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Preface

Neurological diseases are disorders in the central nervous system or the peripheral 
nervous system that is caused by structural, biochemical, and electrophysiological 
dysfunctions or abnormal functions of neurons or glial cells. There are some groups 
of neurological diseases including neurodegenerative diseases such as Parkinson’s 
disease, Huntington’s disease, and amyotrophic lateral sclerosis, and others related 
to dysfunctional blood circulation such as ischemic and hemorrhagic strokes or can-
cer such as glioma.

Although there are different symptoms, all neurological diseases are results from 
the significant loss of neurons or glial cells. The regeneration of these cells is con-
sidered as the promising strategy to treat diseases. Stem cell therapy draws attention 
as a promising regenerative option for the treatment of various neurologic 
diseases.

In recent years, stem cell therapies are moved to the clinic with exciting results. 
There are at least three ways that stem cells can correct injured neurological tissues 
including cell replacement, paracrine factors, and immunomodulation. Indeed, 
some kinds of stem cells, such as embryonic stem cells, induced pluripotent stem 
cells, neural stem cells, or mesenchymal stem cells, are easily differentiated or 
trans-differentiated into neural cells. Transplantation of these stem cells or differen-
tiated cells from these stem cells can supply new neural cells to regenerate injured 
or degenerative tissues. In addition to direct cell replacement, stem cells can secrete 
various cytokines and growth factors that elicit a variety of beneficial effects such as 
neural cell protection and induction of the endogenic recovery system. Recently, 
mesenchymal stem cells are proved as effective immunomodulatory factors. By 
direct communication or via cytokines, mesenchymal stem cells can suppress the 
inflammatory process, inhibit the autoimmune reactions, etc.

This volume of Stem Cells in Clinical Applications book series entitled 
Neurological Regeneration aims to provide updated invaluable resource for 
advanced undergraduate students, graduate students, researchers, and clinicians in 
stem cell applications for neurological regeneration.

This book with 13 chapters covers almost the present applications of stem cells 
in the central and peripheral nervous system regeneration. Chapter 1 introduces and 

http://dx.doi.org/10.1007/978-3-319-33720-3_1
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updates recent applications of stem cells in neurological regeneration. Chapters 2, 
3, 4, 5, 6, 7, 8, and 9 introduce some recent approaches of stem cells in brain regen-
eration, and spinal injury healing, respectively. And Chaps. 10, 11, 12, and 13 focus 
on peripheral nervous system regeneration including tympanic membrane, retina, 
and cornea.

We are indebted to our authors who graciously accepted their assignments, and 
who have infused the text with their energetic contributions. We are incredibly 
thankful to responsible editor Aleta Kalkstein, and the staff of Springer Science + 
Business Media that published this book.

Ho Chi Minh City, Vietnam� Phuc Van Pham 
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Chapter 1
Stem Cell Therapy in Neurological 
and Neurodegenerative Disease

Hong J. Lee, Sung S. Choi, Sang-Rae Lee, and Kyu-Tae Chang

1.1  �Introduction

Stem cells are self-renewing and pluripotent, meaning that they are capable of con-
tinuous proliferation and terminal differentiation into various cell types. Stem cells 
are classified as either embryonic or adult based on their origin, and give rise to vari-
ous organs and tissues (Thomson et al. 1998; Shamblott et al. 1998). Recent studies 
indicated that induced pluripotent stem cells (iPSCs) and directly induced neurons 
are included in the category of stem cells (Takahashi and Yamanaka 2006; Pang 
et al. 2011).

Stem cell transplantation has enabled powerful new therapeutic strategies in 
research for the treatment of various human neurological diseases such as 
Alzheimer’s disease (AD) and Huntington’s disease (HD) (Kim et  al. 2013; 
Nikolic et al. 2008). The identification, generation, and optimization of suitable 
stem cell types for cell therapy is necessary for the full utilization of this prom-
ising therapeutic approach in neurological disease (Kim et  al. 2013). In this 
chapter, we review the utility and limitations of different stem cell types and 
discuss recent advances in the therapeutic use of stem cells in neurological and 
neurodegenerative disease.
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1.2  �Types of Stem Cells

Stem cells are undifferentiated cells that are capable of symmetrical and/or asym-
metrical division by mitosis, and are also able to differentiate into mature tissue-
specific cells (Gage and Temple 2013; Martello and Smith 2014; Golas and Sander 
2016). Stem cells have been used for the treatment of various neurological diseases 
including AD and HD; cells for these purposes have been derived from embryonic 
stem cells (ESCs), induced pluripotent stem cells, and tissue-specific adult stem 
cells (Hargus et al. 2014; Maucksch et al. 2013; Schwarz and Schwarz 2010).

1.2.1  �Embryonic Stem Cells

Human ESCs (hESCs) are pluripotent cells derived from the inner cell mass (ICM) 
of the blastocyst. hESCs can differentiate into all cell types from three embryonic 
germ layers: the endoderm, mesoderm and ectoderm (Thomson et  al. 1998). 
Accordingly, these cells can be applied therapeutically in human disease states 
(Nishio et al. 2016). Although hESCs initially require culture on a feeder layer of 
mouse embryonic fibroblasts and animal serum (Thomson et al. 1998), many stud-
ies have established animal substance-free, feeder-free hESC culture conditions for 
clinical applications (Hovatta et al. 2014). Because hESCs are derived from in vitro 
fertilized blastocysts donated for research, the transplantation of hESCs faces ethi-
cal and legal limitations (Hovatta et al. 2010; Lo et al. 2005).

1.2.2  �Induced Pluripotent Stem Cells

Takahashi and Yamanaka were the first to reprogram mouse embryonic and adult 
fibroblasts into iPSCs by transduction with retroviral vectors carrying genes encod-
ing the transcription factors Oct3/4, Sox2, c-Myc, and Klf4 (Takahashi and 
Yamanaka 2006; Takahashi et  al. 2007). Adult human fibroblasts have also been 
reprogrammed into iPSCs by transduction with a lentiviral vector carrying OCT3/4, 
SOX2, NANOG, and LIN28 (Yu et al. 2007). iPSCs have properties that grant them 
similar a therapeutic potential to that of hESCs, such as self-renewal and the ability 
to differentiate into any cell lineage (Lowenthal et al. 2012). However, the use of 
viral vectors always carries the risk of off-target viral gene insertion in the genome 
and thus many researchers have made efforts to develop more specific vectors such 
as the Sendai virus (Fusaki et al. 2009) as well as vector-free transfection methods 
(Warren et  al. 2010). In addition optimizing the reprogramming procedure, the 
potential risk of teratoma formation continues to be an obstacle for the therapeutic 
use of iPSCs.

H.J. Lee et al.
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1.2.3  �Tissue-Specific Stem Cells

Tissue-specific stem cells are intrinsic cell lineages derived from specific tissues; 
examples include neural stem cells (NSCs) (De Filippis and Binda 2012) and mes-
enchymal stem cells (MSCs) (Bantubungi et al. 2008). Tissue-specific stem cells are 
in current use for the treatment of neurodegenerative disease (Jiang et al. 2011).

NSCs are initially capable of differentiating into one of three brain cell lineages: 
neurons, astrocytes, and oligodendrocytes (Eriksson et al. 1998). NSCs can be iso-
lated from neurogenic regions of the brain, which include the subventricular zone of 
the lateral ventricle and the subgranular zone of the hippocampus (Bernier et al. 
2000; Lois and Alvarez-Buylla 1993; Eriksson et al. 1998). However, these cells can 
only be isolated from aborted fetal tissue (Monni et al. 2014; Lee et al. 2007), tis-
sues excised during neurosurgery (Sanai et al. 2004), and postmortem tissues (van 
Strien et al. 2014), such that the use of NSCs is accompanied by practical and ethi-
cal limitations. Alternatively, NSCs have been immortalized using viral vectors car-
rying oncogenes such as v-myc (Lee et al. 2007) to address the limited self-renewal 
capacity of non-immortalized NSCs (Yang et al. 2003).

MSCs were firstly isolated from bone marrow in 1976 (Friedenstein et al. 1976). 
Human MSCs are multipotent cells with long-term self-renewal that can differentiate 
into mesenchymal tissues such as bone, cartilage, fat, tendon, muscle, and marrow 
stroma (Pittenger et al. 1999). MSCs can be isolated from various tissues including 
bone marrow, adipose tissue, placenta, umbilical cord blood, lung, and amniotic fluid 
(de Ugarte et al. 2003; Campagnoli et al. 2001; In’t Anker et al. 2004; Noort et al. 
2002; Fan et al. 2005; Tsai et al. 2004). The accessibility and flexibility of MSCs has 
made them a suitable candidate for therapeutic use (Hashemian et al. 2015).

1.3  �Stem Cell Therapy for Neurological Diseases

1.3.1  �Alzheimer’s Disease

Neurons differentiated from transplanted stem cells have been demonstrated to inte-
grate into the host brain and improve learning and memory (Liu et al. 2013). In 
another study, transplantation of stem cells overexpressing choline acetyltransferase 
led to increased brain acetylcholine and improved cognitive performance in a 
murine model of AD (Park et al. 2013a). Furthermore, stem cells expressing neuro-
trophic factors such as nerve growth factor have been demonstrated to differentiate 
into neurons and restore cognition (Lee et al. 2012, Fig. 1.1) as well as modulate 
neurogenesis (Park et al. 2013b) in murine AD.

Neural stem cells differentiated from ESCs have been employed in a rodent 
model of AD: transplanted cells were successfully differentiated into neurons and 

1  Stem Cell Therapy in Neurological and Neurodegenerative Disease
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astrocytes, and led to improved cognitive function as measured by the Morris water 
maze test (Tang et al. 2008). Alternatively, iPSCs have been investigated in the con-
text of early-onset familial AD; in one study, iPSCs differentiated into neurons 
secreting Aβ1–42 were sensitive to γ-secretase inhibition (Yagi et al. 2011), which 
demonstrated the validity of these cells as an in vitro model for AD. While this 
application was not directly therapeutic, the results suggest that these iPSCs provide 
an innovative strategy for drug research and development for AD. Finally, MSCs are 
perhaps the most well researched stem cells in the context of AD. In a rodent model 
of AD, transplantation of MSCs from bone marrow reduced the number of Aβ 
deposits in the hippocampus by producing endogenous microglial activation (Salem 
et al. 2014; Lee et al. 2009). Human MSCs have also been shown to significantly 
enhance the autophagic system and promote Aβ clearance and thus neuronal sur-
vival in an Aβ-treated mouse model (Shin et al. 2014). In a murine aging, the trans-
plantation of adipose-derived stem cells was identified to enhance brain acetylcholine, 
modulate microglial activation, and improve cognitive function (Park et al. 2013b; 
Ma et al. 2013). The therapeutic application of MSCs was recently advanced by the 
development of NEUROSTEM®-AD human umbilical cord blood/derived MSCs 
by Medipost co. LTD. In one study, co-culturing of these cells with microglia led to 
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the supernatant elevations in ICAM-1 and upregulation of the neprilysin, an 
Aβ-degrading enzyme, in microglia (Kim et al. 2012). At present NEUROSTEM®-AD 
cells are in Phase I/II clinical trials for AD. Taken together, these data suggest that 
stem cells have therapeutic utility in the context of AD.

1.3.2  �Parkinson’s Disease

PD is one of most common aging-related neurodegenerative and neurobehavioral dis-
orders, and is characterized by the loss of dopaminergic neurons in the substantia nigra. 
Histologically, PD is typified by Lewy body deposits that contain alpha-synuclein and 
ubiquitin (Beitz 2014; Kim et al. 2013). Administration of L-dihydroxyphenyl alanine 
(L-DOPA) is an effective treatment for PD; however, L-DOPA is associated with side 
effects that complicate its long-term use (Kim et al. 2013). Stem cell therapy may thus 
be a useful alternative for improving PD symptoms.

In one study, functional deficits associated with neurological disease were attenu-
ated via transplantation of NSCs secreting specific neurotransmitters and neuro-
trophic factors. Striatal transplantation of the HB1.F3 NSC line, which is immortalized 
by a retroviral vector carrying v-myc, produced neuroprotection against dopaminer-
gic cell depletion in a rodent model of PD. Some studies have also reported that 
ESC-derived neurons have therapeutic effects in PD: ESC-derived dopaminergic 
neurons were able to recover behavior deficits in rodent PD (Cho et al. 2008; Chung 
et  al. 2011; Kriks et  al. 2011). iPSCs have additionally demonstrated utility in 
PD. Dopaminergic neurons can be differentiated from iPSCs and have the properties 
of mature neurons as measured by electrophysiological and morphological analyses. 
Transplantation of these cells improved symptoms in a rodent model of PD (Wernig 
et al. 2008). In another study, iPSCs were differentiated into functional dopamine 
neurons by protein-based reprogramming and were able to rescued motor deficits 
following transplantation in rodent PD (Rhee et al. 2011). iPSCs may provide an 
ideal therapeutic cellular source for PD because they escape the problem of immune 
rejection. Alternatively, human parthenogenetic neural stem cells (hpNSC) derived 
from unfertilized oocytes escape ethical problems and represent an unlimited cellu-
lar supply. When these cells were transplanted into rodent and primate models of PD, 
they were engrafted successfully and produced higher levels of dopamine in the 
striatum without any adverse events (Gonzalez et al. 2015). Currently, human parthe-
nogenetic neural stem cells (hpNSC) are in Phase I clinical trials for PD.

1.3.3  �Huntington’s Disease

HD is an autosomal and age-dependent neurodegenerative disorder that is charac-
terized by abnormalities of movement, cognitive impairment, and emotional distur-
bances. HD is caused by the abnormal expansion of a CAG repeat in the huntingtin 
gene (Kim et al. 2008; Cattaneo et al. 2005).

1  Stem Cell Therapy in Neurological and Neurodegenerative Disease
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In one study, human fetal striatal tissue containing neurons and glia was trans-
planted into the neostriatum of an HD patient, successfully integrated without 
immune rejection, and grown to a size of 2.9 cm. Unfortunately, this study reported 
that fetal neural grafts have the potential risk of graft outgrowth after transplantation 
(Keene et al. 2009). Alternatively, transplant of 3–4 embryonic tissues into the bilat-
eral caudate nucleus compensated for degenerated striatal tissue and improved cog-
nitive symptoms in patient (Sramka et  al. 1992). Recently, one group reported 
improved survival and the attenuation of cognitive decline in 10 patients with HD 
following fetal striatal graft implantation; these patients showed increases in stria-
tal/cortical metabolism 2 years post-transplantation and less pronounced motor/
cognitive decline (Paganini et al. 2014). However, most fetal striatal tissues for use 
in clinical trials have been derived from elective or medically warranted abortions. 
Thus, human fetal tissue transplantation is associated with significant ethical 
limitations.

1.3.4  �Cancer

One therapeutic strategy of for cancer is the stem cell-based gene therapy as thera-
peutic gene carrier. Stem cells have potential to migrate into disseminated tumor in 
several studies (Shimato et al. 2007; Joo et al. 2009). And stem cells can deliver the 
enzyme-encoding gene to tumor cells and prodrug is locally converted into active 
cytotoxic chemical which kill the enzyme-producing cells as well as surrounding 
cells including tumor cells (Lim et al. 2011).

Yeast cytosine deaminase (yCD) gene was used to treat cancer in lung cancer 
brain metastases model. yCD gene can convert the prodrug, 5-fluorocytosine (5-FC) 
into cytotoxic 5-fluorouracil (5-FU). Human neural stem cells were genetically 
engineered with yCD carrying retrovirus and examined the therapeutic efficacy for 
lung cancer in presence 5-FC. These cells could remove the most of brain (Yi et al. 
2012; Aboody et al. 2013) and prostate cancer (Lee et al. 2013) in vitro and in vivo 
(Fig. 1.2).

In addition, the combination of CD and herpes simplex virus thymidine kinase 
(TK), converting monophosphorylate ganciclovir to toxic triphosphate ganciclo-
vir, gene in human amniotic fluid-derived stem cells (AF2.CD-TK) are also local-
ized at eh tumor site and have potent cytotoxicity in presence of prodrugs (Kang 
et al. 2012).

HB1.F3 NSCs were first derived from human fetal brain at 8–18 weeks of gesta-
tion (Lee et al. 2012). In one study, HB1.F3 NSCs were transduced with a retrovirus 
carrying the gene for carboxyl esterase as suicide gene, and the resultant cell line 
was termed F3.rCE. Carboxyl esterase can convert irinotecan, a prodrug, into a bio-
active toxic agent known as SN-38. F3.rCE cells were transplanted into medullobal-
stoma model (Lim et al. 2011) and brain metastasis model of breast cancer (Seol 

H.J. Lee et al.
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et al. 2011). F3.rCE showed the efficient therapeutic effects for brain and breast 
cancer in vitro and in vivo. F3.rCE cells have demonstrated both tumor tropism and 
the ability to produce effective SN-38 toxicity in proximal tumor cells. These cells 
are currently in a Phase I clinical trial for the treatment of glioma (Gutova et al. 
2013).
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Fig. 1.2  F3.CD have the therapeutic effect for prostate cancer. (a) Suicide effect of F3.CD/5-FC 
system at 72 h after 5-FC treatment in vitro. (b) Efficient reduction of prostate tumor size observed 
in combination of F3.CD and systemic administration of 5-FC in vivo. (c) Transplanted F3.CD 
cells (Blue) (arrow) migrated inside the prostate cancer (Green) (Lee et al. 2013)
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1.4  �Conclusion

Neuronal cell loss followed by the breakdown of tissue homeostasis is a hallmark of 
neurological disease. Thus, the induction of neurogenesis and the maintenance of 
homeostasis are important therapeutic goals in these patients. Regenerated neurons 
and glia can produce an optimal microenvironment for cell survival and regenera-
tion. Transplanted stem cells can also be a source of neuroprotective molecules such 
as neurotrophic factors that assist neural cell survival after transplantation. Stem 
cells can also be excellent genetic carriers by retroviral and lentiviral transduction. 
Given what is known regarding neurological diseases, gene-carrying stem cell ther-
apy systems have the potential to improve pathological disease processes. Moreover, 
iPSCs are an unlimited source of stem cells applicable as autologous cell therapy. It 
was recently reported that age-related mitochondrial DNA mutations can lead to 
respiratory defects in iPSCs from old people and accumulated mitochondrial DNA 
mutation can limit therapeutic potential of iPSCs (Kang et al. 2016). Further studies 
are also needed not only to examine the quality of transplanted stem cells over time 
but also to determine the optimal conditions for the recovery of damaged brain with 
stem cells in clinical trials.
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Chapter 2
Stem Cell Therapy in Traumatic Brain Injury

Sicong Tu and Jian Tu

2.1  �Introduction

Traumatic brain injury remains a leading cause of mortality and long-term disability 
worldwide. Traumatic brain injury results in enormous losses to individuals, fami-
lies, and communities (Corrigan et al. 2010). World Health Organization has esti-
mated that 25 % of road traffic collisions requiring admission to a hospital suffered 
traumatic brain injury in 2004 (Corrigan et al. 2010; Atlas: country resources for 
neurological disorders home page; Global burden of disease estimates). World 
Health Organization has also introduced the new metric tool – the disability adjusted 
life year, which quantifies the burden of diseases, injuries and risk factors. The 
worldwide leading causes of traumatic brain injury include road traffic accidents 
that were estimated being 41.2 million disability adjusted life year in 2008, violence 
being responsible for 21.7 million disability adjusted life year, and self-inflicted 
injuries being 19.6 million disability adjusted life year, respectively. All these will 
leave disability associated with traumatic brain injury in survivors (Atlas: country 
resources for neurological disorders home page; Global burden of disease 
estimates).

However, no effective therapy or program is available for treatment of indi-
viduals with traumatic brain injury; nonetheless, researchers had tried some thera-
peutic agents like levodopa/carbidopa and some neurotrophic factors in brain 
injury with persistent vegetative state with the aim of augmenting and slowing the 
progression from persistent vegetative state into some degree of consciousness. 
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This still needs experimentation to confirm if these dopamine precursors and 
other neurotrophic factors have any role in traumatic brain injury. Several other 
therapeutic agents like carnabinoid dexanabinol, erythropoietin, and gamma-glu-
tamylcysteine ethyl ester have all shown to have neuroprotective effect in human 
at experimental stage with remarkable improvement in post-traumatic brain injury 
outcome (Nori et al. 2012; Ugoya and Akinyemi 2010; Biegon 2004; Lok et al. 
2011; Maas 2001).

Recent advancement in knowledge about stem cells promotes the translation of 
stem cells to therapy in traumatic brain injury. The stem cells may play an important 
role in the treatment of traumatic brain injury by replacing damaged cells, and help-
ing long-term functional recovery. The search for stem cell therapy for traumatic 
brain injury is promising and progressing. One obstacle in the search for an effec-
tive stem cell therapy is that the pathophysiology of traumatic brain injury is largely 
unknown. This is because multiple cell types like neuronal cells, glial, and endothe-
lial cells are usually involved in traumatic brain injury. Furthermore, cerebral vascu-
lature, especially the blood brain barrier may be affected in traumatic brain injury; 
this injury may be focal or diffuse axonal injury. Taming these burgeoning effects of 
traumatic brain injury requires neural stem cells which can differentiate into neu-
rons and glial cells. It has been reported that progenitor cells differentiated into 
neurons and glial in adult brain, and an increase in astrocytic progeny forming reac-
tive astrocytes to primarily limit cyst enlargement in posttraumatic syringomyelia 
(Mammis et al. 2009; Stoica et al. 2009; Tu et al. 2010, 2011).

This chapter is an optional extra to confirm whether we can achieve the transla-
tion of basic knowledge of neural stem cells into therapeutic options in persons with 
traumatic brain injury by enhancing and integrating these neural precursor cells 
unto neurogenesis and directing these cells to the specified targets or through mul-
tipotency where the transplanted stem cells can differentiate into glial cells, neurons 
and endothelial cells. As traumatic brain injuries are not always focal but diffuse we 
need to induce these transplanted stem cells differentiating into appropriate pheno-
type for long term structural and functional recovery. This chapter critically reviews 
current literatures on neural stem cell research and proposing an approach for qual-
ity clinical translation of stem cell research to therapy in traumatic brain injury. The 
author explains the pathophysiology of traumatic brain injury and proposes the “six 
point schematic approach” to achieving quality bench to bedside translation of neu-
ral stem cells to therapy for traumatic brain injury. The author also highlights the 
need for suitable clinical translation, coordination, and administration of research in 
the field of stem cell therapy for traumatic brain injury.

2.2  �Neuropathology of Traumatic Brain Injury

Neuropathology of traumatic brain injury involves two main phases. These are the 
primary brain injury following the trauma, and the secondary injury which are 
mediated by inflammatory response to the primary brain injury.

S. Tu and J. Tu



15

2.2.1  �Primary Injury After Traumatic Brain Injury

Neuropathology of the initial brain injury has been postulated to include accelera-
tion, deceleration, and rotational forces which may or may not be as a result of the 
trauma. This sequence of events leads to the initiation of inertia which is both accel-
eration and rotational head movement. This impact on the cortical and sub-cortical 
brain structures causes focal or diffuse axonal injury and these inertial forces disrupt 
the blood brain barrier (Albert-Weissenberger et al. 2012). The primary events also 
involve massive ionic influx referred to as traumatic depolarization. The major 
inflammatory neurotransmitters released from the damaged tissue are excitatory 
amino acids, which may explain the neuropathology of diffuse axonal injury in 
traumatic brain injury. This is followed by cerebral edema with associated increase 
in intracranial pressure, usually forms the major immediate consequences of trau-
matic brain injury. Brain edema may come from astrocyte swelling and disruption 
of the blood brain barrier (Povlishock 1992; Greve and Zink 2009). The blood brain 
barrier is disrupted in acute phase of severe traumatic brain injury. The expression 
of high levels of glucose transporter 1 was observed in capillaries from acutely 
injured brain, which occurs in association with compromised blood brain barrier 
function. Vascular endothelial growth factor also plays a role in neuronal tissue 
disruption and increases the permeability of the blood brain barrier via the synthesis 
and release of nitric oxide. Figure 2.1 depicts the neuropathology of the primary 
injury after traumatic brain injury.

Damage brain vasculature Damage cells

Acute inflammationIschemia Intracranial hypertension

BBB permeability
increases

Edema

Primary brain trauma

Necrosis/ apoptosis

Hemorrhage

Fig. 2.1  Sequential events of the primary injury in traumatic brain injury. Initial impact is usually 
by direct trauma to the head either open or closed head injury. This trauma causes mechanical dam-
age to neurons, axons, glia, and blood vessels by shearing, tearing or stretching. Blood vessel 
ruptures cause hemorrhage. Even in unruptured blood vessels, the permeability of blood brain 
barrier increases resulting in edema. Hemorrhage and edema often lead to intracranial hyperten-
sion. Following hemorrhage, ischemia could occur in brain tissue. Traumatic brain injury caused 
cell damage induces macrophage and lymphocytes migrant to the injury site releasing inflamma-
tory mediators that triggers a cascade of events towards necrosis and/or apoptosis. Necrosis and/or 
apoptosis also can be a consequence of hemorrhage and ischemia
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2.2.2  �Secondary Injury After Traumatic Brain Injury

The secondary events are a complex association of the inflammatory response initi-
ated by the trauma leading to diffuse neuronal degeneration of neurons, glial, axonal 
tearing, and genetic predisposition (Fig. 2.2). Furthermore, excitatory amino acids 
release, oxygen radical reactions, and nitric oxide production lead to the activation 
of N-methyl-D-aspartate, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic 
acid, alpha-7 nicotinic receptor (α7), and nicotinic acetylcholine receptor (Hinzman 
et al. 2012; Goforth et al. 2009; Kelso and Oestreich 2012) and subsequent calcium 
influx. All these cascades of events cause mitochondrial disruption and free radical 
release with eventual tissue peroxidation. One theory is that excitatory amino acid 
release leads to calcium influx into neurons and other brain cells which promote 
oxygen free radical reactions. High calcium and the presence of free-radical mole-
cules create an unstable environment in the brain cells that lead to increased 

Traumatic brain
injury, ongoing
degenerative

changes

Depolarisation
from glutamate

release 

Microglia
activationCell injury

NMDA, AMPA, α7,
nACR activation,

oxidative stress, ROS
formation, proteolytic 

enzyme release,
liberation of free fatty
acids, phospholipid

production, abnormal
prostaglandin

Fig. 2.2  Sequential events of the secondary injury in traumatic brain injury. This includes variety 
of processes, such as depolarization, disruption of ionic homeostasis and release of neurotransmit-
ters, lipid degradation, and oxidative stress. These events are a result of interaction between the 
excitatory amino acids released with an influx of oxygen free radicals that ultimately set up 
N-methyl-D-aspartate, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid, α7 and nico-
tinic acetylcholine receptor to sustain the unstable environment for cell injury and degenerative 
changes
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production and release of nitric oxide and excitatory amino acids, such as gluta-
mate. Nitric oxide participates in oxygen radical reactions and lipid peroxidation in 
neighboring cells (Stoffel et  al. 2001). A summary of the secondary injury after 
traumatic brain injury is shown in Fig. 2.2. The secondary injury plays a major role 
in the outcome of traumatic brain injury. Therapeutic interventions should target 
this phase as it is the major determinant of morbidity and mortality in traumatic 
brain injury (Nawashiro et al. 1994). Clinically, the application of stem cell therapy 
early to patients with traumatic brain injury is ethically challenging because of the 
difficulty in obtaining informed consent immediately following the brain injury. 
Genes implicated to influence the outcome of traumatic brain injury include apoe, 
comt, drd2, ace, and cacna1a. Apoe multifactorially affects the clinicopathological 
consequences of traumatic brain injury (Potapov et al. 2010). Apoe is associated 
with increased amyloid deposition, amyloid angiopathy, larger intracranial hemato-
mas, and more severe contusional injury. Comt and drd2 are genes which influence 
dopamine-dependent cognitive and behavioral processes, such as executive or fron-
tal lobe functions. The ace gene affects traumatic brain injury outcome via altera-
tion of cerebral blood flow and/or autoregulation. The cacna1a gene exerts an 
influence via the calcium channel pathways and its effect on delayed cerebral edema 
(Jordan 2007). Increased signal transducers and activator of transcription 3 signal-
ing has been reported in a rodent model of traumatic brain injury (Oliva et al. 2012). 
Although several potential genes that may influence the outcomes following trau-
matic brain injury have been identified, future investigations are needed to validate 
these genetic studies, and identify new genes that might contribute to the patient 
outcomes after traumatic brain injury.

2.3  �Current Pharmacotherapy for Traumatic Brain Injury

Pharmacotherapies aim at promoting neurorepair, neuroregeneration, and neuropro-
tection following traumatic brain injury. Clinical trials evaluating these interven-
tions apply standardized clinical outcome measures to demonstrate efficacy. In the 
past, drug research and development for traumatic brain injury focused on limiting 
secondary brain injury after the initial traumatic event because of lacking evidence 
that the central nervous system could be repaired or regenerated. Growing body of 
evidence indicates that the adult brain can be repaired and regenerated after trau-
matic brain injury. Potential drug targets for post-traumatic injury brain repair 
include angiogenesis, axon guidance and remodeling, remyelination, neurogenesis, 
and synaptogenesis. Pharmacotherapies may also target brain regeneration by 
enhancing the capacity of pluripotent cells to differentiate into neurons, glia, and 
vascular endothelium (Jin et al. 2011; Valable et al. 2010; Xiong et al. 2008a, 2010a; 
Yatsiv et al. 2005; Zhang et al. 2009, 2010). Brain repair and regeneration processes 
can be activated or enhanced by pharmacotherapy over a longer therapeutic window 
than pharmacologic interventions designed to limit injury. Pharmacotherapies are 
potentially effective in the acute, subacute, post-acute, and chronic phases after 

2  Stem Cell Therapy in Traumatic Brain Injury
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traumatic brain injury. Thus, repair and regeneration therapies have the potential 
advantage of being effective over a prolonged period of time following traumatic 
brain injury.

Currently, no effective pharmacologic agent has received approval from the 
U.S.  Food and Drug Administration for the treatment of patients with traumatic 
brain injury. Table 2.1 lists candidate compounds currently undergoing clinical eval-
uation for traumatic brain injury treatment. Because traumatic brain injury damages 
the brain tissue by multiple mechanisms, combination therapy designed to simulta-
neously target multiple mechanisms of injury is likely required. To date, all phase 
II/III traumatic brain injury clinical trials have failed (Xiong et al. 2012; Watanabe 
et al. 2013). Stem cell therapy offers an alternative option for traumatic brain injury.

2.4  �Stem Cell Therapy in Traumatic Brain Injury

There are at least two strategies involving stem cell therapy to repair injured brain 
tissue. They are transplantation of exogenous stem cells to replace damaged cells 
and stimulation of endogenous stem cells to proliferate to the number of cells 
needed and differentiate them to the phenotype of cells required for normalization 
of brain function.

2.4.1  �Transplantation of Exogenous Stem Cells in Traumatic 
Brain Injury

There is great number of attempts to transplant various types of cells, such as neu-
rons, and neural stem cells to repair damaged brain tissue. The main objectives of 
transplantation experiments are (1) growth facilitation: the transplant fills the lesion 
site and serves as a cellular bridge; (2) new neurons: the transplant can provide new 
neurons, which in turn provide new targets and sources of innervations and thus 
repair the damaged neural circuits; (3) factor secretion: the transplant can produce a 
variety of substances, such as neurotrophic factors, that promote the brain tissue 
repair process (Barami and Diaz 2000). Several characteristics of neural stem cells 
make them potentially suitable to repair damaged brain tissue after traumatic brain 
injury. Firstly, they can serve as a renewable supply of transplantable cells by clonal 
expansion in cell culture. Secondly, they are of central nervous system origin and 
the stem cells generated from the grafts have neural characteristics. Thirdly, neural 
stem cells can be manipulated by genetic engineering methods to produce specific 
proteins, such as neurotrophins, neurotransmitters and enzymes (Pincus et al. 1998).

It has been reported that autologous cultured cells harvested at time of emer-
gency surgery from patients with traumatic brain injury, and subsequently engrafted 
into damaged part of the brain can be detected using magnetic resonance imaging 
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1. Advance knowledge
in the mechanism of

stem cell differentiation

2. Enhance industrial
involvement in stem

cell therapy 

3. Participation  in
clinical trials

4. Fast track
approval  for
clinical trials

5. Developing
biomarkers  for

clinical follow-up and
monitoring treatment

outcomes 

6.  Comprehensive
assessment

system for clinical
trials

1. Identify health need,
research focus and

evidence based medicine

2. Health
communication and

dissemination  

3. Train and retrain
researchers in the
field of stem cells

4. Overcome health
disparities and

develop strategies to
improve monitoring 

5. Recommendations
and guidelines

Adoption of
recommendations 

6. Public

a

b

Fig. 2.3  (a) Proposed schema for effective translation of stem cells to therapy in traumatic brain 
injury involving concerted effort of multilevel strategies of six main stakeholders. (b) Proposed 
framework for the reinforcement of the multilevel strategies effective bench to bedside translation 
of stem cells to therapy in traumatic brain injury
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(Nakamura et al. 2003). The efficacy of transplantation largely depends on a graft-
ing method that optimizes the survival of the transplanted stem cells and minimizes 
the graft-induced lesion. Most transplantation studies involved intraparenchymal 
injection into the central nervous system, in which cells were grafted directly into or 
adjacent to the lesion (Chow et al. 2000; Cao et al. 2001; Jendelová et al. 2004). The 
optimal time for transplantation may not be immediately after injury. The levels of 
various inflammatory cytokines (tumor necrosis factor alpha, interleukin-1α, 
interleukin-1β and interleukin-6) in the injured brain peak 6–12 h after injury and 
remain elevated until the 4th day. Although these inflammatory cytokines are known 
to have both neurotoxic and neurotrophic effects, they are believed to be neurotoxic 
within a week after injury, which causes the microenvironment to be unsuitable for 
survival of the grafted stem cells (Zhu et  al. 2006). However, if too much time 
passes after the injury, glial scar forms a barrier surrounding the lesion site and 
inhibits revascularization of the graft preventing local blood circulation which is 
needed for graft survival. Thus, it is considered those 7–14 days after traumatic 
brain injury is the optimal time for stem cell transplantation (Ogawa et al. 2002; 
Okano et al. 2003).

2.4.2  �Stimulation of Endogenous Neural Precursor Cells 
in Traumatic Brain Injury

Endogenous neurogenesis has been identified in adult brain (Luskin et  al. 1996; 
Alvarez-Buylla et al. 2000). In adult rodent brain, neural stem cells migrate from 
ventricular zone to the olfactory bulb and integrate into the neuronal network. This 
is called the rostral migratory stream. However, the potential success of stimulating 
endogenous neural precursor cells is hinged on delivery of various growth factors. 
This is the most common way to stimulate neural precursor cells. The following 
growth factors are needed to stimulate neural precursor cells: epidermal growth fac-
tor, fibroblast growth factor-2 (Martens et al. 2002; Kojima and Tator 2000, 2002), 
basic fibroblast growth factor (Rabchevsky et  al. 2000), acidic fibroblast growth 
factor (Lee et  al. 2004), brain-derived neurotrophic factor (Namiki et  al. 2000; 
Wang et al. 2013), vascular endothelial growth factor (Sharma 2003; Chang et al. 
2013), nerve growth factor, neurotrophin-3 (Namiki et al. 2000; Widenfalk et al. 
2003), glial cell line-derived neurotrophic factor (Iannotti et al. 2004), insulin-like 
growth factor-1 (Sharma 2003), and stromal cell-derived factor-1 alpha (Imitola 
et  al. 2004). They were administrated by intraventricular (Martens et  al. 2002), 
intraparenchymal (Namiki et  al. 2000; Sharma 2003) or intrathecal (Kojima and 
Tator 2000, 2002; Rabchevsky et al. 2000; Iannotti et al. 2004) injection. They were 
reported not only to enhance the proliferation, migration and gliogenesis of neural 
precursor cells (Martens et al. 2002; Kojima and Tator 2000, 2002; Imitola et al. 
2004) but also to protect the spinal cord from further damage (Sharma 2003; 
Widenfalk et al. 2003). In addition, these growth factors facilitate the regrowth of 
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axons and remyelination (Lee et al. 2004; Namiki et al. 2000; Gensert and Goldman 
1997). Functional recovery has been reported after growth factors were delivered 
into injured spinal cord (Martens et al. 2002; Kojima and Tator 2000, 2002; Lee 
et  al. 2004). However, the mechanisms of functionary recovery by stimulating 
endogenous neural precursor cells are not fully understood.

In addition to growth factors, other molecules are shown to stimulate endoge-
nous neural precursor cells. Proliferation of endogenous neural precursor cells was 
demonstrated when the sodium channel blocker, tetrodotoxin and the glycoprotein 
molecule, sonic hedgehog were injected into the parenchyma (Rosenberg et  al. 
2005; Bambakidis et al. 2003). It has been reported that cognate chemokine recep-
tor type 4 expressed by neural precursor cells can regulate their proliferation and 
direct their migration towards the injury site (Imitola et al. 2004). In addition, anti-
bodies blocking interleukin-6 receptors were reported to not only inhibit differentia-
tion of endogenous neural stem cells into astroglia in vivo and in vitro, but also to 
promote functionary recovery (Okada et al. 2004; Nakamura et al. 2005). The func-
tionary recovery is resulting from blocking interleukin-6 and consequently inhibit-
ing the formation of glial scars and promoting axonal regeneration (Okada et al. 
2004; Okano et al. 2005). Notably, studies of ATP-binding cassette (ABC) trans-
porters have emerged as a new field of investigation. ATP-binding cassette trans-
porters, especially ATP-binding cassette sub-family A member 2, ATP-binding 
cassette sub-family A member 3, ATP-binding cassette sub-family B member 1, and 
ATP-binding cassette sub-family G member 2, play an important role in prolifera-
tion and differentiation of neural stem cells (Lin et al. 2006; Eckford and Sharom 
2006; Leite et al. 2007; Li et al. 2007; Saito et al. 2007; Tamura et al. 2006).

In contrast to transplantation of exogenous neural precursor cells, stimulation of 
endogenous neural precursor cells to repair damaged spinal cord has three main 
advantages: (1) there is no ethical issue involved in human embryonic stem cells, 
(2) it is usually less invasive since no surgical procedure required, and (3) no 
immunogenicity, which avoids immunorejection that observed in the transplanta-
tion of exogenous neural precursor cells (Mohapel and Brundin 2004). Similar to 
the transplantation studies of adult neural precursor cells in spinal cord injury, no 
neurogenesis has been reported from the stimulation of endogenous neural precur-
sor cells. It has been reported that up-regulation of the Notch signal pathways leads 
to poor neuronal differentiation (Yamamoto et al. 2001). The increased levels of 
various cytokines within the microenviroment surrounding the area of injury cause 
a lack of trophic support for differentiation of neural precursor cells into neuronal 
lineage (Okano et al. 2003; Frisén et al. 1995; Johansson et al. 1999; Widenfalk 
et al. 2001).

Recently, more attention has been drawn to cAMP response element binding 
protein/p300-phosphorylated Smad protein complex. It was found that cAMP 
response element binding protein/p300-phosphorylated Smad protein complex can 
be bound in neural stem cells, which determines the differentiation of neural stem 
cells. If the complex is bound with phosphorylated signal transducers and activator 
of transcription 3, the neural stem cells differentiate into astroglia lineage cells. On 
the other hand, if the complex is bound with proneural-type of the basic 
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helix-loop-helix factor, such as neurogenin 1 and 2, they differentiate into the neu-
ronal lineage (Okano et al. 2005; Sun et al. 2001; Nakashima et al. 1999). Apart 
from that, SOX gene may also play an important role in neural differentiation 
(Pevny and Placzek 2005). Once neural stem cells decide to differentiate into neu-
ronal lineage, a cascade of hundreds of genes is regulated over time to lead the 
immature neuron into its mature phenotype. Many of these neural genes are con-
trolled by RE1-silencing transcription factor. RE1-silencing transcription factor acts 
as a repressor of neural genes in non-neural cells, while regulation of RE1-silencing 
transcription factor activates large networks of genes required for neural differentia-
tion (Gage and McAllister 2005; Ballas et al. 2005; Ballas and Mandel 2005).

2.5  �Bench to Bedside Translation of Stem Cell Therapy 
in Traumatic Brain Injury

The main purpose of state-of-the-scientific studies is to translate our discoveries 
into daily clinical practice. The basic research laboratory takes its observations 
obtained at molecular or cellular levels in a cutting edge state and implements this 
into acceptable clinical practice to the benefit of the public. However, this is always 
met with a lot of challenges, such as ethics, governmental regulations, funding con-
straints, paucity of adequate collaboration among clinical and basic scientists, and 
the challenges during conducting clinical trials. From the identified gaps in the cur-
rent state of the stem cell science and inherent challenges faced by the field, the 
author proposes six point schema for improving bench to bedside translation of 
stem cell therapy in Fig. 2.3a involving a rigorous network of six stakeholders: basic 
researchers, pharmaceutical companies, patients or general public participating in 
clinical trials, regulatory bodies or government agencies for providing research 
grant approval, collaborative research between basic and clinical scientists with the 
plan of developing biomarkers for potential drug targets and creating a concerted 
network of groups that identifies some of the medical problems relating to traumatic 
brain injury. Patients with moderate traumatic brain injury who suffer long-term 
complications are a major unmet medical need. Within our capabilities to clinically 
assess improvement, historically, the majority of individuals with moderate trau-
matic brain injury are likely to recover to their pre-injury state. Early identification 
of those individuals likely to experience long-term complications is essential to 
maximize benefit of stem cell therapy. Strategies to delineate this population from a 
larger population of individuals with moderate traumatic brain injury could include 
enrollment of patients with persistent symptoms 1–2 weeks after injury, because 
recovery is most rapid in the first few days. Patients who are unlikely to fully recover 
could be identified using prognostic biomarkers including neuroimaging, biochemi-
cal, and objective clinical measures. Prognostic biomarkers are defined by the 
U.S. Food and Drug Administration as indicators that inform the natural history of 
a disorder in the absence of a therapeutic intervention (Drug Administration 2010). 
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Although identifying individuals with traumatic brain injury who are most likely to 
respond to stem cell therapy and evaluating the biologic response to the therapy are 
essential for successful clinical trials, the ability to do either is lacking. Predictive 
biomarkers of stem cell therapeutic response are needed to address this challenge. 
Predictive biomarkers are baseline characteristics that identify individuals by their 
likelihood to respond to a stem cell therapy and may include biochemical markers 
including oxidative stress, inflammation, neuronal, and glial integrity, molecular 
imaging with positron emission tomography, or functional imaging with functional 
magnetic resonance imaging. By identifying patients who are most likely to respond 
to stem cell therapy, the appropriate population can be selected for enrollment in 
clinical trials. Identifying specific predictive biomarkers would decrease the sample 
size needed to power clinical trials, thus decreasing risk to subjects, time to com-
plete accrual, and cost. Biomarkers are dynamic measurements that show a biologic 
response occurred after stem cell therapy, including neuroimaging to measure 
effects on neuroprotection, neurorecovery, and neuroinflammation, or biochemical 
biomarkers of oxidative stress, inflammation, and neuronal integrity. Clinical trials 
would greatly benefit from biomarkers, which allow for the measurement of the 
effect of the stem cell therapy on the putative mechanism of a specific phenotype of 
cell’s action, thus providing evidence of engagement of the target tissue by the ther-
apy. To achieve stem cell repair, regeneration and protection after traumatic brain 
injury, each of the six points identified is critical for advancing the field, and efforts 
to address the points should be conducted in parallel to ensure ultimate success in 
improving clinical care and outcomes for individuals with traumatic brain injury. 
We are still faced with the need to formulate hypothesis both at experimental and 
clinical epidemiologic level and implementing these into clinical practice while the 
translational researchers serve to collaborate and coordinate all these strategies to 
yield rapid results.

Indeed, communication and dissemination shown in Fig. 2.3b which is patient 
centredness will not only impact on the public, but will also help to tame the ethical 
issues in this field. Communication will involve both patients and clinicians involve 
in conducting randomized clinical trials. With strong feedback on outcomes, phar-
macovigilance, and health promotion. Education of the populace in form of scien-
tific advocacy is so paramount as this will impact on improved scientific 
collaboration, quality public control, and increased transparency among researchers 
and may improve funding of research work (Keramaris et al. 2008).

Research in neural stem cells is still a grey area and much knowledge needs to be 
gained at the bench in order to actually close the knowledge gaps in stem cell ther-
apy. There is inadequate understanding of the secondary brain injury process after 
traumatic brain injury, insufficient preclinical testing in diffuse axonal injury mod-
els, species differences, and lack of understanding of the mechanism of drug-
receptor interactions. It has been suggested the need to use gyrencephalic models 
for proper translation of stem cell therapy in traumatic brain injury (Loane and 
Faden 2010). Academic and biotech researchers should address how to make their 
stem cell therapy products more feasible for commercial-scale production (Eaker 
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et al. 2013). There is need for increased linkages and networking between academi-
cian, researchers, and clinician for greater reward of what is being generated.

Methodological disparities between experimental models of traumatic brain 
injury and clinical studies cannot be overemphasized. The intent to treat models, 
differences in statistical analysis as a result of different sample size, and different 
behaviours between human and animals. Animal research is a rapid, well-controlled, 
and cost-effective means to initially verify hypothesis. However, limitations exist in 
animal models of traumatic brain injury and their application in stem cell therapy. 
First, because no single animal model accurately mimics all of the features of human 
traumatic brain injury, individual investigators have appropriately refined experi-
mental approaches to better fit their specific research goals. However, the resulting 
variability in experimental approaches among studies makes comparison of results 
across laboratories and models difficult, limiting the confidence that results can be 
translated into successful clinical trials. Advancing preclinical research in animal 
models requires that results are comparable across studies and can translate into 
human studies. This requires standardization of available animal models and intro-
duction of new models when scientifically necessary. Second, some of the popular 
current models do not correspond well with the human condition. Injury severities 
in animals differ from humans; while they are well defined in animals, it could take 
any direction in human. Third, preclinical studies should use the same level of rigor 
required for clinical trials. Specifically, assignment of animals to treatment condi-
tions should be randomized, assessments must be conducted by blinded examiners, 
the primary outcome measure must be pre-determined, and statistical assessment of 
secondary outcome measures should utilize appropriate corrections for multiple 
comparisons. Fourth, the transplantation of stem cells into animal models should 
mimic the timing, delivery route, and equivalent mass of cells feasible in humans. 
Last, the neurobehavioral outcome measures most widely used in preclinical mod-
els are not sufficiently sensitive to long-term behavioral and cognitive deficits, and 
more sensitive rodent behavioral tasks that discriminate injury severity beyond 12 
weeks after injury are needed. The need to improve study quality score has recently 
being called for by stroke therapy academic industry roundtable, which was recently 
updated and this include the following recommendations: (1) Elimination of ran-
domizations and assessment bias, (2) Use of a priori definitions of inclusion/exclu-
sion criteria, (3) inclusion of appropriate power and sample size calculations, (4) 
full disclosure of potential conflict of interests, (5) evaluation of therapies in male 
and female animals across the spectrum of ages, and with comorbid conditions, 
such as hypertension and/or diabetes. Furthermore, some researchers has expanded 
on these proposed recommendations for improved clinical trials in brain injury with 
special focus on neuroprotective therapies in traumatic brain injury (Loane and 
Faden 2010; Fisher et al. 2009). Nonadherence was the single most important deter-
minant of trial failure in the past.

Finally, the International Mission on Prognosis and Clinical Trial Design in trau-
matic brain injury proposed ways of overcoming the above disparities and chal-
lenges. The recommendations include a robust inclusion criteria and 
recommendations for general research in traumatic brain injury (Loane and Faden 
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2010). The six point schema is an overview recommendation with the public, patient 
or the society as the core and the fulcrum of all activities of research and if imple-
mented may yield quality research outcome in neural stem cells therapy in traumatic 
brain injury (Ugoya and Tu 2012).

2.6  �Conclusion

Mortality and long-term disability from traumatic brain injury is projected to rise 
globally. Neural stem cell therapy is a strategy that offers hope for the future in 
treatment of brain injury. In addition, we are now able to monitor autologous neural 
stem cells in vivo, cell migration, and clearly demonstrate that neural stem cells 
could selectively target injured brain or spinal cord tissue and undergo neurogene-
sis. Finally, the proposed six points cyclical schema should be implemented with 
determined effort of all stakeholders for effective bench to bedside translation of 
neural stem cell therapy in traumatic brain injury.
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Chapter 3
Stem Cells in Alzheimer’s Disease Therapy

Atipat Patharagulpong

3.1  �Introduction

Alzheimer’s disease (AD), the most prevalent form of dementia (60–70 % of cases) 
(Burns and Iliffe 2009; World Health Organization 2012), is a terminal neurodegen-
erative disease, leading to a life expectancy of 3–9 years after diagnosis (Todd et al. 
2013). As neural loss occurs over time, the early symptoms begin with short-term 
memory loss, clumsiness, and depletion of language competency. The disease then 
progresses to long-term memory impairment, mood swings, disorientation, and loss 
of motivation, with the final stage leaving the patient with emotional apathy, loss of 
speech (Frank 1994), extreme exhaustion, and an inability to perform daily tasks as 
a result of mobility deterioration (Förstl and Kurz 1999). The current number of AD 
and related dementia cases is estimated to be 46.8 million worldwide in 2015 while 
the cost is estimated $818 billion, 1.09 % of the global domestic product (Prince 
et al. 2015). AD is therefore a major burden to patients and society (Meek et al. 
1998), and the therapeutic strategy to tackle the disease is required as soon as 
possible.

There are major challenges in defeating AD. First of all, the disease itself is dif-
ficult to diagnose in its early stages as it requires at least 8 years for a patient to 
develop full AD symptoms. The patient is normally given a behavioral and cognitive 
test, as well as a physical examination, to identify the disease (Scott and Barrett 
2007). However, these are still not 100 % accurate as the disease shares traits with 
other cerebral pathologies (The dementias: hope through research 2013). The use of 
medical imaging could exclude other symptom-related diseases (Weiner 2009), but 
the cost and worldwide accessibility of the procedure are still problematic, leading 
to additional delay to the disease detection. Furthermore, the multifactorial and 
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complex nature of AD creates difficulties in therapeutic development (Carreiras 
et al. 2013), as one particular drug could not entirely cure the whole range of symp-
toms posed by the disease. The current drugs also cause various side effects in the 
long term and often fail to cure late stages of the disease as a result of excess cortical 
neural loss (Golde et al. 2011). Stem cell therapy which can be used to differentiate 
stem cells into different neuronal types and replenish significant neural loss in the 
later stage of the disease is therefore a major candidate for the therapeutic strategy 
of AD.

AD could be subdivided into two categories. The early-onset or familial type 
(fewer than 5 % of the cases) is found in people younger than 65 years old, whereas 
the 65 and older demographic predominates for the late-onset or non-familial case 
(Blennow et  al. 2006). Even though the symptoms of both diseases subtype are 
similar, the molecular pathophysiology is quite different. The responsible patho-
genic molecules and the drugs targeting them, in addition to the reason for stem cell 
therapy being more desirable than the current pharmaceutical approach, will be 
discussed in the next section.

3.2  �Pathogenesis of Alzheimer’s Disease and Drug Treatment

In general, patients with AD show significant neuronal and synaptic loss in different 
regions of the brain, including parietal and temporal lobes as well as the cingulate 
gyrus and parts of the frontal cortex (Wenk 2003). The level of neurotransmitters in 
the AD brain has significantly altered. This includes an increase in an excitatory 
neurotransmitter glutamate (Dong et al. 2009), which causes excitotoxicity and a 
decrease in an inhibitory neurotransmitter acetylcholine (Baskys 2006). 
Acetylcholine functions to modulate neuronal plasticity which is crucial in the 
building up and maintenance of memory, as well as arousal, reward and sustaining 
attention (Jones 2005). Therefore, its falling level in AD leads to memory loss and 
depression. The deficiency in acetylcholine production was once believed to be the 
main cause of AD development, however, this hypothesis was proven to be wrong 
as drugs, (e.g. donepezil), that inhibit acetylcholinesterase, the enzyme that breaks 
down acetylcholine, could only treat the symptoms but never halt the progression of 
the disease (Shen 2004). It is therefore concluded that the reduction in acetylcholine 
level is not the main cause but rather the result of the loss of neural tissue producing 
it (Wenk 2003).

With further studies, it has been identified that AD is mainly caused by protein 
misfolding. The first misfolded protein that is a hallmark of AD is beta-amyloid 
(Aβ), which is a peptide of 39–43 amino acids. In familial AD, 42 amino-acid Aβ 
(10 % of Aβ released from cells) (Maslow 2008) are mainly responsible for the early 
onset of the disease and are a major component of neuritic plaques (Fig. 3.1), while 
diffusible and less hydrophobic 40 amino-acid Aβ (90 % of Aβ released from cells) 
contribute only to later stages of AD pathology and are found mainly in cerebrovas-
cular plaque (Lue et al. 1999). These plaques are composed of insoluble amyloid 
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fibres, which are regularly arranged aggregates. The neuritic Aβ plaques are depos-
ited in extracellular site of cortical and hippocampal neurons of the AD brain 
(Sadigh-Eteghad et al. 2014). In the Aβ hypothesis, the Aβ plaque is believed to be 
the origin of the AD hallmark, which causes cytotoxicity by clogging up intercel-
lular communication, activating oxidative damage and immune response that elicits 
inflammation and microglial activation, ultimately proceeds to cellular apoptosis 
(Glass et  al. 2010) (Fig.  3.2). The higher production of Aβ42 in the familial AD 
results from mutations of the proteins in Aβ production pathway (Fig. 3.3). Amyloid 
precursor protein (APP), which anchors in the neuronal membrane, is cleaved by 
β-secretase to release soluble Aβ and γ-secretase to produce 42 or 40 amino acids. 
The mutation could occur at the secretase cleavage sites of APP, which causes the 
secretase to produce higher proportion of the longer Aβ42 (Mullan et  al. 1992). 
Another mutation could also occur at the catalytic subunit of the γ-secretase protein 
complex, which is encoded by presenilin1 (PS1) or presenilin2 (PS2), and result in 
the aggregated Aβ plaque production (Huang and Mucke 2012). The duplication of 
the APP gene by itself or by trisomy of chromosome 21 also elevates the amount of 
Aβ plaque in the brain (Goate et al. 1991; Prasher et al. 1998). Aβ plaque was found 
to involve in neurogenesis, the process where new neurons are generated from neu-
ral stem cells or neural precursor cells and migrates to the olfactory bulb or the 
hippocampus. This is important as immature neurons that migrate to the hippocam-
pus could mature into memory-related cholinergic neurons, the main population 
that is destroyed in AD. It is found that the proliferation and migration of neuronal 
progenitor cells were impaired in APP mutant mice or mice infused with Aβ 
(Haughey et al. 2002), therefore, familial AD could potentially result in reduction of 
neurogenesis.

In non-familial AD cases, which do not involve the APP processing gene muta-
tion, apolipoprotein (Apo)E4 is validated as the main genetic risk (Corder et  al. 

Fig. 3.1  Aβ plaques (arrowheads) and neurofibrillary Tau tangles (arrow) in AD brain stained 
with Bielschowsky silver stain (Nixon 2007)
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2013). ApoE is a protein involved with triglyceride-rich-lipoprotein catabolism 
which is encoded by three alleles into three isoforms: ApoE2, ApoE3, and ApoE4. 
ApoE, in general, catalyzes the breakdown of the fibrillary Aβ plaque. ApoE3 is the 
neutral form which is found mainly in non-patients, while the rarest form, ApoE2, 
with higher catalytic efficiency than ApoE3, could reduce the risk of AD (Farrer 
et  al. 1997). However in non-familial AD cases, allele ApoE4 is mostly present 
where the ApoE4 protein shows lower catalytic efficiency and poses a 20 times 
higher risk of AD (Jiang et al. 2008; Hauser and Ryan 2013).

There have been different attempts to cure AD by targeting Aβ production, aggrega-
tion, and removal. To reduce Aβ production, a drug containing γ-secretase inhibitor 
could be employed to halt the APP clipping, however it is shown to cause abnormalities 
in the gastrointestinal tract, spleen, and thymus in the rat model, as a resulting inhibition 
of Notch (multi-function signaling molecule) cleavage (Imbimbo and Giardina 2011). 
Furthermore, a drug such as R-flurbiprofen was also designed to reduce Aβ42 production 
by modulating the APP cutting of secretase into different fragments rather than Aβ42, 
however, this failed in Phase III trials. Another Phase III drug, Tramiprosate, was devel-
oped to block Aβ aggregation, but was halted as a result of high data variation among 
trials (Karran and Hardy 2014). Many vaccines composed of Aβ fragments to trigger 
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immune response, as well as natural antibodies, were developed to remove Aβ plaques 
from the brain (McLaurin et al. 2002). However, the treatment alone could not cure AD 
effectively in the later stage. For all these reasons, developing an effective Aβ medica-
tion with minimal side effects is still an outstanding challenge.

The second misfolded protein that is a hallmark of the AD is diffusible 
microtubule-associated protein Tau (Shin et al. 1991). Tau modulates the stability of 
the axonal microtubule by interacting with the tubulin protein, which is crucial for 
axon formation as well as maintaining cell structure and intracellular trafficking. In 
the Tau hypothesis, Tau is considered to be the primary cause of AD (Billingsley 
and Kincaid 1997). Tau in the AD brain is hyperphospohorylated: it aggregates to 
form oligomers and assembles into insoluble filaments and later tangles (Figs. 3.1 
and 3.3). The Tau tangle not only reduces affinity to tubulin binding but also seques-
ters the normal Tau, MAP1, and MAP2 from binding to tubulin itself. Sequestration 
of these proteins inhibits microtubule assembly and promotes its disassembly 
(Alonso et al. 1997). As a result, the microtubule transport is impaired. The synaptic 
transmission, which requires the trafficking of synaptic vesicles and ion channels to 
the distal part of the neuron, is consequently blocked and the synapses degenerate, 
resulting in cognitive impair (Thies and Mandelkow 2007) (Fig. 3.2). The hyper-
phosphorylation of Tau is believed to result from the upregulation of its kinase such 
as cdk5 and the downregulation of its phosphatase such as PP2A in the AD brain. It 
is also hypothesized that Aβ could promote Tau hyperphosphorylation by upregulat-
ing a Tau kinase GSK3β, however study suggested impaired APP proteolytic pro-
cessing, rather than Aβ accumulation, could promote this (Liu et al. 2006; Chabrier 
et al. 2012). Tau was also found to affect adult hippocampal neurogenesis by reduc-
ing the proliferation of stem/progenitor cells in dentate gyrus (Pristerà et al. 2013).

Currently, different Tau medications are still far from being complete, and are 
even less developed than Aβ medications. Most of the drugs target the hyperphos-
phorylation of Tau and its assembly (Brunden et al. 2009). However, the full treat-
ment of AD by targeting Aβ or Tau alone is still underwhelming. Stem cells have 
come to light as an alternative therapy of AD, as the differentiated neuronal cells 
could replace the AD affected neurons and potentially recover the patient’s brain to 
a normal state. The use of stem cells for AD therapy and the models used for its 
study will be discussed in the further sections.

3.3  �Animal Models in AD Therapy with Stem Cells

Even though the stem cell treatment for AD has not been initiated in human, experi-
ments in several animal models have validated its potential (Han et al. 2015). These 
models are mainly mice and rats since they are mammals and exhibit higher order 
brain functions like human. They have short lifespans of 1–3 years, allowing faster 
study of the disease progression, and their AD brains exhibit Aβ hallmark similar to 
humans (Webster et  al. 2014). Different types of rodent models were studied for 
stem cell transplantation, including natural age-induced rats, Aβ-infused rats, 
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chemically-induced rats, surgery-induced rats, and transgenic mice (Wang et  al. 
2015). An Aβ-infused rat is achieved by intra-ventricular injection of Aβ plaques into 
its cortex or hippocampus. Despite not showing similar pathological progression of 
the disease, the downstream AD effects involving inflammation, neuro- and synapto-
degeneration as well as motor and memory dysfunction are still present (Yun et al. 
2013). Other chemicals induced for hippocampal lesions were mainly neurotoxins 
such as kainic acid (Park et al. 2012a) and ibotenic acid (Lee et al. 2012), which are 
glutamate agonists and mediate excitotoxicity, or scopolamine (Safar et al. 2016), 
which also causes similar cholinergic neural loss. Surgery induction could be 
achieved by olfactory bulbectomy (Bobkova et  al. 2013) which demonstrate the 
main symptoms of AD type neurodegeneration, or fimbria fornix transaction (Gu 
et al. 2008), which shows similar neural loss effect in the basal forebrain of senile 
dementia patients. It is noticed that rats are preferred over mice in these models since 
they are physiologically, genetically, and behaviorally closer to human.

However, in transgenic models, mice are preferred over rats since the transgenic 
injection into more visible pronuclei through the more flexible pronuclear mem-
brane could be performed more easily (Charreau et  al. 1996). The transgenic 
approach was carried out by injecting a transgene composed of a coding region 
coupled to a promotor that drives expression into the pronuclei of one-cell staged 
embryo. Different gene modifications involved in Aβ or Tau pathways have been 
employed to create murine AD models. These include mutations of APP and PS1 
genes. Originally APP (Tg2576) with APP overexpression or PS1 (M146L muta-
tion) with PS1 overexpression alone was mutated in AD models, which showed 
similar Aβ deposition in AD. However the APP mutation did not exhibit taupathy 
(Goedert et al. 2006; Hsiao et al. 1996) despite the development of Aβ plaque and 
neurodegeneration (Kalback et  al. 2002), while the PS1 mutation did not show 
abnormal pathological AD plaques deposition despite having high levels of Aβ42 
(Chui et al. 1999). This suggests a single gene mutation could not elicit complete 
AD symptoms. Later on, the triple mutation model of APP, PS1, and Tau was devel-
oped, allowing restoration of the taupathy showing Aβ pathology similar to AD in 
the long term (Oddo et al. 2003). Even though the triple mutation model could be 
used to study the disease’s progression and inflammation as well as mitochondrial 
oxidative stress and dysfunction, was the progressive neurodegeneration in the hip-
pocampus and other neocortical areas is not prominent.

3.4  �Stem Cells as a Model to Study AD

Although rodent AD models have been developed to exhibit AD pathologies, the 
genetic discrepancies between rodents and humans still cause difficulties in terms of 
accurately modelling AD for full clinical implications. As an alternative, human 
stem cells could be differentiated into various cell types and used to examine the 
effect of AD molecular pathology. Examples of human stem cell sources include 
induced pluripotent stem cells (iPSCs) (Grskovic et al. 2011), which are generated 
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by reprogramming somatic cells such as blood, umbilical cord, skin, or fibroblast 
cells with four transcription factors: OCT4, SOX2, c-MYC, and KLF4. iPSCs were 
generated from AD patients with PS1 and PS2 mutations, and then further differen-
tiated into neurons. The neurons were found to produce more Aβ42 depositions: 
moreover, γ-secretase inhibitors and modulators could regulate plaque production 
(Israel et al. 2012). iPSC-derived neurons could therefore be a platform for develop-
ment of drugs against AD.

In order to evaluate the effectiveness of stem cell transplants, the stem cell model 
was also exposed to AD pathological molecules or genetically engineered to express 
ones. For example, human embryonic stem cells (hESCs), the pluripotent stem cells 
derived from the blastocyst stage of the embryo, engineered as an AD model to 
overexpress wild-type or mutant-human APP, were found to differentiate spontane-
ously into neural lineage, despite being cultured in standard hESC media. The 
N-terminal fragment of APP resulted from proteolysis was found to be critical to 
this effect, which could support the importance of AD-related molecules in stem 
cell differentiation and neurogenesis (Freude et  al. 2011). In another example, 
Neural precursor cells (NPCs), partially differentiated neuronal cells, were treated 
with Aβ40 or Aβ42 for 24 h; the former treatment, was found to increase the number 
of neurons significantly, whereas the latter increased astrocytes instead (Chen and 
Dong 2009). The forms of Aβ also affect neurogenesis in AD.  It was found that 
neural precursor cells proliferate significantly with soluble Aβ42 while fibrillar Aβ42 
reduces or does not affect neurogenesis (Heo et al. 2007). Therefore, eliminating 
fibrillar Aβ42 might be the key to yield a more effective stem cell therapy.

3.5  �The Use of Stem Cells in AD Therapy

Since significant numbers of AD drug development efforts have failed in late-phase 
clinical trials, other approaches including cell-based therapies have emerged as 
alternatives. The problems with conventional cell therapy occur because different 
neuronal systems with multiple neurotransmitter phenotypes are stochastically 
affected in AD, leading to difficulty in accurately targeting all affected areas. One 
way to potentially overcome this is to use neural stem cells (NSCs), the cells that 
could give rise to different cell types in neural lineage, which could migrate from 
injection sites to different areas in the brain, differentiate, and integrate into particu-
lar neuronal systems (Clarke et al. 2000) (Fig. 3.4). Due to their therapeutic poten-
tial, NSCs have been a significant focus in AD research in the recent decades.

•	 NSCs in AD therapy and their therapeutic effects

In murine AD models, NSCs from healthy mice were transplanted into trans-
genic AD hippocampi. The study showed that NSCs could migrate, differentiate, 
and integrate into the neural circuits where the cognitive function of the AD mice 
was found to be improving 2 years after transplantation, as a result of an increase of 
cholinergic neuron numbers (Yamasaki et al. 2007). The first effect of NSC was 
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believed to be its introduction of neurotrophin, a class of growth factor that induces 
survival, development, and functions of neurons. Neurotrophin is important in 
maintaining the strength and number of synapses which are crucial for synaptic 
plasticity and memory maintenance (Arancio and Chao 2007). Two main types of 
neurotrophin are brain-derived neurotrophic factor (BNDF) which is expressed in 
the cortex and the hippocampus, and nerve growth factor (NGF) which is also 
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Fig. 3.4  Diagram summarizing different cell sources used for Alzheimer’s disease therapy 
(Grskovic et al. 2011; Israel et al. 2012; Chen and Dong 2009; Marei et al. 2015; Kim et al. 2011; 
Brazel et al. 2003; Ma et al. 2013; Lee et al. 2009) (Aβ beta amyloid, AD Alzheimer’s disease, NPC 
Neural precursor cells, MGE medial ganglionic eminence, MSC mesenchymal stem cells, iPSC 
induced pluripotent stem cells, ESC embryonic stem cells, NSC neural stem cells, OEC olfactory 
ensheathing cells)
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expressed at the same regions and maintains survival and functions of cholinergic 
forebrain neurons (Kamei et al. 2007; Li et al. 2015; Lu et al. 2003). Neurotrophin 
production of NSCs is crucial in the treatment of AD, as it is shown that silencing 
of BDNF expression by shRNA in transplanted NSCs led to no improvement in 
synapse plasticity and cognitive functions (Blurton-Jones et al. 2009).

Other effects of NSCs in AD treatment were far less clear. NSCs were shown to 
improve endogenous neurogenesis and ischemia-induced axonal transport deficit in 
the cases of stroke (Jin et  al. 2011). Even though reduction in neurogenesis and 
axonal transport deficit are highly present in AD, these effects of NSCs in AD are 
still uncertain. Moreover, NSCs also showed an anti-inflammatory effect by reduc-
ing migrogliosis and pro-inflammatory cytokines TNF-alpha production (Ryu et al. 
2009). However, it is still not clear whether reducing inflammation produces a direct 
effect in the AD treatment.

•	 Genetic modifications in NSC therapy

NSCs could be genetically modified in different ways to enhance their effi-
ciency in AD treatment. First, to improve their survival and proliferation in graft-
ing, NSCs could be engineered to express higher levels of neurotrophin. For 
instance, human NSCs (hNSCs) derived from the 3–4 month-old fetal brain was 
engineered to express NGF or BDGF, which improves their survival and differen-
tiation into neurons and astrocytes as well as memory restoration when trans-
planted into ibotenic acid-lesioned rat hippocampus (Marei et al. 2015). Moreover, 
as with acetylcholine production along with the decrease in cholinergic neuron 
numbers decrease in AD, NSCs could be engineered to express choline acetyl-
transferase (ChAT), the enzyme responsible for acetylecholine synthesis. A study 
showed that memory function was improved with an increase in the acetylcholine 
level after transplantation (Park et al. 2012b). The approach of genetically modi-
fied NSCs to release small therapeutic molecules was proven to be more effective 
than drug administration as NSCs could sustain the release of the molecules in a 
longer term, whereby they could localize at the regions affected by the disease and 
eliminate its efficacy loss as a result of inefficient transport through different 
barriers.

Even though NSCs could improve synaptic plasticity and cognitive function, 
they do not affect the Aβ plaque or Tau tangle pathology. As the level of Aβ may also 
influence the differentiation of NSCs, supplementing NSCs with Aβ therapeutic 
ability could provide long-term benefits. Genetically modifying NSCs to express 
neprilysin, an enzyme that degrades Aβ, is likely to be a potential method for AD 
treatment in the future (Kim et al. 2011) (Fig. 3.4).

•	 AD therapy using other types of stem cells

Besides NSCs, other stem cell types including neural precursor cells, embryonic 
stem cells (ESC), and mesenchymal stem cells (MSCs) could also be potential cell 
sources for AD therapy (Fig. 3.4).

Neural precursor cells, the cells that specifically differentiate into neurons, are 
found in embryonic medial ganglionic eminence (MGE), which is a transitory struc-
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ture reside in the ventral ventricular zone of telencephalon where the progenitors 
originate and tangentially migrate during embryonic development (Brazel et  al. 
2003). These neural precursor cells are interneurons which produce acetylcholine as 
neurotransmitters and therefore have a role in the building of memory. It has been 
shown that MGE cells transplanted in the AD hippocampus could develop into 
mature interneurons, restoring memory and learning (Tong et  al. 2014). Human 
ESCs could be treated with 1000 ng/ml of Sonic Hedgehog (SHH), causing the cells 
to differentiate into MGE-like cells. Upon transplanting into murine AD models, the 
ESC-derived MGE-like cells can differentiate into GABA cholinergic neuron and 
improve the host’s cognitive function (Liu et al. 2013). Mouse ESCs could also be 
differentiated into NPC by the presence of growth factors such as NGF, SHH, and 
retinoic acid (RA). The cells then differentiated into cholinergic neurons when 
transplanted into the ibotenic acid-lesioned mice model, and showed improved 
memory recovery (Moghadam et al. 2009) (Fig. 3.4).

Apart from direct neural stem cell lines, MSCs, which are multipotent stromal 
cells that can differentiate into different cell types, were also shown to aid AD treat-
ment. These MSC are derived from bone-marrow, human umbilical cord blood 
(Kim et al. 2012), and adipose tissues (Ma et al. 2013). For example, bone marrowed-
derived MSCs were shown to reduce Aβ plaque deposition, tau hyperphosphoryla-
tion, and inflammation, as well as improving memory restoration in a transgenic 
murine AD model, where it was also suggested that the bone marrow derived MSCs 
could decrease Aβ plaque deposition. This suggestion leads to a belief that MSCs 
could contribute to AD therapy (Lee et al. 2009, 2010) (Fig. 3.4).

•	 Aiding stem cell therapy

In order to ensure successful neural restoration inside the brain, endogenous neu-
rogenesis must also be justified to recover neural populations in the long term. One 
of the compounds that aid this process is allopregnanolone, which was shown to 
improve learning and cognitive function in triple mutated AD mice. Allopregnanolone 
increases the activation and proliferation of neural precursor cells as well as microg-
lial cells, which are involved in neuroprotection (Wang et al. 2005). Another com-
pound, fluoxetine, an anti-depressant, also promotes endogenous neurogenesis in 
the AD hippocampal model by inducing neural differentiation and neural protection 
in the presence of Aβ without glial differentiation (Chang et al. 2012).

Co-culturing NSCs grafted with other cell types could also promote survival and 
proliferation of neurons in the AD model. For example, NSCs could be 
co-transplanted with olfactory ensheathing cells (OECs) from fetal or adult olfac-
tory bulb tissues. Such co-transplantation could promote the function of neurons 
significantly by improving the axonal transduction (Srivastava et al. 2009) (Fig. 3.4).

•	 Challenges in stem cell therapy of AD

Even though stem cell therapy has shown quite promising results in different 
studies, there has been a concern regarding immune rejection of the donor cells by 
the patient’s tissues. The human leukocyte antigen haplotype of the donor cells must 
at least match with the recipients, who are required to take immunosuppression drug 
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to prevent the immune rejection (Chinen and Buckley 2010). The solution could 
potentially be the using of the patients’ own NSCs which are limited in numbers, or 
iPSCs which may take relatively long time to successfully reprogramme and expand 
for the AD treatment. Other challenges may arise from the manufacturing of the 
stem cells in clinical use (Dunnett and Rosser 2014). These include variability of 
donor cells and their reprogramming methods, which may cause variations in their 
differentiation efficacy and clinical effects. Different clinical trials and control 
checkpoints must also be passed to ensure safe and ethical use of stem cell therapies 
and its commercial manufacture, which may take quite amount of time and budget 
to be completed.

3.6  �Conclusion

Stem cell therapy, with the aids of its technological advances and the knowledge 
derived from the studies of stem cell models, has marked a great potential in the 
treatment of AD. Various experiments with animal models have proven its success. 
Nevertheless, there are different challenges to overcome before it could be clinically 
implemented in the future.

Acknowledgement  This book chapter would not be completed without assistance of many peo-
ple. First of all, I would like to thank my PI, Dr. Yan Yan Shery Huang, for taking me into the group 
and letting me experience all these amazing scientific opportunities. I would also like to thank Dr. 
Chayasith Uttamapinant for the suggestion on the chapter improvement. Finally I would like to 
thank my parents, relatives, and friends, who have been great support throughout my scientific 
journey.

References

Alonso A, Grundke-Iqbal I, Barra HS, Iqbal K (1997) Abnormal phosphorylation of tau and the 
mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated 
proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci 
U S A 94(1):298–303

Arancio O, Chao MV (2007) Neurotrophins, synaptic plasticity and dementia. Curr Opin Neurobiol 
17:325–330

Baskys (2006) Receptor found that could lead to better treatments for stroke, Alzheimer’s disease. 
UCI Medical Center. Retrieved 4 Nov 2006

Billingsley ML, Kincaid RL (1997) Regulated phosphorylation and dephosphorylation of tau pro-
tein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. 
Biochem J 323(Pt 3):577–591

Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368(9533):387–403
Blennow K et al (2010) The amyloid cascade hypothesis of AD. Nat Reviews Neurol 6:131–144
Blurton-Jones M, Kitazawa M, Martinez-Coria H et al (2009) Neural stem cells improve cognition 

via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 
106:13594–13599

A. Patharagulpong



61

Bobkova NV, Poltavtseva RA, Samokhin AN, Sukhikh GT (2013) Therapeutic effect of mesenchy-
mal multipotent stromal cells on memory in animals with Alzheimer-type neurodegeneration. 
Bull Exp Biol Med 156(1):119–121

Brazel CY, Romanko MJ, Rothstein RP, Levison SW (2003) Roles of the mammalian subventricu-
lar zone in brain development. Prog Neurobiol 69:49–69

Brunden KR, Trojanowski JQ, Lee VM (2009) Advances in tau-focused drug discovery for 
Alzheimer’s disease and related taupathies. Nat Rev Drug Discov 8(10):783–793

Burns A, Iliffe S (2009) Alzheimer’s disease. BMJ 338:b158
Carreiras MC, Mendes E, Perry MJ, Francisco AP, Marco-Contelles J (2013) The multifactorial 

nature of Alzheimer’s disease for developing potential therapeutics. Curr Top Med Chem 
13(15):1745–1770

Chabrier MA, Blurton-Jones M, Agazaryan AA, Nerhus JL, Martinez-Coria H, LaFerla FM (2012) 
Soluble abeta promotes wild-type tau pathology in vivo. J Neurosci. 32(48):17345–17350. doi: 
10.1523/JNEUROSCI.0172-12.2012

Chang KA, Kim JA, Kim S, Joo Y, Shin KY, Kim S, Kim HS, Suh YH (2012) Therapeutic poten-
tials of neural stem cells treated with fluoxetine in Alzheimer’s disease. Neurochem Int 
61(6):885–891

Charreau B, Tesson L, Soulillou JP, Pourcel C, Anegon I (1996) Transgenesis in rats: technical 
aspects and models. Transgenic Res 5:223–234

Chen Y, Dong C (2009) Abeta40 promotes neuronal cell fate in neural progenitor cells. Cell Death 
Differ 16:386–394

Chinen J, Buckley RH (2010) Transplantation immunology: solid organ and bone marrow. 
J Allergy Clin Immunol 125(2 Suppl 2):S324–S335

Chui DH, Tanahashi H, Ozawa K et al (1999) Transgenic mice with Alzheimer presenilin 1 muta-
tions show accelerated neurodegeneration without amyloid plaque formation. Nat Med 
5(5):560–564

Clarke D, Johansson C, Wilbertz J, Veress B, Nilsson E, Karlstrom H, Lendahl U, Frisen J (2000) 
Generalized potential of adult neural stem cells. Science 288(5471):1660–1663

Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, 
Haines JL, Pericak-Vance MA (2013) Gene dose of apolipoprotein E type 4 allele and the risk 
of Alzheimer’s disease in late onset families. Science 261(5123):921–923

Dong XX, Wang Y, Qin Z (2009) Molecular mechanisms of excitotoxicity and the irrelevance to 
pathogenesis and neurodegenerative diseases. Acta Pharmacol Sin 30:379–387

Dunnett SB, Rosser AE (2014) Challenges for taking primary and stem cells into clinical neu-
rotransplantation trials for neurodegenerative disease. Neurobiol Dis 61:79–89

Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak-Vance 
MA, Risch N, van Duijn CM (1997) Effects of age, sex, and ethnicity on the association 
between apolipoprotein E genotype and Alzheimer disease. JAMA 278(16):1349–1356

Förstl H, Kurz A (1999) Clinical features of Alzheimer’s disease. Eur Arch Psychiatry Clin 
Neurosci 249(6):288–290

Frank EM (1994) Effect of Alzheimer’s disease on communication function. J S C Med Assoc 
90(9):417–423

Freude KK, Penjwini M, Davis JL, LaFerla FM, Blurton-Jones M (2011) Soluble amyloid precur-
sor protein induces rapid neural differentiation of human embryonic stem cells. J Biol Chem 
286(27):24264–24274

Glass CK, Saijo K, Winner B, Carolina M, Gage FH (2010) Mechanisms underlying inflammation 
in neurodegeneration. Cell 140(6):918–934

Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, 
Irving N, James L et al (1991) Segregation of a missense mutation in the amyloid precursor 
protein gene with familial Alzheimer’s disease. Nature 349(6311):704–706

Goedert M, Klug A, Crowther RA (2006) Tau protein, the paired helical filament and Alzheimer’s 
disease. J Alzheimers Dis 9(Suppl 3):195–207

Golde TE, Schneider LS, Koo EH (2011) Anti-Aβ therapeutics in Alzheimer’s disease: the need for 
a paradigm shift. Neuron 69:203–213

3  Stem Cells in Alzheimer’s Disease Therapy



62

Grskovic M, Javaherian A, Strulovici B et al (2011) Induced pluripotent stem cells--opportunities 
for disease modelling and drug discovery. Nat Rev Drug Discov 10:915–929

Gu HG et al (2008) Effect of neural stem cells transplantation on parvalbumin-positive neurons of 
the basal forebrain and abilities of learning and memory in a rat model of senile dementia. 
CRTER 12:2235–2239

Han F et  al (2015) Research progress in animal models and stem cell therapy for Alzheimer’s 
disease. J Neurorestoratol 3:11–22

Haughey NJ, Liu D, Nath A, Borchard AC, Mattson MP (2002) Disruption of neurogenesis in the 
subventricular zone of adult mice, and in human cortical neuronal precursor cells in culture, by 
amyloid beta-peptide: implications for the pathogenesis of Alzheimer’s disease. Neuromolecular 
Med 1:125–135

Hauser PS, Ryan RO (2013) Impact of apolipoprotein E on Alzheimer’s disease. Current Alzheimer 
Research. 10 (8):809–17. doi:10.2174/15672050113109990156. PMC 3995977free to read. 
PMID 23919769

Heo C, Chang K, Choi H et al (2007) Effects of the monomeric, oligomeric, and fibrillar Abeta42 
peptides on the proliferation and differentiation of adult neural stem cells from subventricular 
zone. J Neurochem 102:493–500

Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) 
Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science, 
274:99–102

Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 
148:1204–1222

Imbimbo BP, Giardina GA (2011) γ-secretase inhibitors and modulators for the treatment of 
Alzheimer’s disease: disappointments and hopes. Curr Top Med Chem 11(12):1555–1570

Israel MA, Yuan SH, Bardy C et al (2012) Probing sporadic and familial Alzheimer’s disease using 
induced pluripotent stem cells. Nature 482:216–220

Jiang Q, Lee CY, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, Mann K, Lamb B, Willson TM, 
Collins JL, Richardson JC, Smith JD, Comery TA, Riddell D, Holtzman DM, Tontonoz P, Landreth 
GE (2008) ApoE promotes the proteolytic degradation of Abeta. Neuron 58(5):681–693

Jin K, Xie L, Mao X et al (2011) Effect of human neural precursor cell transplantation on endog-
enous neurogenesis after focal cerebral ischemia in the rat. Brain Res 1374:56–62

Jones BE (2005) From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol 
Sci 26(11):578–586

Kalback W, Watson MD, Kokjohn TA et al (2002) APP transgenic mice Tg2576 accumulate Abeta 
peptides that are distinct from the chemically modified and insoluble peptides deposited in 
Alzheimer’s disease senile plaques. Biochemistry 41(3):922–928

Kamei N, Tanaka N, Oishi Y et al (2007) BDNF, NT-3, and NGF released from transplanted neural 
progenitor cells promote corticospinal axon growth in organotypic cocultures. Spine 
32:1272–1278

Karran E, Hardy J (2014) A critique of the drug discovery and phase 3 clinical programs targeting 
the amyloid hypothesis for Alzheimer disease. Ann Neurol 76(2):185–205

Kim JY, Kim DH, Kim JH et  al (2011) Soluble intracellular adhesion molecule-1 secreted by 
human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-beta plaques. 
Cell Death Differ 19:680–691

Kim JY, Kim DH, Kim JH, Lee D, Jeon HB, Kwon SJ, Kim SM, Yoo YJ, Lee EH, Choi SJ, Seo 
SW, Lee JI, Na DL, Yang YS, Oh W, Chang JW (2012) Soluble intracellular adhesion mole-
cule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amy-
loid-b plaques. Cell Death Differ 19:680–691

Lee JK, Jin HK, Bae JS (2009) Bone marrow-derived mesenchymal stem cells reduce brain 
amyloid-beta deposition and accelerate the activation of microglia in an acutely induced 
Alzheimer’s disease mouse model. Neurosci Lett 450(2):136–141

Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE, Bae JS (2010) Intracerebral transplantation of 
bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues 

A. Patharagulpong

http://dx.doi.org/10.2174/15672050113109990156


63

memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells 
28(2):329–343

Lee HJ, Lim IJ, Park SW, Kim YB, Ko Y, Kim SU (2012) Human neural stem cells genetically 
modified to express human nerve growth factor (NGF) gene restore cognition in the mouse 
with ibotenic acid-induced cognitive dysfunction. Cell Transplant 21(11):2487–2496

Li T et al (2015) Effect of brain-derived neurotrophic factor-pretreated neuron stem cell transplan-
tation on Alzheimer’s disease model mice. Int J Clin Exp Med 8(11):21947–21955

Liu F, Liang Z, Shi J, Yin D, El-Akkad E, Grundke-Iqbal I, Iqbal K, Gong CX (2006) PKA modu-
lates GSK-3β-and cdk5-catalyzed phosphorylation of tau in site- and kinase-specific manners. 
FEBS Lett 580(26):6269–6274

Liu Y, Weick JP, Liu H, Krencik R, Zhang X et al (2013) Medial ganglionic eminence-like cells 
derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol 
31:440–447

Lu P, Jones LL, Snyder EY et al (2003) Neural stem cells constitutively secrete neurotrophic fac-
tors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 
181:115–129

Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers 
J  (1999) Soluble amyloid β peptide concentration as a predictor of synaptic change in 
Alzheimer’s disease. Am J Pathol 155(3):853–862

Ma T, Gong K, Ao Q, Yan Y, Song B, Huang H, Zhang X, Gong Y (2013) Intracerebral transplanta-
tion of adipose-derived mesenchymal stem cells alternatively activates microglia and amelio-
rates neuropathological deficits in Alzheimer’s disease mice. Cell Transplant 22(Suppl 
1):S113–S126

Marei HE, Farag A, Althani A et al (2015) Human olfactory bulb neural stem cells expressing 
hNGF restore cognitive deficit in Alzheimer’s disease rat model. J  Cell Physiol 
230(1):116–130

Maslow K (2008) 2008 Alzheimer’s disease facts and figures. Alzheimers Dement 4(2):110–133
McLaurin J, Cecal R, Kierstead ME, Tian X, Phinney AL, Manea M, French JE, Lambermon 

MHL, Darabie AA, Brown ME, Janus C, Chishti MA, Horne P, Westaway D, Fraser PE, Mount 
HTJ, Przybylski M, St George-Hyslop P (2002) Therapeutically effective antibodies against 
amyloid-β residues 4–10 and inhibit cytotoxicity and fibrillogenesis. Nat Med 8:1263–1269

Meek PD, McKeithan K, Schmock GT (1998) Economic considerations in Alzheimer’s disease. 
Pharmacotherapy 18:68–73

Moghadam FH, Alaie H, Karbalaie K, Tanhaei S, Nasr Esfahani MH et al (2009) Transplantation 
of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves 
cognitive function in Alzheimerian rats. Differentiation 78:59–68

Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L (1992) A patho-
genic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta 
amyloid. Nat Genet 1(5):345–347

Nicolas M, Hassan AB (2014) Amyloid precursor protein and neural development. Development 
141:2543–2548

Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 
120:4081–4091

Oddo S, Caccamo A, Shepherd JD et al (2003) Triple-transgenic model of Alzheimer’s disease 
with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 
39(3):409–421

Park D, Joo SS, Kim TK, Lee SH, Kang H, Lee HJ, Lim I, Matsuo A, Tooyama I, Kim YB, Kim 
SU (2012a) Human neural stem cells overexpressing choline acetyltransferase restore cogni-
tive function of kainic acid-induced learning and memory deficit animals. Cell Transplant 
21(1):365–371

Park D, Lee HJ, Joo SS et al (2012b) Human neural stem cells over-expressing choline acetyltrans-
ferase restore cognition in rat model of cognitive dysfunction. Exp Neurol 234(2):521–526

Prasher VP, Farrer MJ, Kessling AM, Fisher EMC, West RJ, Barber PC et al (1998) Molecular 
mapping of Alzheimer-type dementia in Down’s syndrome. Ann Neurol 43:380–383

3  Stem Cells in Alzheimer’s Disease Therapy



64

Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M (2015) The world Alzheimer report. 
Alzheimer’s Disease International (ADI), London.

Pristerà A, Saraulli D, Farioli-Vecchioli S, Strimpakos G, Costanzi M, di Certo MG, Cannas S, 
Ciotti MT, Tirone F, Mattei E, Cestari V, Canu N (2013) Impact of N-tau on adult hippocampal 
neurogenesis, anxiety, and memory. Neurobiol Aging 34(11):2551–2563

Ryu JK, Cho T, Wang YT et al (2009) Neural progenitor cells attenuate inflammatory reactivity and 
neuronal loss in an animal model of inflamed AD brain. J Neuroinflammation 6:39

Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J (2014) Amyloid-
beta: a crucial factor in Alzheimer’s disease. Med Princ Pract 24:1–10

Safar MM, Arab HH, Rizk SM, El-Maraghy SA (2016) Bone Marrow-derived endothelial progeni-
tor cells protect against scopolamine-induced Alzheimer-like pathological aberrations. Mol 
Neurobiol 53(3):1403–1418

Scott KR, Barrett AM (2007) Dementia syndromes: evaluation and treatment. Expert Rev 
Neurother 7(4):407–422

Shen ZX (2004) "Brain cholinesterases: II. The molecular and cellular basis of Alzheimer’s dis-
ease. Med Hypotheses 63(2):308–321

Shin RW, Iwaki T, Kitamoto T, Tateishi J (1991) Hydrated autoclave pretreatment enhances tau 
immunoreactivity in formalin-fixed normal and Alzheimer’s disease brain tissues. Lab Invest 
64(5):693–702

Simic G et al (2016) Tau protein hyper phosphorylation and aggregation in Alzheimer’s disease 
and other taupathies, and possible neuroprotective strategies. Biomolecules 6(1):6

Srivastava N, Seth K, Khanna VK, Ansari RW, Agrawal AK (2009) Long-term functional restora-
tion by neural progenitor cell transplantation in rat model of cognitive dysfunction: co-
transplantation with olfactory ensheathing cells for neurotrophic factor support. Int J  Dev 
Neurosci 27(1):103–110

The dementias: hope through research (2013) NIH Publication no. 13–2252
Thies E, Mandelkow EM (2007) Missorting of tau in neurons causes degeneration of synapses that 

can be rescued by the kinase MAPK2/Par-1. J Neurosci 27(11):2896–2907
Todd S, Barr S, Roberts M, Passmore AP (2013) Survival in dementia and predictors of mortality: 

a review. Int J Geriatr Psychiatry 28(11):1109–1124
Tong LM, Djukic B, Arnold C, Gillespie AK, Yoon SY, Wang MM et al (2014) Inhibitory interneu-

ron progenitor transplantation restores normal learning and memory in apoE4 knock-in mice 
without or with Aβ accumulation. J Neurosci 34:9506–9515

Wang JM, Johnston PB, Ball BG, Brinton RD (2005) The neurosteroid allopregnanolone promotes 
proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and 
protein expression. J Neurosci 25(19):4706–4718

Wang Z, Peng W, Zhang C, Sheng C, Huanh W, Wang Y, Fan R (2015) Effects of stem cell trans-
plantation on cognitive decline in animal models of Alzheimer’s disease: a systematic review 
and meta-analysis. Sci Rep 5:12134

Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ (2014) Using mice to model 
Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioural 
changes in 10 mouse models. Front Genet 5:88

Weiner MW (2009) Editorial: imaging and biomarkers will be used for detection and monitoring 
progression of early Alzheimer’s disease. J Nutr Health Aging 13:332

Wenk GL (2003) Neuropathologic changes in Alzheimer’s disease. J Clin Psychiatry 64 Suppl 
9:7–10

World Health Organization (2012) Dementia Fact sheet no. 362
Yamasaki TR, Blurton-Jones M, Morrissette DA, Kitazawa M, Oddo S, LaFerla FM (2007) Neural 

stem cells improve memory in an inducible mouse model of neuronal loss. J  Neurosci 
27(44):11925–11933

Yun HM, Kim HS, Park KR, Shin JM, Kang AR, Lee KI, Song S, Kim YB, Han SB, Chung HB, 
Hong JT (2013) Placenta-derived mesenchymal stem cells improve dysfunction in an Aβ1-42-
infused mouse model of Alzheimer’s disease. Cell Death Dis 4, e958

A. Patharagulpong



65© Springer International Publishing Switzerland 2017 
P.V. Pham (ed.), Neurological Regeneration, Stem Cells in Clinical 
Applications, DOI 10.1007/978-3-319-33720-3_4

Chapter 4
Stem Cell-Based Approaches for Treatment 
of Glioblastoma

Erdogan Pekcan Erkan, Erden Eren, Sermin Genc, and Kemal Kursad Genc

Abbreviations

WHO	 World Health Organization
CBTRUS	 Central Brain Tumor Registry of the United States
MGMT	 O-6-methylguanine-DNA methyltransferase
NSC	 Neural stem cell
OPC	 Oligodendrocyte precursor cell
EGFR	 Epidermal growth factor receptor
PTEN	 Phosphatase tensin homolog
NF1	 Neurofibromin 1
PDGF	 Platelet-derived growth factor
PDGFR	 Platelet-derived growth factor receptor
IDH1	 Isocitrate dehydrogenase 1
GTR	 Gross total resection
TMZ	 Temozolomide
EBRT	 External beam radiation therapy
RTK	 Receptor tyrosine kinase
NSCLC	 Non-small-cell lung carcinoma
mTOR	 Mammalian target of rapamycin
TKI	 Tyrosine kinase inhibitor

E.P. Erkan • E. Eren • S. Genc 
Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University Health 
Campus, Inciralti, 35340 Izmir, Turkey 

Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus,  
Inciralti, 35340 Izmir, Turkey 

K.K. Genc (*) 
Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University Health 
Campus, Inciralti, 35340 Izmir, Turkey
e-mail: kkursadgenc@hotmail.com

mailto:kkursadgenc@hotmail.com


66

MSC	 Mesenchymal stem cell
5-FC	 5-fluorocytosine
OV	 Oncolytic virus
iPSC	 Induced pluripotent stem cell
Glis1	 Glis family zinc finger 1
ES cell	 Embryonic stem cell
MADM	 Mosaic analysis with double markers
shRNA	 Small hairpin RNA
BBB	 Blood-brain barrier
miRNA	 MicroRNA
KLH	 Keyhole limpet hemocyanin
CD::UPRT	 Cytosine deaminase::uracil phosphoribosyltransferase
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4.1  �Introduction

Glioblastoma (GB) is the most common and aggressive primary brain tumors in 
adults. A standard therapeutic approach for GB is maximal surgical resection fol-
lowed by radiotherapy and adjuvant chemotherapy (Carlsson et  al. 2014). 
Conventional treatments offer a modest increase in median survival in patients with 
GB, therefore the development of novel therapy is essential. Monoclonal antibodies 
and small-molecule inhibitors have been used in treatment of GB as novel targeted 
therapeutic agents (Prados et al. 2015). But, large number of different agents have 
failed to provide a significant improvement in survival of GB patients. Stem cells 
have been proposed as therapeutic tools for various diseases, including diabetes, 
neurodegenerative diseases, cardiovascular diseases, and cancer (Bovenberg et al. 
2013). Stem cells have become attractive carriers due to their tumor tropic proper-
ties (Aboody et al. 2000). In this chapter, we review the current state of knowledge 
about stem cell based GB therapy.

4.2  �Glioblastoma

4.2.1  �Epidemiology

Glioblastoma is the most aggressive and prevalent primary brain tumors in adults 
(Ricard et al. 2012). Glioblastoma, previously called glioblastoma multiforme (due 
to high diversity in tumor size and shape), is the most frequent type of malignant 
gliomas (approximately 80 %) (Omuro and DeAngelis 2013).

Glioblastoma multiforme (GBM), also known as grade IV GB, is the most com-
mon and aggressive form of Glioblastoma. Central Brain Tumor Registry of the 
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United States’s (CBTRUS) reported that age-adjusted incidence of glioblastoma is 
3.19/100,000 (Ostrom et al. 2013; Thakkar et al. 2014). Population-based studies 
have revealed that most of the tumors are located in the supratentorial region 
(Thakkar et al. 2014).

Glioblastoma has fatal outcome, and the mean duration of survival following 
diagnosis 12–15 months (Ostrom et al. 2013; Smoll et al. 2013). It has been shown 
that long-term survival in glioblastoma is associated with various clinical and bio-
logical parameters. In one of the pioneering population-based studies, Scott and 
colleagues have determined that younger age and lower Ki-67 values are associated 
with long-term survival, which is defined as survival equal to/exceeding 3 years 
(Scott et al. 1999). Later on, Krex and colleagues have found that long-term survi-
vors are likely to have hypermethylation in the promoter region of O-6-
methylguanine-DNA methyltransferase (MGMT) (Krex et al. 2007).

4.2.2  �Genetic Background

The exact origin of glioma has been debated for a long time. Traditionally, glial cells 
of the CNS –mainly astrocytes and oligodendrocytes – have been considered as the 
potential origin of glioma. To address this controversial question, Liu and col-
leagues have used an ingenious technique called mosaic analysis with double mark-
ers (MADM) to trace cell lineages that originate from neural stem cells (NSCs) (Liu 
et al. 2011). The authors have identified that inactivation of neurofibromin (NF1) 
and p53 genes lead to pretransformation and hyperplasia in only oligodendrocyte 
precursor cells (OPCs), and not in NSCs (Liu et  al. 2011). Moreover, they have 
determined that specific inactivation of these two tumor suppressor genes in OPCs 
also leads to formation of tumors, which are similar to NSC-derived tumors (Liu 
et al. 2011). These findings provide strong evidence for the potential origin of gli-
oma, and emphasize the importance of a specific cellular origin that allows tumor 
formation.

The high level of heterogeneity in glioblastoma is not limited to morphological 
features, but also extend to molecular features. Comprehensive genomic and tran-
scriptomic analyses have revealed the existence of four distinct molecular subtypes 
in glioblastoma: Neural, proneural, classical, and mesenchymal (Verhaak et  al. 
2010). Each subtype is defined by alterations in specific genetic signatures. For the 
classical subtype, the most common genetic alterations include amplification of 
chromosome 7, loss of chromosome 10, amplification of EGFR gene and corre-
sponding overexpression of EGFR mRNA, point and/or vIII mutation in EGFR, 
homozygous deletion of CDKN2A (encodes for p16INK4A and p14ARF) and lack 
of TP53 mutations (Verhaak et al. 2010). In case of mesenchymal subtype, the most 
characteristic alteration is the homozygous deletion of chromosome 17q11.2, which 
includes the NF1 gene. Other alterations include comutations of NF1 and phospha-
tase and tensin homolog (PTEN), and overexpression of genes involved in tumor 
necrosis factor (TNF) superfamily and NF-kB pathway (including TRADD, RELB, 
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TNFRSF1A) (Verhaak et al. 2010). The proneural subtype is characterized by ampli-
fication of chromosome 4q12 (including PDGFRA locus), and mutations in 
isocitrate dehydrogenase 1 (IDH1) gene (Verhaak et al. 2010). Additionally, high 
expression levels of oligodendrocytic development genes, including NKX2-2 and 
OLIG2, are also common in this subtype (Verhaak et al. 2010).

Pathway analyses of these vast numbers of genomic alterations have revealed 
three most affected key signaling pathways (Brennan et  al. 2013) (Table  4.1). 
Overall, PI(3)K/MAPK pathway is dysregulated in 90 % of cases, p53 pathway in 
86 % of cases, and Rb pathway in 79 % of cases (Brennan et al. 2013).

4.3  �Current Treatment Options for Glioblastoma

4.3.1  �Standard of Care

The standard therapy for Glioblastoma is maximal surgical resection followed by 
radiotherapy and adjuvant temozolomide (TMZ) chemotherapy. The feasibility of 
surgical resection depends on tumor size and location (Carlsson et al. 2014). Global 
tumor resection is recommended, mainly because it reduces symptoms and increases 
survival (Orringer et al. 2012).

Table 4.1  Overview of three dysregulated signaling pathways and their effector genes in 
glioblastoma

Pathway Gene(s) Type of alteration Frequency (%)

PI(3)K/MAPK EGFR Amplification/mutation 57
PDGFRA Amplification/mutation 10
MET Amplification/mutation 1.6
FGFR Amplification/mutation 3.2
PTEN Deletion/mutation 41
PIK(3)K Amplification/mutation 25
RAS Amplification/mutation 1
NF1 Deletion/mutation 10
BRAF Amplification/mutation 2

p53 p53 Deletion/mutation 28
MDM2 Amplification/mutation 7.6
MDM4 Amplification/mutation 7.2

Rb CDKN2A Deletion/mutation 61
CDKN2B Deletion/mutation
CDKN2C Deletion/mutation 5.6
CDK4 Amplification/mutation 14
CDK6 Amplification/mutation 2
Cyclins Amplification/mutation 1.6
RB1 Deletion/mutation 7.6

Adapted from Brennan et al. (2013)
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TMZ is a derivative of the dacarbazine, an alkylating agent, and exerts its anti-
neoplastic activity by alkylating/methylating guanine (G) residues on the DNA 
backbone. By creating DNA damage, it interferes with normal DNA replication, 
and when left unrepaired, it leads to cell death. Adjuvant TMZ treatment after radio-
therapy significantly improves survival of patients (Stupp et al. 2009). The benefit 
of TMZ treatment depends methylation status of MGMT gene, which abrogates the 
alkylating effect of TMZ. MGMT promoter methylation is a prognostic marker for 
TMZ response in Glioblastoma patients (Esteller et al. 2000; Hegi et al. 2005).

Radiotherapy aims to induce DNA damage (double-stranded breaks) to trigger 
apoptosis in tumor cells. In addition, radiosurgical methods, such as gamma knife, 
are used when the tumor size is relatively small (e.g. recurrent glioblastoma, when 
diagnosed early). Resistance to radiotherapy is quite common, and variant EGFR 
(EGFRvIII) is responsible from resistance to radiotherapy via inducing double-
stranded DNA repair mechanisms (Mukherjee et al. 2009). In case of elder patients 
(>70 years), the effects of classic and accelerated radiotherapy are similar. Keime-
Guibert and colleagues have reported that radiotherapy leads a modest increase in 
median survival in elderly patients with glioblastoma (Keime-Guibert et al. 2007).

4.3.2  �Molecular Treatment Strategies

The current standard treatment of glioblastoma can only offer a modest increase in 
overall survival and life quality. Consequently, a broad range of molecular treatment 
strategies have been developed to overcome the therapeutic challenges, and to com-
plement the standard of care. A comprehensive list of such agents are summarized 
in Table 4.2.

Targeted high-throughput screening studies have identified several small mole-
cule inhibitors, which have therapeutic potential for treatment of glioblastoma. In 
one example, Trembath and colleagues have carried out a high-througput drug 
screening for EGFRvIII-expressing glioblastomas, and identified a compound 
(NSC-154829) which selectively inhibits the growth of glioblastoma cells express-
ing EGFRvIII (Trembath et  al. 2007). In a recent study, Kitambi and colleagues 
have screened >1000 drugs in patient-derived glioblastoma cells, and identified a 
quinine-derivative (NSC13316; vacquinol-1) (Kitambi et  al. 2014). The authors 
have found that vacquinol-1 treatment does not trigger cell death via classical mech-
anisms (apoptosis or autophagy), but rather through macropinocytosis (Kitambi 
et al. 2014). In addition, a small hairpin RNA (shRNA) screening has revealed that 
MAP kinase MKK4 is responsible for conferring resistance to vacquinol-1-induced 
cell death (Kitambi et al. 2014). In vivo studies have shown that vacquinol-1treatment 
reduces tumor volume, and prolongs survival (Kitambi et al. 2014). Given its ability 
to cross the blood brain barrier (BBB), and significant antitumor activity, vacquinol-
1 appears as a promising therapeutic molecule for treatment of glioblastoma.

EGFRvIII is also a preferred molecular target for immunotherapy strategies. A 
promising example is rindopepimut, a therapeutic agent that consists of a short, 
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Table 4.2  Available molecular targeted therapy options for glioblastoma.

Therapeutic agent Type of tumor Status References

Gefitinib (ZD1839) Recurrent 
glioblastoma

Phase I/II Rich et al. (2004)

Erlotinib (OSI-774) Glioblastoma
Recurrent 
glioblastoma

Phase I/II van den Bent et al. (2009)
Raizer et al. (2010)
Prados et al. (2006)
Peereboom et al. (2010)

Lapatinib 
(GW-572016)

Glioblastoma Phase I/II Thiessen et al. (2010)

Cetuximab (C225) Recurrent high-grade 
glioma

Phase II Neyns et al. (2009)

ZD6474 Glioblastoma Preclinical 
studies

Damiano et al. (2005)
Jo et al. (2012)
Shen et al. (2013)

Imatinib mesylate 
(STI571)

Recurrent 
glioblastoma

Phase II Reardon et al. (2005)
Reardon et al. (2005)

Sunitinib (SUO11248) Recurrent 
glioblastoma

Phase II
Preclinical 
studies

Neyns et al. (2011)
Kreisl et al. (2013)

Vandetanib (PTK787) Recurrent malignant 
glioma

Phase I/II Kreisl et al. (2012)

Vatalanib Recurrent 
glioblastoma

Phase I/II Gerstner et al. (2011)

Sorafenib Recurrent 
glioblastoma

Phase I/II Galanis et al. (2013)
Nabors et al. (2011)

AZD2171 Glioblastoma Phase II Batchelor et al. (2007)
Endostatin Glioblastoma Preclinical 

studies
Barnett et al. (2004)

Angiostatin Malignant glioma Preclinical 
studies

Kirsch et al. (1998)

Atrasentan Recurrent 
glioblastoma

Phase I Phuphanich et al. (2008)

Rindopepimut Newly diagnosed 
glioblastoma
Relapsed glioblastoma

Phase III
Phase II

Ongoing (NCT01480479)
Ongoing (NCT01498328)

Vorinostat Recurrent 
glioblastoma

Phase II Galanis et al. (2009)

Romidepsin
(FK228, depsipeptide)

Recurrent malignant 
glioma

Phase I/II Iwamoto et al. (2011)

Valproic acid Glioblastoma Phase II Ongoing (NCT00302159)
Bortezomib (PS-341) Recurrent malignant 

glioma
Phase I Phuphanich et al. (2010)

MG-132 Glioblastoma Preclinical 
studies

Zanotto-Filho et al. (2012)
Shimizu et al. (2013)
Fan et al. (2011)
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EGFRvIII-specific peptide coupled to a carrier protein (keyhole limpet hemocya-
nin; KLH). Preclinical studies have shown that rindopepimut exerts its antitumor 
effects by eliciting humoral and cellular responses (Babu and Adamson 2012). 
Rindopepimut is currently being tested in Phase II trial (for relapsed glioblastoma; 
together with granulocyte colony stimulating factor) and in Phase III trial (for newly 
diagnosed glioblastoma).

Mutations in IDH1 are quite common (>80 %) in secondary glioblastoma 
(Verhaak et al. 2010; Kloosterhof et al. 2011). In addition, it has been shown that 
IDH1mutations are one of the earliest genetic alterations in development of astrocy-
tomas (Watanabe et al. 2009). These findings suggest that IDH1could be a therapeu-
tic target for glioblastoma. Indeed, Rohle and colleagues have identified a specific 
inhibitor of mutant IDH1, and found that inhibitor treatment impairs the growth of 
glioblastoma cells harboring mutant IDH1, while cells with wild-type IDH1 are not 
effected (Rohle et al. 2013).

4.3.3  �Limitations of Available Treatments

Molecular targeted therapies involving single agents have failed to provide a break-
through for treatment of glioblastoma, due to several biological and technical rea-
sons (Table 4.3).

Coactivation of receptor tyrosine kinases (RTKs) is a common event in different 
cancer types (Stommel et al. 2007). This phenomenon might explain the limited effi-
cacy of single-targeted treatment strategies in glioblastoma. Another possibility is the 
activation of alternative RTKs as a “compensation mechanism”. Apart from these 
mechanisms, tumor cells could also become resistant to treatment, as a result of second-
ary mutations in the target molecule such as EGFR (Giaccone 2005; Shih et al. 2005). 
In either case, the ultimate result is the limited efficacy of single-targeted treatment.

Table 4.2  (continued)

Therapeutic agent Type of tumor Status References

UCN-01 Glioblastoma Preclinical 
studies

Meng et al. (2005)
Witham et al. (2002)

Flavopiridol Glioblastoma Preclinical 
studies

Hayashi et al. (2013)
Newcomb et al. (2003)
Alonso et al. (2003)

O6-benzylguanine Recurrent 
glioblastoma

Phase I
Phase II

Quinn et al. (2009a)
Quinn et al. (2009b)

Olaparib (AZD2281) Relapsed glioblastoma Phase I Ongoing (NCT01390571)
Aldoxorubicin Glioblastoma Phase II Ongoing (NCT02014844)
AR-67 Recurrent 

glioblastoma
Phase II Ongoing (NCT01124539)
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Tumor evolution is another issue in terms of chemoresistance. Chemotherapy is 
involved in tumor evolution through acquisition of new mutations (Prados et  al. 
2015). Johnson and colleagues have reported that TMZ treatment causes progression 
of glioblastoma via hypermutation in RB and AKT/mTOR signaling pathways 
(Johnson et al. 2014).

Glioblastoma is a highly heterogeneous tumor, and the existence of distinct 
molecular subtypes might explain why a large number of different agents have 
failed to provide a significant improvement in survival of glioblastoma patients. 
Development and/or identification of novel therapeutic agents that are specific for a 
given molecular subtype has the potential to overcome this problem.

4.4  �Application of Stem Cells to Glioblastoma Therapy

4.4.1  �Rationale for Stem Cell-Based Therapies

An exceptional feature of stem/progenitor cells with neural or mesenchymal origin 
is their inherent tumor tropism (Aboody et al. 2000; Benedetti et al. 2000). Glioma 
cells release several cytokines, including hepatocyte growth factor (HGF), stromal 
cell derived factor 1 (SDF-1), urokinase-type plasminogen activator (uPA), vascular 
endothelial growth factor (VEGF) (Schmidt et al. 2005), and it is hypothesized that 
this cytokine gradient is responsible for attracting NSCs (Zhao et  al. 2008). In 
another study, Hata and colleagues have shown that platelet-derived growth factor 
BB (PDGF-BB) is responsible, in part, for the tropism of bone marrow-derived 
MSCs to glioma (Hata et al. 2010). This unique feature make NSCs and/or MSCs 
ideal delivery tools for cancer treatment, as they can be exploited to achieve great 
treatment specificity.

Table 4.3  Major limitations of available treatment strategies for glioblastoma

Limitation Reason

Intratumoral heterogeneity Molecular subtypes of glioblastoma respond differently to 
treatment

Tumor evolution Emergence of compensation mechanisms (e.g. activation of 
other signaling pathways in response to TKIs)

Inadequate preclinical models In vitro and in vivo models do not fully reflect the clinical 
settings

Insufficient tumor specificity Severe side effects in nontumorigenic cells and/or tissues
Low concentration of 
therapeutic agent in tumor

Low penetrability; clearance/inactivation mechanisms; 
stability in circulation
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4.4.2  �Application of Stem Cells for Treatment of Glioblastoma

Stem cells can be exploited for cancer treatment in different ways. One approach 
involves the genetic modification of stem cells, so that they express cytotoxic mol-
ecules (e.g. antiangiogenic proteins, apoptotic molecules, immunomodulatory cyto-
kines etc.). Alternatively, stem cells can be used as “vehicles” to deliver therapeutic 
molecules (e.g. oncolytic viruses, nanoparticles, small molecule inhibitors etc.) 
(Fig. 4.1).

PTEN, a well-characterized tumor suppressor gene that is frequently mutated 
and/or deleted in different cancer types, is the major negative regulator of the PI3K/
Akt signaling pathway (Song et al. 2012). In addition, it is known that a significant 
portion of glioblastoma tumors have mutations and/or deletions in PTEN. Thus, 
reintroduction of PTEN expression could interfere with glioblastoma tumor growth. 
Dasari and colleagues have cocultured glioblastoma cell lines with human umbilical 
cord-derived MSCs, and characterized the downstream cellular effects. The authors 
have found upregulation of PTEN expression, as well as downregulation of several 
downstream molecules (including Akt, JUN, PI3K, RAS, RAF1), which results in 
inhibition of glioblastoma cell migration (Dasari et al. 2010).

Angiogenesis is defined as the process of new blood vessel formation from pre-
existing ones. This process is not only essential for normal development, but also 
for tumor cells. Certain molecules (known as proangiogenic factors) induce angio-
genesis through the action of endothelial cells and endothelial progenitor cells (Ho 
et  al. 2013). The well-known proangiogenic factors include VEGF, fibroblast 
growth factor (FGF), PDGF/PDGR, angiopoetin 1 and 2 (Ang1 and Ang2). In addi-
tion, different studies have shown that VEGF and PDGF/PDGR axis play key roles 
in glioblastoma angiogenesis (Jain et al. 2007; Das and Marsden 2013). Given its 
vital role for tumor sustainability, angiogenesis is considered as a potential target 
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Fig. 4.1  Overview of stem cell-based therapeutic strategies for treatment of glioblastoma. Stem 
cells can be modified to express and/or to deliver different classes of therapeutic agents. These 
include nanoparticles, oncolytic viruses, functional biological molecules (RNA or protein species), 
antibodies, and small molecule inhibitors. Afterwards, the modified stem cells can be administered 
through different routes
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for treatment of glioblastoma. Ho and colleagues have demonstrated that human 
bone marrow-derived MSCs attenuate glioblastoma tumor growth through the inhi-
bition of PDGF/PDGR axis (Ho et al. 2013).

Benedetti and colleagues have modified neural precursor cells to express inter-
leukin 4 (IL-4) gene, and injected the cells into syngeneic brain glioblastoma in 
mice (Benedetti et al. 2000). Their results indicate that this treatment leads to sur-
vival of most mice (Benedetti et al. 2000).

4.4.3  �Immunotoxins

Another treatment strategy involves the delivery of immunotoxins. These fusion 
proteins consist of two parts: A targeting residue (usually a monoclonal antibody or 
a growth factor against a specific molecular marker on tumor cells) and a cytotoxic 
molecule (such as Diptheria toxin or Pseudomonas exotoxin). In 2011, Sun and col-
leagues have demonstrated that human bone marrow-derived MSCs could be engi-
neered to express an EphA2-specific immunotoxin, and these MSCs selectively kill 
glioblastoma cells in vitro and in vivo (Sun et al. 2011).

PEX is a part of the human metalloproteinase-2, and is overexpressed in glio-
blastoma (Bello et al. 2001). It has been shown that PEX inhibits angiogenesis, cell 
proliferation, and migration in glioblastoma (Brooks et al. 1998; Bello et al. 2001). 
Based on these findings, Kim and colleagues have introduced PEX gene in human 
NSCs, and used tested modified NSCs in a mouse model of glioblastoma. Their 
results have shown that PEX-containing NSCs effectively suppressed angiogenesis, 
cell proliferation, and tumor growth (Brooks et al. 1998).

4.4.4  �Suicide Gene Fusion

The cytosine deaminase::uracil phosphoribosyltransferase/5-fluorocytosine 
(CD::UPRT/5-FC) system is one of the best characterized suicide gene/prodrug sys-
tems for cancer treatment.

In a preclinical mouse model, Aboody and colleagues have tested whether 
CD-expressing NSCs could be a successful strategy for treatment of glioblastoma 
(Aboody et al. 2013). In vitro characterization studies showed that modified NSCs 
exhibit normal karyotype and tumor tropism, and the authors found that combina-
tion therapy with CD-expressing NSCs and 5-FC caused a significant decrease in 
tumor volume (>60 %) (Aboody et  al. 2013). Overall, these results confirm the 
safety and efficacy of the method, and this study has led to the approval of a first-in-
human study in patients with recurrent high-grade glioma.

In another study, Altaner and colleagues have engineered human bone 
marrow-derived MSCs to express CD::UPRT, and injected these therapeutic 
MSCs into the resection cavity. The authors have administered the prodrug via 
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continuous intraventricular injections. Their results have shown that MSC-
mediated suicide gene/prodrug strategy leads to permanent complete regression 
and/or curative therapy (depending on the application scheme) in treated ani-
mals (Altaner et al. 2014).

4.4.5  �Oncolytic Viruses

Viruses, which preferentially infect tumor cells and induce lysis as a result of their 
replication, are known as oncolytic viruses (OVs) (Nemunaitis 1999). These viruses 
can be engineered in different ways, so that they replicate only in tumor cells. Thus, 
OVs can be exploited as therapeutic tools for cancer treatment.

Delta-24-RGD is a type of oncolytic virus, which is capable of replicating only in 
tumor cells that contain an inactive retinoblastoma protein. Yong and colleagues have 
loaded this virus into human bone marrow-derived MSCs, and tested the efficacy of 
intravascular delivery in a mouse model of glioblastoma (Yong et al. 2009). The authors 
have found a significant improvement in median survival (75.5 days vs 42 days) in the 
treated mice, as well as tumor eradication in certain subset of animals (Yong et al. 2009).

In a recent study, Ahmed and colleagues have loaded an oncolytic adenovirus 
(CRAd-Survivin-pk7) into a FDA-approved NSC line (HB1.F3.CD), and tested the 
efficacy of this treatment strategy in mouse models of glioblastoma (Ahmed et al. 
2013). The authors have found a significant improvement in median survival in 
mice treated with OV-loaded NSCs (Ahmed et al. 2013). In addition, their results 
have shown that OV-loaded NSCs are nontumorigenic in vivo (Ahmed et al. 2013). 
Taken together, the authors have concluded that OV-loaded NSCs should be tested 
in a Phase I clinical trial in patients with glioblastoma.

Despite their limited therapeutic efficacy, antibodies have appeared as promising 
agents for treatment of different cancers. Stem cells can be modified to express 
antibodies of interest (as whole or single chain), and can be used to suppress tumor 
growth (Young et al. 2014). EGFRvIII is a tumor-specific antigen for glioblastoma, 
and can be used to target tumor cells. Balyasnikova and colleagues have modified 
MSCs with a single-chain antibody against EGFRvIII, and tested the therapeutic 
potential of this strategy in vitro and in vivo. Notably, the authors have found that 
modified MSCs results in 50 % reduction in tumor growth, and a decrease in the 
density of CD31-positive blood vessels (Balyasnikova et al. 2010).

4.4.6  �miRNAs

MicroRNAs (miRNA) are small, noncoding RNAs with diverse roles in normal 
homeostasis and disease states. Alterations in miRNA expression levels have been 
identified virtually in all types of cancers, including glioblastoma. In addition, it has 
been demonstrated that miRNA signatures characterize distinct molecular subtypes 
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in glioblastoma, and may contribute to tumor pathogenesis (Kim et al. 2011). Thus, 
miRNAs have potential to serve as therapeutic targets and/or molecules for treat-
ment of glioblastoma. Recently, Lee and colleagues have shown that bone marrow-
derived MSCs are able to deliver synthetic miRNA mimics to glioblastoma cells in 
vitro and in vivo (Lee et  al. 2013). In addition, their results indicate that MSC-
mediated delivery of miRNA mimics inhibits cell migration and self-renewal ability 
of glioblastoma stem cells (Lee et al. 2013).

4.5  �Future Directions

4.5.1  �Limitations and Potential Solutions

The inherent tumor tropism of different types of stem cells make them ideal candi-
date for therapeutic applications. Characterization studies have shown that certain 
molecules (growth factors, hypoxia-induced factors, chemokines etc.) are crucial 
for this “homing mechanism” (Zhao et al. 2008; Bovenberg et al. 2013). Further 
understanding of how tumors affect their microenvironment – especially by analyz-
ing the tumor “secretome” – will help us to identify novel molecules which could 
regulate tumor tropism. Such studies will provide the necessary information to 
enhance the tumor tropism of stem cells.

Different strategies can be employed to improve the efficacy of NSC-based ther-
apeutics. Morshed and colleagues have suggested that stimulating key receptors 
and/or signaling pathways involved in tumor tropism might improve the distribution 
of NSCs (Morshed et al. 2015).

Preclinical studies involving intranasal administration of stem cells are currently 
in an early stage; this method have certain advantages over other delivery routes. 
The main advantage of intranasal administration is the rapid cell migration to the 
target area. Different groups have demonstrated that cell migration (in case of 
NSCs) occurs rapidly in case of intranasal administration (1–2  h), compared to 
intravenous administration (10–20 days) (Wu et al. 2013). Peripheral injection of 
NSCs results in transient colonization of the systemic organs; on the other hand, in 
case of intranasal administration, NSCs migrate directly into the CNS (Wu et al. 
2013). Moreover, due to its noninvasive nature, intranasal administration can be 
repeated multiple times.

The success of systemic stem cell delivery depends on the ability of stem cells to 
cross the BBB. Owing to the presence of tight junctions and efflux transporters (e.g. 
P-glycoprotein), this anatomical barrier has been considered as the major obstacle 
that limits the efficacy of systemic delivery strategies for treatment of glioblastoma. 
Recent studies, on the other hand, have challenged this notion and suggested that 
BBB has “heterogeneous integrity” – i.e. disrupted at/near core region, intact along 
the edges (Agarwal et al. 2013; van Tellingen et al. 2015). Supporting evidence for 
successful systemic delivery of stem cells have come from in vivo studies, which 
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have demonstrated that NSCs and MSCs are able to migrate to intracranial tumors 
in mouse models of glioblastoma (Aboody et  al. 2000; Nakamizo et  al. 2005; 
Watkins et al. 2014). Still, it is clear that optimization of existing strategies and/or 
development of novel strategies warrants further understanding of the integrity of 
BBB, and intercellular interactions in the BBB microenvironment.

Another important point to consider is the “fate” of the NSCs/MSCs in the tumor 
microenvironment. The transdifferentiation ability of bone marrow-derived MSCs 
provide them with a dual function; once differentiated into activated fibroblasts or 
endothelial-/pericyte-like cells, these cells can support tumor growth. On the con-
trary, other studies provide evidence for tumor suppressive function of these cells. 
This phenomenon is discussed in detail in a recent review (Barcellos-de-Souza 
et al. 2013).

4.5.2  �Ethical Concerns

Throughout the world, research on stem cells  – especially embryonic stem cells 
(ES) – has been tightly linked to ethical and social controversies. Undoubtedly, the 
major concern has involved the moral question of destructing embryos, as this rep-
resents the initial approach to harvest ES cells. The main argument against research 
on ES cells is regarding the potential of embryos to become human beings; thus, the 
opponents of ES cell search strongly claim that embryos should have the same 
moral status as adults (Lo and Parham 2009).

The year 2006 represents a milestone in stem cell research. A Japanese research 
group has reported the possibility of obtaining induced pluripotent stem cells 
(iPSCs) from mouse embryonic and adult fibroblasts by addition of four defined 
transcription factors, namely Oct3/4, Sox2, Klf4, c-Myc (Takahashi and Yamanaka 
2006). This groundbreaking discovery was quickly followed by two other reports, 
which demonstrate the possibility to generate ES-like cells by introducing the same 
set of transcription factors into human fibroblasts (Takahashi et al. 2007; Wernig 
et al. 2007).

These promising results have suggested that iPSCs could “substitute” for ES 
cells. However, certain technical challenges related to iPSC technology should be 
overcome before removing ES cells from the picture. First, the initial methods heav-
ily relied on retroviral transduction of reprogramming factors, including c-Myc 
oncogene. The use of retroviruses and oncogenes has raised serious concerns about 
the safety of this protocol, and is considered as a limiting factor for their application 
to clinical settings. It has been reported that 25 % of mice, which are transplanted 
with iPSCs harboring c-Myc, develop lethal teratomas. To overcome this limitation, 
other members of the Myc protein family (N-Myc and I-Myc) and Glis family zinc 
finger 1 (Glis1) have been tested as alternative reprogramming factors (Maekawa 
et al. 2011). Despite the promising results, future preclinical studies are necessary 
to test

4  Stem Cell-Based Approaches for Treatment of Glioblastoma



78

NSCs are traditionally derived from ES cells, which raise ethical concerns. The 
development of iPSCs has offered an alternative solution to this problem; however, 
this field is still in its infancy, and comprehensive studies are required to test the 
safety of the method in preclinical and clinical settings. Direct reprogramming (or 
direct conversion) with predefined factors can be used to obtain stable NSCs from 
fibroblasts (Han et al. 2012; Thier et al. 2012). Thus, this method can be employed 
as a safer and faster alternative, compared to the iPSC technique.

4.5.3  �Concluding Remarks

During the past decade, several studies have been directed towards molecular profil-
ing of glioblastoma. These efforts have significantly increased our understanding of 
this deadly tumor, and given rise to the development novel therapeutic strategies. 
Still, glioblastoma continues to be a major cause of cancer-associated mortality 
throughout the world. The recent advances in the field of stem cells have made it 
possible to employ stem cells as superior therapeutic tools for treatment of different 
cancers, including glioblastoma. The efficacy and safety of stem cell-based treat-
ment strategies awaits comprehensive preclinical and clinical studies. Only time 
will tell whether stem cells will finally offer a “lasting” solution for this devastating 
cancer.
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Chapter 5
Stem Cell-Based Therapies for Parkinson’s 
Disease

Charlotte Palmer and Isabel Liste

5.1  �Introduction

Parkinson’s disease (PD) is a chronic neurodegenerative disorder that is especially 
common in the elderly. It results from the progressive death of pigmented dopami-
nergic neurons (DAn) in the substantia nigra pars compacta (SNpc) that project 
axons to the striatum where dopamine is released (Buttery and Barker 2014; 
Martínez-Morales and Liste 2012; Lindvall and Kokaia 2009). This provokes a 
reduction in striatal dopamine levels, causing most of the clinical motor symptoms, 
which include tremors, rigidity, bradykinesia and other debilitating symptoms 
(Savitt et al. 2006).

It is now known that the pathology extend far beyond the nigrostriatal dopami-
nergic pathway itself, as other dopaminergic and non-dopaminergic systems are 
also affected in PD. Accordingly, in addition to the better-known motor symptoms, 
PD patients suffer several nonmotor symptoms. These symptoms can include sleep 
disturbances, dementia and mood disturbances which can have a significant impact 
on the quality of life of patients (Lindvall 2016).

The etiology of PD is still not fully understood. However, some possible patho-
genic mechanisms have been proposed such as impairment of mitochondrial func-
tion and trophic support, abnormal action of kinases, excessive release of oxygen 
free radicals and dysfunction of protein degradation (Wang et al. 2015).

Besides death of DAn, other hallmarks of PD include the presence of protein 
aggregates made up of α-synuclein-positive Lewy bodies in several brain regions, as 
well as neuro-inflammation causing the disease progression (Wang et  al. 2015; 
More et al. 2013; McGeer and McGeer 2008). Indeed, activation of microglial and 
glial cells and inflammatory responses are common features of both animal models 
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of PD and PD patients, playing a significant role in the neurodegenerative progres-
sion of DAn (Wang et al. 2015; Hirsch et al. 2012).

Today, there is still no cure for PD. However, a variety of treatment options are 
available to help relieve motor symptoms, which can greatly improve the quality of 
life of the patients.

Current treatments include: deep brain stimulation (DBS) in the subthalamic 
nucleus or globus pallidus. This treatment option consists of placing a stereotacti-
cally guided microelectrode into a specific brain structure. A stimulator is also 
implanted into the chest of the patient, adjusting the stimulation parameters by 
telemetry. DBS is a safe and reversible procedure that modulates specific targets in 
the brain resulting in motor symptom improvement. DBS is especially effective 
managing long-term motor complications resulting from L-dopa treatment, such as 
dyskinesias and wearing-off phenomena. However, the technique still needs to be 
optimized in order to increase efficiency, as the procedure is expensive and not all 
patients are equally likely to improve (Larson 2014; Heumann et al. 2014)

Available pharmacological therapies aim to increase dopamine levels in the brain 
by providing dopaminergic agonists, or inhiting dopamine breakdown (catechol-O-
methyl transferase and monoamine oxidase inhibitors) (Lindvall 2016; Prashanth 
et al. 2011). The most common treatment for PD is levodopa (L-dopa). L-dopa is 
able to cross the blood brain barrier and once in the brain is transformed into dopa-
mine by dopaminergic neurons.

Previously described treatments are effective in alleviating some symptoms dur-
ing early phases of the disease, but long-term efficacy is unknown. Furthermore, 
these treatments are associated with certain side effects, including motor fluctua-
tions, on-off phenomena and involuntary movements as dyskinesias. Ultimately, 
none of these treatments are reparative, and do not stop the disease from progressing 
(Lindvall 2016; Poewe 2009; Politis et al. 2014).

Cell-replacement clinical trials based on transplantation of human fetal mesen-
cephalic tissue, a tissue rich in dopaminergic neuroblasts, have provided proof of 
principle that cell replacement therapy can work in the human PD brain (Barker 
et al. 2013; Björklund and Dunnett 2007). In the most successful trials, DAn gener-
ated from the transplanted tissue was able to re-innervate the denervated striatum 
and become functionally integrated, restoring the striatal DA release and giving rise 
to clear symptomatic relief in some patients (Kefalopoulou et al. 2014; Petit et al. 
2014; Piccini et al. 1999).

However, ethical and practical aspects related to tissue availability limit their 
widespread clinical use. It is therefore necessary to seek alternative cell sources, 
mainly based on the use of stem cells. Due to their properties, stem cells are now 
considered best candidates as an alternative to DAn, different from fetal mesence-
phalic tissue.

Human DA precursors have been efficiently derived from different sources of 
stem cells including: human Embryonic Stem Cells (hESCs) (Kriks et al. 2011; Cho 
et al. 2008; Chambers et al. 2009; Malmersjö et al. 2010), human induced Pluripotent 
Stem Cells (hiPSCs) isolated from control, or from PD patients (Soldner et al. 2009; 
Hargus et al. 2010; Nguyen et al. 2011; Sánchez-Danés et al. 2012), human Neural 
Stem Cells (hNSCs) both from fetal (Courtois et al. 2010; Villa et al. 2009) or adult 
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brains (Lévesque et  al. 2009) human Mesenchymal Stem Cells (hMSCs) by the 
induction with different cytokines and neurotrophic factors like GDNF (Kitada and 
Dezawa 2012; Trzaska and Rameshwar 2011; Dezawa et al. 2004). More recently, 
it has been shown the direct conversion of fibroblasts into functional “induced” DAn 
(iDA). Still has to be explored to what extent these cells can contribute to functional 
recovery in models of PD (Caiazzo et al. 2011; Pfisterer et al. 2011).

In this chapter, we discuss some general issues related to the clinical use of stem 
cells to treat Parkinson’s disease. We describe the different types of stem cells available 
nowadays, their properties and how they are being developed and applied in PD patients.

5.2  �Grafts of Human Fetal Ventral Mesencephalic Tissue

The initial idea for cell transplantation in PD was simple: in theory, adult DAn lost 
by neurodegenerative processes could be replaced by immature human DAn 
(Brundin et al. 1988).

It all started between the 1970s-1980s, several different groups demonstrated 
that DAn obtained from the fetal ventral mesencephalon (VM) were able to survive 
and integrate into the host tissue, release dopamine and enhance motor function in 
animal models of PD.

Similar results were obtained with mesencephalic xenografts transplanted in the 
striatum of rats under immunosuppression (Brundin et  al. 1988). The promising 
results from these experimental trials then allowed several groups to perform open 
label clinical trials in PD patients.

Cell replacement therapies (CRT) for PD have been conducted during the last 30 
years using different source of cells. The most effective cells have so far been allo-
genic fetal ventral mesencephalic tissue grafts, which contains developing midbrain 
DAn and their precursors.

In general transplants are done in the striatum, the region where project their 
axons dopaminergic neurons of SNpc. Successful open-label trials reported 
improved motor symptoms in a number of patients (Barker et al. 2013; Björklund 
and Dunnett 2007; Freed et  al. 1992; Spencer et  al. 1992; Widner et  al. 1992; 
Lindvall et  al. 1990), improved 18F –DOPA uptake (Piccini et  al. 1999; Lindvall 
et al. 1994; Peschanski et al. 1994) and robust long-term graft survival lasting over 
a decade as shown by postmortem analysis, even though some grafted cells showed 
Lewy body formation (Hallett et al. 2014; Kordower et al. 2008; Li et al. 2010).

Additionally, the grafted tissue re-innervated the host striatum and became func-
tionally integrated into the recipient circuitry (Kefalopoulou et al. 2014; Petit et al. 
2014; Piccini et al. 1999). However, two placebo-controlled trials showed modest 
benefit in the first end point analyzed (Freed et  al. 2001; Olanow et  al. 2003). 
Furthermore a group of patients developed graft-induced dyskinesia that persisted 
even in the absence of L-dopa treatment (Hagell et al. 2002). Fortunately, a later 
evaluation of these grafts by F-DOPA uptake and UPDRS scores, showed statisti-
cally significant improvement of fetal tissue transplantation for certain patients, in 
line with reports from open-label trials (Barker et al. 2013; Freed et al. 2011).
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The reasons behind the inconsistency of these results may be related to poor 
standardization procedures, including patient selection, tissue preparation, immu-
nosuppression procedures, primary endpoints, and general trial design. In any case, 
all these trials have revealed several limitations of the procedure for routine clinical 
practice that should be improved in order to develop a viable cell replacement ther-
apy (CRT) for PD (Olanow et al. 2003; Isacson et al. 2003; Ganz et al. 2011). The 
main challenges are related to ethical issues related to the use of fetal tissue, poor 
standardization of the tissue dissection and cell material processing. This last limita-
tion can contribute to the appearance of dyskinesia (related in part, to the serotoner-
gic component of the graft), be related to the high variability in graft survival and be 
associated with inconsistent clinical benefit (Carta et al. 2008; Politis et al. 2010). 
Another important limitation is the host immunological and inflammatory response, 
since autologous tissue cannot be used (Rath et al. 2013; Piquet et al. 2012; Arenas 
2010; Piccini et al. 2005).

There are several problems associated with performing such transplants. First 
of all it is extremely difficult to obtain sufficient amounts of fetal tissue, as each 
patient requires tissue obtained from between 4 and 10 aborted fetuses that must 
also have the adequate embryonic age. Currently there is no good method of 
cryopreservation; the mesencephalic tissue can be maintained at 4 °C for 1 week, 
but the quality of the tissue decreases with longer storage times. Furthermore, 
due to the need to mix cell suspensions from different donors, it is complicated 
to control HLA system; therefore it is difficult to standardize the quality of the 
donor cells.

Currently, the European consortium TRANSEURO (www.transeuro.org.uk) (see 
Table 5.1) is making significant efforts to optimize the design of clinical trials for 
CRT in PD. The main objective of this project is to develop a safe and effective 
method for treating PD patients using fetal VM cells that can serve as a model for 
future clinical trials.

This trial is designed to minimize technical variables such as: patient selection 
(age, type of PD), tissue preparation and collection, graft placement and support, 
immunosuppressive treatment, follow up time and quantifiable endpoints. Therefore, 
this study can serve as a reference to develop future stem-cell transplantation assays 
and will provide a more coherent view of the current therapeutic improvement 
(Abbott 2014; Moore et al. 2014; Gonzalez et al. 2015a).

5.3  �Stem Cell Properties and Requirements for Their 
Application in CRT for PD

As mentioned above, a major challenge in developing cell transplantation into a 
routine clinical practice for PD is the deficiency of fetal tissue supply, which implies 
the use of several fetal tissue to treat a single patient. For this reason, important 
research efforts have been carried out to find alternative sources of cells for 
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transplantation in PD. Several cell sources have been explored in order to generate 
DAn. The most promising cells found so far are stem cells.

Stem cells are undifferentiated cells characterized by their ability to proliferate 
and differentiate into more specialized types of cells. Stem cells can be classified 
according to how they were obtained or by their differentiation potential. Based on 
their ability to differentiate, stem cells are divided basically into two major catego-
ries: pluripotent stem cells (which can give rise to specialized cells of the three germ 
layers, i.e. endoderm, mesoderm and ectoderm) and multipotent stem cells (more 
specialized cells, that can generate specific cell lineages of a particular germ layer, 
although recently it has been shown that some multipotent cells possess the capacity 
to transdifferentiate into cells of more than one germ layer, such as MSCs) (Bongso 
et al. 2008; Zhan and Kilian 2013; Macias et al. 2010).

Table 5.1  Human stem cells used in clinical trials for treatment of Parkinson’s disease

Stem cell type
Transplant 
type

Delivery 
administration Status Sponsor

hMSCs from bone 
marrow

Allogenic Intravenous 
administration

Phase 1
NCT02611167

The University of 
Texas Health Science 
Center

Autologous Intravenous 
administration

Phase 1/2
NCT01446614

Guangzhou General 
Hospital of 
Guangzhou Military 
Command

Adipose-Derived 
hMSCs

Autologous into the 
Vertebral Artery 
and 
Intravenously

Phase 1/2
NCT01453803

Ageless 
Regenerative 
Institute

Autologous Not provided Recruiting
NCT02184546

StemGenex

hNSCs from fetal 
ventral 
mesencephalic 
tissue

Allogenic Intracerebral
implantation

Phase 1
(TransEuro 
Project)
NCT01898390

University of 
Cambridge

Allogenic Not provided Phase 1/2
NCT01860794

Bundang CHA 
Hospital

Allogenic Intracerebral 
implantation

NCT02538315 University of 
Saskatchewan

hNSCs from adult 
cerebral cortex

Autologous Intracerebral 
implantation to 
the left 
putamen

Phase 0
NCT01329926

NeuroGeneration
(Lévesque et al. 
2009)

Human 
parthenogenetic-
derived NSCs

Allogenic Intracerebral 
implantation
to the striatum 
and Substantia 
Nigra

Phase 1
NCT02452723

Cyto Therapeutics
Pty Limited

Abbreviations: hMSCs human mesenchymal stem cells, hNSCs human neural stem cells
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Overall it is assumed that in order to make the differentiation of DAn from stem 
cells a clinically competitive treatment option for PD, these cells need to be equiva-
lent to those of human VM tissue in terms of their phenotype, as well as neuro-
chemical and electrophysiological properties both in vitro and in vivo after 
grafting.

This means that transplanted cells must induce a substantial improvement of 
motor symptoms, without causing side effects (Lindvall et  al. 2012; Martínez-
Serrano and Liste 2010). To achieve this, grafted cells must survive, re-innervate the 
striatum, integrate into the neural circuitry of the host and exhibit the same charac-
teristics of authentic nigral A9 DAn.

Also they have to satisfy a number of safety requirements such as not forming 
tumors, avoiding the development of dyskinesia, either by the presence of seroto-
nergic neurons or inappropriate distribution of implants, and they should not 
induce immune rejection in the host. Furthermore, it must be possible to grow 
sufficient numbers of these cells in order to reach clinical relevance. As a result, 
only a reduced number of clinical trials are being conducted in which stem cells 
are applied.

In addition to CRT itself, stem cells can also be beneficial by providing a trophic 
support, by improving the survival of affected neurons (Lindvall and Kokaia 2009; 
Lunn et al. 2011) or acting as inflammation modulators. Not surprisingly, both epi-
demiological and genetic studies support an important role of neuro-inflammation 
in the pathophysiology of PD (Hirsch et al. 2012; More et al. 2013).

5.4  �Multipotent Stem Cells

5.4.1  �Human Neural Stem Cells

Human Neural Stem Cells (hNSCs) are uncommitted and multipotent cells with the 
ability for self-renewal that can differentiate into all the neural cells of CNS (i.e. 
neurons, astrocytes and oligodendrocytes). These cells can be obtained from dif-
ferentiation of pluripotent stem cells and from fetal, neonatal, and adult brain.

In the human brain, NSCs are found in the developing nervous system and in two 
neurogenic niches of the adult brain, the subventricular zone of the lateral ventricles 
and the dentate gyrus in the hippocampal formation (Kempermann et  al. 1997). 
However their regeneration potential is very limited and there is no evidence of 
endogenous neurogenesis in the SN in PD.

It has been shown that these cells are also present in the subventricular zone of 
PD patients and they are able to proliferate, which could provide a future possibility 
to develop novel therapeutic approaches to stimulate these cells to migrate to the 
striatum and differentiate into dopamine neurons (Van den Berge et al. 2011, 2013). 
However the number of proliferating cells is small and highly variable between 
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individuals and methods to expand this population of cells for clinical use remain to 
be established.

It is also worth noting that adult neurogenesis may be affected during the pro-
gression of PD. In fact, it has been observed that the proliferation of cells appears 
to be decreased in the brains of PD patients. Therefore, an alternative option may 
involve infusing exogenous hNSCs to replacing lost neurons (Höglinger et  al. 
2004).

hNSCs can be propagated in vitro as free-floating aggregates, called neuro-
spheres. Neurospheres are a mixture of NSCs and progenitor cells grown in the 
presence of growth factors such as basic Fibroblast Growth Factor (bFGF) and 
Epidermal Growth Factor (EGF) (Bonnamain et al. 2012; Kallur et al. 2006). An 
alternative approach for the expansion of hNSCs is the genetic immortalization 
where cells are transduced with immortalizing genes (e.g., TERT, v-Myc or c-Myc) 
and supporting the proliferation by adding growth factors (Villa et al. 2009; Cacci 
et al. 2007).

Several types of hNSCs have been explored in order to generate midbrain DAn, 
including human VM neural precursors. These, in theory, should be the ideal candi-
dates for cell therapies in PD.

Unfortunately, VM neural precursors present poor growth potential and unstable 
phenotypes losing their initial properties with repeated passages in culture (Villa 
et al. 2009; Ramos-Moreno et al. 2012). Furthermore, they survive poorly into the 
brain when grafted (Kim et al. 2009a), limiting them from being a stable source of 
human DAn.

Recently an efficient method to generate large numbers of midbrain DAn has 
been described. This method is based in the expansion and differentiation of neural 
precursor cells present in the human VM tissue by adding Wnt5a. Using this method, 
a sixfold increase of the number of midbrain DAn was obtained as compared to the 
starting VM preparation (Ribeiro et al. 2013), and could solve in part, the lack of 
VM tissue in future transplantation studies.

A different tactic consists of immortalizing hNSCs from the VM, although it can 
not be considered for clinical use. If these methodologies are successful, they could 
end some of the limitations described previously (Villa et al. 2009; Liste et al. 2004; 
Lotharius et al. 2002).

Despite all of this, an efficient method to induce midbrain dopamine neurons 
from NSCs in large numbers for clinical treatment is still lacking.

In a different approach, hNSCs isolated from brain biopsies have been used to 
treat PD patients by the company Neuro Generation Inc. In this trial, biopsied corti-
cal and subcortical tissue samples during craniotomy were proliferated for several 
months and then differentiated into neurons (60 % GABAergic, 15 % DAn) and glial 
cells. These cells were implanted in multiple sites in the putamen. Patients showed 
some motor improvement, increased dopamine uptake and other clinical benefits 
(Lévesque et al. 2009). Further trials are being developed to determine the feasibil-
ity and efficiency of this method (see Table 5.1 and Fig. 5.1).
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5.4.2  �Human Mesenchymal Stem Cells

Human Mesenchymal Stem Cells (hMSCs), also named marrow stromal cells, may 
be an alternative source of multipotent stem cells that, until now, have primarily 
been isolated from adult bone marrow (Collins et al. 2014). However, these cells can 
also be found elsewhere in the body, including adipose tissue (Zuk et  al. 2002), 
umbilical cord blood (Erices et al. 2000), dental pulp (Gronthos et al. 2000), pla-
centa (Abumaree et al. 2013) and brain (Paul et al. 2012).

Their widespread availability throughout the body, in addition to their great pro-
liferative potential once isolated, has made MSCs emerge in the last years as a 
promising approach in regenerative medicine (Teixeira and Carvalho 2013; Ryan 
et al. 2005).

hMSCs are stromal cells characterized by the adherence to plastic in cell cul-
ture. They exhibit positive expression of specific markers such as CD105, CD73 
and CD90, and they do not express hematopoietic markers like CD34, CD45, 
HLA-DR, CD14, CD11B or CD19. They also show multi-lineage differentiation 
potential to cells of mesodermal origin (osteocytes, chondrocytes, adipocytes) 
(Lunn et  al. 2011; Trounson and Pera 2001; Joyce et  al. 2010). Recently, some 
evidence has shown that they can transdifferentiate towards a neural lineage 

Transplantation of cell suspension

Solid graft
transplantaion

Cell suspension rich
in DA neuroblasts

Isolated ventral mesencephalon
from fetal brain

Isolated from

Aborted fetal brain Adult brain

Isolated adult neural stem
cells from SVZ or SGZ

Human Neural Stem Cells

Transplantaion

Fig. 5.1  Schematic representation of the possible use of human Neural Stem Cells for Cell 
Replacement Therapy (CRT) for treatment of PD
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(Macias et al. 2010; Lunn et al. 2011; Satija et al. 2009; Paul et al. 2012) and even 
obtain a DAn phenotype (Trzaska and Rameshwar 2011; Dezawa et  al. 2004; 
Paldino et al. 2014). Therefore, it has become plausible to use these stem cells for 
the generation of DA-like neurons.

In vivo studies in macaque models of PD after transplantation of dopamine pro-
ducing cells induced from autologous bone-marrow derived MSCs, have proved 
very promising.

However, beneficial effects were not conclusively shown to be caused by dopa-
minergic neuron integration, but rather could be caused by neurotropic effects of the 
MSCs (Hayashi et al. 2013).

Another recent study using primed-fetal liver MSCs showed functional and neu-
rochemical recovery of dopaminergic neuron activity in a 6-OHDA mouse model 
when transplanted directly into the striatum. However, it was also shown that not all 
primed MSCs differentiated into a neuron-like cell. Therefore, further studies are 
needed for long-term efficacy and safety before considering this cell source for CRT 
in humans (Kumar et al. 2016).

Furthermore, Chun et al., showed a potentially viable source of MSC-derived 
dopaminergic neurons differentiated from dental pulp in vitro, confirming morpho-
logical identity and dopamine release. The results from this study need to be taken 
further to verify if the cells possess the electrophysiological characteristics neces-
sary for proper integration in vivo (Chun et al. 2016).

Still, the differentiation potential of hMSCs is much more limited than that of 
pluripotent stem cells. The trans-differentiation of MSCs from a mesodermal to a 
neural cell lineage is still relatively new in the field, and for this reason their use as a 
source for CRT in neurodegenerative disorders remains somewhat controversial. 
The studies that have been done show inconsistent and inconclusive results in animal 
models and, it is still unsure if these neuron-like cells derived from MSC can be cor-
rectly integrated into the host-neural circuitry to form synaptic connections (Joyce 
et al. 2010; Hardy et al. 2008; Glavaski-Joksimovic and Bohn 2013). For these rea-
sons, more research needs to be done and better standardization procedures of MSC 
sources, along with improved differentiation protocols are needed to produce viable 
and consistent dopaminergic-like neurons before being used in clinical trials.

Currently, the discovery of the beneficial effects mediated by the hMSCs secre-
tome (a concept defined as the proteins secreted by cells or tissues that become 
crucial for the regulation of subsequent cellular processes) may be a more promis-
ing approach to their use as a treatment option for PD (Teixeira and Carvalho 2013). 
MSCs secrete protective neurotrophic factors, growth factors and cytokines that 
promote protection, repair and show immunomodulatory effects. Additionally, other 
advantage of the use of hMSCs is that they could, in theory, circumvent the need of 
immunosupression in cell therapies, as they can be derived from patient own tissue. 
For this same reason, they are not ethically controversial when compared to hESCs, 
adding another reason to their growing popularity as a cell source for treatment 
options in several different diseases, including PD.

Paracrine factors excreted by MSCs have been shown to modulate the plasticity 
of host tissue, by secreting neurotrophic and growth factors such as vascular endo-
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thelial growth factor (VEGF), hepatocyte growth factor (HGF), insulin-like growth 
factor (IGF-1) (Hoch et  al. 2012), brain derived neurotrophic factor (BDNF), 
β-nerve growth factor (β –NGF), transforming growth factor β (TGF- β), fibroblast 
growth factor 2 (FGF2), and glial cell derived neurotrophic factor (GDNF) which 
are involved in increasing neurogenesis, promoting neuronal and glial cell sur-
vival, angiogenesis, inhibition of apoptosis, immunomodulation and showing neu-
roprotective actions in brain (Siniscalco et  al. 2010; Chamberlain et  al. 2007; 
Teixeira and Carvalho 2013). In addition, MSCs produce extracellular matrix pro-
teins (ECM) that could favor neural cell attachment, growth and neuritogenesis 
that could lead to functional neural restoration (Tate et al. 2010; Li et al. 2010).

Several studies have shown that both naïve bone marrow-derived MSCs 
(BM-MSCs) and neurally differentiated BM-MSCs had therapeutic effects in PD ani-
mal models. This was verified because of their capacity to regenerate and protect dam-
aged DAn. MSCs isolated from the umbilical cord, adipose tissue and placenta have 
shown neuroprotective and neuro-regenerative effects in PD animal models too 
(McCoy et al. 2008; Mathieu et al. 2012; Park et al. 2012). Currently, MSCs isolated 
from adipose tissue are receiving more attention because of easier access and differen-
tiation potential as compared to other sources of MSCs (Chang et al. 2014). In addi-
tion to the studies showing neuroprotective effects of grafted MSCs, a recent study 
also showed that MSCs derived specifically from adipose tissue showed a modulatory 
role after transplantation into the medial forebrain bundle, supporting their ability to 
enhance endogenous neurogenesis and adapt to a noxious microenvironment that 
could making them a potentially safe treatment option for PD (Schwerk et al. 2015).

Although the exact pathogenesis of PD is unknown, mounting evidence is sug-
gesting that chronic neuronflammation is one of the causes of pathophysiology of 
PD. The presence of activated astrocytes and microglia leads to neurodegeneration 
and loss of DA neurons, making it a good treatment target by increasing cytokines 
such as TNFB, IL-4 and IL 10 (Wang et al. 2015). Following these findings, studies 
have shown that MSCs not only act through paracrine effects relying on close cell-
contact to the injured area, but release soluble factors that can be involved in immu-
nosuppression in the brain (Kim et  al. 2009b) and inhibit the release of 
pro-inflammatory cytokines (Ng et al. 2014).

Another property of hMSCs is they are able to migrate to places of injury in 
animals when they are infused systemically, suggesting their migratory potential 
and promoting the repair process through the secretion of growth factors, cytokines, 
and antioxidants (Teixeira and Carvalho 2013; Vegh et al. 2013). Migration can also 
be induced by growth factors and chemokines released after damage that could 
provide migratory signals that induce activation of integrins from MSCs and up-
regulation of selectins, promoting cells to interact with the endothelium, similar to 
leukocytes of the immune system (Martínez-Morales et al. 2013; Teo et al. 2012)

Recently, another study also confirmed the beneficial effects of combined treat-
ment of MSC conditioned medium and neural stem cell grafting, showing behav-
ioral and functional improvement in a PD animal model (Yao et al. 2015).

Although it is believed that all MSCs generally possess the same regenerative 
properties, populations isolated from different tissues are biologically heterogeneous 
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and may vary in their immune-phenotype, proliferation rate and commitment to dif-
ferent cell lines (Paul and Anisimov 2013). Therefore, their use in clinical trials has 
been limited. However, an open label study from 2009 using bone marrow derived 
MSCs in seven patients showed immediate and short term safety to use these cells 
for treatment of PD, but the clinical improvement they displayed were only marginal 
(Venkataramana et al. 2009).

Furthermore, hMSCs from adipose tissue and bone marrow are currently being 
used to investigate the efficacy of autologous and allogenic treatments in PD patients 
with the idea of taking advantage of their immune-modulatory and trophic proper-
ties (Kitada and Dezawa 2012; Schwarz and Storch 2010]) (Table 5.1 and Fig. 5.2).

5.4.3  �Human Pluripotent Stem Cells

In theory, pluripotent stem cells are the ideal material for the treatment of several 
diseases using cell therapy, mainly due to their ability to self-renewal and to differ-
entiate into any cell type of the body.

However there are still several risks related to their use: the possibility of tumor 
formation, host immune reactions, technical questions related to correct 
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Fig. 5.2  Mesenchymal stem cells can be isolated from different tissues and infused intracerebrally 
or systemically for treating Parkinson´s Disease (PD) patients
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differentiation with the desired phenotype and ethical issues (in the case of human 
embryonic stem cells). Currently, the use of hPSCs is extremely regulated in most 
countries, leading to a reduced number of approved clinical trials involving their use.

5.4.4  �Human Embryonic Stem Cells

The first human Embryonic Stem Cells (hESCs) were isolated from the inner cell 
mass of the blastocyst, in 1998 (Thomson et al. 1998). These cells are characterized 
by their self-renewal capacity and the potential to differentiate towards specialized 
cells of all germ layers (endoderm, ectoderm and mesoderm). Due to these proper-
ties, hESCs can be a suitable cell source for cell-based therapies.

The clinical application of hESCs in neurodegenerative diseases such as PD 
depends on their efficient differentiation into the DAn phenotype. In this regard, 
functional VM DAn have been obtained using different protocols. Currently, the 
most effective ones are those based in dual SMAD inhibition (Grealish et  al. 
2014; Kirkeby et al. 2012, 2013) and conversion of hESCs into precursors of floor 
plate that, after exposure to agonists of Shh and Wnt signaling pathways, are effi-
ciently converted to DAn (Kriks et al. 2011; Chambers et al. 2009). In both cases, 
neurons generated can survive and integrate into the lesioned brain with long-
term functional benefits, encouraging the research aimed at using hESCs for treat-
ing PD.

The recent work of Malin Parmar’s group has demonstrated the DAn derived 
from hESCs can survive and innervate the brain regions of interest after grafting 
into the brain of parkinsonian rats (Grealish et al. 2014). Demonstrating that cell 
transplantation of hESC-derived DAn are functionally comparable to that of neu-
rons derived from fetal tissue.

However, the use of hESCs is still associated with several problems including 
ethical issues, phenotype instability, controlling cell proliferation and correct dif-
ferentiation and maturation into the desired phenotype (Petit et al. 2014; Cho et al. 
2008; Martínez-Morales et al. 2013).

Furthermore to optimize the use of hESCs in clinical application, it is essential 
to avoid any risk of contamination, including xenogenic contamination (from cell 
culture reagents or feeder cells). This implies that neuronal precursors and neurons 
differentiated from hESCs must be obtained in GLP/GMP (Good Laboratory and 
Manufacture Procedures) conditions from the blastocyst isolation.

Besides, the work with hESCs is being extensively regulated in most countries. 
The guidelines ranging from controlled permissiveness to absolute prohibition 
(Condic and Rao 2010).

Finally, another challenge is the possibility of graft rejection. However, this 
problem could be avoided by the creation of banks of cells from immunologically 
diverse donor cells to include a high diversity of HLA types. Due to these limita-
tions no clinical trial has been conducted with these cells in PD yet. But maybe not 
for long, as there are already planned at least two clinical trials with hESCs, one in 
Europe and another in the USA, to begin in the next few years (Abbott 2014).
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5.4.5  �Human Parthenogenetic Embryonic Stem Cells

The parthenogenetic cells are pluripotent stem cells obtained from unfertilized 
oocytes by the suppression of the second meiotic division, generating diploid cells 
carrying only the maternal chromosomes (Barker et al. 2016; Revazova et al. 2007). 
These cells are named parthenogenetic human embryonic stem cells (phESCs), 
show similar morphology to hESCs, express the typical pluripotency markers and 
show high levels of activity for telomerase and alkaline phosphatase (Revazova 
et al. 2007). They also generate embryoid bodies in vitro and teratoma formation 
after infusion in immunodeficient mice (Revazova et al. 2007).

Parthenogenetic human embryonic stem cells could be a good alternative to hESCs 
derived by somatic nuclear transfer (SCNT) since the process of parthenogenesis is 
relatively simple as compared to SCNT and does not require complex equipment 
(Gonzalez et al. 2015b; Revazova et al. 2007). These cells are not fertilized or acti-
vated via sperm entry and they can circumvent the ethical issues related to the use of 
hESCs.

However the lack of one parental contribution makes them different from hESC 
or hiPSCs. For this reason, their clinical use could be problematic, as it could affect 
the cell cycle and their ability to differentiate properly.

The first clinical trial using human pluripotent stem cells to treat PD was 
approved at the end of 2015 by the Australian government. The study will be car-
ried out at the Royal Melbourne Hospital in Melbourne, Australia by the company 
International Stem Cell Corporation (ISCO). This is a Phase 1/2 trial in twelve 
patients with PD. For transplantation, the company is planning to use a population 
of NSCs previously generated from the parthenogenetic pluripotent stem cells 
(Barker et al. 2016).

5.4.6  �Human Induced Pluripotent Stem Cells

The first ES-like cells from adult somatic cells were generated by Takahashi and 
Yamanaka through the overexpression of a few transcription factors (Takahashi and 
Yamanaka 2006). These ES-like cells were generated by transducing mouse embry-
onic fibroblasts (MEFs) with retroviruses that expressed Oct3/4, Sox2, Klf4, and 
c-Myc (abbreviated as OSKM). The combination of the four transcription factors 
gave rise to the known “induced pluripotent stem cells (iPSCs)” (Takahashi and 
Yamanaka 2006).

A year later it was reported the generation of human iPSCs from fibroblasts by 
two different laboratories, Yamanaka’s team (Takahashi et al. 2007) and Thomson’ 
s group (Yu et al. 2007). The first one used OSKM factors, while the second included 
NANOG and LIN28.

Human iPSCs are similar to hESCs in many aspects like morphology, expression 
of pluripotency factors, epigenetic marks, differentiation potential in vivo and in 
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vitro and the ability to generate viable chimeras (Martínez-Morales and Liste 2012; 
Phanstiel et al. 2011).

Certainly the cell reprogramming technology and the ability to generate iPS cells 
has been a breakthrough in the field of biomedical and clinical research. Since these 
cells can be used as in vitro models of diseases and for autologous grafting (no 
immunosuppression should be necessary). Further, they do not generate ethical con-
troversies as can be derived from adult tissues.

Focusing in PD, human DA precursors have been efficiently derived from hiP-
SCs isolated from control, or from PD patients by using similar protocols to those 
used for differentiation of hESCs (Kriks et al. 2011; Soldner et al. 2009; Hargus 
et al. 2010; Nguyen et al. 2011; Sánchez-Danés et al. 2012; Kirkeby et al. 2012). 
When transplanted into the brain of lesioned rats, hiPSCs were able to survive and 
differentiate into DAn, showing a significant improvement in the motor tests, with-
out generating tumors (Doi et al., 2014).

However we must be careful, since iPS cells have, at least, the same challenges 
and risks as hES cells; in addition to the problems associated with the reprogram-
ming process itself and that they can be derived from the tissue of patients (they will 
carry the same genetic defects as the patient cells).

In fact, most efficient strategies for hiPSCs generation are based in the use of 
retroviral and lentiviral vectors that can integrate into the somatic cell genome, 
increasing the risk of oncogenic transformation and/or insertional mutagenesis. 
Currently, to avoid these risks, important advances have been made in the field 
by using excisable vectors (Soldner et al. 2009), non-integrative vectors (Stadtfeld 
et al. 2008), the use of direct protein or mRNA delivery (Bernal 2013; Zhou et al. 
2009) and the addition of different chemical compounds (Masuda et al. 2013).

Some studies have identified genomic instability, as well as epigenetic and 
genetic abnormalities associated with the reprogramming process itself (which 
could be expected because most of the reprogramming factors used possess onco-
genic potential (Revilla et al. 2015; Pasi et al. 2011; Lister et al. 2011). Another 
obstacle to overcome in hiPS-based cell technology before its therapeutic applica-
tion is the risk of tumor formation. This risk is associated in part with the existence 
of proliferating cells after implantation but also with the phenotype heterogeneity of 
the differentiated cells as it happens in hESCs (Fu and Xu 2012; Thomson et al. 
1998; Ben-David and Benvenisty 2011).

In any case, the expectations placed on hiPSCs are huge and several clinical 
trials are already planned with these cells for PD waiting government approval. 
One is expected to start soon in Japan led by the group of Jun Takahashi (Morizone 
and Takahashi 2016; Drouin-Ouellet and Barker 2014; Garber 2013) (Fig. 5.3).
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5.5  �Conclusions and Future Directions

Conventional pharmacological treatments for most neurological disorders, includ-
ing PD, only provide some symptomatic improvement but do not stop the progres-
sion of the degeneration. Therefore there is a clear need for alternative therapeutic 
strategies. The development of cell-replacement therapies using stem cells can pro-
vide substantial benefits for PD patients, as shown after transplantation of fetal cel-
lular suspensions of dopaminergic precursors.

However, clinical studies to date have shown that there are still many gaps in 
terms of safety, effectiveness and overall methodology used in these implants. 
Among the aspects that need improvement, would be: (i) the development and stan-
dardization of surgical methods for cell transplantation and biological assays to 
evaluate the survival and effectiveness of the grafts. (ii) A good understanding of the 
effects of inflammatory and immunological processes on the progression of PD and 
on the implanted neurons. (iii) A better design and planning of clinical trials in 
terms of patient selection, evaluation criteria and patient follow-up. (iv) Identification 
of the best type of cell to be used as a source of DAn and standardization of proto-
cols for the optimal production of these cells.

Transplantation

Dopaminergic neuron specification

Neural induction

Embryonic Stem Cell

from inner cell mass
of fertilized occyte

from reprogrammed
adult somatic cell

from inner cell mass of 
activated, non-fertilized occyte

iPSC Parthenogenetic Stem Cell

Isolated from

Pluripotent Stem Cells

Fig. 5.3  Different types of human pluripotent stem cells available for CRT in PD after differentia-
tion into Dopaminergic neurons
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In relation to this last point there has been enormous progress in recent years; 
especially with regard to the generation of fully functional DAn from hESCs and 
hiPSCs. This has been possible thanks to a better knowledge of the signaling mol-
ecules that regulate embryonic development of DAn.

The DAn derived from human pluripotent stem cells can be obtained in large 
quantities in culture and have been shown to be able to survive long term implanta-
tion in preclinical models of PD being functional in a similar way to that observed 
with human fetal VM neurons. The main advantage of hiPSCs over hESCs is that 
they can be obtained from somatic cells of the own patient, therefore, could prevent 
immune rejection.

The derivation of clinically safe hiPSCs and their subsequent differentiation into 
DAn in vitro could provide excellent tools to replace the degenerated neurons in PD 
patients.

Furthermore the increasing results obtained from experiments using MSCs is 
also beginning to provide potential treatment options for PD. Though more studies 
need to be completed to confirm the safety and efficacy of the use of trans-
differentiated MSCs for CRT, significant strides have been made in the use of 
MSCs as a neuroprotective treatment option. These cells have been show to pro-
mote neural and glial cell survival, control angiogenesis, inhibit apoptosis, have 
immunomodulatory functions and show neuroprotective actions through the release 
of a number of different neurotrophic and survival-promoting growth factors. A few 
clinical trials are already underway, utilizing allogenic and autologous-derived 
stem cells intravenously administered to see the beneficial effects of MSCs in 
humans.

In short, the perspective of an unlimited source of cells, in combination with the 
promising preclinical results suggests that CRT technology can be very close to a 
realistic clinical application in PD.
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Chapter 6
Mesenchymal Stromal Cell Therapy 
for Neonatal Hypoxic-Ischemic 
Encephalopathy

Carolina Carmen Urrutia Ruiz, Paulo Henrique Rosado-de-Castro, 
Rosalia Mendez-Otero, and Pedro Moreno Pimentel-Coelho

6.1  �Introduction

It has been estimated that intrapartum hypoxia-ischemia/asphyxia was responsible 
for 1.15 million new cases of neonatal encephalopathy (NE) in 2010, resulting in a 
total of 413,000 children with neurodevelopmental impairments worldwide. 
Impressively, more than 85 % of these new cases occurred in South–Southeast Asia 
and sub-Saharan Africa (Lee et  al. 2013). More recently, the Global Burden of 
Disease 2013 Study reported that NE following birth trauma and asphyxia was 
responsible for more than 10 % (643,765 deaths) of the 6.28 million deaths that 
occurred in children under 5 years of age in 2013, representing the third most com-
mon cause of death in this age group (Kyu et  al. 2016). As suggested by Volpe 
(Volpe 2012), these cases should be referred to as neonatal hypoxic-ischemic 
encephalopathy (HIE), in order to differentiate them from cases in which NE 
occurred due to other causes.

Although therapeutic hypothermia has been implemented as the standard treat-
ment for patients with moderate/severe HIE, the number needed to treat was esti-
mated to be 6–8 (Davidson et al. 2015; Tagin et al. 2012; Papile et al. 2014). This 
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means that a large number of children would still benefit from additional neuropro-
tective or neurorestorative strategies.

There has been a growing interest in the development of cell-based therapies for 
HIE. A special emphasis has been given to the study of mesenchymal stromal cells 
(MSC), which display a number of characteristics that make them very attractive for 
therapeutic applications in HIE (Pimentel-Coelho and Mendez-Otero 2010). This 
chapter discusses current preclinical evidence on the mechanisms by which MSC 
could contribute to brain repair in HIE.

6.2  �Mesenchymal Stromal Cells

MSC are a heterogeneous self-renewing cell population found in the stroma of sev-
eral tissues (Bianco and Gehron Robey 2000). In vitro, they have a spindle-shaped 
morphology, form single cell-derived colonies, are plastic-adherent, and proliferate 
in the presence of fetal calf serum (Conget and Minguell 1999; Pittenger et al. 1999; 
Friedenstein et al. 1976). Moreover, MSC have the potential to differentiate into 
adipocytes, chondroblasts, and osteoblasts (i.e., cells of the mesodermal lineage) 
(da Silva Meirelles et al. 2006).

MSC can be obtained from a variety of adult tissues, including bone marrow, adi-
pose tissue and peripheral blood, among others (da Silva Meirelles et al. 2006). For 
instance, MSC account for less than 0.01 % of the nucleated cells in the bone marrow 
(Pittenger et al. 1999) and this is the most studied and well-characterized source of 
MSC in adults. However, the isolation of bone marrow-derived MSC (BM-MSC) 
requires bone marrow aspiration, a minimally invasive procedure (Malgieri et  al. 
2010). An alternative source that has been widely investigated is the adipose tissue, 
which contains large numbers of MSC (up to 3 % of all cells) that can be easily obtained 
by minimally invasive procedures such as liposuction aspiration and needle biopsies 
(Baer and Geiger 2012). Although aging can have a negative impact on the function of 
adipose-tissue derived MSC (AT-MSC) and BM-MSC (Choudhery et al. 2014; Zhou 
et al. 2008), it is not clear how the ageing process affects their therapeutic potential.

MSC can also be isolated from neonatal tissues, including the umbilical cord and 
placenta. The human umbilical cord Wharton’s jelly is a rich, reliable and easily 
accessible source of MSC (hUC-MSC) that display a high proliferative potential 
(Zhang et  al. 2014). The human umbilical cord blood is also a source of MSC 
(hUCB-MSC) that display high proliferative rates, although there are critical factors 
that can limit their isolation, such as the time from collection to processing (Bieback 
et al. 2004; Zhang et al. 2011).

There are increasing evidence that MSC can promote regenerative processes and 
induce brain repair in a wide variety of preclinical models of neurological diseases 
(Rosado-de-Castro et al. 2013; Mesentier-Louro et al. 2016), including the Rice-
Vannucci rodent model of HIE (Pimentel-Coelho et al. 2010; Vannucci and Vannucci 
2005) and the ovine model of global hypoxia-ischemia in the developing brain 
(Jellema et al. 2013).
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6.3  �The Therapeutic Efficacy of Mesenchymal Stromal Cells 
in Preclinical Animal Models of Neonatal 
Hypoxia-Ischemia

6.3.1  �Mesenchymal Stromal Cells from Adult Tissues

Van Velthoven and colleagues have shown that intracerebrally transplanted 
BM-MSC improved the behavioral outcome and decreased the lesion size in a 
rodent model of HIE (van Velthoven et al. 2010a, c). Beneficial results were also 
obtained when BM-MSC were intravenously (Yasuhara et al. 2008), intracardially 
(Lee et  al. 2010), subcutaneously (Cameron et  al. 2015) and intranasally trans-
planted (van Velthoven et al. 2010b; Donega et al. 2013; Donega et al. 2014b).

Furthermore, it has been demonstrated that the intracerebroventricular adminis-
tration of AT-MSC recovered the locomotor activity and improved the cognitive 
function in a model combining cerebral hypoxia-ischemia and systemic inflamma-
tion (induced by the intraperitoneal injection of lipopolysaccharide) in rats. AT-MSC 
attenuated brain inflammation and restored the expression of several growth and 
neurotrophic factors in the brain (Park et al. 2013).

6.3.2  �Mesenchymal Stromal Cells from Neonatal Tissues

The intracerebral transplantation of hUC-MSC was shown to promote the restora-
tion of learning and memory functions via the secretion of interleukin (IL)-8, which 
enhanced angiogenesis in the hippocampus via the JNK signaling pathway (Zhou 
et al. 2015). Moreover, the administration of hUC-MSC via intravenous or intra-
peritoneal routes improved the long-term functional outcome of rats (Zhang et al. 
2014; Zhu et al. 2014).

Finally, there is evidence that intracerebrally transplanted hUCB-MSC and rat 
placenta-derived MSC can contribute to the functional recovery of hypoxic-ischemic 
rats (Xia et al. 2010; Ding et al. 2015a, b).

6.4  �Mechanisms of Action of Mesenchymal Stromal Cell-
Based Therapies in Animal Models of Neonatal 
Hypoxia-Ischemia

It is already well established that MSC do not transdifferentiate into functional neu-
ral cells in vivo (Abraham and Verfaillie 2012; Lin et al. 2015). Instead of replacing 
lost cells, MSC seem to exert their therapeutic effects through paracrine and contact-
dependent signaling.
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Zhou and coworkers (Zhou et  al. 2015), for example, identified IL-8 as key 
player in the paracrine action of human umbilical cord-derived MSC in a rodent 
model of HIE. Silencing of IL-8 gene expression in MSC abolished the beneficial 
cognitive effects of a single intracerebroventricular injection of MSC. In addition, 
another study from the same group showed that rat BM-MSC exerted their thera-
peutic effects on cognition through the secretion of IL-6 and that this cytokine was 
involved in the protection of astrocytes in an in vitro model of oxygen/glucose 
deprivation (Gu et al. 2016).

The paracrine action of MSC is also supported by studies on the composition and 
biological activity of the conditioned medium of cultured MSC. IL-6, IL-8, vascular 
endothelial growth factor (VEGF) and the chemokine CCL2 are some of the factors 
most commonly found in the secretome of non-stimulated MSC (Ranganath et al. 
2012). Moreover, the secretome can be modified by genetic manipulation (van 
Velthoven et al. 2014) or by changes in culture conditions (Ranganath et al. 2012). 
For instance, a recent study showed that the intranasal delivery of MSC genetically 
engineered to secrete brain-derived neurotrophic factor (BDNF) improved the 
motor function, decreased lesion volume and induced cell proliferation in the isch-
emic hemisphere, whereas the treatment with MSC modified to secrete epidermal 
growth factor-like 7 (EGFL7) only improved the motor function after HIE (van 
Velthoven et al. 2014).

The neuroprotective action of MSC-released factors was further demon-
strated by Wei et al. (Wei et al. 2009), who treated neonatal rats with an intrave-
nous injection of the conditioned medium of AT-MSC either 1 h before or 24 h 
after the hypoxic-ischemic insult. Both treatment protocols were effective in 
reducing brain tissue loss and preventing the development of long-term spatial 
learning deficits. Insulin-like growth factor-1 (IGF-1) and BDNF were partially 
responsible for the neuroprotective effects of the prophylactic administration of 
conditioned medium. These findings were corroborated by in vitro experiments 
showing that the conditioned medium protected cerebellar granular neurons 
against serum and K+ deprivation-induced cell death, as well as against gluta-
mate excitotoxicity.

Taken together, these studies indicate that it may not be possible to identify a 
single factor that could explain the multiple actions of MSC. Future studies are 
necessary to compare the efficacy of MSC versus MSC-conditioned medium in 
animal models of HIE. A possible advantage of the cell therapy is the fact that 
MSC adapt their secretome in response to changes in the environment. For 
instance, the co-culture of MSC with brain extracts from hypoxic-ischemic ani-
mals increased the mRNA expression of BDNF and nerve growth factor (NGF) by 
MSC (Donega et al. 2014b). Therefore, MSC could act as a “site-regulated drug-
store”, as suggested by Caplan and Correa (Caplan and Correa 2011). On the other 
hand, the administration of cells is not devoid of potential risks (Boltze et  al. 
2015) and the composition of the conditioned medium can be modulated by dif-
ferent types of stimuli.
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6.4.1  �Immunomodulatory and Neuroprotective Actions 
of Mesenchymal Stromal Cells

MSC display potent immunosuppressive and immunoregulatory activities, by inter-
acting with cells of the innate and adaptive immune system. This led to the approval 
of Prochymal® (remestemcel-L) as the first MSC-based product for the treatment 
of pediatric graft versus host disease in Canada and New Zealand (Zhao et al. 2016).

With regard to the central nervous system, MSC have been shown to modulate 
the phenotype and function of microglia. For instance, MSC can attenuate the 
release of pro-inflammatory factors by lipopolysaccharide-stimulated primary cul-
tured newborn microglia and microglial cells lines in vitro (Hegyi et al. 2014; Liu 
et al. 2014; Jose et al. 2014). These effects seem to be mediated by the secretion of 
soluble factors by MSC, since they can be reproduced by the treatment of microglial 
cells with MSC-conditioned medium (Ooi et al. 2015). Although it is unlikely that 
a single MSC-derived factor could be responsible for this anti-inflammatory action, 
it has been demonstrated that tumor necrosis factor (TNF)-α stimulated gene/pro-
tein 6 (TSG-6) (Liu et al. 2014) and the chemokine CX3CL1 (Giunti et al. 2012) 
were at least partially implicated in the modulation of microglial activity by MSC.

Several studies have shown that MSC can reduce the recruitment or proliferation 
of microglial cells/macrophages in rodent models of HIE and neonatal stroke (Kim 
et al. 2012; Zhu et al. 2014; Donega et al. 2014a, b; van Velthoven et al. 2010a). 
Similar findings were reported by Jellema and colleagues (Jellema et al. 2013), who 
used an ovine model of global hypoxia-ischemia in the preterm brain to evaluate the 
anti-inflammatory effects of a single intravenous administration of human 
BM-MSC. They showed that the treatment was able to reduce the number of microg-
lial cells and CD3-positive T lymphocytes in the injured subcortical white matter. 
Moreover, MSC suppressed the proliferation of CD4-positive helper T cells in the 
spleen of sham-operated and hypoxic-ischemic animals. These immunomodulatory 
effects were accompanied by morphological and functional improvements, such as 
the decrease of white matter injury, brain atrophy and electrographic seizure burden.

A potential confounding factor in the interpretation of these results is the fact 
that, in most of these studies, MSC treatment also decreased the number of dying 
neurons. Regardless of the administration route, MSC were shown to decrease the 
loss of cerebral white and gray matter in models of HIE (Donega et al. 2013, 2014a; 
van Velthoven et al. 2010b, c). It is known that the microglial response is directly 
related to the degree of neuronal loss. Therefore, it is difficult to conclude whether 
the decrease in the number of microglial cells in vivo is a direct consequence of 
MSC immunomodulatory activity or an indirect effect related to the neuroprotective 
action of MSC.

In addition, it may not be correct to conclude that the neuroprotective effect of 
MSC is secondary to its effects on microglia. In vitro studies support the notion that 
MSC or MSC-conditioned medium can directly protect hippocampal and cortical 
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neurons from oxygen/glucose deprivation, in the absence of microglial cells 
(Scheibe et al. 2012; Piscioneri et al. 2015). Therefore, further studies are necessary 
to determine whether MSC can potentiate the recently described protective effects 
of microglia in the neonatal brain (Faustino et  al. 2011; Fernandez-Lopez et  al. 
2016), while suppressing the toxic effects related to prolonged microglial activation 
(Saijo and Glass 2011).

Besides the local anti-inflammatory effect, human MSC can attenuate systemic 
inflammation. For instance, a recent study found that the intracerebral administra-
tion of placenta-derived MSC decreased the plasma levels of TNF-α, IL-17, inter-
feron (IFN)-γ and increased the levels of the anti-inflammatory cytokine IL-10 in a 
rat model of HIE. In addition, the treatment increased the number of regulatory T 
cells (Tregs) in the spleen (Ding et al. 2015a).

6.4.2  �Mesenchymal Stromal Cells and Neuroplasticity

There is strong evidence that MSC can induce neurogenesis and oligodendrogenesis in 
the endogenous stem cell niches. The intracerebral administration of BM-MSC 3 days 
after hypoxia-ischemia in mice promoted cell proliferation and increased the number 
of newly born neurons and recently divided oligodendrocyte progenitors in the hip-
pocampus and cerebral cortex, whereas the number of newly formed microglia was 
reduced in both areas (van Velthoven et al. 2010a, c). Mice treated with two doses of 
BM-MSC (at 3 and 10 days after HIE) exhibited a better functional recovery, in com-
parison to animals that received a single dose. Moreover, a second dose of BM-MSC 
at 10 days restored the connection between the injured ipsilateral motor cortex and the 
contralateral spinal cord, promoting axonal remodeling of the motor tracts. This effect 
was accompanied by an increase in neuritogenesis and synaptogenesis, as assessed by 
GAP43 and synaptophysin staining, respectively (van Velthoven et al. 2010c)

The intranasal administration of BM-MSC can stimulate neurogenesis in the 
subventricular zone and at the lesion site, as demonstrated by the increased number 
of neuroblasts and neural precursor cells at both regions after the therapy (Donega 
et al. 2014b). Intranasally injected BM-MSC also reduced the activation of astro-
cytes, therefore reducing the glial scar, which is known to inhibit axon regeneration, 
even though it acts as a barrier that prevents the spread of tissue damage (Donega 
et al. 2014a, b).

The main limitations of the endogenous regenerative response of the subven-
tricular zone in models of HIE are the poor survival of newborn neurons and the 
preferential differentiation of neuroblasts into calretinin-positive striatal interneu-
rons (Yang et al. 2007, 2008). However, a recent study has shown that the delayed 
treatment (7  days after hypoxia-ischemia) with a subcutaneous injection of 
BM-MSC was able to increase the number of newly-generated DARPP-32-positive 
striatal medium-spiny projection neurons in the striatum 1 week after the treatment, 
particularly in the group that received a higher dose (750,000–1,000,000 cells) 
(Cameron et al. 2015).
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6.5  �Routes of Administration, Cell Doses and Therapeutic 
Time-Window

MSC have a strong tropism for inflamed and injured sites, such as tumors and isch-
emic lesions in the brain (Sasportas et al. 2009; Kim et al. 2008). Regarding the 
developing brain, it has been demonstrated that MSC can survive for several weeks 
after the intracerebral or intracerebroventricular transplantation in neonatal animals 
(Phinney et al. 2006; Croitoru-Lamoury et al. 2006; Chen et al. 2010). In an inter-
esting study, Chen et al. (Chen et al. 2010) used magnetic resonance imaging (MRI) 
for the in vivo tracking of intracerebrally injected micrometer-sized paramagnetic 
iron oxide particles (MPIO)-labeled MSC in a model of excitotoxic injury to the 
immature brain. They found that, while the cells remained at the injection site in 
control animals, there was an extensive migration of BM-MSC to the lesioned sites 
in the contralateral hemisphere in 2 out of 4 rats. In 3 of these animals, the cells also 
migrated caudally along the fornix and fimbria of hippocampus.

Several routes have been used for the administration of MSC in models of HIE, 
including the intracerebral (Xia et al. 2010; van Velthoven et al. 2011; 2010c), intra-
cerebroventricular (Park et al. 2013, 2015; Gu et al. 2016), intravenous (Zhang et al. 
2014; Jellema et al. 2013), intraperitoneal (Zhang et al. 2014; Zhu et al. 2014), sub-
cutaneous (Cameron et  al. 2015), intra-cardiac (Lee et  al. 2010) and intranasal 
routes (Donega et al. 2013, 2014a, b, 2015). The intra-arterial route has not been 
tested, but it should be noted that this route was associated with important side 
effects in adult animals, including the formation of micro-occlusions and stroke 
(Cui et al. 2015; Janowski et al. 2013).

In comparison to the intracerebroventricular and intracerebral routes, only a rela-
tively small number of donor cells could be found in the brain after the systemic 
injection of rodent or human MSC in models of HIE. Moreover, two studies showed 
that the intravenous route was more effective in delivering MSC to the hypoxic-
ischemic brain than the intraperitoneal one (Ohshima et al. 2015; Zhang et al. 2014). 
In spite of that, rats treated with hUC-MSC either through the peritoneal cavity or 
the jugular vein exhibited a better spatial learning performance after HIE, with vir-
tually no differences between the routes (Zhang et al. 2014).

A limitation of the intravenous route is the entrapment of MSC in the lungs 
(Ohshima et al. 2015; Fischer et al. 2009), although this may be a necessary step for 
the activation of MSC in some situations, such as in the model of acute myocardial 
infarct (Lee et al. 2009).

The intranasal route has been extensively studied by Donega and colleagues 
(Donega et al. 2013, 2014a, b, 2015). They have demonstrated that the intranasal 
administration of mouse MSC is safe (Donega et al. 2015) and improves several 
functional and structural outcomes in hypoxic-ischemic mice (Donega et al. 2013). 
A dose-escalation study showed that 0.5 × 106 cells was the minimal effective dose, 
although better results were obtained with the intranasal instillation of 1 × 106 cells. 
This study also showed that MSC have a broad therapeutic time-window of at least 
10 days and that there were no beneficial effects when the treatment was delayed to 

6  Mesenchymal Stromal Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy



112

14 days after the insult. Interestingly, MSC migrated from the nostrils to the lesion 
sites only when injected up to 10 days (but not at 14 days) post-insult, suggesting 
that the treatment efficacy depended on the migration of MSC to the brain (Donega 
et al. 2013). In a subsequent study they observed that MSC could be found near the 
cortical lesions as early as 2 h after administration, indicating that MSC may have 
alternative routes to reach the cerebral cortex, besides the migration through the 
brain parenchyma (Donega et  al. 2014b). Furthermore, it was suggested that the 
chemokine CXCL10 is probably involved in the recruitment of human MSC to the 
brain after the intranasal injection (Donega et al. 2014a).

In conclusion, additional translational studies are needed to optimize MSC-based 
therapies for HIE, by the identification of the best route of administration, cell dose 
requirements and the therapeutic time window.

6.6  �Future Directions

6.6.1  �Understanding the Role of Mesenchymal Stromal Cell-
Derived Extracellular Vesicles

The beneficial effects of transplanted MSC can be attributed to their ability to secret 
paracrine factors and modulate the local environment and the local and systemic 
immune responses. Recently, it has been reported that MSC secrete extracellular 
vesicles, including microvesicles and exosomes (Lai et al. 2010). These lipid vesi-
cles contain proteins, mRNA, microRNAs and lipid mediators able to produce an 
immediate response in target cells (Valadi et al. 2007; Record et al. 2011; Subra 
et al. 2010).

It has been reported that MSC-derived exosomes (Exo-MSC) can transfer the 
microRNA 133b (mIR-133b) into neurons (Xin et al. 2012). A subsequent study 
from the same group showed that the intravenous administration of Exo-MSC 
resulted in the induction of neurogenesis, angiogenesis, and functional recovery in 
a model of middle cerebral artery occlusion in adult animals (Xin et  al. 2013). 
Furthermore, the intravenous administration of Exo-MSC was shown to improve 
cognitive and sensorimotor functional recovery, promote neurogenesis, increase the 
number of endothelial cells in the lesion boundary zone and decrease brain inflam-
mation after traumatic brain injury in adult rats (Zhang et al. 2015).

At present, the therapeutic potential of extracellular vesicles in experimental 
models of HIE has not been assessed and the possible mechanisms that are involved 
in the reparative/pro-regenerative actions of Exo-MSC in the damaged central ner-
vous system remain to be determined. Proteomic studies have shown that human 
Exo-MSC contain neurotrophin 5 (NT5) and BDNF, which are known to promote 
neuronal survival (Lai et al. 2012), but further studies are needed to identify the 
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specific molecular constituents of Exo-MSC (microRNAs, mRNAs or proteins) that 
are required for their therapeutic effects.

6.6.2  �Combining Cell-Based Therapies with Hypothermia

Therapeutic hypothermia is the only approved treatment for HIE (Davidson et al. 
2015). Clinical trials aimed to investigate the safety and efficacy of MSC-based 
therapies for HIE will have to test the new intervention in newborns who have been, 
are being or will be cooled. Preclinical studies should, therefore, determine the pos-
sible interactions between the two treatments.

We found only one study in which the intracerebroventricular injection of hUCB-
MSC preceded the initiation of hypothermia in hypoxic-ischemic rats. A synergistic 
therapeutic effect was observed in several outcomes, including infarct volume, cell 
death in the penumbra and recovery of the sensorimotor function. Additionally, the 
combined therapy was more effective in reducing brain inflammation, as demon-
strated by a decrease in the number of macrophages/microglia in the penumbra and 
a reduced expression of pro-inflammatory cytokines in the cerebrospinal fluid (Park 
et al. 2015).

6.7  �Conclusion

Preclinical studies have indicated that transplanting MSC from diverse sources lead 
to neuroprotection in animal models of HIE (Fig.  6.1). Even though the exact 
molecular mechanisms behind these effects are not fully known, they appear to be 
mediated by paracrine factors capable of inducing immunomodulation, neurogene-
sis, angiogenesis and neuroplasticity. Further studies are necessary to improve the 
understanding of the mechanisms of MSC transplantation, as well as the optimal 
cell sources, doses and time window for transplantation. Also, more research must 
be carried out to evaluate the possibility of combining MSC therapy with therapeu-
tic hypothermia and the potential of translating preclinical findings to clinical 
trials.
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7.1  �Introduction

Autism spectrum disorders (ASDs) are complex neuro-developmental disorders. 
ASDs result in dysfunction in social interaction and communication skills, and also 
lead to restricted interests and repetitive stereotypic verbal and non-verbal behav-
iors, which impact the ability of the patient to relate to others. Although ASD 
patients present with various abnormalities, the three main ones which are consid-
ered to be core symptoms of ASDs are cognitive, emotional and neurobehavioral 
abnormalities.

The prevalence of these disorders has dramatically increased in recent years in 
the United States and other countries. Although ASDs do not cause death they are, 
nonetheless, considered to be serious diseases which impact the quality of life of the 
patient. Children with ASDs, for instance, require special and intensive parental, 
school, and social support.

Decade-long studies from 2005 to now have shown that there are increasing 
more abnormalities seen in children with autism. A broad range of biochemical, 
toxicological and immune processes are impacted in ASD patients. These include 
oxidative stress, endoplasmic reticulum stress, decreased methylation capacity, lim-
ited production of glutathione, mitochondrial dysfunction, intestinal dysbiosis, 
increased toxic metal burden, and immune dysregulation (including autoimmunity). 
In recent years, several gene mutations have been found in ASD patients; however, 
these mutations have been inconsistent and therefore still controversial.

For a long time, ASDs were not considered as diseases. Indeed, ASDs were 
mostly considered as social or emotional disorders in children. These disorders 
were thought to gradually improve and disappear in adulthood. Due to this reason, 
few treatments were even suggested for ASD children. Almost all “treatments” were 
behavioral, nutritional, and educational approaches.

In this chapter, we summarize and update the latest research results on ASD 
pathophysiology and the use and efficacy of stem cells for the treatment of ASDs.

7.2  �ASD: Immune Diseases

ASDs are associated with abnormality of the nervous system development during 
growth of the fetus. The abnormalities observed include an increase in the number 
of neurons (Courchesne et  al. 2011), increase in neuronal dendritic volume and 
synapses (Hutsler and Zhang 2010), and increase in the number and size of microg-
lial cells (Morgan et al. 2012). Some mutations of other synaptic cell adhesion mol-
ecules have also been discovered (Bourgeron 2009; Ebert and Greenberg 2013).

The correlation between the immune system and ASDs have been studied for a 
long time. The first report to show a relationship between the immune system and 
ASDs was represented by Money et al. (1971). These investigators demonstrated an 
association between family history of immune system dysfunction and ASDs. Since 
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that time, an increasing number of studies on the link of the immune system and 
ASDs have been performed (Atladottir et al. 2009; Enstrom et al. 2009; Torres et al. 
2002, 2006, 2012).

To date, three major observations have supported the relation of ASDs to the 
immune system:

–– Firstly, there was an association of family history of autoimmune diseases and 
ASD (Atladottir et al. 2009); in this study, the authors showed that the risk of 
ASDs increased in children with a maternal history of rheumatoid arthritis, celiac 
disease, and type 1 diabetes (Atladottir et al. 2009).

–– Secondly, several immunological biomarkers have been noted in the autistic 
populations, particularly auto-antibodies (Connolly et  al. 1999, 2006; Singh 
et al. 1993, 1998; Todd et al. 1988).

–– Thirdly, immunogenetic studies have shown that human leukocyte antigen is 
associated to some genes related to ASDs (Al-Hakbany et al. 2014; Gough and 
Simmonds 2007; Liu et al. 2003; Puangpetch et al. 2015).

7.3  �Stem Cell Therapy for Autism

7.3.1  �Preclinical Trials

In a recent study, Segal-Gavish et al. (2016) showed that MSC transplantation could 
help treat the symptoms of autism in mouse models. In their study, the authors used 
BTBR mice for the autism model as these mice have decreased brain-derived neu-
rotrophic factor (BDNF) signaling and reduced hippocampal neurogenesis (Scattoni 
et al. 2013). After MSC transplantation, treated mice exhibited a reduction of ste-
reotypical behaviors, a decrease in cognitive rigidity and an improvement in social 
behavior. Tissue analysis also supported these observations; an increase of BDNF 
protein levels was observed in the hippocampus (Segal-Gavish et al. 2016).

7.3.2  �Clinical Trials

There have been discussions about stem cell therapy for autism since 2007 (Ichim 
et al. 2007). The first clinical trial of stem cells for autism was reported in 2013 
(Sharma et al. 2013a). Since then, about 10 clinical trials using stem cells or mono-
nuclear cells to treat autism have been registered in clinicaltrials.gov (Table 7.1). 
The kinds of cells or/and stem cells used to date include: mononuclear cells from 
bone marrow (Sharma et al. 2013a, b, 2015, 2016), umbilical cord blood (Lv et al. 
2013), fetal stem cells (Bradstreet et al. 2014), and mesenchymal stem cells from 
umbilical cord (Lv et al. 2013). Transplantation of these cells significantly improved 
some scores in autistic patients (Bradstreet et al. 2014; Lv et al. 2013; Sharma et al. 
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Table 7.1  Clinical trials using stem cells for autism treatment

No Names of study Phase Auto/Allo Status Country

1 A Clinical Trial to 
Study the Safety 
and Efficacy of 
Bone Marrow 
Derived Autologous 
Cells for the 
Treatment of 
Autism
NCT01836562

I/II Intrathecal 
injection of 100 
million autologous 
mononuclear cells 
(MNCs) from bone 
marrow in 3 doses 
at 10 days interval.

Recruiting India: Institutional 
Review Board

2 Autologous Bone 
Marrow Stem Cells 
for Children With 
Autism Spectrum 
Disorders
NCT01740869

I/II Intrathecal 
injection of 
autologous CD34+ 
stem cells from 
bone marrow

Recruiting Mexico: Ethics 
Committee

3 Allogeneic 
Umbilical Cord 
Mesenchymal Stem 
Cell Therapy for 
Autism
NCT02192749

I/II Allogeneic human 
umbilical cord 
tissue-derived 
mesenchymal stem 
cells administered 
intravenously (IV) 
in a series of 4 
infusions every 3 
months over the 
course of 1 year

Active, not 
recruiting

Panama: Ministry of 
Health

4 Safety and Efficacy 
of Stem Cell 
Therapy in Patients 
With Autism
NCT01343511

I/II Intrathecal 
injection of 
allogenic human 
cord blood 
mononuclear cells 
and human 
umbilical cord 
MSCs

Completed China: Ministry of 
Health

5 Autologous Bone 
Marrow Stem Cell 
Therapy for Autism
NCT02627131

II Transplantation of 
Autologous Bone 
Marrow MNCs

Completed Vietnam: Hanoi 
Department of 
Health

6 Autologous Cord 
Blood Stem Cells 
for Autism
NCT01638819

II Infusion of 
autologous 
umbilical cord 
blood (AUCB) 
containing a 
minimum of 10 
million total 
nucleated cells per 
kilogram (TNC/kg)

Active, not 
recruiting

United States: Food 
and Drug 
Administration

(continued)
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2013a; Sharma et al. 2013b). Adipose derived stem cells and bone marrow derived 
hematopoietic stem cells (HSCs) have also been used in the clinic (Table  7.1). 
However, their treatment efficacies have not yet been reported. In almost all of the 
studies, stem cells were delivered to patients by intrathecal injection; a few studies 
used intravenous infusion.

7.3.2.1  �Bone Marrow Stem Cells

The first application of stem cells in ASD was reported in 2013. The case involved 
a 14-years old boy with severe autism who was treated with autologous bone 
marrow-derived mononuclear cells (BMMNCs) intrathecally (Sharma et al. 2013a). 
In this study by Sharma et al. (Sharma et al. 2013a), the authors collected the autolo-
gous bone marrow then isolated the mononuclear cells and intrathecally injected 
them into the patient. After 6 months, the results showed a symptomatic improve-
ment with a shift on the Childhood Autism Rating Scale (CARS), from 42.5 
(Severely Autistic) to 23.5 (Non Autistic). As well, an enhanced PET scan brain 
function was noted (Sharma et al. 2013a).

In the same year, Sharma et al. (Sharma et al. 2013a, b) published their find-
ings from an open clinical trial designed to treat autism through the use of autol-
ogous BMMNCs (Sharma et al. 2013b). This study followed the same approach 
to treat autism as their previous study. All transplantations used autologous cells 
and were infused intrathecally. Besides transplantation with BMMNCs, all 
patients were also monitored by multidisciplinary approaches. There were 32 
patients in this study who were followed for 26 months after treatment. The 
study showed that 91 % (29/32 patients) significantly improved on total ISAA 
scores, 62 % (20/32 patients) significantly decreased severity on CGI-I 
(P < 0.001), and 97 % (31/32 patients) globally improved on CGI-II (Sharma 
et al. 2013b). Using the same strategy, Sharmar et al. confirmed efficacy of this 
type of approach in other patients, in 2015 (Sharma et al. 2015) and 2016 (Sharma 
et al. 2016).

Table 7.1  (continued)

No Names of study Phase Auto/Allo Status Country

7 Adipose Derived 
Stem Cell Therapy 
for Autism
NCT01502488

I/II Autologous 
adipose-derived 
stromal cells 
delivered 
intravenously

Not yet 
recruiting

Mexico: Cofepris

8 Stem Cell Therapy 
in Autism Spectrum 
Disorders
NCT01974973

I Autologous bone 
marrow MNC 
transplantation

Recruiting India: Indian 
Council of Medical 
Research
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7.3.2.2  �Umbilical Cord and Umbilical Cord Blood Stem Cells

The combination of human cord blood mononuclear cells (CBMNCs) and umbilical 
cord-derived mesenchymal stem cells (UCMSCs) have also been used clinically to 
treat autism. In a phase I/II clinical study by Lv et  al. (2013), 37 patients were 
divided into 3 groups: 14 patients received CBMNC transplantation and rehabilita-
tion therapy, 9 patients received CBMNC + UCMSC transplantation and rehabilita-
tion therapy, and 14 subjects received only rehabilitation therapy (control group). 
The study demonstrated that transplantation of the cells was safe, with no adverse 
effects. The groups treated with cells significantly improved their CARS and CGI 
evaluation at 24 weeks post-treatment (p < 0.05). In addition, they improved their 
Aberrant Behavior Checklist (ABC) score- for domains of speech, sociability, sen-
sory, and overall health. The study also showed that the combination of CBMNCs 
and UCMSCs provided a greater therapeutic efficacy than CBMNC transplantation 
alone (Lv et al. 2013).

7.3.2.3  �Fetal Stem Cells

In a recent clinical trial with an open-labeled pilot study, Bradstreet et al. (2014) 
used fetal stem cells (FSCs), which possess high immunoregulatory functions, as 
MSCs to treat ASD, which were regarded as autoimmune diseases (Bradstreet et al. 
2014). The study involved transplantation of 2 injections of FSCs (one given intra-
venously and the other given subcutaneously) in children diagnosed with ASDs. 
The patients were monitored pre-treatment, and at 6 and 12 months post transplan-
tation. The results showed that FSC transplantation had no adverse events in the 
ASD patients; no transmitted infections or immunological complications were 
observed. These treated patients showed significant improvement on the Autism 
Treatment Evaluation Checklist (ATEC) test. As well, they showed improvement on 
the ABC score and reduction in total scores when compared to pre-treatment values 
(Bradstreet et al. 2014).

7.4  �The Future

With increasing studies, the pathophysiology and disease mechanism of autism is 
becoming clearer. More and more evidence show that autism is related to malfunc-
tion of the immune system; i.e. autism is an autoimmune disease. Thus, stem cells 
are attractive candidates for treatment of autism and ASDs. Since ASDs can be 
regarded as autoimmune diseases, there are 3 popular ways to potentially treat 
ASDs: immune correction, immune modulation, and immune replacement (gene 
correction) (Fig. 7.1).
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7.4.1  �Immune Modulation (Immunomodulation)

Immune modulation (also called immunomodulation) is related to the capacity of 
MSCs to modulate the activity and function of the immune system. In some cases, 
immunomodulation is similar to immune suppression. Unlike immune suppression 
drugs, MSCs can modulate the immune system by suppressing some immune cells, 
while stimulating other immune cells. In contrast to other stem cells, MSCs have a 
remarkable capacity to regulate immune responses. Many studies have shown that 
MSCs can regulate immune responses both in vitro and in vivo. MSCs have been 
demonstrated to mainly affect 4 kinds of immune cells: T lymphocytes (Aggarwal 

Fig. 7.1  Three approaches based on stem cells for autoimmune diseases. Autoimmune diseases 
can be treated by three approaches: immune correction, immune modulation, and gene correction. 
Immune system can be corrected by HSC transplantation, while immune modulation usually can 
be facilitated by MSCs. The third approach related to gene correction has also been studied, and 
can involve both HSCs and MSCs
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and Pittenger 2005; Di Nicola et  al. 2002; English et  al. 2009), B lymphocytes 
(Asari et al. 2009; Augello et al. 2005; Corcione et al. 2006), NK cells (Sotiropoulou 
et  al. 2006; Spaggiari et  al. 2006), and dendritic cells (DCs) (Chen et  al. 2007; 
Zhang et al. 2004). With regard to T lymphocytes, MSCs can suppress T-cell prolif-
eration induced by cellular or nonspecific mitogenic stimuli (Di Nicola et al. 2002), 
alter the cytokine secretion profile of naïve and effector T cells (Aggarwal and 
Pittenger 2005), and promote the expansion and function of regulatory (Treg) cells 
(English et al. 2009). Regarding B lymphocytes, MSCs can also inhibit their prolif-
eration (Augello et al. 2005), affect their chemotactic properties (Corcione et al. 
2006), and suppress their terminal differentiation (Asari et al. 2009). For NK cells, 
MSCs can alter their phenotype, and suppress their proliferation, cytokine secre-
tion, and cytotoxicity against targets expressing HLA class I (Sotiropoulou et al. 
2006; Spaggiari et al. 2006). Finally, for DC cells, MSCs can influence the differen-
tiation, maturation, and function of monocyte-derived DCs (Zhang et al. 2004), sup-
press DC migration, maturation and antigen presentation (Chen et al. 2007), and 
induce a novel Jagged-2-dependent regulatory DC population (Zhang et al. 2009) 
(Fig. 7.2).

With these properties, MSCs have been increasingly studied for autoimmune 
disease treatment. The autoimmune diseases have included preclinical and clinical 
trials of systemic lupus erythematosus (SLE) (Gu et al. 2014; Wang et al. 2014; Yan 
et al. 2013), Crohn’s disease (Ciccocioppo et al. 2015; Liew et al. 2014), multiple 
system atrophy (MSA) (Lee et  al. 2012; Sunwoo et  al. 2014), multiple sclerosis 
(MS) (Dulamea 2015; Gharibi et al. 2015), and amyotrophic lateral sclerosis (ALS) 
(Hajivalili et al. 2015; Lewis and Suzuki 2014; Rushkevich et al. 2015).

Moreover, MSCs are adult stem cells which can be isolated from various sources, 
including adipose tissue (Zuk et al. 2001, 2002), peripheral blood (Fernandez et al. 
1997; Huss et al. 2000; Purton et al. 1998), umbilical cord blood (Erices et al. 2000; 
Lee et al. 2004; Mareschi et al. 2001), banked umbilical cord blood (Phuc et al. 
2012; Phuc et al. 2011), umbilical cord (Kestendjieva et al. 2008; Romanov et al. 
2003), umbilical cord membrane (Kita et al. 2010), Wharton’s jelly of the umbilical 
cord (Hou et al. 2009), placenta (Rylova et al. 2015), and dental pulp (Jo et al. 2007; 
Pierdomenico et al. 2005). The availability of MSCs from different sources have 
made MSCs a valuable cell platform for the treatment of autism. Various prelimi-
nary studies have indicated that MSCs can potentially improve autism (Lv et al. 
2013).

7.4.2  �Immune Correction

Another approach used to treat autoimmune disease is immune correction. Immune 
correction is mediate by HSC transplantation, which helps to produce new immune 
cells from autologous HSCs. The exact mechanism for this approach remains 
unclear. However, suitable explanations have been suggested. In the autoimmune 
disease patients, autoreactive effector and inflammatory cells produced by the 
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immune system attack auto-tissues/cells and cause the autoimune reaction. Via 
HSC transplantation, these autoreactive or inflammatory cells are removed and 
freshly transplanted HSCs can reset the immune system of the patient. Presumably, 
after HSC transplantation, the de novo immune cells in the new immune system will 
not produce autoreactive effector and inflammatory cells like before.

The outcome of autologous HSC transplantation are: (i) an increased number of 
regulatory, FoxP3-positive T cells (Roord et al. 2008), (ii) the reactivation of thymic 
function which leads to a tolerant, “juvenile” immune system (Alexander et  al. 
2009; Muraro et al. 2005), and (iii) antithymocyte globulin directly targets long-
living, autoantibody-producing plasma cells by complement-mediated lysis and 
apoptosis (Zand et al. 2006).

Indeed, HSC transplantation was used in 1997 to treat the first autoimmune dis-
eases, including severe and therapy-refractory autoimmunity (Tyndall et al. 1997). 

Fig. 7.2  Some mechanisms of MSCs for treating autoimmune diseases. To date, there are at least 
three ways MSCs can act on autoimmune diseases. (1) MSCs can modulate the host’s immune 
system; (2) MSCs can home to injured tissue and differentiate into specific cells that replace the 
injured cells at those tissues; (3) MSCs release a variety of cytokines and growth factors that can 
inhibit fibrosis and apoptosis at injured tissues, trigger the self-renewal process of stem cells, and 
stimulate angiogenesis
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The European Bone Marrow Transplantation (EBMT) database, PROMISE, is the 
largest database of transplanted patients with autoimmune diseases and currently 
includes data on more than 1,000 patients from 172 institutions in 27 countries. 
Pilot studies were conducted for systemic sclerosis (Martini et  al. 1999; Tyndall 
et  al. 1997), rheumatoid arthritis (Durez et  al. 1998), SLE (Burt et  al. 1998a, b; 
Marmont et  al. 1997), multiple sclerosis (Burt et  al. 1998a), and hematological 
autoimmune diseases (e.g. idiopathic thrombocytopenia (Lim et al. 1997), autoim-
mune hemolytic anemia, and Evans syndrome). The studies showed that HSC trans-
plantation achieved improvement in patients with all the above conditions.

7.4.3  �Immune Replacement/Gene Correction

Similar to other autoimmune diseases, there have been gene mutations detected 
and linked to autism (Durand et al. 2007; Jamain et al. 2003; Laumonnier et al. 
2004; Neale et al. 2012; Sebat et al. 2007). Immune replacement or gene correc-
tion relates to replacing the mutated immune system with a healthy immune 
system. Theoretically, there are two ways to correct the immune system: alloge-
neic HSC transplantation that uses healthy HSC donor with HLA matching or 
correction of gene mutations in the patient’s HSCs with gene engineering. Both 
strategies are, however, limited and difficult to perform. The development of 
induced pluripotent stem cells, and especially the technology of differentiation 
of induced pluripotent stem cells (iPSCs) into HSCs, has opened a new direction 
in immune correction and proven potentially promising (Lachmann et al. 2015; 
Lim et al. 2013).

Autoimmune diseases where iPSCs from patients have been successfully pro-
duced include systemic lupus erythematosus (Chen et al. 2013), multiple sclerosis 
(Fossati and Douvaras 2014), and type 1 diabetes (Liu et al. 2014). In a recent study, 
Son et al. (2016) were able to produce iPSCs from patient-derived cells. Using the 
nonintegrating oriP/EBNA-1-based episomal vectors, iPSCs from ankylosing spon-
dylitis (AS), Sjögren’s syndrome (SS) and systemic lupus erythematosus (SLE) 
patients have been successfully generated. Interestingly, these iPSCs could differen-
tiate into cells of hematopoietic and mesenchymal lineages in vitro (Son et al. 2016). 
These results provide a renewed hope in the near future for treating autoimmune 
diseases, generally, and autism, specifically, via immune replacement (Fig. 7.3).

7.5  �Conclusion

Autism is a complex disease and is, therefore, referred to as ASDs. Some recent 
discoveries of ASD pathophysiology and mechanisms have revealed that autism is 
an immune disease with some characteristics of autoimmune diseases. ASDs have 
been recently treated with stem cells; the results show that stem cell therapy is 
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beneficial for autism patients. Although to date, few clinical studies utilized stem 
cells, a small patient population have been treated with stem cells. The promising 
results lend rationale for the use of stem cell therapy for autism in the near future.
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Chapter 8
Stem Cell Therapy for Spinal Cord Injury

Sicong Tu and Jian Tu

8.1  �Introduction

Spinal cord injury remains a leading cause of long-term disability worldwide, 
resulting in enormous losses to individuals, families, and communities (WHO 
2013a). World Health Organization has estimated that 500,000 people suffer a spi-
nal cord injury each year. People with spinal cord injuries are two to five times more 
likely to die prematurely than people without a spinal cord injury (WHO 2013a). Up 
to 90 % of spinal cord injury cases are due to traumatic causes such as road traffic 
crashes, falls and violence (WHO 2013a). Symptoms of spinal cord injury may 
include partial or complete loss of sensory function or motor control of arms, legs, 
and/or body. The most severe spinal cord injury affects the systems that regulate 
bowel or bladder control, breathing, heart rate and blood pressure (WHO 2013b). 
Most people with spinal cord injury experience chronic pain, and an estimated 
20–30 % show clinically significant signs of depression. People with spinal cord 
injury also risk developing secondary conditions that can be debilitating and even 
life-threatening, such as deep vein thrombosis, urinary tract infections, pressure 
ulcers and respiratory complications (WHO 2013a).

However, no effective therapy is available for treatment of individuals with spi-
nal cord injury; nonetheless, researchers had tried some therapeutic agents like 
levodopa (Maric et al. 2008) and some neurotrophic factors in spinal cord injury 
(Cao and Dong 2013; Blesch et al. 2012; Boyce and Mendell 2014). This needs 
experimentation to confirm if these dopamine precursors and neurotrophic factors 
have any role in the treatment of spinal cord injury. Several other therapeutic agents 
like erythropoietin (Baptiste and Fehlings 2006), cannabinoid dexanabinol 
(McConeghy et al. 2012), and gamma-glutamylcysteine ethyl ester (Boyd-Kimball 
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et al. 2005) have all shown to have neuroprotective effect in human at experimental 
stage with remarkable improvement in post-traumatic spinal cord injury outcome.

Recent advancement in knowledge about stem cells promotes stem cells therapy 
in spinal cord injury. The stem cells may play an important role in the treatment of 
spinal cord injury by replacing damaged cells, and helping long-term functional 
recovery (Donnelly et al. 2012; Zhao et al. 2013; Davies et al. 2011). The search for 
stem cell therapy for human spinal cord injury is promising and progressing (Perrin 
et al. 2010). One obstacle in the search for an effective stem cell therapy is that the 
pathophysiology of spinal cord injury is largely unknown. This is because multiple 
cell types like neuronal cells, glial, and endothelial cells are usually involved in 
spinal cord injury. Furthermore, the vasculature of the spinal cord, especially the 
blood spinal cord barrier may be affected in spinal cord injury; this injury may be 
focal or diffuse axonal injury. This often results in neuronal mitochondrial dysfunc-
tion as we recently reported (Hu 2015). Taming these burgeoning effects of spinal 
cord injury requires neural stem cells that can differentiate into functional neurons 
and glial cells. We have reported that progenitor cells differentiated into neurons 
and glial in adult spinal cord, and an increase in astrocytic progeny forming reactive 
astrocytes to primarily limit cyst enlargement in posttraumatic syringomyelia (Tu 
et al. 2011, 2010).

This chapter is an optional extra to confirm whether we can achieve the transla-
tion of basic knowledge of neural stem cells into therapeutic options in persons with 
spinal cord injury by enhancing and integrating these neural precursor cells unto 
neurogenesis and directing these cells to the specified targets or through multipo-
tency where the transplanted stem cells can differentiate into glial cells, neurons, 
and endothelial cells. As spinal cord injuries are not always focal but diffuse we 
need to induce these transplanted stem cells differentiating into appropriate pheno-
type for long-term structural and functional recovery. This chapter critically reviews 
current literature of others and our previous reports on neural stem cell research and 
proposing an approach for the quality clinical translation of stem cell research to 
therapy in spinal cord injury. The author explains the pathophysiology of spinal 
cord injury and proposes the “six-point schematic approach” to achieving quality 
bench to bedside translation of neural stem cells to therapy for spinal cord injury. 
The author also highlights the need for suitable clinical translation, coordination, 
and administration of research in the field of stem cell therapy for spinal cord injury.

8.2  �Neuropathology of Spinal Cord Injury

The term ‘spinal cord injury’ refers to damage to the spinal cord resulting from 
trauma (e.g. a car crash) or from disease or degeneration (e.g. cancer) (WHO 2013a). 
Up to 90 % of these cases are due to traumatic causes (WHO 2013a). Therefore, 
neuropathology of traumatic spinal cord injury is focused below. Pathophysiology 
of traumatic spinal cord injury involves two main phases (Nakamura et al. 2003). 
These are the primary spinal cord injury following the trauma, and the secondary 
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injury that are mediated by the inflammatory response to the primary spinal cord 
injury.

8.2.1  �Primary Injury After Traumatic Spinal Cord Injury

Neuropathology of the initial spinal cord injury can be categorized as acute impact 
or compression (Kraus 1996). Acute impact injury is a concussion of the spinal 
cord. These inertial forces disrupt the blood-spinal cord barrier (BSCB). This type 
of injury initiates a cascade of events focused on the gray matter and results in 
haemorrhagic necrosis. The initiating event is a hypoperfusion of the gray matter. 
The primary events also involve massive ionic influx referred to as traumatic depo-
larization. Increases in intracellular calcium and reperfusion injury play key roles in 
cellular injury and occur early after injury. The extent of necrosis is contingent on 
the amount of initial force of trauma but also involves concomitant compression, 
perfusion pressures, and blood flow. The major inflammatory neurotransmitters 
released from the damaged tissue are excitatory amino acids, which may explain the 
neuropathology of diffuse axonal injury in traumatic spinal cord injury. Spinal cord 
compression occurs when a mass impinges on the spinal cord causing increased 
parenchymal pressure. This occurs in the white matter, whereas gray matter struc-
tures are preserved. Rapid or a critical degree of compression will result in the col-
lapse of the venous side of the microvasculature, resulting in vasogenic edema. 
Vasogenic edema exacerbates parenchymal pressure, and may lead to rapid progres-
sion of spinal cord dysfunction (Kraus 1996). The expression of high levels of glu-
cose transporter 1 was observed in capillaries from acutely injured the spinal cord, 
which occurs in association with compromised blood-spinal cord barrier function. 
Vascular endothelial growth factor also plays a role in neuronal tissue disruption 
and increases the permeability of the blood-spinal cord barrier via the synthesis and 
release of nitric oxide. Figure 8.1 depicts the neuropathology of the primary injury 
after traumatic spinal cord injury.

8.2.2  �Secondary Injury After Traumatic Spinal Cord Injury

The secondary events are a complex association of the inflammatory response 
initiated by the trauma leading to diffuse neuronal degeneration of neurons, glial, 
axonal tearing, and genetic predisposition (Fig.  8.2). There are significant 
increases in cytokine (IL-1alpha and IL-1beta) and chemokine (MCP-1, GRO/
KC, and MIP-1alpha) production (Bastien and Lacroix 2014; de Rivero Vaccari 
et al. 2014), MPO activity, blood-spinal cord barrier (BSCB) permeability, and 
MMP-9 activity in the damaged spinal cord (Austin et  al. 2012; Anthony and 
Couch 2014). Furthermore, excitatory amino acids release, oxygen radical reac-
tions, and nitric oxide production lead to the activation of N-methyl-d-aspartate, 

8  Stem Cell Therapy for Spinal Cord Injury



140

2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid, alpha-7 nicotinic 
receptor (α7), and nicotinic acetylcholine receptor and subsequent calcium influx. 
All these cascades of events cause mitochondrial disruption (Hu 2015) and free 
radical release with eventual tissue peroxidation. One theory is that excitatory 
amino acid release leads to calcium influx into neurons and other cells which 
promote oxygen free radical reactions. High calcium and the presence of free-
radical molecules create an unstable environment in the neurons that lead to 
increased production and release of nitric oxide and excitatory amino acids, such 
as glutamate. Nitric oxide participates in oxygen radical reactions and lipid per-
oxidation in neighboring cells. A summary of the secondary injury after traumatic 
spinal cord injury is shown in Fig. 8.2. The secondary injury plays a major role in 
the outcome of traumatic spinal cord injury. Demyelinated axons are vulnerable 
to degeneration; without rapid remyelination, the neurons may die, resulting in 
worsened damage and functional impairment. Therapeutic interventions should 
target this phase as it is the major determinant of morbidity and mortality in trau-
matic spinal cord injury. Clinically, the application of stem cell therapy early to 
patients with traumatic spinal cord injury is ethically challenging because of the 
difficulty in obtaining informed consent immediately following the spinal cord 
injury. Genes implicated to influence the outcome of traumatic spinal cord injury 
(Nishimura et  al. 2014) include Sox11 (Wang et  al. 2015), apoe (Wang et  al. 
2014), ace, and cacna1a. Sox11 gene encodes a member of the SOX (SRY-related 
HMG-box) family of transcription factors whose expression is common to a many 
types of regenerating neurons. Sox11 reduces axonal dieback of dorsal root 

Damage spinal cord vasculature Damage cells

Acute inflammationIschemia Spinal cord compression 

BSCB permeability
increases

Edema

Primary spinal cord trauma

Necrosis/apoptosis

Haemorrhage

Fig. 8.1  Sequential events of primary spinal cord injury. Initial impact is usually by direct trauma 
to the spinal cord. This trauma will cause mechanical damage to neurons, axons, glia and blood 
vessels by shearing, tearing or stretching. Blood vessel ruptures cause haemorrhage. Even in 
unruptured blood vessels, the blood-spinal cord barrier permeability increases resulting in edema. 
Haemorrhage and edema often lead to spinal cord compression. Following haemorrhage, ischemia 
could occur in the spinal cord tissue. Traumatic spinal cord damages caused cell damage induces 
macrophage and lymphocytes migrant to the injury site releasing inflammatory mediators that trig-
gers a cascade of events towards necrosis and/or apoptosis. Necrosis and/or apoptosis also can be 
a consequence of haemorrhage and ischemia
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ganglion axons and promotes corticospinal tract sprouting and regenerative axon 
growth in both acute and chronic injury paradigms (Wang et al. 2015). Apoe mul-
tifactorially affects the clinicopathological consequences of traumatic spinal cord 
injury (Resnick et al. 2004; Wang et al. 2014). Apoe gene encodes apolipoprotein 
E and is associated with increased amyloid deposition, amyloid angiopathy, larger 
intracranial haematomas, and more severe contusional injury. The ace gene 
encodes angiotensin-converting enzyme (EC 3.4.15.1) (Niu et  al. 2002) and 
affects traumatic spinal cord injury outcome via alteration of spinal blood flow 
and/or autoregulation. The cacna1a gene encodes the alpha subunit of neuronal 
Ca2.1 Ca2+ channels (van den Maagdenberg et al. 2004) and exerts an influence 
via the calcium channel pathways and its effect on delayed vasogenic edema. 
Increased signal transducers and activator of transcription 3 signaling have been 
reported in a rodent model of traumatic spinal cord injury. Although several 
potential genes that may influence the outcomes following traumatic spinal cord 
injury have been identified, future investigations are needed to validate these 
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production, abnormal
prostaglandin

Fig. 8.2  Sequential events of secondary damages in traumatic spinal cord injury. This includes a 
variety of processes including depolarization, disruption of ionic homeostasis and release of neu-
rotransmitters, lipid degradation, and oxidative stress. These events are a result of interaction 
between the excitatory amino acids released with an influx of oxygen free radicals that ultimately 
set up NMDA, AMPA, α7 and nACR to sustain the unstable environment for cell injury and degen-
erative changes
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genetic studies (Resnick et al. 2004), and identify new genes that might contribute 
to the patient outcomes after traumatic spinal cord injury.

8.3  �Current Pharmacotherapy for Spinal Cord Injury

Pharmacotherapies aim at promoting neurorepair, neuroregeneration, and neuropro-
tection following traumatic spinal cord injury. Gold standard therapy for SCI has yet 
established (Bydon et al. 2014; Cao and Dong 2013), although clinical trials with 
17beta-estradiol and progesterone (Elkabes and Nicot 2014), the sodium (Na+) 
channel blocker Riluzole (Wu et al. 2014; Wilson and Fehlings 2014; Grossman 
et  al. 2014), methylprednisolone (NASCIS II and III), and GM-1 ganglioside 
(Maryland and Sygen) have demonstrated modest, albeit potentially important ther-
apeutic benefits (Baptiste and Fehlings 2006). In light of the overwhelming impact 
of SCI on the individual, other therapeutic interventions are urgently needed. A 
number of promising pharmacological therapies are currently under investigation 
for neuroprotective capacities in animal models of SCI. These include the tetracy-
cline derivative Minocycline (Chew et al. 2014; Casha et al. 2012; Monaco et al. 
2013; Wilson et al. 2013), the fusogen copolymer polyethylene glycol (PEG), the 
tissue-protective hormone erythropoietin (EPO) (Baptiste and Fehlings 2006), 
paired immunoglobulin-like receptor B (PirB) (Gou et al. 2014), chondroitin sul-
phate proteoglycans (Lang et al. 2015), peroxynitrite (Xiong and Hall 2009), and 
modulation of the adaptive immune response via active and passive vaccination 
(Jones 2014). Moreover, clinical trials investigating the putative neuroprotective 
and neuroregenerative properties ascribed to the Rho pathway antagonist, Cethrin 
(BioAxone Therapeutic, Inc.), and implantation of activated autologous macro-
phages (ProCord; Proneuron Biotechnologies) in patients with thoracic and cervical 
SCI are now underway. Clinical trials evaluating these interventions apply standard-
ized clinical outcome measures to demonstrate efficacy. In the past, drug research 
and development for traumatic spinal cord injury focused on limiting secondary 
spinal cord injury after the initial traumatic event because of lacking evidence that 
the central nervous system could be repaired or regenerated. Growing body of evi-
dence indicates that the adult spinal cord can be repaired and regenerated after trau-
matic spinal cord injury (Stenudd et al. 2015). Potential drug targets for post-traumatic 
injury spinal cord repair include angiogenesis, axon guidance and remodeling, 
remyelination, neurogenesis, and synaptogenesis. Pharmacotherapies may also tar-
get spinal cord regeneration by enhancing the capacity of pluripotent cells to dif-
ferentiate into neurons, glia, and vascular endothelium. Spinal cord repair and 
regeneration processes can be activated or enhanced by pharmacotherapy over a 
longer therapeutic window than pharmacologic interventions designed to limit 
injury. Pharmacotherapies are potentially effective in the acute, subacute, post-
acute, and chronic phases after traumatic spinal cord injury (Fig. 8.3). Thus, repair 
and regeneration therapies have the potential advantage of being effective over a 
prolonged period of time following traumatic spinal cord injury.
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Since 2005, only Cethrin, a recombinant RHO GTPase antagonist, has received 
approval from the U.S. Food and Drug Administration (FDA) approved as an orphan 
drug for the treatment of patients with acute cervical and thoracic spinal injuries 

Fig. 8.3  Schematic representing the acute, intermediate, and chronic phases of secondary spinal 
cord injuries with cognate pathophysiologies and therapeutics. The secondary injury cascade 
begins within seconds of the primary injury and results in further tissue damage, cell death, inflam-
mation, Wallerian degeneration and glial scarring. Immediately following a traumatic spinal cord 
injury disruption of blood flow occurs resulting in hypoxia to the injured tissue. Oxycyte, an oxy-
gen carrier can be intravenously injected at the earliest possible time point following an acute 
injury to increase oxygen availability in damaged tissue and lessen the detrimental cascade trig-
gered by hypoxia. At the acute phase, the released glutamate results in excitotoxicity. MK-801, a 
glutamate receptor N-Methyl-d-Aspartate (NMDA), and Riluzole, a glutamate receptor modulator 
can modulate excitotoxicity. Excitotoxicity increases inflammation. Pioglitazone, a synthetic ago-
nist of the ligand-activated transcription factor peroxisome proliferator-activated receptor-gamma 
(PPARγ) can regulate inflammation. Cellular stressors trigger release of pro-apoptotic signaling 
molecules. Flavopiridol, a cell cycle inhibitor, and Phospholipase A2 (PLA2), a lipolytic enzyme 
can reduce both neuronal and oligodendrocyte apoptosis. Minocycline and Premarin (a cocktail of 
equine conjugated estrogens) can decrease apoptosis. At the chronic phase, epigenetics may limit 
the central nervous system’s ability to regenerate. Valproic acid (VPA), a histone deacetylase 
(HDAC) inhibitor, can reduce gliosis. Myelin inhibitors, such as NoGo, inhibit regeneration of 
axons. ATI-355, a humanized anti-Nogo antibody, and Cethrin, a recombinant protein RHO 
GTPase antagonist, can modulate axon regeneration. Progesterone suppresses gliosis at the early 
stage of spinal cord injury while promotes oligodendrocyte differentiation and remyelination at the 
later stages (Cox et al. 2015) (Reuse license number 3626490078177 including electronic rights 
obtained from Springer)
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(Fehlings et al. 2011; Cox et al. 2015). Table 8.1 lists candidate compounds currently 
undergoing clinical evaluation for traumatic spinal cord injury treatment. Because 
traumatic spinal cord injury damages the spinal cord tissue by multiple mechanisms, 
combination therapy designed to simultaneously target multiple mechanisms of 
injury is likely required. There is now a growing field of non-pharmacological inter-
ventions such as stem cell transplantation, gene therapy, RNAi, and electrical stimu-
lation. Therein a particular emphasis is placed on stem cell therapy that offers an 
alternative option for traumatic spinal cord injury treatment.

8.4  �Stem Cell Therapy in Spinal Cord Injury

There are at least two strategies involving stem cell therapy to repair injured spinal 
cord tissue. They are transplantation of exogenous stem cells to replace damaged 
cells and stimulation of endogenous stem cells to proliferate to the number of cells 
needed and differentiate them to the phenotype of cells required for normalization 
of spinal cord function.

8.4.1  �Transplantation of Exogenous Stem Cells 
for the Treatment of Spinal Cord Injury

There is considerable number of attempts to transplant various types of cells, such 
as embryonic postmitotic motoneurons, neural precursor cell, embryonic stem cells, 
neural stem cells, astrocytes, oligodendroglia cells, umbilical cord blood stem cells, 
adipose-derived stem cells, dental mesenchymal stem cells, and exfoliated decidu-
ous teeth-derived stem cells to repair damaged spinal cord tissue (Aftab et al. 2013; 
Das et  al. 2011; Davies et  al. 2011; Donnelly et  al. 2012; Hewson et  al. 2013; 
Kabatas and Teng 2010; Kolar et al. 2014; Ning et al. 2013; Nogradi et al. 2011; 
Perrin et al. 2010; Taghipour et al. 2012; Volarevic et al. 2013; Xiao and Tsutsui 
2013; Yamada et al. 2014). The main objectives of transplantation experiments are 
(1) growth facilitation: the transplant fills the lesion site and serves as a cellular 
bridge; (2) new neurons: the transplant can provide new neurons, which in turn 
provide new targets and sources of innervations and thus repair the damaged neural 
circuits; (3) factor secretion: the transplant can produce a variety of substances, such 
as neurotrophic factors, that promote the spinal cord tissue repair process (Barami 
and Diaz 2000). Several characteristics of neural stem cells make them potentially 
suitable to repair damaged spinal cord tissue after traumatic spinal cord injury. 
Firstly, they can serve as a renewable supply of transplantable cells by clonal expan-
sion in cell culture. Secondly, they are of central nervous system origin, and the 
stem cells generated from the grafts have neural characteristics. Thirdly, neural stem 
cells can be manipulated by genetic engineering methods to produce specific pro-
teins, such as neurotrophins, neurotransmitters and enzymes (Taha 2010).
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Table 8.1  Pharmacotherapies undergoing clinical evaluation for spinal cord injury

Compound
Neuroprotective 
mechanism Preclinical evidence

Clinical 
evidence References

Cethrin Modulates axon 
regeneration in SCI,
Enhances motor 
function recovery

Recombinant RHO 
GTPase antagonist, 
Blockade of myelin 
inhibitors

FDA approved 
orphan drug to 
treat acute 
cervical & 
thoracic spinal 
injuries; 
Undergoing 
efficacy trial

Fehlings et al. 
(2011)

ATI-355 ibid Humanized 
anti-Nogo antibody, 
Blockade of myelin 
inhibitors

Results from 
the trials have 
not been 
released

Cox et al. 
(2015)

Riluzole Modulates 
excitotoxicity

A sodium channel 
blocker/glutamate 
receptor modulator

Enhanced 
improvement 
in motor score 
in phase I trial; 
Undergoing 
efficacy trial

Grossman 
et al. (2014)

Growth 
hormone

Has neuroprotective 
& neuroregenerative 
effects

Improves motor 
function, Corrects 
impairments of 
endothelial 
progenitor cells, 
Anti-apoptosis

FDA-approved 
for adult 
patients with 
acquired 
growth 
hormone 
deficiency

Behrman 
et al. (1995)

Estrogen Improved locomotor 
function recovery, 
Neuroprotective 
effects

Anti-inflammatory, 
Antioxidant, 
Promotes 
angiogenesis, 
Preserves 
oligodendrocyte, 
Modulates 
excitotoxicity

Undergoing 
safety trial of 5 
patients with 
ASIA A or B 
grade injuries

Cox et al. 
(2015), 
Samantaray 
et al. (2011)

Minocycline Improved motor 
function

Anti-apoptosis FDA approved 
fast-tracking 
drug; 
Improved 
motor function 
in phase II 
trial; 
Undergoing a 
phase III 
multi-center 
efficacy trial

Casha et al. 
(2012), Teng 
et al. (2004), 
Wells et al. 
(2003)
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The efficacy of transplantation largely depends on a grafting method that opti-
mizes the survival of the transplanted stem cells and minimizes the graft-induced 
lesion. Most transplantation studies involved intraparenchymal injection into the 
central nervous system, in which cells were grafted directly into or adjacent to the 
lesion (Chow et al. 2000; Cao et al. 2001; Jendelova et al. 2004). The optimal 
time for transplantation may not be immediately after injury. The levels of various 
inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1α, 
interleukin-1β and interleukin-6) in the injured brain peak 6–12 h after injury and 
remain elevated until the 4th day. Although these inflammatory cytokines are 
known to have both neurotoxic and neurotrophic effects, they are believed to be 
neurotoxic within a week after injury, which causes the microenvironment to be 
unsuitable for survival of the grafted stem cells (Zhu et al. 2006). However, if too 
much time passes after the injury, a glial scar forms a barrier surrounding the 
lesion site and inhibits revascularization of the graft preventing local blood circu-
lation that is needed for graft survival. Thus, it is considered those 7–14 days after 
traumatic spinal cord injury is the optimal time for stem cell transplantation 
(Ogawa et al. 2002; Okano et al. 2003). Keirstead et al. compared the transplanta-
tion of human embryonic stem cell (hESC)-derived oligodendrocyte progenitor 
cells (OPCs) into adult rat spinal cord injuries 7 days or 10 months after injury 
(Keirstead et al. 2005). In both cases, transplanted cells survived, redistributed 
over short distances and differentiated into oligodendrocytes. Animals that 
received OPCs 7 days after injury exhibited enhanced remyelination and substan-
tially improved locomotor ability. In contrast, when OPCs were transplanted 10 
months after injury, there was no enhanced remyelination or locomotor recovery 
(Keirstead et al. 2005).

The Food and Drug Administration (FDA) approved the first clinical trial using 
human embryonic stem cells to treat spinal cord injury in the United States on 
January 23, 2009 (Alper 2009). Geron Corporation (Menlo Park, California, U.S.A.) 
developed a product, GRNOPC1 derived from human embryonic stem cells, stimu-
lating nerve growth in patients with debilitating damage to the spinal cord (Alper 
2009), according to the test results of human embryonic stem cell (hESC)-derived 
oligodendrocyte progenitor cells (OPCs) in animals (Keirstead et al. 2005). Geron 
enrolled four patients suffering from spinal cord injuries to participate in the trial. 
The first patient, Timothy J. Atchison was treated at the Shepherd Center (Atlanta, 
GA, U.S.A.) just 2 weeks after he sustained a spinal cord injury in a car accident. 
Following one injection of GRNOPC1 containing approximately two million cells, 
Atchison “has begun to get some very slight sensation: He can feel relief when he 
lifts a bowling ball off his lap and discern discomfort when he pulls on hairs on 
some parts of his legs. He has also strengthened his abdomen” (Stein 2011). The 
preliminary results from the clinical trial suggested that the participants experienced 
no serious adverse events. In addition, no changes in the spinal cord or neurological 
condition were found. The trial discontinued in November 2011 because of business 
reasons (Stein 2011). After Geron’s stem cell assets had been acquired by BioTime 
in 2013, BioTime indicated that it plans to re-start the embryonic stem cell-based 
clinical trial for spinal cord injury (Brown 2013).
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8.4.2  �Stimulation of Endogenous Neural Precursor Cells 
in Spinal Cord Injury

Endogenous neurogenesis has been identified in adult spinal cord (Tu et al. 2010, 
2011). The discovery of endogenous neural stem cells in the adult spinal cord has 
raised the hope for future noninvasive therapy for spinal cord injury. Neural stem 
cells have unique self-renewal and multipotent differentiation capacities. 
Endogenous cell proliferation and gliogenesis have been extensively documented 
in spinal cord injury, particularly in terms of proliferating oligodendrocyte pro-
genitor cells (McTigue and Sahinkaya 2011; Stenudd et  al. 2015). Ependymal 
cells are ciliated cells lining the central canal of the spinal cord. They are respon-
sible for the propulsion of cerebrospinal fluid and function as a barrier to the spi-
nal cord parenchyma. Ependymal cells rarely divide in the intact spinal cord (Tu 
et al. 2010; Stenudd et al. 2015). After spinal cord injury, ependymal cells rapidly 
divide and generate more than half of the astrocytes in the glial scar and a small 
amount of oligodendrocytes that myelinate axons (Tu et al. 2011; Stenudd et al. 
2015). Oligodendrocyte progenitor cells are the main dividing cell population in 
the intact adult spinal cord. After spinal cord injury, they increase their rate of 
division and differentiate into remyelinating oligodendrocytes (Stenudd et  al. 
2015; Tu et al. 2010). Astrocytes sporadically divide in the intact adult spinal cord 
to maintain their population. After an injury, astrocytes become reactive, rapidly 
divide, and form the border of the glial scar (Fig. 8.4) (Tu et al. 2011; Stenudd 
et al. 2015). The border of the glial scar prevents the enlargement of the lesion (Tu 
et al. 2010, 2011). The beneficial function of the scar was further confirmed in a 
knockout mouse model of all Ras genes (Sabelstrom et al. 2013). The Ras gene 
knockout rendered the endogenous neural stem cells unable to proliferate, and 
consequently, the neural stem cell–derived component of the glial scar was never 
formed. When the proliferation of neural stem cells was blocked large cysts devel-
oped at the lesions while no cyst formation occurred in mice with normal neural 
stem cell function (Sabelstrom et al. 2013). This outcome implies that neural stem 
cell progeny functions as a scaffold within the scar to restrict secondary enlarge-
ment of the lesion and prevents the lesion from expanding after the primary injury. 
Thus, the neural stem cell-derived scar component restricts tissue damage and 
neural loss after spinal cord injury. The characterization of the distribution and 
phenotype of progeny (Sabelstrom et al. 2013; Tu et al. 2010, 2011), along with 
the quantitative contributions of each progenitor type to newly formed cells pro-
vide valuable insight into the endogenous cell replacement response to spinal cord 
injury, paving the way for advances in modulating specific populations of progeni-
tor cells with the goal of promoting structural and functional recovery after spinal 
cord injury.

After spinal cord injury, neural stem cells migrate towards the lesion sites and 
integrate into the neuronal network (Tu et al. 2010, 2011). However, the potential 
success of stimulating endogenous neural precursor cells is hinged on delivery of 
various growth factors. This is the most common way to stimulate neural precursor 
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Fig. 8.4  A temporal profile of the secondary response to the primary spinal cord injury by prolif-
erating cells and forming the border of the glial scar surrounding the focal lesion. Proliferating 
cells defined with Ki 67 immunoreactivity in the spinal cord of control rats and rats with spinal 
cord injuries. Ki 67+ cells (white dots) were rare in the gray matter with a few in the white matter 
in the spinal cord of intact (a) and sham-operated (b) controls. Animals with traumatic spinal cord 
injury demonstrated more Ki 67+ cells (c); these cells were predominantly located in the gray mat-
ter and form the border of the glial scar surrounding the focal lesion. Rows from top to bottom 
were 7, 14, 28, and 56 days after the traumatic spinal cord injury. This temporal profile of Ki 67+ 
cells demonstrated the secondary response to the primary spinal cord injury by increasing the 
number of Ki 67+ cells in the gray matter and forms the border of the glial scar surrounding the 
focal lesion. An asterisk indicates the central canal. S spinal cord cavity. Bar = 200 μm (Tu et al. 
2011) (Permission to reproduce the figure is granted to J.T. by the copyright owner, American 
Association of Neurological Surgeons (AANS), the publisher of Journal of Neurosurgery: Spine)
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cells. The following growth factors are needed to stimulate neural precursor cells: 
epidermal growth factor, fibroblast growth factor-2 (Kojima and Tator 2000, 2002), 
basic fibroblast growth factor (Rabchevsky et al. 2000), acidic fibroblast growth fac-
tor (Lee et al. 2004), brain-derived neurotrophic factor (Namiki et al. 2000; Wang 
et al. 2013), vascular endothelial growth factor (Sharma 2003), nerve growth factor, 
neurotrophin-3 (Lee et al. 2004; Widenfalk et al. 2003), glial cell line-derived neuro-
trophic factor (Iannotti et al. 2004), insulin-like growth factor-1 (Sharma 2003), and 
stromal cell-derived factor-1 alpha (Imitola et al. 2004). They were reported not only 
to enhance the proliferation, migration and gliogenesis of neural precursor cells 
(Kojima and Tator 2000, 2002; Imitola et al. 2004) but also to protect the spinal cord 
from further damage (Sharma 2003; Widenfalk et al. 2003). In addition, these growth 
factors facilitate the regrowth of axons and remyelination (Lee et al. 2004; Namiki 
et al. 2000; Gensert and Goldman 1997). Functional recovery has been reported after 
growth factors were delivered into the injured spinal cord (Kojima and Tator 2000, 
2002; Lee et  al. 2004). However, the mechanisms of functionary recovery of the 
injured spinal cord by stimulating endogenous neural precursor cells are not fully 
understood. Neural stem cell progeny is necessary for the production of several neu-
rotrophic factors that support neuronal survival after the primary injury. The loss of 
neurons is attributed to the loss of neurotrophic support from neural stem cell prog-
eny (Sabelstrom et al. 2013). Therefore, stimulation of endogenous neural stem cells 
could be a potential therapeutic strategy for treatment of spinal cord injury.

8.5  �Clinical Translation of Stem Cell Therapy in Spinal 
Cord Injury

The main purpose of state-of-the-scientific studies is to translate our discoveries 
into daily clinical practice. The basic research laboratory takes its observations 
obtained at molecular or cellular levels in a cutting edge state and implements this 
into acceptable clinical practice to the benefit of the public. However, this is always 
met with a lot of challenges, such as ethics, governmental regulations, funding con-
straints, the paucity of adequate collaboration among clinical and basic scientists, 
and the challenges while conducting clinical trials. From the identified gaps in the 
current state of the stem cell science and inherent challenges faced by the field, the 
author proposes six point schema for improving bench to bedside translation of 
stem cell therapy in Fig. 8.5a involving a rigorous network of six stakeholders: basic 
researchers, pharmaceutical companies, patients or general public participating in 
clinical trials, regulatory bodies or government agencies for providing research 
grant approval, collaborative research between basic and clinical scientists with the 
plan of developing biomarkers for potential drug targets and creating a concerted 
network of groups that identifies some of the medical problems relating to traumatic 
spinal cord injury. Patients with moderate traumatic spinal cord injury who suffer 
long-term complications are a major unmet medical need. Within our capabilities to 
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Fig. 8.5  (a) Proposed schema for effective translation involving the concerted effort of multilevel 
strategies of six main stakeholders. 

1. Advance knowledge
in the mechanism of

stem cell differentiation

2. Enhance industrial
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cell therapy  
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clinical trials 

4. Fast track
approval for
clinical trials  
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clinical follow-up and
monitoring treatment

outcomes

6.  Comprehensive
assessment

system for clinical
trials
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clinically assess improvement, historically, the majority of individuals with moder-
ate traumatic spinal cord injury are likely to recover to their pre-injury state. Early 
identification of those individuals likely to experience long-term complications is 
essential to maximize the benefit of stem cell therapy. Strategies to delineate this 
population from a larger population of individuals with moderate traumatic spinal 
cord injury could include enrollment of patients with persistent symptoms 1–2 
weeks after injury, because recovery is most rapid in the first few days. Patients who 
are unlikely to fully recover could be identified using prognostic biomarkers includ-
ing neuroimaging, biochemical, and objective clinical measures. Prognostic bio-
markers are defined by the U.S. Food and Drug Administration as indicators that 
inform the natural history of a disorder in the absence of a therapeutic intervention 
(FDA 2014). Although identifying individuals with traumatic spinal cord injury 
who are most likely to respond to stem cell therapy and evaluating the biologic 
response to the therapy are essential for successful clinical trials, the ability to do 
either is lacking. Predictive biomarkers of stem cell therapeutic response are needed 
to address this challenge. Predictive biomarkers are baseline characteristics that 
identify individuals by their likelihood to respond to a stem cell therapy and may 
include biochemical markers including oxidative stress, inflammation, neuronal, 
axonal, and glial integrity, molecular imaging with positron emission tomography, 

      6. Public

1. Identify health need,
reseearch focus and

evidence based medicine

5. Recommendations
and guidelines

Adoption of
recommendations

2. Health
communication and

dissemination

3. Train and retrain
researchers in the
field of stem cells

4. Overcome health
disparities and 

develop strategies to
improve monitoring

Fig. 8.5  (continued)  (b) Proposed framework for the reinforcement of multilevel strategies 
effective clinical translation of stem cell therapy in spinal cord injury
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or functional imaging with functional magnetic resonance imaging. By identifying 
patients who are most likely to respond to stem cell therapy, the appropriate popula-
tion can be selected for enrollment in clinical trials. Identifying specific predictive 
biomarkers would decrease the sample size needed to power clinical trials, thus 
decreasing risk to subjects, time to complete accrual, and cost. Biomarkers are 
dynamic measurements that show a biologic response occurred after stem cell ther-
apy, including neuroimaging to measure effects on neuroprotection, neurorecovery, 
and neuroinflammation, or biochemical biomarkers of oxidative stress, inflamma-
tion, and neuronal integrity. Clinical trials would greatly benefit from biomarkers, 
which allow for the measurement of the effect of the stem cell therapy on the puta-
tive mechanism of a specific phenotype of stem cell’s action, thus providing evi-
dence of engagement of the target tissue by the therapy. To achieve stem cell repair, 
regeneration, and protection after traumatic spinal cord injury, each of the six points 
identified is critical for advancing the field, and efforts to address the points should 
be conducted in parallel to ensure ultimate success in improving clinical care and 
outcomes for individuals with traumatic spinal cord injury. We are still faced with 
the need to formulate hypothesis both at experimental and clinical epidemiologic 
level and to implement these into clinical practice while the translational research-
ers serve to collaborate and coordinate all these strategies to yield rapid results.

Indeed, communication and dissemination shown in Fig. 8.5b that is patient cen-
tredness will not only impact on the public, but will also help to tame the ethical 
issues in this field. Communication will involve both patients and clinicians involve 
in conducting randomized clinical trials. With strong feedback on outcomes, phar-
macovigilance, and health promotion. Education of the populace in form of scien-
tific advocacy is so paramount as this will impact on improved scientific 
collaboration, quality public control, and increased transparency among researchers 
and may improve funding of research work (Keramaris et al. 2008).

Research in neural stem cells is still a grey area, and much knowledge needs to 
be gained at the bench in order to actually close the knowledge gaps in stem cell 
therapy. There is inadequate understanding of the secondary spinal cord injury pro-
cess after traumatic spinal cord injury, insufficient preclinical testing in diffuse axo-
nal injury models, species differences, and lack of understanding of the mechanism 
of drug-receptor interactions. It has been suggested the need to use models for 
proper translation of stem cell therapy in traumatic spinal cord injury (Cao and 
Dong 2013). Academic and biotech researchers should address how to make their 
stem cell therapy products more feasible for commercial-scale production (Eaker 
et al. 2013). There is need for increased linkages and networking between academi-
cian, researchers, and clinician for the greater reward of what is being generated.

Methodological disparities between experimental models of traumatic spinal 
cord injury and clinical studies cannot be overemphasized. The intent to treat mod-
els, differences in statistical analysis as a result of different sample size, and differ-
ent behaviours between human and animals. Animal research is a rapid, 
well-controlled, and cost-effective means to initially verify the hypothesis. 
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However, limitations exist in animal models of traumatic spinal cord injury and 
their application in stem cell therapy. First, because no single animal model accu-
rately mimics all of the features of human traumatic spinal cord injury, individual 
investigators have appropriately refined experimental approaches to better fit their 
specific research goals. However, the resulting variability in experimental 
approaches among studies makes a comparison of results across laboratories and 
models difficult, limiting the confidence that results can be translated into success-
ful clinical trials. Advancing preclinical research in animal models requires that 
results are comparable across studies and can translate into human studies. This 
requires standardization of available animal models and introduction of new mod-
els when scientifically necessary. Second, some of the popular current models do 
not correspond well with the human condition. Injury severities in animals differ 
from humans; while they are well defined in animals, it could take any direction in 
human. Third, preclinical studies should use the same level of rigor required for 
clinical trials. Specifically, assignment of animals to treatment conditions should be 
randomized, assessments must be conducted by blinded examiners, the primary 
outcome measure must be pre-determined, and statistical assessment of secondary 
outcome measures should utilize appropriate corrections for multiple comparisons. 
Fourth, the transplantation of stem cells into animal models should mimic the tim-
ing, delivery route, and the equivalent mass of cells feasible in humans. Last, the 
neurobehavioral outcome measures most widely used in preclinical models are not 
sufficiently sensitive to long-term functional deficits, and more sensitive rodent 
functional tasks that discriminate injury severity beyond 12 weeks after injury are 
needed. The need to improve study quality score has recently being called for by 
neurosurgical therapy academic industry roundtable, which was recently updated 
and this include the following recommendations: (1) Elimination of randomiza-
tions and assessment bias, (2) Use of a priori definitions of inclusion/exclusion 
criteria, (3) inclusion of appropriate power and sample size calculations, (4) full 
disclosure of potential conflict of interests, (5) evaluation of therapies in male and 
female animals across the spectrum of ages, and with comorbid conditions, such as 
hypertension and/or diabetes. Furthermore, some researchers have expanded on 
these proposed recommendations for improved clinical trials in spinal cord injury 
with a special focus on neuroprotective therapies in traumatic spinal cord injury 
(Cao and Dong 2013). Nonadherence was the single most important determinant of 
trial failure in the past.

Finally, the International Mission on Prognosis and Clinical Trial Design in trau-
matic spinal cord injury proposed ways of overcoming the above disparities and 
challenges. The recommendations include robust inclusion criteria and recommen-
dations for general research in traumatic spinal cord injury (Cao and Dong 2013). 
The six-point schema is an overview recommendation with the public, patient or the 
society as the core and the fulcrum of all activities of research and if implemented 
may yield quality research outcome in neural stem cells therapy in spinal cord injury 
(Ugoya and Tu 2012).
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8.6  �Conclusion

Long-term disability from spinal cord injury is projected to rise globally. Neural 
stem cell therapy is a strategy that offers hope for the future in the treatment of spi-
nal cord injury. In addition, we are now able to monitor autologous neural stem cells 
in vivo, cell migration, and clearly demonstrate that neural stem cells could selec-
tively target injured spinal cord tissue and undergo neurogenesis. Finally, the pro-
posed six points cyclical schema should be implemented with the determined effort 
of all stakeholders for effective clinical translation of neural stem cell therapy in 
spinal cord injury.
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Chapter 9
Stem Cell Clinical Trials for Multiple 
Sclerosis: The Past, Present and Future

Fakher Rahim and Babak Arjmand

9.1  �Introduction

9.1.1  �Background

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the cen-
tral nervous system (CNS) that is associated by tissue inflammation and nerve cells 
apoptosis (Cudrici et al. 2006). The prevalence of this disease in women is 2 to 3 
times more than men, and it is more frequent in the 20–40 years of age (Rolak 
2003). The most important symptoms of MS include motor paralysis, sensory prob-
lem such as impaired sensitivity in one or more limbs and visual impairment, 
impairment of specific cognitive functions (McQualter and Bernard 2007). 
Identification of endogenous neural stem cells in the humans and rodents CNS has 
led to development new strategies for repairing the brain damages (Sun 2014). 
During development, the nervous system emerges from neural stem cell (NSCs) that 
have self-renewal potential and differentiate into neural and glial cell (Picard-Riera 
et al. 2002; Kriegstein and Alvarez-Buylla 2009; Vishwakarma et al. 2014). Two 
types of stem cells populating in patients with MS; one is hematopoietic stem cell 
(HSC) and others are mesenchymal stem cells (MSC) (Muraro and Uccelli 2010). 
Researches were carried out on 500 patients with MS worldwide that were treated 
with HSC since 1997 showed that disease progression stopped in many cases 
(Atkins and Freedman 2013). The second type is MSC, which have the ability to 
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differentiate into various types of cells, and inhibit the cellular immune response 
against the nervous system (Krampera et al. 2007).

9.1.2  �History

The word stem cells first appeared in 1908 in the scientific community. During an 
international conference in Berlin, a Russian expert in histology named Alexander 
Maximow for the first time used the term “stem cell” to describe his hypothesis of 
the existence of hematopoietic cells in the body (DiDio 1986). Later in 1924, he 
identified a certain type of cells among mesenchymal cells that have the ability to 
transform into various types of blood cells; thus, the first type of stem cells discov-
ered and called “mesenchymal stem cells”. In 1956, the first successful bone mar-
row transplant in the world was performed in a patient with leukemia by Thompson 
in New York. The patient was treated with radiation therapy followed by bone 
marrow (Bongso and Richards 2004). Later in 1990 the Nobel Prize in Medicine 
was awarded to Thompson for contributions to advance stem cell science (Bongso 
and Richards 2004). In the 1960s, Joseph Altman and Gopal Das discovered nerves 
cells production in the brains of adult human, which is also known neural stem 
cells (Altman and Das 1964). This finding was contrary to a longstanding belief 
which declared that in children after growth, new nerve cells will not generated in 
the brain and nervous system. In 1963, McCulloch and Till reported for the first 
time the production of stem cells in the bone marrow of mice (McCulloch and Till 
1960). Many continuous efforts of scientists have been done to better understand 
stem cells and also trained numerous students who later became prominent 
researchers in the field of stem cell. In 1968, the first successful bone marrow 
transplant carried out by Robert A. Good for non-cancerous diseases (Day-Good 
and Peterson 2008). Human hematopoietic stem cells in the spinal cord discovered 
in 1978 (Prindull et al. 1978). In 1997, John’s dick for first time identified tumor-
initiating cancer stem cells (Werner et al. 2016). In 1998, James Thompson and 
colleagues were able for the first time to derive human embryonic stem cells 
(Thomson et al. 1998). In 2001, researchers simulated the early stages of human 
embryogenesis. In 2003, it has been shown dental pulp stem cells (DPSCs) can be 
extracted as a source of adult stem cells (Tavian et al. 2010). In 2005, researchers 
were able to restore a part of mobility to paralyzed mice by neural stem cells 
(Pomp et al. 2005). In 2006, scientists identified pluripotent stem cells from the 
spinal cord (Schroeder et al. 2016). The Nobel Prize in Physiology or Medicine 
2007 has given jointly to Mario Capecchi, Martin Evans, Oliver Smithies, because 
of the valuable research in the field of embryonic stem cells (Jaryal 2007). In 2008, 
scientists reported the reproduction of the human knee cartilage with the use of 
adult mesenchymal cells (Huang et al. 2008).
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9.1.3  �Motivation

Multiple sclerosis (MS) is a chronic disease that affects the nervous system, which 
patients experience progressive deterioration of myelin. There is currently no cure 
for MS, but it is possible to treat the symptoms and reduce the number of relapses 
using various treatment modalities. Those suffering from MS are currently treated 
with drugs and, when possible, new treatment modalities such as myelin peptides 
(protein fragments) therapy. Because stem cells are part of the body’s normal repair 
system, it represents an exciting new form of treatment for MS. Stem cell therapy 
might be used to develop new treatments for MS through preventing damage via 
resetting immune system known as immunomodulation, repairing the damaged 
myelin sheath known as remyelinating, and developing new medicines through 
growing nerve cells in the laboratory.

9.2  �Stem Cell Therapy for MS

MS is one of the most common suggestions for stem cell therapy trials. Drug therapy 
could have a good response in some patients and may lead to slowing the relapses 
rate in primary course of disease, but would be unusable in progressive neurodegen-
erative phase. Most of patients with high relapses rate will develop secondary pro-
gressing form. So, the key concerns for stem cell therapy in the field of MS, including 
halting secondary progressing form, reverting disease and prevent progression in 
patients with high relapses rate, guarantee cessation of drug therapy and provide 
good quality of life, and offer the best alternative when all drugs are failing in patients 
with high relapses rate. The nervous system is a complex organ made up of nerve and 
glial cells, which surround and support neurons. Using stem cells could help to mini-
mize and repair damage that has occurred in the neuron myelin (Fig. 9.1).

From the historical perspective, first attempt to use cell therapy for MS has been 
conducted more than 15 years ago. Since then, a lot of researchers have begun cell 
therapy trials around the world. In 2013, Ardeshiry lajimi et  al, systematically 
reviewed the substantial clinical trials regarding the use of these stem cells and pos-
sible mechanisms in the treatment of MS (Ardeshiry Lajimi et al. 2013). They com-
pared all available studies using various types of stem cells in MS, and reported that 
their findings may pave the road for the utilization of stem cells therapy for 
MS. Since first attempted to use stem cell therapy for MS, a lot of trials were started 
around the world of which overview some recent published studies have been men-
tioned in this review (Table 9.1).

Through searching all available clinical trials registries, since 2001 we found 49 
records comprising 1605 patients with MS (Estimated No. of Patients), of which 
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only 7 were completed (Table 9.2). Most of the trials were either not started or ter-
minated. Most of the trials were in phase I or in phase I and II. Phase I, include small 
number of patients, usually 20–100, with short duration (several months) to assess 
safety or dosage of particular pharmacological or non-pharmacological agent. 
MSCs, bone marrow or adipose derived, are currently being tested in more than 50 
clinical trials around the world to treat MS, while HSC has been used in more than 
20 trials so far.

9.3  �The Potential of Hematopoietic Stem Cell (HSC) for MS

In 1999, Bielekova et al studied the mechanisms of action of autologous hemato-
poietic stem cell (HSC) in MS and reported clinical feasibility and relatively safe 
procedure and the induction of immediate immunomodulatory effects by this type 
of stem cells (Bielekova et al. 1999). In 2010, Novik et al conducted a trial on 
patients with MS using HSC and claimed that this type of stem cells show a real 
possibility to achieve a relapse- and progression- free period (Novik et al. 2010). 
In 2012, Bowen et al performed a trial using HSC for longer follow-up period 
(48-month) in patients with MS and reported that these stem cells are likely to be 
more effective in patients with less advanced relapsing/remitting MS (Bowen 
et al. 2012). In 2012, also Sepulveda et al conducted a clinical trial on small num-
ber of patients with MS during shorter follow-up period and stated that at short 

Bone marrow stem cell

Scar

Myelin sheath
Stem cell

Emberyonic stem cell

Improved Myelin

Myelin sheath

Adult stem cell

Cord blood
stem cell

Fig. 9.1  Various types of stem cell that helps repairing the damaged myelin
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Table 9.1  Available literature about stem cell therapy in multiple sclerosis (MS)

Author, 
year, 
country

No. of cases

Follow-up
Stem cell 
type

Clinical trial 
identifier Outcome

Stem 
cell Placebo

Mancardi 
et al. 
(2015)
Belgium

11 10 6-month AHSCT EUCTR 2007- 
000064-24

strongly support 
further phase III 
studies with 
primary clinical 
endpoints

Nash et al. 
(2015)
USA

25 – 18-month AHSCT NCT00288626 improvements in 
neurologic function

Rice et al. 
(2015)
UK

40 40 12-month BMD-
MSCs

NCT01815632 safe and may 
reduce 
inflammatory 
parameters

Llufriu 
et al. 
(2014)
Spain

5 4 12-month BMD-
MSCs

NCT01228266 Bone-marrow-
MSCs are safe and 
may reduce 
inflammatory 
parameters

Li et al. 
(2014)
China

13 10 12-month UC-MSC – suggested a strong 
immunomodulation 
effect in MS 
patients

Lublin 
et al. 
(2014)
USA

12 4 12-month MLCa – safe and well 
tolerated in 
relapsing-remitting 
and secondary 
progressive MS

Burman 
et al. 
(2013)
Sweden

12 9 12-month AHSCT NCT00273364 long-term disease 
remission seen after 
HSCT

S.M. N 
(2013)
Iran

15 15 6-month BMD-
MSCs

– safe without any 
adverse effect

Sepulveda 
et al. 
(2012)
Spain

4 4 12-month AMSCT EUCTR2009- 
016442-74

at short time is safe 
and well tolerated

Connick 
et al. 
(2012)
UK

5 5 10-month BMD-
MSCs

NCT00395200 suggestive of 
neuroprotection

(continued)
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time these stem cells are safe and well tolerated (Sepulveda et al. 2012). In 2013, 
Burman et al proposed a randomized study, HSC in patients with inflammatory/
relapsing MS despite treatment with alternate approved therapy (Burman et al. 
2013). They showed a long-term disease remission seen after HSC transplant. 
Recently, Nash et al performed a trial study to determine the effectiveness of HSC 
as a new treatment for MS, a serious disease, in which the immune system attacks 
the brain and spinal cord, and reported improvements in neurologic function fol-
lowing HSC transplantation (Nash et al. 2015). In 2015, Mancardi et al conducted 
a multicenter, phase II, randomized trial including patients with secondary pro-
gressive or relapsing-remitting MS, to assess the effect of intense immunosup-
pression followed by HSC transplantation (Mancardi et al. 2015). They reported 
intense immunosuppression followed by HSC Transplantation is significantly 
superior to conventional drugs in reducing MRI activity in severe cases of 
MS. Over years or decades, HSC transplant for MS moved from myeloablative 
that basically killed some patients due to conditioning-related toxicities to non-
ablative settings.

Table 9.1  (continued)

Author, 
year, 
country

No. of cases

Follow-up
Stem cell 
type

Clinical trial 
identifier Outcome

Stem 
cell Placebo

Bowen 
et al. 
(2012)
USA

26 – 48-month AMSCT NCT00014755 more effective in 
patients with less 
advanced relapsing/
remitting MS

Karussis 
et al. 
(2010)
Israel

8 7 25-month BMD-
MSCs

NCT00781872 Clinical feasibility 
and relatively safe 
procedure and 
induces immediate 
immunomodulatory 
effects

Novik 
et al. 
(2010)
Russia

55 122 12-month AHSCT – show a real 
possibility to 
achieve a relapse- 
and progression – 
free period

Bielekova 
et al. 
(1999)
USA

16 9 6-month AHSCT NCT00342134 Clinical feasibility 
and relatively safe 
procedure and 
induces immediate 
immunomodulatory 
effects

hUC-MSC umbilical cord-derived mesenchymal stem cell, BMD-MSCs bone-marrow-derived- mes-
enchymal stem cell, AHSCT autologous hematopoietic stem cells transplantation, PDA-001 human 
placenta-derived cells, AMSCT autologous mesenchymal stem cell transplantation
aMesenchymal-like cells (MLC) derived from healthy subjects (PDA-001)
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9.4  �The Potential of Mesenchymal Stem Cell (MSC) in MS

MSC, derived from adipose tissue or bone marrow were anticipated as an alternative 
to HSC transplant in MS. The proposed mechanism of action is potentially suppres-
sion of auto-reactive T-cells called immunomodulation. Sever immunosuppression 
is not necessary in case of MSC therapy, because immune system is not going to be 
destroyed, as well as the therapy suppose to be not toxic at all. In 2010, Karussis 
et al propose an explorative trial with the both intrathecally and intravenously injec-
tion of MSC in patients with MS, to prevent further neurodegeneration through 
neuroprotective mechanisms and restoration of neuronal function (Karussis et al. 
2010). They reported clinical feasibility, relatively safe procedure and induces 
immediate immunomodulatory effects in patients with MS. In 2012, Connick et al 
conducted a trial to assess whether intravenous injection of bone marrow-derived 
MSC is a safe novel therapeutic approach for patients with MS or not, and suggest 
a neuroprotection effect (Connick et al. 2012). In 2013, Nabavi et al claimed that 
MSC is safe without any adverse effect in patients with MS (S.M. N 2013). In 2014, 
Llufriu et al conducted a randomized Phase II study, masked and crossed-over with 
placebo to evaluate the safety and tolerability of MSC transplantation in patients 
with active MS (Llufriu et al. 2014). They reported bone-marrow-MSCs are safe 
and may reduce inflammatory parameters. Finally, in 2015, Rice et al conducted a 
prospective, randomized, double-blind, placebo-controlled trial using bone-marrow-
MSCs in patients with progressive MS and showed that it is safely improve conduc-
tion in multiple central nervous system pathways affected in these patients (Rice 
et al. 2015).

9.5  �The Future of Stem Cell Therapy

Despite major knowledge advances since the discovery of stem cells, the field is so 
broad and there are still many valuable opportunities to work. Every year, many 
people suffer from their internal organs damages that lead to life-threatening com-
plications or losing their lives. Laboratory production of new tissue that could 
potentially be transplanted into the patient’s body can be a solution to this big 
problem.

9.6  �Conclusion

Prior to implementation of future investigator-initiated clinical trials, a realiza-
tion of stem cells therapy or transplantation to demonstrate its feasibility to target 
the therapeutic area without any adverse effects is necessary. Some pre-clinical 
trials in animal models provide a robust evidence to advise that this safe and 
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feasible therapeutic approach has a protective effect on motor neuron degenera-
tion and potentially enhance function in MS patients. But it should be considered 
that these approaches are subject to statute of limitations such that final confir-
mation in humans with MS. Actually, considering the safety of current new stem 
cell transplantation approaches for MS, this chapter may highlights that it is the 
time to move into the clinic to really appreciate whether they work in these 
patients or not.
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Chapter 10
Stem Cell Trials for Retinal Disease: 
An Update

Henry Klassen

10.1  �Introduction

Within the nascent field of regenerative medicine, it is striking that applications to 
the retina have received a relatively large share of attention. This can be attributed 
to the convergence of a number of factors, including the relative accessibility of the 
target tissue, the sophistication of retinal diagnostics and interventions, the underly-
ing progress in neural progenitor and RPE cell research, the safety factor manifest 
by patients having two eyes, and of course the large unmet medical need. Perhaps 
less agreed upon, but potentially significant, is the status of the retina as an immu-
nologically privileged site. Taken together, these factors have propelled this line of 
therapeutic research from laboratories into clinical trials. The projects vary in terms 
of disease target, cell of interest, and method of delivery, as has been discussed 
previously (Klassen 2015; Zarbin 2016). Here I would like to revisit this topic and 
update the status of these efforts.

10.2  �Cell of Interest

A key aspect of any cell-based therapy is obviously the type of cell to be used. In 
this regard, I find it helpful conceptually to divide these into CNS derivatives versus 
other sources ectopic to the retina and CNS.
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The CNS cell types currently in use comprise retinal pigment epithelial (RPE) 
cells and neural progenitors, either of forebrain or retinal origin. The RPE cells are 
in turn generally derived in the laboratory from pluripotent stem cell lines, either 
embryonic (ES) or induced pluripotent (iPS) cells. The brain-derived cells are vari-
ously referred to as neural stem cells (NSCs), neural precursor cells (NPCs), or 
brain progenitor cells (BPCs), while the retinal progenitor cells are generally 
referred to as RPCs. Cells from origins ectopic to the retina/CNS include the so-
called mesenchymal stem cells (MSCs), hematopoietic stem and progenitor cells 
(HSPCs), as well as umbilical and adipose cell types.

10.2.1  �RPE Cells

The retinal pigment epithelium is a monolayer of darkly pigmented cells lying deep 
to the retina. This structure is disrupted in a number of retinal conditions, most 
notably age-related macular degeneration (AMD). New RPE cells can be grown in 
the laboratory setting by differentiation of pluripotent stem cell types, and identified 
and isolated by virtue of their vivid pigmentation and propensity to grow as a con-
fluent monolayer. The availability of stem cell-derived RPE cells, combined with 
unmet medical need in AMD, has resulted in the relative popularity of using the 
former as a treatment for the latter, evidenced by the multiple clinical trials employ-
ing this strategy that are currently underway.

10.2.2  �CNS Progenitors

Cells of this type retain a proliferative capacity, but are not pluripotent and exhibit 
developmental restriction to the neural lineage, i.e., the generation of neurons and 
glia. As a result of this tissue restriction they are multipotent. Such progenitors are 
not immortal and tend to senesce with extensive passaging, which presents a chal-
lenge when contemplating large-scale production. On the other hand, the cells retain 
considerable plasticity, are pre-specified to differentiate into neural cell types, and 
do not require a pre-differentiation step prior to transplantation. This last character-
istic greatly simplifies the manufacturing process. In terms of developmental poten-
tial, all CNS progenitors can give rise to neurons and glia, however, the specific 
subtypes of these cells generated are known to vary depending on tissue source.

10.2.3  �Forebrain Progenitors

The forebrain is generated by the activity of neural precursor cells during develop-
ment, but also retains small populations of neural stem cells in some locations into 
adulthood. All these cells are characteristically defined by their ability to generate 
neurons, astrocytes and oligodendrocytes.
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10.2.4  �Retinal Progenitors

The neural retina (as opposed to the RPE layer) is generated by the activity of retinal 
progenitor cells during development, however, there is a notable lack of retention of 
such activity once the retina has reached its final size. Unlike other neural progeni-
tors, RPCs have the capacity to generate photoreceptor neurons, but do not give rise 
to oligodendrocytes.

10.2.5  �Non-CNS Cells

The successful isolation and transplantation of CD34+ hematopoietic progenitor 
cells from bone marrow and cord blood has long represented the cutting edge of 
regenerative medicine in the clinical domain. The success of this technology has 
been associated with growing availability of clinical grade allogeneic cells of 
this type.

Clinicians in particular have also directed attention to the use of mesenchymal 
and, more recently, adipose-derived cells. Some of the enthusiasm for these cells 
may relate to the convenience of using autologous material, generated as needed, 
without the same degree of regulatory oversight incumbent on other experimental 
therapies. This may be expeditious from a certain standpoint, but there may also be 
less underlying research to support and guide the studies.

Work with the CNS cell types is technically demanding and these types of cells 
are not as readily available as human clinical product from existing sources or the 
patients themselves, the way bone marrow and adipose derivatives are. Accordingly, 
the projects utilizing CNS cell types have active research activities supporting the 
clinical efforts, whereas the other types of projects may outsource much of the prod-
uct development component. There are evident advantages and disadvantages to 
either approach, from a practical standpoint alone. Personally, I find it easier to 
make a case for the use of local retinal cell types, but ultimately it will come down 
to demonstrated efficacy in patients and that has yet to be determined. The CNS 
cell-based trials may receive somewhat greater attention here, if only out of greater 
familiarity on my part.

10.3  �Mechanism of Action

Another difference between therapeutic approaches revolves around whether the 
major objective is to replace a cell type lost to the disease process, or to rescue host 
neurons before they die.

The RPE-based projects clearly emphasize cell replacement as the goal, although 
these cells might also have a paracrine effect on photoreceptors, e.g., as mediated by 
secretion of PEDF. The CNS progenitor-based approaches can be directed towards 
cell replacement or neurotrophic activity, depending on additional considerations.

10  Stem Cell Trials for Retinal Disease: An Update



176

Being ectopic to the retina, and non-neural in origin, hematopoietic and mesen-
chymal stem cells seem unlikely candidates for integration into the neural circuitry 
of the eye. The mechanism of action for these cell types is not well defined, but 
might be neurotrophic or, perhaps more likely, immunomodulatory.

10.4  �Disease Target

Age-related macular degeneration (AMD) is the most popular disease target among 
retinal diseases. This can be attributed to the prevalence of the condition as well as 
the relative ease of deriving RPE cells from pluripotent cultures. As mentioned 
above, AMD is a degenerative condition that disrupts the RPE layer and mechanis-
tically this occurs prior to the loss of photoreceptors. AMD comes in two basic 
“flavors”, wet and dry, referring to the neovascular and atrophic variants, respec-
tively. The wet form can be further divided to include less common forms such as 
RPE detachment and RPE tears, both being associated with neovascular 
abnormalities.

Stargardt’s disease is a rare, genetic maculopathy associated with multiple forms 
of inheritance. As such, it is a macular condition with RPE involvement that quali-
fies for orphan status.

Retinitis pigmentosa (RP) is also a rare, genetic condition, but with primary pho-
toreceptor involvement. Characteristically, rods are lost first, followed by cones. 
RPE cells migrate into the retina once the outer nuclear layer is lost, leading to the 
pigmentary changes that give RP its name.

Other retinal conditions have also been targeted for cell-based trials, including 
myopic degeneration, vascular occlusive diseases, and optic nerve conditions.

10.5  �Method of Delivery

The major distinction between trials in terms of delivery is between transplantation 
to the subretinal space and simple intravitreal injection. A further distinction is 
whether the cells are delivered as an intact layer or as a cell suspension. Yet another 
consideration is whether the cells can be thawed for immediate use or are main-
tained in culture just prior to injection.

Because of the recognized difficulty in achieving integration of mature cells into 
the RPE monolayer, RPE-based projects generally transplant the cell product as an 
intact epithelial layer, not infrequently adherent to an artificial scaffold to enhance 
engraftment. In this way the graft constitutes a defined therapeutic “patch” rather 
than the spontaneous remediation of a defect in the RPE monolayer by dissociated 
donor cells.

When CNS progenitors are used for cell replacement, the product would typi-
cally be placed in the subretinal space. The rationale is that donor cells can more 
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readily integrate into the adjacent retinal outer nuclear layer from that location. For 
neurotrophic activity, some groups deliver the product to the subretinal space, while 
others opt for the vitreous cavity.

For hematopoietic and mesenchymal cells, an extraretinal injection appears to be 
the route of choice for administration to the retina. This would generally imply an 
intravitreal approach, however, apparently some groups have attempted extraocular, 
e.g., retrobulbar, injection as well.

From a practical perspective, it is clearly preferable that a therapeutic cell 
product be readily available for administration with a minimum of preparation 
needed at the clinical site. This would tend to imply a frozen product that can be 
stored and thawed on short notice for clinical use. Despite the obvious benefit of 
such an approach, it may not always be expeditious or feasible with current tech-
nology. There is evidence to suggest that re-culturing cells for a period after 
thawing can have a significant positive impact on cellular function (François 
et al. 2012).

10.6  �Update on Clinical Trials

World wide, there are at least a dozen different trials using stem or progenitor cells 
in the retina, at various stages of progress. Here I will look at CNS cell-based trials 
first, roughly in order of apparent current progress, followed by a consideration of 
other cell types.

10.6.1  �Phase 2b/Efficacy

Two groups using CNS-type cells have now successfully completed safety trials and 
are therefore in a position to pursue clinical proof-of-concept. One of these is Ocata 
(formerly ACT), now owned by Astellas. The other is StemCells, Inc.

Ocata is testing an ES-derived RPE product in dry AMD, Stargardt’s disease, 
and now myopic degeneration. The dissociated cells are injected subretinally as a 
single bolus. CHA Biotech has a license for use of this technology in South Korea 
and has completed a smaller trial in local patients with AMD and Stargardt’s dis-
ease (Song et al. 2015). Ocata’s Phase 2 proof-of-concept trial, PORTRAY, is listed 
as “recruiting” on the clinicaltrials.gov website and a follow-on trial from CHA 
Bio is also anticipated. Of note, Stargardt’s disease is no longer listed as an 
indication.

StemCells, Inc. has completed their Phase 1/2a trial with human neural stem 
cells in dry AMD and initiated their follow-on RADIANT trial. However, the com-
pany recently announced that they would divert limited financial resources to sup-
port their spinal cord trial. The RADIANT trial is currently listed as having 
“suspended recruitment” on the clinicaltrials.gov website.
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10.6.2  �Phase 1/2a Dose Escalation

One group is now well into initial dose ranging studies and that is jCyte, of which I 
am a founder. jCyte uses allogeneic retinal progenitor cells which are injected into 
the vitreous cavity without immune suppression. The initial disease target is RP. At 
this time, dosing has been completed in the first of two patient cohorts. The doses 
tested were 0.5, 1, 2, and 3 million cells. Dosing in the second, better-seeing cohort 
is currently underway.

10.6.3  �Phase 1

A number of other groups have successfully initiated safety trials in the retina and 
presumably will also progress through dose escalation studies. Groups that have 
initiated early trials include the RIKEN/Healios effort with iPS-derived RPE and 
both Cell Cure Neurosciences (a subsidiary of BioTime) and the London Project 
with ES-derived RPE, all in various forms of AMD.

The RIKEN trial was halted when, through extensive genetic screening, the 
autologous iPS product was found to have mutations that might theoretically 
increase tumorigenicity. No actual evidence of such behavior was evident. The cur-
rent plan, as I understand it, is to switch to allogeneic iPS cells banked according to 
MHC background, which is somewhat less diverse among the Japanese population. 
Another effort with ES-derived RPE in dry AMD from Regenerative Patch 
Technologies is imminent, but dosing has yet to be announced as this is written. 
ReNeuron initiated their trial using retinal progenitor cells in RP earlier this year. 
They are pursuing a subretinal approach.

10.6.4  �Non-CNS Cell Types

The University of Sao Paulo group completed both Phase 1 and 2 studies of autolo-
gous bone marrow stem cells in RP, delivered by intravitreal injection. The date of 
completion is listed as 2013. A safety study at Mahidol University in Thailand using 
intravitreal bone marrow-derived mesenchymal stem cells in RP is listed as “enroll-
ing by invitation” and was due to finish in 2014.

A pilot safety study using autologous bone marrow-derived CD34+ hematopoi-
etic stem cells was initiated at the University of California, Davis in 2012. The cells 
are injected intravitreally in RP, AMD, and a range of retinopathies. The study is 
listed as “enrolling by invitation” with estimated completion in 2017. Another study 
with intravitreal injection of autologous bone-marrow derived stem cells is being 
performed by Red de Terapia Celular in Murcia, Spain. This study includes a sub-
conjunctival placebo control in the fellow eye and is due to be completed later this 
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year, according to entries on clinicaltrials.gov. Another trial using autologous bone 
marrow cells by Stem Cells Arabia is underway in Amman, Jordan, another at 
Chaitanya Hospital, Pune, India, and another in Florida and Dubai by MD Stem 
Cells.

In addition, Janssen is testing their umbilical tissue-derived cells subretinally in 
a Phase 1/2a study in dry AMD, with fellow eye controls. The study is listed as 
“ongoing but not recruiting participants.” A prior study in RP was terminated.

10.7  �Conclusion

There are upwards of a dozen active trials using stem cells for retinal diseases. The 
above list was intended to be current, but might not be entirely complete. At this 
stage the majority of these projects are still in initial safety and dose escalation tri-
als. The most popular cells are pluripotent cell line-derived RPE and autologous 
bone marrow-derived cells. The former are all delivered to the subretinal space and 
the latter to the vitreous, based on presumed mechanism of action. Also popular are 
allogeneic CNS progenitors, delivered either under the retina or to the vitreous. 
Many of these trials have been active for several years, implying that safety con-
cerns have been few, and this conclusion has been backed up in a number of pub-
lished reports. Only two efforts are currently poised to directly investigate efficacy 
at this time, with one suspended due to funding limitations, so we will have to wait 
a while longer to get answers to the all-important question of whether these trans-
plants will have an impact on their intended disease targets.

Acknowledgements  The author would like to acknowledge ongoing support from the 
California Institute of Regenerative Medicine (CIRM) and the Polly and Michael Smith 
Foundation. Some research was supported in part by an RPB Unrestricted Grant to the Gavin 
Herbert Eye Institute.

Disclosure Statement  The author is supported by grants from CIRM (incl., Award #DR2A-
05739) and has IP and an equity interest in jCyte, Inc., a company that may potentially benefit from 
the research results presented. He also serves on the company's Scientific Advisory Board. The 
terms of this arrangement have been reviewed and approved by UCI in accordance with its conflict 
of interest policies.

References

François M, Copland I, Yuan S, Romieu-Mourez R, Waller E, Galipeau J (2012) Cryopreserved 
mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-
shock response and impaired interferon-γ licensing. Cytotherapy 14(2):147–152. doi:10.3109/
14653249.2011.623691

Klassen H (2015) Stem cells in clinical trials for treatment of retinal degeneration. Expert Opin 
Biol Ther 28:1–8

10  Stem Cell Trials for Retinal Disease: An Update

http://dx.doi.org/10.3109/14653249.2011.623691
http://dx.doi.org/10.3109/14653249.2011.623691


180

Song W et al (2015) Treatment of macular degeneration using embryonic stem cell-derived retinal 
pigment epithelium: preliminary results in Asian patients. Stem Cell Rep 4(5):860–872, http://
dx.doi.org/10.1016/j.stemcr.2015.04.005

Zarbin M (2016) Cell-based therapy for degenerative retinal disease. Trends Mol Med 22(2):115–
134. doi:10.1016/j.molmed.2015.12.007

H. Klassen

http://dx.doi.org/10.1016/j.stemcr.2015.04.005
http://dx.doi.org/10.1016/j.stemcr.2015.04.005
http://dx.doi.org/10.1016/j.molmed.2015.12.007


181© Springer International Publishing Switzerland 2017
P.V. Pham (ed.), Neurological Regeneration, Stem Cells in Clinical 
Applications, DOI 10.1007/978-3-319-33720-3_11

Chapter 11
Stem Cells in the Management of Tympanic 
Membrane Perforation: An Update

Bassel El Baba, Carole Barake, Roger Moukarbel, Rosalyn Jurjus, 
Serkan Sertel, and Abdo Jurjus

11.1  �Introduction

The healing process of a perforated tympanic membrane (TM) occurs through many 
complex steps of cell proliferation and migration and the interplay of a series of 
biomolecules. Moreover, the management of severe tympanic membrane perfora-
tion attracted a good deal of attention especially where surgical intervention was 
considered as the number one choice. However, with the advancement in molecular 
and stem cell research new approaches are being considered and throughout the last 
decade, multiple publications dealt with regeneration of TMPs.

Some work appeared using biomolecules like PDGF (Platelet derived growth 
factors), Hyaluronic acid (HA), epidermal derived growth factor (EGF) and 
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pentoxifylline. Other attempts used scaffolding materials like Calcium alginate, silk 
and Chitosan including the use of stem cells (Hong et al. 2013).

In this review, a 10 year search was performed through PubMed, Scopus, and 
Mednet and using key words like: tympanic membrane repair, perforations, and 
stem cells in the eardrum.

Anatomically, the tympanic membrane constitutes the medial boundary of 
the external acoustic meatus and the lateral wall of the middle ear. Histologically, 
it is composed of three layers, from outside to inside, the continuation of the 
skin inside the external ear canal (stratified squamous epithelium), a core of 
radially and circularly arranged collagen fibers (connective tissue) and the 
mucous membrane lining the middle ear (simple cuboidal epithelium) (Ross and 
Pawlina 2014).

It is well known that the major cause of tympanic membrane perforation is infec-
tion seconded by trauma. Traumatic tympanic membrane perforations usually occur 
due to a blow on the ear, skull base fracture, barotrauma due to severe atmospheric 
overpressure, exposure to excessive water pressure (e.g. in scuba divers), and iatro-
genic causes. The common symptoms of a tympanic membrane perforation are usu-
ally purulent discharge through the ear, whistling sounds when blowing the nose, 
tinnitus and hearing loss.

A review of statistics related to the incidence of TM perforation in the gen-
eral population does not provide exact and reliable numbers. However, analysis 
of the yearly surgical TM repairs performed in the USA shows that in a popula-
tion of 280 million, approximately 150,000 tympanoplasties are performed 
(Howard 2014).

For this review the focus is on the role of stem cells and their related products in 
the management of tympanic membrane perforations, by searching for publications 
in the past 10 years using engines like PubMed, Medline and Scopus. The results of 
the search amount to a series of twenty four articles covering methods used for 
regeneration of TMPs including scaffolding materials, biological material like 
growth factors, or stem cells.

This review while taking into consideration the conventional methods of TMP 
repair, will highlight mostly advances in the use of biological materials including 
stem cells.

11.2  �Management Modalities for Tympanic Membrane 
Perforations

Most tympanic membrane perforations tend to heal on their own. Usually, a healed 
TM perforation consists of a thin membrane, called neomembrane, made of squa-
mous epithelial cell layers and a mucosa without a fibrous middle layer. It is usu-
ally very thin and can be sometimes mistaken under microscopy for a perforation. 
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These neomembranes can develop into a retraction pocket, especially when they 
are in the posterior superior quadrant of the drum and can predispose to 
cholesteatomas.

Throughout history, several surgical methods were developed to repair tympanic 
membrane perforations. The common procedures for repair of traumatic TMP’s are 
paper patch repair, with a thin film of paper (example: cigarette paper), and tympa-
noplasty through reconstruction of the tympanic membrane surgically with tempo-
ral muscle fascia and tragal cartilage. These methods have been and still are the 
most common methods in use (Howard 2014).

11.3  �Scaffolding Material

The recent methods used for regeneration of TMPs make use of scaffolding materi-
als like Calcium alginate, silk and Chitosan.

11.3.1  �Calcium Alginate

For the past 10 years, only one article was encountered whereby Calcium alginate 
showed promising results in the healing of TMPs. Alginate is an organic polymer 
derived from Seaweed with well-documented scaffolding capabilities optimal for 
cellular ingrowth. Moreover, it has been successfully used in the management of 
chronic wounds. Its mechanism of action consists in the formation of a calcium 
alginate compound which leads to the control of the physical properties of the scaf-
fold. This property is due to the crosslinking between the alginate molecules to 
calcium, consequently, it increases the resistance and improves the handling of the 
product (Weber et al. 2006).

In this study, by Weber et al. in 2006, calcium alginate for TM grafts was devel-
oped using a computer aided design (CAD). The structure of the graft and its 
implantation technique were similar to a standard biflanged tympanostomy tube. 
Chronic TMPs were created in Chichilla models, approximately 5 mm in diameter 
using a thermal cautery. The ears were grouped into (1) a control without a patch, 
(2) another group with a paper patch, and the third group with calcium alginate 
plugs. The animals were sacrificed 10 weeks post implantation and the TMs were 
microscopically inspected. The calcium alginate treated TMPs showed a signifi-
cantly improved healing rate over the other two groups: 9 out of 13 healed in the 
third group with alginate versus 2 of nine in the second paper patch group and 1out 
of 11 in the control. Auditory Brainstem Reaction (ABR) thresholds using Intelligent 
Hearing Systems, ABR systems, showed that the calcium alginate was not ototoxic 
(Weber et al. 2006).

11  Stem Cells in the Management of Tympanic Membrane Perforation: An Update



184

11.3.2  �Silk

Reports in the literature considered silk as a probable scaffolding material to be 
used in the regeneration of TMPs (Ghassemifar et al. 2010). This is a protein poly-
mer with a high degree of elasticity. The silk fibroin is biocompatible and as docu-
mented through its use for long time, it helps also peptides to get bonded to enhance 
cell attachment (Sofia et al. 2001).

In 2010 Ghassemifar et  al. showed that human tympanic membrane cells 
(hTMCs) obtained from pars tensa explants (2–3  mm in size) of patients were 
subjected to extensive skull-base surgery whereby the TM and related structures 
were sacrificed (Ghassemifar et al. 2010). These cells were cultured for 15 days in 
a serum containing medium then harvested, seeded on membranes prepared from 
silk fibroin (BMSF) and on tissue-culture plastic membranes. They were then 
stained using antibodies and immunofluorescent techniques. The direct cell counts 
indicated an excess of 70 % hTMCs cells growing on BMSF as compared to tissue-
culture plastic membranes. This increase in cell number suggests that a BMSF 
membrane can provide a more suitable substratum for growth of hTMCs, com-
pared to culture plastic membranes (Ghassemifar et  al. 2010). As a conclusion, 
this result shows a promising future for silk fibroin in the construction of tissue 
engineered replacements for tympanic membranes or possibly others (Ghassemifar 
et al. 2010).

In two studies, Kim and coworkers in 2008 and 2010 compared 2 methods of 
repair of TMPs; the Silk patch vs. the paper patch. In this in vivo study, artificial 
bilateral 1.8 mm myringotomies were performed on 50 adult rats. The perforated 
TM’s on the right ear of 40 rats were managed with silk patch while those on the left 
ear with paper patch. 10 rats were used as control. The silk material was derived 
from silkworm cocoons. In this study the mechanical properties were studied, fol-
lowed by endoscopic observation and histological examination of the TM. The ten-
sile strength of the silk fibroin patches were similar to that of the paper patch but the 
flexibility was 6 % much more compared to 0.2 % for paper patch. Silk fibroin 
patches were tougher and easier to use (Kim et al. 2010).

Daily endoscopic examination with photo-documentation was done on the 
50 rats. It showed that the mean healing times were significantly different 
between the silk-patch-treated TMs and paper-patch-treated TMs, 7.2 ± 1.48 
and 9.1 ± 1.11 days, with a mean difference of 1.9 days shorter in favor of the 
silk-patch treated ears. After 14 days, the proportion of completely healed ears 
in the silk patch group was 37/40 i.e. 93 %, compared to 28/40 i.e. 68 % in the 
second group with paper patch and 13/20 i.e. 65 % in the control group. The 
treated tympanic membranes were studied histologically at days 5, 7, 9 and 14. 
After 2 weeks, the TMs treated with silk patches had a normal contour and were 
twice as thick as those of day 9 (Kim et al. 2010). In brief, this group shows a 
faster and significantly better organized healing compared to paper patch and 
control groups.
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11.3.3  �Chitosan

Chitosan originates from Chitin, a predominant polysaccharide found in the exo-
skeleton of crustaceans. It enhances significantly the mitogenic activity and is 
widely used in tissue engineering studies (Kind et al. 1990; Muzzarelli et al. 1994; 
Badylak 2002; Chung and Burdick 2008). The first clinical trial, using autologous 
serum eardrop therapy with a chitin membrane (ASET) for closure of chronic 
TMPs without any surgical intervention was done by S. Kakehata et al., in 2008. 
This study included 19 patients with chronic TMPs. Before treatment with ASET, 
the TM perforations were cauterized chemically and covered only with a chitin 
membrane. The perforation sizes were grouped into: small (<1/4 of the TM), 
medium (1/4-1/2 of the TM), and large (>½ of the TM). The numbers of ears with 
small, medium and large perforations were 14, 1, and 4 respectively (Chung and 
Burdick 2008).

Various active factors were measured like the concentration of epidermal growth 
factor (EGF), transforming growth factor β 1(TGF β-1), fibronectin, and interleukin 
(IL) 6. The results showed that complete healing of the TMPs occurred in 11 (58 %) 
of 19 ears and reduction of the perforation size was observed in 2 ears (11 %). 
Closure rates for small, medium, and large perforations were 57, 0, and 75 %, 
respectively. The ASET treatment showed no remarkable side effects. In conclu-
sion, ASET was considered as a very safe method that requires no surgical interven-
tion. It is easy to use, suitable for office and home use, and is very efficient for the 
treatment of chronic TMPs.

In another study by Kim et al., in 2008, a biocompatible water-insoluble chito-
san patch was developed. These water-insoluble patches were treated with acetic 
acid and glycerol to obtain the Chitosan Patch Scaffold (CPS) and were compared 
to the conventional paper patch. Several criteria were considered including thick-
ness of the CPS and paper patch, mechanical properties, morphological analysis, 
water contact angle test, cytotoxicity and study for the proliferation of the TM cells 
(Kim et al. 2009). The morphological study showed that the CPS are more resistant 
to infection compared to others and are not toxic (Kim et al. 2009). Mechanically 
chitosan showed a significant tensile strength when 3 % glycerol was added to 3 % 
chitosan in comparison with the very nonflexible property of the paper patch which 
could easily detach from the TM (Kim et al. 2009). Analysis of water contact angle 
showed that the higher the glycerol concentration the more the hydrophilic prop-
erty of the chitosan patch is. In rats, the transmission electron microscope examina-
tion showed that the cells of the TM proliferate faster under CPS guidance (Kim 
et al. 2009).

In conclusion, a new artificial TM patch composed of 3 % of chitosan and 3 % 
glycerol showed more effectivity than spontaneous healing of traumatic TMPs, with 
no cytotoxic effects. A sequel study done by the same team in 2013 used an EGF-
Releasing chitosan patch to study the regeneration of TMPs. Knowing that EGF was 
reported to be very effective for the recovery of skin wounds by helping the migration 
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of fibroblasts, endothelial and then vascular cells, primary TM cells were harvested 
from the TMs of rats, then EGF-CPS were prepared as previously reported but with 
a different concentration of glycerol and chitosan. Results of this study showed that 
EGF-CPS had better mechanical properties and greater cell viability than established 
CPS. In addition they showed a much higher wound-healing rate than CPSs (Seonwoo 
et al. 2013).

11.3.3.1  �Use of Biomolecules in the Management of Tympanic Membrane 
Repair

As mentioned before, the process of tympanic membrane healing is complex. It 
requires the orchestration of various elements including cell migration and prolif-
eration, the presence of inflammatory cells and respective secretory products, in 
particular, during the first stages of the healing process. The addition of biomole-
cules, either in drops or via scaffold soaked with these molecules, may provide an 
enhancement to this healing process (Hong et al. 2013).

11.3.3.2  �Basic Fibroblast Growth Factors (bFGF)

b-FGF gained a notable place in the large pool of biomolecules studies in regards to 
tympanic membrane perforation healing (Kanemaru et  al. 2011), used gelatin 
sponges imbibed with either b-FGF or in saline. They randomized their application 
on 63 chronic tympanic membrane perforations; fibrin glue was added as a sealant. 
The b-FGF treatment proved to be significantly (p < 0.0001) superior in regards to 
complete closure of the perforation as compared to the control; 98.1 % of the study 
group achieved complete perforation closure following four courses of treatment as 
opposed to 10 % for the control group. On evaluation 3 weeks post-treatment, symp-
toms such as tinnitus and aura fullness were also significantly improved in the study 
group (p < 0.0001) as compared to the control. There was also noted absence of 
infections and major sequelae in treated patients which added to the effectiveness of 
b-FGF treatment (Kanemaru et al. 2011).

Similar outcomes were obtained in a study by (Zhang and Lou 2012). The study 
focused on the effect of b-FGF on tympanic membrane perforation due to direct 
traumatic penetration, however, only small sized perforations were included in this 
study. The study group, treated with daily direct application of b-FGF drops, 
showed, compared to control, a statistically significant 23 % improvement (p = 0.01) 
in perforation closure rate and a threefold shortened perforation closure time 
(p < 0.01). However, 3 months following treatment, audiometric assessment 
revealed failure of b-FGF treatment to give significant hearing improvement com-
pared to the other groups. Lou in 2012 also used FGF to study its healing effect on 
TM however; his emphasis was on large traumatic eardrum perforations estimated 
at 50 % or more of the entire tympanic membrane. A total of 94 patients were split 
into 3 groups: (1) a control group (36 patients), (2) a group to which direct FGF 
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application was performed (36 patients), and (3) a group to which FGF was applied 
via Gelfoam (35 patients). Both FGF and FGF via Gelfoam groups showed a sig-
nificant enhancement in the closure rate and closure time compared with the control 
group (p < 0.05) but did not show a significant difference among themselves 
(p > 0.05). The mean hearing improvement, 3 months following the procedure was 
almost similar among the three groups (p = 0.73). Furthermore, direct FGF applica-
tion showed no adverse effects as compared to FGF via Gelfoam which presented a 
risk for granulation tissue and scarring and a risk of myringitis that should not be 
overlooked. In conclusion, FGF applied directly to large tympanic membrane per-
forations proved to be a safe, quick and inexpensive healing technique.

In an attempt to make use of the previously proven healing properties of b-FGF 
(Acharya et al. 2015), selected a small cohort of pediatric patients to specifically 
demonstrate the usefulness of that technique on children. In his pilot study, Acharya 
followed the same technique as the one used by his predecessor Kanemaru but with 
a small modification. It was noticed that the fibrin glue cap, used by Kanemaru to 
seal the gelatin sponge, underwent liquefaction prompting the failure of Acharya 
primary procedures. Thus, the fibrin glue was replaced by one drop of cyanoacry-
late. 12 patients (6–16 years) with chronic TMP (persistent for more than 3 months) 
were treated with a single application of b-FGF solution (at a concentration of 
21,000 IU/5 ml) and then a regular follow-up for at least 1 year. In this study, there 
was no control group and results were compared to a standard myringoplasty. An 
overall 83 % successful closure of TMP was observed with a significant hearing 
improvement in 80 % of them (t-test p = 0.024). With no significant adverse effects, 
b-FGF proved again its superior regenerative power in an age group where hearing 
loss can have severe dramatic outcomes that ought not to be underestimated.

11.3.3.3  �Hyaluronic Acid

Hyaluronic acid is a naturally occurring extracellular polysaccharide, its value in 
tympanic membrane healing stems from its influence on rapid restoration of the tis-
sue components. This by itself leads to less scar tissue formation and subsequently 
to an enhancement of both the structure and the function of the healed tympanic 
membrane (Hellstrom and Laurent 1987).

In an in vitro study on several biomolecules (Teha et al. 2013), talked about a 
“Dual signaling” between the extracellular matrix (ECM) and the growth factors, 
that takes place during an ‘in vivo’ wound repair. For investigating this effect, the 
Hyaluronic acid (HA) along with vitronectin and TGF-alpha as well as IL-24 were 
used, either alone or in combinations, to depict their effects on multiple relevant 
parameters related to human tympanic membrane derived keratinocytes. Results 
revealed that the combination of TGF-/HA is the most efficacious in stimulating 
both migration and proliferation via an epidermal growth factor ERB1 receptor acti-
vation and without modification of the epithelial phenotypes. Migration increased 
by 27 % (p < 0.05) and proliferation by 39 % (p < 0.05) compared to controls. In this 
study, authors emphasized on the complexity of tympanic membrane keratinocyte 
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wound healing process and the importance of keeping the ECM/Growth factor 
interaction into consideration when assessing for in  vivo therapeutic potentials 
(Teha et al. 2013).

Ozturk et al. (2006) examined the effect of HA on traumatic tympanic membrane 
perforation. 24 rats were subjected to a bilateral tympanic membrane perforation 
using a 20 gauge needle and then randomized into 2 study groups: For the right 
perforated tympanic membrane, one group received an esterified form of HA 
(Merogel packing), while the other group received daily topical HA administration, 
the left perforated ears were used as controls. Both study groups revealed signifi-
cantly greater closure rates compared to the control, on postoperative day 7 (p < 0.05) 
as well as an increased amount of VEGF, FGF, lymphocytes, and collagen fibrils 
(p < 0.05). Having obtained similar results between Merogel and daily topical HA 
treatment (p > 0.05), authors concluded that a single Merogel administration would 
be a more practical option for both patients and otolaryngologists.

In another series of studies of TMPs, Sayin et al. (2013) used HA ester patch-
ing for 155 subjects. Patients were divided into group A with spontaneous closure 
group (control), and group B to which HA ester (Epifilm otologic lamina) was 
added and appropriately sealed the perforation dimension. Both groups received 
oral antibiotics for 5 days. After several follow up examinations up until 6 months 
post perforation, audiometric evaluations revealed a significant difference between 
the two groups for perforation closure time; Group B with a closure time of 
6.61 ± 4.59, had a shorter closure time than Group A with a closure time of 
10.6 ± 5.23  weeks (p = 0.001). Whereas such a significant difference wasn’t 
observed when comparing closure rate; closure rate for Group A was 85.6 % ver-
sus Group B 94.8 % (p = 0.129). On the other hand, contrary to what has been 
observed with the aforementioned studies, (Prior et al. 2008) did not reach any 
eventful results when using the same HA ester (Epifilm) on patients with symp-
tomatic tympanic membrane perforations. Following 6 weeks post-op, 5 patients 
to which the Epifilm was inserted showed no improvement neither in the perfora-
tion size nor in the hearing acuity which led to the suspension of the study. The 
authors concluded that additional revisions should be considered to understand 
the reasons for this failure (Prior et al. 2008).

11.3.3.4  �Platelets Derived Growth factors (PDGF)

The use of PDGF was assessed in a study of (Yeo et al. 2000) whereby an excision 
was performed on the posterior aspect of the pars tensa of the TM in the ears of 20 
rats. The right TMs of the rats constituted the experimental group and were treated 
with PBS containing 2 μg of PDGF-AA and 1 % bovine serum albumin, in compari-
son to the TMs in the left ear which were treated with PBS and 1 % bovine serum 
albumin and were taken as controls. A complete healing was observed on the 5th 
day of treatment for all PDGF treated tympanic membranes. However, only 75 % of 
the control closed by the 15th day with a histological picture revealing a weaker 
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connective tissue layer as compared to the PDGF treated TMs which had a relatively 
stronger fibrous layer. Sang and colleague (2000) concluded that not only did PDGF 
enhance the healing process but it also improved connective tissue growth. Despite 
the encouraging results, human studies were further needed.

In a later study casting doubt on the effectiveness of this biomolecule, Roosli and 
coworkers in 2011 found in 10 patients with chronic suppurative otitis media no 
advantage of topical PDGF in closure of human tympanic membrane perforations, 
versus a control group of 10 patients subjected to placebo, both treatments were 
applied weekly for 6 weeks. Complete closure of the perforation was same in both 
groups and did not differ significantly (p = 1), leading the authors to discard the 
usefulness of PDGF as a promising alternative to surgical treatment of tympanic 
membrane perforations.

11.3.3.5  �Epidermal Growth Factors (EGF) and Pentoxifylline

Many studies, proved that EGF which normally exists in low concentrations in the 
uninjured TM has a significant contribution in TM wound healing repair by enhanc-
ing keratinocyte proliferation and migration (Guneri et al. 2003; Santa Maria et al. 
2010) used acute traumatic tympanic membrane perforation models from 30 male 
albino rats to assess the effect of HA, EGF and Mitomycin C (Mit C) on TM heal-
ing. Following a bilateral perforation, the animals were split into groups of 10. A 
daily application of a treatment; HA (group A), EGF (group B), or Mit C (group C) 
to the right ears, whereas the left ears were used as control. When comparing histo-
logic parameters in the EGF treated ears to the contralateral ear’s histologic param-
eters no significant differences were noted, however, the mean closure time was 
significantly shorter with the EGF treated ears as compared to the closure time of 
the contralateral ears (7.4 ± 1.6 days for EGF treated ears versus 15 ± 1.6 days for the 
control, p = 0.0432) (Guneri et al. 2003).

About a decade ago, the combination of Pentoxifylline with EGF was assessed 
(Ramalho and Bento 2006). Chinchilla models were subjected to subacute tympanic 
membrane perforations and divided into 4 study groups: the first treated with topical 
EGF, the second treated with oral pentoxifylline at 10 mg/kg every 12 h for 10 days, 
the third combining both treatments together, topical EGF plus oral pentoxifylline, 
and a control group treated with topical distilled water. Results showed that the 
addition of pentoxifylline proved to be of no benefit to the healing process observed 
with the topical EGF treatment. In fact such an addition resulted in 1.8 times lower 
healing rate when compared to the EGF study group healing rate: Topical EGF 
group healing rate was 30.3 % whereas topical EGF+ Pentoxifylline group healing 
rate was 16.5 %.

The authors concluded that the addition of pentoxifylline to the EGF treatment 
not only did not prove to have a synergistic effect but suggested to have negatively 
interfered in the healing process of subacute tympanic membranes perforations 
(Ramalho and Bento 2006).
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11.4  �Stem Cells

The therapeutic use of stem cells is gaining a great momentum; it is believed to be 
the gold mine of science. These cells are implicated in the healing of wounds in 
general due to their proved regenerative capacities (Ghieh et al. 2015). Von Unge 
et al. in 2002 tested the healing capacity of stem cells in fresh tympanic membranes 
in Mongolian gerbils. Functional and morphological measures of the TMs were 
assessed. In this study, 5 adult Mongolian gerbils were used in a Moire interferom-
etry group and 9 were used in a fluorescence microscopy group. Under general 
anesthesia and otomicroscopy, the inferior portion of the pars tensa was perforated 
on the left and right tympanic membranes. The perforation of the left tympanic 
membrane was treated with a droplet containing <1 × 106 cells diluted in 5 μl of a 
physiological NaCl solution. Two types of stem cells were used; embryonic mouse 
cell line WW6 for the first group and E.P.842BF6 cell line for the second group. The 
cells were tagged with green fluorescent protein (GFP) and stored at −70 °C. The 
right ears were reserved as controls (Von Unge et al. 2003).

In the Moire interferometry group the mechanical stiffness of the tympanic 
membrane was assessed by measurements of the deformation during pressurization 
using a video interferometer. Sequences of static pressure in steps of 20 daPa up to 
200 daPa were used. In the fluorescence microscopy group the temporal bones were 
dissected so that the entire surface of the tympanic membrane pars tensa could be 
visualized with a fluorescence microscope.

All five stem cell treated TMs closed in 3 days, whereas only 2 out of 5 closed in 
the control. Three of the five stem cell treated tympanic membranes ruptured at the 
pressures 80, 120, and 160 daPa respectively, whereas the other two didn’t rupture 
at all. In the control group, only one tympanic membrane did not rupture.

The displacement patterns under pressurization for both groups where similar, 
and the peak displacements calculated were slightly less in the stem cell group than 
in the control. In the fluorescence microscopy group, GFP labeling was observed in 
the region of the perforation of 3 out of 9 ears of the stem cells treated TMs, whereas 
GFP labeling was less distinct in the control group (Von Unge et al. 2003). In con-
clusion, there were better and higher healing scores in the stem cell treated groups. 
The authors concluded by claiming very promising results (Von Unge et al. 2003).

Another study was conducted by A. Rahman et al, in 2007. The study assessed 
the acute and long term effects of stem cell treatment on acute TMPs. In this study, 
20 Sprague-Dawley rats were divided into 2 groups, A and B. Tau-GFP labeled 
mouse embryonic stem cells were dispensed at a rate of 10,000 cells/μL in each 
application (Rahman et  al. 2007). Then myringotomy was performed bilaterally 
under general anesthesia using a KTP laser beam under otomicroscopy. The inci-
sion was performed in the postero-superior quadrant of the pars tensa. The stem 
cells were applied to the right side whereas the left side was left as a control. The 
animals in group B were treated in the same way. In this group an immunosuppres-
sant (Cyclosporine) was given every other day until 2 weeks. TMs of both groups 
were monitored for the presence of a perforation, blood clot, infection, 
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myringosclerosis and thickened TM (Rahman et al. 2007). In the control ears, the 
closure time was less than the stem cell treated side, regardless of Cyclosporine 
treatment or not (Rahman et al. 2007). The TMs of both groups showed no blood 
clots, infection or thickening. At 1 month, a scar was obvious in both groups, how-
ever, at the end of the study, all TMs were scarless. Under light microscopy, similar 
thickness was detected in both groups (Rahman et al. 2007).

In another study also conducted by A Rahman et al. in 2008, using mesenchymal 
stem cells (MSC) in acute and chronic TMPs, the mechanical stiffness of the healed 
TMs was measured; both short and long term (Rahman et al. 2008). The study used 
Sprague-Dawley rats where laser perforations of different diameters were made to 
the right TMs with KTP laser beams under otomicroscopy. The left TMs were left 
as controls. Short-term and long-term studies were conducted. In the short-term 
study, TMs were examined for the healing pattern three times weekly for 2 weeks 
while in the long-term study TMs were examined twice weekly for 6 months. MSCs 
treatment was also used on a chronic TMP model. After bilateral myringotomy, a 
solution of hydrocortisone was instilled around the perforation for 10 consecutive 
days to make it chronic.

Concerning the acute perforations, results showed that all had similar appear-
ances to controls and closed between 9 and 14 days post myringotomy (Rahman 
et al. 2008). The pars tensa appeared homogenous, the thickness was almost con-
stant and, the 3 layers of the TM were well identified using transmission electron 
microscopy. In the long-term study, myringosclerosis was not detected in any of the 
TMs (Rahman et al. 2008).

In the chronic group, 4 out of 10 ears treated with MSCs had closed perforations, 
compared to 1 out of 10 in the control ears (Rahman et al. 2008). However, a mor-
phological examination on dissection microscopy showed that the cavities of the 
ears treated with MSCs were all filled with amorphous material. The major finding 
in the study is the 40 % closure rate in the MSCs treated TMs compared to 10 % in 
control ears as determined through otomicroscopy (Rahman et al. 2008).

Another study by Knutsson et al. in 2011 aimed to localize the progenitor stem 
cells in the human tympanic membrane. As we know, the outer epithelium of the 
tympanic membrane initiates the closure of a perforation and may act as a scaffold 
for mesenchymal cell ingrowth and collagen fiber restoration. There are currently 
no stem cell markers that unequivocally identify interfollicular epidermal stem cells 
(Alonso and Fuchs 2003; Terunuma et al. 2007). The best marker to date, with the 
highest sensitivity and specificity, is α6-integrin (Webb and Kaur 2006). Other anti-
gens that have been used are β1-integrin and cytokeratins 15 and 19 (Kaur 2006; 
Webb and Kaur 2006).

In this study, 5 normal human tympanic membranes with normal preoperative 
appearance were removed from patients undergoing translabyrinthine surgery 
(Knutsson et al. 2011). After being stained and washed, all the specimens, except 1 
on each slide (negative control), were incubated with 1 or 2 of the primary antibod-
ies (Knutsson et al. 2011). The negative controls were incubated with 2 % bovine 
serum albumin (BSA). Pooled antiserum from rabbits hyper immunized with spe-
cific human α6-integrin was used as the primary antibody against α6-integrin. 

11  Stem Cells in the Management of Tympanic Membrane Perforation: An Update



192

Mouse monoclonal antibodies specific for human β1-integrin and CK19 were used 
as the primary antibodies against β1- integrin and CK 19, respectively. 
Counterstaining the keratinized epithelial layer was achieved through a cytokeratin 
antibody to detect the presence of cytokeratins 4, 5, 6, 8, 10, 13 or 18. After repeated 
washing with PBS the specimens were incubated with the secondary antibodies for 
2 h at room temperature in the dark (Knutsson et al. 2011). Then five regions were 
investigated: the umbo region, the region along the handle of the malleus, the inter-
mediate portion of the pars tensa, the annular region and the skin of the medial por-
tion of the external ear canal. In addition, the umbo region was investigated using 
laser confocal microscopy. Bright-field and fluorescence images were obtained 
(Knutsson et al. 2011).

Results showed that the thickness varied from 5 to 10 μm in the middle portion 
of the pars tensa and the specimens were negative for β1-integrin, CK19 and 
α6-integrin. As for the umbo, the epithelial thickness was approximately 20 μm. 
Most of the epithelium was positive for the β1- integrin and CK19, whereas the 
staining for α6-integrin was positive only in the basal portion of the keratinized 
epithelium. They were elongated, with an orientation that was slightly inclined from 
perpendicular to the basal lamina.

In the handle of the malleus, the epithelium had a thickness of 25 μm. All its lay-
ers were positive by immunostaining for β1-integrin and CK19, whereas α6-integrin 
was only in the basal layer (Knutsson et al. 2011). In the annular region, the epithe-
lium stained positive for β1-integrin and CK19. Again, the staining for α6-integrin 
was positive only in the basal layer. As for the skin, the thickness of the epidermis 
was approximately 15 μm and the staining pattern was the same (Knutsson et al. 
2011). In conclusion, possible progenitor cells could be present in the umbo, the 
annular region and along the handle of the malleus (Knutsson et al. 2011).

11.5  �Conclusion

Throughout history and until now, the gold standard treatment for tympanic 
membrane perforations was conventional surgery or self-healing, but with the 
development of tissue engineering and the tendency towards minimal invasive 
techniques, several alternative methods were tested in the regeneration of tym-
panic membrane perforations. The use of biomolecules like PDGF, Hyaluronic 
acid and several others have shown promising results. Moreover, scaffolding 
materials like silk, Chitosan and calcium alginate have given excellent results 
with less side effects in the treatment of TMPs. The main focus of this review 
article was to emphasize on the documented role of stem cells for the past decade 
in the regeneration of TMPs. Stem cells have been widely used recently in tissue 
healing. In the 4 articles reviewed in our study stem cells were used in different 
forms with or without combination with other factors to study their effect on 
perforations. Some results were very promising especially in chronic TMPs, in 
the study done by A. Rahman et al. in 2008. This study showed a remarkable rate 
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of healing in induced chronic TMPs in rats (around 40 %). Despite the encourag-
ing results, many questions still remain unanswered including the availability of 
the appropriate animal model. Will we be able eventually to replace surgical 
intervention completely with office-based stem cell therapy? Will stem cells be 
available as simple ear drops that the patient can buy? Stem cell therapy in TMPs 
is still a very young and fresh alternative that needs further research in order to 
achieve its goal in an optimal way.
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Chapter 12
Stem Cell Therapy for Retinal Disease 
Treatment: An Update

Vamsi K. Gullapalli and Marco A. Zarbin

12.1  �Introduction

Retinal degenerative conditions lead to loss of visual function due the inability of a 
mammalian retina to repair or regenerate itself to a fully functional state. Use of 
stem cells to restore the anatomy and function of a degenerating retina, and thus 
vision, is an appealing concept. The most common of these conditions include age-
related macular degeneration (AMD), retinitis pigmentosa (RP), and Stargardt dis-
ease (SD) (Zarbin 2016).

AMD affects 1.75 million persons in the USA and is the leading cause of blind-
ness in people over the age of 55 years in the USA and Europe (Wong et al. 2014). 
Central vision is affected in AMD due to progressive degeneration of retinal pig-
ment epithelium (RPE), the underlying choriocapillaris and the overlying photore-
ceptors (PRs) leading to atrophic patches of outer retina (GA, geographic atrophy) 
(Zarbin 2016). Central vision also can be affected by growth of abnormal blood 
vessels (CNV, choroidal neovascularization) under the RPE and retina. There is no 
proven therapy for GA, but there is effective drug therapy for CNV (Heier et al. 
2012; Rosenfeld et al. 2006).

RP and SD are inherited retinal degenerations that cause vision loss in childhood 
or young adulthood (Parmeggiani 2011). In RP, several different mutations affecting 
the RPE or photoreceptors (PRs) lead to progressive degeneration of the outer retina 
throughout the eye causing loss of peripheral and central vision. RP affects 100,000 
persons in the USA. SD has a prevalence of 1:10,000 births and is the most common 
inherited juvenile macular degeneration. Most cases are autosomal recessively 
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transmitted and involve a mutation in PRs that causes progressive loss of central 
vision (Genead et al. 2009). There are no proven treatments for either RP or SD that 
might slow down the cell loss or restore lost vision.

While gene therapies and drug therapies are being explored as potential treat-
ments for these conditions (Ashtari et al. 2015; Jacobson et al. 2015), none of them 
would be capable of restoring the PRs and RPE that are lost. Thus, in these cases, 
replacing the lost cells is an attractive concept that has been explored in animal and 
human studies. This article provides a brief overview of the use of stem cells in reti-
nal degenerations.

12.2  �Goals of Stem Cell Therapy: Rescue and/or 
Replacement

The goal of stem cell therapy is to either to “rescue” the surviving retinal cells (by 
providing the necessary support or generating neurotrophic agents) and/or to 
“replace” the cells that have degenerated. While the concept underlying replacement 
is straightforward, it became evident from early studies in animals that transplanting 
retinal cells has a positive effect on the survival of the adjacent cells as well as cells 
at a distance from the site of the transplant. For example, in Royal College of 
Surgeons (RCS) rats, a model for some forms of human RP, a mutation in transmem-
brane proto-oncogene tyrosine-protein kinase MER (MertK) in RPE causes poor 
phagocytosis of shed PR outer segments that subsequently causes degeneration of 
PRs (D’Cruz et al. 2000). Transplanting normal RPE had a positive effect not only 
in the immediate vicinity of the transplant site (by replacing the ineffective RPE) but 
also preserves PRs as far as away from the transplanted RPE as 1400 μm (Lund et al. 
2001; Vollrath et al. 2001). This benefit was not due to migration of the transplanted 
cells and points to a trophic effect of the transplant. Indeed, RPE cells are known to 
produce several PR trophic factors (Kolomeyer and Zarbin 2014; Sun et al. 2015). 
The distinction may not simply be semantics. If only the outer segment (OS) of a PR 
has degenerated, for example, and rescue allows the OS to regenerate, then the goal 
of visual restoration is achieved in a less complicated way without the struggle of 
reconnecting a transplanted PR with the host retina (Sakai et al. 2003; Zarbin 2016).

12.3  �RPE and PRs from Stem Cells

RPE can be harvested from human donor eyes, but they neither grow robustly, nor 
do they survive well in humans after transplantation. RPE derived from fetuses fare 
better, but ethical concerns as well as the limited ability to generate large numbers 
of genetically normal donor cells with serial passage prevent widespread evaluation 
and use. Stem cells, by nature of their virtually unlimited self-renewal and pluripo-
tency, are a more attractive source for donor tissue.
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Embryonic stem cells (ESCs), derived from the inner cell mass of the blastocyst, 
can differentiate into cells of ectoderm, mesoderm, and endoderm (Reubinoff et al. 
2000; Thomson et al. 1998). Further downstream in the differentiation of the retina 
is an intermediate cell type with relative reduced proliferative capacity, the multipo-
tent retinal progenitor cell (RPC) (Luo et al. 2014; Marquardt 2003) that could also 
be a potential source of RPE and PRs. These cells have also been isolated from fetal 
and adult human eyes (Carter et al. 2007; Coles et al. 2004; Mayer et al. 2005; Yang 
et al. 2002; Blenkinsop et al. 2013).

Stem cells can be derived from adult tissues; multipotent stem cells have been 
found in various organs (Gage 2000; Weissman 2000), including the eye (Saini et al. 
2016; Salero et al. 2012). In addition, stem cells isolated from a particular tissue can 
be induced to differentiate into an unrelated tissue. For example, neural stem cells 
can be induced to develop into muscle.

Pluripotent stem cells can also be generated by somatic nuclear transfer from an 
adult/fetal/neonatal cell into an unfertilized oocyte (Chung et al. 2014; Tachibana 
et al. 2013; Yamada et al. 2014), or by transfection of a differentiated adult cell with 
transcription factors that reactivate developmentally regulated genes, so called 
induced pluripotent stem cells (iPSCs) (Park et al. 2008; Takahashi et al. 2007) (see 
Table 12.1). Genetically matched cell lines might thus be generated for autologous 
transplants (Yabut and Bernstein 2011).

Protocols have been developed to derive retinal cells from ESCs (Osakada et al. 
2008; Lamba et al. 2006; Yanai et al. 2016). These cells can rescue PRs in RCS rats 
(Schraermeyer et  al. 2001) or migrate into rabbit retina and express PR markers 
such as S-opsin and rhodopsin (Amirpour et al. 2012). RPE cells also have been 
generated from ESCs (Gong et al. 2008; Idelson et  al. 2009; Klimanskaya et  al. 
2004; Lund et al. 2006). These cells also rescue PRs in RCS rats (Lund et al. 2006) 
and express RPE characteristics including ion transport, resting membrane potential, 
transepithelial resistance, and visual pigment recycling (Bharti et al. 2011; Maeda 
et al. 2013).

Table 12.1  Sources of stem cells for retinal disease treatment

Cell type
Example of 
therapeutic cell type Advantages Disadvantages

Embryonic stem 
cell (ESC)

ESC-derived retinal 
pigment epithelium 
(RPE)

Pluripotency
Grown relatively easily

Likely to be rejected if 
donor is allogneic

Adult stem cell Bone-marrow 
derived stem cells
Neural precursor 
cells

Multipotency
Not rejected if 
transplanted into donor

Can be relatively hard to 
Harbors disease-causing 
genes of donor harvest

Induced 
pluripotent stem 
cell (iPSC)

iPSC derived RPE Pluripotent
Grown relatively easily
Probably not rejected 
when injected into the 
donor

May retain epigenetic 
features of cell type of 
origin
Harbors disease-causing 
genes of donor

Reproduced from Zarbin (2016) with permission from Elsevier
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Other potential sources have been explored. In situ RPE have been recently 
found to contain a small population of multipotent cells (RPE-ESC) that can be 
cultured (Saini et al. 2016; Salero et al. 2012) although they may not have the same 
expansion capability as ESC- or iPSC-derived RPE.  Bone marrow-derived stem 
cells (mesenchymal stem cells) have also been used to generate RPE (Arnhold et al. 
2006; Mathivanan et al. 2015). By using surface markers to select the stem cells that 
have the potential to differentiate into RPE and then co-culturing with mitomycin 
C-inactivated RPE cells, Mathivanan and coworkers showed that these cells exhibit 
some of RPE markers and are capable of rescuing PRs after transplantation into 
RCS rats (Mathivanan et al. 2015). The above two sources may have limitations due 
to the number of cells that can be derived from them and the lack of complete char-
acterization of these cells.

Can stem cells be differentiated into fully functional RPE and PRs? As noted 
above, RPE cells that have been derived from ESCs and iPSCs need to exhibit proper 
ion transport, membrane potential, ability to phagocytose shed PR OSs, polarized 
vascular growth endothelial growth factor secretion (to maintain normal subjacent 
choriocapillaris anatomy), visual pigment recycling, and gene expression profiles 
similar to those of in situ healthy RPE. Expression of these features has varied from 
lab to lab. A thorough and comprehensive group of functional tests to ascertain the 
extent of stem cell-derived RPE differentiation has been proposed (Bharti et  al. 
2011). Using current manufacturing techniques, stem cell-derived RPE can perform 
the expected functions after transplantation into rodent models of retinal degenera-
tion (Kamao et al. 2014; Maeda et al. 2013; Li et al. 2012; Tsai et al. 2015).

12.4  �Experimental Studies and Challenges

Table 12.2 lists ongoing human stem cell trials for retinal degenerative diseases. Stem 
cells being used include iPSC-RPE, ESC-RPE, iPSC-neural precursor cells (NPCs), 
bone marrow-derived stem cells, and human central nervous system derived stem 
cells among others. It is too early to judge the outcome of these sources of tissue. A 
number of challenges remain that may hinder a successful outcome. Growth arrest 
due to rapid telomere shortening, chromosomal DNA damage, and increased cyclin-
dependent kinase inhibitor 1 (p21) expression (Feng et  al. 2010; Kokkinaki et  al. 
2011), for example, can limit the success of iPSC transplant survival and function.

12.4.1  �Stem Cells for Human Transplantation

Generating adequate stem cells in an efficient, rapid, and safe manner would permit 
widespread use. Phenotypic instability or altered gene expression during serial pas-
saging in culture, including up-regulation of oncogenes, might occur and mandate 
careful monitoring of the manufacturing process (Klimanskaya et al. 2004; Anguera 
et al. 2012; Shen et al. 2008).
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Table 12.2  Current human cell therapy trials for retinal diseases

Disease 
(Clinicaltrials.gov 
Identifier) Phase

Cell type 
transplanted Center (PI) Sponsor

AMD
(NCT00874783)

Observational iPSCs Hadassah 
Medical 
Organization 
(Reubinoff)

Hadassah Medical 
Organization

AMD-GA
(NCT02286089)

I/II ESC-RPE Hadassah Ein 
Kerem 
University 
Hospital (Hemo)

Cell Cure 
Neurosciences

AMD-GA
(NCT02016508)

I/II Bone 
marrow-
derived SCs

Al-Azhar 
University 
(Safwat)

Al-Azhar 
University

AMD-GA
(NCT02590692)

I/IIa ESC-RPE on 
a polymeric 
substrate 
(CPCB-
RPE1)

Retina Vitreous 
Associates 
Medical Group 
(Rahhal)
USC Keck 
School of 
Medicine 
(Kashani)

Regenerative 
Patch 
Technologies

AMD-CNV
(NCT01691261)

I ESC-RPE on 
a polyester 
membrane

University 
College London 
(Pfizer)

Pfizer

AMD-GA or CNV
(NCT02464956)

Observational Autologous 
iPSC-RPE

Moorfields Eye 
Hospital

Moorfields Eye 
Hospital NHS 
Foundation Trust

AMD
(NNCT01920867)

Interventional Bone 
marrow-
derived SCs

Retina 
Associates of 
South Florida 
(Weiss)

Retina Associates 
of South Florida

AMD-GA
(NCT01736059)

I Bone 
marrow-
derived 
CD34+ SCs

University of 
California, Davis 
(Park)

University of 
California, Davis

AMD-CNV Interventional Autologous 
iPSC-RPE

Riken Institute 
for 
Developmental 
Biology 
(Takahashi)

Riken Institute for 
Developmental 
Biology

(continued)
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Table 12.2  (continued)

Disease 
(Clinicaltrials.gov 
Identifier) Phase

Cell type 
transplanted Center (PI) Sponsor

Stargardt disease
(NCT01345006, 
NCT02445612, 
NCT01469832)

I/II ESC-RPE
(MA09-
hRPE)

Jules Stein-
UCLA 
(Schwartz)
Wills Eye 
Hospital 
(Regillo)
Bascom Palmer 
Eye Institute 
(Lam)
Moorfields Eye 
Hospital 
(Bainbridge)

Ocata 
Therapeutics

AMD-GA
(NCT01344993, 
NCT02563782, 
NCT02463344)

I/II ESC-RPE
(MA09-
hRPE)

Jules Stein-
UCLA 
(Schwartz)
Wills Eye 
Hospital 
(Regillo)
Mass. Eye and 
Ear Infirmary 
(Eliott)
Bascom Palmer 
Eye Institute 
(Rosenfeld)

Ocata 
Therapeutics

AMD-GA
(NCT01632527)

I/II HuCNS-SC Retina 
Foundation of 
the Southwest 
(Birch)

StemCells

AMD-GA
(NCT01674829)

I/II ESC-RPE
(MA09-
hRPE)

CHA Bundang 
Medical Center 
(Song)

CHA Bio and 
Diostech

Stargardt disease
(NCT01625559)

I ESC-RPE
(MA09-
hRPE)

CHA Bundang 
Medical Center 
(Song)

CHA Bio and 
Diostech

Myopic macular 
degeneration
(NCT02122159)

I/II ESC-RPE
(MA09-
hRPE)

Jules Stein-
UCLA 
(Schwartz)

Ocata 
Therapeutics

AMD-GA
(NCT01226628)

I CNTO 2476 
(umbilical 
tissue-
derived 
cells)

Wills Eye 
Hospital (Ho)

Janssen Research 
and Development
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12.4.2  �Cell Delivery

Various techniques have been used and are being explored to allow for an efficient 
and effective delivery of transplanted cells to the retina. The transplant cells may be 
injected into the vitreous (Park et al. 2015) or into the subretinal space (Schwartz 
et al. 2015; Li et al. 2012) as a cell suspension (intravitreous or subretinal delivery) 
(Diniz et al. 2013) or as a sheet of cells (subretinal delivery) (Kamao et al. 2014) 
with or without a biocompatible scaffold (Hsiung et al. 2015; Redenti et al. 2008; 
Tao et al. 2007; Tucker et al. 2010; Stanzel et al. 2014). Advantages of a cell suspen-
sion include ease of preparation and ease of delivery through a small retinotomy. 
However, there is little control of how transplanted cells reorganize in the subretinal 
space. The cells may form multilayers; they may not be polarized in the correct 
way; and the cells, especially RPE transplants, will need to re-attach to an abnormal 
Bruch’s membrane surface. Cells sheets, on the other hand, allow for placement of 
properly polarized cells (e.g., apical villi of RPE facing PR OSs) that can start func-
tioning immediately, and the scaffold that holds the cell sheets may allow for inte-
gration of growth factors or immunomodulatory factors to promote transplant 
survival and function. The scaffold may also confer some degree of protection 
against Bruch’s membrane-induced cell death. Placement of cell sheets, however, 
requires a larger retinal opening that could potentially lead to egress of transplanted 
cells or retinal detachment after surgery.

Different potential scaffolds to support RPE sheet transplants are being explored 
(Kundu et al. 2014; Nazari et al. 2015). These include vitronectin-coated polyester 
membranes (Carr et al. 2013) and parylene C scaffolds manufactured using nano-
technology (Lu et al. 2012, 2014).

Transplants of PR sheets have consisted of either PR sheets, full thickness retinal 
sheets, or retina-RPE sheets (Assawachananont et  al. 2014; Radtke et  al. 2008; 

Table 12.2  (continued)

Disease 
(Clinicaltrials.gov 
Identifier) Phase

Cell type 
transplanted Center (PI) Sponsor

AMD-GA or CNV 
(NCT01518127)

I/II Autologous 
bone 
marrow-
derived SCs

University of 
Sao Paulo, 
Brazil (Siqueira)

University of Sao 
Paulo

RP and cone-rod 
dystrophy
(NCT01068561)

I/II Autologous 
bone 
marrow-
derived SCs

University of 
Sao Paulo, 
Brazil (Siqueira)

University of Sao 
Paulo

Reproduced from Zarbin (2016) with permission from Elsevier
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Huang et al. 1998; Radtke et al. 1999). While the full thickness retina can still estab-
lish synaptic connections and restore visual responses in rats (Seiler et al. 2010), for 
example, whether patients would experience useful visual improvement given the 
altered anatomy of a “double” retina is not clear. How a suspension of PRs com-
pares to a sheet of pure PRs is also not known.

12.4.3  �Transplant Survival, Differentiation, and Integration

For transplantation to be successful, RPE must survive in the subretinal space, re-
attach to the underlying Bruch’s membrane (the structure on which RPE normally 
reside), be polarized so that PR OSs can be phagocytosed by the apical villi, and 
establish an outer blood-retinal barrier (e.g., via tight junctions between adjacent 
RPE cells). PR transplants will need to survive, extend axons to form synapses with 
the host bipolar cells one side, and extend OSs towards the native RPE cells on the 
other side. Loss of PRs due to mutations or retinal detachment leads to subsequent 
synaptic rewiring between other interconnected retinal cells (Khodair et al. 2003; 
Lewis et al. 1998; Jones et al. 2003). In other words, a mere integration of the trans-
planted PRs with the downstream bipolar cells alone may not be sufficient for com-
plete visual recovery due to synaptic rewiring of the retina that occurs once host PRs 
have degenerated.

Results from preclinical models of RP indicate that if one transplants suspen-
sions of rod PRs into the subretinal space, the cells need to be of a specific develop-
mental stage for the transplant to have the highest chance of success. Specifically, 
post-mitotic rod precursors that express the rod-specific transcription factor, Nrl, yet 
are morphologically immature, seem to give the best results (MacLaren et al. 2006; 
Pearson 2014; Pearson et al. 2012; Akimoto et al. 2006). In addition, with current 
techniques, it is important to transplant a large number of cells (~200,000) to achieve 
improved visual function. Wild-type rod PR precursors generated from fetal tissue 
and transplanted into rd1 mice (which lack phosphodiesterase-6-beta (Pde6b) and 
exhibit rapid rod PR death after birth) express Pde6b in an appropriately polarized 
fashion, exhibit abnormally short OSs, and support improved visual function (Singh 
et al. 2013). In the rd1 recipients, the host bipolar and Muller cells extend processes 
into the PR graft and appear to make synaptic contact with the donor PRs (Singh 
et  al. 2013). Gonzalez-Cordero and co-workers harvested developing PRs from 
optic cups generated from ESCs in vitro and noted that best integration with host 
rd1 retina occurs when these PR precursors are still immature but committed to 
becoming PRs, which is quite similar to the results observed when using fetal tissue 
as the source of PR precursors (Gonzalez-Cordero et al. 2013). Host retinal anat-
omy can modulate the efficacy of PR transplantation. If the host retina has signifi-
cant PR damage and abnormal anatomy, the transplanted PRs also tend to exhibit 
abnormal and limited synapse formation (Barber et al. 2013). Glial scarring limits 
integration in more advanced stages of retinal degeneration, and attenuating the 
glial barrier helps promote better integration in some types of retinal degeneration 

V.K. Gullapalli and M.A. Zarbin



203

(Pearson 2014; Barber et  al. 2013; Pearson et  al. 2010; Hippert et  al. 2016). An 
additional barrier may be the external limiting membrane (ELM), which is formed 
by the junction of Muller cell apical processes and PR inner segments via adherens 
junctions. In one study, transient ELM disruption using alpha amino adipic acid 
improved PR precursor integration by ~100 % (West et  al. 2008; Pearson et  al. 
2010). Indeed, in retinal degenerations associated with ELM disruption, there is 
greater integration of transplanted PRs with host retina (Barber et al. 2013).

In principle, it should be easier to achieve clinically successful outcomes after 
RPE transplantation (for the purpose of “rescue”) than after PR transplantation (for 
the purpose of “replacement”) since RPE integrate with host PRs spontaneously. 
Thus, the only challenge for a successful RPE transplant, apart from the need to 
control immune surveillance, involves resurfacing an atrophic patch in the foveal 
area in AMD patients with GA. Transplanted RPE have been shown to survive and 
rescue PRs in numerous preclinical studies. However, human studies have not 
resulted in a comparable degree of success (Binder et  al. 2007; Gullapalli et  al. 
2012). RPE survival has been shown to be poor when transplanted onto Bruch’s 
membrane from aged human cadaver eyes or eyes with advanced AMD with GA 
(Sugino et al. 2011b; Gullapalli et al. 2005). In addition, human Bruch’s membrane 
has been shown to undergo changes resulting from aging including thickening, 
advanced glycation end-product formation, lipid and protein deposition, and protein 
crosslinking (Zarbin 2004). As mentioned above, one way to address this issue 
would be to use scaffolds on which transplanted RPE could be delivered as a differ-
entiated cell sheet in which the scaffold provides a surface conducive to cell survival 
and prevents contact of the transplant with subjacent host Bruch’s membrane. Use of 
conditioned medium derived from bovine corneal endothelial cells has been shown 
to improve transplanted RPE survival on human cadaver eyes with GA (Sugino et al. 
2011a) by altering cell behavior on this surface. Identification of molecules respon-
sible for this effect might allow development of an adjunct that would improve trans-
planted RPE cell survival in AMD eyes, even when cell suspensions are used.

12.4.4  �Immune Response

The subretinal space is an immune privileged site, i.e., allografts survive longer in 
this privileged site compared to a non-privileged site such as the subconjunctival 
space. Native neonatal RPE behaves as an immune privileged tissue, i.e., RPE resist 
rejection at heterotopic sites (Wenkel and Streilein 2000). Do stem cell-derived RPE 
behave as immune privileged tissue? ESCs and their derivatives have been shown to 
escape a host immune rejection for a long time (Yuan et al. 2007). This phenomenon 
may be due to low expression of human leukocyte antigen (HLA) class I molecules 
and no expression of class II molecules in their resting or differentiated state 
(Drukker et al. 2002). ESCs have also been shown to suppress T-cell proliferation 
(Li et al. 2004). iPSCs, on the other hand, appear to capable of inducing immune 
rejection (Sohn et al. 2015), even if autologous (Zhao et al. 2011).
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Disruption of the blood-retinal barrier can be a significant factor in stimulating 
the immune response. For example, disruption of native RPE (e.g., using sodium 
iodate) results in loss of the immune privilege of the subretinal space. Preservation 
of the barrier diminishes the immune response (Lu et al. 2010). RPE transplants 
in rabbits require immune suppression for sustained cell survival, (Stanzel et al. 
2014) but this result may be due to the merangiotic nature of rabbit retina (i.e., 
only a choroidal blood supply for most of the retina) (De Schaepdrijver et  al. 
1989). In contrast, human retina is holangiotic (i.e., the retinal and choroidal 
circulation provide blood flow to the retina). Activation of the innate immune 
system can lead to activation of the adaptive immune system, which mediates 
immune surveillance. As a result, it is important to use surgical techniques and 
devices that minimize disruption of the blood retinal barrier and that incite acute 
inflammation.

Microglial activation in the host retina has been attributed to failure of grafts to 
survive and integrate (Bull et al. 2008; Singhal et al. 2008). Suppression of microg-
lial activation may improve transplant survival and integration (Xian and Huang 
2015).

Postoperative immune suppression will likely be needed for RPE transplants, 
but elderly patients with AMD may not be able to tolerate extended periods of 
immune suppression (Tezel et al. 2007). Long-acting intravitreal steroid prepara-
tions may be of use. It is not clear that PR transplants will require long-term 
immune suppression as these cells exhibit very low MHC class II expression. 
However, if full thickness retina transplants are used or if impure PR prepara-
tions are used, then transplantation of microglia will probably activate a host 
immune response.

12.4.5  �Tumor Formation

One of the important risks of stem cell transplants is development of tumors. 
When ESC-derived neural precursors were injected into the subretinal space of 
rhodopsin knockout mice, 50 % of the eyes developed tumors (teratomas) within 
8 weeks (Arnhold et al. 2004). (These mice have a mutation resembling autoso-
mal dominant RP.) When iPSC and ESC mouse lines were compared, there was 
high incidence of teratoma formation with both of them (Araki et  al. 2013). 
There have been no reported tumor issues with patients with SD and AMD who 
have received ESC-derived RPE cells (Song et al. 2015; Schwartz et al. 2015). 
iPSC cell lines may be more prone to genetic instability due to the risk of inser-
tional mutagenesis from use of viral vectors and use of oncogenic factors such 
as c-Myc during cell production. Use of non-integrating reprogramming meth-
ods in the production of iPSC cell lines might reduce the risk (Kang et al. 2015) 
by increasing genomic stability. Nonetheless, careful sustained monitoring will 
be needed.

V.K. Gullapalli and M.A. Zarbin



205

12.5  �Conclusion

The concept of transplanting healthy cells into diseased retina to restore vision is 
appealing. Significant progress has been made during the last 30 years. Preclinical 
testing has demonstrated the feasibility of cell-based therapy for the purpose of 
sight preservation as well as sight restoration. This research also has identified 
obstacles to success including graft survival and differentiation as well as immune 
rejection. Strides in stem cell research have allowed for expanding the field signifi-
cantly. Early phase human trials using stem cell-derived donor tissue have also been 
promising. Continuing research in various aspects of transplantation- establishing 
cell lines without danger of tumor formation or immune rejection, refining surgical 
techniques and instruments, and identifying factors that promote cell survival, dif-
ferentiation, and integration of the transplanted cells, should allow for rapid and 
continued progress in the field.
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DALK	 Deep anterior lamellar keratoplasty
DPC	 Dental pulp cell
DMEK	 Descemet’s membrane endothelial keratoplasty
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TGF-β1	 Transforming growth factor-β1
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TSG-6	 Tumor necrosis factor-inducible gene 6 protein
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VEGF	 Vascular endothelial growth factor
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13.1  �Introduction: The Human Cornea

13.1.1  �Development

The cornea is the transparent avascular dome-shaped tissue that lies in front of the 
iris. When the human eye begins its development at the 17th day of gestation, two 
blastoderm layers play an important role: the ectoderm and the mesoderm (the outer 
and the middle layers of the blastoderm respectively). By the end of the third week 
of gestation the optic vesicle forms and fold inwards to create the optic cups. The 
retina and the lens subsequently develop from thickening ectoderm cells (Barber 
1965). The cornea begins as the initial layer of ectoderm that covers the developing 
lens. The ectoderm cells double in number and proceed to form the corneal epithe-
lium (Sellheyer and Spitznas 1988). When the lens has completed its formation, it 
separates from the corneal ectoderm, with the space between becoming the anterior 
chamber. Mesenchymal cells of neural crest origin invade the developing cornea 
and form an endothelial layer lining the primary stroma. A second mesenchymal 
invasion targets the primary stroma and the neural crest cells develop into kerato-
cytes that embed in the collagen fibrils (Duke-Elder 1964; Mann 1964; Barber 
1965; Hay and Revel 1969). These keratocytes secrete an extracellular matrix, con-
sisting of proteoglycans and collagen types I, V and VI (Hart 1976; Hay 1980). At 
the seventh month of gestation, the stroma becomes dehydrated, thinner, and trans-
parent while the keratocytes move into their characteristic quiescent phase (Jester 
et al. 1994).

13.1.2  �Anatomy

The cornea covers 15 % of the surface area of the globe (Ruberti et al. 2011). It has 
an axial radius of 7.8 mm anteriorly and 6.5 mm posteriorly, resulting in an internal 
concave surface that is steeper than the external convex surface (Freegard 1997). 
The mean diameter of the cornea is 11.71 mm (Rüfer et al. 2005) and the thickness 
varies from approximately 520 μm in the middle to 650 μm in the periphery (Bron 
et al. 1997). The cornea largely consists of highly organized collagen fibrils that 
form up to 200 sheets of stromal lamellae. The mean interfibrillary distance is 
41.5 nm and the diameter of the collagen fibrils ranges from 22.5 to 35 nm, depend-
ing on the type of collagen (Sayers et al. 1982). Each lamella is arranged at a right 
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angle relative to the fibrils in the adjacent lamellae, but within the lamella the fibrils 
lie parallel to each other and to the corneal plane (Maurice 1957). The stacking of 
these layers with a range of orientations reinforces the structural integrity of the 
cornea. The interweaving of the anterior lamellae and termination in the Bowman’s 
membrane accounts for the increased rigidity of the anterior stroma when compared 
to the posterior stroma. The anterior stromal architecture also accounts for mainte-
nance of the corneal curvature (Müller et al. 2001). Collagen fibrils change in orien-
tation as they approach the limbus and run circumferentially (Meek and Boote 
2004). The differing organization of collagen lamellae along the anterior-posterior 
axis, together with structural changes in the collagen fibrils at the limbus and the 
variation in corneal thickness, has an impact on the biomechanical characteristics, 
making the cornea a reasonably strong and resilient construct (Ruberti et al. 2011).

The stroma is the thickest layer of the cornea and is bound by anterior and posterior 
limiting membranes with their respective cellular layers: the epithelium and endothe-
lium. Peripherally the stroma is bounded by the corneoscleral limbus, a circular zone 
that forms the junction of the transparent cornea and the opaque sclera. In health, the 
cornea is completely avascular because even the smallest capillary would interfere 
with transmission and refraction of light. It is however, one of the most densely inner-
vated tissues in the human body (Müller et al. 2003). Approximately 71 nerve bundles 
enter the cornea at the limbus, resulting in approximately 605 nerve terminals/mm2 in 
the suprabasal layers of the corneal epithelium (Marfurt et al. 2010). Corneal nerves 
produce trophic factors, increase tear production and modulate the blinking response 
(Müller et al. 2003). They are predominantly afferent sensory nocireceptors, which 
transduce chemical, thermal and mechanical stimuli as pain sensations (Belmonte 
et al. 2004; Kubilus and Linsenmayer 2010). Corneal transparency and integrity are 
affected severely by disruption of the nerves (Beuerman and Schimmelpfennig 1980).

13.1.3  �Histology

The cornea consists of five morphologically distinct layers consisting of three func-
tionally differing cellular layers (Beuerman and Pedroza 1996). The outer layer of 
the cornea is the epithelium, which is separated from the central stroma by a base-
ment membrane and Bowman’s layer (anterior limiting membrane). The endothe-
lium is the innermost layer and it is separated from the stroma by Descemet’s 
membrane (posterior limiting membrane) (Fig. 13.1).

•	 Epithelium: 50–90 μm thick stratified squamous non-keratinized cell layer

–– Bowmans’s layer: 8–14 μm cell-free collagen layer

•	 Stroma: 500 μm highly organized collagen structure containing keratocytes

–– Descemet’s membrane: 5–10 μm thick layer of collagen type IV

•	 Endothelium: single layer of hexagonal-shaped cells, 4 μm thick in adults
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13.1.3.1  �Epithelium

The epithelium is the outermost layer of the cornea. The epithelial cells form 
five to seven layers which are shed continuously, with a turnover of 7–10 days 
(Hanna et al. 1961). There are three distinct cell types present in the epithelium. 
The superficial two layers are flattened surface cells that play an important role 
in tear film stability. The next two to three layers consist of polyhedral wing 
cells followed by a basal cell layer of tall columnar cells. The basal “Transient 
Amplifying Cells” are the only cells capable of mitosis apart from the epithelial 
stem cells and are the source of superficial and wing cells (DelMonte and Kim 
2011) (Fig. 13.2). The barrier function and the transparency of the epithelium 
are ensured by intercellular junctions in the wing cells and basal cells. The basal 
cell layer also secretes extracellular matrix that forms the basement membrane, 
a 0.05 μm thick layer composed of laminin and collagen IV (Beuerman and 
Pedroza 1996).

The Bowman’s layer lies between the epithelium and the stroma and consists of 
an amorphous zone of collagen type I and II. The membrane is acellular and has no 
capacity to regenerate after injury. The layer is well-developed in higher mammals 
but seems to be rudimentary or even absent in lower taxa (Merindano et al. 2002; 
Hayashi et al. 2002).

Sclera
a

b

Iris

Cornea

Limbus

Ciliary body

Pupil

Conjunctiva

Lens

Epithelium

Stroma

Endothelium

Bowman’s membrane

Descemets membrane

Fig. 13.1  Exterior eye anatomy in frontal and side view (a). Anatomy of the cornea with its five 
distinct layers, the epithelium being the anterior most layer. Keratocytes lie scarcely dispersed in 
the stromal matrix (b)
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13.1.3.2  �Stroma

The stroma accounts for approximately 90 % of corneal volume. It is composed of 
collagen fibrils and glycosaminoglycans (GAGs) with proteoglycan groups (PGs), 
which are secreted by keratocytes dispersed within the matrix. Keratan sulfate is the 
most abundant GAG, and accounts for up to 65 % of the total amount of GAGs. The 
posterior cornea contains more hydrophilic proteoglycans such as keratan sulphate, 
while the anterior consists mainly of dermatan sulphate which is far less hydrophilic 
(Müller et al. 2001). Keratocytes are fibroblast-like cells which are mitotically qui-
escent under normal physiological conditions and occupy 3–5 % of the stromal vol-
ume. They produce the extracellular matrix, including GAGs, PGs, matrix 
metalloproteinases (MMPs) and highly organized collagen structures, that are criti-
cal for the transparency of the cornea and the maintenance of the corneal homeosta-
sis (Fini 1999; Du et al. 2005; Hassell and Birk 2010; DelMonte and Kim 2011).

Descemet’s membrane beneath the stroma is an acellular layer which serves as a 
basement membrane for the underlying endothelium. It is continuously synthesized 
by the endothelium and, unlike Bowman’s membrane, has the ability to regenerate 
after trauma,. The thickness is dependent on age, from 3 μm at birth to a maximum 
of 10 μm in old age (DelMonte and Kim 2011). The Descemet’s membrane is very 
resistant to invasive events such as infection, chemical damage or enzymatic degra-
dation (Pavelka and Roth 2010). It consists of a different type of collagen than the 
stroma, namely collagen type VIII (Tamura et al. 1991). In 2013, a new layer was 

Conjunctiva Limbus Central
cornea

Peripheral
cornea

Epithelium

StromaLimbal epithelial stem cell

Transient amplifying cell

Limbal fibroblast

Terminally
differentiated cells

Bowman’s membrane

Fig. 13.2  Limbal epithelial stem cells reside in the undulating basal layer of the epithelium. These 
undulations are also referred to as stem cell niches. Transient amplifying cells divide and migrate 
towards the central cornea, where they become terminally differentiated epithelial cells, replacing 
old epithelial cells that are sloughed off into the tear film
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proposed localized in between the stroma and Descemet’s membrane and named the 
Dua’s layer. Dua’s layer is a thin air-impervious layer of collagen type I (around 
15 μm) that is very biomechanically strong for its thickness (Dua et al. 2013). Since 
this discovery was only made recently based on clinical findings during lamellar air 
dissection of the cornea, the presence of this layer has not been widely accepted and 
its status remains disputed.

13.1.3.3  �Endothelium

The endothelium is a single layer of non-proliferating hexagonal cells with a 
honeycomb-like appearance. The number of cells decreases from 6000 cells/mm2 in 
newborns (mean cell diameter 20 μm and thickness 10 μm) to an average of 3000 
cells/mm2 in adults (mean cell diameter 40 μm and thickness 4 μm) (DelMonte and 
Kim 2011). The cells are attached to each other and to Descemet’s membrane by 
tight junctional complexes and hemidesmosomes. The endothelium and to a lesser 
extent, the epithelium, play an important role in the maintenance of the corneal 
deturgescence.

13.1.4  �Physiology

Optically, the cornea acts as a lens with a fixed focus. It transmits incoming light to 
the ocular crystalline lens, which focuses it onto the retina. The cornea provides a 
refractive power of 43 diopters, which is ¾ of the total refractive power of the eye. 
The mean refractive index of the cornea is 1.376, which is similar to that of the 
vitreous (1.336) (Hecht 1987). The physical basis of corneal transparency is still 
debated (Freegard 1997). Two theories are frequently supported: (i) the lattice the-
ory postulated by Maurice in 1957 and (ii) the theory by Goldman and Benedek 
that light cannot resolve structures smaller than the dimensions of its wavelength, 
summarized by Benedek in 1971 (Maurice 1957; Benedek 1971). In order to main-
tain these optical properties, the cornea must tightly regulate its water content at 
78 % (Thiagarajah and Verkman 2002). The relative deturgescent state is main-
tained by the endothelium and epithelium (Geroski et  al. 1985). The cell mem-
branes of the endothelium contain a high number of Na+/K+-ATPase pumps that 
create an osmotic gradient in collaboration with the intracellular carbonic anhy-
drase pathway (Stiemke et al. 1991). Fluid from the stroma follows the gradient 
towards the aqueous humor. The cornea requires energy to maintain the gradient 
which is generated through the breakdown of ATP from glucose in the active 
metabolizing layers, the epi- and endothelium. Other nutrients are also needed, 
such as oxygen to maintain a minimum oxygen tension, which prevents hydration 
and swelling. The cornea obtains oxygen through the tear film, limbal capillaries 
and, to a lesser extent, from the aqueous humor. Amino acids also play a crucial 
role in the turnover of the epithelial cell layers, and are derived from the aqueous 
humor by passive diffusion.
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Immunologically, the eye is a privileged organ and its functions are preserved 
through self-regulation of inflammation, making corneal transplants the least-
rejected of all organ transplants (Streilein 2003; Niederkorn 2006). In the 1940’s the 
concept of immune privilege was proposed by Medawar, but it was only recently 
that the idea of immunological ignorance was refined and active immune suppres-
sion mechanisms were explored (Streilein 2003). Currently there are three mecha-
nisms of immune privilege in the eye which represent different lines of thought: (1) 
different kinds of barriers exist in the eye: molecular, cellular and anatomical; (2) 
anterior chamber-associated immune deviation (ACAID) as immunological toler-
ance; (3) the intraocular microenvironment is immune suppressive (Hori 2008). The 
cornea is not vascularized nor does it contain lymphoid cells or other defence mech-
anisms, with the exception of dendritic cells reducing its capacity to prime an 
immune response (Hamrah et  al. 2003). Langerhans cells and lymphocytes are 
mainly found in the limbus, which is highly vascularized in contrast to the cornea 
(Vantrappen et al. 1985; Hendricks et al. 1992). Corneal cells (epithelial cells, kera-
tocytes, endothelial cells) lack the expression of major histocompatibility complex 
II (MHC II) and only express low levels of major histocompatibility complex I 
(MHC I) (Wang et al. 1987), therefore, it takes considerable time before antigen 
recognition and effector cell activation take place. Only the peripheral cornea or 
limbus contains MHC II-positive dendritic cells and macrophages, which cannot be 
found in other regions of the cornea (Streilein et al. 1979). After corneal transplan-
tation, antigen presentation is carried out by the host antigen presenting cells (APCs) 
and not by donor-derived APCs (Hamrah et al. 2003). Recognition of donor anti-
gens occur indirectly through CD4 T-cells and the main mechanism of rejection is 
assumed to be delayed-type hypersensitivity in which minor H antigens are targeted 
instead of the donor’s MHC molecules (Sonoda and Streilein 1992, 1993).

13.2  �Stem Cells in the Cornea

13.2.1  �Limbal Epithelial Stem Cells

The self-renewing capacity of the corneal epithelium is maintained by slow-cycling 
corneal epithelial stem cells referred to as limbal epithelial stem cells (LESC) 
(Davanger and Evensen 1971; Daniels et  al. 2001; Secker and Daniels 2009; 
Pinnamaneni and Funderburgh 2012). LESCs reside in the limbus, more specifically 
in the palisades of Vogt which form the limbal stem cell niche (Schermer et al. 1986; 
Cotsarelis et al. 1989). The limbus is the region of the cornea with the highest levels 
of messenger RNA (Priya et al. 2013). The superior and inferior limbal regions are 
more densely packed with palisades, which can be seen clinically as radial fibrovas-
cular creases (Goldberg and Bron 1982). The stem cells in the superior and inferior 
niches are protected by partial covering of the eyelids and melanocytes that reduce 
exposure to ultraviolet light (Shimmura and Tsubota 1997). Adenosine triphosphate 
(ATP) binding cassette transporter subtype G-2 (ABCG2) protects the stem cells 
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against phototoxic and oxidative stress-inducing conditions (Kubota et al. 2010). 
Stromal cells also assist in maintaining the stemness features of the LESC, as 
recently shown by Mariappan et al. (2010).

LESC remain undifferentiated in a resting state (Secker and Daniels 2009) until 
epithelial shedding activates the dormant cells (Thoft and Friend 1983; Cotsarelis 
et  al. 1989). The LECSs go through asymmetrical division, each producing one 
stem cell which remains in the niche, maintaining the cell population, while the 
other becomes an early transient amplifying cell (eTAC) (Morrison and Kimble 
2006; Knoblich 2008; He et al. 2009). The eTACs migrate away from the stem cell 
niche in a centripetal direction and give rise to late TACs located at the basal layer, 
on to suprabasal post-mitotic cells (PMCs) and finally terminally differentiated cells 
located at the surface (Li et al. 2007; Secker and Daniels 2009). This process of 
migration was postulated in 1983 by Thoft and Friend as the XYZ-hypothesis, X 
being the proliferation at the basal level, Y contribution to the cell mass by centrip-
etal migration during differentiation and Z designates the loss of cells at the surface 
(Fig. 13.3).

13.2.2  �Mesenchymal Stem Cells in the Stroma

Fibroblast-like cells called keratocytes, lie sparsely scattered throughout the corneal 
stroma, making contact with one another through extended cytoplasmic processes. 
Corneal keratocytes are derived from mesenchymal stem cells (of osteogenic ori-
gin) which were first described by Alexander Friedenstein in 1968. More recently, 
multipotent stem cells in the human corneal stroma were described by Du et  al. 
Mesenchymal stem cells (MSCs) lie within the stroma, close to the limbus and 
express specific markers that are absent in differentiated keratocytes. MSCs can be 
induced to form the keratocyte phenotype in the presence of certain growth factors 
such as fibroblast growth factor-2 (Du et al. 2005). They have been shown to be 

Y X

Z

Y

Fig. 13.3  XYZ-hypothesis according to Thoft and Friend (1983). X cell proliferation from the 
basal layer of the epithelium, Y centripetal migration during differentiation, Z sloughing off of cells 
at the corneal surface
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successful in regenerating the extracellular matrix and in repairing defects in the 
collagen fibrils of opaque corneas in a mouse model (Du et al. 2009). The ability of 
MSCs to restore transparency was subsequently confirmed using umbilical cord-
derived MSCs (Liu et al. 2010). Since then, many reports on the presence of MSCs 
in human corneal stroma have followed (Polisetty et  al. 2008; Pinnamaneni and 
Funderburgh 2012; Li et al. 2012), although there is a wide range of approaches 
described for their isolation, expansion and characterization criteria. In 2012, 
Branch and colleagues characterized cells isolated from the peripheral cornea and 
limbus using the minimal criteria for human mesenchymal stem cells as proposed 
by the ISCT (International Society for Cellular Therapy) in 2006, see Sect. 13.2.4 
(Dominici et  al. 2006; Branch et al. 2012). Corneal mesenchymal stem cells are 
immune privileged and have immunosuppressive properties, although far weaker 
than the capacity of bone marrow-derived MSCs (Patel et al. 2008; Du et al. 2009).

13.2.3  �Endothelial Stem Cells

In 2005, Whikehart and coworkers posited the existence of corneal endothelial stem 
cells (Whikehart et al. 2005). Telomerase activity, a specific characteristic of tran-
sient amplifying cells (Ulaner and Giudice 1997), was demonstrated in peripheral 
regions of the endothelium. Further studies made use of sphere-forming assays to 
establish proof of the presence of endothelial precursors (Yokoo et al. 2005). Tissue-
committed precursors with the capacity for self-renewal were identified in periph-
eral human corneal endothelial cells and the rate of primary sphere formation was 
four times greater than that of the central cornea (Yamagami et al. 2007). Following 
this observation it was proposed that a stem cell niche may be present at the junction 
of the endothelial cell layer and the trabecular meshwork (Joyce 2003; Whikehart 
et al. 2005). Cells that may represent transient amplifying cells have been seen, in a 
human ex vivo model, to migrate from the peripheral junction zone, to form the 
endothelial cell layer (He et al. 2012). Wounded areas could be supplied by this cell 
source but migration does not appear to be constant and is likely to be dependent on 
age (Whikehart et al. 2005). Hara and coworkers have isolated corneal endothelial 
progenitor cells (HCEnPs) and achieved differentiation of these cells into corneal 
endothelial cells (HCEnCs) with adequate morphology, corneal endothelial marker 
expression and physiological pump function (Hara et al. 2014).

13.2.4  �Characterization of Corneal Stem Cells

13.2.4.1  �Characterizing Limbal Epithelial Stem Cells

There is no single specific stem cell marker for LESCs but the expression of a 
combination of features can be used to characterize this population (Secker and 
Daniels 2009). This can be partially explained by the persistence of stem cell 
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markers in the early differentiated phase; cells show an intermediate phenotype 
until they are fully differentiated and the stem cell markers downregulated (Noisa 
et al. 2012; Naujok and Lenzen 2012). LESC characteristically lack the expres-
sion of a number of differentiation markers, such as the cornea-specific cytokera-
tin 3 (CK3), cytokeratin 12 (CK12) (Schermer et al. 1986; Kurpakus et al. 1990) 
connexin 43 and involucrin (Matic et  al. 1997; Chen et  al. 2004; Shortt et  al. 
2007a). Pellegrini et al. (2001) have proposed transcription factor p63 as a limbal 
epithelial stem cell marker. However, basal cells of the peripheral and central cor-
nea can also express p63, so it cannot be used as a specific LESC marker (Chee 
et al.; Dua et al. 2003; Chen et al. 2004). It has been proposed that the p63 iso-
form, ΔNp63α is a more specific marker and that cells expressing a high level of 
ΔNp63 combined with a high nuclear to cytoplasmic ratio are more stem-like than 
cells expressing lower levels of ΔNp63 (Di Iorio et al. 2005; Arpitha et al. 2005; 
Priya et al. 2013). In addition to marker expression, organ-specific stem cells can 
also be identified by the presence of a side population (SP) phenotype. SP cells 
efflux Hoechst 33324 dye via the ATP-binding cassette transporter subtype G-2 
(ABCG2), a multi-drug resistance protein. Therefore ABCG2 has also been pro-
posed as an universal stem cell marker (Goodell et  al. 1996; Zhou et  al. 2001; 
Watanabe et al. 2004). Recently ABCB5, αvβ5-integrin and the interferon-induc-
ible chemokine CXCL10/IP-10 were also proposed as limbal epithelial stem cell 
markers (Ordonez et al. 2013; Ksander et al. 2014).

13.2.4.2  �Characterizing Mesenchymal Stem Cells

MSCs can be recognized by their characteristic spindle shape and ability to 
adhere to plastic (Friedenstein et al. 1968). They have been isolated from numer-
ous tissues but as is the case with LESCs, there is a lack of specific markers to 
characterize the MSCs (Li and Zhao 2014). The ISCT has stipulated minimum 
criteria that have to be met in order for cells to be identified as MSCs; (i) plastic 
adherence under standard culture conditions; (ii) positive expression of cell sur-
face markers: CD73, CD90 and CD105 and negative for the expression of CD11b, 
CD14, CD19, CD79a, CD34, CD45 and HLA-DR and (iii) the capacity for trilin-
eage mesenchymal differentiation: adipogenesis, osteogenesis, and chondrogen-
esis when using standard in vitro differentiation culture conditions. These criteria 
were confirmed in corneal cells derived from the stromal periphery and limbus 
(Dominici et al. 2006; Branch et al. 2012). Characterization of the resulting dif-
ferentiated keratocytes is based on following molecular markers: keratan sulfate, 
keratocan and aldehyde dehydrogenase 3A1 (ALDH3A1) (Funderburgh 2000; 
Du et al. 2005; Pei et al. 2006). It has also been demonstrated that keratocytes 
express CD133 (Perrella et al. 2007) and do not express ATP-binding cassette 
transporter subtype G-2 (ABCG2) or PAX6. ABCG2 and PAX6 are frequently 
used to distinguish keratocyte progenitor cells, which do not express these mark-
ers, from the corneal limbal stroma and mesenchymal stem cells that do have a 
positive expression of these markers (Du et  al. 2005; Pinnamaneni and 
Funderburgh 2012).
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13.2.4.3  �Charachterizing Corneal Endothelial Stem Cells

Few studies have reported the progenitor capabilities of endothelial cells and even 
fewer have described the characteristics of these cells other than in telomerase activ-
ity. Human corneal endothelial progenitor cells have been characterized using flow 
cytometry, differentiation and gene expression assays (Hara et al. 2014). Isolation of 
the endothelial cells with progenitor-like features was performed by selective cell 
sorting for cell surface marker CD271, which has also been isolated from neural-
crest-derived progenitor cells (Morrison et al. 1999). Corneal endothelial cells that 
expressed CD271 showed the highest proliferative capacity but only when cells 
were isolated from a young donor (Joyce 2003; Zhu and Joyce 2004; Hara et al. 
2014). The progenitor cells also showed positive expression of neural crest markers 
SOX9 and AP-2β, and also FOXC2 which is necessary in the periocular mesen-
chyme for the development of the anterior segment of the eye (Gage et al. 2005). 
CD271 and SOX9 are also instrumental in the development of neural crest cells 
(Morrison et al. 1999; Cheung and Briscoe 2003).

13.3  �Responses to Injury and the Role of Stem Cells 
in Corneal Repair

Severe trauma to the cornea can result in scarring and blindness if the corneal tissue 
is not restored appropriately. The commonest causes of corneal injury include infec-
tions, thermal, chemical burns and mechanical abrasions, but also hereditary and 
immune disorders leading to opacification, conjunctivalization, neovascularization, 
and ulceration. In Sect. 4.5 the clinical applications of stem cells in corneal wound 
healing will be discussed but first an overview is given of the consequences and the 
responses to corneal injury. Since the layers of the cornea are so diverse in their 
embryology, physiological properties and regenerative capacities, the ability of a 
cornea to recover from injury is dependent on both the surface area of the injury and 
the depth of the penetration.

13.3.1  �Epithelial Repair

In case of a superficial injury only the epithelium is affected. If the epithelial barrier 
is breached, an immediate physiological, biochemical and anatomical healing 
response is initiated. Mitochondrial energy production is increased, cell membrane 
extensions are formed and hemidesmosomal adhesions to the basement membrane 
are lost (DelMonte and Kim 2011). The proliferative activity in the limbus rises 
dramatically, up to ninefold, which persists for up to 48 h. During this time, the 
proliferative activity in the peripheral and central cornea doubles, until wound clo-
sure (Cotsarelis et al. 1989; Lavker et al. 1998). This is thought to be the result of 
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the proliferation of limbal epithelial stem cells and transient multiplication of basal 
cells (Lehrer et al. 1998; Daniels et al. 2001). The first phase of the response to 
injury is nonmitotic. The sheet of residual epithelial cells starts migrating and 
spreading and cells at the advancing edge of a wound extend the sheet to cover the 
wound (Soong 1987). Matsuda et  al. demonstrated that larger epithelial wounds 
close at a faster rate than smaller ones, with a speed of up to 80  μm per hour 
(Matsuda et al. 1985). In the second phase, the epithelial cell population is restored 
by reconstitutive mitosis of the basal cells, the TACs and the limbal stem cells 
(Wiley et al. 1991). If the limbus is severely damaged and devoid of its stem cell 
population, this process cannot take place and consequently corneal wounds do not 
heal adequately.

13.3.1.1  �Limbal Epithelial Stem Cell Deficiency

When the source of limbal epithelial stem cells is compromised, the constant regen-
eration of the corneal epithelial surface is impaired and Limbal Epithelial Stem Cell 
Deficiency (LSCD) occurs (Secker and Daniels 2009). The cornea is left prone to 
invasion of conjunctival tissue, neovascularization, chronic inflammation and scar-
ring (Li et  al. 2007). Primary causes of LSCD include the partial or complete 
destruction of the limbus in absence of identifiable external factors (e.g. aniridia, 
multiple endocrine deficiency associated keratitis, erythrokeratoderma, sclerocor-
nea), whereas secondary causes are mostly external factors that demolish the archi-
tecture and the microenvironment of the limbal stem cell niche (e.g. chemical 
abrasion, thermal burns, Stevens-Johnson syndrome) (Tseng 1989).

Clinically, LSCD can be characterized by a set of symptoms that range from 
visual impairment to recurrent pain, discomfort, and photophobia. Patients may 
complain of epiphora, blepharospasm or a red eye (perilimbal vascular injection) 
(Shapiro et al. 1981; Ahmad 2012). The diagnosis of LSCD can be made clinically 
in most cases on the basis of history and slit lamp examination. Signs of LSCD 
include: bulbar/perilimbal vascular injection, loss of limbal anatomy (i.e. loss of 
Palisades of Vogt), presence of corneal haze, persistent or recurrent epithelial 
defects, inflammation of the corneal epithelium or stroma, corneal opacification, 
scar tissue formation, or corneal melting (Baylis et al. 2011). The loss of limbal 
stem cells through infection, injury or diseases also results in conjuctivalization: the 
overgrowth of conjunctiva on the cornea. Corneal conjunctivalization can be con-
firmed using impression cytology to identify goblet cells which, while characteristic 
of conjunctival epithelium, are typically absent from corneal epithelium. One of the 
major hallmarks of LSCD is neovascularization.

Corneal neovascularization is the overgrowth of blood vessels from the highly 
vascular limbal plexus into the cornea,. When the harmony between antiangiogenic 
and angiogenic factors is disturbed in favour of the angiogenic components, neovas-
cularization occurs. Neovascularization of the cornea has serious implications for 
the visual acuity and worsens the prognosis of corneal transplantations. It is usually 
a secondary consequence of trauma, infection, ischemia, chemical abrasions or ther-
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mal burns. More than a million people per year lose their vision due to the emer-
gence of new corneal blood vessels (Bachmann et al. 2008). The new vessels cause 
inflammation, block incoming light and lead to edema. The most important media-
tor of angiogenesis is vascular endothelial growth factor (VEGF) and therefore anti-
VEGF factors (e.g. siRNA, tyrosine kinase, bevacizumab and VEGF trap) are 
currently under investigation as a potential treatment targets for corneal neovascu-
larization (Chang et al. 2012).

13.3.2  �Stromal Repair

The corneal stroma has a highly organized structure and lower density of cells than 
the epithelium and as such, has a lower capacity for repair and regeneration. Injuries 
severe enough to breach the epithelium and Bowman’s membrane therefore have a 
higher likelihood of inducing a permanent scar.

Among the commonest causes of stromal injury are infections, thermal, chemi-
cal and mechanical abrasions, hereditary and immune disorders. Injury that leads 
to the loss of specific isoforms of collagen, such as collagen type IV from the 
epithelial basement membrane, has been associated with an overexpression of 
matrix metalloproteinases in combination with the activation of inflammatory 
cytokines. This subsequently leads to the formation of scar tissue and corneal haze 
(Gabison et al. 2009).

13.3.2.1  �Role of MSCs in Stromal Wound Healing

The MSCs respond to corneal injury and inflammation by mobilization, migration 
and colonization (Kang et al. 2012). The process of stromal wound healing is acti-
vated when a corneal injury penetrates the Bowman’s or Descemet’s membrane and 
infiltrates the stroma leading to edema and corneal haze. Stromal wound healing 
involves a variety of growth factors, cytokines and chemokines secreted by the over-
lying, injured epithelium and keratocytes (Netto et al. 2005). The process is carried 
out in three phases: (i) repair, (ii) regeneration and (iii) remodelling (Fini and 
Stramer 2005). Firstly, some of the keratocytes within the area of injury undergo 
apoptosis, while others are activated and differentiate into a fibroblast-like pheno-
type (Wilson et al. 1996; Stramer et al. 2003). The new ‘repair’ fibroblasts can pro-
liferate and synthesize the components required for the formation of new extracellular 
matrix. After 1–2 weeks, the stroma at the site of injury is invaded by myofibro-
blasts which promote remodelling by further differentiating into the ‘repair’ type 
fibroblasts possessing contractile properties while expressing a wide array of pro-
teins. It has been proposed that the collagen in the stromal wound is reorganized by 
matrix metalloproteinases (MMPs) which remodel the ECM and the interactions 
between the matrix and the cells (Maguen et  al. 2002; Fini and Stramer 2005; 
Gabison et  al. 2005). The highly light-scattering myofibroblasts de-differentiate 
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once wound healing is complete and transparency of the cornea should return. If the 
repair fibroblasts differentiate into scar keratocytes (laying down irregularly spaced 
collagen) instead of myofibroblasts, they cannot de-differentiate and contribute to a 
permanent corneal scar (Shah et al. 2008).

13.3.2.2  �MSCs Modulate Corneal Angiogenesis

Some in vivo work suggests that applying MSCs on the cornea could inhibit inflam-
mation related angiogenesis after chemical injury (Ma et al. 2006; Oh et al. 2008; 
Yao et al. 2012), while MSCs in ischemia or tumor models secrete vascular endo-
thelial growth factor (VEGF) and activate angiogenesis (Ball et al. 2007; Beckermann 
et al. 2008; Tang et al. 2009). In a rat chemical corneal burn model, the expression 
of antiangiogenic thrombspondin-1 (TSP-1) was upregulated while the proangio-
genic factor matrix metalloproteinase-2 (MMP-2), related to inflammation, was 
downregulated (Oh et  al. 2008). This study found no significant differences in 
VEGF levels for control rats versus MSC-treated rats, while other studies have 
found a significant downregulation of VEGF expression when MSCs were adminis-
tered subconjunctivally in the acute phase of a rat alkali burn model (Yao et  al. 
2012). When human corneal epithelial cells were cocultured with human mesenchy-
mal stem cells, VEGF levels were upregulated and high TSP-1 and MMP-2 levels 
were expressed. Matrix metalloproteinease-9 (together with MMP-2 and VEGF one 
of the most important angiogenic factors in the cornea) is normally secreted by 
human corneal endothelial cells, but the presence of hMSCs has been shown to sup-
press this secretion (Oh et al. 2009a, b). The antiangiogenic factor TSP-1 inhibits 
angiogenesis induced by VEGF by suppressing CD36 activation (Cursiefen et al. 
2004; Primo et al. 2005; Cursiefen 2007).

13.3.2.3  �MSCs Are Effective in Reversing Ongoing Graft Versus Host 
Disease

Corneal limbal stromal MSCs possess immosuppressive properties, but their poten-
tial is significantly weaker than in bone marrow-derived mesenchymal stem cells 
(Du et al. 2009). MSCs are usually described as MHC I positive and MHC II nega-
tive. Mesenchymal stem cells (MSCs) lack the expression of co-stimulatory mole-
cules B71, B72, CD80, CD86, CD40 and CD40 ligand on their surface (Tse et al. 
2003; Wong 2011). This phenotype suggests that MSCs may be capable of inducing 
tolerance, as it is regarded as a hypoimmunogenic phenotype (Javazon et al. 2004). 
Cells that do not express MHC I, however, are destroyed and therefore the expres-
sion of low levels of MHC I is crucial in the protection against natural killer cell-
mediated cytotoxicity (Moretta et al. 2001) (see Fig. 13.4). The hypoimmunogenic 
features of MSCs imply that they can stay under the radar of the immune system and 
can be used in allogeneic hosts (Di Nicola et al. 2002; Le Blanc et al. 2003a; Ryan 
et al. 2005). Suppression of activated T cells by MSCs has been shown in vitro, 
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regardless of whether the T cells were activated by alloantigens, polyclonal mito-
gens or CD3 (Di Nicola et al. 2002) and independent of HLA matching between the 
T cells and MSCs (Le Blanc et al. 2003a). There remains some controversy regard-
ing the mechanism behind this suppression. According to some groups, suppressor 
activity is exhibited through a soluble factor, whereas other groups claim that direct 
cell-to-cell contact is an indispensable requirement (Di Nicola et al. 2002; Le Blanc 
et al. 2003b). The ability to inhibit T cell proliferation with antibodies against hepa-
tocyte growth factor (HGF) and transforming growth factor-β1 (TGF-β1) was 
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Fig. 13.4  Natural killer cell-mediated cytotoxicity. In presence of MHC class I molecules, granule 
release is inhibited and the target cell does not undergo lysis (a). When the target cells do not pres-
ent MHC class I molecules, NK cells release cytotoxic granules that will lead to lysis of the target 
cells (b)
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described by Di Nicola et al. in 2002 and in 2012 Garfias and coworkers demon-
strated that in the case of limbal MSCs, TGF-β1 induced suppression of T cells (Di 
Nicola et al. 2002; Garfias et al. 2012). The results suggest that the immunomodula-
tory properties observed in  vitro and the inhibition of proinflammatory immune 
reactions can be translated to the in vivo situation, but little is known about the host 
immune response to MSCs. Further claims regarding the in vivo therapeutic poten-
tial can only be made after extensive further research into the immunology of MSCs 
(Javazon et al. 2004).

MSCs can reverse graft-versus-host disease (GvHD) complications (Le Blanc 
et al. 2004; Ringdén et al. 2006; Le Blanc et al. 2008) and ongoing research will 
further elucidate the role of MSCs in host-versus-graft disease (HvGD) 
(Bartholomew et al. 2002; Casiraghi et al. 2008). Even though corneal transplan-
tations are the most successful type of transplantation, allograft failure does occur 
and the most common cause is irreversible rejection. The immunomodulatory 
effects of MSCs have been investigated in vivo by transplanting pig corneas into 
rats and studying the effects of post-operative topical application of allogeneic rat 
MSCs. Even though IL-6 and IL-10 levels increased significantly, corneal xeno-
graft survival was not prolonged significantly (Oh et al. 2009a). In a subsequent 
study the researchers made use of a mouse-to-mouse allograft model in which 
human MSCs were administered preoperatively by intravenous injections. They 
observed a decrease in surgically induced inflammation, mainly through the 
secretion of TSG-6 (Tumor necrosis factor-inducible gene 6 protein), and a 
reduced activation of APCs in the cornea. Allograft survival was prolonged (Oh 
et al. 2012), and the findings were confirmed by Jia et al. in a rat corneal allograft 
rejection model, where postoperative instead of preoperative MSC injection was 
used. Other observations included the reduction of Th1 (type I helper T cell) pro-
inflammatory cytokines, an elevation of IL-4 secretion by T-lymphocytes and an 
upregulation of Tregs (Jia et al. 2012). It can be concluded therefore, that the sup-
pression of rejection in corneal transplantations is likely dependent on the route 
and timing of administration of MSCs (Yao and Bai 2013). Watson et al. investi-
gated the therapeutic value of factors secreted by MSCs. MSC-conditioned 
medium inhibited migration of fibroblasts and their wound healing activities 
in vitro (Watson et  al. 2010). When injected intravenously in an in vivo rabbit 
alkali burn model MSCs promoted wound healing in synergy with hematopoietic 
stem cells (Ye et  al. 2006) and subconjunctival injection resulted in anti-
inflammatory effects (Yao et al. 2012). Systemic administration of MSC in mice 
led to the homing of MSCs only to the injured cornea, resulting in epithelial 
regeneration (Lan et al. 2012). Recently, the topical administration of autologous 
adipose-derived MSCs led to complete epithelial healing in a patient with a per-
sistent post-traumatic sterile corneal epithelial defect, but the mechanisms associ-
ated with this process remain unclear (Agorogiannis et  al. 2012). Endothelial 
injuries could also be treated by injection and subsequent homing of MSCs to the 
injured site, as has been indicated in an human ex  vivo corneal wound model 
(Joyce et al. 2012). Studies focusing on endothelial and epithelial injuries help to 
elucidate the potential of MSCs.

13  Stem Cell Applications in Corneal Regeneration and Wound Repair



230

13.3.2.4  �Potential Application of MSCs in Corneal Epithelial Repair

Although the exact mechanisms remain unknown, several studies have reported on 
the ability of MSCs to make microenvironmental modifications in the cornea. MSCs 
are relatively easy to isolate and expand, and a number of options have been explored 
when it comes to administration of MSCs with regards to the cornea, from direct 
administration to the use of carriers. Recently the potential for transdifferentiation 
of MSCs into corneal cell types has been explored. Gu et al. have demonstrated both 
ex vivo and in vivo differentiation of MSCs into corneal epithelial cells in a rabbit 
model and Reinshagen confirmed the transdifferentiation potential of MSCs in an 
experimental limbal stem cell deficiency rabbit model (Gu et al. 2009; Reinshagen 
et al. 2011). Others have confirmed these findings, making use of mice and rat mod-
els and even used human MSCs to demonstrate the transdifferentiation potential 
(Guo et al. 2006; Jiang et al. 2010; Liu et al. 2010, 2012). However, other groups 
have found that the therapeutic mechanism was not associated with the differentia-
tion, mainly because of a lack of evidence since MSCs and keratocytes have many 
cell surface markers in common (Ma et al. 2006; Oh et al. 2008). Subconjunctivally 
injected MSCs did not migrate into the injured cornea nor did they differentiate, 
indicating that the route of administration is of importance for differentiation into 
other corneal cell types (Yao et al. 2012).

13.3.3  �Endothelial Repair

Endothelial cells do not proliferate in vivo. As the cornea ages, endothelial cells are 
gradually lost but provided there are sufficient residual cells to compensate, the 
pump function is preserved. If cells are lost beyond the ability of the residual cells 
to compensate, the cornea can become edematous. The endothelium is susceptible 
to all kinds of stress, whether it is metabolic, toxic or caused by alterations in 
pH. Some contact lenses have shown to cause hypoxic stress that affects the endo-
thelium and leads to an impaired functioning of this delicate layer (Beuerman and 
Rozsa 1985; Polse et al. 1990). Another risk factor is hyperglycemia, it has been 
demonstrated that diabetes has an influence on the cell density and the level of poly-
megathism and pleomorphism (Roszkowska et al. 1999).

There are two possible healing pathways following endothelial injury; a regen-
erative and a non-regenerative (or fibrotic) option. The first mechanism occurs 
mainly following a minor injury and provokes the remaining cells at the site of the 
injury to increase in size in order to cover the wounded area. This state is also 
known as polymegathism and is the first stage of regenerative endothelial wound 
healing. A barrier is restored, albeit with incomplete tight junctions and a limited 
number of pump sites. In the next phase the barrier is restored. The enlarged cells 
lose their hexagonal shape and become polymorphic, and the tight junctions and 
pump sites return to a level that approaches the original state. In the final stage, 
which can take up to several months, the hexagonal shape of the cells is restored 
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(Watsky et  al. 1989; Peh et  al. 2011). Though limited pump function may be 
restored, the endothelium cannot return to the level of its previous uninjured state. 
Following major insult to the endothelium, a non-regenerative pathway is activated. 
The endothelial cells lose their shape and the monolayer is transformed into a mul-
tilayer of fibroblastic cells due to the downregulation of N-Cadherin. The fibroblasts 
deposit ECM onto the Descemet’s membrane in a process known as endothelial-to-
mesenchymal transition (EnMT). An additional retrocorneal fibrous membrane may 
be formed in between the endothelium and Descemet’s membrane by the expression 
of collagen type I instead of the resident collagen type IV (Lee and Kay 2006; Li 
et al. 2013). Severe damage to the endothelium may result in irreversible changes to 
the cytoskeleton and considerable cell loss (Kim et al. 1992). Once the threshold for 
endothelial cell loss is met, i.e. that more than 75 % of the cells are lost or if less than 
500 cells/mm2 remain, corneal edema occurs leading to opacification (Polse et al. 
1990). The recent advances in human corneal endothelial progenitor cell character-
ization, opens up the possibilities for future treatments in regenerative medicine. 
Various attempts with differing culture and transplantation techniques remain unsat-
isfactory in treating endothelial dysfunction as none of them lead to the regeneration 
of the endothelium (Ishino et  al. 2004; Sumide et  al. 2006; Mimura et  al. 2008; 
Watanabe et al. 2011). Hara and coworkers, however, did successfully transplant a 
tissue-engineered human corneal endothelial progenitor cell sheet into a rabbit eye 
with corneal endothelial deficiency and observed increased transparency and a 
reduction in corneal thickness (Hara et al. 2014).

13.4  �Traditional Strategies for Corneal Reconstruction

13.4.1  �Ocular Surface Reconstruction in Limbal Stem Cell 
Deficiency

The use of autografts and allografts was the first proposed treatment option for the 
ocular surface disorders or traumas characterized by the absence or damage to the 
limbus. In patients with severe limbal damage, a corneal transplant is not likely to 
survive because a healthy epithelium is the key factor. Re-establishing healthy lim-
bal function therefore is often the first step in restoring vision following severe 
anterior segment trauma (see Fig. 13.5). Rivaud and coworkers (1986) were the first 
to include a piece of the limbus in a conjunctival autograft, with relatively high suc-
cess rates, since prior to that only the conjunctiva was grafted (Vorkas 1981; Kenyon 
et al. 1985), in a method first described by Thoft (1977, 1979). Tseng made a dis-
tinction between conjunctival and limbal grafting and concluded that only in the 
case of limbal grafting the corneal epithelial phenotype was restored, as opposed to 
conjunctivalization of the cornea when only bulbar conjunctiva was used (Tseng 
1989). In the same year they performed limbal transplantations on two patients; the 
first case received an ipsilateral autograft, and the second a contralateral autograft 
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with a subsequent keratoplasty (Kenyon and Tseng 1989). Both patients achieved 
encouraging results.

The feasibility of a limbal autograft in the case of a unilateral condition is still 
one of the major assets, however there are some important risks to consider. A large 
biopsy is required (minimally 60° of the limbus) and, as such, there is risk of induc-
ing LSCD in the donor eye during tissue harvest. An alternative option, the kerato-
limbal allograft (KLAL), obtains limbal graft tissue from cadaveric donors. The 
high rate of rejection and the severity of side effects from immunosuppressants that 
are required with allogeneic transplantations (Secker and Daniels 2009) is a major 
disadvantage of this approach. Good long-term clinical outcomes have been shown 
for limbal allografts, but there is no proof of persistence of epithelial donor cells on 
the surface of the recipient’s cornea. It is hypothesized that the transplanted micro-
environment is adequate to sustain the remaining host stem cells, which wouldn’t be 
able to survive otherwise, by supplying growth factors to the stem cell niche 
(Williams et al. 1995; Henderson et al. 1997, 2001). This is an important observa-
tion with regards to future developments in corneal tissue engineering; if the pro-
vided scaffold is suitable, the host cells could find their way into the scaffold, 
without the need for donor or host cells to be included as part of the transplanted 
graft. This mechanism would obviously require some residual host stem cells at the 
limbus, which is not always the case.
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Fig. 13.5  Patient with LSCD and heavily vascularized cornea (a). Removal of fibrovascular pan-
nus tissue until the limbus (b) exposes the non-vascularized deeper layers of the cornea (c). 
Depending on the health of the patient’s contralateral eye, conjunctival-limbal autografts are har-
vested and placed at 12 and 6 o’clock (e) or the limbus is replaced entirely by two 180° strips of 
allogeneic donor tissue (KLAL) (d). The transplanted limbal tissue restores the epithelial stem cells 
and limbal barrier and generates healthy, transparent and non-vascularised corneal epithelium (f)
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13.4.2  �Transplantation Options for the Corneal Stroma

In addition to treating the limbus and epithelium, there are also different treatments 
available for stromal defects (Fig. 13.6 B, C and D). Traditionally, cadaveric corneal 
donor tissue has been used to replace damaged stromal tissue in a Penetrating 
Keratoplasty (PK) surgery. Penetrating keratoplasty is the traditional transplanta-
tion in which all three corneal layers, epithelium, stroma and endothelium are 
replaced by donor tissue. Newer developments in stromal surgery include Anterior 
Lamellar Keratoplasty (ALK) and Deep Anterior Lamellar Keratoplasty (DALK) 
but both of these techniques still require cadaveric donor tissue which is limited 
globally. The main difference between (D)ALK and PK is that in (D)ALK, being a 
partial thickness stromal replacement procedure, the Descemet’s membrane and the 
underlying endothelium remain untouched and there is no penetration into the ante-
rior chamber. Preserving the endothelium reduces the risk of endothelial rejection 
and chronic cell loss when compared with PK (Borderie et al. 2009; Reinhart et al. 
2011) (Sugita and Kondo 1997; Shimazaki et al. 2002b; Armitage et al. 2003). The 
advantages of anterior lamellar keratoplasty over penetrating keratoplasty are appar-
ent, but the visual acuity of the recipients of lamellar grafts may be impaired by 
host-donor interface irregularities (Saini et  al. 2003; Funnell et  al. 2006). Other 
studies have, however reported comparable optical performance outcomes (Panda 
et al. 1999; Watson et al. 2004).

The function and morphology of the epithelium undergo changes after penetrat-
ing keratoplasty, such as increased cell area and altered cellular metabolism (Vannas 
et al. 1987; Feiz et al. 2001). A marked decrease in the number of cells (epithelial, 
keratocytes and endothelial cells) in corneal grafts after transplantation has been 
described (Imre et al. 2005; Niederer et al. 2007). It remains unclear why the density 
of keratocytes in the donor cornea decreases after transplantation (Bourne 2001; 
Imre et al. 2005). One possibility is that the keratocytes undergo increased apopto-
sis, which has been noted in particular at the wound edges of transplanted corneas 
(Ohno et al. 2002). Another option is that the exact number of keratocytes is not 
reduced, but that due to corneal swelling, the density of distribution is lowered 
(Niederer et al. 2007). Nevertheless, it has been proven that donor cells are gradu-
ally replaced by the host’s own keratocytes, with the exception of small populations 
of donor cells that can persist for up to 5 years (Hanna and Irwin 1962; Wollensak 
and Green 1999; Hori and Streilein 2001).

13.4.3  �Corneal Endothelial Transplantation

Endothelial defects can be treated by performing Descemet’s Membrane Endothelial 
Keratoplasty (DMEK) and Descemet’s Stripping Endothelial Keratoplasty (DSEK), 
where the patient’s own endothelium is removed and replaced with a layer derived 
from a cadaveric donor (Fig.  13.6 E and F). Descemet stripping endothelial 
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keratoplasty (DSEK) is a technique where the corneal endothelium, Descemet’s 
membrane and thin layer of stroma are isolated from a cadaveric donor cornea and 
introduced into the diseased cornea after removal of the diseased layers. The donor 
material is pressed against the posterior surface of the stroma using an air bubble to 
improve graft adhesion. With the implementation of a microkeratome, graft isola-
tion is more standardized and thinner donor grafts can be achieved. This modifica-
tion is known as Descemet Stripping Automated Endothelial Keratoplasty (DSAEK) 
(Maier et al. 2013). In DMEK surgery only the donor endothelium with Descemet’s 
membrane is transplanted without any residual stroma (Melles et  al. 2006). The 
Descemet’s membrane is manually peeled off together with the endothelium and 
automatically forms a roll with the endothelium on the outside when placed in a 
fluid. This “DMEK roll” is inserted in the anterior chamber, unrolled and positioned 
with the help of an injected air bubble.

DMEK is preferred over DSAEK because it results in a better vision, a more 
rapid recovery and less rejection of the graft. The reason for this improved out-
come is that the diseased endothelium is replaced in an anatomically correct man-
ner, as the graft is only 10–15 μm thick and (almost) no stroma is attached to the 
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Fig. 13.6  Tranplantation options for stromal and endothelial deficiencies. The five layers of the 
cornea; the epithelium and stroma are separated from each other by Bowman’s membrane, whereas 
stroma and endothelium are separated by Descemet’s membrane (a). Penetrating keratoplasty or 
PK; epithelium, stroma and endothelium are replaced by donor tissue (grey insert) (b). Anterior 
lamellar keratoplasty or ALK; only epithelium and the affected part of the stroma are replaced by 
donor tissue (c). In the case of DALK, the full thickness of the stroma is replaced together with the 
epithelium (d). In Descemet’s stripping (automated) endothelial keratoplasty (DS(A)EK) only the 
endothelium is replaced by cadaveric endothelium (dark purple) and stromal (darker blue) donor 
tissue (e). In Descemet’s membrane endothelial keratoplasty (DMEK) only the endothelium is 
replaced by donor tissue (f)
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endothelial graft. The incision needed for this surgery is also very small, causing 
no or only a small change in refraction. The fact that there is less tissue trans-
planted compared to DSAEK, additionally reduces the risk of graft rejection. 
DSAEK is a standardized procedure, while DMEKs cannot yet be reproduced by 
all surgeons. DMEK does however have a flat learning curve and a higher rate of 
postoperative re-intervention.

13.5  �Tissue Engineering for Corneal Reconstruction

The need for tissue-engineered alternatives to replace donor-derived epithelium, 
stroma and endothelium remains high. Transparency and tissue strength are two 
essential properties to take into account when considering corneal replacements. 
The natural structure is difficult to reproduce, since the strength and transparency 
of the tissue are characteristics inherent to the intricate architecture of the cornea. 
Similarly another vital challenge is biocompatibility, as it is crucial that tissue-
engineered constructs are well-retained in the eye. Currently, there are two 
approaches to corneal tissue engineering; a cell-based approach and a scaffold-
based approach. In cell-based approaches, the cells themselves and the informa-
tion that lies within the cells are the most important contributors to the tissue 
engineered construct. This approach is most often used with regards to regenera-
tion of the epithelium and the endothelium, since these layers are closely associ-
ated with their basal layers in the cornea in vivo. Scaffold-based approaches are 
more focused on the development and optimization of new substrates to mimic the 
corneal stroma.

13.5.1  �Cell-Based Approach to Tissue Engineering

In recent years the focus of cell-based tissue engineering has been on the corneal 
epithelial tissue engineering, possibly because it is the most superficial layer and 
easily accessible. Many attempts have been made at generating a sheet of epithelial 
cells that is readily transplantable without the need of sutures (Yamato and Okano 
2004; Nishida et al. 2004). After transplantation, the cell sheet should attach to the 
remaining native ECM in recipient eye. Cell sheets can be grown from a small 
biopsy of healthy epithelial tissue containing limbal epithelial stem cells, and this 
ex vivo expansion is an enormous advantage over the transplantation of large pieces 
of limbus from a healthy to a diseased eye, reducing the risk to the healthy donor. 
The use of laboratory-expanded limbal epithelial cells was proposed by Lindberg 
and coworkers in 1993 and first performed on patients by Pellegrini and collabora-
tors in 1997 (Lindberg et al. 1993; Pellegrini et al. 1997). Since the first cultivated 
limbal epithelial transplantations (CLET), a lot of research has been done and more 
recently a number of clinical trials have been published focussing on the use of 
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in vitro expanded LESC (Tsai et al. 2000; Koizumi et al. 2001; Grueterich et al. 
2002; Shortt et al. 2007b).

13.5.1.1  �Epithelial Tissue Engineering

A variety of carrier layers have been used, from amniotic membranes (Shimazaki 
et al. 2002a; Zakaria et al. 2010), polystyrene (Feng et al. 2014), nanofiber scaf-
folds (Zajicova et al. 2010), siloxane-hydrogel contact lenses (Di Girolamo et al. 
2007), silk fibroin (Bray et al. 2011), chitosan (Grolik et al. 2012), keratin films 
(Reichl et al. 2011), to fibrin (Rama et al. 2001). Depending on the research group, 
limbal epithelial cells were cultured with murine-derived 3T3 fibroblast feeder 
cells or in xenobiotic-free culture systems. The biological mechanisms behind the 
potency and effectiveness of in vitro expanded LESC remain somewhat unclear, 
but nonetheless the clinical results are promising (Baylis et al. 2011; O’Callaghan 
and Daniels 2011; Basu et al. 2012; Menzel-Severing et al. 2013). The most com-
monly used carriers are biodegradable fibrin layers or thermo-responsive polymers. 
The use of fibrin carriers was first described in 2007 and it was shown that the fibrin 
layer can be digested once the cells have formed stratified, functional multilayer 
sheets (Higa et  al. 2007). In 2015 the first advanced therapy medicinal product 
(ATMP) containing corneal stem cells was approved by the European Medicines 
Agency. The product, named Holoclar, is obtained through cultivation of an autolo-
gous limbal biopsy on fibrin using mouse 3T3 fibroblasts and fetal bovine serum 
(FBS) (Rama et al. 2010). The long term results are encouraging however the num-
ber of patients that can be treated with the product is limited. Holoclar is currently 
indicated for unilateral chemical or thermal burns with limited to no stromal 
involvement, which is the minority of limbal stem cell failure cases. More recently, 
the use of xenobiotic-free limbal epithelial stem cell cultures on human amniotic 
membranes is currently being investigated in a phase II multicenter clinical trial. 
This method could allow the use of allogeneic donor material in cases of bilateral 
LSCD and may provide an option for patients bilateral disease and stromal involve-
ment (Zakaria et  al. 2014). PNIPAM (poly(N-isopropylacrylamide)) is another 
alterative material that is hydrophobic at 37 °C and facilitates attachment, prolif-
eration and secretion of ECM by the expanded cells. When the temperature is low-
ered to 20 °C the polymer shifts to a hydrophilic state and starts expanding. This 
expansion leads to cellular detachment and an intact functional sheet of epithelial 
cells is obtained. The main advantage over proteolytic cell harvesting methods is 
that the cell-cell contact is maintained along with its ECM (Yang et  al. 2006; 
Hayashida et al. 2006).

In the case of bilateral corneal blindness, there is no healthy limbal tissue left for 
autografting or explanting. Treatment options for these patients were previously 
limited to allografts from relatives or from cadaveric donor cornea. Such treatments, 
however, came with an additional risk of disease transmission and graft failure due 
to rejection. The use of systemic immunosuppressants to prevent graft rejection in 
some cases increased the risk of developing malignant tumors (Fernandes et  al. 
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2004; Holan and Javorkova 2013). These risks in combination with the severe short-
age in donor corneas, have led to a number of alternative stem cell sources, mainly 
non-ocular, being proposed as alternative treatment options for the regeneration of 
corneal epithelium. Most of these cells are easily accessible and available in large 
quantities. Not all of these alternative stem cell sources for corneal regeneration 
have been used in a clinical setting yet, but due to their unique properties they are 
seen as candidate cell sources for future clinical applications, also for stromal and 
endothelial treatments.

Induced Pluripotent Stem Cells

Induced Pluripotent Stem Cells (iPSCs) are dedifferentiated adult cells. The tech-
nique was first described in 2006 using specific transcription factors to induce their 
de-differentiation (Takahashi and Yamanaka 2006). In 2012 corneal epithelial cells 
were differentiated from iPSCs (from dedifferentiated corneal limbal epithelium) 
(Hayashi et al. 2012). They made a comparison with iPSCs from dermal fibroblasts 
and found that higher levels of specific corneal epithelial differentiation markers 
were expressed than when iPSCs from dermal fibroblasts were used. One of the 
major drawbacks is that the limbal epithelial iPSCs can also differentiate into other 
cell types, which is to be avoided in order for iPSCs to be used in the regeneration 
of corneal epithelium.

Mesenchymal Stem Cells from Non-ocular Tissue

Mesenchymal stem cells can be derived from other tissues as well. The most inves-
tigated sources of MSCs are the bone marrow and adipose tissue. These MSC (like 
the MSC in the cornea) are multipotent, express the characteristic MSC cell surface 
markers and are plastic adherent (Pittenger et al. 1999). They can differentiate into 
corneal epithelial cells (by making use of co-culturing techniques and pre-
conditioned media) (Gu et al. 2009) and in earlier animal model studies where the 
cells did not differentiate, it was seen that the corneal damage was nonetheless miti-
gated by the anti-inflammatory and anti-angiogenic attributes of the MSCs grown 
on human amniotic membranes (Ma et al. 2006).

Conjunctival Epithelial Stem Cells

Conjunctival epithelium and goblet cells are derived from a common progenitor. 
These progenitor cells have a high proliferative capacity and, at least twice each 
lifetime, give rise to goblet cells (Pellegrini et  al. 1999). The expression of cell 
markers in the basal conjunctival epithelium is similar to that in the corneal epithe-
lium (Qi et  al. 2010). Ocular surface damage has been treated successfully in 
patients by making use of cultured conjunctival epithelial stem cells (Sangwan et al. 
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2003). Unfortunately in most LSCD patients the conjunctiva is also affected, mak-
ing it unsuitable for cell culture and transplantation.

Oral Muscosal Epithelium

Oral mucosal stem cells express limbal stem cell markers and have the ability to 
be reprogrammed into corneal epithelium-like cells (Nakamura et  al. 2007). 
Oral mucosal epithelial cells have been engrafted onto the ocular surface in 
patients after alkali burns (Inatomi et al. 2006). Cultured autologous oral muco-
sal epithelial cell sheets (CAOMECS) are bioadhesive and thus can be grafted 
without the need of sutures and have been proposed as an alternative to the use 
of an allogeneic donor in the case of total bilateral LSCD. Results from clinical 
trials are however not always successful, with some patients having severe 
adverse reactions to the grafts (Satake et al. 2011) while for others this has been 
proven to be a successful treatment method (Inatomi et al. 2006; Burillon et al. 
2012; Kolli et al. 2014).

Dental Pulp Stem Cells

Immature stem cells can be isolated from the dental pulp of human deciduous teeth. 
These human immature dental pulp stem cells (hIDPSCs) show expression of both 
human embryonic and mesenchymal stem cell markers. They can also undergo tri-
lineage differentiation, which is a requirement set by the ISCT for mesenchymal 
stem cells (Kerkis et al. 2006). In a more recent study by the same group it was 
discovered that hIDPSCs also express limbal epithelial stem cell markers and that 
they are a treatment option for total LSCD in rabbits (Monteiro et al. 2009). So far, 
no clinical trial has used these cells in human patients but very recently it has been 
shown that also adult human dental pulp stem cells (DPCs) produce corneal stromal 
extracellular matrix containing human type I collagen and keratocan when injected 
into a mouse model (Syed-Picard et al. 2015).

Hair Follicle Stem Cells

Hair follicles contain stem cells of epithelial origin in the outer root sheath and 
mesenchymal stem cells in the dermal papilla and the connective tissue sheath. 
Since this discovery several research groups have targeted the human hair follicle as 
a resource for stem cells (Cotsarelis et al. 1990; Yu et al. 2006; Meyer-Blazejewska 
et al. 2012; Yang and Xu 2013). Hair follicle stem cells can be reprogrammed to 
form corneal epithelial cells when cultured in conditioned media (Blazejewska et al. 
2009) and can terminally differentiate into a corneal epithelial-like phenotype when 
transplanted in vivo (Meyer-Blazejewska et al. 2012). No clinical trials have exam-
ined the potential of hair follicle stem cells in human patients.
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Amniotic Epithelial Cells

With low immunogenicity, production of epithelial growth factors and the ability to 
transdifferentiate (with CK3/12 expression in terminally differentiated cells) human 
amniotic epithelial cells (HAECs) are a hightly suitable candidate for corneal recon-
struction (Miki et al. 2005; Pratama et al. 2011; Zhou et al. 2013). This has been 
demonstrated in rabbit models (Liu et al. 2013; Zhou et al. 2014). Differentiated 
cells were anatomically and physiologically similar to corneal epithelial cells and 
the future prospects for this cell type looks promising (Fatimah et al. 2010; Pratama 
et al. 2011).

13.5.1.2  �Corneal Endothelial Regeneration

Corneal endothelial cell sheets have been produced using comparable methods as 
for epithelial cell sheets. Currently, two different approaches are being considered 
for the regeneration of the human corneal endothelium (see Fig.  13.7). The first 
approach is to inject ex vivo expanded HCEnC into the anterior chamber of the eye. 
The efficacy of this technique has already been determined in rabbit and monkey 
models (Mimura et  al. 2004; Okumura et  al. 2009). Kinoshita et  al. are the first 
research group to enter human clinical trials with an injection based cell therapy to 
treat corneal endotheliopathies. The concept is based on the capacity of the HCEnC 
to attach and form a new corneal endothelial barrier following injection of endothe-
lial cell suspension into the anterior chamber. Positioning the patient face down for 
a few hours would allow the cells to settle and attach to the resident Decemet’s 
membrane, thereby potentially reforming the barrier but until now this has only 
been validated in animal models.

The second option is to design corneal endothelial cell grafts by expanding 
HCEnC in culture and seeding them onto an appropriate cell carrier. These compos-
ite grafts mimic current corneal endothelial grafts and could overcome the global 
shortage of donor corneas used for transplantation. Still, standardized cell culture 
protocols are lacking and there is no consensus yet on the perfect cell scaffold, with 
different options that extend from natural grown membranes (e.g. amniotic mem-
brane, lens capsule etc.) to biological carriers (e.g. collagen based sheets) or syn-
thetic polymers (e.g. Thermo-reversible Gelation Polymers) (Teichmann et  al. 
2013). Therefore this method to treat corneal endotheliopathy is still under develop-
ment and limited to preclinical studies in animal models (Ishino et al. 2004; Mimura 
et al. 2004; Yoeruek et al. 2009; Ju et al. 2012; Hara et al. 2014).

Endothelial cell culture techniques involve use of conditioned medium from 
human bone marrow–derived mesenchymal stem cells to enhance HCEnC prolif-
eration through the PI3-kinase and ERK1/2 pathways which results in degrada-
tion of p27, a cyclin dependent kinase inhibitor that arrests HCEnC in G1 growth 
phase (Polyak et al. 1994; Nakahara et al. 2013). Additionally, Y-27632, a Rho-
associated kinase (ROCK) inhibitor, is not only used to increase proliferation, but 
also attachment of HCEnC.  This ROCK-inhibitor mediates proliferation by 
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inducing G1 to S phase transition via upregulation of cyclin D and a decrease of 
p27. Furthermore, TGF-β inhibitors are applied to avoid the expected endothelial 
to mesenchymal transition that is observed in long-term cultivation of HCEnC 
(Okumura et al. 2013).

Even though the injection-based method has progressed to human clinical test-
ing, there is no absolute preference for one of these methods (scaffold based tissue 
engineered products versus cell based injections) as both have pros and cons. 
Introducing a composite graft in the eye is more invasive and could influence visual 
acuity more than injection therapy. On the other hand injected cells free floating in 
the anterior aqueous, could cause elevated intraocular pressure due to blockage of 
Schlemm’s canal or be flushed away with the aqueous flux present in the anterior 
chamber (Okumura et al. 2014).

Injection based therapy Cell sheet based therapy

Fig. 13.7  Two different approaches to corneal endothelial tissue engineering. First approach (left) 
is based on the injection of a suspension of HCEnC into the anterior chamber. In the second 
approach (right) an engineered cell sheet with HCEnC is transplanted as a roll, which unfolds and 
attaches to the posterior surface of the cornea once inserted
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13.5.2  �Scaffold-Based Approach: Stromal Tissue Engineering

Many different biomaterials have been the subject of repeated attempts to recreate 
layers of the cornea. Scaffold-based corneal tissue engineering focuses mostly on 
developing a substitute for the natural corneal stroma. There are two general lines in 
the development of scaffolds for corneal tissue engineering; those using collagen-
based scaffolds with crosslinkers, and those using non-collagen synthetic materials. 
Collagen types I and III have been the focus of many studies (Merrett et al. 2008) 
though synthetic polymers are also popular, as their mechanical properties are 
promising (Hu et al. 2005; Zorlutuna et al. 2006). Collagen gels degrade quickly 
in vivo and do not have the intrinsic strength observed in some synthetic polymers. 
Different crosslinkers have been tested to increase the stability of the collagen scaf-
folds. Glutaraldehyde is frequently used as a crosslinker, but its cytotoxic effects are 
a major disadvantage (Doillon et  al. 2003). Polypropyleneimine octamine den-
drimers have also been used, because the dendrimers increase the number of amine 
groups that react with carboxylic groups in the crosslinking process. A third com-
mon crosslinking option is 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide 
hydrochloride (EDC) (Fagerholm et al. 2010). Gels crosslinked with octamine den-
drimers have been proven to be mechanically superior to both EDC and glutaralde-
hyde at different concentrations of collagen. The suture strength was much lower 
than in the natural cornea however and this is a problem which must be resolved 
prior to use in clinical applications (Duan and Sheardown 2006). Apart from colla-
gen gels, sponges and films have been tested in corneal tissue engineering. Both 
tissue transparency and mechanical properties have been demonstrated to be supe-
rior in collagen sponges as opposed to gels (Orwin et al. 2003; Borene et al. 2004).

Griffith et  al. were the first to transplant collagen scaffolds as deep anterior 
lamellar grafts in a phase I clinical trial in ten patients. They observed a regeneration 
of the epithelium in all ten patients, as well as subepithelial nerves and growth of 
stromal cells into the implanted scaffolds after 9 months (Fagerholm et al. 2009; 
Griffith et al. 2009). Two follow-up studies, one after 24 months and one after 4 
years, revealed that in each of the patients, the implant remained stable and avascu-
lar, the tear film was restored and further recruitment of stromal cells into the 
implanted scaffolds occurred. No infections occurred, even without long-term ste-
roid treatments that are required in donor cornea patients (Fagerholm et al. 2010). 
These results suggest that as long as healthy stem cells are present in the host bed, 
tissue-engineered scaffolds can be cell-free implants. The potential of corneal MSCs 
to differentiate makes them excellent candidates for the development of a tissue-
engineered corneal stroma (West-Mays and Dwivedi 2006). Stromal fibroblasts can 
be induced to secrete extracellular matrix, to construct lab grown stromal matrices. 
The use of ascorbic acid in the culture increases secretion of collagen and prolifera-
tion of the fibroblasts (Saika et al. 1992). In a study by Guo et al. (2007), the fibro-
blasts formed layers of collagen fibrils similar to the native state, albeit slightly 
thicker than natural cornea. These structures are limited by size and additional 
research may determine which factors influence fibril diameters (Guo et al. 2007).
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Cells that are grown on matrices to which a unidirectional stress is applied, can 
align along the axis of the stress and also deposit ECM in an aligned fashion 
(Karamichos et al. 2007). Corneal fibroblasts produce more collagen in constrained 
circumstances, suggesting the need for some kind of mechanical stimulus. In recent 
years, bioreactors have been used to implement this mechanical signaling in order 
to develop natural cornea-like tissue engineered constructs (Cahill et  al. 2005; 
Orwin et al. 2007; Leonard et al. 2012). Basu et al. have demonstrated the differen-
tiation of stromal cells into functional keratocytes in vitro in the presence of auto-
loguous serum and further investigated the in  vivo potential for corneal repair. 
Human limbal biopsy-derived stromal cells were embedded in fibrin gel and applied 
to the surface of a corneal debridement wound in a murine model upon which the 
damaged stromal tissue was regenerated, resulting in stromal matrix indistinguish-
able from the native corneal stromal matrix (Basu et al. 2014). The potential of this 
autologuous cell-based treatment is now under investigation as a clinical trial has 
been set up at the L V Prasad Eye Institute, India.

13.6  �Conclusion

The ability to see our surroundings is possibly the most invaluable of senses in 
human life. Each year hundreds of thousands of new cases of corneal visual impair-
ment occur, mostly caused by systemic diseases, inflammation and trauma to the 
eye with subsequent scarring. Loss of vision leads to a significant reduction in the 
quality of life and unfortunately many of the conditions that cause visual impair-
ment are notoriously difficult to treat. Recently a number of new approaches have 
been explored, including the use of stem cell technologies as a treatment for differ-
ent types of visual impairments. The cornea is comprised of a variety of different 
stem cell types, each having specific characteristics that are used to distinguish it. 
Injuries to the cornea elicit a number of responses for which specific treatments are 
required, and corneal stem cells possess wound healing capacities which make them 
suitable candidates to enhance current treatments.

In the past two decades a lot of progress has been made in the field, establishing 
the therapeutic potential of corneal stem cells: corneal stem cells in different layers 
of the cornea were identified and characterized, the in vitro cultivation potential was 
demonstrated, confirming function of the stem cells, followed by insight into the 
regenerative capacity of these stem cells. The role of stromal mesenchymal and 
limbal epithelial stem cells in the cornea and their therapeutic potential is starting to 
gain importance as research advances. The recent isolation of corneal endothelial 
progenitor cells is an important step towards the treatment of endothelial deficien-
cies. Alongside these corneal stem cell sources, other sources are being explored 
continuously, leading to new approaches and the development of novel therapies. 
Restoring the transparency of a diseased cornea remains a key feature in corneal 
stem cell research and as research in regenerative medicine and more specifically 
tissue engineering advances, a promising future lies ahead.
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