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Foreword
Medical imaging is a field of knowledge dealing with the methods of
acquisition and analysis of images occurring in biological and medical
research. The acquired images are used for research, diagnostic, therapeutic
or educational purposes. The rapid development of diagnostic medical
equipment and information technology enables the growing interaction of
these two areas of expertise for the benefit of patients.

It is generally difficult to show the characteristics of real medical images
pictorially and in a useful form for a physician. In addition to qualitative
assessment, the physician also needs quantification of medical images, which
will illustrate the various diagnostic parameters of medical objects. On their
basis, the physician makes decisions related to the course of treatment, the
strategy and the selection of appropriate drugs.

Quantitative assessment, achievable through the analysis of biomedical
images, involves profiling contemporary analysis methods and algorithms.
Such methods include not only image filtering but also its morphological and
point transformations as well as their various classifications.

One of the rapidly developing techniques of image registration is the so-
called hyperspectral imaging, which is used, inter alia, in biology and
medicine. Issues related to the development of profiled software allowing for
the hyperspectral analysis of biological and medical images is the goal of this
monograph.

Zygmunt Wróbel



Preface
Modern methods of infrared, visible light or UV-light imaging are used in
many fields of science, starting with astronomy through biophysics, physics,
geography and ending with medicine. One such method allowing for imaging
in a wide wavelength spectrum is hyperspectral imaging. The use of this type
of imaging provides ample opportunities not only in terms of the qualitative
assessment of acquired images but also in their quantification. The possibility
of quantitative assessment is the result of analysis performed in the software
provided with hyperspectral cameras. However, due to the large amount of
data, this software has numerous limitations and is user-friendly in a limited
way. On the other hand, there are well-known methods of 2D image analysis
and processing. Their implementation in hyperspectral imaging is not an easy
task. Apart from the need to extend 2D images into the third dimension (in
which respect there are known methods of image analysis and processing, but
in visible light), there remains the issue of optimization. It concerns
optimization of computational complexity, optimization of analysis time and
performance of preliminary calculations commonly used by users. The tasks
that need to be solved by the users analysing hyperspectral medical images
are also specific by their very nature. The specificity of these images stems
directly from the inter-individual variability in patients and thus the images
analysed. For this reason, for almost any task in question, object
segmentation, comparison, calculation of characteristics, individual profiling
of an algorithm are extremely important. Dedicated algorithms enable to
conduct automated, repeatable measurements of, for example, a specific
disease entity. However, profiled (dedicated) algorithms also have drawbacks
—data overfitting. Therefore, these methods must be tested on images
acquired under different conditions, with different hardware settings and for
different operators, for example, a hyperspectral camera. Only in this case, it
is certain that the proposed new algorithm will meet the requirements of
universality when it comes to the data source and manner of acquisition and
will be profiled for a particular application. Therefore, the key element is not
only to propose new dedicated methods of hyperspectral image analysis and
processing but also to try to implement them in practice and test their
properties.

The presented methods of analysis and processing of hyperspectral



medical images have been tested in practice in the Matlab ® environment.
The applied source code is attached to this monograph. The reader does not
need to rewrite its fragments from the text. The source code is also described
in detail in the monograph.

The monograph is intended for computer scientists, bioengineers,
doctoral students and dermatologists interested in contemporary analysis
methods. It can also be used to teach senior students of engineering studies
related to computer science if the price of the book does not constitute a
barrier. For the full understanding of the issues discussed, it has been
assumed that the reader knows the basic methods and matrix operations in
Matlab and knows the basic functions of Image Processing, Signal Processing
and Statistics Toolboxes. Finally, other group of readers who want to know
the way to solve the discussed problems in the field of image analysis and
processing in Matlab may become interested in this monograph.

Robert Koprowski
Sosnowiec, Poland
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1.1 Purpose and Scope of the Monograph
The purpose of this monograph is to present new and known modified
methods of hyperspectral image analysis and processing and profile them in
terms of their usefulness in medical diagnostics and research, as well as
develop quantitative diagnostic tools that can be used in everyday medical
practice. The algorithms proposed in this monograph have the following
characteristics:

they are fully automatic—they do not require operator intervention, if it
is necessary to provide additional parameters of the algorithm operation,
they are selected automatically,

the results obtained on their basis are fully reproducible,

their operation was tested on a group of several thousands of
hyperspectral images,

they were implemented in Matlab,

they have an open and tested source code attached to this monograph (in
the form of an external link),

they can be freely extended and modified—owing to the open source
code.



The scope of the monograph includes medical images and, in particular,
dermatological ones. However, they are only used to test the discussed
methods. The scope of the monograph is divided into acquisition, image pre-
processing, image processing and their classification presented in the
following chapters.

1.2 Material
Most of the images analysed in this monograph had a resolution
M × N × I = 696 × 520 × 128, where M—the number of rows, N—the number
of columns, I—the number of analysed wavelengths. Images of such or
similar resolution (dependent on individual camera settings) were acquired
with different hyperspectral cameras. The overwhelming part (approximately
75%) of all 200,000 images was registered using the SOC710-VP
Hyperspectral Imager with a colour resolution B = 12 bits and spectral
resolution from 400 to 1000 nm. This camera enables to register 128 bands
(I = 128) and is powered by 12 V. The analysed images were obtained
retrospectively and showed the skin of the hand, forearm, and other areas of
the body recorded for dozens of patients. The patients were subject to
exclusion criteria which were undisclosed skin diseases, fever, cardiac
arrhythmias, seizures, inflammation of the skin and pregnancy. The analysed
areas were illuminated by sunlight or using 40 W halogen lamps of a constant
radiation spectrum ranging from 400 to 1000 nm. All the patients gave
informed consent for the study which was conducted in accordance with the
Declaration of Helsinki. No tests, measurements or experiments were
performed on humans as part of this work. This monograph only deals with
the methods of analysis of their images and diagnostic utility of the obtained
results.

1.3 State of the Art
The subject of hyperspectral image analysis and the imaging method itself
has been known for many years. On the day of writing this monograph, the
end of 2016, the PubMed database contained 1922 publications containing
the word “hyperspectral” in the title or description. Slightly different numbers
(the number of articles) were given by the AuthorMapper database, namely
1825 publications, 18,643 authors from 6105 institutions. A breakdown by



countries, institutions, authors, journals and subjects (the first 5 are listed) is
presented in Table 1.1.

Table 1.1 The first 5 countries, 5 institutions, 5 authors, 5 journals, 5 subjects related to the word
“hyperspectral”

Country United
States

China Germany India France

Number of
publications

1420 [1–5] 995 [6–10] 455 [11–15] 347 [16–20] 311 [21–25]

Institution Chinese
Academy of
Sciences

Zhejiang University University of
California

University of
Maryland

Wuhan
University

Number of
publications

162 [26–30] 67 [31–34] 64 [35–40] 47 [41–44] 43 [44–50]

Author Chang,
Chein-I [51,
52]

Graña, Manuel [53,
54]

Sun, Da-Wen
[55–58]

Goodacre,
Royston [59,
60]

Wang, Liguo
[61, 62]

Number of
publications

56 29 21 18 18

Journal Precision
Agriculture

Journal of the
Indian Society of
Remote Sensing

Environmental
Monitoring and
Assessment

Analytical and
Bioanalytical
Chemistry

Environmental
Earth Sciences

Number of
publications

144 [63, 64] 140 [65, 66] 100 [67, 68 91 [69, 70] 77 [71, 72]

Subject Computer
Science

Life Sciences Artificial
Intelligence (incl.
Robotics)

Earth Sciences Image
Processing and
Computer
Vision

Number of
publications

1299 [73,
74]

960 [75, 76] 908 [77, 78] 859 [79, 80] 830 [81, 82]

As shown above, the leaders in terms of publications on hyperspectral
imaging are the United States, author Chang Chein-I and the area of
Computer Science with 1420, 56, 1299 publications respectively. Image
Processing and Computer Vision is a particularly exploited subject, which is
extremely important from the point of view of this monograph. This subject
includes such areas as (the number of publications is given in parentheses):
Signal, Image and Video Processing (39); Journal of Real-Time Image
Processing (37); Reference Recognition and Image Analysis (27);
Hyperspectral Imaging (26); Real-Time Progressive Hyperspectral Image
Processing (26); Neural Computing and Applications (25); Advances in



Visual Computing (22) Image Analysis and Recognition (22); Image and
Signal Processing (22); Multiple Classifier Systems (20); Machine Vision
and Applications (19); Hyperspectral Data Compression (17); Advanced
Concepts for Intelligent Vision Systems (16); Journal of Signal Processing
Systems (16); Mathematical Morphology and Its Applications to Signal and
Image Processing (15); Remote Sensing Digital Image Analysis (15); Image
Analysis (14); Hyperspectral Image Fusion (13); Hyperspectral Image
Processing (12); Journal of Mathematical Imaging and Vision (11).

When reviewing publications [83–91] in terms of the described research
problems and their solutions, several open issues in the field of hyperspectral
image analysis can be observed:

the need for profiling methods of image analysis and processing to a
particular research problem,

lack of universal methods of analysis and

lack of or limited availability of source codes.

Therefore, this monograph describes a sample application for the analysis
and processing of hyperspectral images. The application was profiled to the
area of biomedical engineering, and includes both known and new algorithms
for image analysis and processing.

The discussed scope of biomedical engineering involves the use of
hyperspectral cameras in dermatology. These issues have been partly
presented in several publications [92–96]. Some of them are not profiled to
solve a particular segmentation issue and do not address the issue of the
algorithm sensitivity to parameter changes or the impact of different methods
of acquisition on the results obtained. Accordingly, the analysis of the impact
of acquisition on the results obtained, at the full automation of the proposed
algorithm, constitutes another area (chapter) of this monograph.

1.4 Basic Definitions
Basic definitions apply to two issues:

orientation of coordinate systems and

assessment of the classifier quality.

They are described in the following sections.



1.4.1 Coordinate System
The orientation of the coordinate system is strongly dependent on the
individual settings of the camera relative to the object, frame of reference.
Regardless of the individual camera setting, to which all the described
algorithms cannot be sensitive, it was assumed that the size of each image
sequence would be defined by the number of rows M numbered from one, the
number of columns N and the number of individual wavelengths I. The
numbering from one and not zero, as in the case of well-known programming
languages C++, C#, results from the adopted nomenclature and numbering in
Matlab, Scilab or Octave. As a result, it was adopted in this monograph—
Fig. 1.1 and  Fig. 1.2.

Fig. 1.1 The following symbols were adopted in the coordinate system: M number of rows, N number
of columns, I number of wavelengths (random colours of individual pixels were adopted)

The presented coordinate system (Fig. 1.1) will be used for all the
presented analyses and algorithms. When an image (matrix) is a single 2D
matrix, dimension I will be 1.



Fig. 1.2 Orientation of the adopted coordinate system for a colour image—RGB (pixel colours
correspond to R, G and B components)

1.4.2 Evaluation of the Classifier Quality
Classifiers were usually induced by using the training data representing 2/3 of
the total number of data. The remaining 1/3 of the data was used to test the
classifier quality [96]. The training and test data were divided randomly. In
the cases presented in this monograph, the division can be distorted. This is
due to the fact that both the training and test vectors result from calculations
for a sequence of images. The number of images in the sequence to be
analysed is affected by the operator. Therefore, it does not have to be a strict
division into 1/3 and 2/3. In each case, evaluation of the classifier quality was
based on determination of four values:

False Positive (FP)—cases incorrectly classified as positive,

False Negative (FN)—cases incorrectly classified as negative,

True Positive (TP)—positive cases classified correctly,

True Negative (FN)—negative cases classified correctly.

On their basis, sensitivity TPR and specificity SPC were defined as [97,
98]:

 (1.1)

 (1.2)
and accuracy ACC:



 (1.3)
The parameters SPC and TPR will be the basis for creating the receiver

operating characteristic curves (ROC), which are graphs of changes in TPR as
a function of 100-SPC [99]. Additionally, the area under the curve (AUC)
will be calculated [100].
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2.1 Introduction
Image acquisition was carried out with the SOC710-VP hyperspectral
camera. The camera was positioned perpendicular to the table on which the
object was placed. The scanning area and the focal length were selected in
such a way that the analysed object filled, if possible, the entire stage—
Fig. 2.1.



Fig. 2.1 Image acquisition—the position of the camera relative to the subject: 1 test object—hand; 2
window; 3 hyperspectral camera; 4 table top illuminated by sunlight; 5 reference

Two different types of illumination were adopted:

natural light—sunlight,

artificial lighting—40 W halogen lamps with a constant radiation
spectrum in the range from 400 to 1000 nm.

For each registered image L GRAY (m, n, i), a reference gray level in the
full spectrum sized 10 cm × 10 cm was used as a reference—Fig. 2.2. The
reference was an integral part of the camera equipment. In addition, for
testing purposes, for several cases, two additional series of images were
recorded when there was no light L DARK (m, n, i) and for the full illumination
L WHITE (m, n, i)—in both cases without an object. The images L DARK (m, n,
i), L WHITE (m, n, i) are the basis for normalization of the image L GRAY (m, n,
i) which is described in the next chapter.



Fig. 2.2 Zoom of the acquisition area for artificial lighting: 1 test object—subject’s hand; 2 grey
reference; 3 stage; 4 halogen bulbs

All images are saved in a *.cube format. They can also be saved in other
formats, *.raw and *.dat, which are further converted to Matlab in the form
of a three-dimensional matrix [1]. This conversion is specific to each of these
types of record (*.cube, *.raw or *.dat). The files with these extensions are
saved by the hyperspectral camera in the format shown in Fig. 2.3.



Fig. 2.3 Data organization in *.raw, *.cube and *.dat files

Saving data in the hyperspectral camera stems from the idea of its
operation. The first data saved to *.cube, *.raw or *.dat * files relate to the
first row or column (depending on the camera position relative to the object).
The first row is stored for all the wavelengths i ∈ (1, I), then the next row
etc. The number of rows, columns and individual wavelengths is stored in a
separate *.hdr file. An example of its structure is shown below:

ENVI

Description = {}

samples = 520

lines = 696

bands = 128

header offset = 32768

major frame offsets = {0, 0}

file type = ENVI Standard



data type = 12

interleave = bil

sensor type = Unknown

byte order = 0

wavelength units = Unknown

wavelength = {

374.980011, 379.953130, 384.929945, 389.910456, 394.894663,
399.882566, 404.874165, 409.869460, 414.868451, 419.871138,
424.877521, 429.887600, 434.901375, 439.918846, 444.940014,
449.964877, 454.993436, 460.025691, 465.061642, 470.101289,
475.144632, 480.191671, 485.242406, 490.296837, 495.354964,
500.416787, 505.482306, 510.551521, 515.624432, 520.701039,
525.781342, 530.865341, 535.953036, 541.044427, 546.139514,
551.238297, 556.340776, 561.446951, 566.556822, 571.670389,
576.787652, 581.908612, 587.033267, 592.161618, 597.293665,
602.429408, 607.568847, 612.711982, 617.858813, 623.009340,
628.163563, 633.321482, 638.483097, 643.648408, 648.817415,
653.990118, 659.166517, 664.346612, 669.530403, 674.717890,
679.909073, 685.103952, 690.302527, 695.504798, 700.710765,
705.920428, 711.133787, 716.350842, 721.571594, 726.796041,
732.024184, 737.256023, 742.491558, 747.730789, 752.973716,
758.220339, 763.470658, 768.724673, 773.982384, 779.243791,
784.508894, 789.777693, 795.050188, 800.326379, 805.606266,
810.889849, 816.177128, 821.468103, 826.762774, 832.061141,
837.363204, 842.668963, 847.978418, 853.291569, 858.608416,
863.928959, 869.253199, 874.581134, 879.912765, 885.248092,
890.587115, 895.929834, 901.276249, 906.626360, 911.980167,
917.337670, 922.698869, 928.063764, 933.432355, 938.804642,
944.180625, 949.560304, 954.943679, 960.330750, 965.721517,
971.115980, 976.514139, 981.915994, 987.321545, 992.730792,
998.143735, 1003.560374, 1008.980709, 1014.404740, 1019.832467,
1025.263891, 1030.699010, 1036.137825}

The arrangement of individual elements is typical for almost all types of
hyperspectral cameras. The first elements of the header are designed to



provide information on the number of samples (samples = 520) or the number
of columns N, then the number of lines (lines = 696) or the number of rows M
and the number of different wavelengths (bands = 128) or I-th number of a
matrix sized M × N. Then there are two more important elements: header
offset = 32,768 relating to the transfer of data in bytes (in this case 32,768
bytes), and data type data type = 12 meaning that there is 16-bit unsigned
integer per one pixel [2]. For other values of variable ‘data type’ per one
pixel there is:

8-bit unsigned integer (data type = 1),

16-bit signed integer (data type = 2),

32-bit signed integer (data type = 3),

32-bit single-precision (data type = 4),

64-bit double-precision floating-point (data type = 5),

real-imaginary pair of single-precision floating-point (data type = 6),

16-bit unsigned integer (data type = 12),

32-bit unsigned long integer (data type = 13),

64-bit long integer (data type = 14),

64-bit unsigned long integer (data type = 15).

The last element in the *.hdr file is the variable wavelength. It means the
wavelengths in nanometres for which the individual images were acquired. In
the present case, it is 374.980011 nm (i = 1), 379.953130 nm (i = 2),
384.929945 nm (i = 3) etc.

Therefore, the *.hdr file is useful as it downloads the parameters (number
of rows, columns, wavelengths) necessary to read data in the *.cube, *.raw or
*.dat files. The following are excerpts (separated by ‘…’) of the source code
of the file read_envi_header enabling to read and interpret the file
*.hdr consisting of three blocks: the search for the sign  the search
for the numerical value of the variable lines and the values of the variable 

 i.e.:



The dots ‘…’ (as mentioned above) mean that some part of the source
code has been removed. It should be noted that they play a different role than
the dotted line ‘…’ in Matlab which indicates that a further part of the code
will be continued in the next line.

The read values of lines, bands, samples, Wavelength,
data_type, header_offset are further used for reading the image
data contained in the files *.cube, *.raw or *.dat. The function designed for
this purpose called read_envi_data is as follows:



In its first part, the data type is checked. Two types of data mentioned
above numbered ‘12’ and ‘4’ are handled [3]. If the data type is
different, the message ‘Unsupported file type’ will be displayed.
Then the data will be read from the header_offset . The reading for the
data type ‘12’ takes place every samples*bands*2-samples*2
while in the case of data type ‘4’ every samples*bands*4-
samples*4 , 16 and 32 bits per pixel respectively. The result is the matrix
L GRAY used for image pre-processing.
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Preliminary analysis and processing of images is associated with three main
elements:

affine transformation of the image,

image filtering and

image calibration.

These three elements are presented in the following subchapters. The
source code of these three elements was implemented in three Matlab files:
GUI_hyperspectral_trans, GUI_hyperspectral and
GUI_hyperspectral_fun . The first one concerns affine
transformations, the second one relates to the graphical user interface and the
third one concerns the function associated with the response to specific user’s
actions. The content, source code, of these functions (mainly
GUI_hyperspectral_fun ) will be presented in fragments in the order
of its description in the text.

It is possible to read the image owing to the functions
read_envi_data and read_envi_header described above. In the
file GUI_hyperspectral_fun , each 2D image read correctly is saved
to disk with the same name as the input file *.cube, *.raw or *.dat with the
extension *.mat. When re-reading the file *.cube, *.raw or *.dat, it is checked
whether the file *.mat exists. If it exists, it is loaded. Saving individual 2D



files with the extension *.mat means that the data are read at least 2 times
faster. A fragment of the source code of the file
GUI_hyperspectral_fun is shown below:

The menu allowing for the selection of the file *.cube, *.raw or *.dat is
invoked at the beginning of the function GUI_hyperspectral_fun ,
i.e.:

According to the source code shown above, the middle 2D image from
the image sequence, when properly loaded, is displayed by default. Since the
number of individual *.mat files initially converted by Matlab (with prior
reading of the same file) is not known, its status is read. Reading and
showing the status in the visual form involves a sequential attempt to read all
the files *.mat, i.e.:



The displayed image is 20 × 800 pixels. The red stripes represent the
absence of the *.mat file, while the green ones mean that it is located on the
disk. An exemplary image is shown in Fig. 3.1.

Fig. 3.1 Exemplary image indicating the distribution: the existence of the file *.mat is shown in green,
its absence in red

3.1 Affine Transformations of the Image
The range of affine transformations applied in hyperspectral imaging is much
wider than in the case of classic 2D images. Only those which are most often
applied in hyperspectral imaging were selected. These are:

rotation by any angle in the angular range of α ∈ (0,360] degrees every
10 degrees—the new coordinates of pixels in this case (m A , n A ) are as
follows:

 (3.1)

 (3.2)

reordering of rows—the image L GRAYM (m, n, i)—mirrored around the



x-axis,

reordering of columns—the image L GRAYN (m, n, i)—mirrored around
the y-axis, i.e.:

 (3.3)
 (3.4)

Cropping—cutting a portion of the image, i.e.:

 (3.5)
where: m, n ∈ ROI.

Since in practice, the user manually selects the option of rotation, shift or
cropping, the variable names in the function were standardized to ‘L1’ for
simplicity. In practice, a record in the source code overwrites the value in
variable L1, but it is consistent and clear:

For each condition if , the value set by the user is taken—from the
handle hObj . In this case, these are the handles to checkbox (7,8,9,10)
and the pull-down menu ( popup ), the value of 12.

3.2 Image Filtration
3.2.1 Non-Adaptive
The read image L GRAY (m, n, i) and the calibrated images L DARK (m, n, i) and



L WHITE (m, n, i) are subjected to noise removal. The noise is removed using a
median filter with a mask h w sized M w  × N w  = 3 × 3 pixels or more set
manually using the graphical user interface (GUI). Each 2D image is filtered
individually. The minimum size of the mask h w was selected based on the
maximum size of a single distortion whose area of concentration did not
exceed 4 pixels. The size of distortions in hyperspectral images may be
different and therefore the size of the filter is set manually. The specific size
is set in the menu checkbox with the handle hObj(14) , i.e.:

The above source code shows that for the value ‘1’ , the image L1 is
not filtered in any way, and the filtration itself ranges from M w  × N w
 = 3 × 3 pixels to M w  × N w  = 11 × 11 pixels. This is enough to remove
noise from most hyperspectral images.

3.2.2 Adaptive
The second type of noise removal from a sequence of hyperspectral images is
adaptive adjustment of the size of the filter [1–7], for example, the median
filter. There are three options here:

adaptation of the filter size to the 2D image content independently for
each i-th image,

adaptation to the i-th 2D image—depending on the wavelength,

adaptation of the filter size to both the 2D image content and the i-th
image.



Choosing the right solution for hyperspectral images should be preceded
by the analysis of changes in the Peak Signal-to-Noise Ratio (PSNR) for
individual i images in a series of measurements. The values of PSNR, the
vector L PSNR (i), are defined as:

 (3.6)

where: B is the number of bits per one image pixel, L MSE (m, n, i) is the
mean squared error. i.e.:

 (3.7)

 (3.8)

The problem of selecting the size of the filter h w (its size M w  × N w ) and
making it dependent on L PSNR (i) is directly related to the content of images.
This content may be different in each case—especially when it comes to
diagnosis of the skin. In this regard, the selected ROIs shown in Fig. 3.2 were
analysed.



Fig. 3.2 Results of analysis of PSNR values for two selected regions: a the input image L GRAY
(m,n,i = 80), b a graph of changes in L PSNR (i) for i images without median filtering and with median
filtering using masks sized M w  × N w  = 3 × 3, 5 × 5, 9 × 9 and 11 × 11 pixels; c an analogous graph
for another ROI

The sample results shown in Fig. 3.2 confirm an increase in noise for
hyperspectral cameras for extreme wavelength values. In addition, it should
be noted that median filtering with a mask h w sized 3 × 3 pixels increases the
value of PSNR to the greatest extent (almost 10 dB). The source code of m-
file GUI_hyperspectral_filter_test providing the above graphs
is as follows:





The first part of the code allows to identify the ROI in the image i = 80.
Then, the images from i = 1 to 128 are loaded sequentially from the disk and
the ROI is separated. Then, the value of PSNR after median filtering with
different mask sizes is calculated.

The results shown in Fig. 3.2 could suggest that increasing the size of the
mask h w of the median filter to the value of M w  × N w  = 11 × 11 pixels and
more is the right approach. The attentive reader probably drew attention to
the formulas (3.7) and (3.8), where due to the lack of the source image
(devoid of noise), the mean value of L MEAN (i) is taken into account. These
calculations are only justified when a homogeneous ROI is analysed and
there is no source image free from noise. In other cases, the formulas (3.7)
and (3.8) must be modified by replacing L MEAN (i) with an image devoid of
noise. Since there is no noise-free image, it will be artificially added to the
existing i images in gray levels. The function imnoise enables to add
Gaussian or salt and pepper noise to the image L GRAY (m, n, i). The resulting
image L NOISE (m, n, i) will be further used to test changes in PSNR but for
the entire image (without the need to manually select the ROI). Filtration
efficiency is here compared with the adaptive median filter, median filter and
image without filtration. The source code of the m-file
GUI_hyperspectral_filter_test2 allowing for this type of
calculations is shown below:





The function GUI_hyperspectral_adaptive_filter is
implemented with adaptive median filtering with a mask h w whose size
ranges from M w  × N w  = 3 × 3 pixels to M w  × N w  = 7 × 7 pixels. The main
idea of the proposed adaptive filtering is to calculate erosion (image L GRAYE
(m, n, i)), dilation (image L GRAYD (m, n, i)) and perform median filtering
(image L MED (m, n, i)) with a structural element SE w (in the case of erosion
and dilation) and a mask h w (in the case of filtration) sized 3 × 3, 5 × 5 and
7 × 7 pixels, i.e.:

 (3.9)

 (3.10)
In order to calculate the resulting image L MED

(c)
(m, n, i) after filtration

with the adaptive median filter, auxiliary variables (binary images) L cw (m, n,
i), L gw (m, n, i) and the image in gray levels L ow (m, n, i) need to be
introduced:

 (3.11)

 (3.12)

 (3.13)

where L MED (m, n, i) is the result of filtration of the image L GRAY (m, n, i)
for the mask sized M w  × N w . In order to simplify the notation of the results
of filtration, erosion and dilation carried out for a specific mask size, the size
M w  = N w was given as one number as a subscript, for example, L MED,3 (m,



n, i) is the result of median filtering with a mask sized M w  × N w  = 3 × 3
pixels. Thus, the resulting image L MED

(c)
(m, n, i) is equal to:

 (3.14)

The individual subscripts, e.g. 3, (as mentioned above) are directly related
to the size of the mask (structural element) amounting to, for example, 3 × 3
pixels. Adaptive filtration is performed by the afore-mentioned and already
used function GUI_hyperspectral_adaptive_filter with the
following source code:



The above source code has a block structure associated with conducting
triple calculations of individual variables for three different mask sizes, i.e.:
3 × 3, 5 × 5, 7 × 7 pixels. These calculations are necessary to determine the
final form of the image L MED

(c)
(m, n, i) in accordance with the formula

(3.14). This function, with the source code mentioned above, provides
practically relevant results—Fig. 3.3.



Fig. 3.3 Results of analysis of L PSNR (i) and L SEU (i) for all i images L GRAY (m,n,i). The graph a
shows the measurement results of L PSNR (i) without filtration, with adaptive filtration and with
median filtration. The graph b shows the values of L SEU (i), the percentage share in filtration of the
masks sized M w  × N w  = 3 × 3, 5 × 5, 7 × 7 pixels

The results of analysis of L PSNR (i) values presented in Fig. 3.3(a) clearly
indicate the advantage of applying an adaptive median filter over the
conventional median filter with a mask sized 7 × 7 pixels (a difference of
about 3 dB for i ∈ (40,60)) and compared to an image without any
interference (filtration). Figure 3.3 b) shows the percentage share with respect
to all pixels in the image L GRAY (m, n, i) of individual masks M w  × N w
 = 3 × 3, 5 × 5, 7 × 7 pixels. As can be seen in Fig. 3.3(b), the share of the
mask sized 3 × 3 pixels is the largest, about 45%. Additionally, the
percentage share of the mask sized 5 × 5 pixels is similar to the distribution
shown in Fig. 3.2. For extreme images (extreme values of i), more filtration is
required, while the middle ones require less filtration. In each case of
filtration, sample images and their visual assessment are much more
convincing than PSNR. Therefore, Fig. 3.4 shows the images L NOISE (m, n, i)
and L MED,7 (m, n, i) as well as L MED

(c)
(m, n, i).



Fig. 3.4 Results of analysis for a sample image i = 80 a input image L GRAY (m, n, i = 80); b result of
median filtering L MED (m, n, i = 80) for the mask sized M w  × N w  = 7 × 7 pixels; c result of
adaptive median filtering L MED

(c)
(m, n, i = 80)

The problem presented at the beginning of this subchapter, i.e.: adaptation
of the filter size to the 2D image content independently for each i-th image
and adaptation to the i-th 2D image depending on the wavelength, is solved
by the above adaptive approach. Therefore, there is no need to develop two
separate algorithms.

The presented adaptive filtration was not deliberately included in the GUI
or the m-files of the program. At this point, I encourage the reader to make
the appropriate changes in the files GUI_hyperspectral and
GUI_hyperspectral_fun so that adaptive filtering will be available in
the main application menu.

3.3 Image Calibration
Calibration of hyperspectral images is a very important element, because it is



affected by many factors that can introduce significant errors to the
interpretation of results (the read intensity). In practice, assuming constant
light intensity in the full spectral range of the camera, there are two methods
of calibration:

using a reference visible in the analysed image or

using calibrating images.

In the first case, calibration is related to image normalization from the
value of minimum brightness occurring in the image to the mean value read
from the area visible in the reference image. Therefore, the file after
calibration L CAL (m,n,i) is calculated as:

 (3.15)

where:

 (3.16)

and:

 (3.17)
Mc and Nc—are the numbers of rows and columns of the ROIc being the
reference—Fig. 2.2.

The size of the ROIc is most often Mc × Nc = 40 × 40 pixels. The
calibrated image L CAL (m, n, i) has values (for bright pixels) limited from the
top by the mean brightness from the area of the reference Cal w (i).
Implementation of this fragment in Matlab is simple:



Four values stored in the variable rc come from manual selection of the
ROIc. It must be made clear that this calibration method can be fully
automated with a constant position of the reference—e.g. always in the upper
left corner of the stage. In this case, it is enough to assign the variable rc to 4
constants—x and y coordinates and the size of the ROIc in x- and y-axis.

In the second case, calibration is related to the performance of 2
additional registrations of images L DARK (m, n, i) and L WHITE (m, n, i). The
idea of this calibration is shown in Fig. 3.5.

Fig. 3.5 Schematic graph of calibration results for L CAL
(2)

(m, n, i) of brightness changes in the image L

GRAY (m, n, i) using the images L DARK (m, n, i) and L WHITE (m, n, i) when m = const

These images (Fig. 3.5) are the basis for calibration. The calibrated image
L CAL

(2)
(m, n, i) is calculated as:

 (3.18)

I encourage the reader to implement this second calibration method in
practice. In this case, the reader should duplicate the reading of files in the
GUI and add the relevant fragment in the file GUI_hyperspectral_fun
. The further course of action and the algorithm fragment remain unchanged.

3.4 Preliminary Version of the GUI
The issues of data reading and image pre-processing presented in the



previous chapters have been linked with the preparation of a preliminary
version of the GUI. The GUI has been divided into several areas—Fig. 3.6.

Fig. 3.6 Main menu of the application: 1 default window menu; 2 open button; 3 conversion button; 4
reordering image rows; 5 normalization; 6 image rotation; 7 artificial colour palette; 8 median filter
size; 9 number of samples (number of columns); 10 number of lines (number of rows); 11 number of
bands (number of images for each wavelength); 12 slider for viewing and analysis of individual images;
13 image showing the amount of converted images *.mat; 14 viewing the analysed image; 15 graph of
the mean, minimum and maximum brightness for the entire area or the selected ROI; 16 reordering of
image columns; 17 option of selecting the ROI; 18 calibration; 19 text data on the wavelength and the
file name

The GUI presented in Fig. 3.6 allows for opening *.cube, *.raw or *.dat
files, automatic conversion to *.mat files, reordering of image rows and
columns, normalization, image rotation, artificial colouring of images,
median filtering, visualization of the number of image columns and rows as
well as the number of images for individual wavelengths, viewing and



analysis of individual images, viewing the analysed image, displaying
changes in the mean, minimum and maximum brightness for the entire area
or the selected ROI for individual images, selecting the ROI, image
calibration, displaying text data on the wavelength and the file name.

This GUI will be further expanded and its functionality will be increased.

3.5 Block Diagram of the Discussed Transformations
The discussed transformations along with the source code excerpts and the
corresponding m-files can be presented in the form of a block diagram. This
diagram is shown in Fig. 3.7.



Fig. 3.7 Block diagram of the initial version of the algorithm. The block diagram has been divided into
three main parts: image acquisition, image pre-processing and image processing discussed later in this
monograph. This diagram includes one of the blocks highlighted in blue whose functionality has not
been deliberately included in the main application

The algorithm discussed so far has been divided into three blocks: image



acquisition, image pre-processing and image processing discussed later in
this monograph.

The m-files containing the discussed functions and methods are available
in this book as an attachment. It should be borne in mind that the files will be
further expanded to add new functionality. For this reason, a container has
been developed for readers interested in testing the discussed scope of
functionality of the proposed algorithms. The container includes the
discussed functions in GUI_ver_pre.zip attached to the book.
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4.1 Diagnostic Expectations
One of the key elements in the construction of the image processing
algorithm is the diagnostic usefulness of the results. The literature review
presented in the introduction and the publications from [1–4] show that there
is a wide range of segmentation methods. Due to the large amount of
information extracted from hyperspectral images, there are virtually no
restrictions (relating to the minimum amount of data) to use any method of
image analysis and segmentation. Therefore, many authors use segmentation
methods (also used in classification) such as support vector machines (SVM)
[1, 2], the nearest neighbours [3] and others [4]. These segmentation methods
are based primarily on a set of data obtained from the manually selected for
all acquired wavelengths. From a practical, dermatological, point of view,
these methods used in hyperspectral imaging should:

allow for segmentation of objects,

allow for spectral analysis of any image portion,

enable to compare the spectral characteristics of any two areas,

allow for building a classifier based on binary decision trees,
discriminant analysis and others,

test the created classifier for different images.



In addition, the methods used in dermatology and biomedical engineering
in the field of hyperspectral imaging should be fully automatic, provide
reproducible results, allow for batch data analysis (selecting only a
catalogue), and be resistant to individual variability of patients. Given these
expectations, both diagnostic and functional, image processing presented in
the following sections has been proposed.

4.2 Tracking Changes in the Shape of an Object
An extremely important element in hyperspectral imaging is the analysis of
the object/objects. This analysis is determined by the method of selecting the
object. Besides simple selection of the ROI, automatic selection is often used
in practice. Automatic selection is simply binarization or another more
advanced method of segmentation. However, regardless of the segmentation
method, a hyperspectral image sequence, by definition, does not provide the
same image for different wavelengths. Accordingly, the segmentation process
typically occurs for one of the images and its result (binary image) is used for
the subsequent images. The object shape hardly ever remains the same in
successive images. Therefore the only solution is to perform 3D
segmentation. However, this type of segmentation requires the analysis of the
entire sequence of cube images sized, for example,
M × N × I = 696 × 520 × 128 pixels. In most types of computer programs, it
is not possible due to the large amount of data for analysis (≈100 MB for data
type = 12). Therefore, one possible solution to such problems is to track
changes in the shape of an object for the successive images. One possibility is
to use the methods of conditional erosion and dilation. These methods are
typically used to improve the quality of binary images obtained (most often)
by binarization.

Tracking changes in the shape of an object requires:

indicating the image that will be the basis for segmentation
(binarization),

indicating the algorithm enabling the correction of the object in the
binarized image relative to the other images in gray levels, for
subsequent wavelengths.

The method of conditional erosion and dilation involves designation of



one of the images L GRAY (m, n, i), most often for i = 1, and then
segmentation, for example, using binarization with a threshold p bg ,
providing the image L BIN (m, n, i), i.e.:

 (4.1)

As a consequence, two images are obtained (e.g. for i = 1), namely L GRAY
(m, n, i = 1) and L BIN (m, n, i = 1). Let us assume that there is only one object
in the binary image L BIN (m, n, i = 1). Conditional erosion and dilation for
the adopted symmetric structural element SE2(m SE2, n SE2) sized M SE2 × N
SE2 are shown below:

 (4.2)

 

(4.3)
where

 (4.4)

as well as p ec and p dc —the thresholds set by the user.
The constants p ec and p dc determining the effectiveness of erosion and

dilation respectively take values dependent on the type of the variable in
which the image L GRAY (m, n, i) is stored. In the case of the variable type
double , these are values from the range p e  = p d  ∈ (0, 1), whereas for
the variable type uint8 —p e  = p d  ∈ (0, 255). The corresponding source
codes for erosion and dilation are shown below—these are functions
GUI_hyperspectral_dilate_c and
GUI_hyperspectral_erode_c :



Analogously for dilation, i.e.:



The described functions of conditional opening and closing do not fulfil,
in comparison with the classical approach, the following relationships:

subsequent operations of opening or closing may cause further changes
in the size of the object in the image, i.e.:

 (4.5)



 (4.6)

where symbols  refer to erosion and dilation respectively.

opening the image completeness is not equal to the completeness of its
closing and vice versa, i.e.:

 (4.7)

 (4.8)
where

L BIN
(D)

—completeness (superscript D) of the image L BIN ,

the images resulting from opening for the included structural elements
‘a’ and ‘b’ do not need to be included, i.e.:

 (4.9)

 (4.10)
where L BIN

(a)
 ⊆ L BIN

(b)
.

Specificity of the described conditional erosion and dilation operations is
based on the sequential performance of conditional erosion and dilation, i.e.:

 (4.11)

The number of performed sequential operations of conditional erosion
and dilation strictly depends on the size of the structural element SE2 and the
shape of the object in the binary image L BIN (m, n, i). Figure 4.1 shows
changes in the surface area for successive iterations and various values of the
threshold p ec  = p dc  ∈ {0.2, 0.3, …, 0.7, 0.8} for a sample object with the
total surface area of 3667 pixels. It also shows the first images L GRAY (m, n,
i = 1) and L BIN (m, n, i = 1) for which the calculations were made.



Fig. 4.1 Changes in the surface area for successive iterations and various values of the threshold p ec
 = p dc

Figure 4.1 shows three different situations. The first one is the complete
removal of the object from the image obtained for p ec  = p dc  = 0.8. The
second one is the adjustment of the position and shape of the object visible
when p ec  = p dc  ∈ {0.4, 0.5, 0.6, 0.7}. The third one is zooming the object
to the full size of the image for p ec  = p dc ∈{0.2, 0.3}. The source code
providing the above graph is shown below:



In the above source code, a change in the value of p ec and p dc ranging
from 0.2 to 0.8 in each loop circulation is noteworthy. Then, according to the
idea presented above, conditional erosion and dilation, functions
GUI_hyperspectral_dilate_c and



GUI_hyperspectral_erode_c , are calculated alternately.
The assessment of the convergence of the algorithm should be carried out

also for other sizes of the structural element SE2 (in the present case it was
3 × 3 pixels). A more detailed analysis of the various types of collected
images and various sizes of objects confirmed that typically the convergence
of the algorithm can be reached after approximately 15 iterations, when
fluctuations around the correct value of the surface area are in the range of
±10% (quasi steady state). An increase in the size of the structural element
SE2 increases the rate of convergence but also the error of approximately
±40% in relation to the object separated by an expert. The accuracy of 10% is
usually obtained if the size of the structural element SE2 constitutes ≅3% of
the object surface area. This relationship is clearly visible in Fig. 4.2a which
shows a graph of changes in the surface area of the object for subsequent
iterations and resizing the structural element SE2 from 3 × 3 pixels to
11 × 11 pixels.



Fig. 4.2 Graph of changes in the surface area of the object for subsequent iterations and resizing the
structural element SE2 from 3 × 3 pixels to 11 × 11 pixels: a for M × N = 279 × 208 pixels and 32
iterations; b for M × N = 557 × 416 pixels and 32 iterations; c for M × N = 279 × 208 pixels and 64
iterations; d for M × N = 557 × 416 pixels and 64 iterations

The other graphs in Fig. 4.2b–d show the results for the input image
resolution M × N = 279 × 208 pixels, M × N = 557 × 416 pixels as well as 32
and 64 iterations. The source code allowing for the calculations for the first
graph presented in Fig. 4.2a is shown below:



To better understand and illustrate the transformations in the above
source code, the parts responsible for reading the image (for i = 50 and
i = 80) are separated. The presented loop enables to resize the mask SE2   =
  ones(MSE2NSE2) in the range from 3 to 11 every 2 pixels.

For zero iteration (it = 0), which is the initial state, the total surface area
shown in Fig. 4.2 is greater than the surface area for the same iteration shown
in Fig. 4.1. This is due to the adopted change in the resolution of the input



image. In the first case, the resolution is reduced to 20% of the original size,
while in the second case it is 40% of the original image resolution.

Due to the nature of conditional erosion and dilation, two-dimensional
image convolution, the time necessary to obtain the results depends on the
image resolution, the size and shape of the object and the size of the
structural element SE2. Some selected times of analysis are shown in
Table 4.1. IT indicates the maximum number of iterations, and it* the number
of iterations after which the quasi steady state is achieved.

Table 4.1 Some selected times of analysis for two different sizes of the object, five different sizes of
the structural element and different numbers of iterations (for Intel® Xenon® CPU X5680@3.33 GHz)

Time (s) M × N (pixel) M SE2 × N SE2 (pixel) IT [/] it* [/]

7.7 279 × 208 3 × 3 16.2 21
7.5 279 × 208 5 × 5 16.2 11
7.7 279 × 208 7 × 7 16.2 7
7.9 279 × 208 9 × 9 16.2 6
8.4 279 × 208 11 × 11 16.2 6
30.1 557 × 416 3 × 3 16.2 32
30.4 557 × 416 5 × 5 16.2 20
31.6 557 × 416 7 × 7 16.2 13
32.6 557 × 416 9 × 9 16.2 12
34 557 × 416 11 × 11 16.2 8
15.5 279 × 208 3 × 3 32.2 28
15.1 279 × 208 5 × 5 32.2 18
15.6 279 × 208 7 × 7 32.2 11
16.0 279 × 208 9 × 9 32.2 9
16.7 279 × 208 11 × 11 32.2 7
59.7 557 × 416 3 × 3 32.2 40
60.9 557 × 416 5 × 5 32.2 19
62.9 557 × 416 7 × 7 32.2 13
65.4 557 × 416 9 × 9 32.2 11
69.6 557 × 416 11 × 11 32.2 8

The time of analysis shown in Table 4.1 is affected to the greatest extent
by the image resolution. According to the intuition, doubling the image
resolution results in an almost fourfold increase in computation time. The
structural element SE2 influences the calculation time to the least extent.



The results of the proposed algorithm for tracking the object based on
conditional erosion and dilation are presented in Figs. 4.3 and 4.4.

Fig. 4.3 Results of conditional erosion and dilation for an artificial binary image representing a
rectangle. Part a shows the output image L BINE (m, n, i) as a binary image superimposed on the image
in gray levels L GRAY (m, n, i). Part b shows the input image L BINE (m, n, i) as a binary image
superimposed on the input image in gray levels L GRAY (m, n, i). Subsequent stages of erosion and
dilation are shown in part (c) for p ec  = p dc  = 0.8



Fig. 4.4 Results of conditional erosion and dilation for an artificial binary image representing a
rectangle. Part a shows the output image L BINE (m, n, i) as a binary image superimposed on the image
in gray levels L GRAY (m, n, i). Part b shows the input image L BINE (m, n, i) as a binary image
superimposed on the input image in gray levels L GRAY (m, n, i). Subsequent stages of erosion and
dilation are shown in part (c) for p ec  = p dc  = 0.4

The results of conditional erosion and dilation presented in Figs. 4.3 and
4.4 were obtained for an artificial binary image representing a rectangle. Part
a shows the output image as a binary image superimposed on the image in
gray levels. Figures 4.3b and 4.4 show the input image as a binary image
superimposed on the input image in gray levels. The subsequent stages of
erosion and dilation are shown in Figs. 4.3c and 4.4c. These are the
successive stages of conditional erosion and dilation for successive
conditional erosions and dilations of the images L BINE (m, n, i) and L BIND (m,
n, i). Figure 4.3 shows the results for p ec  = p dc  = 0.8 and Fig. 4.4 for p ec
 = p dc  = 0.4. In both cases the size of the structural element SE2 was the
same, namely 3 × 3 pixels. Therefore, Figs. 4.3 and 4.4 show how conditional
erosion and dilation, which enable to change the shape of the object present
in the image from a rectangle to the shape corresponding to the content of the
image L GRAY (m, n, i), work in practice.

In this way, the above algorithm was implemented to track an object



whose shape changes for successive i images in a series. To this end, setting
the threshold manually or automatically, the first image L GRAY (m, n, i = 1)
can be subjected to binarization providing the image L BIN (m, n, i = 1) and
then, conditional erosion and dilation of the images L BINE (m, n, i ≠ 1) and L
BIND (m, n, i ≠ 1) can be performed alternately. In practice, however, the first
image (i = 1) is rarely used as a basis for binarization and then determination
of the starting object whose shape is further corrected. This is due to the large
amount of noise in the image. The middle image in a series is most
commonly adopted as the value i, i.e.: i = I/2 = 64 (assuming an even number
of I). The results are shown in Fig. 4.5.

Fig. 4.5 Results of conditional erosion and dilation performed for subsequent images in a sequence for
i ∈ (1, I) and IT = 11 starting with the binary image L BIN (m, n, i = I/2) when: a p ec  = p dc  = 0.5
and M SE2 × N SE2 = 3×3; b p ec  = p dc  = 0.3 and M SE2 × N SE2 = 3×3; c p ec  = p dc  = 0.5 and M

SE2 × N SE2 = 5×5; d p ec  = p dc  = 0.3 and M SE2 × N SE2 = 5×5



The results of conditional erosion and dilation shown in Fig. 4.5 were
obtained for successive images in a sequence for i ∈ (1, I) and IT = 11. The
analysis was started from the binary image L BIN (m, n, i = I/2). The next
images in Fig. 4.5a–d were obtained for p ec  = p dc  ∈ {0.3, 0.5} and M
SE2 × N SE2 ∈ {3 × 3, 5 × 5}. Depending on the selected parameters of the
algorithm, the shape of the tracked object changes significantly. These
changes are due to the different amount of noise in the image, the individual
changes in the size of the object for the adjacent 2D images etc. In each case,
these parameters (p ec , p dc , M SE2, N SE2) are selected individually.

The source code for displaying the results from Fig. 4.5a is shown below:





The above source code consists of two parts. In the first one, there is a
loop designed for the analysis of images from i equal to 65 to 128. This
analysis involves a sequence of conditional erosions and dilations for it   =
  1:2:10 . The other part of the source code concerns the analysis for
decreasing values of i, i.e. from 63 to 1. Thus, the 2D image for i = 64 is the
beginning of the analysis running in both directions (decreasing and
increasing i).

The presented method for tracking the shape of an object was not
deliberately included in the overall GUI of the described program to
encourage readers to its independent implementation. The full source code
shown above is attached to this monograph in the form of the following m-
files:

GUI_hyperspectral_erode_dilate_test,
GUI_hyperspectral_erode_dilate_test2,
GUI_hyperspectral_erode_dilate_test3

and
GUI_hyperspectral_erode_dilate_test4.



4.3 Basic Analysis of Features
The basic element of hyperspectral image analysis is a comparative analysis
of features such as the mean value or contrast both of the whole image and
the ROI. In this case, two groups of data are compared.

The first group of data is derived directly from the analysed image. This
may be, as previously mentioned, the mean value of brightness L S (i) of the
selected ROI S , for example [similarly to (3.17)]:

 (4.12)
It may be also the value of minimum or maximum brightness. The first

group of data can be also created as a result of texture analysis. These may
be, for example, the results of analysis of gray-level co-occurrence matrix
(GLCM), i.e.:

 (4.13)

where L GB can be calculated for the horizontal neighbourhood (an arrow
as a superscript) :

 (4.14)

for m ∈ (1, M − 1) and n ∈ (1, N), u ∈ (1, U) and v ∈ (1, V) where U
and V are equal to the number of brightness levels, i.e. 2 B where B is the
number of bits per pixel. The above notation concerns the comparison of the
horizontal neighbourhood of pixels. For the vertical arrangement, the formula
(4.14) is converted to the following relationship:

 (4.15)

for m ∈ (1, M) and n ∈ (1, N − 1).
On this basis (L GLCM (u, v, i)), the parameters such as contrast L CON (i),

energy L ENE (i) or homogeneity L HOM (i) are calculated, i.e.:



 (4.16)

 (4.17)

 (4.18)

Apart from analysis of GLCM, other texture features such as the surface
area of the recognized references can be also analysed. In the simplest form,
this is the sum L DET (i) of the image L WZ (m, n, i) after binarization using the
threshold p rw :

 (4.19)

where

 (4.20)

 (4.21)

SE—is a structural element whose shape corresponds to the shape of the
recognized reference.

All the above new features are calculated separately for each ith
wavelength and will be further used.

The other group of data is derived from another portion of the same
image. It can be also acquired from another image or it may be a data vector
(loaded outside).

To distinguish between these two groups of data, upper indexes were
introduced—‘W’ for the second group of data and ‘E’ for the first group of
data. A basic comparison involves calculating the difference between the data
vectors, for example, the calculated mean value of brightness, i.e.:

 (4.22)

These differences are then binarized with respect to the threshold p q that



is set manually and expressed as a percentage of the value of the variable δ S
(i).

The analysis of the two discussed groups of data and the values they
provide is related to the areas selected manually. On this basis, the values of
FN, FP, TP and TN are calculated. The idea of these calculations is shown in
Fig. 4.6.

Fig. 4.6 The idea of calculating FN, FP, TP and TN for a sample graph of the variable δ S (i): a a
graph of the mean brightness for comparable areas and their difference δ S (i), b the areas marked in
red and green by the user meet or do not meet the condition of compliance; c the results of comparisons
of the red and green areas from parts (a) and (b)

The values of the variable δ S (i) below the assumed threshold p rg satisfy
the condition of allowable differences between comparable features - in this
case the mean brightness values. These wavelengths (values i) that are
different or exceed the threshold p rg are marked in Fig. 4.6a with a red
background. Similar colours (red and green) were used to mark in Fig. 4.6b
the areas that must comply with the condition of miscellaneous brightness
levels below the set threshold. The following excerpt in the function
GUI_hyperspectral_fun is to enable the user to manually select these
areas on a graph:



A comparison of the two results calculated automatically and set
manually is shown in Fig. 4.6c. On this basis, the aforementioned values of
FN, FP, TP and TN as well as ACC are calculated. The usefulness of this type
of analysis is very high in practical applications and diagnostics, for which
the degree of compliance of the mean brightness level with the actual values
is analysed.

A fragment of the source code responsible for this part of calculations is
located in four m-files GUI_hyperspectral_diff,
GUI_hyperspectral_class, GUI_hyperspectral and
GUI_hyperspectral_fun. The source code of the function
GUI_hyperspectral_diff is shown below:



The presented source code can be divided into 2 elements:

standardization of the variables test and reference so that they
cover the same range of wavelengths (of the measured i images). This is
due to the versatility of the approach for which, in any case, it is
possible to perform calculations in the proposed application for any
range of wavelengths.

calculation of the values of δ S (i) as well as δ CON (i), δ ENE (i) and δ HOM
(i) – stored in the variable diff_test_reference.

The values included in the variables test and reference are



obtained using two possibilities:

the first one is the aforementioned manual selection of the ROI. Manual
selection of the ROI was realized in the fragment of the source code in
the file GUI_hyperspectral_fun , i.e.:

It (the above code fragment) is invoked in the function
GUI_hyperspectral in the fragment:

the other one is reading from the external file test.mat and/or
reference.mat . The code fragment of the function
GUI_hyperspectral_fun is responsible for reading, i.e.:



When a wrong file is indicated or no file is indicated, there appears
errordlg saying  and/or 

 Reading is possible by placing the two buttons
in the main window, in the file GUI_hyperspectral , i.e.:

Figure 4.7 shows the graphs of δ S (i) as well as δ CON (i), δ ENE (i) and δ
HOM (i) as a function of wavelength, whereas Fig. 4.8 shows a graph of



changes in the mean, minimum and maximum brightness values for the
reference L S

W
(i).

Fig. 4.7 Graphs of δ S (i) as well as δ CON (i), δ ENE (i) and δ HOM (i) as a function of wavelength
and (black line) the manually set threshold p q



Fig. 4.8 Graph of changes in the mean, minimum and maximum brightness for the reference 

The first graph (Fig. 4.7) is shown in a separate application window. The
second one (Fig. 4.8) constitutes the right part of the main window—Fig. 4.9.



Fig. 4.9 The main menu of the application and additional windows: 1 main menu; 2 the results of
ACC, TPR, SPC, TN, TP, FN, FP; 3 GLCM; 4 graphs of L CON (i), L ENE (i) and L HOM (i); 5 graphs
of δ S (i) as well as δ CON (i), δ ENE (i) and δ HOM (i); 6 changes in the brightness for the mth row
and nth column selected manually by moving the slider

The values of ACC, TPR, SPC, TN, TP, FN, FP are calculated using the
function GUI_hyperspectral_class , i.e.:



When analysing the next fragments of the proposed source code, it is



divided into two areas:

in the first area the values are gathered in the variable err constituting
the basis for further analysis. Gathering is directly related to manual (by
the user) determination which features (δ S (i) as well as δ CON (i), δ ENE
(i) and δ HOM (i)) are taken into account in the analysis. This option is
provided by a suitable code fragment in the GUI_hyperspectral ,
i.e.:

When appropriate values (as selected) are added to the variable err ,
there follows its binarization with the threshold p rg sum(err(:,2:end)
  >   prg,2)   >   0 . Then the range of TP and TN located in the
manually selected ROI is calculated, i.e.: (err(:,1)   >   rect(1))&
(err(:,1)   <   rect(2 )).

In the other area, the values of ACC, TPR, SPC, TN, TP, FN, FP are
calculated. The obtained results are shown in a separate window—
Fig. 4.9 (2).

Depending on the option INT, ENE, VAR, HOM (Fig. 4.10) chosen to



calculate ACC, TPR, SPC, TN, TP, FN, FP, different configurations of
features are taken into account. Therefore, for the set threshold p rg (in this
case equal to 15%), different results are obtained. For example, for the test
and reference ROIs shown in Fig. 4.11, the results for different
configurations of features are presented in Table 4.2. The task is to verify the
quality of the recognition of the skin area for a selected characteristic spectral
region—Fig. 4.11 (right). In this case, 86 measurements of TN and 42
measurements of TP are marked. The number of measurements is equivalent
to the number I of images for individual wavelengths.



Fig. 4.10 Fragment of the main menu with the elements responsible for image pre-processing—green
and image processing—red: 1 calculation of intensity; 2 calculation of energy; 3 types of analysis
ERR/DEC TREE/BAYES/DISC/SVM; 4 threshold p rg ; 5 on/off window of classification results; 6
on/off window of results of ACC, TPR, SPC, TN, TP, FN, FP; 7 on/off window of texture analysis; 8
on/off window of GLCM; 9 on/off window of graphs of feature errors; 10 choice of test/pattern
analysis; 11 calculation of contrast; 12 calculation of homogeneity; 13 loading of the external file
test.mat; 14 loading of the external file reference.mat

Fig. 4.11  Reference and test ROIs and the marked range of TN and TP for the tested case

Table 4.2 Results of TN, TP, FN, FP as well as ACC, TPR, SPC (expressed as a percentage) for
different configurations of features—on/off position of checkbox objects (INT, ENE, VAR, HOM)a

INT CON ENEHOMACC TPR SPC TN TP FN FP
0 0 0 1 67 0 100 86 0 42 0
0 0 1 0 67 0 100 86 0 42 0
0 0 1 1 67 0 100 86 0 42 0
0 1 0 0 59 0 87 75 0 42 11
0 1 0 1 59 0 87 75 0 42 11



0 1 1 0 59 0 87 75 0 42 11
0 1 1 1 59 0 87 75 0 42 11
1 0 0 0 90 69 100 86 29 13 0
1 0 0 1 90 69 100 86 29 13 0
1 0 1 0 90 69 100 86 29 13 0
1 0 1 1 90 69 100 86 29 13 0
1 1 0 0 81 69 87 75 29 13 11
1 1 0 1 81 69 87 75 29 13 11
1 1 1 0 81 69 87 75 29 13 11
1 1 1 1 81 69 87 75 29 13 11

aThe value of ‘0’ means that the feature does not occur, ‘1’ that it occurs in
calculations

Table 4.2 shows that the presented simple method of analysis of features
does not work in every case. First, the results of TPR, SPC obtained for
individual features (INT, ENE, VAR or HOM) are at the level of 0 and 100%
or 0 and 87% (for TPR and SPC respectively). Secondly, in the present case,
the feature which is brightness (INT) improves the results regardless of the
presence of the other features (see the last rows in Table 4.2), i.e.:
TPR = 69% and SPC = 100%. To sum up, this simple method of analysis of
features cannot use the full potential and results obtained from texture
analysis. Consequently, the selected types of classifiers described in the
following sections were implemented.

4.4 Block Diagram of the Discussed Transformations
The discussed transformations, extraction of features, including the parts of
the source code are presented in the form of a block diagram in Fig. 4.12.
This diagram applies to parts of the algorithm responsible for fundamental
analysis of features. Additionally, it was subdivided into the part responsible
for the extraction of features. The blocks of image acquisition and pre-
processing have been discussed in earlier chapters of the monograph.



Fig. 4.12 Block diagram of the algorithm part responsible for fundamental analysis of features. The
block diagram is subdivided into a part responsible for the extraction of the features. Blocks of image
acquisition and pre-processing have been discussed in earlier chapters of the monograph. This diagram
includes one of the blocks highlighted in blue whose functionality has not been included in the main
application



The block diagram will be further supplemented by the blocks associated
with classification. The diagram intentionally does not include the module,
the portion of the source code and the corresponding functionality of tracking
changes in the contour, which, as mentioned above, readers can implement
themselves.

The collected features are the basis for the construction of classifiers.

4.5 Measurement of Additional Features
The previous chapter discusses the features obtained from the analysis and
processing of hyperspectral images, and to be more specific, derived from
GLCM analysis of the ROI selected by the user. This analysis has been
implemented in the described software both in terms of the source codes and
the GUI. However, this is not the only possible implementation as well as not
the only possible set of features. Typical analyses of textures used for
hyperspectral images include: quadtree decomposition, Hough transform,
entropy and not discussed above—correlation—extracted from the GLCM.
Acquisition of these new features from the ROI is almost intuitive, and
requires only the knowledge and the correct use of the function hough ,
entropy and the parameter of the function graycoprops which is ‘
Correlation ’. Acquisition of quantitative scalar features from quadtree
decomposition requires the use of qtdecomp and the following code
implemented for:



The presented source code contains a loop that enables to change the size
of the sought areas ( q=0:9 for a code fragment find(L2==2^q) ). If
at least one area of this size (  pam(end,2)>0 ) is found, it is filled with
blocks:

L4=ones([2^q 2^q pam(end,2)]);

L4(2:2^q,2:2^q,:)=0;

The results obtained for the threshold above which the division into
smaller blocks was performed, i.e.: p qt  = 0.27, is shown in Figs. 4.13 and
4.14.



Fig. 4.13 Image L GRAY (m, n, i) with superimposed division into individual blocks sized M q  × N q

Fig. 4.14 Graph of the total number of blocks as a function of their size M q  × N q

Figure 4.13 shows the image L GRAY (m, n, i) with a superimposed



division into individual blocks sized from M q  × N q  = 1 × 1 pixel to M q  × N
q  = 512 × 512 pixels. The size of each block is a power of 2, i.e.: it is equal to
2 q for q ∈ (0, 10) for the analysed case. Attention should be paid here to the
need to resize the image L GRAY (m, n, i) to the size of rows and columns that
are a power of two. Figure 4.14 shows a graph of the total number of blocks
M q  × N q as a function of their size. This type of analysis can complement
the existing analysis presented in the previous chapters. It may also be carried
out for all i images of the sequence (for different wavelengths). In this case
(analysis of an image sequence for i ∈ (1, 128)), the source code has been
modified to the following form:

As is apparent from the above source code, the said modification involves
the introduction of automatic analysis of all images of the sequence (i ∈ (1,
128)), and plotting, at the end of the algorithm, a graph. The results obtained
are shown in Figs. 4.15 and 4.16.



Fig. 4.15 Graph of changes in the number of blocks sized M q  × N q as a function of their size (2q)
for subsequent i images

Fig. 4.16 Graph of the total number of blocks sized M q  × N q  = 1 × 1 pixel as a function of
subsequent i images

Figure 4.15 shows a graph of changes in the number of blocks sized M q
 × N q as a function of their size for subsequent i images. As is apparent from
the presented graph, the number of the smallest areas sized M q  × N q
 = 1 × 1 pixel is the greatest for each i image. Figure 4.16 shows a graph of



the total number of blocks sized M q  × N q  = 1 × 1 pixel as a function of
subsequent i images.

The above are excerpts of the code of m-files
GUI_hyperspectral_qtdecomp_test and
GUI_hyperspectral_qtdecomp_test2 that are available to the
reader in the form of supporting materials attached to this monograph.

Apart from the discussed features that can be analysed, other
calculations can also be performed. New features can be obtained from image
analysis using Riesz transform [5–7] or Gabor filtration. The basis will be a
Gaussian function for three dimensions [8–10], i.e.:

 (4.23)

where

 (4.24)
and σ m , σ n , σ i —standard deviation of the mean for three dimensions m,
n, i.

m GA , n GA , i GA —values m, n, i normalized to the range from −0.5 to
0.5, for example for m GA :

 (4.25)
Due to the nature of hyperspectral images of the skin, in practice, it is

often necessary to rotate the mask h GA but only in two dimensions, i.e. the
new coordinates (m GAθ , n GAθ ) after rotation are equal (similarly to Sect. 3.
1. Affine transformations of the image):

 (4.26)
 (4.27)

Also in practical applications [11–16], it is often necessary to use a
derivative in each of the three possible dimensions. Therefore, it was
assumed, for simplicity of calculations, that the variable h devGA will be the
result of calculating the derivative in three dimensions. The superscript will
mean the wth degree of the derivative for three consecutive dimensions. For
example, h devGA

(0,0,1)
 is the first derivative in the third dimension, i.e.:



 (4.28)

On this basis, it is possible to create a pyramid of masks h devGA for
changes in various arguments. Changes in the angle θ in the range θ ∈ (0,
2·π), e.g. every value of 0.1, are most often used. The results obtained in the
form of a pyramid of masks h devGA are shown in Fig. 4.17.





Fig. 4.17 Pyramid of masks h devGA for θ∈(0, 2·π) every 0.1 and various degrees of derivatives 

. Negative values

of the mask are marked in red, and positive values in blue. In each case, one of the masks for θ = 0° has
been placed in the top left corner

The masks h devGA shown in Fig. 4.17 were calculated for θ ∈ (0,2·π)
every 0.1 and various degrees of derivatives 

. Negative
values of the mask are marked in red (Fig. 4.17), and positive values in blue.
These results were obtained using two functions. The first one is dergauss
which calculates the derivative of the Gaussian function for the row w ∈ (0,
4), i.e.:

As is apparent from the presented function, for each condition (the degree
of derivative—the value of the variable w), the value of y is calculated using
a different formula.

The second function is Gauss_test with the following source code:



The first part of this source code relates to the declaration of variables and
determination of their values. Then the values of matrices nGA,mGA are



determined, which are the basis for calculating the mask h devGA . Rotation by
the angle theta is initially implemented. In the next step, the previously
discussed function dergauss is used. In the final stage, a three-
dimensional graph (Fig. 4.17) is shown using the functions patch and
isosurface .

The results of the presented functions ( dergauss,Gauss_test )
are shown in Fig. 4.17, but this is only one of many cases of the pyramid. In
hyperspectral imaging the derivative in the third axis is also often used for
analysis and acquisition of features (the results shown earlier involve only
two axes and rotation). The function dergauss will be still used as well as
the following new command sequence Gauss_test2 :



As in the previously discussed source code, the values of constants are
initially declared along with 3D spaces of variable parameters (
[nGA,mGA]=meshgrid… ). Next, for subsequent i, values of
hdevGA(1:M,1:N,i) are declared. In the last stage, the results in three
dimensional space are shown. They are presented in Fig. 4.18.



Fig. 4.18 Pyramid of masks h devGA for three dimensions and different degrees of derivatives 

 (respectively)



when θ = 0° and σ = 0.08. Negative values of the mask are marked in red, and the positive ones in blue

The results in Fig. 4.18 indicate the range of variation in the masks h
devGA with respect to different degrees of derivatives for three dimensions.
Other parameters that can be changed for individual dimensions are θ and σ.
Figure 4.19 shows different variants of a sequence of masks for different
values of the degree of derivatives, and various values of standard deviations
of the mean σ. The following is a portion of the source code that was used to
create Fig. 4.19, i.e.:



Fig. 4.19 Pyramid of masks h devGA for three dimensions, different degrees of derivatives and various



values of σ. Negative values of the mask are marked in red, and the positive ones in blue

Masks h devGA defined for different values of parameters enable to acquire
features that are not available for typical methods of analysis and typical
known mask filters (Sobel, Roberts or Canny). This problem is visible for
simple binarization of a sequence of images L GRAY (m, n, i) for two
thresholds equal to 0.5 (Fig. 4.20—red) and 0.4 (Fig. 4.20—blue).



Fig. 4.20 Results of binarization of the image L GRAY (m, n, i) for two thresholds equal to 0.5 (red)
and 0.4 (blue)

The results of the convolution of the image L GRAY (m, n, i) with the
pyramid of masks , θ = 0° and σ = 0.08 (see Fig. 4.18), are shown in
Fig. 4.21. The colours (Fig. 4.21) indicate the results of binarization for the
negative areas (blue) and positive ones (red). The acquisition of a feature
from each ith image, necessary for further use in the classification, is
dependent on the type of the processing task. This can be either the maximum
or minimum value of the image convolution L CONV (m, n, i) (Fig. 4.21), as
well as the surface area of the areas above or below the predetermined
threshold. As mentioned earlier, pyramids of masks h devGA are generally
profiled to a specific type of images and their nature. This applies to both
hyperspectral images and other types of medical images.

Fig. 4.21 Result of the convolution of the image L GRAY (m, n, i) with the pyramid of masks 

, θ = 0° and σ = 0.08 (see Fig. 4.18). The colours indicate the results of binarization for

the negative areas (blue) and positive ones (red)

The final parts of the source code are in the m-files Gauss_test3 and
Gauss_test4 and are available as supplementary material attached to this
monograph.
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The acquired image features such as mean brightness, contrast, energy and
homogeneity can be used for machine learning and classification. Of the
many types of classifiers, decision trees, the naive Bayes classifier,
discriminant analysis and support vector machine were selected. The training
mode for all classifiers is carried out in the same way. The group of data is a
set of four features (brightness, contrast, energy and homogeneity) calculated
for two ROIs selected by the user. The first region, whose data may be also
loaded as a reference.mat file, relates to the training area. The second ROI
concerns the test area, and the data on individual features can also be loaded
from an external file test.mat. The length of the test and training data vectors
is dependent on the user and the number of analysed i images. It is also
dependent on the number of common, for both the training and test group,
wavelengths. Each ith image complying with these conditions creates a new
record in the training vector entering four subsequent scalar values. The idea
of selecting the values reference and test and the ROI is shown schematically
in Fig. 5.1.



Fig. 5.1 Schematic diagram of an exemplary pattern and test vector created from the variables L S (i),
L CON (i), L ENE (i) and L HOM (i). The results which are deleted are marked in red, and the results
participating in training and testing the classifier in blue

Figure 5.1 shows a schematic diagram of an exemplary pattern and test
vector created from the variables L S (i), L CON (i), L ENE (i) and L HOM (i). The
results that are deleted are marked in red, whereas the results participating in
training and testing the classifier in blue. The green area results from
harmonisation, for each analysis, of common wavelengths. In this case, these
are the values 900, 901, 902, 903 and 904 nm. The vectors (training and test)
thus prepared are used in the construction and testing of the following
classifiers (mentioned above):

decision trees,

naive Bayes classifier,

discriminant analysis and

support vector machine.

These classifiers and their implementation are described in detail in the
next subchapters (for this purpose Statistics Toolbox is additionally required).
For the classifiers described in the following subchapters, the same test and
pattern data were used. They were obtained from the manually selected areas
of the image shown in Fig. 4.11. In total, 92 cases of wavelengths for which
there should be compliance with the pattern and 36 cases where such
compliance cannot exist were obtained for the test and training vectors.

The length of both vectors is due to the results of harmonisation of



wavelengths (see Fig. 4.6). In this case, there was complete compatibility of
wavelengths—the analysed ROIs come from the same image L GRAY (m, n, i).

5.1 Decision Trees
Decision trees have been used in machine learning [1] for many years [2–17].
They have been also used and implemented in Matlab for a few years.
Several functions are designed for this purpose:

classregtree —function responsible for the tree induction,

test —function responsible for testing the tree,

prune —function responsible for pruning the tree.

The Gini index is the criterion for assessing the split point of decision
trees used in Matlab. Decision trees were induced using the CART algorithm.
Classification with the use of decision trees was implemented in the function
GUI_hyperspectral_class_dec_tree . This function can be
divided into several areas. In the first area, the true and false cases were
divided into  and  strings, i.e.:

In the next area, the tree is induced and tested for the training data, i.e.:

In the next area, the tree is pruned.

The last part of the function refers to the visualization of both cross-
validation and resubstitution and the site of tree pruning. 2D and 3D graphs
are also shown depending on the number of features selected for analysis,



i.e.:



This function ( GUI_hyperspectral_class_dec_tree ) is
activated by the function GUI_hyperspectral_class in one of the
lines verifying the user’s choice of a decision tree as a classifier, i.e.:

The decision trees thus implemented were tested for three features
(brightness, energy, homogeneity) acquired from the reference and test ROIs
shown in Fig. 4.11. The obtained results are presented in Fig. 5.2.



Fig. 5.2 Graphs of a the complete decision tree; b dependence of cross-validation errors on the number
of tree nodes; c the pruned decision tree; d the results of classification

The graph presented in Fig. 5.2d and the pruned decision tree provide in
this case: ACC = 88%, TPR = 56%, SPC = 100%, TN = 92, TP = 20, FN = 16
and FP = 0. Table 5.1 shows the results of ACC, TPR, SPC, TN, TP, FN, FP
(expressed as a percentage) for various combinations of the features.

Table 5.1 Results of TN, TP, FN, FP as well as ACC, TPR, SPC (expressed as a percentage) for the
pruned decision tree for different combinations of features—on/off position of checkbox objects (INT,
ENE, VAR, HOM)a

INT CON ENEHOMACC TPR SPC TN TP FN FP
0 0 0 1 66 0 92 85 0 36 7
0 0 1 0 72 0 100 92 0 36 0
0 0 1 1 72 0 100 92 0 36 0
0 1 0 0 75 11 100 92 4 32 0
0 1 0 1 75 11 100 92 4 32 0
0 1 1 0 72 0 100 92 0 36 0



0 1 1 1 72 0 100 92 0 36 0
1 0 0 0 88 56 100 92 20 16 0
1 0 0 1 88 56 100 92 20 16 0
1 0 1 0 88 56 100 92 20 16 0
1 0 1 1 88 56 100 92 20 16 0
1 1 0 0 88 56 100 92 20 16 0
1 1 0 1 88 56 100 92 20 16 0
1 1 1 0 88 56 100 92 20 16 0
1 1 1 1 88 56 100 92 20 16 0

aThe value of ‘0’ means that the feature does not occur, ‘1’ that it occurs in
calculations

As is apparent from Table 5.1, brightness (INT) improves sensitivity to
56% compared to other combinations of features. In the case of the
combinations of some of the features such as.: HOM, ENE, ENE and HOM,
CON and ENE, CON ENE and HOM, TPR = 0%. Much better results are
obtained in the case of the same data for another type of a classifier.

5.2 Naive Bayes Classifier
One possible classification method implemented in MATLAB is a naive
Bayes classifier [18–31]. It is based on the assumption of the mutual
independence of the independent variables [19–21]. This simple probabilistic
classifier provides good results in hyperspectral image classification. The
implementation of the naive Bayes classifier [23–25] was carried out in the
function GUI_hyperspectral_class_naiv_bayes . The greater
part of the source code is the same as in the function
GUI_hyperspectral_class_dec_tree for decision trees. The
following shows only a portion of the source code for the most important
differences between these functions, i.e.:



The results of classification, for the same training and test data as in the
case of decision trees described in the previous subchapter (for the test and
training vectors, 92 cases of wavelengths for which there should be
compliance with the pattern and 36 cases where such compliance cannot
exist), are shown in Fig. 5.3 and Table 5.2.

Fig. 5.3 Results of classification with a naive Bayes classifier. Negative and positive cases
(wavelengths) are marked in green and red and the classification function in blue: a for features:
intensity (L INT (i)), homogeneity (L HOM (i)) and energy (L ENE (i)); b for features: contrast (L CON
(i)), homogeneity (L HOM (i)) and energy (L ENE (i))

Table 5.2 Results of TN, TP, FN, FP as well as ACC, TPR, SPC (expressed as a percentage) for the
nave Bayes classifier for different combinations of features—on/off position of checkbox objects (INT,
ENE, VAR, HOM)a

INT CON ENEHOMACC TPR SPC TN TP FN FP
0 0 0 1 66 25 83 76 9 27 16
0 0 1 0 92 89 93 86 32 4 6
0 0 1 1 84 69 90 83 25 11 9



0 1 0 0 85 61 95 87 22 14 5
0 1 0 1 82 58 91 84 21 15 8
0 1 1 0 90 83 92 85 30 6 7
0 1 1 1 86 75 90 83 27 9 9
1 0 0 0 89 61 100 92 22 14 0
1 0 0 1 90 64 100 92 23 13 0
1 0 1 0 94 81 99 91 29 7 1
1 0 1 1 91 78 96 88 28 8 4
1 1 0 0 91 67 100 92 24 12 0
1 1 0 1 91 72 99 91 26 10 1
1 1 1 0 91 81 96 88 29 7 4
1 1 1 1 91 81 95 87 29 7 5

aThe value of ‘0’ means that the feature does not occur, ‘1’ that it occurs in
calculations

As follows from the numerical values in Table 5.2, the highest value of
ACC = 94% was obtained for the combination of features INT and ENE. The
smallest value of ACC = 66% was obtained for a single feature HOM.

5.3 Discriminant Analysis
Discriminant analysis [32–38] feasible in Matlab is associated with the
function classify . It enabled to implement one possible type of
discriminant function— quadratic (fits multivariate normal densities
with covariance estimates stratified by group) in the function
GUI_hyperspectral_class_disc . Besides the above type, it is
possible to use the following discriminant functions [35–37]:

linear —fits a multivariate normal density to each group,

diaglinear —with a diagonal covariance matrix estimate.

diagquadratic —with a diagonal covariance matrix estimate.

mahalanobis —uses Mahalanobis distances with stratified
covariance estimates.

Implementation of a discriminant function in the function
GUI_hyperspectral_class_disc is as follows:



The above excerpt provides the results presented in Fig. 5.4.

Fig. 5.4 Results of classification, discriminant analysis— ’quadratic’ . Negative and positive
cases (wavelengths) are marked in green and red and the classification function in blue: a for features:
intensity (L INT (i)), homogeneity (L HOM (i)) and energy (L ENE (i)); b for features: contrast (L CON
(i)), homogeneity (L HOM (i)) and energy (L ENE (i))

Similarly to the previously discussed classifiers, in Fig. 5.4 negative and
positive cases (wavelengths) are marked in green and red and the
classification function in blue: in Fig. 5.4a for features: intensity (L INT (i)),
homogeneity (L HOM (i)) and energy (L ENE (i)); in Fig. 5.4b for features:
contrast (L CON (i)), homogeneity (L HOM (i)) and energy (L ENE (i)). For these
and other combinations of features, the numerical results of ACC, TPR, SPC,
TN, TP, FN, FP are shown in Table 5.3.

Table 5.3 Results of TN, TP, FN, FP as well as ACC, TPR, SPC (expressed as a percentage) for
discriminant analysis for different combinations of features—on/off position of checkbox objects (INT,
ENE, VAR, HOM)a



INT CON ENEHOMACC TPR SPC TN TP FN FP
0 0 0 1 65 50 71 65 18 18 27
0 0 1 0 91 92 90 83 33 3 9
0 0 1 1 84 75 87 80 27 9 12
0 1 0 0 88 83 90 83 30 6 9
0 1 0 1 84 75 88 81 27 9 11
0 1 1 0 87 92 85 78 33 3 14
0 1 1 1 88 92 86 79 33 3 13
1 0 0 0 92 72 100 92 26 10 0
1 0 0 1 91 75 97 89 27 9 3
1 0 1 0 94 94 93 86 34 2 6
1 0 1 1 94 94 93 86 34 2 6
1 1 0 0 95 86 98 90 31 5 2
1 1 0 1 94 94 93 86 34 2 6
1 1 1 0 90 94 88 81 34 2 11
1 1 1 1 90 97 87 80 35 1 12

aThe value of ‘0’ means that the feature does not occur, ‘1’ that it occurs in
calculations

In Table 5.3, there is only one case when ACC = 95%. This is the
accuracy value for the combination of features INT and CON. The minimum
value of accuracy is 65% and occurs for a single feature HOM.

As mentioned above, discriminant analysis enables to use different types
of discriminant function. Figure 5.5 and Table 5.4 show the results obtained
for three features (homogeneity, intensity and energy) for various types of
discriminant analysis: ‘linear’ , ‘diaglinear’ ,
‘diagquadratic’ and ‘mahalanobis’ .



Fig. 5.5 Results of classification for three features—homogeneity L HOM (i)), intensity (L INT (i)) and
energy (L ENE (i)) for different types of discriminant analysis: a ‘ linear ’; b ‘diaglinear’ ;
c ‘diagquadratic’ ; d ‘mahalanobis’ . Negative and positive cases (wavelengths) are
marked in green and red and the classification function in blue

Table 5.4 Results of TN, TP, FN, FP as well as ACC, TPR, SPC (expressed as a percentage) for
different types of discriminant analysis and the features INT, ENE and HOM

Type ACC TPR SPC TN TP FN FP
Linear 93 75 100 92 27 9 0
Diaglinear 94 92 95 87 33 3 5
Quadratic 94 94 93 86 34 2 6
Diagquadratic 92 86 95 87 31 5 5
Mahalanobis 97 92 99 91 33 3 1

Different results, presented in Table 5.4, are obtained depending on the
selected type of discriminant analysis.

The best results (Table 5.4) are for ‘ mahalanobis ’ type of
discriminant analysis, i.e. ACC = 97%. The worst results are for ‘
diagquadratic ’ type, i.e. ACC = 92%. The differences arise directly from



the type of analysis and the distribution of values of individual features.

5.4 Support Vector Machine
Support vector machine has been one of the most popular classifiers in recent
years [38–51]. It allows for the appointment of a hyperplane that enables to
separate two classes [41, 42, 44] with the greatest possible margin [45–48].
The implementation of the SVM classifier was carried out in the function
GUI_hyperspectral_class_svm which, in turn, uses the function
svmtrain . A fragment of the source code of the function
GUI_hyperspectral_class_svm responsible for SVM classification
is shown below:

The results of SVM classification are shown in Fig. 5.6 and Table 5.5.
Negative and positive cases (wavelengths) (Fig. 5.6) are marked in green and
red and the classification function in blue for features: intensity (L INT (i)),
homogeneity (L HOM (i)) and energy (L ENE (i))—Fig. 5.6a); for features:
contrast (L CON (i)), homogeneity (L HOM (i)) and energy (L ENE (i))—
Fig. 5.6b).



Fig. 5.6 Results of SVM classification. Negative and positive cases (wavelengths) are marked in green
and red and the classification function in blue: a for features: intensity (L INT (i)), homogeneity (L

HOM (i)) and energy (L ENE (i)); b for features: contrast (L CON (i)), homogeneity (L HOM (i)) and
energy (L ENE (i))

Table 5.5 Results of TN, TP, FN, FP as well as ACC, TPR, SPC (expressed as a percentage) for SVM
for different combinations of features—on/off position of checkbox objects (INT, ENE, VAR, HOM)a

INT CON ENEHOMACC TPR SPC TN TP FN FP
0 0 0 1 72 0 100 92 0 36 0
0 0 1 0 91 89 91 84 32 4 8
0 0 1 1 91 89 91 84 32 4 8
0 1 0 0 84 50 98 90 18 18 2
0 1 0 1 88 81 91 84 29 7 8
0 1 1 0 87 53 100 92 19 17 0
0 1 1 1 87 69 93 86 25 11 6
1 0 0 0 88 58 100 92 21 15 0
1 0 0 1 91 69 100 92 25 11 0
1 0 1 0 88 58 100 92 21 15 0
1 0 1 1 91 69 100 92 25 11 0
1 1 0 0 89 61 100 92 22 14 0
1 1 0 1 91 69 100 92 25 11 0
1 1 1 0 89 61 100 92 22 14 0
1 1 1 1 91 69 100 92 25 11 0

aThe value of ‘0’ means that the feature does not occur, ‘1’ that it occurs in
calculations

Numerical results of individual combinations of features in the training



and test vectors are shown in Table 5.5.
The greatest values of ACC = 91% were obtained for a few combinations

of features ENE, ENE and HOM, INT and HOM, INT and ENE and HOM,
INT and CON and HOM, INT and CON and ENE and HOM. In almost each
of these combinations, there is the feature HOM. The feature ENE is
noteworthy as it is able (as a single feature) to provide the best results of
accuracy for the considered SVM classifier.

Summing up, the best results for the analysed case are obtained for
‘mahalanobis’ type of discriminant analysis, i.e. ACC = 97%. The
results should be treated only illustratively as they present possible problems
and methods of analysis of the results obtained from the implemented
classifiers.

5.5 Receiver Operating Characteristics
The receiver operating characteristics (ROC) curve is obtained on the basis of
classification results. Changes in sensitivity as a function of specificity are
analysed. The individual measurement points can, in the general case, be the
result of a classifier operation for different types of changes. A classic
example is a change in the position of the cut-off threshold during data
classification. For the described types of classifiers and the presented data,
the ROC curve enables to show extremely important information, which is
sensitive to changing parameters. The assessment of sensitivity relates here to
resizing the averaging filter h w (from the default parameters M w  × N w
 = 3 × 3 pixels), choosing the size of the ROIc (typically Mc × Nc = 40 × 40
pixels), choosing the size of the structural element SE2 for conditional
erosion and dilation (the default size M SE2  × N SE2 ), and the values of the
thresholds p ec and p dc , classifier type (decision trees, naive Bayes classifier,
SVM), choosing the threshold p rg , choosing True and False areas (Fig. 4.8).
The potential impact of the settings (selection) of the above variables on the
results obtained must be verified in practice. The impact of changes in the last
parameter—manual selection of True and False areas—has been further
described in the monograph (Fig. 4.8). Figure 5.7 shows the idea of
measuring the ROC curve.



Fig. 5.7 Block diagram of calculating the values for the ROC curve and changes in the location of the
TP area in the range of ±i v

A change in the range of ±i v (Fig. 5.7) of the location of the TP area will
affect the division into TP and TN of the training vector, a different structure
of the decision tree and thus different values of SPC and TPR representing a
point on the ROC plot. The source code responsible for the calculation of the
various values needed to plot the ROC curve is in the function
GUI_hyperspectral_class . It has been deliberately marked (symbol
‘%’) as a comment to encourage, at this point, the readers to introduce their
own element (e.g. a button) on the menu that would run the ROC analysis for
changes in the range of ±i v . A fragment of the source code responsible for
changes in the range of ±i v for i v  = 30 is as follows:



The result is the ROC curve presented in Fig. 5.8.

Fig. 5.8 ROC curve for changes in the location of the TP area in the range of ±i v for i v  = 30

The above example is only one possible application of this approach for
plotting ROC curves. I encourage the reader to further test and analyse
changes in the value of sensitivity and specificity for changes in other



aforementioned variables, for example, the impact of resizing the averaging
filter h w from M w  × N w  = 3 × 3 (default parameters) to, for example, M w
 × N w  = 33 × 33 pixels.

5.6 Pitfalls and Limitations of Classification
Classification in most cases is the crowning stage of the tedious process of
image analysis. Proper preparation of the data vector(s) is extremely
important from a practical point of view [52]. An increase in the length of the
training vector and/or a reduction in the length of the test vector improve the
results obtained, but the created classifier is also less universal [53, 54]. In
addition, the pressure to improve the results obtained is high, especially if the
area of the publication of results in scientific journals and (almost) the need
to confirm the superiority of the developed method are taken into account.
Apart from changing the length of the training and test vector, also other
errors can be made during classification [52, 55, 56]. The most common
errors are:

providing the results of classification for the training vector as those for
the test vector,

reducing the length of the test vector—increasing the length of the
training vector (as mentioned above),

overfitting,

an excessive number of features at a too small vector length,

leakage of data between the training and test data,

artificial reproduction of data,

failure to provide an appropriate range of variation.

Ignoring the mathematical relations and moving on to the practical
implementation, two files are taken into account: test.mat and
reference.mat . These files are the result of previously conducted
analysis and were previously stored on the disk. After reading them and
standardizing common wavelengths, an SVM classifier will be built and
tested for both the training and test data. The corresponding source code (the
part concerning graphs is similar to the previously described one—in



previous subchapters) is shown below:



The results obtained for the training and test data (see %measT   =  
meas; ) are shown in Figs. 5.9 and 5.10.

Fig. 5.9 Results of the SVM classification for exemplary features of the training data. TP = 85,
TN = 24, FN = 6, FP = 7, ACC = 89%, TPR = 93%, SPC = 77%



Fig. 5.10 Results of the SVM classification for exemplary features of the test data. TP = 19, TN = 31,
FN = 72, FP = 0, ACC = 41%, TPR = 21%, SPC = 100%

The results shown in Figs. 5.9 and 5.10 are clearly better (a change in
ACC from 41 to 89% for the training vector). However, the classifier due to
its characteristics does not fit to the data (there is no problem of overfitting).

The second discussed issue is reducing the length of the test vector. Let
us assume the length u of the test vector is changed from 1 (one positive or
negative case) to 100 cases (the number of positive and negative cases is
random), i.e. u ∈ (1, 100). The results obtained are shown in the graph in
Fig. 5.11.



Fig. 5.11 Graph of changes in ACC for different lengths of the test vector

The results shown in the graph in Fig. 5.11 relate to changes in ACC for
different lengths of the test vector. Each value of u is the result of 1000
random data. Accordingly, the maximum values are marked in green
(Fig. 5.11), whereas the minimum ones in blue. The presented graph indicates
almost complete dependence of the result (ACC) on the appropriate selection
of data if there are no more than 10 of them (for the considered case). The
more data are drawn, the narrower the range of variability of ACC. In an
extreme case, ACC = 40 ± 20% in the graph in Fig. 5.11. To sum up, a
reduction in the length of the test vector allows for almost any change in the
results of, for example, accuracy.

The third discussed issue is overfitting. Overfitting the data is typical for
most classifiers. For example, this is the induction of binary decision trees
without pruning. This problem is mentioned in the subchapter “Decision
trees”. Figure 5.2b shows a graph of dependence of cross-validation errors on
the number of tree nodes. The problem of overfitting produces very good
results of accuracy, sensitivity and specificity. Unfortunately, an induced
decision tree (classifier) is not able to generalize data, so its practical clinical
usefulness is limited. Overfitting the data applies not only to the classifier
construction. It is also related to the type of data source.

The induction of the decision tree for data from a single source, one
hospital and/or one imaging device, causes excessive fit to the data despite,
for example, pruning the tree. A similar problem occurs in the analysis of
data from a single operator (physician) operating the imaging device.

The discussed issues are well illustrated by the example of the induction
of a decision tree for the training data and showing the results obtained for
the training and test data of both the complete and pruned decision tree—
Table 5.6.

Table 5.6 Results of TN, TP, FN, FP as well as ACC, TPR, SPC (expressed as a percentage) for the
complete and pruned decision tree for the training and test data

Decision tree Data type ACC TPR SPC TN TP FN FP
Complete Traininga 92 91 92 52 60 5 5

Complete Test 57 26 85 15 55 42 10
Pruned Training 73 75 71 43 46 14 19
Pruned Test 68 79 58 45 38 12 27



aThe lack of specificity, sensitivity and accuracy equal to 100% for the
complete decision tree and the test data is due to 10-fold cross-validation of
data which is determined by default

The results presented in Table 5.6 show small differences in accuracy for
the pruned trees and test and training data (5%). There are also big
differences between the test and training data obtained for the complete
decision tree—the difference in accuracy of 35%. Pruning the decision tree
produces worse results but the created decision tree is less sensitive to the
data. In addition, transparency increases and the computational complexity of
the created tree decreases.

The fourth issue is an excessive number of features in relation to the
vector length (number of analysed cases). To some extent this is justified. In
the case of the tedious process of designing the algorithm for analysis and
processing, the culmination of this work is the data vector—the vector of
features. Adding a new feature is the result of a small amount of work
compared to the said process of algorithm designing. Therefore, the authors
of various works induce a classifier and test it for dozens and even hundreds
of features which are acquired from only a few cases of data (patients). The
question to which the answer will be given below refers to the maximum
number of features that can be used for classification so as to obtain reliable
and diagnostically useful results. For this purpose, the SVM classifier was
used and a different number of features k ∈ (1, 50) and different lengths of
the vector u ∈ (4, 50) were chosen at random (uniform distribution in the set
{0, 1}). The results of ACC are shown in Fig. 5.11 and Fig. 5.12.

The source code for performing these calculations and creating the graph
shown in Fig. 5.11 is as follows:



The result of changes in ACC as a function of changes in the number of
features and vector length shown in Fig. 5.11 is of great practical importance.
It enables to determine the minimum u/k ratio which provides diagnostically
useful results. Figure 5.13 shows the dependence of ACC as a function of u/k
which shows that for u/k = 10 and less, the results exceed the value of 50% of
accuracy. This means that the classification accuracy of the classifier,
regardless of the data (they may be even random), is well above 50%, and for
u/k = 5 and less accuracy is approximately 100%. Therefore, the practical
utility of such a classifier is questionable. It is therefore necessary to provide
in each case at least several-fold increase in the training vector length in
relation to the number of features



Fig. 5.12 Graph of changes in ACC for different lengths of the test vector u and a different number of
features k

.

Fig. 5.13 Graph of changes in ACC for different values of the ratio of the test vector length u to the
number of features k

The fifth problem is the data leakage between the training and test data.
The leakage is further understood as the overlap of data from the training and
test vectors. If we assume that s will mean the percentage overlap of the two
data vectors, the result of accuracy (ACC) for different values of s ∈ (0, 100)
will run for the SVM classifier in accordance with the graph shown in



Fig. 5.14.

Fig. 5.14 Graph of changes in ACC for different s degrees of overlap of the test vector and the training
vector

According to the graph shown in Fig. 5.14 and as expected, the larger the
percentage share of the test vector in the training vector, the better the results
obtained. For example, for a few per cent (from 0 to about 20) of common
data, the value of ACC does not change. For s ranging from 40 to 85%, the
value of ACC increased by 9%. It should be noted here that data leakage is
mainly associated with the wrong (intended or unintended) implementation of
the classifier.

The last mentioned problems, i.e. artificial duplication of data and
failure to provide an adequate range of variability of data, have already been
partially discussed in the previous problems.

In the presented application related to hyperspectral images, the number
of features is disproportionately smaller than the length of the data vector
(i = 128 for 4 features). Lack of data leakage ensures proper implementation
of the transformations discussed in earlier chapters. Only deliberate action,
such as reducing the training vector length to several 2D images can cause
the discussed problems. At this point, I encourage the reader to create
appropriate warnings for the application user about the occurrence of one of
the discussed problems, for example using the function warndlg

.
The source codes of all the discussed problems have been saved in



separate m-files in the materials attached to this monograph, namely
Class_test, Class_test2, Class_test3, Class_test4
and Class_test5.

5.7 Blok Diagram of the Discussed Transformations
The block diagram of the discussed issues is presented in Fig. 5.15.

Fig. 5.15 Block diagram of the algorithm part responsible for the selection of a classifier and for the
ROC curves



The block diagram presented in Fig. 5.15 concerns the algorithm part
responsible for the selection of a classifier. Depending on the operator’s
individual choice, it is possible to analyse in the proposed application the
results obtained for the following classifiers: decision trees, naive Bayes
classifier, discriminant analysis and support vector machine. In Matlab in
Statistics Toolbox, implementation of other types of classifications, e.g., k-
means , is also possible. I encourage the readers at this point to perform
their own implementation of the above functions for one of the possible
definitions of distance, i.e.: ‘sqEuclidean’ (squared euclidean distance);
‘cityblock’ (sum of absolute differences); ‘cosine’ (one minus the
cosine of the included angle between points); ‘correlation’ (one
minus the sample correlation between points); ‘Hamming’ —(percentage
of bits that differ).
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In every algorithm and software, especially those designed for the needs of
medicine, it is important to assess the algorithm sensitivity to parameter
changes [1]. This evaluation should be a standard item for each algorithm.
Unfortunately, this is rarely encountered in practice. The authors of the new
software solutions do not mention these parameters in fear of both lack of
interest of buyers of the created software and the possibility of rejection of
the scientific article for that reason. Sensitivity to parameter changes of any
algorithm is usually strongly related to its internal structure (e.g. setting the
parameters of its operation automatically) and the test method (selection of a
method for changing parameters) [2, 3]. It should be emphasized here that
each algorithm allows for errors at the level of 100% in extreme cases of its
application [4, 5]. Therefore, it is very important to link the range of
variability of parameters with the error value.

In the case of medical hyperspectral imaging, the issue of sensitivity to
parameter changes is not easier. In practical terms, there are numerous
different combinations of measured features and parameter changes. It is
difficult to separate those combinations that are not only the most interesting
but also the most diagnostically important. Certainly the most interesting
element is the analysis of the sensitivity of patient positioning and the whole
image acquisition on the classification results. This area, however, due to its
specificity (very high dependence on the affected place and the type and
severity of the disease), is left to the reader. Below there is a narrower



analysis of the algorithm sensitivity to parameter changes. The selected
parameter is the mean brightness of the manually selected ROI. The size of
the ROI and its position relative to the original one (specified by the operator)
will be changed.

The evaluation of the algorithm sensitivity in the evaluation of the mean
brightness value for each i frame of the image L GRAY (m, n, i) was performed
for repositioning the ROI, resizing the ROI and its rotation around its axis.
The results obtained are presented in the following subchapters. The
evaluation criterion J M in each case is defined as:

 (6.1)
where

L MROIT (i) and L MROIP (i) are the mean brightness values for subsequent
ROIs. The value of ‘1’ results from the adopted range of the brightness level
(from 0 to 1—variable type double ).

For example L MROIT (i) is equal to:

 (6.2)
where M ROI and N ROI are the number of rows and columns of the ROI.

6.1 Respositioning the ROI
Repositioning the ROI involves changing its position in the row axis by Δm
and in the column axis by Δn. The position of the ROI, in accordance with the
operator’s selection, shown in Fig. 4.11 was adopted by default. Its position
was changed in the range Δm = ±10 pixels and Δn = ±10 pixels. The
resolution of the ROI was M ROI  × N ROI  = 100 × 100 pixels. The results
obtained are shown in Figs. 6.1 and 6.2.



Fig. 6.1 Graph of changes in J M for different values of Δm and subsequent i images

Fig. 6.2 Graph of changes in J M for different values of Δn and subsequent i images

The presented graphs of sensitivity to repositioning the ROI show that the



brightness changes are smaller than ±2%. The source code providing the
graph shown in Fig. 6.1 is as follows:

Similar results (Figs. 6.1 and 6.2) are obtained for resizing the ROI,
which is presented in the next subchapter.

6.2 Resizing the ROI
The impact of resizing the ROI (as specified above) on the percentage change
in the mean brightness was determined in the same way as in the previous
subchapter. In this case, the size M × N was changed in the range ΔM == ±10
pixels and ΔN == ±10 pixels. The results are shown in Figs. 6.3 and 6.4.



Fig. 6.3 Graph of changes in J M for different values of ΔM and subsequent i images

Fig. 6.4 Graph of changes in J M for different values of ΔN and subsequent i images

Similarly to the results obtained in the previous subchapter, the sensitivity
of the brightness change to resizing the ROI is less than ±2%. The next



subchapter presents the effect of rotation on the change in the mean
brightness in the ROI.

6.3 Rotation of the ROI
Similarly to the previous subchapters, the algorithm sensitivity (the mean
brightness value) to rotation of the ROI (as specified above) was verified. In
this case, the rotation λ ranged from 0° to 360° (Fig. 6.5).

Fig. 6.5 Graph of changes in J M for different values of λ and subsequent i images

In this case, slightly worse results were obtained. Sensitivity to rotation of
the ROI is the greatest in comparison with its repositioning and resizing. It is
related not only to the participation of new pixels resulting from the rotation
of the ROI itself but also from interpolation problems and the method of
filling the missing pixels in the corners (see the function imrotate with
the parameter ‘crop’ ). The sensitivity values in this case are not greater
than 15% compared with the absolute value. The full source code for the
examples discussed above can be found in the m–files
GUI_hyperspectral_para_changes,
GUI_hyperspectral_para_changes2,



GUI_hyperspectral_para_changes3 and
GUI_hyperspectral_para_changes4. Once again I encourage the
readers to create their own m-files designed to assess the algorithm sensitivity
to changes in other parameters or to include classification in the analysis.
Extension of this analysis will provide a lot of useful and new information on
the nature of the algorithm operation and its weaknesses. Especially the latter
makes the operator more attentive to their skilful and careful selection. The
analysis can also be based on the ROC curves presented in one of the earlier
chapters.

6.4 The Other Parameters
The analysis of the algorithm sensitivity to parameter changes is a broad
issue. Any change of any parameter located in the acceptable range should be
examined in terms of its impact on the results obtained—brightness in the
simplest form, classification results in an advanced form. Therefore, in
addition to the above-discussed impact of the size, position and rotation of
the ROI on the obtained results of the mean brightness, it is also interesting to
analyse the impact of lighting or positioning the pattern relative to the
analysed object. It is possible to analyse independently the sensitivity of the
classification results to repositioning and resizing the ROI and the impact of
noise in the image (due to both the properties of the camera and the type and
brightness of lighting). Below there are the results of measurement of ACC
for the manually selected ROIs, with the test area being moved in the row
axis by Δm = ±20 pixels and in the column axis by Δn = ±20 pixels. Two
features are analysed: the mean brightness in the ROI and the standard
deviation of the mean. The results obtained are shown in Figs. 6.6 and 6.7.



Fig. 6.6 Graph of changes in ACC for different values of Δm

Fig. 6.7 Graph of changes in ACC for different values of Δn

The source code in this case is a bit different than that presented in the
previous subchapters, i.e.:





The source code in its first part enables to manually identify the ROI in
the image for i = 80. Then the test ROI is artificially moved, i.e.: RECTT   =
  RECTP; RECTT(2)   =   RECTT(2)   +   deltam; and two
features are calculated: the mean brightness mean(LgrayiP(:)) and the
standard deviation of the mean std(LgrayiP(:) . The length of the
training and test vectors is the same and is equal to the total number of
frames, i.e. I = 128. In the next stage, the SVM classifier is trained (variable
meas ) and tested, and ACC is calculated (variable measT ). The results
are shown in the last part of the presented source code figure; plot…) .

Noise can be introduced artificially to the ith sequence of images using
the previously applied function imnoise . In this case, the value of ACC
for the SVM classifier (as in the previous example) was initially analysed for
different values of variance v ∈ (0, 1) and a zero mean value. The results
obtained are shown in Fig. 6.8.

Fig. 6.8 Graph of changes in ACC for different values of v



The form of the source code is almost identical to the previous example.
The only significant difference is the change in the value of v in each loop
circulation in the range from 0 to 1 every 0.01 and the notation LgraiTm  
=   imnoise(IMCROP(Lgrayi,RECTT),  )
allowing for the addition of noise to the image. Only one type of noise (

) is analysed. By a slight modification of the source code, similar
tests can be performed for the following noise types: 

.
It is apparent from the graph presented in Fig. 6.8 that the value of

accuracy is reduced for successive values of variance from 92 to 72%—by
exactly 20%. This is a significant change when compared, for example, with
the graphs shown in Figs. 6.6 and 6.7. For repositioning the test ROI, the
change in ACC was only a few per cent. This information gives the picture of
the algorithm sensitivity (in this case the results of SVM classification) to the
degree of noise in the image.

At the end it should be emphasized that the presented results of the
evaluation of the algorithm sensitivity to parameter changes are exemplary.
They do not exhaust in any way the full diversity of hyperspectral images
dependent on individual variability of patients, the imaging area, lighting and
many others.
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This monograph presents both new and known methods of analysis and
processing of hyperspectral medical images. The developed GUI allows for
easy and intuitive performance of basic operations both on a single image and
a sequence of hyperspectral images. These are operations such as filtration,
separation of an object, measurements of basic and complex texture features
as well as classification. Therefore the developed GUI may be useful both
diagnostically in the analysis, for example, of dermatological images and
may also serve as a foundation for software development. In addition, the
monograph presents new approaches to analysis and processing of
hyperspectral images. After minor modifications, they can be used for other
purposes and image analyses. The algorithm sensitivity to changes in the
selected parameters has also been evaluated. The presented source code can
be used without licensing restrictions provided this monograph is cited. It
should also be emphasized here that the author is not responsible for the
consequences of wrong use and operation of this software. Despite the
author’s best efforts, errors may occur in the presented source code. The
presented software is deliberately free of restrictions, which should encourage
the reader to its subsequent modifications and improvements. An equally
open issue is the time optimization of the described methods of image
analysis and processing, which has been deliberately omitted in almost the
entire monograph (except Table 4.1). Thus the presented software does not
close the interesting subject of analysis and processing of hyperspectral



medical images.



Appendix
A set of Matlab m-files is attached to this monograph so that the reader does
not have to rewrite each selected part of the source code from the text.
According to the information given in the monograph, the files have been
divided into two containers:

GUI_ver_pre.zip —containing 5 m-files enabling to test the initial
version of the application;

GUI_ver_full.zip —containing 21 test m-files and 15 GUI files.

The container GUI_ver_pre.zip includes 5 m-files with the following
names and functionalities:

read_envi_header —reading the header from *.hdr file,

read_envi_data —reading data from *.cube, *.raw or *.dat files,

GUI_hyperspectral_trans— affine transformations of the
image,

GUI_hyperspectral —main GUI file (run first),

GUI_hyperspectral_fun —function responsible for the
functionality of individual menu elements.

The container GUI_ver_full.zip includes 36 m-files (including m-files for
tests) with the following names and functionalities:

read_envi_header —reading the header from *.hdr file (the same
as in the container GUI_ver_pre.zip )

read_envi_data —reading data from *.cube, *.raw or *.dat files
(the same as in the container GUI_ver_pre.zip )

GUI_hyperspectral_trans— affine transformations of the image
(the same as in the container GUI_ver_pre.zip )

GUI_hyperspectral— main GUI file extended with respect to the
file from the container GUI_ver_pre.zip ( run first),

GUI_hyperspectral_fun —function responsible for the
functionality of individual menu elements extended with respect to the



file from the container GUI_ver_pre.zip ,

Class_test — m-file for testing different classification variants,

Class_test2 — m-file for testing different classification variants,

Class_test3 — m-file for testing different classification variants,

Class_test4 — m-file for testing different classification variants,

Class_test5 — m-file for testing different classification variants,

Gauss_test — m-file for testing different variants of the Gaussian
function,

Gauss_test2 — m-file for testing different variants of the Gaussian
function,

Gauss_test3 — m-file for testing different variants of the Gaussian
function,

Gauss_test4 — m-file for testing different variants of the Gaussian
function,

Dergauss —function of the Gaussian function derivatives,

GUI_hyperspectral_adaptive_filter —function of the
adaptive filter,

GUI_hyperspectral_class —function of selecting classification
type,

GUI_hyperspectral_class_dec_tree —classifier function—
decision trees,

GUI_hyperspectral_class_disc —classifier function—
discriminant analysis,

GUI_hyperspectral_naive_bayes —classifier function—
naive Bayes classifier,

GUI_hyperspectral_class_svm —classifier function—SVM,

GUI_hyperspectral_diff —function responsible for calculating
brightness differences,



GUI_hyperspectral_dilate_c —function of conditional
dilation,

GUI_hyperspectral_erode_c —function of conditional
erosion,

GUI_hyperspectral_erode_dilate_test — m-file for
testing the properties of conditional erosion and dilation,

GUI_hyperspectral_erode_dilate_test2 — m-file for
testing the properties of conditional erosion and dilation,

GUI_hyperspectral_erode_dilate_test3 — m-file for
testing the properties of conditional erosion and dilation,

GUI_hyperspectral_erode_dilate_test4 — m-file for
testing the properties of conditional erosion and dilation,

GUI_hyperspectral_filter_test — m-file for testing
dedicated filtration,

GUI_hyperspectral_filter_test2 — m-file for testing
dedicated filtration,

GUI_hyperspectral_qtdecomp_test — m-file for testing
square-tree decomposition,

GUI_hyperspectral_qtdecomp_test2 — m-file for testing
square-tree decomposition,

GUI_hyperspectral_para_change — m-file for testing the
effect of parameter changes on the results obtained,

GUI_hyperspectral_para_changes2 — m-file for testing the
effect of parameter changes on the results obtained,

GUI_hyperspectral_para_changes3 — m-file for testing the
effect of parameter changes on the results obtained,

GUI_hyperspectral_para_changes4 — m-file for testing the
effect of parameter changes on the results obtained.

The two described containers containing all the m-files discussed in this
monograph along with the source codes are available at http://extras.springer.

http://extras.springer.com/
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