignificant
vasodilatation of the superficial temporal artery in migraine patients without aura
(Antonova et al., 2012). The fact that PGE2 selectively triggers immediate migraine-like
attacks is at odds with all other tested migraine-inducing substances (see table 20.1).
MRI verification of dilatation of cerebral or extra-cerebral arteries in PG-induced

headache or migraine is pending. Given that PGs are inflammatory mediators (Hata
and Breyer, 2004), capable of activating sensory afferents, it could be speculated that
PG-induced vasodilatation does not contribute to provoked headache. To investigate the
role of inflammation and vasodilatation in prostaglandin-induced headache, we inves-
tigated whether the pro-inflammatory and vasoconstricting prostanoid prostaglandin
F2𝛼 (PGF2𝛼) would cause headache in a human model of headache. PGF2𝛼, as opposed
to PGE2, PGI2 and PGD2, did not induce headache (Antonova et al., 2011b), but the lack
of a dilating effect of PGF2𝛼 on cerebral arteries could explain the absence of headache.
Based on these data, we suggest that the vasodilating abilities of PGs are important in
generating pain in healthy volunteers, and are likely to play a role in the mechanisms of
spontaneous migraine attacks.
Drugs were tested in the PGE2 headache model in healthy volunteers. A highly spe-

cific and potent EP4 receptor antagonist, BGC20-1531, did not attenuate PGE2-induced
headache and vasodilatation of intra- or extra-cerebral arteries (Antonova et al.,
2011a).The failure of BGC20-1531 to attenuate headache and vasodilatation suggests
either that the EP4 receptor is not involved, or that PGE2 may induce headache via
other pathways, and that a single receptor blockade, therefore, may not be enough. It
should be emphasized that a lack of efficacy of EP4 receptor antagonist in PGE2 model
in healthy volunteers does not exclude possible efficacy of EP4 antagonist as acute or
preventive drug in migraine.

20.5 Can we gain from the use of experimental models to
study functional consequences of migraine mutations?

Important insights into the genetic and molecular pathophysiology of migraine have
come from studies of rare monogenic subtype of migraine, familial hemiplegic migraine
(FHM). In vivo studies of mice with knock-ins of two different FHM genes showed
increased susceptibility to cortical spreading depression (CSD) and increased velocity
of CSD propagation, compared with wild-type animals (van den Maagdenberg et al.,
2004, 2010; Eikermann-Haerter et al., 2009; Leo et al., 2011). The fact that FHM-1
knock-in mice show a relevant pain phenotype (Chanda et al., 2013; Hullugundi et al.,
2014) suggests that these transgenic mice are an important model to improve our
understanding of migraine pathogenesis, and may be used as a platform for testing
novel anti-migraine drugs.
The common types of migraine, MA and MO, are, however, not generally associated

with any of the known FHMmutations (Kirchmann et al., 2006; Netzer et al., 2006; Jen
et al., 2004;Wieser et al., 2003). In addition,many of the traits found in thesemonogenic
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subtypes of migraine (e.g., hemiplegia during aura, progressive ataxia) are not found in
common migraine.
The translation from the promising animal studies of themonogenic forms ofmigraine

into a human clinical setting, and the relation between these rare subtypes and MO
and MA, may thus not be as straightforward as hoped. A series of experiments using
the human experimental model examined whether the FHMmutations were associated
with hypersensitivity to the migraine triggers NO and CGRP. Both GTN and CGRP
failed to causemore auras or headaches in FHM-patients than healthy controls (Hansen
et al., 2008a, 2008b, 2008c). These data indicate that the FHM 1 and 2 genotype does
not confer hypersensitivity to migraine triggers such as GTN and CGRP and, thus, sug-
gests different neurobiological mechanisms of migraine initiation in than in the more
common migraine types.

20.6 Conclusion

Human models of migraine offer unique possibilities to study mechanisms respon-
sible for migraine and to explore the mechanisms of action of existing and future
anti-migraine drugs (Olesen et al., 2009). Results provide insights into the very
early migraine symptoms during the premonitory phase (Maniyar et al., 2014), the
mechanisms of anti-migraine drugs (Asghar et al., 2011) and the differences between
migraine phenotypes (Hansen, 2010a). Human models have played an important role
in translational migraine research, leading to the identification and validation of novel
targets for the treatment of acute migraine attacks (Olesen et al., 2004; Lassen et al.,
1997).
New additions to the model, such as advanced MR, functional MRI (fMRI) using

blood-oxygen-level-dependent (BOLD) contrast, and resting state fMRI, positron emis-
sion tomography (PET) and multimodal imaging (Schoonman et al., 2008; Amin et al.,
2013; Maniyar et al., 2014; Afridi et al., 2005b; Schwedt et al., 2015), may lead to a better
understanding of the complex events that constitute a migraine attack, and better and
more targeted ways of intervention.
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21.1 Introduction

The trigeminal system is involved in processing nociceptive information from the oral,
facial, and cranial territories. Trigeminal mechanisms of nociception have some spe-
cific features, compared with the spinal nociceptive system, and many of these will be
outlined in this book. In this chapter, we focus on the central processing of trigeminal
nociception, described on the basis of human imaging studies, and describe how these
studies have provided valuable advances in our understanding of migraine disorders.
The following sections will provide an overview of the imaging literature that has helped
to uncover the mechanisms underlying the development and evolution of migraine and
its specific symptoms. We present evidence that the migraine brain is abnormal outside
of attacks, and that repeated attacksmay lead to structural alterations in the brain which
may, in turn, drive the transformation of migraine to its chronic form.We also highlight
some features of other orofacial pain disorders as a way to bring together the CNSmech-
anisms of trigeminal nociception, and discuss how these relate to the pathophysiology
of migraine.

21.2 Functional brain changes in migraine

21.2.1 Headache

From a pain perspective, migraine is unique, in that headache and its associated features
are seen in the absence of any obvious cause. Despite many years of investigation, the
source of migraine remains elusive. In the past decade, a more “neurocentric” view of
the disorder has emerged, based upon findings of human imaging studies, which have
shown activations in the brainstem during acute migraine and cluster headache attacks
(Weiller et al., 1995; May et al., 1998; Bahra et al., 2001; Afridi et al., 2005). The brain-
stem activation in almost all these studies appears to be located in the dorsolateral pons,
which has led to the hypothesis that dysfunction of this structure is perhaps at the core
of the disorder (Akerman et al., 2011). Some authors speculate that this is in fact the

Neurobiological Basis of Migraine, First Edition. Edited by Turgay Dalkara and Michael A. Moskowitz.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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“generator” of the migraine attack, but this concept has been challenged and remains an
area for further investigation (Borsook and Burstein, 2012).
More broadly speaking, there is a large number of imaging and neurophysiological

studies which have shown that nociceptive stimuli (trigeminal and somatic) elicit
responses in an extensive cortical network, including somatosensory, insular and cin-
gulate areas, as well as frontal and parietal areas. This cortical network may represent a
basic mechanism through which significant events for the body’s integrity are detected,
regardless of the sensory channel through which these events are conveyed (Legrain
et al., 2011; Borsook et al., 2013b) (See Figure 21.1).

21.2.2 Aura

It is estimated that approximately one quarter of migraines are preceded by neurolog-
ical symptoms associated with a transient cortical malfunction, collectively known as
aura (Lauritzen, 1994). Such cortical disturbances are thought to arise from the phe-
nomenon of cortical spreading depression (CSD), which occurs spontaneously before
the onset of the headache. Due to the episodic nature of migraine, it is extremely chal-
lenging to perform clinical studies of aura, in particular functional imaging studies of
spontaneous migraine events. Nevertheless, Sanchez del Rio and colleagues reported
cerebral hypoperfusion (decreased CBF) during aura in the occipital cortex controlat-
erally to the symptoms (Sanchez del Rio et al., 1999). Also, Hadjikhani and colleagues
reported seeing reductions in stimulus-driven BOLD signal fluctuations, in response to
checkerboard stimulations, at a rate similar to CSD in the occipital cortex (Hadjikhani
et al., 2001). While these findings were preliminary, they strongly supported the idea
that CSD may be the cause of migraine aura.
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Figure 21.1 Common pathways associated with pain and autonomic function. Brain meta-analytic
maps were produced for the terms “pain” (410 studies) and “autonomic” (87 studies), using the
NeuroSynth framework (Yarkoni et al., 2011). Automatically generated reverse inference maps show
the probability of the term given observed activation (P(term|act.)). Masks for all images are shown
only for regions that survived a test of association between term and activation, with a whole-brain
correction for multiple comparisons (FDR < 0.05). Abbreviations: INS – insular; RVM – rostral ventral
medulla; HYP – hypothalamus; PAG – periaqueductal gray; MCC/ACC – mid cingulate cortex/anterior
cingulate cortex.
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21.2.3 Allodynia and hyperalgesia

During migraine attacks, approximately 80% of patients exhibit symptomatic or mea-
surable cutaneous allodynia (the perception of pain in response to normally innocuous
stimuli) and hyperalgesia (hypersensitivity to noxious stimuli) (Burstein et al., 2000). It
has been proposed that these symptoms are the consequence of central sensitization of
second order neurons at the level of the spinal trigeminal nucleus caudalis and thala-
mus (Burstein et al., 1998; Woolf, 2011). One fMRI study, specifically investigating the
response to non-trigeminal heat and brush stimuli in migraineurs with extracephalic
allodynia, found that thalamic responses were significantly larger when patients were
suffering a migraine attack (Burstein et al., 2010). The thalamus is known to be a major
site for the processing andmodulation of pain (Tracey andMantyh, 2007), so these find-
ings may explain the spread of cutaneous allodynia and hyperalgesia to referred pain
areas in the head (localized) or body (extended) (Strassman et al., 1996).

21.2.4 Photophobia, phonophobia, and olfactory discomfort

Sensitivity to light, noise, and/or smells accompaniesmost attacks ofmigraine and often
persists, to some extent, between attacks. In recent years, a number of neuroimaging
studies have been performed to specifically address sensory processing deficits and pho-
bic symptoms in migraine patients, with some studies exploring the interrelationship
between sensory input and pain processing during the ictal state (Boulloche et al., 2010;
Denuelle et al., 2011;Martin et al., 2011; Stankewitz andMay, 2011). Common to each of
these studies, it appears that sensory processing in migraine is modulated by concomi-
tant painful trigeminal stimulation. This finding is supported by recent experimental
work in rats, showing that neurons in the thalamus, receiving nociceptive inputs from
the dural vasculature, also respond to light (photic) stimuli (Noseda et al., 2010).
Bright light is known to activate nociceptive neurons of the trigeminocervical com-

plex (Okamoto et al., 2010) and, thus, sensitivity of the senses may increase during the
migraine prodome, and intense sensory stimuli may trigger an attack. Interestingly, the
heightened sensitivity in one sensory modality is often associated with heightened sen-
sitivity in other modalities, suggesting the involvement of a common mechanism.

21.2.5 Habituation

A hallmark of migraine is the lack of habituation during stimulus repetition. Several
studiesmeasuring spontaneous fMRI and EEG responses to evoked sensory stimuli have
confirmed the habituation deficits inmigraineurs (Wang and Schoenen, 1998;Afra et al.,
2000; Coppola et al., 2009; Stankewitz et al., 2013). It has been proposed that this deficit
may reflect increased neuronal excitability, decreased inhibition, or decreased preac-
tivation levels. The phenomenon is present interictally, not only in adults but also in
children, with a significant correlation in deficient habituation between children and
their parents (Sandor et al., 1999), indicating a possible heritable character. Migraine
type or classification may also be important, as a cohort of familial hemiplegic migraine
patients showed increased habituation (Hansen et al., 2011).

21.2.6 Autonomic dysfunction and other non-pain symptoms

Other frequently reported symptoms associated with migraine include altered mood,
stress, irritability, fatigue, sleeplessness, exaggerated emotional responses, nausea, and



�

� �

�

366 Neurobiological Basis of Migraine

loss of appetite. To elicit such varied symptoms, nociceptive signals that originate in the
trigeminovascular pathway during migraine must modulate the activity of hypothala-
mic, amygdala and basal forebrain structures that integrate sensory, physiological, and
cognitive signals that drive behavioral, affective, and autonomic responses (Burstein and
Jakubowski, 2005).
The involvement of the hypothalamus in migraine has been the topic of a recent

review (Geraud and Donnet, 2013), and activation of hypothalamic regions in spon-
taneous headache attacks has been demonstrated in two imaging studies (May et al.,
1998; Denuelle et al., 2007). Our group recently found that migraine patients in their
interictal phase have increased hypothalamic connectivity, with a number of brain
regions involved in regulation of autonomic functions, including the locus coeruleus,
caudate, parahippocampal gyrus, cerebellum, and the temporal pole (Moulton et al.,
2014). In addition, there is strong support for the role of the basal ganglia in pain
processing (Borsook et al., 2010), and recent imaging studies suggest a significant role
of the basal ganglia in the pathophysiology of episodic migraine (Maleki et al., 2011;
Yuan et al., 2013). Altogether, these findings point to an underlying brain dysfunction
that causes vulnerability to migraine (Denk et al., 2014), and the susceptibility of an
actual attack may be driven by the failure of the brain and body to respond to further
stressors (see Figure 21.2).
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Figure 21.3 Interictal migraine-related increase of regional cerebral blood flow (rCBF) in the primary
somatosensory cortices. (a) Quantitative measures of rCBF were acquired using the magnetic
resonance imaging (MRI) technique – arterial spin labeling (ASL). Dotted black lines correspond to the
boundary of central sulcus (CS) and post-central sulcus (PoCS). Group-wise statistical images (Migraine
(n = 17) > Controls (n = 17)] are displayed with a cluster probability threshold of P < 0.05, corrected for
multiple comparisons (FWE). (b) Magnitude of the CBF changes within S1. Plots represent the mean
(red line), 95% confidence interval (light-grey region), and one standard deviation (dark-grey region).
Individual subjects data are shown in blue. (c) Correlations between rCBF and clinical variables.
Headache attack frequency was positively correlated with CBF. The underlying dysfunction in S1 and
the trigemino-cortical pathway may cause vulnerability to migraine attacks (Figure adapted from
Hodkinson et al., 2015b).

21.2.7 Cerebrovascular andmetabolic dysfunction

A fundamental role of the autonomic nervous system is regulating cerebral blood flow
(CBF) (Goadsby, 2013). Human imaging studies performed during the different phases
of attacks, and also in interictal periods, have shown varying effects on CBF (Bartolini
et al., 2005). These conflicting results may depend on the different imaging strategies
used to measure CBF and the type of migraine disorder; hence, the effects might there-
fore not be directly comparable.
It is well known that cortical responsivity to sensory stimuli fluctuates over time in

relation to the migraine cycle. A recent study suggests that basal CBF expresses both
circadian and homeostatic variability (Hodkinson et al., 2014), which may be important
in cluster headaches, where the attack patterns show circannual and circadian period-
icity. Cerebral metabolic homeostasis may also be disrupted by the increased energy
demands caused by the neuronal hyperexcitability during attacks and, to an even greater
extent, before attacks (Reyngoudt et al., 2012).This disruption may lead to triggering of
the trigeminovascular system and, subsequently, the migraine attack (see Figure 21.3).

21.3 Structural brain changes in migraine

Migraine has been shown not only to involve functional abnormalities over time,
but also to be associated with structural changes in the brain. Methods based on
high-resolution structural MRI to assess structural changes include: voxel-based
morphometry (VBM); surface-based techniques, such as cortical thickness (CT); and
diffusion tensor imaging (DTI). These imaging methods have been used extensively
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to investigate neuroplasticity in grey and white matter in both healthy and patient
populations, showing that brain structure may change dynamically.
In chronic pain in general, numerous studies have shown that various chronic pain

conditions are associated with changes in brain structure, when compared with healthy
controls (Tracey and Bushnell, 2009). These structural alterations, while displaying a
degree of pain-type/condition/study specificity, also share some overlap (Smallwood
et al., 2013). More specifically in the migraine field, structural imaging studies have also
shown evidence that migraine is associated with structural changes in both grey and
white matter (Sprenger and Borsook, 2012; Bashir et al., 2013; Hougaard et al., 2014),
although interesting studies challenging this conclusion have also arisen. The following
sectionwill review the relevant studies of structural changes inmigraine, reviewing both
grey and white matter alterations.

21.3.1 Greymatter alterations in migraine

Whole-brain VBM is the most frequently used method to assess structural changes in
grey matter. It quantifies grey matter volume on a voxel-wise basis, and allows for the
detection of volume differences both between groups, and within individuals, over time.
Interestingly, the first VBM study by Matharu et al. (2003) showed no significant grey
matter changes in episodic migraine, compared to healthy controls. A subsequent VBM
study by Schmidt-Wilcke et al. (2008), with a larger cohort of episodicmigraineurs, con-
tinued to show no significant grey matter changes at the whole brain level. However,
when a region-of-interest approach was employed, “subtle” grey matter reductions in
migraineurs were observed in the anterior and posterior cingulate cortex and the insula.
Theuse of uncorrected statistical thresholds and region of interest approaches in these

two pioneering VBM studies may account for the disparity in findings, an issue that has
continued in the migraine structural literature (May, 2013). Most recently, Liu et al.
(2015) reported grey matter increases in the hippocampus, parahippocampal gyrus,
amygdala, cerebellum and the occipital cortices, and grey matter reductions in the mid-
dle frontal gyrus, superior frontal gyrus, inferior parietal lobule, supramarginal gyrus,
temporal cortices and the occipital cortices in female migraineurs with aura, compared
with healthy controls. Most interestingly, the authors found evidence that this grey mat-
ter increase in the hippocampus of migraineurs may be related to a specific genetic
variant, which has been linked to synaptic plasticity and maladaptive stress.
Taken together, these studies present fairly cohesive evidence for grey matter

increases and reductions in migraine, particularly in the posterior insula-opercular
regions, the prefrontal cortex, and the anterior cingulate cortex (See meta-analyses by
Bashir et al., 2013; Dai et al., 2015; Hu et al., 2015). Given the nature of these greymatter
changes (namely, being reductions in regions recognized as being involved in pain
processing or the response to pain, and having an association with disease duration),
several studies have proposed that these structural alterations are a consequence
of repeated painful insults during migraine attacks, rather than a causative factor
(Maleki et al., 2013; see Figure 21.4). This proposition is supported by evidence from
a longitudinal VBM study of newly diagnosed migraineurs by Liu et al. (2013), which
found grey matter decreases in various brain regions, including the superior frontal
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Figure 21.4 Grey matter alterations in the hippocampus of migraineurs may reflect adaptive plasticity
in response to repeated migraine attacks and allostatic load. (a) Differences in hippocampal volume.
The bar plots show the hippocampus volume comparisons for low frequency (LF), high frequency (HF)
and healthy controls (HC). LF migraineurs had a significantly larger hippocampal volume. (b) Migraine
attacks and hippocampal volumetric differences. The plots represent the correlation between the left
and right hippocampal volumes and estimate of the total number of migraine attacks. (c) The
hippocampus represented on the standard MNI152 anatomical template. Figure adapted from Maleki
et al. (2012).

gyrus, orbitofrontal cortex, hippocampus, precuneus, parietal gyrus and postcentral
gyrus at one year follow-up, compared with initial diagnosis.
Amore recently developedmethod to assess structural changes in greymatter, specif-

ically cortical thickness, is surface-based morphometry. The first study to employ this
measure in migraine, by Granziera et al. (2006), reported increased cortical thickness
of motion-processing visual areas MT+ and V3A. Further work also showed increased
cortical thickness in the somatosensory cortex (postcentral gyrus) in the region of the
somatotopic representation of the head (DaSilva et al., 2007a), a finding replicated by
Kim, who also observed a correlation between this increased cortical thickness and dis-
ease duration and frequency.
In a manner similar to the VBM literature, there is not complete consensus that

migraine is associated with alterations in cortical thickness. Datta et al. (2011) reported
an absence of changes in cortical thickness in migraineurs, even after specifically
investigating specific subregions reported to show differences. As of yet, the lack of
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structural studies in migraine employing both VBM and surface-based analysis makes
it difficult to reconcile the apparent difference in the direction (VBM decreases vs.
cortical thickness increases) of grey matter alterations in migraine.

21.3.2 White matter alterations in migraine

Themost commonly used method to assess structural changes in white matter is diffu-
sion tenor imaging (DTI), a technique that provides information on the microstructural
properties of white matter tracts, based on the diffusion of endogenous water molecules
in brain tissue. White matter properties are commonly assessed through several stan-
dard diffusion parameters, including fractional anisotropy (FA) and mean diffusivity
(MD). White matter connections (fiber pathways) can also be identified and quantified
by probabilistic tractography.
The first study that employed DTI to assess white matter in migraineurs identified

lower FA values in cortical and sub-cortical regions associated with visual motion per-
ception (V3A, MT+, superior colliculus and lateral geniculate nucleus) in migraineurs
both with and without aura (Granziera et al., 2006). Subsequent work by DaSilva et al.
(2007b) identified reduced FA in aspects of the trigeminal somatosensory pathway (pos-
terior limb of the internal capsule and trigeminothalamic tract), a finding replicated in
part by Yu et al. (2013), who also found lower FA and MD in the anterior and posterior
limb of the internal capsule and throughout the corpus callosum. In turn, lower FA in
the corpus callosum was also found by Li et al. (2011), who investigated migraineurs
both with and without a comorbid emotional (depressive/anxious) disorder.
Both Yu’s and Li’s studies also found an association between the diffusion parameters

in these regions and clinical features, including headache duration and frequency.
Taken together, these findings have been interpreted as evidence that repeated
migraine attacks may provoke damage in the white matter tracts involved in trigeminal
somatosensory processing. However, the interpretation of diffusion findings is highly
variable, as changes in FA may be influenced by several factors, such as myelination,
axon density, gliosis and inflammation.
In a similar manner, it is still debatable as to whether these white matter alterations

are a predisposing factor or a consequence of repeated migraine attacks. While
several studies have found a correlation between DTI metrics and clinical features, the
aforementioned longitudinal study of newly diagnosed migraineurs by Liu et al. (2013)
also assessed diffusion changes, and found no differences in white matter structure
at one-year follow-up, compared with initial diagnosis. Finally, as with grey matter
changes, there is not complete consensus that migraine is associated with structural
changes in white matter, with a recent study by Neeb et al. (2015) finding no evidence
of white matter structural changes in either episodic or chronic migraine.

21.4 Insights from orofacial pain

Certain features of orofacial pain disordersmay help bring together CNSmechanisms of
trigeminal nociception, and should be considered when discussing the pathophysiology
of migraine (Hargreaves, 2011). A recent meta-analysis review of imaging studies found
that trigeminal neuropathic pain (TNP) and temporomandibular disorder (TMD)
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patients show functional and structural changes in the thalamus and the primary
somatosensory cortex, suggesting that the thalamocortical pathway is a possible major
site of plasticity (Lin, 2014).
Interestingly, direct comparison of these two chronic orofacial pain conditions

suggests that some functional and structural changes in the brain may be unique to
specific pain types (Gustin et al., 2011). For example, cortical reorganization in the
primary somatosensory cortex may be unique to neuropathic pain (TNP), but not
to musculoskeletal pain (TMD) (Gustin et al., 2012). In addition, imaging studies
frequently report changes in the prefrontal cortex (PFC) and the basal ganglia (Lin,
2014), suggesting the disruption of cognitive (descending) modulation and reward
processing in chronic orofacial pain (Navratilova and Porreca, 2014). Other imaging
reports of experientially evoked painful and non-painful stimulation have indicated
somatotopic representation in the component nociceptive brain regions receiving input
from the trigeminal nerve (Jantsch et al., 2005; Upadhyay et al., 2008; Nash et al., 2009;
Weigelt et al., 2010).
Further work in patients undergoing trigeminal surgery has demonstrated alterations

in regional cerebral blood flow (rCBF) in response to acute ongoing post-surgical pain
and recovery with analgesia (Hodkinson et al., 2013, 2015a). Collectively, these trigem-
inal models of pain, including chronic conditions and post-surgical/prolonged acute
pain, represent a unique opportunity to apply neuroimaging techniques to all levels
of the ascending (and descending) pain pathway from the level of the primary affer-
ent and synapse (Wilcox et al., 2015a, 2015b) to higher level (cortical) areas (Borsook
et al., 2006). The imaging findings and relationship to symptoms are critical in many
clinical pain states, and appear to share some similarities with the symptoms reported
by patients with migraine. We believe that a better understanding of nociceptive sig-
naling in oral and craniofacial pain may translate into targets for migraine preventative
treatments.

21.5 Conclusions

In the last decade, imaging has helped transform our perception that migraine is sim-
ply an “event that comes and goes”. Those affected by the disorder exhibit clear signs
of brain dysfunction in relation to their symptoms, with many changes evolving dif-
ferently before (pre-ictal), during (ictal), and immediately after (post-ictal) an attack.
The imaging literature surrounding brain structural abnormalities is far from clear, but
it is generally agreed that the observed changes are not the cause of the disorder but,
rather, increase vulnerability to migraine (Denk et al., 2014), thus causing an increased
frequency of attacks and the development of chronic daily headache.
A unique feature of migraine that has been overlooked is the fact that attacks are

often characterized by passive coping strategies, such as error awareness (Borsook et al.,
2013a), which is consistent with sickness behavior.We argue that these deviations from,
or interruption of, the normal brain structure or function may be the consequence of
allostatic loading (notwithstanding genetic, epigenetic, social or psychological factors),
as the repeated migraine attacks start maladaptive mechanisms that may result in a
chronic pain of the brain (Borsook et al., 2012).
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