
10469_9789813220843_tp.indd   1 28/8/17   12:19 PM

 



b2530  International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd   6 01-Sep-16   11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

 



10469_9789813220843_tp.indd   2 28/8/17   12:19 PM

 



Published by

World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office:  27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office:  57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data
Names: Li, Jingshan, Dr., editor. | Kong, Nan, editor. | Xie, Xiaolei, editor.
Title: Stochastic modeling and analytics in healthcare delivery systems / 
 [edited by] Jingshan Li, Nan Kong, Xiaolei Xie.
Description: New Jersey : World Scientific, 2017. | Includes bibliographical references and index.
Identifiers: LCCN 2017020925 | ISBN 9789813220843 (hardcover : alk. paper)
Subjects: | MESH: Delivery of Health Care | Health Services | Stochastic Processes | 
 Models, Statistical
Classification: LCC RA394 | NLM W 84.1 | DDC 362.101/12--dc23 
LC record available at https://lccn.loc.gov/2017020925

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Copyright © 2018 by World Scientific Publishing Co. Pte. Ltd. 

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, 
electronic or mechanical, including photocopying, recording or any information storage and retrieval 
system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance 
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy 
is not required from the publisher.

Typeset by Stallion Press
Email: enquire@stallionpress.com

Printed in Singapore

Catherine - 10469 - Stochastic Modeling.indd   1 17-08-17   12:27:18 PM

 



b2922 Stochastic Modeling and Analytics in Healthcare Delivery Systems“6x9” 

To our families

b2922_FM.indd   5 29-08-2017   08:34:31

 



b2530  International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd   6 01-Sep-16   11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

 



vii

b2922 Stochastic Modeling and Analytics in Healthcare Delivery Systems“6x9” 

Preface

There has been growing interest toward research and practices in 
healthcare systems worldwide to improve safety, quality, and effi-
ciency; reduce cost; and achieve better patient outcome. In an effort 
to increase awareness and highlight the work in these areas, this 
book offers a collection of papers that throw light on healthcare 
system management and optimization. It focuses on research and 
best practices in stochastic modeling and analytics in the area of 
healthcare engineering and technology assessment. Scientists, 
researchers, and practitioners are invited to present their current 
research outcomes in healthcare system stochastic modeling, simula-
tion, optimization, and management.

First, patient flow, work flow, and operation management 
within hospitals and clinics are studied in the first five chapters.

Chapter 1 (by Joonyup Eun, Sangbok Lee, and Yuehwern Yih) 
presents two types of patient appointment scheduling problems — 
outpatient appointment scheduling in clinics and surgery scheduling — 
and focuses on methodologies used to solve the problems. It also 
provides a detailed literature review related to each specific sched-
uling problem: a simulation-based approach for the outpatient 
appointment scheduling and a stochastic optimization approach 
for surgery scheduling.

Chapter 2 (by Lina Aboueljinane and Evren Sahin) introduces a 
discrete event simulation model to study the current performance of 
the emergency medical service (EMS) system SAMU, which stands 
for the French acronym of Urgent Medical Aid Services, as well as to 

b2922_FM.indd   7 8/28/2017   8:46:17 PM

 



b2922 Stochastic Modeling and Analytics in Healthcare Delivery Systems “6x9”

viii Stochastic Modeling and Analytics in Healthcare Delivery Systems

investigate the effects of potential process changes that can lead to 
enhanced operational efficiency, in terms of the target 20 min cover-
age performance of primary rescues.

Chapter 3 (by Wanying Chen, Alain Guinet, and Tao Wang) 
studies an emergency department of a large-sized Italian hospital in 
normal and overcrowding (due to a major event) situations. The 
IDEF0 method is used to develop the conceptual models, and SIMIO 
is selected to simulate the conceptual models in detail. The factorial 
design is, then, used to analyze the impact of resource dimensioning. 
Finally, improvement rules are proposed.

Chapter 4 (by Na Geng) introduces a new magnetic resonance 
imaging (MRI) examination reservation process. A contract-based 
approach aims to reduce the waiting time of stroke patients for MRI 
examination without degrading the utilization of MRI scanner. 
A stochastic programming model is proposed to simultaneously 
determine contract decisions, and an average cost Markov decision 
process (MDP) approach is used to identify the structural properties 
of the optimal control policy.

Chapter 5 (by Zexian Zeng, Xiaolei Xie, Xiang Zhong, Barbara 
A. Liegel, Sue Sanford-Ring, and Jingshan Li) uses a computer simu-
lation model to study the discharge process in medical units at the 
University of Wisconsin Hospital. Two main constraints of the dis-
charge process are identified: waiting times for the physician’s order 
and before final discharge. Reduction in physician prescription pro-
cessing time and better coordination of events among discharge 
teams are the two potential areas for improvement.

Second, beyond hospitals and clinics, connections with other 
healthcare facilities and the whole healthcare network are considered 
in Chapters 6, 7, and 8.

Chapter 6 (by Xuxue Sun, Zhouyang Lou, Mingyang Li, Nan 
Kong, and Pratik J. Parikh) throws light on patient transition prob-
lems in two projects. The first project uses a binary classifier, based 
on the conditional logistic regression model, to predict 30-day hospi-
tal readmission incidence and utilizes decision trees to identify influ-
ential risk factors. The second project proposes a Bayesian latent 
heterogeneity modeling and quantification approach to characterize 
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 Preface ix

time-to-transition of elderly individuals from the community to the 
long-term care systems. Real case studies in both projects are carried 
out to demonstrate the usefulness of the methods.

Chapter 7 (by Jianpei Wen and Jie Song) describes a multi-agent 
simulation model to quantitatively analyze the impact of different 
factors on a patient’s choice of a healthcare facility in hierarchical 
healthcare systems in China, which consist of general hospitals 
(GHs) and community healthcare centers (CHCs). GHs and CHCs 
were established in urban China to improve the accessibility of 
healthcare services. The results show that improving the quality of 
treatment at CHCs and reducing CHC-related costs can attract 
patients toward CHCs, reducing congestion at GHs and balancing 
the loads between GHs and CHCs.

Chapter 8 (by Rachel M. Townsley, Maria E. Mayorga, 
A. Sidney Barritt IV, and Eric Orman) investigates trends in liver 
transplantation and evaluates the effects of these trends on the 
transplant-recipient population and resulting predictors of survival, 
that is, the survival probability and the D-MELD score. Population 
dynamics models are used to predict the donor and the recipient 
population. Then, donors and recipients are matched with a survival 
analysis model to predict survival outcomes posttransplant.

Third, more broad analyses related to health data management, 
social network, and public health are investigated in the remaining 
chapters.

Chapter 9 (by Chen Kan and Hui Yang) presents a new visualiza-
tion and data analytics tool for stochastic modeling and analysis of 
cardiac electrical signals. The tool advances cardiac tele-healthcare 
service with exceptional features, such as personalization, respon-
siveness, and superior quality, and develops the next-generation 
cardiac mHealth system, namely, the mobile and E-network smart 
health (MESH).

Chapter 10 (by Yu Teng, Nan Kong, and Torsten Reimer) show-
cases a recent study on an agent-based social influence simulation 
that aims to investigate changes in individual attitudes and the for-
mation of public opinions over time through scale-free networks. 
The relationship between the distribution of final public opinions 
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and initial distribution is studied, and the impacts of intervention 
and social influence in opinion change are investigated.

Chapter 11 (by Xiang Zhong, Jingshan Li, Goutham Rao, and 
K.P. Unnikrishnan) talks about a study conducted to generate 
growth curves of American children from more recent datasets and 
compare them with CDC reference curves in 2000. The results show 
that children covered in the new datasets are heavier, at any given 
age, than the children included in the CDC dataset, and their adipos-
ity rebound also occurs at an earlier age, or may not even exist. 
These findings suggest a progressive fattening of American children, 
and the growth charts generated in the past as standards for measur-
ing growth might no longer be applicable to today’s population.

We are grateful to anonymous reviewers for their comments that 
helped improve the quality of the contributing chapters. In addition, 
we express our deep gratitude to Catherine Yeo Man Ling, Yubing 
Zhai, and Allison McGinniss of World Scientific Publishing Company 
for their incredible support.

Jingshan Li (University of Wisconsin-Madison, USA), 
Nan Kong (Purdue University, USA), and
Xiaolei Xie (Tsinghua University, China)

2017
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1.  Patient Appointment  
Scheduling

Joonyup Eun*, Sangbok Lee† and Yuehwern Yih‡

*Department of Anesthesiology, School of Medicine,  
Vanderbilt University Medical Center, Nashville,  

Tennessee, USA
†Department of Industrial and Management Engineering,  

Hansung University, Seoul, South Korea
‡Regenstrief Center for Healthcare Engineering and  
School of Industrial Engineering, Purdue University,  

West Lafayette, Indiana, USA

Abstract

This chapter discusses patient appointment scheduling that manages 
the patient inflow to the healthcare delivery system while satisfy-
ing patient needs. It directly affects the operations within the 
healthcare system and the matrices related to patient outcomes, 
patient safety, accessibility and timely care. Patient appointment 
scheduling is complex and challenging due to the uncertainties asso-
ciated with patient demands, disease progression, treatments, pro-
cedures, supporting services and other environmental factors, such 
as regulations, reimbursement, etc. To manage these uncertainties, 
simulation or stochastic modeling techniques are frequently used to 
tackle this class of scheduling problems. This chapter provides an 
overview of both techniques and demonstrates each technique in 
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an outpatient clinic setting and in a surgery scheduling setting 
respectively.

1.1.  Introduction

In general, patient appointment scheduling is defined as determin-
ing the sequence and the time for any activity in healthcare services 
that requires patient attendance. The common areas for patient 
appointment scheduling include outpatient procedure (e.g., primary 
care, chemotherapy, and radiotherapy), elective surgery, diagnostic 
imaging, and laboratory tests. Due to the uncertainties in patient 
demands, procedure duration, and supporting environments, simula-
tion or stochastic modeling techniques are frequently used to tackle 
such problems.

Patient appointment scheduling directly affects the overall qual-
ity of healthcare delivery systems in many ways. First, it affects how 
soon the patient can see the provider or get the service s/he needs, 
which contributes to providing timely care. A delay in appointment 
not only causes patient dissatisfaction but also harms the patient due 
to missed opportunity to treat. Second, it affects the allocation and 
usage of medical resources, such as providers, medical staff, equip-
ment, patient rooms, and operating rooms (ORs). The allocation of 
these resources contributes to the overall healthcare expenditures. 
The poorly generated schedules increase costs as they do not utilize 
the resources efficiently and waste resources [1].

The knowledge of appointment scheduling on a couple of appli-
cation areas (such as outpatient procedures, elective surgery, diag-
nostic imaging, and laboratory tests) can be extended to the rest of 
the application areas as the problems related to patient appoint-
ment scheduling share the similarities such as inherent scheduling 
complexity of calculating factorials, limited medical resources, and 
uncertain procedure durations.

This chapter focuses on two types of patient appointment sched-
uling problems that have gained increasing attention from research-
ers in healthcare operations management. Those are appointment 
scheduling in outpatient clinics and surgery scheduling in hospitals. 
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 1. Patient Appointment Scheduling 3

In this chapter, we will provide more detailed literature review 
related to each specific scheduling problem. Further, we will present 
a simulation-based approach for the outpatient appointment sched-
uling problem and a stochastic optimization approach for the sur-
gery scheduling problem.

1.2.  Appointment Scheduling in Outpatient Clinics

Appointment scheduling in outpatient clinics is one of the most 
important drivers to reduce escalating healthcare costs [2]. Institute 
of Medicine [3] expected $80 billion would be saved through the 
efficient use of clinical resources. Appointment scheduling in outpa-
tient clinics aims at reducing unnecessary or inefficient use of clinical 
resources and, at the same time, increasing the quality of care 
(patient satisfaction and acute care).

Patients make appointments with doctors on a regular basis or 
when they feel sick. In the traditional appointment system, patients 
need to wait for a long time due to fully occupied appointment slots. 
During the waiting time, the condition of patients may get better, 
stay the same, or get worse. If the condition gets worse, they visit 
emergency department for acute care or seek for other alternatives. 
In any case, long waiting time causes high likelihood of no-shows 
and late cancellations. As no-shows and late-cancellations may not 
be predicted correctly, the doctor’s slots are under-utilized despite 
being fully booked. Considering patient health as well as the high 
cost of using the emergency department, we need to meet patient 
needs better.

Open access (OA) and overbooking (OB) are alternative schedul-
ing systems in outpatient clinics. OA leaves the majority of slots for 
the same day appointments. The same day appointments are made 
for patients who want to meet doctors on the same day because they 
feel sick. The remaining slots are intentionally designated for return-
ing patients according to the requirements of the patients or the doc-
tor [4–6]. OB allows double-booking or multiple-booking in the 
same slot, based on rough prediction of no-shows. For example, if 
the mean no-show rate of an outpatient clinic is 20%, the clinic will 
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open double-booking on 20% of its regular slots. Lee et al. [7] 
describes different roles of OA and OB in appointment scheduling 
system with Fig. 1.1. As shown in the figure, OA increases resource 
utilization by reducing no-shows, while OB increases it by increasing 
scheduled appointments. OB can be simply implemented by accept-
ing more appointments than available slots. OB is expected to reduce 
waiting delays (the period time between the day an appointment is 
made and the actual appointment day), and thus, it helps reducing 
the no-show rate. OA also reduces the no-show rate; however, its 
implementation takes extra effort, such as reducing backlogs of 
appointments, which have been piled up in the traditional scheduling 
system, and changing appointment lead times from many days to 
one or a few days.

There is a large number of literature on appointment scheduling 
systems (Cayirli and Veral [8] provide a good review about this 
topic). Many research papers, particularly which considered the 

Figure 1.1.  Different roles of open access and overbooking.
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 1. Patient Appointment Scheduling 5

 stochastic arrival process, have focused on modifying the appoint-
ment slot intervals and the number of patients in a slot (multiple-
blocking allows the appointment time for multiple patients, while 
single-blocking allows the appointment of only one patient in a 
block). As more attention has been paid to the efficiency and the 
effectiveness of the clinical process, more research work has been 
done on advanced appointment scheduling, including OA and OB. 
Many case studies of OA have been investigated in real clinical set-
tings [6, 9–10]. The optimal implementation strategy for OA has 
also been widely studied [11–13]. There are many analytical studies 
of OB in which the location and the number of OB slots are deter-
mined [14, 15]. Lee et al. [7] compare OA and OB to suggest a better 
solution for various clinic settings.

1.2.1.  Appointment scheduling in outpatient  
clinics with simulation

This subsection briefly describes a simulation study for advanced 
appointment scheduling systems in outpatient clinics. OA and OB are 
renovated systems that have been recently adopted by many clinics. 
Although these ideas have been successfully implemented, they are 
not free from restrictions. For example, implementing OA requires an 
equilibrium between patient-demand and doctor-capacity [2, 16, 17]. 
OB also needs frequent overtime work by clinical personnel, particu-
larly under over-capacity demand environments. A study to compare 
OA and OB performances under different demand-capacity settings 
can be useful to understand both systems and can also be used as a 
basis for designing a mixed scheduling system of OA and OB, which 
could perform better than OA or OB alone. A simulation study about 
this topic is presented in this section.

A discrete-event simulation model is developed for the compari-
son between OA and OB. Patients come as scheduled, but if the 
other patients or the doctor arrives early or late, the checked-in 
patients can see the doctor as soon as s/he is ready. However, the late 
arrival of the patient for his appointment, with the doctor waiting 
for him, is surely waste of costly resources. No walk-in patients are 
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modeled under OA as it is unlikely to have them in clinics. There is 
only one doctor in the model under an assumption of patient and 
primary-care doctor matching.

OA, when implemented in the field, mixes the same day appoint-
ment (SDA) and the long-term scheduling (LTS), while OB allows 
only LTS. For a fair comparison, both systems have the same num-
ber of patient demand, and the OA simulation model separates it 
into SDA and LTS with a certain probability. Here, the patient 
demand refers to patient appointment calls. In the simulation 
model, uncertainties for both appointment calls and actual time of 
arrival are considered. Daily appointment calls are modeled using 
normal distributions with different means, demand and capacity-
equilibrium, 14% larger demand, and 28% larger demand (the lat-
ter two cases are test environments that are above the limits of 
system capability as well as the base condition for implementing OA). 
The appointment calls on a day are modeled as shown in Fig. 1.2. 
Since there are two peaks in real data, they are generated by two 
normal distributions (a bi-modal distribution) in the model. 
Modeling call-arrivals on a day is particularly important for OA 
since it has SDA. Patient earliness and lateness are modeled using a 
normal distribution.

Figure 1.2  Patient calls per day from the data and the simulation model.
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Patient no-show is an important issue in appointment scheduling 
studies. There is a large amount of literature that considers waiting 
time is dependent on no-show probabilities [7, 12, 18, 19]. It means 
that no-show rate increases as the appointment lead time (the period 
between the day an appointment is requested and the actual appoint-
ment day) increases. One simulation example of this idea can be 
obtained from Kopach et al. [19]. They developed the following no-
show decay function along with appointment lead time, which was 
hinted from the exponential decay in the physical processes such as 
radioactive decay. 

 - ⋅= ⋅ - ⋅( ) (1 0.5 )k x
ns sf x N e  (1.1)

where: Ns: estimated no-show probability
x: appointment lead time
k: exponential decay constants

Figures 1.3 and 1.4 describe OA and OB simulation processes. 
From the identically-generated daily appointment demand, individ-
ual calls are distributed with the bi-modal distribution, and then, the 
scheduler assigns patients by following two different flows. If any 
patient fails to be scheduled in any slot of a planning horizon, s/he 
will be classified as “unscheduled”, and this case is penalized in 
evaluating the performance (although, in reality, they may try 
another time, walk-in, or go to different clinics, including emergency 
departments).

As many stakeholders are involved in outpatient clinics, only one 
performance measure is not enough to evaluate scheduling perfor-
mance. The four measures defined are in-clinic waiting time, propor-
tion of scheduled patients, appointment slot utilization, and overtime 
work (in minutes). The former two measures are in the patient’s 
perspective and the latter two are in the clinic’s perspective.

In-clinic waiting time refers to the period between the time a 
patient arrives at the clinic and the actual time s/he is seen by a doc-
tor. The appointment delay (the period between the appointment 
call and the scheduled day) is not considered because OA always 
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performs well with it. The proportion of scheduled patients is rep-
resented by the ratio of unmet requests (the unscheduled patients). 
It implies appointment backlogs or a potential burden for the 
society because the unscheduled patients should be taken care of. 
Appointment slot utilization is a straightforward measure, and it 
does not account for a doctor’s idle time in a service slot. With the 
overtime work measure, early completion does not compensate for 
the overtime work hours.

An integrated metric, which is a linear combination of the four 
performance measures, is developed. There are discrepancies in the 
unit of the performance measures. Overtime work and waiting time 
are measured in minutes, while unmet appointment request and slot 
utilization are measured in ratio. To combine them on the same stand-
ard (ratio), overtime work and waiting time are divided by regular 
length of work-day. In addition, since the utilization implies positive 

Figure 1.3.  Flowchart of OA in the simulation model [7].

*Shared process with OB.

b2922_Ch-01.indd   8 8/28/2017   8:41:36 PM

 



b2922 Stochastic Modeling and Analytics in Healthcare Delivery Systems“6x9” 

 1. Patient Appointment Scheduling 9

aspect, and other measures are negative aspects, utilization is replaced 
with (1–utilization). As a result, all the coefficients in the linear func-
tion are positive, and the integrated metric becomes a cost function.

The coefficients of the integrated metric are not fixed at a certain 
value. Various combinations of the coefficients are tested with simu-
lation runs. Ideas about correlations among the four measures can 
be used to set ranges of the coefficients. For example, the US regula-
tion stated that the overtime cost should be paid at least 50% more 
than the regular hours. Thus, the coefficient of the overtime work 
can be 1.5 times more than that of under-utilization (1–utilization). 
The unmet appointment request must be satisfied by additional 
work, and thus, its cost could be at least as much as that of overtime 
work.

The simulation runs 260 days (the number of working days per 
year). Since the schedule is empty at the beginning of the simulation, 

Figure 1.4.  Flowchart of OB in the simulation model [7].

*Shared process with OA.

b2922_Ch-01.indd   9 8/28/2017   8:41:36 PM

 



b2922 Stochastic Modeling and Analytics in Healthcare Delivery Systems “6x9”

10 Stochastic Modeling and Analytics in Healthcare Delivery Systems

the analysis of 260-day simulation run is performed after 100-day 
warm-up period, which is the time when the system is sufficiently in 
a steady state from preliminary simulation runs.

From this simulation study, for each test setting (clinic environ-
ment), the best OA and OB scheduling policies are selected. The 
comparison is conducted with the best policies, and then, sugges-
tions on the scheduling policy and scheme are provided. The basic 
fundamental for the best OA policies is to prepare open slots as 
much as the proportion of the same day requests per day. However, 
as daily demand exceeds the capacity, reducing some same-day slots 
from the fundamental may be necessary to improve scheduling per-
formance. The decision on overbooking policies is as follows. When 
the demand and capacity are in equilibrium, no overbooking slots 
are necessary. In case, the demand is above capacity, and no-show 
probability is relatively low (10%), it is the best to allow as many 
overbooking slots as the no-show rate times daily capacity. When 
the no-show rate is large under the high demand, e.g., 30% and 
50%, clinics must add less than 30% and 50% overbooking slots, 
respectively (10% or 20% for 30% no-shows and 20% or 30% for 
50% no-shows, according to the simulation study). In addition, as 
demand increases, the proportion of overbooking slots must be 
reduced a little (up to 10%).

Compared to OA scheduling scheme, OB, generally, performs 
better particularly when unmet-request (appointment backlog) cost is 
more expensive than overtime work cost (it is reasonable because 
unmet-request must be satisfied by emergency department or other 
medical services in the society). From the simulation study, OB out-
performs OA even when the demand and the capacity are in equilib-
rium, and more than 80% of patients want the same-day appointments. 
It is very interesting because OA is known to function well in the 
demand-capacity equilibrium condition. Also, although the majority 
of patients want to be seen on the same day, OB, which does not 
particularly prepare the same-day slots, functions better.

In case of higher demand than the system’s capacity, better 
scheduling scheme can be determined by the cost ratio between 
appointment backlog and overtime work. If the cost ratio is one, OA 
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is better. If appointment backlog is more expensive than overtime 
work, OB can be the choice. It is a predictable result as OB takes 
the risk of accumulating appointments every day. When the demand 
is much higher than the capacity (around 50% more), comparing 
two scheduling schemes is meaningless because the system cannot 
handle the case at all. For more details, the authors recommend to 
see Lee et al. [7].

1.3.  Surgery Scheduling

Operating rooms (OR) are the most cost-intensive area in hospitals. 
Surgery operations comprise more than 40% of the expenses of hos-
pitals [20–22, 12] due to the involvement of expensive resources 
(e.g., surgeons, anesthesiologists, nurses, surgical equipments, and 
ORs). Furthermore, the schedule for surgery operations has a sig-
nificant impact on perioperative patient flow in hospitals [23]. 
Therefore, hospitals are under pressure to develop efficient surgery 
schedules that reduce costs for expensive resources and the patient 
flow delay.

Surgery scheduling is very demanding since many resources, their 
activities, and uncertainty of those activities need to be considered. 
For this reason, researches are increasingly paying attention to sur-
gery scheduling problems. In the following subsections, solution 
methodologies for surgery scheduling problems are examined and an 
overall procedure of the sample average approximation (SAA) 
method, which deals with uncertainty in surgery durations, is dis-
cussed. More general reviews on surgery scheduling problems can be 
found in Magerlein and Martin [24]; Przasnyski [25]; Blake and 
Carter [26]; Cardoen et al. [27]; May et al. [28]; Hulshof et al. [29].

1.3.1.  Methodologies

This subsection examines solution methodologies used to solve sto-
chastic surgery scheduling models in the papers published in or after 
the year 2000. In this section, mixed integer programming (MIP) 
also includes pure integer programming.
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As uncertainty related to surgery durations and patient arrivals 
is incorporated in surgery scheduling problems, stochastic models 
comprise a great portion of the recent surgery scheduling literature.

Table 1.1 classifies the literature based on the solution method-
ologies used to solve its stochastic models: MIP-/linear programming 
(LP)-based approach, dynamic programming (DP)-based approach, 
heuristic, and simulation. There may be no clear-cut classification 
between MIP-/LP-based approach and heuristic, and between DP-based 

Table 1.1.  Solution methodologies used to solve stochastic models.

Paper 

Solution Methodologies

MIPa-/
LPb-based 
Approach 

DPc-based 
Approach HEUd SIMe

Bowers and Mould [33] X 

Cardoen and Demeulemeester [34] X 

Denton and Gupta [30] X 

Denton et al. [20] X X 

Denton et al. [31] X X 

Dexter [35] X 

Dexter [36] X 

Dexter and Traub [37] X 

Epstein and Dexter [38] X 

Gupta [39] X 

Hans et al. [40] X X 

Herring and Herrmann [41] X 

Lamiri et al. [42] X 

Lamiri et al. [43] X 

Lebowitz [44] X 

Lee and Yih [45] X 

Mancilla and Storer [32] X 

(Continued )

b2922_Ch-01.indd   12 8/28/2017   8:41:37 PM

 



b2922 Stochastic Modeling and Analytics in Healthcare Delivery Systems“6x9” 

 1. Patient Appointment Scheduling 13

approach and heuristic. It is because, in most solution methodologies 
for stochastic models, the optimality of a solution is not easily guar-
anteed even though the solution methodologies are based on the 
exact algorithms for deterministic MIP/LP or DP. Therefore, in this 
section, solution methodologies that employ MIP/LP formulations 
are classified as MIP-/LP-based approaches and those that employ 
DP formulations are classified as DP-based approaches. 

Among MIP-/LP-based approaches, a prevalent way to tackle 
the problems is to convert the stochastic models to the deterministic-
equivalent models using scenarios (i.e., realized sets of random 
parameters) and, then, solve the deterministic models using well-
established techniques, such as the L-shaped decomposition [30, 31], 
the bender’s decomposition [32], and the total unimodularity [22].

A few papers employ the DP framework, in which solution struc-
tures are analysed, and a Bellman equation is constructed [41, 48].

Table 1.1.  (Continued )

Paper 

Solution Methodologies

MIPa-/
LPb-based 
Approach 

DPc-based 
Approach HEUd SIMe

Marcon and Dexter [46] X 

Marcon et al. [47] X X 

Min and Yih [48] X 

Min and Yih [22] X 

Pérez Gladish et al. [49] X 

Sciomachen et al. [50] X 

Tyler et al. [51] X 

Wullink et al. [52] X 

aMixed integer programming.
bLinear programming.
cDynamic programming.
dHeuristic.
eSimulation.
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In many cases, MIP-/LP-based and DP-based approaches are time-
consuming. Therefore, to solve large-size problems, time-efficient 
heuristics are also presented and evaluated [20, 31, 41].

If the problems under consideration are too complex or have a 
lot of stochasticity, it is hard to formulate the problems as mathe-
matical programming models. In those cases, simulation serves as a 
good modeling tool. Simulation allows researchers to describe their 
problems in detail and easily change the details. For these reasons, 
simulation has been successfully and frequently used in the literature.

1.3.2.  Surgery scheduling with SAA method

This subsection describes an overall procedure of the SAA method to 
solve a well-known surgery scheduling problem. The theoretical back-
ground of the SAA method can be found in Ahmed and Shapiro [53]; 
Kleywegt et al. [54].

Example problem

Denton and Gupta [30] introduced a surgery scheduling problem. The 
objective of the problem is to find a surgery schedule that minimizes 
the expected total cost for patient waiting time, OR idle time, and OR 
overtime in a particular OR on a particular day (or block). The same 
problem with slight modifications on the mathematical formulation 
was also studied by Denton et al. [20]; Mancilla and Storer [32]. The 
mathematical formulation suggested by Mancilla and Storer [32] is 
used in this section as an example to explain the SAA. A stochastic 
mixed integer program to formulate the problem is as follows: 

 
= = = =

 
+ + 

  
∑∑ ∑∑

1 1 1 1

min  
n n n n

w s l
j ij j ij

i j i j

E c W c S c L  (1.2)

subject to

 + +
= = = =

- + - - = = -∑ ∑ ∑ ∑1 1,
1 1 1 1

, 1,..., 1
n n n n

i i i j ij ij j ij
j j j j

t t W W S Z x i n  (1.3)
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= =

+ + - + =∑ ∑
1 1

,
n n

n nj j nj
j j

t W Z x L G d  (1.4)

 
=

= =∑
1

1, 1,...,
n

ij
i

x j n  (1.5)

 
=

= =∑
1

1, 1,...,
n

ij
j

x i n  (1.6)

 ≤ = =, 1,..., ; 1,...,ij ijS Mx i n j n  (1.7)

 ≤ = =, 1,..., ; 1,...,ij ijW Mx i n j n  (1.8)

 =1 0t  (1.9)

 ≥ ≥ = =0, 0, 1,..., ; 1,...,ij ijS W i n j n  (1.10)

 ≥ ≥0, 0L G  (1.11)

 ≥ =0, 2,...,it i n  (1.12)

 ∈ = ={0,1}, 1,..., ; 1,...,ijx i n j n  (1.13)

Notations
      j:  surgery index, j = 1, ..., n
      i:  position index (i.e., ith position) in the surgery sequence,  

i = 1, ..., n
   cj

w:  patient waiting time penalty for surgery j 
  cj

s:  OR idle time penalty for surgery j 
    cl:  OR overtime penalty
    d:  available time duration in which surgeries can be performed 

without OR overtime
 M:  sufficiently large number
 Zj:  random surgery duration for surgery j 
    ti:  scheduled starting time for the surgery in position i
   L:  OR overtime
  G:  slack variable that means the earliness with respect to d
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1 if  surgery  is assigned to position 
:

0 otherwise ij

j i
x

Wij:  patient waiting time when surgery j is assigned to position i
 Sij:  OR idle time when surgery j is assigned to position i

The expected total costs for patient waiting time, OR idle, and 
OR overtime are minimized in objective function (1.2). Constraint 
(1.3) defines Wij and Sij (see Fig. 1.5), and constraint (1.4) defines L 
and G (see Fig. 1.6). Constraints (1.5) and (1.6) ensure that each 
surgery is assigned to one position and each position accommodates 
one surgery. Constraints (1.7) and (1.8) force Sij and Wij to be zero 
if surgery j is not assigned to position i. Constraint (1.9) ensures that 
the starting time of the first surgery is zero.

SAA model

For the exact evaluation of objective function (1.2) in the stochastic 
mixed integer program, the deterministic-equivalent mixed integer 
program for every realization of the uncertain surgery durations needs 
to be solved, which is computationally prohibitive [53]. Therefore, a 
number of samples have been taken from the surgery duration distri-
bution for each patient and plugged into the deterministic-equivalent 
mixed integer program (i.e., SAA model).

The SAA model for the original stochastic mixed integer pro-
gram is as follows: 

 ξ ξ ξ
= = = = =

 
+ + 

  
∑ ∑∑ ∑∑

1 1 1 1 1

1
min ( ) ( ) ( )  

m n n n n
w s l
j ij k j ij k k

k i j i j

c w c s c l
m  (1.14)

subject to

 
1 1,

1 1 1 1

( ) ( ) ( ) ( ) ,

 1,..., 1; 1,...,

n n n n

i i i j k ij k ij k j k ij
j j j j

t t w w s z x

i n k m

ξ ξ ξ ξ+ +
= = = =

- + - - =

= - =

∑ ∑ ∑ ∑
 (1.15)
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Figure 1.5.  Relationship among , , , , and .1,1 1 1 1∑ ∑ ∑ ∑+= = = =
n n n nt W W S Z xi ij ij j ijjj j j ji
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1 1

( ) ( ) ( ) ( ) , 1,...,
n n

n nj k j k nj k k
j j

t w z x l g d k mξ ξ ξ ξ
= =

+ + - + = =∑ ∑  (1.16)

 
=

= =∑
1

1, 1,...,
n

ij
i

x j n  (1.17)

 
=

= =∑
1

1, 1,...,
n

ij
j

x i n  (1.18)

 ξ ≤ = = =( ) , 1,..., ; 1,..., ; 1,...,ij k ijs Mx i n j n k m  (1.19)

 ξ ≤ = = =( ) , 1,..., ; 1,..., ; 1,...,ij k ijw Mx i n j n k m  (1.20)

 
1 0t =  (1.21)

(a) Case 1

(b) Case 2

Figure 1.6.  Relationship among ∑ ∑= =, , , and .1 1 Gn nt W Z x Ln nj j ijj j
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 ( ) 0, ( ) 0, 1,..., ; 1,..., ; 1,...,ij k ij ks w i n j n k mξ ξ≥ ≥ = = =  (1.22)

 ξ ξ≥ ≥ =( ) 0, ( ) 0 1,...,k kl g k m  (1.23)

 ≥ =0, 2,...,it i n  (1.24)

 ∈ = ={0,1}, 1,..., ; 1,...,ijx i n j n  (1.25)

New notations
ξk :  kth scenario that defines kth realization of the surgery duration 

1 2 verctor ( , ,..., ),  1,...,nZ Z Z Z k m= =
�

zj(ξk) :  element of scenario ξk that defines surgery j’s duration
l(ξk) :  realization of L under scenario ξk
g(ξk) :  realization of G under scenario ξk
wij(ξk) :  realization of wij under scenario ξk
sij(ξk) :  realization of sij under scenario ξk

The SAA model is able to be solved using optimization software, 
like AIMMS (http://www.aimms.com/), AMPL (http://www.ampl.
com/), and GAMS (https://www.gams.com/), to obtain an surgery 
schedule (i.e., SAA solution) and its objective value (1.14). The 
objective value (1.14) of an SAA solution approximates the objective 
value (1.2) in the stochastic mixed integer program, and the quality 
of the SAA solution is examined by statistical analysis.

One-sided confidence interval on the optimality gap

To obtain statistical results that evaluate the quality of SAA solu-
tions, the SAA model is solved several times, changing the sets of 
scenarios.

Let r be the number of replications of the SAA model and wk
p be 

the element of the scenario set ω ={ | 1,..., }p
k k m  used for the pth SAA 

replication. A feasible schedule X is defined as a feasible solution set 
{ , | 1,..., ; 1,..., }i ijt X i n j n= = . Let X* be the optimal schedule of the 
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stochastic mixed integer program, Xp* be the optimal schedule of the 
pth SAA replication, φ(X) be the objective value (1.2) of X, and 

( , )p
kXθ ω  be the objective value (1.14) of X under the scenario set 

ω ={ | 1,..., }p
k k m .

For a given schedule X̂, the optimality gap is defined as

 *( ) ( ).X̂ Xφ φ-  (1.26)

( )X̂φ  is estimated by 

 θ ω
= =

 
=  

 
∑ ∑

1 1

1 1
( ) : ( , )ˆ ˆ .

r m
p
k

p k

v X Xmr
 (1.27)

*( )Xφ  is estimated by 

 θ ω
= =

 
=  

 
∑ ∑�

*

1 1

1 1
: ( , ) .

r m
pp
k

p k

v Xr m  (1.28)

Therefore, *( (ˆ ) )X Xφ φ-  is estimated by 

 ( )ˆ .v X v- �  (1.29)

The variance of ( )ˆv X v- �  is 

 ( ) ( ) { }θ ω θ ω
= = =

   - - -  -     
∑ ∑ ∑ �

*

2

1 1 1

ˆ1 1 1
, , ( )

( 1)
ˆ

r m m
p pp
k k

p k k

X X v X vm mr r
 (1.30)

Note that since ( )X̂v  is always greater than or equal to v  regard-
less of ( ˆ )X , the 100(1-a)% one-sided confidence interval on the 
optimality gap (CIOOG) can be constructed for sufficiently large r, 
by the central limit theorem, as follows:

 ( ) ( ) { }*

*

2

1 1 1

( ) ( )

1 1 1
, , ( )

(
ˆ

1)

ˆ

ˆ
r m m

p pp
k k

p k k

X X

z X X v X v
r r m ma

φ φ

θ ω θ ω
= = =

- +

   - - -  -     
∑ ∑ ∑ �

 (1.31)
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where za is the value such that ( )Pr Z za a> = , and Z is a standard 
normal random variable.

Since )ˆ(v X�  is an unbiased estimator of ( )X̂φ , the SAA method 
usually selects an SAA solution that yields the lowest value (1.27) 
among several SAA solutions obtained using different sets of sce-
narios [22]. However, SAA solutions can be further analyzed by 
generating more scenarios [54] and/or examining each solution’s 
confidence interval [55].

Numerical example

We present a simple numerical example and solve it with the SAA 
model.

Suppose that three patients are to be scheduled in an OR on the 
same day for laparoscopy and tubal cautery, inquinal hernia repair, 
and laparoscopic cholecystectomy. It is assumed that surgery dura-
tions (i.e., Zj) follow the lognormal distribution [56], and their 
means and standard deviations are given in Table 1.2. To make the 
example simple, other parameters are set to be as follows: cj

w (patient 
waiting time penalty) = cj

s (OR idle time penalty) = cl (OR overtime 
penalty) = 1 for all j, d (available time duration) = 480 minutes, and 
m (number of scenarios) = 10.

The SAA model is solved 30 times (i.e., r = 30) by GAMS 24.1.3, 
changing the sets of scenarios that are taken from the surgery dura-
tion distributions.

Table 1.2.  Statistics for surgery durations.

j *Description

Surgery Duration (In Minutes) 

Mean* Standard Deviation*

1 Laparoscopy and tubal cautery 105 27.4 

2 Inquinal hernia repair 143 38.5 

3 Laparoscopic cholecystectomy 219 47.2 

*Statistics from Strum et al. [57].
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Table 1.3 shows the 30 SAA solutions obtained, their objective 
values (1.27), and 95% CIOOGs (1.31). Furthermore, average 
patient waiting time, OR idle time, and OR overtime are calculated 
for each SAA solution. As aforementioned, an SAA solution that 
yields the lowest objective value (1.27) is typically selected. It is the 
solution obtained during the 25th replication. The solution indicates 
the following three points: 1) the second and third surgeries should 
be scheduled to start about 96 minutes and 236 minutes, respectively, 
after the first surgery starts, 2) surgeries 1, 2, and 3 should be per-
formed in that order, and 3) if the schedule is implemented, the aver-
age patient waiting time, OR idle time, and OR overtime are about 
47 minutes, 12 minutes, and 23 minutes, respectively.

Note that selecting a solution with the lowest patient waiting 
time, OR idle time, or OR overtime is not a good decision. In the 
parameter setting, patient waiting time, OR idle time, and OR over-
time are equally weighted (i.e., 1w s l

j jc c c= = =  for all j). The SAA 
solutions are obtained under the assumption: if OR managers con-
sider a measure more important than the others, its coefficient needs 
to be declared heavily in the parameter setting. This way optimizes 
the trade-off between the performance measures.

1.4.  Summary

This chapter presents two types of patient appointment scheduling 
problems (i.e., appointment scheduling in outpatient clinics and 
surgery scheduling in hospitals), focusing on methodologies used to 
solve these problems. There are a great number of papers that deal 
with patient appointment scheduling problems in healthcare deliv-
ery systems. The scheduling problems are especially complex and 
challenging due to the dynamic nature of patient demand, proce-
dures, and environments, in addition to the inherent scheduling 
complexity of calculating factorials. Therefore, in recent years, 
many researchers in healthcare operations management have applied 
advanced solution methodologies (e.g., simulation-based optimiza-
tion techniques, such as; the SAA method) to solve those problems. 
We believe that this trend will continue and more advanced solution 
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Table 1.3.  SAA solutions to the numerical example.

p SAA Solution (X̂) 
Objective 

Value (1.27) 

Patient 
Waiting 
Time*

OR Idle 
Time* 

OR 
Overtime* 

95% 
CIOOG 
(1.31) 

 1
2 3 11 22 33106.76, 233.71,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 83.47 48.17 10.99 24.31 14.70 

 2
2 3 11 22 33114.62, 248.15,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 85.37 41.43 16.38 27.55 16.98 

 3
2 3 11 22 3387.59, 213.26,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 90.79 64.80 5.04 20.95 24.10 

 4
2 3 12 21 33174.46, 304.92,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 130.11 34.32 43.02 52.77 66.51 

 5 
2 3 11 22 33102.53, 230.11,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 83.17 50.11 9.67 23.39 14.58 

 6 
2 3 12 21 33129.39, 260.22,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 91.96 41.12 22.96 27.88 24.43 

 7 
2 3 13 21 32216.26, 338.22,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 93.42 43.16 23.14 27.12 26.11 

 8 
2 3 11 22 3382.63, 225.43,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 87.95 58.50 8.12 21.34 20.76 

 9 
2 3 11 22 3397.38, 231.36,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 82.31 49.29 10.20 22.82 13.85 

(Continued )
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10 
2 3 13 22 31204.60, 349.96,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 101.02 62.13 16.43 22.46 34.56 

11 
2 3 11 23 32106.66, 334.76,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 88.81 36.88 24.49 27.45 20.99 

12 
2 3 11 22 3392.77, 252.35,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 85.20 39.25 20.19 25.76 17.05 

13 
2 3 11 22 33111.47, 255.34,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 84.80 36.31 20.19 28.30 16.86 

14 
2 3 12 21 33122.42, 218.39,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 92.43 66.53 4.99 20.92 26.36 

15 
2 3 12 21 33139.78, 248.83,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 86.51 44.44 16.14 25.93 18.23 

16 
2 3 11 22 3391.38, 254.08,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 86.50 39.05 21.32 26.13 18.51 

17 
2 3 12 23 31130.74, 371.59,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 97.91 45.06 27.39 25.46 30.73 

18 
2 3 11 22 3385.99, 220.46,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 87.85 60.13 6.58 21.15 20.85 

19 
2 3 12 21 33138.57, 231.59,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 88.28 55.60 9.20 23.48 20.56 

Table 1.3.  (Continued )

p SAA Solution (X̂) 
Objective 

Value (1.27) 

Patient 
Waiting 
Time*

OR Idle 
Time* 

OR 
Overtime* 

95% 
CIOOG 
(1.31) 
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20 
2 3 11 22 33105.32, 252.92,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 83.10 37.07 19.12 26.91 14.86 

21 
2 3 11 23 32101.55, 315.30,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 87.52 46.07 17.49 23.96 19.76 

22 
2 3 11 23 3278.11, 321.22,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 94.53 51.98 19.95 22.59 27.48 

23 
2 3 11 22 33114.26, 271.07,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 92.14 30.35 28.44 33.35 25.79 

24 
2 3 11 22 33110.76, 258.51,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 85.49 34.52 22.02 28.95 17.86 

25 
2 3 11 22 3395.90, 236.11,ˆ ˆ ˆ ˆ1, 1, 1ˆ= = = = =t t x x x 81.76 46.82 11.83 23.11 13.13 

26 
2 3 11 23 3291.67, 347.38,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 95.51 32.71 33.77 29.04 28.22 

27 
2 3 11 22 3394.99, 234.63,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 82.04 47.76 11.40 22.88 13.54 

28 
2 3 13 22 31208.86, 372.35,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 101.28 50.46 24.79 26.03 34.60 

29 
2 3 11 22 3373.34, 232.97,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 93.86 60.67 11.35 21.84 26.56 

30 
2 3 11 23 32107.43, 333.68,ˆ ˆ ˆ 1, 1, 1ˆ ˆt t x x x= = = = = 88.84 37.76 23.69 27.39 21.03 

*In minutes.
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methodologies will be applied and developed for patient appoint-
ment scheduling problems.

In addition, for future research, patient condition should also 
be considered in patient appointment scheduling. Patient condition 
has hardly been considered in literature as it has been believed to be 
subjective. However, there are already many measures for patient 
condition, such as Karnofsky grade [58], model for end-stage liver 
disease (MELD) score [59], and dyspnea index [60]. The analysis 
of the trajectories of these measures will allow us to incorporate 
patient condition in patient appointment scheduling to improve 
patient safety.
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Abstract

The French Emergency Medical Service of the Val-de-Marne 
department, known as SAMU 94, is a public safety system respon-
sible for the coordination of pre-hospital care under emergency 
conditions. Pre-hospital care is requested through emergency calls 
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and includes the stabilization of patient’s condition and transporta-
tion, when needed, to an appropriate care facility. The current 
research aims at improving the organizational processes of SAMU 
94 in order to meet the population’s needs under limited resources. 
Hence, we develop a discrete event simulation (DES) model in 
order to model and assess the current performance of this complex 
system, as well as to investigate the effects of potential process 
changes that would lead to enhanced operational efficiency, in 
terms of response time performance (i.e. the period between the 
receipt of a call and the first arrival of a rescue team at the scene), 
which is a critical aspect for SAMU providers. The developed DES 
model was validated using historical data and used as a decision-
support tool for comparing the relative benefits of several scenarios 
mainly related to the needed resource levels and static location of 
rescue teams throughout the Val-de-Marne area and their assign-
ment to incoming calls. Sensivity analyses were also performed by 
changing values of some input parameters such as arrival rates of 
calls, travel times and service times. 

2.1. Introduction

In France, emergency medical services (EMS) are known as SAMU, 
which is the French acronym for Urgent Medical Aid Service. 
They are public safety systems that coordinate the delivery of pre-
hospital care to patients under medical emergency conditions. 
During pre-hospital care, care givers stabilize the patient’s condition 
and transport him or her to an appropriate care facility in order to 
prevent further injury and reduce mortality. It is, however, very dif-
ficult to evaluate the interaction between the survival rate of patients 
and organizational changes in the EMS process. The difficulties are 
mainly associated to the determination of accurate quantitative 
measures that affect the patient’s survival through the time [1, 2]. 
Thus, more readily measurable quality of care metrics, such as 
response time and coverage, has attracted the attention of both 
researchers and EMS providers. The response time is the period 
between the incident reporting and the arrival of a rescue team at the 
scene of accident, and the coverage can be defined as the percentage 
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of calls responded to within a specific target time. The association 
between low response time/high coverage and high survival rate of 
patients has been observed by several authors in the medical litera-
ture, especially in the case of life-threatening emergencies [3–7]. For 
instance, the likelihood of survival from cardiac arrest decreases by 
7%–10% for each minute of delay in response time [8]. Therefore, 
a high coverage within a target time of 20 min is a common objective 
of SAMU systems. Achieving this timeliness objective requires a care-
ful management of limited resources (such as physicians, rescue 
vehicles, and call center operators), especially considering the high 
level of uncertainty (in terms of factors such as the frequency and 
location of demand and the location and availability of vehicles) that 
characterizes these systems.

In this context, the current study has been proposed with the 
aim of using discrete event simulation (DES) tool to model, evalu-
ate, and improve SAMU performance of a specific French depart-
ment: the Val-de-Marne (SAMU 94). DES is an operational research 
tool that has been extensively used in recent years to design, inves-
tigate, improve efficiency, and reduce costs of various healthcare 
delivery systems. A DES model typically represents the patient flow 
as the movement of individual entities through a series of queues 
and care processes at discrete points in time, in order to assess the 
current performance, identify areas of improvement and waste, and 
predict the impact of several design and operational changes over 
different metrics (such as patient throughput, waiting times, and the 
length of stay) [9, 10]. To our knowledge, there have been several 
applications of DES in the healthcare sector that address a wide 
range of problems, such as capacity and hospital bed planning [11], 
design of the emergency department [12], patient flow and waiting 
[13], geographical locations of new healthcare services [14], and 
emergency medical services [15]. Thus, DES is a particularly well-
suited technique, in the context of EMS systems, that describes 
the system in a high degree of detail and avoids simplifying 
 assumptions required to obtain performance measure predictions 
when using methods such as mathematical programming or queuing 
theory [16].
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The present study uses the potential of DES to help SAMU 94 
managers formalize their current care process and compare various 
strategic and operational scenarios to answer questions such as:

· How many call center operators and medical teams should be 
hired?

· Where the fleet of rescue vehicles should be located throughout 
the Val-de-Marne department?

· How a rescue vehicle to an incoming call should be assigned?
· What policy should be adopted due to an increase in the demand 

in the coming years?

The remaining sections of chapters have been organized as fol-
lows: Section 2 gives a short literature review on the use of the simu-
lation tool in the context of EMS. Section 3 presents the detailed 
methodology used to build and validate the SAMU 94 DES model. 
Section 4 describes the results of the DES model. Finally, Section 5 
reports some concluding remarks and the directions for future 
research.

2.2. The Use of Simulation in the EMS Literature

In the literature of EMS, the use of simulation tool was initiated in the 
late sixties by Savas [17] to examine the cost-effectiveness of several 
changes in the number and location of ambulances in the New York 
ambulance service. This use was, then, intensified due to several 
advances in the simulation tool, such as improved ease of use, devel-
opment of input and output analysis tools, and integration facilities to 
other software. Thus, authors in EMS literature used simulation to 
assess the impact of several potential changes, named scenarios, on 
several selected performance indicators [18]. The considered scenarios 
were mainly related to decisions at various levels of planning, such as:

· Adding/removing rescue teams, i.e., emergency vehicles staffed 
by one or several physician(s), nurse(s), and/or emergency medi-
cal technician(s) in the existing or new waiting positions, called 
bases, to adequately cover the service area [19–22]
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· Determining the deployment strategy at the mid-term, i.e., the 
assignment of rescue teams to bases to reach patients promptly 
and to achieve a particular service-level objective [23–32]

· Determining the redeployment strategy at short term, i.e., the 
assignment of rescue teams to bases that can be adjusted accord-
ing to changes in the temporal and geographical demand pattern 
during a time period (known as multi-period redeployment) or 
the real-time availability of rescue teams following the allocation 
or release of a team (known as dynamic redeployment) [33–37]

· Determining the working hours and location for both vehicles 
and crew to satisfy demand for rescue teams in each base speci-
fied in the deployment/redeployment strategy [21, 32]

· Selecting the dispatching rule, i.e., the assignment of the best 
rescue team to an incoming call, based on the geographic loca-
tion of the fleet, to minimize the total distance or time for all 
rescues [35, 38, 39]

· Determining the best sequence for assigning injured victims of 
mass casualty incidents to appropriate destination hospitals in 
order to maximize the overall survival rate [40, 41]

Results pertaining to the above scenarios provided clear measure 
of the relative benefits of some alternatives against the others. In this 
regard, EMS managers used simulation results as a decision-making 
and communication tool particularly to face the evolution of some 
factors (e.g., demand and transportation times) or to anticipate the 
impact of new reforms (e.g., changes in legislation regarding the 
location of bases or the desired level of coverage). It is noteworthy 
to mention that none of the scenarios discussed in the literature out-
performed others in absolute terms, and thus, the performance of 
each alternative was highly dependent on assumptions, operation 
rules, and initial data pertaining to the studied system. Therefore, we 
developed a DES model to represent the specificity of the SAMU 94 
system in a detailed manner (sequence of events in the emergency 
process, the type and schedule of resources involved, and the charac-
teristics of the Val-de-Marne transport network) and to pinpoint 
potential areas of improvement. The developed model provides 
SAMU 94 managers with a flexible tool that enables the investigation 
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of a wide variety of scenarios that will lead to enhanced performance 
before committing real resources.

2.3. The DES Model of SAMU 94

This section is structured in accordance with fundamental steps used 
in the literature to build a simulation study [42–44]. It discusses the 
formulation of the problem, data inputs, as well as model implemen-
tation and validation.

2.3.1. The SAMU 94 process description

In France, the SAMU system is managed at the department level (i.e., 
a French administrative division corresponding to a median area of 
6,000 km2 and a median population of approximately 510,000 
inhabitants) and provides 24-hour service for each department. In 
this study, we focused on SAMU 94, which covers the Val-de-Marne 
department (South-east of Paris). With a population of more than 
1,300,000 inhabitants, this small department (with area of 245 km²) 
is among the most populated areas in France.

Compared to other EMS systems worldwide, the specificity of 
the French SAMU system consists of involving physicians in the 
whole process of an emergency treatment, from the evaluation of 
emergency calls till the realization of rescue missions. The objective 
is to guarantee efficient assistance and high advance care to victims 
either on the phone or at the scene of accidents. However, a higher 
quality of service involves extended time to process calls and to per-
form on-scene treatments.

In order to build the SAMU 94 model, the first step was to fully 
understand the SAMU 94 vehicle dispatch and care delivery process, 
based on independent empirical observations and discussions with 
SAMU 94 experts. This process is graphically summarized in Fig. 2.1 
that identifies its two main operations:

1. Central operations: These operations are performed in the recep-
tion and regulation (R&R) center. They include providing phone 
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Figure 2.1.  SAMU 94 process.
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support and deciding the proper response for each emergency 
call received.

2. External operations: These operations consist of dispatching one 
or several mobile response vehicles, known as Mobile Emergency 
and Resuscitation Services (SMUR) teams, to perform either pri-
mary rescues that are related to major injuries or illnesses and 
require immediate medical assistance outside the hospital (e.g., 
cardiac arrest, trauma, and childbirth) or secondary rescues that 
correspond to the transport of patients from one hospital to 
another if medical staff assistance is required during the transfer.

Several types of human resources that are involved in central and 
external operations, such as operators, PDS regulators (“PDS” 
stands for the French acronym of “Permanent Care”), SAMU regula-
tors, and rescue and SMUR teams, use two types of vehicles: 
mobile intensive care units (MICU) and medical vehicles (MV) (See 
Table 2.1).

When the R&R center gets calls for help, the operator performs 
the first triage to eliminate calls that are not medical requests and 
record basic information of the remaining calls. A medical evaluation 
of the calls is, then, performed by a regulator (an SAMU regulator for 
potentially high priority calls and a PDS regulator for other types of 
calls). This evaluation may lead to several decisions, such as:

· A simple advice is provided to the caller (in case of non-urgent 
primary calls).

· The call is transferred to basic life support (BLS) services, such 
as the fire department (primary relative emergency). After 
attending the scene, the BLS may call an operator to ask for a 
team because the incident is more urgent than originally believed 
(primary rescues by sending BLS as a first effector).

· A SMUR team is immediately dispatched for primay or second-
ary absolute emergencies (primary rescues by sending a SMUR 
team as a first effector).

· An appointment is planned to send a SMUR team in case of a 
non-urgent secondary call.
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Table 2.1.  SAMU 94 human resources.

Role Number in Weekdays
Number in 
Weekends

Operators Answer calls
Identify inappropriate calls
Create medical files

4 (9 p.m. to 7 a.m.)
5 (7 a.m. to 2 p.m.)
6 (2 p.m. to 9 p.m.)

4 (9 p.m. to 7 a.m.)
5 (7 a.m. to 2 p.m.)
6 (2 p.m. to 9 p.m.)

PDS regulators (General 
practitioners)

Perform medical evaluation of  
low-priority calls

2 (24 hours) 3 (24 hours)

SAMU regulators (Emergency 
physicians)

Perform medical evaluation of 
high-priority calls

2 (12:30 p.m. to 8 a.m.)
1 (8 a.m. to 12:30 p.m.)

2 (24 hours)

Rescue Operate either as SAMU regulators 
or as physicians on SMUR teams

1 (8 a.m. to 5 p.m.) 1 (8 a.m. to 5 p.m.)

SMUR teams located at central 
base (Henri-Mondor Hospital, 
HM)

Vehicles (MICU or MV) staffed by 
one physician, one driver, one 
nurse, and/or one emergency 
medical technician

5 (12:30 p.m. to 7:30 p.m.)
4 (7:30 p.m. to 10:30 p.m.)
3 (10:30 p.m. to 10:30 a.m.)
4 (10:30 a.m. to 12:30 p.m.)

3 (24 hours)

SMUR teams located at auxilliary 
base (Villeneuve-Saint-Georges, 
VSG)

Vehicles (MICU or MV) staffed by 
one physician, one driver, one 
nurse, and/or one emergency 
medical technician

1 (24 hours) 1 (24 hours)

Mobile intensive care units 
(MICU)

Well-equipped ambulances (can 
transport the patient)

5 5

Medical vehicles (MV) Fast vehicles usually dispatched for 
the most serious calls (cannot 
transport the patient)

2 2
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When a SMUR team needs to be dispatched, the regulator noti-
fies the closest available team to perform the rescue, based on the 
proximity of the incident’s address. If the SMUR team is located at 
the base, it spends some time preparing the rescue (which includes 
gathering the equipment and getting to the vehicle). After the arriv-
ing at the scene and accessing to the patient, the SMUR team per-
forms the primary assessment and treatment and transports the 
patient, if needed, to the appropriate hospital that can provide fur-
ther emergency care. Before getting transported to the destination 
hospital, the patient may need to be transported to a diagnostic or 
therapeutic radiography (DTR) service to perform an MRI or X-ray 
(if the destination hospital does not have the appropriate equipment 
or have long wait time). The SMUR team is dismissed after transfer-
ring the patient to the destination hospital and completing paper-
work. It, then, returns to its home base and waits for the next 
mission. SMUR teams are currently located at two bases: one at the 
central base, located at the Henri-Mondor Hospital (HM), and 
another at the auxiliary base, located in the Villeneuve-Saint-Georges 
Hospital (VSG).

2.3.2. Data collection and analysis

The following call and rescue records of the SAMU 94 database, 
dated from October 1, 2010, to December 31, 2011, were collected 
and verified for the analysis:

1. The number of calls per hour of the day and day of the week
2. The type of call (without a dispatch of the SMUR team and 

 primary/secondary rescue)
3. The first effector of primary calls (SMUR or BLS)
4. The priority of rescues, i.e., the classification of the rescue cause 

performed by the regulator on the phone (scale of 1–2) and by 
the SMUR team at the scene (scale of 0–3)

5. The location of the rescue within basic units of approximately 
2,000 residents called IRIS (the French acronym for aggre-
gated units for statistical information). There are 527 IRIS in the 
Val-de-Marne department).
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6. The times for the following rescue segments: dispatching time, 
the interval between the time the call is received and the time a 
SMUR team is notified; preparation time (PT), the interval 
between the time the SMUR team is notified and the time it 
leaves for the rescue; on-site time (OST), the interval between the 
time the SMUR team arrives at the scene and the time it leaves 
the scene; travel time to DTR service (TTD), the interval between 
the time the SMUR team leaves the scene and the time it arrives 
at the service; diagnostic or therapeutic–radiography time 
(DTRT), the interval between the time the SMUR team arrives 
at the DTR medical service and the time it leaves the service; 
travel time to hospital (TTH), the interval between the time the 
SMUR team leaves the scene or DTR service and the time it 
arrives at the hospital; and drop-off time (DOT), the interval 
between the time the SMUR team arrives at the hospital and the 
time it leaves the hospital.

The Input Analyzer tool (Arena software) was used to choose the 
best-fitted distributions of the above data by using Kolmogorov-
Smirnov and Chi-Square goodness-of-fit tests. Those tests provided 
low p-values. Therefore, we used empirical distributions to better 
capture the characteristics of the data [43]. The distributions of each 
frequency and activity time were fed into the corresponding distribu-
tion of the DES model.

Note that travel time to scene (TTS), the interval between the 
time the SMUR team leaves for rescue and the time it arrives to 
scene, cannot be modeled using empirical distributions. Indeed, the 
DES model must include travel time data for currently unexplored 
road networks that could be used under alternative deployment 
strategies. Furthermore, the model must also consider changes in 
travel times that arise at various times of the day/week due to con-
gestion levels and population activities. Hence, we used the shortest 
path algorithm to compute travel times for every possible origin, 
destination, period, and priority of calls. The origins and destina-
tions correspond to the 527 IRIS of the Val-de-Marne area. The 
periods represented the degree of traffic load at various times of the 
day according to the six shifts that distinguish between weekdays 
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(6 a.m.–10 a.m., 10 a.m. –3 p.m., 3 p.m.–9 p.m., and 9 p.m.  –6 a.m.) 
and weekends (12 p.m.–9 p.m. and 9 p.m.–12 p.m.). Based on the 
database of GPS traces of SAMU 94 vehicles, an average travel time 
per period was assigned to each section of the road network of the 
Val-de-Marne department, according to its typology (motorway, 
main road, minor road, and local street). We used this model to 
dynamically compute the shortest path for a combination of origin/
destination IRIS and period whenever the simulation required such 
path. However, it turned out to be a time-consuming computation 
that considerably increase the simulation time. As a reasonable 
trade-off, we precomputed and stored the shortest path for any given 
combination of origin/destination IRIS and period using a sample of 
10 pairs of the exact addresses that were randomly chosen within the 
two IRIS. For each pair, the travel time was computed by summing 
up the average travel times associated with the sections that form the 
shortest path between the two addresses. Finally, as SMUR teams 
can travel at all possible speed while responding to primary calls of 
priority 1, the related travel times were weighted by a regression fac-
tor estimated at 0.962 to decrease them compared to standard travel 
times. The resulting travel time matrices were used to compute TTS 
in the DES model and to choose the closest available SMUR team to 
assign to incoming calls.

2.3.3. DES model design

The previously described SAMU 94 rescue process and data were 
summarized in a written mathematical and logical representation of 
the system, known as conceptual model. This model was created and 
iteratively refined, based on discussions with SAMU 94 managers 
and physicians.

The conceptual model was computationally implemented using 
ARENA (Version 12, Rockwell Automation). This widely used DES 
software uses the SIMAN processor and simulation language for 
analysing diverse operation types (such as manufacturing, supply 
chain, healthcare, and military) and predicting system performance 
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under varying conditions and decision criteria. It has the following 
advantages:

1. It allows to capture process hierarchy, including activity-based 
costing and process logic.

2. It integrates the ease of use found in high-level simulators that 
provide graphical simulation modelling and analysis modules.

3. It provides high flexibility of simulation languages accessed in 
low-level modules and even general-purpose procedural lan-
guages, like Visual Basic or C/C++, to model any desired level of 
detail and complexity.

4. It can be integrated with other software, including reading from 
or outputting to spreadsheets and databases.

5. It combines process simulation with optimization technologies, 
using meta-heuristic analysis tools.

Figure 2.2 presents the first level of SAMU 94 Arena model, which 
is a sequence of blocks (flowcharts or data modules) and connectors 
through which entities (calls) move. Several attributes are assigned 
to entities in order to specify the characteristics of calls (such as, the 
first effector, priority, and IRIS). Flowchart modules are hierarchically 
organized using submodels that allow modular implementation of 
each part of the model separately for easier verification, better read-
ability and maintainability, and less risk of errors. They include cre-
ate and dispose blocks used as starting and ending points of each 
flowchart, flow-control blocks used to direct entities in the process 
and specify processing methods (such as sending calls of a given pri-
ority and effector to a dedicated process and performing on-site 
treatment for a given priority), and information import, export, and 
assignment blocks used to assign data values obtained from input 
files, assign modules to a list of variables or attributes, or write data 
to an output device (such as establishing the location of a call and 
writing order-response time distribution to a data file). The creation 
of rescues, the definition of variables (e.g., the matrix of bases’ loca-
tions per period, vector of availability, and location of each vehicle), 
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Figure 2.2.  Overview of ARENA model for SAMU 94.
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and the availability of resources, depending on their operating sched-
ule, are controlled by data modules. Finally, integrating user-defined 
Visual Basic for Applications (VBA) functions in the model provided 
great flexibility in implementing dispatching rules, collecting various 
statistics per period, defining and assigning periods to calls, and 
reading travel time matrices (Microsoft Excel files) to obtain travel 
time for a given origin, destination, and period.

Different random number seeds were used to replicate the model 
20 times in order to derive outcome variables. The replications’ 
length corresponds to 15 months of operations with a warm-up 
period of one day. The warm-up period served to avoid any initiali-
zation bias in the estimate of the simulation steady-state parameters 
by filling the queues rather than starting with empty queues.

2.3.4. DES model validation

Model validation was performed with SAMU 94 specialists, who 
were asked to evaluate the conception (i.e., structural, logical, math-
ematical, and causal relationships) and output behavior of the 
model. They confirmed that the model ran the same way as the 
 real-world system for the intended purpose of the study. Moreover, 
the DES model was validated by comparing the system’s empirical 
input data (processing times and travel times) and output data 
(response times) per type, priority, and effector with the simulation-
derived data. The results of this historical data validation showed that 
the outputs of the model were quite close to the observed distribu-
tions: the difference between the bounds of 95% confidence intervals 
(based on the 20 replications of the model) and the historical values 
range from 0% to 8.9%, with an average deviation of only 2.3%. 
This was a reasonable threshold to consider the DES model valid.

2.4. Analysis of DES Model Results

2.4.1. Simulation strategy design

Potential strategies were proposed by SAMU 94 managers to assess 
system performance under various changing conditions. Each strat-

b2922_Ch-02.indd   45 8/28/2017   8:42:20 PM

 



b2922 Stochastic Modeling and Analytics in Healthcare Delivery Systems “6x9”

46 Stochastic Modeling and Analytics in Healthcare Delivery Systems

egy considered different scenarios that are simulated, and the corre-
sponding performances, resulting from the 20 replications of the 
model, were observed and compared to the initial scenario, which 
represents the current configuration of the system. Significant perfor-
mance variables for SAMU 94 managers included coverage within 
20 min for primary rescues with an SMUR team as the first effector 
and human ressources utilization rate (which is the total workload 
divided by the total operating time). The following strategies were 
analyzed in sequence:

· Strategy A—Variation in the number of operators, regulators, 
and SMUR teams: The objective of this first category of scenar-
ios is twofold: First, to determine the effect of increasing number 
of resources during high-demand periods on the coverage perfor-
mance in order to select the best trade-off between the additional 
cost of hiring staff and a better response time. Second, to assess 
the effect of reducing the number of different ressources on the 
utilization rate without decreasing the coverage performance 
within time periods that are consistent with personnel scheduling 
constraints.

· Strategy B—Increase in the number of rescues: In order to 
 capture the sensitivity of SAMU 94 performance to factors such 
as demographic growth or aging of the population, we increased 
the arrival rate of rescues in the DES model from 20% to 100%, 
with steps of 20%. We also experimented increased demand 
scenarios by adding one more critical resource (SMUR teams) 
during the high-demand period 8 a.m.–8 p.m. in the HM base. 
The critical resource were determined as a result of analysing the 
waiting times for the assignment of different resources under 
increased demand scenarios.

· Strategy C—Improved deployment of SMUR teams: Besides the 
number of SMUR teams, their location was a decisive factor for 
designing efficient EMS systems that ensure equity of access to 
pre-hospital care throughout the entire service area. This strategy 
aimed to determine the effect of gradually relocating one to three 
SMUR teams initially located at the HM base in a decentralized 
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way to potential bases located throughout the Val-de-Marne 
department. In accordance with French legislation, potential 
bases correspond to three public hospitals located in the depart-
ment are Saint-Camille (SC), Bicêtre (B), and Emile-Roux (ER) 
(Refer Fig. 2.3).

· Strategy D—Increased travel times: Based on historical data, we 
identified ten atypical days, characterized by exceptionally long 
travel times. These days correspond to sporting events, adverse 
weather conditions, or public transport strikes. Hence, three 
tendencies were observed corresponding to regular travel times 
increases of 100%, 150%, and 350%. This strategy is primarily 
concerned with quantifying potential benefits of relocation dur-
ing these days. Therefore, we applied an increase in travel times 
to the initial scenario, as well as to optimal relocation scenarios 
obtained in Strategy C.

· Strategy E—Alternative dispatching rule (regionalized response): 
In the current system, the closest available team is assigned to 
each call. In this strategy, we experimented a new dispatching 
rule known as regionalized response. It consists of assigning 
each SMUR team to serve a pre-specified service area. If the 
assigned SMUR team is busy, the closest available team must 
perform the rescue. This is a widely used dispatching rule in sev-
eral EMS worldwide [20, 35, 39]. The advantages of this rule are 
the limited area the SMUR team has to traverse to reach call 
locations and the increased familiarity of the driver with the 
assigned zone.

· Strategy F—Process improvement: This strategy considers a 
decrease in the dispatching time, which may be driven by a 
 number of actions, such as multitasking between regulation 
and preparation tasks and using more advanced technologies to 
perform call screening, medical file creation, or SMUR teams’ 
notification.

· Strategy G—Multiple changes: The previous strategies have 
 discussed several alternatives in isolation. However, a reasonable 
objective of the SAMU 94 system is to select a portfolio of strat-
egies to maximize coverage performance at the minimal cost. 
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Thus, we experimented several combinations of strategies, such 
as adding one more SMUR team (Strategy A) under decentral-
ized deployment (Strategy C).

2.4.2. Simulation results

The comparison of results obtained from the simulation of scenarios 
described above allows establishing a hierarchy in advocating 
 strategies to improve the SAMU 94 performances. Indeed, the most 
interesting strategy in terms of coverage will be the deployment of 
SMUR teams across the Val-de-Marne department (Strategy C). 

HM 

VSG 

B 

ER 

SC 

  Existing base 

  Potential base 

Figure 2.3.  The existing and potential bases of the Val-de-Marne department.
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Thus, according to simulation results obtained from this strategy, we 
recommend to adopt the following best deployment plan:

· Relocating two SMUR teams in Saint-Camille hospital and one 
SMUR team in Bicêtre hospital during weekdays. The corre-
sponding average increase in coverage within 20 min between 
8 a.m. and 8 p.m. will be 3.8% and 8.3% for priority 1 and 2, 
respectively.

· Relocating only one SMUR team in Saint-Camille hospital dur-
ing weekends, which would lead to a 20-min coverage improve-
ment of 5.3% and 3.1% for priority 1 and 2, respectively.

Implementing this deployment strategy is particularly appropri-
ate during atypical days, with 100% increase in travel times, as the 
improvement in 20-min coverage can reach 10.9% on weekdays and 
15% on weekends, compared to increased travel times under the 
current locations of SMUR teams (Strategy D).

Another strategy that seems promising to improve coverage 
performance is that of reducing dispatching time (Strategy F). 
Indeed, the DES model showed that a reduction of 40 seconds in 
this processing time would lead to a significant average improve-
ment for 20-min coverage of 2.7% and 4.2% for priority 1 and 2, 
 respectively. This suggests that similar improvements in other parts 
of the rescue process, such as preparation time and on-site time, 
may lead to additional efficiencies by reducing the response time 
and round-trip time (i.e., the period between the receipt of a call and 
the arrival of the SMUR team with the patient to the destination 
hospital) for an improved access to prompt professional medical 
treatment.

In contrast, less significant improvements in coverage perfor-
mance will be achieved by varying the number of resources (Strategy 
A). Indeed, according to the DES model, an increase in the number 
of operators, PDS regulators, and SAMU regulators will have no 
significant effect on 20-min coverage, whereas adding one SMUR 
team will improve the 20-min coverage between 8 a.m. and 8 p.m., 
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not exceeding 2.5% for both priorities 1 and 2. We, however, note 
that this latest coverage improvement is differently broken down by 
days of the week because it does not exceed 1.9% in weekdays but 
reaches 4.3% in weekends. Moreover, the impact of the additional 
SMUR team will be greater under some specific conditions, such as 
the decentralized deployment plan (Strategy G) and the increased 
demand for rescues (Strategy B) because the average increase in 
20-min coverage performance will reach 9.1% when three SMUR 
teams are optimally relocated and 9.8% under 100% increase in 
demand. In the light of these observations, we recommend to focus 
on the recruitment of an additional SMUR team (as the system criti-
cal resource) only on weekends under the current configuration. 
However, if the demand increases or the recommended deployment 
plan has to be implemented, the recruitment of an SMUR team 
should be extended to all weekdays.

On the other hand, a reduction in the number of operators and 
PDS regulators seems to have a limited effect on coverage (Strategy 
A). This result suggests that the current coverage performance can be 
maintained by decreasing these resources. However, these savings 
are likely to be made at the expense of an increase in the stress level 
of the remaining resources and may lead to deteriorated quality of 
service and longer processing times, which may negatively impact 
the coverage performance.

Similarly, the DES model demonstrates that Strategy E of 
 changing the dispatching rule into the alternative regionalized 
response has a limited effect on coverage performance under the cur-
rent system configuration. If the recommended deployment strategy 
was adopted on weekdays, the implementation of the regionalized 
response would slightly improve the 20-min coverage performance 
by an additional 1.1% and 1.2% on average for priority 1 and 2, 
respectively. As a consequence of these limited benefits, we recom-
mend not to change the current dispatching rule unless the regional-
ized response is judged to have operational advantages, compared to 
the closest available rule, such as easier implementation and reduced 
opportunity for errors.
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2.5. Conclusions and Perspectives

In this study, we developed a discrete event simulation model in 
order to model and assess the current performance of the SAMU 94 
system, as well as to investigate the effects of potential process 
changes that would lead to enhanced operational efficiency in terms 
of the target 20-min coverage performance of primary rescues. 
Several types of input data were used to specify model parameters. 
These data were obtained from historical records as well as inter-
views conducted with SAMU 94 managers. The developed DES 
model was validated using historical data and was used as a 
 decision-support tool to compare the relative benefits of several 
strategies, mainly related to the needed resource levels and static 
location of rescue teams throughout the Val-de-Marne area and their 
assignment to incoming calls. Sensivity analyses were also performed 
by changing values of some input parameters, such as arrival rates of 
calls, travel times, and service times. Based on the results obtained, 
our recommendation for practitioners is to first focus on the optimal 
relocation of SMUR teams, which would significantly improve cov-
erage with a minimal increase in costs. In addition, we recommend 
the recruitment of SMUR teams as the most critical resources of the 
system, particularly under conditions such as increased demand. 
Finally, we recommend additional studies to improve the dispatch 
and rescue process by removing non-value-added steps, such as 
duplicate processes and unnecessary procedures, based on principles 
such as the principles of the lean approach, which can be deployed 
in healthcare. Robinson et al., 2012, [45] give some examples of 
such healthcare wastes as asking for patients’ details several times, 
storing the frequently used equipment centrally instead of where it is 
used, or asking for unnecessary tests.

One main limitation of the current study is that relocation sce-
narios are based on the historical demand data of SAMU 94. One 
possible extension of this work can be devoted to the development of 
forecast models in order to predict the number and location of rescues 
and, therefore, to derive sufficiently robust relocation strategy of 
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SMUR teams that covers future demand at the desired service level. 
Another limitation is that financial aspects, including capital and oper-
ating costs, are not considered. Aboueljinane et al. [18] highlight the 
importance of performing a cost-effectiveness analysis in EMS simula-
tion studies by comparing the costs of each alternative and the obtained 
increase in coverage to achieve the desired objectives at a low cost.

In the current study, the cost factor is not included due to the 
lack of detailed cost components associated with each studied strat-
egy to support the analysis. Future work may include the enlarge-
ment of the scope to consider other pre-hospital care providers 
operating in the department (e.g., BLS, private ambulances, home 
cares, and general practitioners). Hence, modeling this integrated 
multi-facility system may greatly enhance the overall quality of care 
performance in the area. Finally, the deployment strategies discussed 
in the what-if analysis consider a fixed location of SMUR teams, 
regardless of the daily fluctuation in the volume and location of res-
cues. The simulation–optimisation technique can be used to deter-
mine an efficient multi-period redeployment plan that can further 
improve the coverage performance of SAMU 94.
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Abstract

As the first or the second step of the admission process, the 
 emergency department (ED) is one of the most important depart-
ments in the hospital. The very large scale of the case mix of 
pathologies makes the process of the ED’s activities very compli-
cated. Though a lot of research is devoted to this area, most studies 
are based on academic assumptions such as the assumption of 
independent resources or predefined pathways, and, therefore, 
research results are difficult to apply in the real world. This paper 
studies the ED of a large-sized Italian hospital in the normal situa-
tion and in the major accident situation (overcrowding situation), 
based on real cases. First, IDEF0 method is used to build the con-
ceptual models to present the process of the activities of an ED in 
a normal situation as well as in the major accident situation. Then, 
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SIMIO is used to simulate the conceptual models in detail. In the 
part of experiments, factorial design is used to analyze the impact 
of resource dimensioning related to the total process time to treat 
all patients in the ED in different situations. With the help of the 
simulation model, one method is proposed to improve the current 
system. The rule to change the process of ED from normal situation 
to main influx situation is also defined.

3.1. Introduction

One of the most common problems for ED is overcrowding [1]. 
According to the experts at the American College of Emergency 
Physicians, overcrowding refers to a situation when the available 
institutional resources are insufficient to meet the basic service needs 
of emergency patients. In other words, overcrowding represents an 
obstacle to the safe and timely delivery of health care [2]. 
Overcrowding of ED, occurring in almost all big hospitals around 
the world, has led to crisis problems. The ability of an ED to deal 
with the suddenly increasing requirement of medical resources has 
been questioned by numerous researchers [3]. In the past few years, 
more and more EDs got exposed to the risks of meeting the over-
crowding situation caused by terrorist attacks (such as the terrorist 
attacks on Paris on 13 November 2015). This led to hundreds of 
victims to be treated in EDs. To deal with this, care providers, 
administrators, and policy makers of EDs must find an efficient solu-
tion to handle a sudden afflux of patients injured by terrorist attacks. 
This highlights at least two major problems: first, health workers 
should know the process of ED activities clearly. This can help the 
workers know what needs to be done in a particular kind of situa-
tions. Second, since overcrowding always leads to the shortage of 
resources, decision-makers should have a thorough understanding of 
the effects of resource dimensioning on the number of people who 
can be received and the effective use of these limited resources to 
alleviate overcrowding.

A substantial body of literature focused on the study of EDs with 
the intent of managing the overcrowding problem in a better way. 
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But a lot of studies were theoretical, not based on real cases. For 
example, literature reviews that studied EDs did not follow the 
change of activity processes in the EDs or did not considered the 
teams assigned to activities. Moreover, due to the lack of a standard 
definition of overcrowding, some papers could not distinguish the 
study of EDs between normal and overcrowding situations. Both 
of the above research gaps are likely to be addressed by using our 
computer simulation model of ED. This paper studies an ED of a 
large-sized hospital in Italy in normal and main influx (overcrowd-
ing) situations, with the aim of formalizing, modeling, and improv-
ing the activity process.

The remaining part of this paper is organized as follows: 
Section 2 reviews the related literature briefly. Section 3 presents the 
stakeholders, the context, and the activity in ED, after describing the 
problem. Section 4 is devoted to our simulation models. Section 5 
shows simulation experiments, analyzes the results, and proposes 
some suggestions for hospitals.

3.2. Literature Review

Many researchers [4–6] claimed that simulation is an effective and 
useful tool to study complex problems in ED. As we mentioned 
before, overcrowding, as a thorny problem in ED, can lead to a lot 
of problems, such as long waiting time and patients’ dissatisfaction. 
To overcome these problems, many researchers studied EDs from 
different angles — such as employees’ schedules [7, 8], patients’ 
flow [9–13], and activity process [10, 14, 15] — with different 
 objectives — such as to minimize the waiting time [7], to maximize 
patient throughput [13], and to optimize resource utilization [16]. 
This section presents a brief review of these papers.

Both Yeh and Lin [7] and Rossetti et al. [8] integrated simulation 
with other methods to study staff schedules. Yeh and Lin [7] used 
simulation and genetic algorithm to study nurse schedules. This 
simulation is developed to present patient flow through ED. With 
the aim of minimizing patients’ waiting time, a genetic algorithm is 
applied to find an optimal nurse schedule. Rossetti et al. [8] used 
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computer simulation to test how different physician staff schedules 
in an ED impact patient throughput and resource utilization.

Hoot et al. [9] and Medeiros et al. [11] developed a discrete 
event simulation to study patients’ flow in an ED. Brenner et al. [10] 
studied patient flow in the ED at the University of Kentucky 
Chandler Hospital with simulation. Both optimal numbers of human 
and equipment resources (i.e., nurses, physicians, and radiology 
technology) were investigated. Hung et al. [12] studied the patients’ 
flow in a pediatric hospital to optimize resource utilization in the 
pediatric ED. Ahmed and Alkhamis [13] connected simulation with 
optimization to determine the optimal number of doctors, lab tech-
nicians, and nurses required to maximize patient flow and to reduce 
patients’ stay time in an ED unit.

Ruohonen et al. [14] and Komashie and Mousavi [16] simulated 
the activity process in an ED. Ruohonen et al. [14] presented a simu-
lation model to describe operations in the ED at the Central Hospital 
of Jyvaskyla, Finland. This simulation model can be used to test dif-
ferent process scenarios, allocate resources, and perform activity-
based cost analysis. The simulation model developed by Komashie 
and Mousavi [16] was devoted to helping ED managers understand 
the hidden causes of excessive waiting time. This simulation served as 
a tool for assessing the impact of major departmental resources on key 
performance indicators and was also used as a cost-effective method 
to test various what-if scenarios for possible system improvement.

Since the activities of an ED vary in different countries, some 
authors studied EDs in specific countries. Duguay and Chetouane 
[17] described a simulation study on the ED of a Canadian hospital. 
The objective of this study was to reduce the patients’ waiting time 
and to improve overall service delivery and system throughput. As 
the patients’ waiting time is linked to resource availability, a number 
of alternatives were designed based on adding resource scenarios. 
Zeng et al. [18] presented how to use simulation to improve the 
quality of care of the ED at a community hospital in Lexington, 
Kentucky. The simulation model can evaluate the quality of care in 
terms of length of stay and waiting time. It was validated by experi-
menting with the data collected in the ED.
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To sum up, more and more researchers use simulation to analyze 
ED to overcome the overcrowding problem. However, most of the 
research works were not based on a real scenario. Moreover, a lot of 
research works seem to mix overcrowding and normal situations, 
which made the study results difficult to put into practice due to dif-
ferent process and resource allocation. We have tried filling these 
gaps by using simulation approach to study the ED of an Italian 
hospital in normal as well as in overcrowding situation, caused by 
potential terrorist attack.

3.3. Problem Description

3.3.1. Stakeholders

The San Raffaele Hospital (OSR) is a university hospital located in 
Milan, Italy. It is spread across 300 thousand square meters and is 
composed of 11 buildings, with 49 specialty clinics and over 6,000 
employees. 

OSR is 9.3 km away from Milan Linate Airport (LIN), which 
served 9,031,855 passengers in 2014. The international airport is 
close to the center of Milan, only 7 km to the east of the city center, 
and is used as a base by Alitalia and Alitalia City Liner. It is highly 
likely to be attacked by terrorists, and the victims are likely to be 
admitted in OSR, due to its proximity.

3.3.2. The context

According to health workers in OSR, the activities of the ED follow 
different processes in different situations. Therefore, we intend to 
study activities of the ED in the normal situation, as well as in a 
major accident situation. The major accident situation we intend to 
study is provoked by a hypothetical terrorist attack on LIN. After 
the terrorist attack, the emergency management plan (EMP) is acti-
vated immediately. After discussing with the people working in 
OSR, we got to know that at the most 100 patients can be admit-
ted by the ED at the event of triggered EMP. Meanwhile the EMP 
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activates, the ED will change its regular activity process (activity 
process in the normal situation) to the special activity process (the 
process of activities in the major accident situation). When the EMP 
is activated, the ED will switch to the special activity process (which 
is modelled by EMP) and will only accept the patients who are hurt 
by the terrorist attack on LIN.

3.3.3. Process of ED activities

The activities of the ED in the normal situation and in the major 
accident situation were modelled using the method IDEF0, based on 
the real practice. The IDEF0 method helped us elaborate a concep-
tual model, which offered a generic picture of the current situation.

IDEF0 is an IEEE Standard that is derived from the graphical 
language Structured Analysis and Design Technique (SADT) [19]. It 
is a method designed to model the events, data, and activities of an 
organization or a system. The structure of IDEF0 can help us model 
the existing system (as-is system) to understand its activities clearly. 
The standard can describe even a complex system easily [20]. Also, 
it can promote good communication between the analyst and the 
users.

The display of the IDEF0 model is based on a simple syntax. 
Each activity is described by a box. Inputs are shown as arrows 
entering the left side of the activity box, while the output is shown 
as exiting arrows on the right side of the box. Controls are displayed 
as arrows entering from the top of the box, and mechanisms are 
displayed as arrows entering from the bottom of the box. Fig. 3.1 
presents the main features of IDEF0 with regard to analyzing the 
system by a collection of hierarchically organized diagrams with a 
limited number of elements: boxes, which represent activities, and 
arrows to model physical, information, and order flows.

The conceptual model can present the activity process in the ED 
clearly. Therefore, people can get a general idea of the sequence of 
events and activities to be performed by our IDEF0 model. In other 
words, the IDEF0 model can formalize the activity process of the ED 
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and enable people to know clearly what they should do in a certain 
situation.

Figures 3.2 and 3.3 show the activity process of the ED in the 
normal and the major accident situations, respectively. Figure 3.2 
shows the normal situation, in which the patients should first finish 
the admission process after admitting in the ED. Then, according to 
the Emergency Severity Index, they will be triaged and will receive 
clinical treatments. In other words, after triage, patients will go to 
one of the three following treatment units: the shock room, the 
surgical area, or the medical area. The patients who are triaged to 
the shock room first will be transferred to the surgical room or the 
medical area for further treatment later. After being treated in the 
surgical area or the medical area, patients will either go to their 
home or be transferred to the related wards.

The hospital will change the activities of the ED if it experiences 
an influx of patients from outside (Fig. 3.3). In the major accident 
situation, when patients come to the ED, they will be triaged 
directly in the admission room to save time, and then, to other areas 

A 0

A-0

A 1 A 3

Figure 3.1.  Hierarchical decomposition in IDEF0 method.
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Figure 3.2.  Activity process of ED in normal situation.
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Figure 3.3.  Activity process of ED in major incident situations.
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according to their health condition. The red patients are patients 
with major life-threatening injuries and must receive treatments 
immediately. The yellow patients are the patients with major injuries 
whose treatments can be delayed until a given deadline. The green 
patients are the patients with minor injuries whose treatment can be 
delayed. The treatment of red patients consists of two parts: one 
includes the first assessment and stabilization and another covers 
additional tests, such as CT scan. After the initial treatment, the red 
patients will be transferred to an ICU or OT directly. After the treat-
ment in the ED, part of yellow and green patients should be trans-
ferred to the related wards on stretchers.

3.4. Simulation Model

Based on our literature review, computer simulation seems to be 
one of the most suitable methods to deal with problems related to 
complex and uncertain real-world situations [21]. Computer simula-
tion can capture the stochastics nature of data explicitly [22]. It can 
help anticipate different configurations and parameter settings of the 
systems easily, which is useful for complex problems.

Among different computer simulation packages, we chose 
SIMIO to build our simulation model. Oriented to agent-based mod-
eling, SIMIO can support the object modeling paradigm and both 
discrete and continuous systems. It is also powerful at 3-D simula-
tion, which is useful for presenting the simulation executions and 
results. The user-friendly interface of SIMIO allows novices to 
develop complex model quickly and simplifies the modelling tasks.

After selecting the simulation tool, we built our simulation 
model based on the IDEF0 model, proposed previously. This simula-
tion model presents the activities based on the IDEF0 model in 
detail, considering stochastic characteristics. Our intention was nei-
ther to give a detailed description of the simulation model nor to get 
into all technical aspects. Our aim was to show how the simulation 
model can present an uncertain world taking into account the sto-
chastics data. In the following paragraphs, we present the main 
activities in both situations.
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3.4.1. Activities of ED in the normal situation

The activity is represented by system blocks called servers. A server 
includes a queue where entities are stocked before being processed. 
The process time and the processing capacity can be constant or 
stochastic, as chosen by the user. Several processors can be activated 
in a server at the same time.

Figure 3.4 presents the simulation model of the activities of the 
ED in the normal situation. The activities consist of five servers, 
which represent five activities. An entity is used to present a patient. 
The first activity, which is represented by the first server, simulates 
the patients’ admission. The second server represents the activity of 
triage. After proper triage, the patients will be admitted in the shock 
room, the surgical area, or the medical area, according to the medi-
cal intervention they need. According to the data from OSR, in the 
normal situation, about 20 patients visit the ED in morning (from 
8 a.m. to 12 a.m.). In the real-life, the arrival pattern of patients is 
always stochastics. Therefore, we suppose the interval time of 
patients’ arrival follows the exponential distribution [23]. Some 
20% of 20 patients should be transferred to the shock room. As 
much as 30% and 50% of them should be transported to the surgical 
area and the medical area, respectively. Therefore, at the output 
point of the server “triage”, a routing logic function, which can 

Figure 3.4.  Simulation model of activities of an ED in the normal situation.
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 classify the patients according to different weights, has been trigged. 
Three parallel servers simulate the treatment in the shock room, the 
surgical area, and the medical area. Two paths have been used to 
connect the transition between the shock room and other two rooms. 
Figure 3.5 shows the 3-D effect of this model.

As mentioned before, our purpose was not to show the detail of 
the whole situation but to present our tool. Taking into account the 
warm up period, we simulated the situation of the ED from 7 a.m. 
to 12 a.m. We had defined one statistics element to count the num-
ber of patients and used a monitor to alarm the processor when the 
number of patients would reach 20. Once the number of patients 
reached 20, a process was used to stop this model.

3.4.2. Activities of ED in the major accident situation

Figure 3.6 shows the activities of the ED in the major accident situ-
ation. Two vehicles are used to model the two porters of stretchers. 
A vehicle is an object that can be used to define a dynamic  population 

Figure 3.5.  Simulation model of activities of ED in the normal situation (3-D 
effect).

b2922_Ch-03.indd   68 8/28/2017   8:43:09 PM

 



b2922 Stochastic Modeling and Analytics in Healthcare Delivery Systems“6x9” 

 3. Modeling and Simulation of the Emergency Department of an Italian Hospital 69

of moveable unit resources. It can pick up entity objects at a 
 location, carry those objects through a network of links or free 
space, and then drop the entities off at a destination location. 
Therefore, it is used to present porters. Again, at the output point 
of the server “triage”, a routing logic function is used to classify the 
patients.

In this simulation model, four servers are used to deal with the 
following four activities: triage, treatment for red patients, treatment 
for yellow patients, and treatment for green patients. The output of 
servers “yellow treatment” and “green treatment” is also designed as 
the starting point of the porters. Again, statistics element and moni-
tor have been used to limit the number of patients. Three processes 
have been used to adjust the color of patients in order to present the 
3-D effect of the SIMIO model. In this way, this simulation model 
will be much easier to be understood.

3.5. Simulation Experiments

The purpose of this part is to assess the total process time to treat all 
patients in the normal situation and in the major accident situation 

Figure 3.6.  Simulation model of activities of the ED in the major accident 
 situation.
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and to evaluate how the total process time evolves according to 
 significant changes in model parameters or system settings. 
Concretely, the behavior of the simulation model can be evaluated 
through the comparison of the total process time when human 
resources (e.g., the number of medical teams) dedicated to EMP and 
the process time to complete activities (e.g., the time of the triage) 
vary. The process time to treat all patients of the ED can be predicted 
by our simulation models. With the help of our simulation results, 
decision makers can get a comprehensive idea about the impacts of 
resource dimensioning on the total process time of completing main 
activities and of the time used to treat all patients of ED.

Normally, nine steps are necessary for simulation experiments 
[24]: (1) problem description, (2) setting of objectives and overall 
project plan, (3) model conceptualization, (4) model translation, 
(5) data collection, (6) validation and verification, (7) experimental 
design, (8) execution and results analysis, and (9) documenting and 
reporting. Steps (1)–(4) have already been discussed in the above 
paragraphs. The following sections pay attention to steps (5)–(7).

3.5.1. Data collection

The effectiveness of the results of simulation depends on the accu-
racy of input data [25]. Therefore, it is important to select input 
parameters that are suitable for the current scenario. Real data in 
OSR indicates the presence of seven health teams usually. In the 
normal situation, two medical teams are in-charge of the shock 
rooms, three medical teams take care of the surgical area, and two 
medical teams handle the medical area. In the major accident situa-
tion, four medical teams take care of red patients, two medical teams 
take the responsibility for yellow patients, and one medical team 
look after green patients. In addition, two porters are involved in the 
transportation of yellow and green patients from the ED to the 
related wards, one for yellow and one for green. However, as one of 
the most important steps, collecting data for the process time of 
activities, especially for the major accident scenario, is rather difficult 
due to the lack of historical records about the activities of the ED. 
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Since the triangular distribution is often used where the distribution 
is only vaguely known, we invited the health care workers of OSR 
to estimate the upper process time, the lower process time, and the 
mode for each activity and, then, chose the triangular distribution to 
present the process time of each activity.

3.5.2. Validation and verification

There are two sub-steps for this step: validation of the conceptual 
model and verification of the simulation model. Validation helps in 
determining if the theories and assumptions underlying the concep-
tual model are correct and the representation of the problem, the 
model’s logic structure, and mathematical and causal relationships 
are reasonable [26]. We presented our IDEF0 model to the health 
workers of OSR and, then, our conceptual model was well-validated.

Verification of a simulation model is performed to ensure that 
the programming of computer simulation and the implementation of 
the conceptual model are correct. After the thorough verification 
and debugging of the SIMIO model, we presented our simulation 
results to experts from the hospital. To treat 20 patients in the nor-
mal situation, 4.6653 hours would be needed. On average, patients 
spend 48 minutes in the ED. Since human resources are enough, 
on average, the waiting time of patients would not be more than 
5 minutes. But, in the worst case, some patients would wait for 
18 minutes to be treated in the surgical area or the medical area. 
In the major accident situation, 10.326 hours would be needed to 
treat 100 patients. On average, patients spend 3.175 hours in the 
ED, and red patients, yellow patients, and green patients wait for 
0.2321 hours, 1.7985 hours, and 1.3549 hours, respectively. In the 
worst case, red patients, yellow patients, and green patients wait for 
1.2016 hours, 4.1167 hours, and 3.9659 hours respectively. So, the 
waiting time for yellow patients is the longest. This result seems very 
logical because the number of yellow patients takes 30% of the total 
number of patients, while just two medical teams treat yellow 
patients. Moreover, taking into account the transportation time, the 
treatment time of yellow patients and red patients is the same.
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3.5.3. Design of experiments

The experimental design is very useful in situations where the input 
parameters have to be specified and shows which input parameters 
have the biggest influence on the responses. It can be used to guide 
decision makers on devoting time/money to improve the responses. 
Since our main goal was to predict the average time used to treat all 
patients, we chose factorial design to plan our experiments to test the 
effect of resource dimensioning.

The factorial design is the experimental plan that considers k 
factors. These k factors are independent variables. There are only 
two levels for each factor: high level and low level. The choice of the 
two different levels should obey three principles: first, they are feasi-
ble; second, the difference between these two levels is big enough to 
trigger differences; and third, these two levels are close enough to 
assure that the system response is approximately linear over 
the range of the fact. The output result is called a response or the 
dependent variable. So, the effect of each independent variable on 
the dependent variable and the effect of interactions between the 
independent variable can be studied. In the normal situation, our 
experiment has the following independent variables: number of 
medical teams in the shock room (S), number of medical teams in the 
surgical area (T), and number of medical teams in the medical area 
(M), which lead to different combinations to be designed. In the 
major accident situation, the independent variables are the number 
of medical teams for red patients (R), the number of medical teams 
for yellow patients (Y), and the number of medical teams for green 
patients (G). The assignment of these health teams to different kinds 
of patients can be found in Tables 3.1 and 3.2.

Because 100 replications are enough to distinguish the mean of 
each scenario, we executed 100 replications for both of our sub-
models, i.e., 800 runs for each sub-model and 1,600 runs for total. 
In SIMIO, a boxplot called SIMIO Measure of Risk and Error 
(SMORE) (Fig. 3.7) is used to present the simulation results. In 
the plot, SMORE, the mean, and the maximum and the minimum 
value obtained by a set of replications are presented. Meanwhile the 
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confidence interval of mean can be calculated as well. In our case, 
the confidence level is set to be 95%. Upper and lower percentile 
value can also be set. Here, the upper and lower percentile are set to 
be 75% and 25%, respectively. The confidence level of upper and 
lower percentile is set to be 95%.

The simulation results of the normal situation and the major 
accident situation are presented in Figs. 3.8 and 3.9. Each figure 

Table 3.1.  Different design points 
and particular value taken by each 
scenario in the normal situation.

Design Point S T M

1 2 3 2

2 2 3 4

3 2 6 2

4 2 6 4

5 4 3 2

6 4 3 4

7 4 6 2

8 4 6 4

Table 3.2.  Different design points 
and particular value taken by each 
scenario in the major accident 
 situation.

Design Point R Y G

1 4 2 1

2 4 2 2

3 4 4 1

4 4 4 2

5 8 2 1

6 8 2 2

7 8 4 1

8 8 4 2
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contains all possible combinations of possible resources, related to 
the design points of the factorial design. According to our independ-
ent variables, the process time to treat 22 patients in the normal 
situation and 100 patients in the major accident situation has been 
presented in these two figures, respectively. The less used time 
should point out the best choice. Taking this into account, in Fig. 3.8 
(in the normal situation), scenarios 2, 4, 6, and 8 (corresponding to 
design points 2, 4, 6, and 8) clearly outperform others. The process 
time for scenarios 2, 4, 6, and 8 are 4.3276, 4.31235, 4.31067, and 
4.28928 hours, respectively. However, the confidence intervals on 
the mean for scenarios 2, 4, 6, and 8 overlap each other. All these 
scenarios have the same number of teams in the medical area. 
Therefore, we can get our preliminary conclusion that the number of 
teams in the medical area has the biggest effect on the process time 
to treat all patients in the normal situation.

Figure 3.9 presented the process time to handle 100 patients 
injured by a terrorist attack. From Fig. 3.9, it can be found that sce-
nario 4 and scenario 8 are better than others. The used periods for 
scenario 4 and 8 are 7.4 and 6.8 hours, respectively. The number of 
teams for green patients and yellow patients is the same. Therefore, 
we can get the preliminary conclusion that the effect of the number 

Figure 3.7.  SIMIO Measure of Risk and Error Plot.
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of the medical teams for green patients and yellow patients is higher 
than the number of the medical team for red patients.

To prove our preliminary conclusion from a quantitative point 
of view, we will calculate the effect of each factor. Moreover, in 
order to help healthcare workers, just selecting the best scenario 
among different choices is far from enough. For decision makers, a 
comprehensive decision does not only mean the result is the best. It 
should also consider the impact of different resources on the output 
because the quantity of used resources has a direct relationship with 
the cost. Therefore, performing a sensibility analysis of the experi-
ments is necessary. Based on our simulation result, the mean effect 
of each factor is calculated. We define the mean effect of an inde-
pendent variable a. This mean effect is caused by the change of the 
value of independent variables, moving from the low level to the 
high level. The interaction between two independent variables a and 
b are denoted as Ea or Eb. This means the half of the difference 

Figure 3.8.  Simulation results in the normal situation.
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between the average effect of factor a when factor b takes its high 
level (and all the others factors are held constant) and the average 
effect of factor a when factor b takes its low level. We also computed 
the mean effect among all independent variables, denoted as Eab. 
The results, sorted by higher relevance to lower relevance, are given 
in Tables 3.3 and 3.4.

According to Table 3.3, in the normal situation, the most effec-
tive factor (i.e., the one provoking the highest decrease in the used 
time when it moves from its low value (resources) to its high value 
(resources), the other factors being unchanged) is the number of 
teams in the medical area. Therefore, increasing the number of teams 

Figure 3.9.  Simulation results in major accident situation.

Table 3.3.  Sensitivity analysis 
in normal situation.

Factor(s) Effect

ET -0.48

Es -1.24

Em -1.33

EsT -0.96

EsM -0.09

ETM -0.05

EsTM -0.009
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in the medical area seems to be the most effective way to reduce the 
used time as a large number of patients need the treatment in the 
medical area. Based on Table 3.3, we can also find that the interac-
tion effect between the number of teams in the shock room and the 
number of teams in the surgical area can also have a big effect on 
the used time. It is very logical because after the treatment in the 
shock room, some patients will be transferred to the surgical area 
for further treatment.

From Table 3.4, in the major accident situation, it can be found 
that the number of yellow medical teams has the biggest effect on the 
process time. Therefore, we can get a conclusion that, to reduce the 
used time, increasing the number of health workers to treat yellow 
patients may be the best choice. It is because the number of yellow 
patients accounts for a large percentage, and lot of time is required to 
treat yellow patients. Also, increasing the number of health workers 
to treat green patients can also have a good effect on the process time 
because green patients account for the largest proportion of patients.

3.5.4. Improvements and suggestions for the hospital

In this part, we will first propose one method to improve the current 
situation of the ED in the normal and the major accident situations 

Table 3.4.  Sensitivity analysis 
in major accident situation.

Factor(s) Effect

ER -0.094

EY -0.407

EG -0.107

ERG -0.594

ERY -0.184

EYG -0.038

ERYG -0.03
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and, then, discuss the situation in which we should change the pro-
cess of ED from the normal situation to the major accident situation.

1) The Improvement Method: For the ED, both in the normal situa-
tion and in the major accident situation, the capacities of different 
activities are fixed. The percentage of the utilization of resources 
is not equal. In other words, during simulation, the percentage of 
the utilization of resources can reach 100% for some activities. 
But, for some other activities, the percentage of the utilization of 
resources does not reach 80%. Therefore, we propose employing 
a coordinator that can assign the medical teams to different units, 
based on the current situation. Moreover, with the help of this 
coordinator, we can simulate from the process of the normal situ-
ation to the process of the major accident situation. We can treat 
the normal patients and patients in the major accident situation 
at the same time with the help of a coordinator.

Figure 3.10 shows that, with the help of the coordinator, 
human resources can be assigned appropriately. In Fig. 3.10, 
there are two sub-models: one sub-model presents the process of 
activities in the normal situation and another presents the process 
of activities in the major accident situation. As the basic structure 
of these two sub-models are as same as the models we pre-
sented in Section 4, the description of the structure of these two 

Figure 3.10.  Improvement method.
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sub-models is not required. The main difference between this 
new simulation model and the aforementioned two models is the 
way we simulate the resources. In old models, human resources 
are modeled by the servers with certain capacities. In the new 
model, human resources are presented by “Resource”. In SIMIO, 
“Resource” can simulate human resources (the medical teams) 
with certain capacities that can be released and seized by other 
objects. Here, we use a “Table” to present the decisions of a coor-
dinator about which human resource should be assigned to certain 
activities. We use “Table” to store the available human resources. 
If a “Server” needs a “Resource” to carry on certain activities, it 
should demand the available “Resource” in the “Table”. If there 
is an available “Resource” in the “Table”, the “Server” will get 
hold of it according to the first-come-first-service principle. When 
the activity is finished, the “Resource” will be released to the 
“Table”. Based on the simulation results, if we use the coordinator 
to treat 100 patients under the major accident situation, we just 
use 8.2 hours, saving 2.126 hours.

2) The Condition to Change the Process: Until now, the hospital 
does not have a clear rule about the kind of situation under 
which the ED should take the normal process and the major 
accident process. Since in the normal situation the number of 
patients who visit the ED is about 20, therefore, we define this 
rule with 20 patients. In the major accident situation, it will cost 
1.95 hours to treat 20 patients. To treat 20 patients in the nor-
mal situation, 4.6653 hours will be needed, and 2.7 hours will 
be saved. Though the use of the major accident process can save 
our time, it is better for us to keep the normal process in most of 
the cases due to the following reasons:

  i.  The process of the normal activity and the process of the 
major accident activity do not use the same resources.

  ii.  The number of patients that should be treated is not the same.
 iii.  The objectives of these two situations are not the same.

 Usually, the process time to change the process from the normal 
situation to the major accident situation is less than 2.7 hours. 
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And, in the normal situation, the patients’ arrival rate is bigger 
than the service capacity rate. Hence, some patients who are 
waiting to be treated are always there. Therefore, as long as the 
patients’ arrival rate is more than 20 per hour, we should change 
the current process to the major accident process.

3.6. Conclusion

This paper studied the ED of a large-sized Italian hospital in the 
normal situation and in the overcrowding situation caused by sup-
posed terrorist attack. A conceptual model, which can help health 
workers know when to do what in which kind of situation, was built 
by using the IDEF0 method. With the help of our conceptual model, 
the activity process was formalized, and then, SIMIO was used to 
present our conceptual model in detail. The SIMIO model can pre-
dict the time used to treat all patients of the ED in different resource 
dimensioning conditions. The factorial design was done to analyze 
the simulation results. Based on our simulation, we conclude that the 
number of medical teams should be increased to reduce the time 
used to treat all in the normal situation. In the major accident situ-
ation, we should increase the number of medical teams for yellow 
patients to reduce the used time. Also, we proposed to employ coor-
dinators to improve the use of human resources as they can help 
save 2.126 hours in the normal situation.
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Abstract

Quick diagnosis is critical for stroke patients but relies on expensive 
and heavily used imaging facilities such as Magnetic Resonance 
Imaging (MRI). To reduce the stroke patients’ waiting time for 
MRI, this book chapter proposes a new reservation process. A cer-
tain number of appropriately distributed contracted time slots 
(CTS) are reserved for stroke patients. Except for CTS, the time 
slots by regular reservation (RTS) are still possible for stroke 
patients. The implementation of this new process need to determine 
the number of CTS and its distribution, the patient assignment 
policy to assign patients to either CTS or RTS, and the advance 
cancellation policy to cancel CTS in advance. Stochastic, dynamic 
programming, and local search methods are combined to solve 
these problems. In this new process, stroke patients assigned to 
RTS have to wait for about 35 days, much longer than those 
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assigned to CTS. In order to improve waiting time distribution, 
three other CTS implementation strategies, called RTS reservation 
strategies, are proposed which still make use of CTS and reserve 
RTS for stroke patients without directly assigning patients to RTS. 
All patients are scheduled to both CTS and RTS in the first-in, first-
out (FIFO) order. Numerical experiments show that these new 
strategies greatly reduce the longest waiting time of stroke patients 
and avoid unlucky patients.

4.1.  Introduction

This chapter introduces a new magnetic resonance imaging (MRI) 
examination reservation process, studied in [1–5], to reduce the 
waiting time of high-priority patients without degrading the utiliza-
tion of MRI. This series of research is conducted in collaboration 
with a large French university teaching hospital in order to reduce 
the length of stay (LoS) of stroke patients treated in the neurovascu-
lar department.

As shown in Fig. 4.1, a stroke (sometimes called an acute cere-
brovascular attack) is a sudden loss of brain function due to the 
block of blood supply to the brain (ischemic stroke) or the rupture 

Figure 4.1.  Photos for ischemic and hemorrhagic stroke.

Source: http://www.strokegenomics.org/index.php?page=about-stroke-genetics
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of a blood vessel in the brain (hemorrhagic stroke), which leads to 
inability to move one or more limbs of one side of the body, under-
stand or speak clearly, or see one side of the visual field. Stroke 
patients need the treatment as soon as possible, following a number 
of necessary examinations. Field observations in the collaborated 
hospital indicate that patients face significant delays in treatment as 
many key examinations rely on expensive and heavily-used imaging 
facilities such as MRI, as shown in Fig. 4.2. However, a new MRI 
scanner is very expensive (about $2 million), with a commensurate 
cost for building and preparing the space it needs. Therefore, hospi-
tal managers are under high pressure to reduce the LoS of stroke 
patients by reducing their waiting time for MRI examinations, with-
out degrading the utilization of MRI scanners.

A six-month field observation was performed in the neurovas-
cular department to collect data concerning patient arrival, medical 
examinations requested for each patient, delays of the examina-
tions, and LoS of the patient. A detailed analysis of the historical 
data, as shown in Fig. 4.3, reveals that the neurovascular depart-
ment has rather stable weekly demand for medical examinations. 

Figure 4.2.  The photo of a MRI scanner.

Source: http://www.magnet.fsu.edu/education/tutorials/magnetacademy/mri/
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The neurovascular department is actually the largest customer of the 
imaging department. Furthermore, the MRI examination of stroke 
patients takes nearly the same time which is one time slot of about 
30 minutes. Patients need to wait for about 30–40 days for MRI 
examinations.

Based on the observation in the neurovascular department of 
the target hospital, Geng [1], Geng et al. [2, 3, 5], and Geng and Xie 
[4] propose a contract-based MRI examination reservation process. 
A certain number of appropriately-distributed contracted time slots 
(CTS) are reserved for the patients with high priority, who usually 
suffer from more urgent illness than others. In addition, these 
patients can reserve regular time slots (RTS) via the regular reserva-
tion process. The contract-based examination reservation process is 
characterized by the following decisions and control policies:

1. Contract decisions, i.e., the number of CTS and its distribution 
over time.

2. Patient assignment control policy, which assigns patients to 
either CTS or RTS (if the patient is assigned to CTS, s/he needs 
to wait for CTS in the following days, otherwise, his/her exam-
ination is reserved through regular MRI examination reserva-
tion process).

Figure 4.3.  Historical data collected from the neurovascular department [1].
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3. Advance CTS cancellation policy, which cancels the CTS in 
advance when there are no enough stroke patients to fill CTS.

4. Improvement of patients’ waiting time distribution, which tries 
to reduce the waiting time of stroke patients assigned to RTS.

A stochastic programming model is proposed to simultaneously 
determine the contract decisions, i.e., the number of the CTS and the 
patient assignment policy to assign patients to either CTS or RTS. To 
solve this model, an average-cost Markov decision process (MDP) 
approach is used to identify structural properties of the optimal con-
trol policy. A Monte Carlo approximation approach combining with 
a local search is used to determine the number and the distribution 
of CTS. The new reservation process greatly reduces the average 
waiting time of high-priority patients, with high underutilization 
ratio of CTS and much longer waiting time of patients assigned to 
RTS. To reduce the unused CTS, one-day and two-day advance can-
cellation of the slots are considered. Structural properties of optimal 
control policies are established via the average-cost MDP. Numerical 
experiments show that the appropriate advance cancellation of CTS 
greatly reduce the unused CTS with nearly the same waiting time. To 
reduce the waiting time of patients assigned to RTS, an improved 
reservation process is proposed to reserve an RTS according to 
three different criteria, without directly assigning the patient to RTS. 
This improved reservation process is proven to be able to reduce 
the unused time slots and improve the patients’ waiting time 
 distribution.

The remaining part of this chapter is organized as follows: 
Section 2 reviews the state-of-the-art methods and approaches 
used for the related problems. Section 3 presents the stochastic 
and dynamic programming model for the determination of CTS 
and the patient assignment control policy. Section 4 introduces the 
one- and two-day advance cancellation control policies. Section 5 
describes three different improved reservation processes. Finally, 
section 6 concludes the chapter by highlighting some open-
research problems.
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4.2.  Literature Review

The operational management of diagnostic devices, such as computer 
tomography (CT) and MRI scanners, includes capacity planning, 
capacity allocation, and scheduling. Capacity planning usually deter-
mines how many facilities should be purchased for the hospital. 
Capacity allocation helps in allocating the capacity to different patient 
groups usually to reduce the waiting time of some high-priority 
patients by sacrificing the waiting time of some low-priority patients. 
The capacity is measured in terms of the number of patients who can 
be examined in one day. Patients can be grouped according to the 
urgency level, the clinical department, and medical constraints. Patient 
scheduling helps reducing the patients’ waiting time in three levels: 
advance scheduling, appointment scheduling, and real-time schedul-
ing. Advance scheduling determines the number of patients that are 
scheduled to a particular day within a time horizon. Appointment 
scheduling helps in determining the appointment rule and assigning 
each patient to a time slot in a day. Real-time scheduling puts into 
sequence patients of different priority in an online way or to deter-
mine the patient that needs to be served next. In this chapter, we will 
focus on the literature on capacity allocation in diagnostic facilities.

The capacity allocation of imaging facilities has received limited 
coverage, with the earliest contribution being of Vasanawala and 
Desser [6]. The queuing theory is used to predict the optimal num-
ber of schedule slots that are served for urgent CT and ultrasonog-
raphy. Green et al. [7] address how to match the demand with 
imaging diagnosis capacity by considering inpatients, outpatients, 
and emergency patients. The outpatient appointment schedule and 
the dynamic priority rules for admitting patients into service are 
considered. A finite-horizon dynamic program model is formulated, 
and the optimal control policy is established for admitting patients 
into services.

Patrick and Puterman [8] propose a simple approach for divid-
ing the available diagnosis capacity between emergency patients 
and inpatients, on the one hand, between emergency patients and 
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outpatients on the other hand. A certain amount of capacity is 
reserved for the emergency by carrying over a percentage of the 
non-emergency inpatient demand to the next day. An MDP model 
is proposed in Patrick et al. [9] to schedule multi-priority patients 
to a diagnostic facility by considering the patients’ waiting time 
targets. Waiting time targets are defined as the maximal allowable 
waiting time for each priority patient. An approximate dynamic 
programming approach is proposed to overcome the state space 
explosion problem.

Kolish and Sickinger [10] allocate the capacity of two CT scan-
ners to three patient groups with different arrival patterns and cost 
structures. The problem is formulated as an MDP with the objective 
of maximizing the expected total reward. Sickinger and Kolisch [11] 
pursue the previous work to determine the optimal number of out-
patients to be scheduled and assign the outpatients to a variable-
block/fixed-interval appointment schedule. Schütz and Kolisch [12] 
propose a continuous-time MDP to solve the problem of accepting 
or rejecting the reservation of different services by different classes 
of customers. The solution strategy is proposed by combining simu-
lation-based approximate dynamic programming (ADP) and discrete 
event simulation. Numerical experiments show that the heuristic 
ADP algorithm performs very well in terms of objective function 
value, solution time, and memory requirements. Schütz and Kolisch 
[13] propose an MDP approach to decide whether to accept requests 
for MRI examinations from patients with different priorities, such 
as inpatients and outpatients. Different examination types, cancel-
lations, no-shows and overbooking, and same-day demand are con-
sidered. Patients’ behaviors, such as preferences and no-shows and 
cancellations, are seldom considered in the capacity allocation 
level. They are usually considered in the patient scheduling level, 
e.g., Chakraborty et al. [14], Feldman et al. [15], and Laganga and 
Lawrence [16].

Zonderland and Timmer [17] employ the generic Bayesian game 
approach to deal with the fairness of capacity allocation in MRI 
scanners that depends on the quality of information provided by 
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hospital departments. The disclosure of true demand is stimulated, 
and then, the capacity is fairly allocated.

4.3.  The Determination of CTS and the Optimal Patient 
Assignment Policy

This section introduces the contract design and the optimal patient 
assignment policy by Geng et al. [2]. The problem is formulated as a 
stochastic programming model from the perspective of stroke 
patients or high-priority patients with the objective of minimizing 
the patients’ waiting time and unused CTS cost. The structural prop-
erties of the optimal patient assignment policy are identified via 
MDP approach. The Monte Carlo approximation is used to solve 
the stochastic programming model. The solution is improved by the 
local search.

We now present the assumptions and notations used in Geng 
et al. [2, 3, 5] and Geng and Xie [4]. Hereinafter, we use “patients”, 
“stroke patients” and “high-priority patients” to refer to those who 
are urgent and “regular patients” to refer to those who are not 
urgent.

Assumption A1: Only MRI examination is considered, and one 
MRI time slot is required by each patient. Each patient can be 
assigned to either one CTS or one RTS.

Assumption A2: Emergency stroke patients are not considered, 
and all other stroke patients have the same priority.

Assumption A3: Patient arrival varies during a week but is sta-
tionary from one week to another. Furthermore, the number of 
arrivals on one day is independent of the arrivals on other days.

Assumption A4: The same contract is used for different weeks, 
i.e., nt = nt+7 for all t. As a result, the contract can be represented by 
a 7-entry integer-valued vector n = {n1, …, n7}.

Note that the number of CTS plus RTS should equal to the 
capacity of MRI facilities, i.e., the number of patients examined by 
MRI facilities in a day.

In the beginning of day t or equivalently weekday i, with i = d(t), 
number xt-1 of patients waiting for CTS, with x0 a given constant, 
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and number at of patients arrives. By Assumption A3, daily arrivals 
at for t ∈ IN are mutually independent random variables, and weekly 
arrivals (a7j+1, a7j+2, …, a7j+7) are identically distributed for all j = 0, 
1, …. Thus, the arrival process is characterized by the probability 
matrix P = [Pij] for i = 1, …, 7 and for all j ≥ 0, with Pij denoting the 
probability of j arrivals in weekday i. The contract decision is nt, 
which means number min(xt-1 + at, nt) of high-priority patients 
could be examined in day t. At the end of day t, number xt of 
patients are waiting for the CTS in the following days. Penalty 1 or 
TR is charged if 1 patient is waiting for CTS or RTS for one day with 
TR > 1. c is penalty factor of an unused CTS. It serves as a weighting 
factor to balance the waiting times and unused MRI time slots.

4.3.1.  Model formulation

Considering the above notation, let the contract decision be nt and 
patient assignment xt be decision variables. A stochastic program-
ming (SP) model formulated in Geng et al. [2] is as follows:

Model-SP:

 ( )+
-→∞

=

 
+ + - - 

 
∑ 1

,
1

1
E lim ( )

T
R

t t t t t
f T

t

MIN T y x c n x a
Tn

 (1)

subject to:

 1 1( )t t t t t ty f x a x a- -= + + ≤ +  (2)

 1( )t t t t tx x a y n +
-= + - -  (3)

 ∈ →7
1 2 7( , ,..., ) , : .tn n n IN f IN IN  (4)

where -= + →1( ) :t t t ty f x a IN IN: number of patients directed to 
RTS in day t.

The objective function (1) is the expected cost of waiting time and 
unused CTS. Constraint (2) defines the control policy for the use of 
RTS. Constraint (3) updates the CTS queue length. Model-SP is 

b2922_Ch-04.indd   91 8/28/2017   8:43:18 PM

 



b2922 Stochastic Modeling and Analytics in Healthcare Delivery Systems “6x9”

92 Stochastic Modeling and Analytics in Healthcare Delivery Systems

impossible to solve mainly due to the underlying optimal control poli-
cies in constraint (2). Therefore, the patient assignment policy is first 
explored by assuming the known CTS and, then, the contract is deter-
mined by an optimization method. An infinite-horizon average cost 
MDP is proposed with the same objective of minimizing the expected 
stroke patients’ waiting and unused CTS cost. Structural properties of 
the average cost MDP are established via discounted cost MDP by 
value iteration and by using relations between these two MDP models.

4.3.2.  Exploration of the optimal patient assignment  
policy via MDP

The state of the system is represented by zt = xt-1 + at, i.e., the state 
variable after patient arrivals. The control policy π = {π1, π2, ...} is 
defined as xt = πt (zt) with 0 ≤ xt ≤ (zt – nt)

+. Note that the new defi-
nition of the control policy is equivalent to that of relation (2) as a 
result of relations (2)–(3).

The objective is to minimize over all policies π = {π1, π2,...} the 
average cost

 ( )π

+

→∞
=

  = = 
  
∑ ( )

1
( , ) lim ,

T i

d t t t i
T

t i

J i z E g z x z z
T

 (5)

or the a-discounted total cost with 0 < a < 1

 ( )a π a -

→∞
=

 
= = 

 
∑, ( )( , ) lim ,
T

t i
d t t t i

T
t i

J i z E g z x z z  (6)

for any given initial state zi = z with i = 1, …7, where gd(t)(zt, xt) is 
the stage cost incurred at day t

 ( ) ( ) ( )( ) ( ) ( ), R
d t t t d t t t t d t tg z x c n z x T z n x

+ + = - + + - -    (7)

Consider the following optimal cost function:

 ( ) ( ),, ,V i z MIN J i za a ππ
=  
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The index a is omitted for simplicity in this section. From 
Bertsekas [18], since all stage costs gt(zt, xt) ≥ 0 and the control con-
straint set is finite for each zt as xt ≤ zt, the optimal cost function is 
a solution of the following optimality equations:

 
( ) ( ) ( ) ( )a+ +

+

  = - + + - - + + + 
  

∀ =

∑ 1,, min 1,

1,...,7

R
i i i a

x
a

V i z c n z x T z n x P V i x a

i
 (8)

with 7 + 1 ≡ 1, which means Sunday is followed by Monday.
The optimal control policy is given by the argument x that 

reaches the minimum in (8), and the optimal cost function is the 
limiting function of the following value iteration:

 ( ) ( ) ( ) ( ) ( ){ }1

0 )
min 1
t t t

t R t R
t t t t i t t

x z n
V z c n z T z n U x T x

+

+ + +

≤ ≤( -
= - + - + - -  (9)

where

 ( ) ( )a+ +
+= +∑1 1

1,
t t

t t a t
a

U x P V x a  (10)

 ( )0 0V z =  (11)

for t = 0, -1, -2, … As a result,

 ( ) ( )7, lim n i

n
V i z V z- +

→∞
=  (12)

The major theoretical result of this chapter is based on the 
following properties of the value iteration by (9)–(11):

 (i) the optimal xt is non-decreasing in zt,
  (ii) c ≤ Vt (zt + 1)–Vt (zt) ≤ TR, for any zt and t,
(iii) Vt(zt) is convex in zt, and Ut+1(xt) is convex in xt. 

Theorem 1 (Geng et al. [2], Theorem 1): The value functions 
V(i, z) and U(i, x) are convex functions in z and x, respectively, for 
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all i = 1, …7. Further the optimal control policy is of the following 
form:

 
*

0 if 0

if 0

if

i

i i i i

i i i

z n

x z n z n L

L z n L

- ≤
= - < - ≤
 - ≥

 (13)

Structural properties of the optimal patient assignment control 
policy are established for the discounted-cost MDP model. The opti-
mal control is to keep stroke patients in CTS queue if the CTS queue 
length at the end of a day is below some threshold Li (i = 1, 2, …, 7) 
for different days in a week, otherwise to send the remaining patients 
to RTS to make sure that the CTS queue ends at Li. The average-cost 
MDP model has the same optimal control policy in the case of 
bounded patients’ new arrival by using Proposition 4.2.6 in Bertsekas 
[18] and in the case of unlimited patients’ new arrival by using 
Theorem 8.10.7 of Puterman [19].

The existence of optimal threshold control makes the implemen-
tation easy. According to the relation (13), the implementation of 
the L control policy can be divided into three cases [1], as shown in 
Figs. 4.4a–c:

Case 1: If the CTS queue after new patients’ arrival zt is smaller 
than the same-day CTS number nt, then there are number nt – zt of 
unused CTS and no patients waiting at the end of day t.

CTS queue xt-1

New  
arrival at

CTS queue after 
new arrival zt

Day t

CTS Nb. nt

If  zt ≤ nt

No assignment to RTS and empty CTS queue.

Time
Unused CTS Nb. 

Figure 4.4(a).  The optimal control if zt ≤nt [1].
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Case 2: If zt is between the values of nt and nt + Lt, then all the 
remaining patients, i.e., number zt – nt of patients are waiting for the 
following CTS and no patients are assigned to RTS at the end of day t.

Case 3: If zt is greater than the values of nt + Lt, then the number 
Lt of patients are kept in the CTS queue, and the remaining patients 
are assigned to RTS at the end of day t.

4.3.3.  Contract optimization via Monte Carlo approximation

From the optimal patient assignment control policy (13), constraint 
(2) could be rewritten as:

 ( )1 ( ) ( )t t t d t d ty x a n L
+

-= + - -  (14)

time

CTS queue xt-1

New  
arrival at

CTS queue after 
new arrival zt

Day t

CTS Nb. nt

xt: CTS queue length

If  nt    zt  L t+nt

No patients will be assigned to RTS.

 ≤  ≤ 

Figure 4.4(b).  The optimal control if nt ≤ zt ≤ Lt + nt [1].

time

CTS queue xt-1

New  
arrival at

CTS queue after 
new arrival zt

Day t

CTS Nb. nt

yt: nb of RTS assignment

Lt: CTS queue length

If  zt ≥ L t+nt

Figure 4.4(c).  The optimal control if zt ≥ Lt + nt [1].
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Due to the unknown Ld(t), the model-SP with (14) replacing (2) 
is still impossible to solve. Therefore, this constraint is omitted. 
Furthermore, the uncertain demand is approximated by a determin-
istic optimization problem by using a single given but long enough 
sample path of patient arrivals. The nonlinear constraint (3) is refor-
mulated as a linear constraint by adding one variable ut, i.e., the 
number of unused time slots, whose reduction leads to the reduction 
of both xt and yt and, hence, the reduction of the objective value. The 
Monte Carlo approximation model provides a lower bound (LB) for 
the original model-SP.

Model-LB:

 
1 1 1
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R
t t t

t t t
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= = =
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The constraint matrix of the left-hand side of the constraints of 
the model LB is proven to be total unimodular. As a result, the 
integrity constraints of variables xt, yt, ut can be relaxed. This model 
is easy to solve as it only involves seven-integer decision variables 
(n1, n2, n3, …, n7) and is expected to produce a good contract for 
Model-SP, which has been confirmed by the numerical experiments.

Starting from the initial contract solution of the LB model, a 
local search algorithm is proposed to improve the initial solution n0. 
Value iteration is used to find the exact objective value for contract 
decision n0 by considering the optimal patients’ assignment policy. 
At each iteration, three different types of neighborhood are searched: 
n + ek (increasing one time slot in period k), n – ek (reducing one time 
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slot in period k), and n – ek + ej (moving one time slot from period 
k to period j). Value iteration is used to determine the best neighbor 
solution. This process repeats until no improvement can be found.

Numerical results show that although the lower bound from 
Monte Carlo approximation is not always tight, the contract 
decision is very close to the optimal one, with at most two local 
moves away from the optimal contract decision in all numerical 
experiments. The average waiting time of high-priority patients is 
greatly reduced, less than 5 days in most cases and less than 
10 days even when the idle penalty is very large. However, about 
8% of the CTS are unused, and 4% of the patients are assigned to 
RTS in the base case, when unused penalty c = 15 and RTS waiting 
penalty TR = 35.

4.4.  Joint Patient Assignment and Advance CTS Cancellation

In this section, we introduce the one-day advance cancellation of 
CTS by Geng et al. [3] and one-and two-day advance cancellation by 
Geng & Xie [4]. It is interesting to note that the optimal patient 
assignment and the advance cancellation policies are explored 
together. An average-cost MDP is separately proposed, and the opti-
mal control policies are established via discounted-cost MDP, with 
the objective to minimize the expected stroke patients’ waiting, MRI 
underutilization, and CTS advance cancellation cost. The local 
search algorithm, similar to the one proposed in Geng et al. [2], is 
used to improve the contract decisions. We now present the details 
of the approach.

4.4.1.  One-day advance CTS cancellation

In Geng et al. [3], there are two control policies in this problem: 
patient assignment and one-day advance CTS cancellation policies. 
History-dependent policies are first considered, and then, optimal 
control policies are proved to be stationary Markov deterministic 
policies. The objective is to minimize the long-run average cost 
over the customer assignment policy by π = {π1, π2, ...} and the CTS 
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cancellation policy by µ = {µ1, µ2, …}. We will see later that the 
former policy depends on the number of patients in the morning, 
i.e., zt, and the latter depends on the number of patients at the end 
of a day i.e., xt.

It is proved that there exists an optimal average cost policy 
such that tx x≤  for all t > 0, with = +[( ) *]Rx T c n , where [•] is the 
least integer greater or equal to • and n* = MAX{n1, …, n7}. 
Structural properties are proved via discount-cost MDP. Thanks to 
this result, the following assumption is made without the loss of 
generality:

Assumption A5: tx x≤  for all t > 0.
In the following, we show the process of proof via discounted-

cost MDP.
 Since the set of states (i, z) is countable, and the control con-

straint set is finite as xt ≤ zt and the number of cancellation wt ≤ nt+1 
for each zt, Theorem 6.10.4 in Puterman [19] implies that the opti-
mal control policy is stationary deterministic and is given by the 
argument w and x that reach the minimum in (15)–(16), and the 
optimal cost function is the limiting function of the following value 
iteration:

 ( ) ( ) ( ) ( ) ( ){ }+

+ +

 ∈ 0,( - ∧ 

= - + - + - -
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t t t

t R t R
t t t t i t t

x z n x
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∑
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t t t

t t
t t t a t t

w n x a

V x bw P U x w a  (16)

where min( , )x y x y∧ = , b is the one-day advance cancellation pen-
alty, and wt is the number of CTS for day t+1 cancelled in day t

 ( )0 0U z =  (17)

for t = 0, -1, -2, …
In relation to (15)–(16), the following bound is proved: -c ≤ Ut (zt) 

- Ut (zt - 1) ≤ TR and -b ≤ Vt (xt) - Vt (xt - 1) ≤ TR. Then, Ut(zt) is 
proved to be convex in zt, and Vt(xt) is proved to be convex in xt.
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The major theoretical results are follows:
Theorem 2. The optimal value functions Ut(zt) and Vt(xt) are 

convex in zt and xt, respectively. Furthermore, the optimal control 
policy for the problem is characterized by the following form:
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Proposition 4.2.6 in Bertsekas [18] and Theorem 8.10.7 of 
Puterman [19] are separately used to prove the same stationary opti-
mal control policy for the average-cost MDP under the assumption 
of limited and unlimited new patients’ arrival.

The existence of optimal control policies makes the implementa-
tion easy. For day t, the implementation of the optimal patient 
assignment policy depends on state variable zt, while that of the opti-
mal one-day advance cancellation policy depends on xt, the CTS 
queue length at the end of day t. Therefore, the patient assignment is 
first made, then the CTS is cancelled for the next day. The implemen-
tation of the patient assignment policy is similar to Figs. 4.4a–c. The 
implementation of the optimal one-day advance cancellation control 
policy depends on the ending CTS queue at the end of the same day, 
which can be divided into two cases:

Case 1: As shown in Fig. 4.5a, if the ending CTS queue at day t 
xt is smaller than St+1, then the number of CTS cancelled for day t 
+ 1 is wt = St+1 – xt.
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Case 2: As shown in Fig. 4.5b, if the ending CTS queue at day t 
xt is greater than St+1, then there is no cancellation.

Numerical experiments show that the consideration of one-day 
advance CTS cancellation could greatly reduce the unused CTS ratio 
to less than 10% when the cancellation cost was smaller than half of 
the idle cost or the idle cost was large. On the contrary, the expect 
patients’ waiting in the CTS queue was slightly increased.

4.4.2.  Joint patient assignment and one-day and two-day 
advance CTS cancellation policies

Geng and Xie [4] explore the optimal patient assignment, one-day 
and two-day advance CTS cancellation policies are explored together. 

time
Day t

If xt≤ St+1

CTS queue: xt 

St+1 

CTS cancelled for day t+1: 
wt = St+1 - xt 

CTS cancellation up to the control threshold St+1

Figure 4.5(a).  The optimal one-day advance CTS cancellation control if xt ≤ St+1 
[1].

timeDay t

If xt ≥ St+1

CTS queue: xt 
St+1 

No CTS cancellation

Figure 4.5(b).  The optimal one-day advance CTS cancellation control if xt ≥  
St+1 [1].
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The optimal control under a given contract is formulated as an aver-
age cost MDP in order to minimize patients’ waiting, unused CTS, 
and CTS cancellation. The following notations are introduced in this 
paper:

1
tw  and 2

tw  are the number of CTS cancelled in one day or two 
days advance at the end of day t, respectively, and b1(b2) is the unit 
cost of one-day (two-day) advance cancellation

 + + + +

- -

= + = + = + +

= + = + + +

2 1 1 2
1 1 1 1

1 2
1 1

, ,t t t t t t t t t

t t t t t t t

u x w y u w x w w

z y a x w w a
 

 n* = MAX{n1, … , nD}, a* = MAX{E[a1], …, E[aD]} 

Apart from the off-line contract decisions nt, there are three on-
line control decisions: customer assignment, one-period advance 
CTS cancellation, and two-period advance cancellation. At the end 
of period t, before making decisions ( )1 2

1 2, ,t t tx w w+ + , the system state 
can be represented by ( )+

2
1,t tz w , i.e., the combination of the number 

of remaining customers and the number of period t + 1 CTS can-
celled.

The objective is to minimize the long-run average cost of all 
contracts n and all history-dependent policies (π, m1, m2), which 
includes the penalties for CTS cancellation and unused CTS plus 
waiting time for CTS and RTS. History-dependent policies are first 
proved to be stationary Markov deterministic policies, then the 
structural properties are established via the corresponding dis-
counted cost problem.

The optimal control policy is stationary deterministic and is 
given by any argument (x, w1, w2) that reaches the minimum in 
(20)–(22). The optimal cost function is the limiting function of the 
following value iteration:

 ( ) ( ) ( ) ( ){ }+

+ +

≤ ≤ ( -
+ +

∧
= - + + - - +

0

2 2
1 1

)
, min ,

t t t

t R t
t t t t t t t t

x z n
t t

x
U z c nw wz x T z n x V x  (20)

 ( ) ( )( )
( ) ( ){ }

+ +++ ≤ ≤ + ∨
+ += + - -

2 2
1 1 1

1
2 2

1 1, min
t t tt t t

t
t t

w

t
t t t t

x y x nw
V x W y b y wxw  (21)
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 ( ) ( )
2

2
2

1
2 1

0

2 2
2 2min ,

t t

t t
t t t

n
t t

w
W y E b U aw wya

+ +
+

+
+

≤
+

≤
 = + +   (22)

where for t = 0, -1, -2, … where ( )( )0 t t tx z n x
+≤ ≤ - ∧ , 

( )1 2
1 1 1t t t tw n x w

+
+ + +≤ - - , + +≤2

2 2t tw n , and ∧ denotes component-

wise minimization, and ∨ denotes component-wise maximization.
Ut(zt,w

2
t+1), Vt(xt,w

2
t+1), and Wt(yt) identify the optimal policies 

for customer assignment, one-period, as well as two-period advance 
cancellation, respectively.

The right-hand side of relation (21) is a function of ut, with 
2

1 1t tu x w += + . Relation (21) becomes

 ( ) ( ){ }
1

1 1
)

min
t t t t

t t
t t t t

u y u n
V u W y b y b u

+≤ ≤( ∨
+ -  (23)

The main result of this paper is the following theorem, which 
proves the convexity of the optimal cost functions and the structure 
properties of optimal control policies, i.e., the optimality of thresh-
old control policies. The proof of this theorem relies on the techni-
cal analysis of different convexity properties of the optimal cost 
functions in the value iteration process defined by equations (20)–(22). 
In a summary, it is first proved that if Wt(yt) is convex in yt, then 
Vt(ut) is convex in ut. Then assume Wt(yt) is convex in yt, U

t(z, w) 
is supermodular and superconvex, and thus Ut(z, w) is convex in z 
and w. Finally, it is proved that Wt-1(yt-1) is convex in yt-1 if W

t(yt) 
is convex in yt.

Definition 1 (Koole [20]): A function f(x) is supermodular, 
denoted Super, if

 ( ) ( ) ( ) ( )i j i jf x f x e e f x e f x e+ + + ≥ + + +  

or equivalently

 ( ) ( ) ( ) ( )f x y f x y f x f y∨ + ∧ ≥ +  

where ( ) ( )max ,x y x y∨ = .
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Definition 2 (Koole [20]): A function f(x) is superconvex w.r.t. 
(i, j), denoted Super C (i, j) if

 ( ) ( ) ( ) ( )+ + + + ≤ + + + 2i i j j if x e f x e e f x e f x e  

From the above definitions, it can be proved that a function f(x) 
that is Super and Super C (i, j) is convex in i.

Theorem 3. The optimal value function U(z, w) in (20) is con-
vex in z and w. V( u) in (23) is convex in u. W(i, y) in (22) is convex 
in y. Furthermore, the optimal control policies for the problem are 
as follows:

 ( )
( ) ( )

+
+

+ +
+ +

 - ≤
= - ≤ - ≤ -

 - - ≥ -

* 2
1

2 2
1 1

0 if 0

if 0

if

i i

i i i i i i i

i i i i i i

z n

x z n z n L w

L w z n L w

 (24)

 

2 11 2
1 11* 1 1

1 2 1
1 1

if

0 if
i i ii i i

i
i i i

x w SS x w
w

x w S
+ ++ +

+
+ +

 + ≤- -
= 

+ ≥
 (25)

 ( ) ( )2* 2
2 2i i i iw y S y+ +=  (26)

where

 
( )

( ) ( )( )
( )

( ){ }
1

1
1 1arg min , 1 , arg min

ii

R
i i i

u y u nw u w z n

L V i u T u S W y b y
+

+

+
≤ ≤ ∨≤ ≤ + -

= - - = +  

 ( ) ( ){ }
2

2
2 2 1 1

0
arg min ,

i

i i i
w n

S y E b w U y a w
+

+ + +
≤ ≤

 = + +   

Structural properties of the optimal control policies for the 
average-cost MDP are established via the corresponding discounted-
cost MDP problem. The local search was proposed to improve the 
contract.
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The existence of optimal control policies makes the implementa-
tion easy. At the end of day t, the implementation of the optimal 
patient assignment policy first determines the CTS queue length xt, 
which depends on state variable zt and w2

t. The second step is to 
determine the number of CTS cancelled for day t + 1, i.e., w1

t+1, 
which depends on w2

t+1 and xt. The final step is to make the two-day 
advance cancellation decision. The number of CTS cancelled for 
day t + 2 depends on state variable yt = xt + w1

t+1 + w2
t+1.

Step 1: The implementation of the optimal patient assignment 
control policy can be divided into three cases:

Case 1:  As shown in Fig. 4.6, if the state variable zt is smaller than 
nt, there exists the number nt – zt of unused CTS, and no 
patient is waiting for the incoming time slots.

Case 2:  As shown in Fig. 4.7, if state variable zt is greater than nt but 
smaller than Lt + nt – w2

t, then all the remaining patients are 
kept in the CTS queue, and no patients are assigned to RTS.

Case 3:  As shown in Fig. 4.8, if state variable zt is greater than Lt + 
nt – w2

t, then the number of patients assigned to CTS is kept 
at Lt – w2

t, and the other remaining patients are assigned to 
RTS.

If z t nt

time

CTS queue: xt-1

New arrival: at

State Variable: zt

Day tDay t-1

CTS nb: nt

Unused CTS nb: nt - zt

No RTS assignment and empty CTS queue

CTS cancelled for day  t: w2
t

CTS cancelled for day  t: w1
t

≤

Figure 4.6.  The optimal patient assignment control if zt ≤ nt [1].
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CTS cancelled for day  t: w2
t

CTS cancelled for day  t: w1
t

If nt     z t ≤ Lt +nt–w2
t

time

CTS queue: xt-1

New arrival: at

State Variable: zt

Day tDay t-1

CTS nb: nt

No patients are assigned to RTS.

CTS queue: xt

≤

Figure 4.7.  The optimal patient assignment control if nt ≤ zt ≤ Lt + nt -w2
t [1].

If zt ≥ Lt+nt–w2
t

time

CTS queue: xt-1

New arrival: at

State Variable: zt

Day tDay t-1

CTS nb: nt

CTS assignment: xt= Lt –w2
t

RTS assignment:yt= zt – nt  – xt 

CTS cancelled for day t: w2
t

CTS cancelled for day t: w1
t

Figure 4.8.  The optimal patient assignment control if zt ≥ Lt + nt -w2
t [1].

Step 2: The implementation of one-day advance cancellation 
control can be divided into two cases:

Case 1:  As shown in Fig. 4.9, if the ending CTS queue at day t plus 
two-day advance cancellation for day t + 1, w2

t+1, is smaller 
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than S1
t+1, then the number of CTS cancelled for day t + 1 is 

w1
t+1 = S1

t+1 – xt – w2
t+1.

Case 2:  If xt + w2
t+1 ≥ S1

t+1, no CTS is cancelled for day t + 1. 

Step 3: The number of two-day advance cancellation depends on 
state variable yt = xt + w1

t+1 + w2
t+1, which becomes known now, i.e., 

S2(y).
The numerical results show that the consideration of two-day 

advance cancellation and the local search further reduced the crite-
rion values and improved the performance indicators.

4.5.  Implementation Strategies

In the Geng et al. [2, 3] and Geng and Xie [4], stroke patients 
assigned to RTS have to wait for about 35 days, much longer than 
those assigned to CTS. It is unfair for the stroke patients using 
RTS. In order to have better waiting time distribution, Geng et al. 
[5] propose and analyze three other CTS implementation strategies, 
called RTS reservation strategies, without considering advance CTS 

CTS cancelled for day t+1: w1
t+1

 t: w2
t+1

If xt +w2
t+1≤ S1

t+1

time

CTS queue: xt

Day t

CTS cancellation up to the control threshold S1
t+1

S1
t+1

CTS cancelled for day

Figure 4.9.  The optimal one-day advance CTS cancellation control if xt + w2
t+1  

≤ S1
t+1 [1].
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cancellation. The new strategies still make use of CTS. As shown in 
Fig. 4.10, these strategies reserve RTS for stroke patients without 
directly assigning patients to RTS. All patients are scheduled to both 
CTS and RTS in the first-in, first-out (FIFO) order. These new strat-
egies are expected to reduce the longest waiting time of stroke 
patients and avoid unlucky patients. We now present the details of 
Geng et al. [5].

There are four implementation strategies: Pj with j = 0, 1, 2, 3, 
including one RTS assignment policy denoted as P0 and three RTS 
reservation policies P1, P2 and P3. Each policy Pj is associated with 
the following notations:

Yjt  number of patients directed to RTS or the number of RTS 
reserved at the end of day t

Ujt number of unused time slots in day t
xjt total number of patients waiting for a time slot at the end of 

day t, including those directed to RTS but not yet served. It is 
called global queue length.

djt number of patients having received their time slots and, hence, 
left in day t.

The capital letter of each notation denotes the cumulative total 
from 0 to t. Notation At, Djt, and Ujt will be used. The following 
notation is also used:

 ( )= - - + - -1, 1R
jt jt j jtq x Y t T t y  (27)

yt 

nt 

T

qt

yt

nt+yt-T

T

xt

RTS Assignment RTS Reservation

Figure 4.10.  RTS assignment and RTS reservation [5].
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where Yj(t’,t) = yjt’ + . . . + yjt, Yj(t – TR + 1, t – 1) denotes the 
outstanding RTS assignment or reservation in day t. If Pj is a RTS 
assignment policy, qjt corresponds to the CTS queue length and 

ττ = - +
= + ∑ 1

t

jt jt jt T
x q y . If Pj is a RTS reservation policy, xjt is the 

queue length of waiting patients, and qjt equals to xjt minus the total 
number of outstanding RTS reservations.

In the following, four different implementation strategies are 
introduced:

 P0 is the optimal RTS assignment policy, which is introduced in 
Geng et al. [2] to be a policy characterized by a control limit Lt 
and associated with each day with Lt = Lt+7. This policy keeps 
the CTS queue length q0t at the end of each day t not exceeding 
Lt. As a result,

 ( )( )0 0 1t t t tty q a n L
+

-= + - -  (28)

 ( )( ){ }+

-= + -0 0 1min ,t t t ttq q a n L  (29)

With a RTS reservation policy Pj (j = 1, 2, 3), all patients wait in 
the same patient queue and are served by CTS and RTS in the FIFO 
order. At the beginning of period t, the length of the patient queue is 
xj(t–1), and the total number of available time slots is ( )Rt j t T

n y
-

+ . 
Note that the number of RTS available in day t should be reserved 
t – TR days before. At day t, number yjt of RTS is reserved according 
to three different implementation strategies.

P1 is similar to P0 and is called RTS reservation with artificial 
queue. P1 keeps track of an artificial CTS queue length q0t as if P0 
was used, and it determines y0t with the artificial queue and relation 
(28). Let y1t be equal to y0t.

P2, called RTS reservation with real queue, is defined as follows:

 ( )( )+
= - - + - -2 2 2 1, 1R

t t ty x Y t T t L  (30)
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The number y2t of RTS to reserve is determined by considering 
its effect on the patient queue. Assuming that the RTS reserved in 
day t is available in day t + TR, the RTS reservation decision yt 
only impacts the patient queue in day t + TR. P2 tries to keep the 
expected queue length at time t + TR as close as possible to the 
threshold.

P3 is RTS reservation with service ratio a. Here, the service ratio 
at the end of a day is defined as the probability of having all the 
existing patients served. Each day t, the number of RTS to reserve 
is determined such that the service ratio at the end of day t+T is at 
least a, i.e.,

 ( )( )33 1 t T t T tt TP x a n y a+ ++ - + ≤ + ≥  

This policy requires the determination of the probability distri-
bution of ( )3 1 t Tt Tx a ++ - + , which depends on the current queue length 
and all outstanding RTS reservations. In Geng et al. [5], this proba-
bility is determined by Monte Carlo simulation. 

The performance of these four implementation strategies are 
compared analytically and numerically. Analytically, P1 and P2 both 
improve the RTS assignment policy P0 for the average waiting time, 

0 2 1W W W≥ ≥  and for the ratio of unused CTS, 2 1 0U U U≤ = . 
Numerically, all the analytical results are confirmed, and it is inter-
esting to note that, although it is not proved, P3 is the best strategy 
in terms of average waiting time, variance of waiting time, maximal 
waiting time, and unused CTS ratio in most parameter settings. For 
P1 and P2, the threshold policy could not only directly use the ones 
from P0, but also starts from the ones from P0 and improve by using 
local search. These improved control policies enhance the perfor-
mance of P1 and P2.

4.6.  Conclusions and Future Perspectives

High-priority patients, such as stroke patients, need quick diagno-
sis. However, significant delays are observed as many key examina-
tions depend on expensive and heavily used imaging facilities such 
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as MRI scanners. The contract-based approach introduced in this 
chapter aims to reduce the waiting time of stroke patients for MRI 
examination without degrading the utilization of MRI scanner. 
Stochastic and dynamic programming-based approach is used to 
determine the contract decision and identify structural properties of 
patient assignment control policy and one- and two-day advance 
CTS cancellation control policy.

The results can be directly applied to design the contract and 
control policies for the department with high-priority patients for 
the critical facility. However, a lot of work still needs to be done 
if we want to develop a general approach. A direct extension is 
the consideration of multi-day advance cancellation of CTS and the 
implementation strategies with CTS advance cancellation. For the 
former problem, it is impossible to identify structural properties 
of the optimal control policies. Approximated dynamic program-
ming model is possible to solve this problem. For the latter, the 
analytical comparison of different strategies is nearly impossible. 
Discrete-event simulation is a natural way to solve this problem. 
Another extension is to remove the assumption A4 and consider 
non-stationary arrival case. The form of the optimal contract is still 
an open issue. The management of multiple classes of patients and 
multiple imaging examinations is a natural but challenging research 
direction. The joint design of contract-based solutions of several 
departments for multiple examinations raises some fundamental 
questions, such as:

 (i) How many time slots of a diagnostic facility to contract.
 (ii) How to share these time slots among different departments.
(iii) How to make the real-time control to improve the utilization of 

imaging facilities.
(iv) How to consider the relationship of different examinations. 

Results about the optimal control policies of this chapter can be 
extended to evaluate a contract solution. However, new approaches 
are needed to coordinate the contracts for different departments.
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Abstract

Introduction

Hospital discharge is an interdisciplinary process of critical impor-
tance and high complexity. Substantial efforts have been made to 
studying this process. However, less attention has been paid to 
using computer simulation models, which have been widely used in 
analyzing other health care units or delivery processes.
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Objective

This study aims to quantitatively analyze the hospital discharge 
process and provide recommendations for potential improvement.

Methods

The computer simulation (or discrete event simulation) model was 
used to study the discharge process in the medical units at the 
University of Wisconsin Hospital and Clinics, USA. Using such 
a model, the impacts of discharge subprocesses under different 
 scenarios were studied.

Results

The simulation results identified that the two main constraints of 
the discharge process were the waiting time for the physician’s order 
and the waiting time before final discharge. A 26% reduction of the 
total discharge time can be achieved by reducing the wait time for 
the physician’s order by half. A 9% reduction of the total discharge 
time can be achieved by cutting the wait time before the final dis-
charge by half. In addition, a 3.59% reduction of the total discharge 
time can be achieved by slashing the pharmacist intervention rate by 
60%–10%. Only 2.33% and 0.16% reduction of the total dis-
charge time can be achieved by improving the efficiency of pharma-
cists and social workers/case managers by 50%, respectively.

Conclusions

The computer simulation model provided hospital administrations 
and discharge teams with insights to improve the hospital dis-
charge process. Not only the bottlenecks of the discharge process 
were identified but also the areas that could be improved were 
quantitatively assessed. The possible areas of improvements 
include producing a shorter physician prescription processing time 
and a better coordination of events among discharge teams. 
Moreover, other factors such as high intervention rate of pharma-
cists and working efficiency of pharmacists, social worker, and 
case managers were not proved to be critical for the delay of the 
discharge process.
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5.1. Introduction

In USA, a tremendously large population of patients are discharged 
from hospitals annually. It is estimated that 34.9 million patients were 
discharged from non-federal short-stay hospitals across the nation in 
2006 [1]. The hospital discharge process is complex, with substantial 
variations and incredible challenges [2]. Due to its complexity, delays 
in the discharge process are common, which could impact the overall 
performance of hospitals [3]. Therefore, improving the quality and 
efficiency of the discharge process and other patient transitions across 
health care settings has become a national priority [4].

A typical discharge process involves multidisciplinary efforts 
from multiple care providers in the hospital, such as physicians 
(MDs), social workers (SWs), case managers (CMs), occupational 
therapists (OTs), physical therapists (PTs), pharmacists (RPHs), and 
nurses (RNs). It requires a wide range of clinical and organizational 
skills to address the needs of patients, families, aftercare facilities, 
and support systems. An efficient and high-quality discharge process 
is critical to reduce cost, improve resource utilization [2, 5], enhance 
performance of other departments (e.g., emergency department 
(ED)) [6], and limit the risk of adverse events after the patient leaves 
the hospital [7].

A substantial amount of effort has been made to studying the 
discharge process. From a hospital’s perspective, a comprehensive 
review of current methods important for hospital discharge pro-
cesses has been conducted in paper [8], which has identified chal-
lenges, including the continuity of inpatient-outpatient physician 
relationships, discrepancies in medication regimen, communication 
between physicians and their patients, and engaging patients in self-
care. From the patient’s perspective, paper [9] suggested that the 
assessment of the performance of the discharge process and the coor-
dination between patients and care providers should be re-examined 
to ensure a successful transition experience.

Previous studies showed that more attention should be given to 
the participation of patients to better identify the needs of patients 
and facilitate the discharge process [10]. To improve the discharge 
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process, different interventions were studied to enhance discharge 
planning. It was shown that standardizing the discharge process 
through early discharge planning reduced the number of delayed 
discharges [11]. Moreover, the establishment of standardized medi-
cal criteria could increase discharge efficiency, specifically the length 
of hospital stay, without increasing re-admission rates [12]. To 
ensure optimal discharge planning, tools for planning, communica-
tion, education, and quality improvement were recommended in 
paper [13] for better practices. It was shown that suboptimal dis-
charge planning could lead to delayed discharge [2], which could 
impact hospital operations management, for example, occupancy of 
ED beds [14, 15]. In addition, various disruptions might also result 
in discharge delays [16]. However, as shown in [17–20], it could be 
challenging to identify delay factors in the discharge process, such as 
medical or non-medical factors, internal or external reasons, psycho-
logical issues, evaluation errors, hospital capacity limitation, short-
age of local facilities, and organizational assessment delays.

Despite these efforts, less research has been conducted to use 
advanced analytics to evaluate the process by considering all 
behaviors and factors, i.e., from a system’s point of view. Although 
such approaches as discrete-event simulations (DES) have been 
widely used in analyzing other health care units or delivery processes 
(see reviews [21–25] and representative papers [26–34]), no such 
studies have been found to investigate the discharge process. As 
suggested in paper [35], more rigorous research is needed to dis-
cover how organizational factors, individual factors, and team fac-
tors affect the discharge process. DES provides an opportunity that 
can assess the efficiency of the existing system and investigate 
complex relationships among different procedures.

In this paper, we present a simulation study of the discharge 
process of the medical units at the University of Wisconsin Hospital 
and Clinics (UWHC) that are developed through extensive observa-
tions, historical data analyses, and discussions. Although the study 
was originated from UWHC, this modeling framework could be eas-
ily extended to the quantitative investigation of other discharge pro-
cesses. Therefore, the significance of this work is to establish a 
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computer simulation framework to evaluate the current state of the 
discharge process, identify areas of variations and bottlenecks that 
impede the discharge process significantly, and provide strategies for 
potential improvement.

The remainder of the paper is divided in different sections. 
Section 2 describes the method, including the discharge process, the 
simulation model, data collection, model validation, and test design. 
Section 3 presents the results, and carries out what-if analyses to 
investigate the impact of parameter changes, such as pharmacist 
intervention rate and working time, social work and case manager 
working time, and potential waiting times. Further discussions are 
presented in Section 4, and conclusions are formulated in Section 5.

5.2. Methods

5.2.1. The discharge process

The discharge process is a coordinated multidisciplinary process, 
consisting of many components and variations. In UWHC and many 
other hospitals, the processes may vary significantly among different 
units. Even for the same unit, the process could vary with different 
physicians depending on factors such as their preferences, patient 
conditions, aftercare facilities, and options of transportation. To 
address such a complex process more effectively, we focus on the 
medical units at UWHC, which is more representative of the dis-
charge process with less variations from case to case. Through 
extensive on-site observations, interviews, and discussions, we have 
gathered the following information about the discharge process.

Typically, the discharge process starts right after the admission 
of a patient. Once the patient is admitted in a medical facility, the 
social worker and the case manager begin to gather information 
related to the patient’s health, insurance, referral, and contacts. As 
the patient approaches his/her discharge from the hospital, the final 
notes on the patient’s medical condition, including the discharge 
summary, are compiled. Such a process should be almost completed 
before the patient is ready to be discharged. At UWHC, a morning-
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round meeting usually starts at 9:00 a.m. It includes physicians, 
nurses, pharmacists, social workers, case managers, and therapists. 
In the meeting, physicians provide attendees a list of patients who 
are ready for discharge and inform them about the patients’ condi-
tions. Other staff will also report the progress of these patients. After 
the meeting, a discharge signal is triggered and the staff begins to 
cooperate, working toward the final discharge. In this study, we 
focus on the discharge process after the morning-round meeting, i.e., 
after the discharge decision is made.

As shown in Fig. 5.1, there are two primary parallel processes 
conducted by the social worker/case manager and the pharmacist. 
Since the social worker and the case manager share similar job func-
tions in the discharge process, their workflows are grouped into one 
process in the figure. The third process shown in the figure is the 
transportation work for patients who need transportation assistance. 
This characterizes the period from discharge decision signal being 
triggered to the expected transportation being ready. Moreover, 
since RN education is always dependent on pharmacist education, it 
is included at the end of the pharmacist process. From our observa-
tions and interviews, in most cases, even though these three pro-
cesses are concluded, there may be a delay before the final discharge 
due to the work of the occupational therapist and the physical 
therapist, as well as the patients’ unawareness. The detailed work-
flows of social workers/case managers, pharmacists, and transporta-
tion work are described below.

5.2.1.1. The SW/CM workflow

Social worker and case manager share similar job functions in the 
discharge process and their work complement each other. The 
main responsibility of a social worker/case manager in the dis-
charge process is to liaise with the patient and his or her family 
regarding discharge destination, aftercare facilities, insurance 
information, transportation arrangement, and to prepare the dis-
charge packet. Such work can start long before the discharge deci-
sion is made. In most cases, the majority of the work is finished 
before the discharge day.
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Figure 5.1.  Hospital discharge process.
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Based on our observations and interviews, it is estimated that 
only about 2% of the discharge decisions were made unexpectedly. 
Otherwise, the main work of a social worker/case manager on the 
discharge day is to confirm that all the information is correct and all 
the procedures are followed. Typically, the social worker/case man-
ager runs a quick scan through all the referral information, addresses 
any issues that he/she finds, and then prepares a summary report. 
The left part of Fig. 5.1 illustrates the workflow of a social worker/
case manager. The following is the breakdown of the steps in the 
process.

1) The social worker/case manager first reviews the medical record. 
If there are no unexpected changes, he/she will talk to the patient 
to reconfirm the status of things such as aftercare facility, insur-
ance, and transportation. Afterwards, the social worker/case 
manager prepares the discharge packet.

2) If any change is required, the social worker/case manager talks 
to the patient and his/her family and also communicates with the 
physician.

If the patient is to be discharged to home, after addressing any 
arising issues, the discharge packet is handed to the patient. If the 
patient discharges to an aftercare facility, the social worker/case 
manager needs to confirm with the facility, talk to the patient, and 
prepare the discharge packet and necessary documents for the after-
care facility.

5.2.1.2. The RPH workflow

The main responsibility of a pharmacist in the discharge process is 
to clear any potential errors in the medical order and communicates 
with patients about the prescriptions. Specifically, he/she continues 
with the following procedures (shown on the right side of Fig. 5.1):

1) Once the medical order is prescribed after the morning-round 
meeting, the pharmacist will go through the medical order to 
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check for any error or issue. If no error or issue is found or 
raised, the pharmacist does not contact the physician.

2) There is about 60% chance that the pharmacist intervention is 
needed. In this case, the pharmacist makes the necessary changes 
and contacts the physician for agreement. If there is any specific 
medicine prescribed in the order, the pharmacist needs to ask the 
physician to co-sign.

3) If the patient’s discharge destination is home, the pharmacist will 
print the order and bring it to the patient for education. If the 
patient is discharged to an aftercare facility, the pharmacist will 
only need to submit the order to the discharge packet. 

5.2.1.3. The transportation workflow

The last process shown in Fig. 5.1 is the transportation work, which 
characterizes the period from discharge decision signal being triggered 
off to the expected transportation being ready. The expected transpor-
tation time and transportation methods are set up by the social 
worker, usually with an agreement from the patient and the physician. 
Some 50 observed discharge processes at UWHC indicated that only 
14% of the patients needed this transportation work. Transportation 
can also become a bottleneck if the discharge-related work is finished, 
but the expected transportation is not ready yet.

5.2.2. The simulation model

Note that the discharge process is completed only when all the pro-
cesses of the social worker/case manager, the pharmacist, and the 
transportation department are finished. Therefore, the actual dis-
charge time could be much longer than the expected time of an indi-
vidual process due to the maximum delay in each process. Thus, only 
studying one process (even if it is a critical path) is not sufficient, and 
developing a complete model to integrate all the processes is necessary.

In this study, a discrete event simulation model developed through 
a commercial software SIMUL8 is used to emulate the discharge pro-
cess. The model is constructed based on the workflow involved in 
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the case of a typical patient. The three parallel processes discussed 
above are included in the model. All parallel processes must be com-
pleted before the discharge of the patient. An illustration of the 
simulation model is shown in Fig. 5.2.

5.2.3. Data collection

The data and parameters used in the model were based on the combi-
nation of on-site observations, records from round meetings, struc-
tured interviews, and data extracted from the electronic health records 
(EHRs). In July 2012, at the medical units of UWHC, 50 on-site obser-
vations were conducted to estimate the processing time of most proce-
dures. Round meetings were conducted to summarize the processing 
time of the procedures that were not collected and reach agreements 
from each party. Interviews were conducted to investigate different 
perspectives and potential modifications of the discharge process. In 
addition, the data extracted from the current EHR system of UWHC 
was used to calculate the routing probabilities of processes, such as the 
process of pharmacist intervention. A total of 2,934 discharge cases 
from the medical units were extracted for the analysis in May 2012.

The 50 on-site observations indicated that the total discharge 
time was 336 minutes on an average, with standard deviation of 
35.6 minutes. Using the collected data, each procedure in the dis-
charge process was modeled as a random processing duration given 
by a probability density function. As one single procedure can be 
characterized by multiple probabilistic distributions, the Stat-Fit 
function in the software was used to choose the best-fitted distribu-
tion. In addition, for procedures with insufficient data, extensive 
discussions were conducted to obtain expert opinions to characterize 
their durations.

The mean time of each procedure is illustrated in Fig. 5.1. The 
duration of the procedure “Wait for order” was modeled as Beta 
(12, 629, 28, 2.6); the duration of the procedure “Transportation 
work” was modeled as Beta (55, 451, 0.76, 1.1); and the duration 
of the procedure “Wait for others” was modeled as Lognormal (0, 
3.6, 1.15) (note all above distribution units are in minutes). All other 
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Figure 5.2.  Illustration of the simulation model.
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procedures were modeled as exponential distribution since these 
procedures were addressed by the combination of meetings, inter-
views, and observations.

5.2.4. Model validation

Extensive simulation experiments were carried out to imitate the 
discharge process using the developed simulation model. In all simu-
lations, each experiment simulated 50 patients with 60 replications. 
The results indicated that the average discharge time under the cur-
rent setting was 329 (±4.61) minutes. This result was compared with 
336 (±35.6) minutes obtained from 50 observations at UWHC.

Let Tsim and Tobs represent the average discharge time obtained 
by simulation and observation, respectively, and δ denote the differ-
ence of the average discharge times. The difference was 2.21% using 
the following formula:

δ
−

= ⋅100%,sim obs

sim

T T

T

This result suggested that the simulation model had sufficient accu-
racy to estimate the discharge time. Therefore, such a model is vali-
dated and could be used for subsequent analysis.

5.2.5. Test design

To identify the bottleneck, i.e., the most impeding processes, and 
develop strategies to improve discharge efficiency and quality, the 
developed simulation model was used for “what-if” analysis under 
different parameter settings. Here, the bottleneck process refers to 
the process whose improvement will lead to the largest improvement 
of the overall discharge process. The pharmacist intervention rate, 
order processing time by pharmacist, case processing time by the 
social worker/case manager, the procedure of “wait for physician 
order”, and the procedure of “wait for others” were studied.
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5.3. Results

Different scenarios were created and simulated using the developed 
simulation model. The following results include the average values, 
half-widths of confidence interval (shown in parentheses), and 
p-values. All the time units are listed in minutes.

5.3.1. RPH intervention rate

Pharmacist Intervention is the process in which the pharmacist 
identifies the potential problems in the prescribed orders by the 
physician. As indicated by the collected data, such an intervention 
rate was 60%. The high intervention rate is a potential critical fac-
tor in the discharge process. In this experiment, the intervention 
rate was adjusted to 50%, 40%, 30%, 20%, and 10% in the simu-
lated models. The corresponding time improvement and the p-val-
ues compared to the original discharge time from the simulation 
model are presented in Table 5.1. As one can see, the discharge time 
was decreased to 327, 325, 322, 320, and 317 minutes with the 
falling percentage of the intervention rate. The reduction of total 
discharge time is not practically significant when the intervention 
rate is above 30%.

5.3.2. Reducing RPH working time

In this study, whether the order processing time by the pharmacist 
is a critical factor for the system was investigated. Assuming the 

Table 5.1.  What-if analyses: Impact of pharmacist’s intervention rate.

Intervention 50% 40% 30% 20% 10%

Discharge time 
(minutes)

327 (±4.53) 325 (±4.57) 322 (±4.56) 320 (±4.43) 317 (±4.43)

Improvement 0.61% 1.37% 2.15% 2.90% 3.59%

p-value 0.54 0.18 0.03 0.0041 0.0004
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pharmacist to be efficient, the working time was cut to 90%, 80%, 
70%, 60%, and 50% level of its original value. This reduced the 
discharge time to 328, 326, 324, 323, and 321 minutes, respec-
tively. When the reduction was above 60% of the original value, the 
discharge time was not distinctively different (see Table 5.2). 
Therefore, the discharge time was not sensitive to changes in the 
pharmacist’s working time.

5.3.3. Reducing SW/CM working time

As a potential factor in the discharge process, the working efficiency 
of social workers/case managers was also analyzed in this study. 
Their working time reduced to 90%, 80%, 70%, 60%, and 50% 
levels of the original time. As shown in Table 5.3, this led to a mini-
mal change in the discharge time. Thus, a considerable decline in the 
working time of social workers/case managers will not affect the 
total discharge time significantly.

5.3.4. Reducing the time of “wait for physician’s order”

The collected data suggested that, on an average, the physicians took 
about 207 minutes to issue discharge orders after morning-round 
meetings. By reducing this waiting time to 90%, 80%, 70%, 60%, 
and 50% level of its original value, the discharge time changed to 
308, 288, 267, 247, and 228 minutes, respectively. As shown in 

Table 5.2.  What-if analyses: Impact of reducing pharmacist’s working time.

Reduction to 90% 80% 70% 60% 50%

Discharge time 
(minutes)

328 (±4.54) 326 (±4.55) 324 (±4.58) 323 (±4.52) 321 (±4.53)

Improvement 0.42% 0.87% 1.42% 1.91% 2.33%

p-value 0.67 0.39 0.16 0.06 0.02
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Table 5.4, a decrease in such waiting time significantly reduced the 
discharge time.

5.3.5. Reducing the time of “wait for others”

In most cases, the patients are not discharged right way after the 
work of the pharmacist, social worker/case manager, and transpor-
tation is finished. The period from the end of the three processes to 
the actual discharge was characterized as ‘wait for others’ in the 
simulation model. Many factors contribute to this delay, such as OT 
education, PT education, patients’ unawareness of discharge process, 
and delay of patients’ families. The impact of reducing “wait for oth-
ers” on the system performance was studied. Such a procedure time 
was reduced to 90%, 80%, 70%, 60%, and 50% levels of its origi-
nal value. As shown in Table 5.5, the corresponding discharge time 
changed to 323, 317, 311, 305, and 299 minutes, respectively. Thus, 

Table 5.3.  What-if analyses: Impact of reducing social worker’s/case manager’s 
working time.

Reduction to 90% 80% 70% 60% 50%

Discharge time 
(minutes)

329 (±4.6) 329 (±4.63) 329 (±4.61) 329 (±4.62) 329 (±4.63)

Improvement 0.05% 0.11% 0.11% 0.14% 0.16%

p-value 0.96 0.92 0.92 0.89 0.87

Table 5.4.  What-if analyses: Impact of reducing time of “waiting for physician’s 
order”.

Reduction to 90% 80% 70% 60% 50%

Discharge time 
(minutes)

308 (±4.11) 288 (±3.47) 267 (±3.25) 247 (±2.74) 228 (±2.52)

Improvement 6.37% 12.63% 19.01% 25.03% 30.68%

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

b2922_Ch-05.indd   127 8/28/2017   8:43:27 PM

 



b2922 Stochastic Modeling and Analytics in Healthcare Delivery Systems “6x9”

128 Stochastic Modeling and Analytics in Healthcare Delivery Systems

reducing the procedure time of “wait for others” could significantly 
improve the discharge duration.

5.4. Discussions

It is common to hear complaints that high intervention rate from 
pharmacists is a critical factor behind delayed discharge. This might 
lead to the pharmacist‘s intention to reduce the intervention rate 
despite the fact that pharmacist intervention was proved effective in 
reducing medication errors and adverse drug events [36]. However, 
we showed that by reducing the intervention rate from 60% to 10%, 
the total discharge time reduced by 3.59%. Thus, cutting pharmacist 
intervention will not delay the discharge process significantly. The 
pharmacist’s intervention to eliminate medication error and adverse 
events is critically required.

In this study, the working efficiencies of social workers/case 
managers and pharmacists were also found to be non-critical to 
the discharge process. The discharge time was reduced only slightly 
when we doubled their working efficiencies. In other words, hiring 
more social workers/case managers and pharmacists will not 
improve the discharge process significantly.

From the above results, “wait for physician’s order” is a critical 
bottleneck of the discharge process. A 50% reduction in its original 
value cut the discharge time significantly, by 30.68% from its original 
time value. In practice, physicians dominate the discharge process by 
making the final discharge decision. They are viewed as the captain 
of the ship in the discharge process. Thus, if the physician’s order can 

Table 5.5.  What-if analyses: Impact of reducing time of “wait for others”.

Reduction to 90% 80% 70% 60% 50%

Discharge time 
(minutes)

323 (±4.5) 317 (±4.40) 311 (±4.38) 305 (±4.22) 299 (±4.15)

Improvement 1.95% 3.73% 5.44% 7.39% 9.27%

p-value 0.05 0.002 <0.001 <0.001 <0.001
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be prescribed at an earlier time, the whole discharge process can be 
shortened significantly. However, such a long waiting time is due to 
reasons such as waiting for lab results, patients’ observation period, 
and high utilization of physicians. Thus, further investigations in 
reducing the waiting time for physician’s order would help improve 
the efficiency of the discharge process significantly. More investiga-
tions in reducing lab turnaround time, freeing physicians’ hands in the 
morning time, or possibly prescribing order before the day of dis-
charge could lead to potential improvement in the discharge process.

Even if social workers/case managers and pharmacists finished 
their processes and the necessary transportation arrived on/before 
time, there was still a delay before the final discharge. This extra 
time was proved as a significant factor of the discharge delay because 
a 50% reduction of its original value could decrease the total dis-
charge time by 9.27%. This critical waiting process could be 
addressed by better coordination among the discharge team mem-
bers. In particular, the involvement of nurses in coordinating with 
physicians, therapists, lab, pharmacists, case managers, etc., can play 
a critical role to achieve timely discharge.

In addition, to make the discharge process more efficient, dedica-
tion of pharmacist to the discharge process in the morning could be 
helpful. Despite having many interventions during the discharge 
period, pharmacists were not a bottleneck in this study. If physicians 
could prescribe the discharge order earlier, then the discharge pro-
cess might be more sensitive to the pharmacists’ work due to their 
complex duties. Therefore, it is important that pharmacists continue 
focusing on the discharge process.

5.5. Conclusions

A delay in the hospital discharge process is a nationwide problem. 
Although many studies have been carried out, most of them empha-
size a certain phase or aspect of the process. In the current literature, 
there is no quantitative analysis discovered studying the process 
from an overall or the system’s point of view. Modeling the pro-
cesses to predict the effects of various improvement strategies is 
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important. In this paper, a computer simulation study of the hospital 
discharge process in the University of Wisconsin Hospital and 
Clinics is presented, which can accurately emulate the discharge pro-
cess and predict the impact of improvement efforts.

Using this model, we analyzed parameter changes in each proce-
dure (social worker/case manager, pharmacist, and other possible 
delays) within the discharge process. The pharmacist intervention 
was not a sensitive factor of the system. The model also identified 
that both waiting time for order and waiting time for clearance at 
the end were the system bottlenecks. This result provided a direction 
of possible solutions to reduce the discharge time.

There are several limitations of this study. The actual discharge 
process could vary with different physicians’ preferences, patient 
conditions, aftercare facilities, and options of transportation. In 
this study, generalizing the process into one standardized process 
might have failed to fully reflect the variations between patients. 
However, as the study was focused on the medical units only, 
which had less variations from case to case. Another limitation of 
the study is that the processing time of some procedures were 
obtained through discussions with professionals from each party. 
The estimated time might not have represented the actual proce-
dure time accurately.

In future work, in addition to studying more units in the hospi-
tal, we plan to extend the model to include more factors that may 
affect the discharge process, such as lab testing time; scheduling and 
coordination among physicians, nurses, and pharmacist; as well as 
communication with aftercare facilities, primary care physicians, 
specialists and rehab clinics, patients, and their families. We would 
also investigate the specific processes for different patient groups 
who may have special needs and characteristics. Moreover, besides 
simulation models, developing an analytical model, such as using 
Markov chain and queueing theory, to characterize the discharge 
process is always needed and useful.

The successful development of this work will provide hospital 
professionals and managers a quantitative tool to improve the effi-
ciency of the discharge process in health care delivery.
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Abstract

With rising costs and increasing demands, care utilization is under 
scrutiny at hospitals and various other care organizations. Better 
prediction of care utilization for individual patient will help iden-
tify at-risk individuals. As a result, it facilitates the translation of 
effective interventions with precision, and in turns, improves 
population-level care management outcomes along care contin-
uum. Although characterization and analysis of care utilization is 
hardly a new problem, advanced predictive modeling techniques 
have just begun to be utilized in various demand and transition 
modeling tasks. In this book chapter, we report two studies that 
focus on the 30-day hospital readmission and time-to-transition 
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from community to long-term care facility. We describe several 
predictive analytics methods for the resultant binary classification 
and survival analysis tasks, respectively. We also introduce key 
databases  commonly used at present. 

6.1. Background and Introduction

Due to the rising costs and increasing risks of aging-related diseases 
and disabilities in the population worldwide, many countries face 
critical challenges in improving patient outcomes along care contin-
uum, together with innovating medical technologies. The National 
Institute on Aging estimates that, by 2050, people aged 65 years or 
older will double in number globally [1]. In USA, approximately 
92% of older adults have at least one chronic disease, and 75% of 
them have two or more [2]. In terms of supporting healthy living, 
USA ranks last among many industrialized countries [3]. Despite 
recent advances in assistive technologies, efficient and cost-effective 
translation of these technologies is lacking in the country. A para-
digm shift from acute care to preventive care is called upon to better 
integrate healthy living and proactive prevention into healthy peo-
ple’s everyday life in order to delay hospitalization. In USA, the top 
1% of the spenders account for over 22% of the total health care 
expenditure and the top 5% account for roughly 30% of the expend-
iture [1]. In addition to skyrocketing expenses, the nation does not 
perform well in several other health outcome categories, such as 
efficiency, access, and equity [3]. There is a wide agreement that 
delivery system fragmentation is a root cause of many of these prob-
lems [4]. Here, fragmentation refers to the severe dearth of reliable 
communications; transfer of information; coordination of services; 
and consistency in goals, incentives, and regulations that exist 
among the different health service organizations (and, to a lesser 
extent, units within those organizations).

Under the current system, providers spend a few minutes with 
patients of chronic conditions during every 3–6 months. This 
 provides, at best, “spot reports” regarding an individual’s health 
and disease progress to the attending physician. Once the disease 
progresses to the point where the patient needs acute care, the 
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patient’s encounter with an acute hospital starts, which may occur at 
various points, including emergency departments as well as inpatient 
wards for recovery from elective surgeries. After inpatient discharge, 
the patient may transition through diverse care facilities, including 
outpatient medical care, home-based care, and long-term care. See 
Fig. 6.1 for an illustration of the US care continuum. 

At present, many major health policy organizations, including 
the American Medical Association (AMA) and the Center for 
Medicare and Medicaid Services and Joint Commission, strongly 
advocate careful management of medical conditions along the care 
continuum. However, these organizations also acknowledge effec-
tive coordination of care utilization and transition across depart-
mental and organizational boundaries as a grand challenge for the 
current US healthcare system [5]. In recent years, operations 
research and management science communities have been actively 
involved in furthering the collaboration between data-enabled 
 systems science and health services policy research.

Figure 6.1.  The US care continuum.
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In many predictive analytics research projects, research communi-
ties face several distinct methodological challenges. Effective coordi-
nation involves good medical decision-making, which is beneficial to 
every individual, as well as efficient and cost-effective to the overall 
population. Obviously, physiological heterogeneity among individu-
als makes such decisions difficult to make. Moreover, environmental 
and behavioral factors, such as compliance with medications and 
hospital-induced infections, and healthy lifestyle, can greatly influ-
ence the patients’ conditions, thus, presenting additional challenges 
to effective decision-making. Despite that several large-scale projects 
have been conducted or are currently underway at various model 
systems of continuous care; the evidence on the interplays between 
care interventions and patient outcomes remains scarce. Thus, with 
such scarcity, it is difficult to expand the use of care interventions 
that have only been proven cost-effective on some small isolate 
cohort. Finally, given increasing pressure on care spending, it is 
impossible to offer the best intervention to each individual. Optimal 
care resource allocation, critical to the financial landscape of a sus-
tainable healthcare system, must account for conflicting interests of 
various care facilities in the fragmented system.

In this chapter, we will focus on the first challenge, i.e., how to 
incorporate heterogeneity in predictive modeling of care demand and 
transition. Successful predictive modeling of the variables is a pre-
requisite to further success to operational excellence and policy 
refinement on transitions along the care continuum and the related 
resource planning decisions at various facilities.

In the remainder of this chapter, we present two sample research 
projects on the predictive modeling. Section 6.2 describes a binary 
classification study for predicting the 30-day hospital readmission, 
a hospital’s key inpatient care quality indicator at present. Section 
6.3 describes a Bayesian survival analysis study to characterize 
probabilistically each individual’s time-to-transition from the com-
munity to long-term care and to quantify the influence of observed 
factors and latent heterogeneity due to unobserved/unknown fac-
tors. We draw conclusions and outline future research focuses in 
Section 6.4.
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6.2.  A Classification Study for 30-Day Hospital Readmission 
Prediction

6.2.1. Summary of the study

Unavoidable hospital readmissions raise healthcare costs and cause 
significant distress to the providers and the patients. It is, therefore, 
of great interest to health policy makers and administrators to pre-
dict which patients are at risk of being readmitted to the hospital. 
Like most of the existing studies, we relied on statewide administra-
tive data retrospectively. We incorporated social and demographic 
determinants of health, and explored a comprehensive list of comor-
bidity variables.

In this work, we focused on improving classification perfor-
mance, with more sophisticated statistical modeling techniques. We 
identified key determinants of readmission and developed conditional 
logistic regression models. That is, with one or several of the identi-
fied key determinants, we developed a distinct logistic regression 
model for each data stratum, derived by stratifying the original data-
set with respect to the identified determinants. We further explored 
the effect of interacting variables in the logistic regression modeling.

Our comparative studies showed that developed conditional 
logistic regression models outperformed several standard classifica-
tion models (e.g., straightforward logistic regression, step-wise logis-
tic regression, random forest, and support vector machine). They are 
expected to offer insights into further development of prediction 
models in this area.

6.2.2. Current landscape in practice

In USA, it is common for patients to be readmitted to acute care 
hospitals after a short amount of time post hospital discharge 
[6–9]. Hospital readmissions incur unnecessary costs. It is esti-
mated that preventable readmissions for Medicare patients alone 
cost $17 billion annually [10], which is equivalent to more than 
10% of Medicare benefit payment for hospital inpatient services 
[11]. Hence, a reduction in the number of readmissions is critical 
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to the US public funding agencies, such as Medicare and Medicaid, 
whose spending has increased rapidly in recent years, with the ris-
ing number of aging population and high prevalence of chronic 
conditions. Meanwhile, hospital readmissions present significant 
but unnecessary burden to care utilization and can, thus, serve as 
an important indicator of poor health care quality and efficiency 
[12–16]. Hence, there is a clear impetus for hospitals to reduce 
readmissions. The US Center for Medicaid and Medicare Services 
(CMS) provides reputational pressure and financial incentives to 
hospitals to reduce preventable readmissions [17]. In 2009, the 
CMS began publicly reporting 30-day risk-standardized readmis-
sion rates for health failure, acute myocardial infarction, and pneu-
monia [18–21]. More recently, as part of Affordable Care Act 
(ACA), it started to cease the reimburse payment to hospitals for 
any 30-day readmission incidence of Medicare beneficiaries that is 
deemed to be preventable.

Many readmissions can be prevented with effective discharge 
management (e.g., [22–24]). Critical to the development of these 
programs is the understanding of influential factors causing readmis-
sions. These factors include patients’ diagnosis and severity of ill-
ness, patients’ behavior such as adherence to discharge instructions, 
and the availability and quality of post-discharge care. While stand-
alone observational studies have shown several management strate-
gies to be effective in reducing preventable readmissions, these 
studies hardly provide much transferrable insight to other hospitals, 
especially when dealing with their own programmatic implementa-
tion issues. For detailed cost-benefit studies, hospitals must develop 
accurate readmission prediction models.

6.2.3. State of the art in academic research

In the academic research literature, most of the studies use descrip-
tive, particularly discriminatory, analysis to decipher the influence of 
certain disease or disease class by one or few selected risk factors 
(such as age [25–28], sex [29], income [30], education background 
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[31], and insurance type [32], as well as comorbidity [29, 33]) on the 
readmission incidence. The rest of the studies are exploratory. A sym-
metric review prepared by the Veterans Health Administration [34] 
summarized 26 unique studies presented in English, developed before 
2011 and found via searching MEDLINE, CINAHL, Cochrane 
Library, and EMBASE. Among these models, three models [35–37] 
were derived and tested based on large US population. Two other stud-
ies [38, 39] were derived and tested at multiple centers in a single state.

Additionally, in the systematic review [34], the authors com-
mented that most of the up-to-date readmission risk prediction mod-
els had less satisfying discriminative ability (i.e., the c-statistics 
ranges from 0.55 to 0.8, with lower values in models purely based 
on administrative data). The following were the two main reasons 
for this deficiency:

 i. Relatively poor quality of administrative data but high cost asso-
ciated with collecting detailed clinical data at the inpatient stage 
(e.g., daily vitals) and social/behavior data at the post-discharge 
stage (e.g., whether to have informal care giver);

ii. limited success on applying alternative statistical machine learn-
ing methods other than standard logistic regression.

To our knowledge, these are most of the existing studies, if not 
exhaustively reviewed. Natale et al. [40] investigated a decision tree 
model and compared it with standard logistic regression models. Lee 
[41] compared three models: logistic regression, decision tree, and 
neural networks. Hosseinzadeh et al. [42] compared a decision tree 
classifier and a Naïve Bayes classifier. For other systematic reviews 
on the predictive modeling of readmission incidence, we refer to 
Desai et al. [43] and van Walraven et al. [44]. Lack of additional 
observations on potentially influential risk factors and accurate clas-
sifier development has led to less-than-satisfied performance on 
readmission risk prediction. Meanwhile, existing classifiers, treated 
at best as blackboxes, are not easy to be implemented in clinical 
practice.
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6.2.4. Data description

The inpatient medical records we analyzed were acquired from the 
State Inpatient Database (SID) of California. SIDs are a powerful 
collection of data sets from participating providers throughout USA. 
These datasets contain data from almost 90% of all American hos-
pital inpatient discharges. SID includes a set of patient data (e.g., 
patient’s age, gender, race, and payer status), as well as information 
related to initial acute condition (e.g., ICD 9 codes) and inpatient 
care (e.g., discharge date, readmission date, and disposition loca-
tion). These patient data provide the basis of specifying readmission 
outcomes and offer a large set of predictors to choose.

SIDs are a part of the Healthcare Cost and Utilization Project 
(HCUP). HCUP, sponsored by the Agency for Healthcare Research 
and Quality (AHRQ), is the largest collection of nationwide and 
state-specific longitudinal hospital care data in the USA. AHRQ/
HCUP databases are derived from administrative data and contain 
encounter-level, both clinical and nonclinical information. These 
databases allow research on a wide range of health problems. For 
more information on HCUP and SID, please see the AHRQ webpage 
of HCUP at www.ahrq.gov/research/data/hcup/.

In this study, we extracted relevant SID records of Medicare 
beneficiaries. Much of the current healthcare debate is centered at 
how to provide public funding to purchase care services. Hence, the 
data from Medicare and Medicaid beneficiaries have been of great 
interest to health service researchers. 

6.2.5. Data modeling methodology

Our study compared several classification methods to predict 30-day 
readmissions after hospitalization. They are standard logistic regres-
sion, random forest [45], support vector machines [46], and condi-
tional logistic regression [47]. With only two labels (readmitted or 
not readmitted), the problem falls into the category of binary clas-
sification. In this study, we first constructed the dataset to be ana-
lyzed with necessary data extraction. Next, we identified influential 
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risk factors for dataset division and conditional regression modeling. 
Finally, we compared the developed models with alternative ones to 
justify the contribution of the study.

6.2.5.1. Data preparation

We examined the inpatient discharge records collected in year 2010 
from California. The original data set contained 3,970,921 patient 
records. We selected the patient cohort by the following criteria: 
(1) heart failure (HF), which was the primary diagnosis, as identified by 
validated International Classification of Disease, Ninth Revision, diag-
nosis codes, i.e., ICD-9 code; (2) age 65 and older; (3) Medicare as 
primary payer; (4) primary residence in California; (5) discharged dur-
ing January –November 2010; (6) not transferred to another hospital 
immediately after 1–2 days; and (7) discharged to home self-care, 
home health care, or nursing home care. In addition, we removed 
records with missing, errand information or very low frequency. For 
an illustration of the entire data extraction and cleaning procedure, 
please see Appendix B in Zhu et al. [48].

In summary, the relevant SID records we extracted were those 
associated with California Medicare HF patients discharged within 
the first 11 months of 2010. We considered only the prediction of 
first readmission incidence within 30 days. Three main reasons 
behind choosing HF patients: First, there seems to be more variation 
in 30-day readmission incidence among HF patients as opposed to 
patients from other major disease groups. Second, HF patients out-
numbered those in other major disease groups, which could help 
ensure the model validity. Third, to most of the care organizations, 
reducing HF patient readmission was of high priority. With regards 
to criterion no. 6, we excluded transfers to another hospital with a 
short stay because this likely indicates that the studied hospital was 
unable to provide adequate care to the transfer-out patients. With 
regards to criterion no. 7, we did not consider several discharge 
options for their low occurrences. Similarly, we did not include 
records of Native Americans and patients who could not tell whether 
they were Hispanic or not. With the data extraction, the records of 
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22,410 patients remained, and 17,434 of them belonged to patients 
not readmitted within 30 days. 

We selected a comprehensive set of independent variables (or fea-
tures) for the predictive model development, which included such 
clinical variables as the numbers of chronic conditions and procedures, 
and such administrative variables as discharge location (e.g., routine, 
transfer, and home health care). The selected variables also included 
many commonly studied demographic and socioeconomic variables. 
In addition, 22 binary variables in total were included to indicate 
whether a patient had a particular comorbidity, e.g., acute kidney 
injury. A few other AHRQ comorbidity measures, e.g., CM_ULCER—
an indicator of peptic ulcer disease, excluding bleeding, were not 
included since they were unable to create balanced dichotomy in terms 
of readmission.

Table 6.1 reports the characteristics of the cohort with respect to 
the selected features. Distributions of categorical variables are 

Patient Characteristics

Readmission Within 30 Days

No  
(n = 17,434 

[77.8%])

Yes 
(n = 4,976 
[22.2%])

Age (years) (mean 80.6 ± 7.8 ) 80.6 (7.8) 80.7 (8.0)

Gender
 Men (45.3%) 7,836 (45.0%) 2,321 (46.6%)

 Women (54.68%) 9,598 (55.1%) 2,655 (53.4%)

Race

 White (64.5%) 11,310 (64.9%) 3,153 (63.3%)

 Black (8.2%) 1,366 (7.8%) 477 (9.6%)

 Hispanic (17.2%) 2,994 (17.2%) 852 (17.1%)

 Asian/Pacific Islander (8.3%) 1,459 (8.4%) 410 (8.2%)

 Other (1.7%) 305 (1.8%) 84 (1.7%)

Table 6.1.  Characteristics of the cohort (n = 22,410).

(Continued )
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Patient Characteristics

Readmission Within 30 Days

No  
(n = 17,434 

[77.8%])

Yes 
(n = 4,976 
[22.2%])

Resident Location

 Metropolitan (97.5%) 16,992 (97.5%) 4,863 (97.7%)

 Micropolitan (1.6%) 277 (1.6%) 71 (1.4%)

 Non-CBSA (0.9%) 165 (1.0%) 42 (0.8%)

Median Income

 Low (25.2%) 4,350 (25.0%) 1,299 (26.1%)

 Medium (25.2%) 4,408 (25.3%) 1,227 (24.7%)

 High (26.0%) 4,515 (25.9%) 1,308 (26.3%)

 Very high (23.7%) 4,161 (23.9%) 1,142 (23.0%)

Admission Source

 Emergency Department (85.2%) 14,782 (84.8%) 4,301 (86.4%)

 Another Hospital’s ED (0.8%) 144 (0.8%) 41 (0.8%)

 Other Health Facility (1.2%) 217 (1.2%) 47 (0.9%)

 Routine (12.8%) 2,291 (13.1%) 587 (11.8%)

Disposition of Patient at Discharge

 Routine (57.3%) 10,457 (60.0%) 2,390 (48.0%)

 Transfer to Other Facilities (20.0%) 2,959 (17.0%) 1,501 (30.2%)

 Home Health Care (22.8%) 4,018 (23.1%) 1,085 (21.8%)

Number of Chronic Conditions (mean 8.3 
± 3.0)

8.2 (2.9) 8.7 (3.0)

Number of Procedures (mean 1.1 ± 1.9) 1.0 (1.8) 1.2 (2.2)

Weekend Admission

 Yes (22.5%) 3,891 (22.3%) 1,149 (23.1%)

 No (77.5%) 13,543 (77.7%) 3,827 (76.9%)

Do Not Resuscitate 

 Yes (14.3%) 2,525 (14.5%) 672 (13.5%)

 No (85.7%) 14,909 (85.5%) 4,304 (86.5%)

Length of Stay (mean 4.6 ± 4.7) 4.6 (4.7) 4.7 (4.6)

Table 6.1.  (Continued )
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expressed frequencies and continuous variables as mean (standard 
deviation). The listed characteristics, together with the comorbidity 
indicators, were the features for prediction.

In our study, high-level unbalance appeared in the extracted 
data. We, tested three common imbalance correction techniques: 
under-sampling, over-sampling, and different error cost [49]. Our 
study suggested that under-sampling was a more viable option that 
the other two. After the correction, we obtained a total of 9,952 
cases, half with positive response and half with negative response.

6.2.5.2. Ad-hoc conditional logistic regression modeling

In our preliminary experiments, we employed the standard logistic 
regression, random forest (RF), and support vector machines (SVM), 
with the use of R packages glm and e1071. The experiment results 
did not imply much promise in readmission risk prediction. 
Moreover, the complexity of RF and SVM, which was more than 
decision tree and naïve Bayes, would not easily convert the “black-
box” type decision-making procedure to meaningful intelligence in 
practice.

We speculated that the poor performance may be due to the 
profound heterogeneity in the patient population. Subsequently, we 
stratified the entire patient into several subgroups hoping that each 
of the subgroups was more homogenous and, thus, could enable the 
development of better classifiers. We employed the decision tree 
technique to identify 2–3 variables for the stratification. We, then, 
applied logistic regression on each population subgroup. Essentially, 
we combined the advantages of regression and decision tree with ad-
hoc stratification variable selection.

After reviewing the first layer of the decision tree, we observed 
that the following three variables appeared most frequently: 
DISPUniform (i.e., disposition location after discharge), NPR (i.e., 
number of ICD-9-CM procedures), and NCHRONIC (i.e., number 
of chronic conditions). With the decision tree analysis, we also 
acquired the threshold value on each of the three variables. For 
DISPUniform, patients with values of 1 and 6 were in one stratum 
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and patients with values of 5 were in the other stratum; for NPR, 
patients with values less than or equal to 4 were in one stratum and 
patients with values more than 4 were in the other; and for 
NCHRONIC, patients with values less than or equal to 7 were in 
one stratum and patients with values more than 7 were in the other. 
We also noticed that the above three variables showed superior dis-
criminatory ability in the logistic regression. We, thus, stratified the 
patient dataset based on each of the three variables identified above 
and applied logistic regression on each of the subsets.

Through further experiments, we noticed modest improvement 
on the prediction accuracy. We speculated that some level of hetero-
geneity still existed in most of the data subsets. We, thus, continued 
our exploratory stratification by using the combinations of the vari-
ables on the first two layers of the decision tree, instead of only the 
variable from the first layer. As a result, we obtained four mutually 
exclusive data strata (see Fig. 6.2 for the stratification).

Note that, in Fig. 6.2, the variables on the left and right branches 
of the second layer are typically not the same. Also, from the above 
exploration, we concluded that the stepwise variable selection would 
not lead to improved classification. We speculated that the less-than-
satisfied performance arose from missing of higher-order modeling. 
Thus, within each of the four strata, we deployed logistic regression 
on additional variables, capturing the pairwise interactions between 
the original variables.

Figure 6.2.  Overview of the data stratification.
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In summary, we developed the following classification models: 
1) standard logistic regression (whole dataset), 2) stepwise logistic 
regression (whole dataset), 3) random forest (whole dataset), 4) sup-
port vector machine (whole dataset), 5) conditional logistic regres-
sion (with two strata based on each of the top 3 variables), 
6) conditional logistic regression (with four strata derived from a 
decision-tree based rule set), and 7) conditional logistic regression 
(employment of (6) with incorporation of additional pairwise inter-
acting variables). For convenience, we call them LR, SLR, RF, SVM, 
CLR1, CLR2, and CLR3 in the remaining chapter. For RF, SVM, 
and CLR1, we also considered performing them on two different 
variable selection sets: all original variables and selected ones 
through conditional logistic regression. To compare the above clas-
sification models, we performed cross validation and assessed each 
model’s classification accuracy. We describe the comparative study 
in the following section.

6.2.6. Analysis results

In the cross validation, we split the original data set into two subsets, 
i.e., 70% of the data in the training set and 30% in the test set. Our 
results suggested that

1. Conditional logistic regression made modest improvement in 
classification accuracy over more straightforward classification 
methods.

2. Among different ideas on conditional logistic regression, CLR2 
made modest improvement over CLR1 and CLR3 further made 
slight improvement over CLR2.

3. It was beneficial to explore the use of decision tree modeling to 
guide the cohort stratification and it was possibly beneficial to 
investigate the inclusion of interacting variables as well.

4. The conditional logistic regression achieved improved sensitivity 
over the standard logistic regression. This improvement exceeded 
10% with both CLR2 and CLR3, especially in certain strata. 
However, the improved sensitivity might be associated with 
 inferior specificity.
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Table 6.2 reports the results of comparing different classifiers as 
above.

6.3.  A Bayesian Modeling Study of Community Dwelling 
Duration Prior to Long-Term Care

6.3.1. Summary of the study

The time-to-transition from the community to the long-term care 
(LTC) system is an important measure to reflect the demand for LTC 
from community-dwelling elderly people. A variety of factors, from 
the sides of both care provider and care recipient, may influence such 
transition of elderly people. However, for many publically available 
healthcare data in studying care utilization, such as administrative 
claims data, detailed health information at the individual level is 
limited. Observing and identifying all factors that tend to influence 

Table 6.2.  Classification model comparison.

Classification Model
Prediction 
Accuracy*

LR: standard logistic regression 0.547

SLR: stepwise logistic regression 0.539

RF: random forests all original variable 0.577

only variables selected via SLR 0.574

SVM: support vector machine 0.560

CLR1: conditional logistic 
regression with 3 influence 
prediction variables 

DISPUniform 0.548**

NCHRONIC 0.564**

NPR 0.576**

CLR2: conditional logistic regression with 4 data strata based on 
the first two layers of the decision tree

0.608**

CLR3: CLR2 + consideration of interacting variables based on 
identified influence ones in CLR2

0.615**

* Prediction Accuracy = (True Positive + True Negative)/Total # of Subjects based on the 
test set.
** An optimal threshold was identified for each data stratum and the prediction accuracy is 
the combined measure over the multiple strata.
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the time-to-transition become challenging, if not impossible. It is 
also important to quantify the latent heterogeneity, which is caused 
by the influence of missing and/or unobserved factors and varies 
among individuals. 

In this work, we focused on developing Bayesian survival models 
to investigate the time-to-transition of elderly people from the com-
munity to the LTC systems. A probabilistic measure was first estab-
lished to quantify the instantaneous transition rate of elderly 
individuals over time. Both influences of the observed factors and 
individuals’ latent heterogeneity on transition rate were further 
quantified in a simultaneous manner. The Bayesian model formula-
tion allowed jointly estimating latent heterogeneity of all individuals 
and providing rich quantification to the effects of the observed fac-
tors. New features were further extracted based on the available data 
to reduce the latent heterogeneity successfully. The proposed work 
provide a methodological framework to better investigate the transi-
tion rates among multiple healthcare settings.

6.3.2. Current landscape in practice

In the past few years, the transition among various health-care set-
tings, such as acute care settings [50–52] and long-term care (LTC) 
settings [53–61], has been extensively studied. A better understand-
ing of transition patterns of elderly people among various health-
care settings will help healthcare professionals and policymakers 
better identify complex care needs and facilitate better decision-
making in care services, workforce management, and payment 
policies. With the prevalence of elderly people with disabilities due 
to rapid aging of the baby boomer generation, the excess LTC 
demand poses unprecedented challenges on capacity shortage and 
public financing of the current LTC systems. LTC demands among 
individuals are highly heterogeneous, partially because elderly peo-
ple may be at risk or are suffering from various types of chronic 
diseases, injuries and impairments. An appropriate assessment of 
individual heterogeneity on LTC demands is critical to healthcare 
decision-making and healthcare policy deliberation. It can be 
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 helpful to annihilate the waste in health-care delivery, to control 
the cost of care services, as well as to improve the quality of care 
[62–64]. Ineffective decisions of LTC transitions can lead to unex-
pected outcomes, such as inappropriate treatments, delays in diag-
nosis, severe adverse events, and increased costs [59]. In the process 
of rebalancing LTC resources in different LTC services settings, 
ranging from institutional settings (e.g., nursing homes) to non-
institutional settings (e.g., assisted living facilities and in-home 
care), careful investigation of individual heterogeneity on LTC 
demand and its transition in various settings will enable health 
assurance and quality of care for elderly people. For instance, for 
an elderly person with minor cognitive disability, intensive care 
services will not only be cost ineffective but may also impair self-
independence and privacy. On the other hand, for an elderly person 
without cognitive disability but moderate physical disability, inad-
equate care services will increase inconvenience of daily livings and 
may result in negative consequences, such as fall and injuries. 
Overall, better modeling and quantification of individual heteroge-
neity on LTC demand allow the policymakers and researchers to 
develop a viable option for elderly people with a more consumer-
directed LTC system.

6.3.3. State-of-the-art academic research

A variety of observed factors influencing the demand for LTC from 
care receivers as well as care providers have been studied. From the 
side of care receivers, demographic characteristics such as age [65], 
gender [65, 66] and race [67, 68]; health condition, including both 
physical and mental health [69]; as well as economic conditions and 
financial support [70–72] of people in community-based facilities, 
have an unneglectable impact on the demand for LTC care. From the 
side of care providers, the demand for LTC is also affected by the 
capacity of LTC facilities [64], service price, and service management 
[58, 60, 69]. To characterize individual heterogeneity, many existing 
studies summarize descriptive statistics [73, 74] and/or perform 
hypothesis testing [58] on multiple groups of individuals with different 
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characteristics [60, 75]. Different statistical models, such as Poisson 
regression [55], discrete time hazard function [76], multi-state 
model [77], and proportional hazards model [78], have also been 
developed to study individual heterogeneity of LTC demands. As 
aforementioned, only partial information can be obtained from 
healthcare claims data while the unobserved and unavailable infor-
mation still play a significant role in LTC demands. There is limited 
research to consider influence of unobserved factors [69, 79, 80]. 
However, to the best of our knowledge, no previous studies have 
been presented for individualized modeling of LTC demands in 
terms of time-to-transition [81] and jointly quantifying observed and 
unobserved individual heterogeneity.

6.3.4. Data description

To demonstrate the capability and effectiveness of our proposed 
method, a real case study is carried out, based on the Florida’s 
Medicare and Medicaid claims data [82]. The available subset of 
data consists of healthcare service records of 217 elderly individuals 
and their individual characteristics, such as ethnicity and activities of 
daily living (ADL) scores.

Figure 6.3 shows time-to-transition observations of five individ-
uals, which clearly demonstrate the existence of heterogeneity 
among individuals. To explain such heterogeneity, based on variable 
screening and selection techniques, several potentially relevant 
covariates are considered, including x1 (ADL score), x2 (age), x3, 
(ethnicity), x4 (marriage status), and x5 (cancer indicator).

6.3.5. Data modeling methodology

To model the time-to-transition of the population of N elderly individu-
als, denote Tij as the j th time-to-transition of individual i, i = 1, …, N 
and j = 1, …, mi, where mi is the total number of visits to the LTC 
facilities of individual i. The proposed time-to-transition model is 
given by ri(t) = rb(t) exp(Γi + βTx), where ri(t) is a time- variant proba-
bilistic measure, which characterizes an individual’s tendency of trans-
iting from the community to a LTC facility. rb(t) is the population 
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average tendency of transiting from the community to a LTC facility 
in the absence of the influence of x. In this paper, rb(t) is specified as 
Weibull hazard function rb(t) = λkt k-1 due to its great flexibility and 
good interpretation, where λ is the rate parameter and k is the shape 
parameter. x is vector of covariates, which represent observed tran-
sition-related covariates, such as individual characteristics and 
health conditions. β is a vector of covariate coefficients that quanti-
fies the effects of x on ri(t). Γi is a latent random variable that quan-
tifies the individual latent heterogeneity. To perform model 
estimation, the conventional non-Bayesian estimation method, e.g., 
maximization likelihood estimation (MLE), tends to maximize the 
marginal likelihood function, where individual specific latent ran-
dom variable Γi is not estimable. In addition, in non-Bayesian esti-
mation methods, point estimate is often obtained (in the least square 
estimation) and confidence intervals in MLE are approximated 
based on the large sample size theory. To make exact inference, pro-
vide rich estimation summary, and realize joint estimation of {λ, k, 
β} and Γi’s, Bayesian estimation is considered and Markov Chain 
Monte Carlo (MCMC) sampling [83] is performed.

Figure 6.3.  Heterogeneity of individual time-to-transition.
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6.3.6. Analysis results

Bayesian method is performed to jointly quantify the influence of 
observed covariates as well as the latent heterogeneity. A rich infor-
mation summary can be obtained to quantify the uncertainty of 
 estimated parameters. The Bayesian estimation results with posterior 
mean/median and 95% credible interval are summarized in 
Table 6.3.

Based on 95% credible interval, β1 is significant and has a posi-
tive effect on the transition from the community to LTC. It indicates 
that an individual who has larger ADL value is more likely to enter 
a LTC facility from the community, and thus, the time-to-transition 
will become shorter. β3 is significant and has a negative effect on the 
transition. It implies that if an individual with white ethnicity will 
have a longer time to enter a LTC facility. Although other covariates 
are not significant, based on 95% credible interval, Bayesian estima-
tion results can still provide rich information. For instance, 0.25 
posterior quantile of β2 is positive. It indicates that there is at least 
75% assurance to assert that as age increases, an individual is more 
likely to enter a LTC facility. k is significantly larger than 1, implying 
that an individual will be more likely to enter a LTC facility as time 
increases. λ can be interpreted as the baseline average tendency of 
transitioning from the community to a LTC for all individuals in the 
absence of influence of Γ and x.

Table 6.3.  Bayesian estimation results of the proposed model.

Parameters Mean 2.5% 25% 50% 75% 97.5%

β1 0.39318 0.07694 0.28574 0.38978 0.49552 0.72514

β2 0.01143 -0.00535 0.00576 0.01172 0.01720 0.02749

β3 -0.40148 -0.70987 -0.49777 -0.40020 -0.30290 -0.11235

β4 -0.19960 -0.66988 -0.34047 -0.19560 -0.05187 0.21512

β5 0.00367 -0.58297 -0.18599 0.01418 0.19854 0.56175

ΓA -0.43220 -1.38593 -0.71779 -0.38740 -0.10206 0.28063

ΓB 0.79342 -0.16895 0.33950 0.76425 1.20855 2.00327

λ 0.00532 0.00113 0.00324 0.00531 0.00906 0.02372

k 1.10187 0.93928 1.04483 1.10386 1.15861 1.26214
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In addition to quantifying the observed covariates, Bayesian esti-
mation also allows simultaneous quantification of individuals’ latent 
heterogeneity. Take individuals A and B in Fig. 6.3 as an example. 
Their estimated posterior densities of individual latent heterogeneity, 
i.e., ΓA and ΓA, are shown in Fig. 6.4. ΓA is more concentrated on 
negative values, while ΓB is more concentrated on positive values, 
which indicate that individual A is less likely to enter a LTC facility 
and, thus, has a longer time-to-transition, while individual B is more 
likely to enter a LTC facility and has a shorter time-to-transition. 
The estimation results are consistent with the real data records 
shown in Fig. 6.3. The individual latent heterogeneity of all indi-
viduals can be simultaneously obtained by the proposed method. 
Figure 6.5 shows estimation results of all Γi’s. A positive value of Γ 
indicates that an individual will be more likely to enter a LTC facility 
and, thus, has a shorter time-to-transition and vice versa.

To further explain such latent heterogeneity, two new covariates, 
namely the total number of previous visits to LTC facilities and a 
previous hospital discharge indicator, are extracted. After including 
such newly extracted covariates, Fig. 6.6 shows individual latent 
heterogeneity plots of the updated model. Compared to Fig. 6.5, 

Figure 6.4.  Posterior density plots of individual latent heterogeneity.
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Figure 6.5.  Estimated latent heterogeneity of individual time-to-transition.

Figure 6.6.  Estimated latent heterogeneity of individual time-to-transition after 
including additional extracted covariates.
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more Γi’s in Fig. 6.6 are approaching to 0, indicating that some of 
the individual latent heterogeneity can be further explained by these 
two extracted covariates. The extracted covariates are not directly 
available and observed. They are calculated and extracted based on 
the raw health claims data. Thus, they serve as “latent covariates” 
from observed data to influence individual’s time-to-transition from 
community to LTC.

6.4. Conclusions and Future Work

In this chapter, we have presented two sample research projects. In 
the first project, we developed a binary classifier based on the condi-
tional logistic regression model to predict 30-day hospital readmis-
sion incidence based on publicly available state-/nation-wide 
administrative data. To develop our model, we employed decision 
trees to identify influential risk factors and used several of them to 
stratify the dataset to achieve better homogeneity among the patient 
records. We conducted comparative studies to test several binary 
classifiers and showed improvement of our developed model over 
the existing models from the literature. A real case study based on 
California’s Medicare heart failure patients’ inpatient records was 
conducted to demonstrate the validity of the proposed method. In 
the second project, we proposed a Bayesian latent heterogeneity 
modeling and quantification approach for characterizing elderly 
individuals’ time-to-transition from the community to LTC systems 
that reflects the LTC demand of community-dwelling elderly people. 
It allowed joint estimation and rich quantification of the influences 
of both observed covariates on the transition and individuals’ latent 
heterogeneity. New covariates were further extracted from raw data 
as latent covariates to reduce the individuals’ unexplained latent 
heterogeneity. A real case study based on Florida’s Medicare and 
Medicaid claims data was conducted to demonstrate the validity of 
the proposed method.

To both projects, administrative claims data are reliable resources 
and provide important cross-sectional and longitudinal information 
on health care demand and transition. However, both projects are 
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limited by the in-depth richness of such data. For example, in the 
first project, additional risk factors can be identified from inpatient 
clinical and service information, as well as post-discharge care man-
agement information. In the second project, important transition-
related factors can be extracted from more detailed health condition 
information to explain heterogeneity of the time-to-transition. Due 
to the data unavailability, the proposed model takes into account the 
influence of a variety of unobserved/missing/unknown factors by 
quantifying them as unobserved heterogeneity. Meanwhile, the num-
ber of health care visits for each individual is limited. It becomes 
challenging to estimate individual specific models based on a small 
sample size of data. In addition to the data availability issue, we well 
expect the fact that publicly available administrative data can be 
quite noisy — having coding errors and entry inconsistencies, which 
presents another limitation on the two studies. 

In the future, it will be interesting to characterize and predict 
the quantity time-to-transition among different health-care settings 
(e.g., LTC and acute care). In addition, to develop better models, cer-
tain model assumptions (e.g., Weibull distribution on the degradation 
in the second project) can be relaxed to improve the modeling flexibil-
ity. Furthermore, care transition and utilization modeling will be fur-
ther integrated with optimization models for better decision-making in 
care delivery. Finally, we will incorporate with more detailed informa-
tion of patients into the future modeling, not only the detailed infor-
mation from the clinical aspect but also from the patient choice aspect.
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Abstract

Hierarchical healthcare systems, which consist of general hospitals 
(GHs) and community healthcare centers (CHCs), have been 
gradually established in urban China to improve the accessibility of 
healthcare services. In this paper, a multi-agent simulation model is 
proposed to quantitatively analyze the impact of different factors 
on a patient’s choice of healthcare facility. Results show that 
improving the quality and reducing CHC-related costs can encour-
age more patients to select CHC. Enhancing the quality of CHCs 
is an effective measure to relieve the congestion of GHs and 
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 balance the load of GHs and CHCs. This information can help 
government decision-makers improve the patient flow distribution 
in urban China.

7.1. Introduction

With the increasing demand for healthcare services, along with 
insufficient public resources, governments have been prompted to 
explore various methods for medical resource allocation. For exam-
ple, governments have established hierarchical healthcare systems, 
which consist of GHs and CHCs. In general, GHs provide better 
medical resources than CHCs do, but CHCs are more convenient for 
patients than GHs with regard to services. Such systems initially aim 
to implement an approach separating minor and severe diseases, 
i.e. minor diseases should be treated in community clinics, whereas 
severe diseases should be cured in general hospitals. CHCs, as pri-
mary care providers, can improve access to health services, enhanc-
ing familiarity with patients and reducing wasteful expenditures 
due to inappropriate specialist care; [1]. In CHCs, patients who 
 suffer from minor diseases can be treated, thus, addressing long 
waiting in crowded GHs.

Medical resources of GHs should not be utilized for minor dis-
eases, which can be effectively treated in CHCs, because such 
resources are allocated for the treatment of severe diseases. Access to 
health services in CHCs can be improved as minor diseases can be 
treated with reduced healthcare expenses and relatively shortened 
travel and waiting time.

Patient flow becomes unbalanced because patients overly rely on 
GHs, and they lack trust in the diagnostic ability of CHCs. According 
to the World Health Organization (WHO), 80% of the common 
diseases can be treated in CHCs. In China, however, patients with 
minor illnesses prefer to be treated in GHs. Consequently, GHs 
become congested and CHCs are underused. This study aims to 
investigate the effects of different factors on patients’ behavior with 
regard to hospital choice and to encourage more patients with minor 
diseases to seek medical attention in CHCs by adjusting relevant 
 factors with certain incentives.
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In our study, hospital selection was defined as a process. In this 
process, patients select a nearby healthcare facility for healthcare 
services under the influence of static and dynamic factors. We focus 
on patients’ hospital selection rather than on the hospitals where 
patients are eventually admitted. We consider the patients who are 
only suffered from common and frequently encountered diseases 
that can be treated in either CHCs or GHs.

Patients’ hospital selection has been extensively investigated. 
Hospital management requires information regarding different fac-
tors influencing patients’ hospital selection to encourage them to 
choose a particular hospital. Likewise, government policy-makers 
need such information to smoothen the patient flow distribution in 
healthcare delivery systems. Such factors have also been widely 
explored (e.g., [2] and [3]) and can be grouped into hospital attrib-
utes and patient characteristics. Hospital attributes mainly include 
medical services (e.g., quality of nurses and the availability of mod-
ern medical equipment), accessibility (e.g., waiting time), administra-
tive services (hospital near residence), reputation, environment (e.g., 
hospital cleanliness), accessories (e.g., available parking area), and 
expenditures (e.g., outpatient cost). Patient characteristics generally 
include gender, education, income, marital status, occupation, and 
age. The effects of hospital attributes on a patient’s preference for a 
certain hospital have been studied. Patient characteristics are incor-
porated by forming groups and estimating separate equations. Porell 
and Adams [4] conducted a survey in the previous study on hospital 
selection. Brown and Theoharides, [5] used a nested logit model to 
analyze the determinants of health-seeking behavior. Sivey [6] 
applied latent-class multinomial logit models to examine the influ-
ence of travel time and waiting time on the choice of hospitals for 
cataract operations. Different factors affecting the hospital choice 
behavior of patients were examined in these papers. However, the 
influence of the interactions among patients’ choices has been disre-
garded. A group’s behavior is distinct from the superposition of an 
individual’s behavior. The non-cooperative relationship among 
patients when they seek healthcare services is also overlooked. We 
must consider not only the patients’ preferences but also the interac-
tion between the patients.
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In this chapter, an agent-based simulation model is used to inves-
tigate the hospital selection process and the behavior of certain 
patient groups. In contrast to traditional simulation methodologies, 
such as discrete-event simulation, agent-based simulation focuses on 
modeling individuals, interactions between them, and interactions 
with physical or influential external factors. Agent-based models are 
applied to address the problems in healthcare operations manage-
ment for several years in various focus areas, such as healthcare 
delivery, healthcare economics and policy, and epidemiology [7]. In 
our study, the agent-based model is used to consider the patients’ 
individual preferences and the influence of other patients. The agent-
based simulation model can support quantitative studies to deter-
mine the effects of different factors on resource allocation and 
hospital selection. These patients are regarded as agents with distinct 
sets of behaviors and characteristics, regardless of the effects of each 
type on the system. Their choice is typically a function of their pref-
erence and current system status. We have used utility function to 
model the patients’ preferences, and we have assumed that each 
patient with a distinct preference selects a hospital that satisfies him 
or her in terms of treatment. Patients are myopic; as such, they select 
hospitals that completely satisfy them in terms of their preference 
and hospitals’ current system states. In this process, they can con-
tinuously change their choices until they can no longer find a more 
suitable hospital relative to their previous choices.

The patients’ decisions are guided by utility functions that 
describe their preferences based on different factors. Thus, deter-
mining a set of factors and using an appropriate structure for the 
utility function to describe their influences are the key parts of this 
study. The factors examined in this study are divided into static and 
dynamic factors. To incorporate these factors in the utility function, 
we have introduced a multi-attribute utility function. A multi-
attribute utility function is a major analytical tool associated with 
the field of decision analysis [8]. It can explicitly identify the patients’ 
trade-off among different factors. Patients select hospitals according 
to their utility function to maximize their benefits. We divided the 
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patients into several categories because they have different prefer-
ences. Each category was characterized in terms of utility function. 
The agent-based simulation aims to obtain the information on the 
patients’ choices to determine the patient distribution in different 
healthcare facilities. We can also identify how different factors influ-
ence this distribution through the inputs of various levels of these 
factors.

In Section 2, a mathematical model is described to explain the 
objectives and constraints of the problem. In Section 3, the imple-
mentation of the agent-based simulation model and the sensitive 
analysis are discussed. In Section 4, results, conclusions, and future 
research problems are presented.

7.2. Model Description

A region composed of a set of streets = {1,2,... }C C  is considered. 
A set of healthcare facilities (consisted of CHC and GH) = {1,2,... }H H  
and a set of patients = {1,2,... }N N  are distributed in these streets. 
Before making their decisions, these patients obtain a set of informa-
tion on healthcare facilities in set H. According to such information 
and their preferences, the patients in set N select a hospital in set H 
to get treated. We use the set 1 2= { , ,... }NS s s s  to express the result of 
patients’ choices. The choice Sn of patient n ∈ N can be any of the 
hospital in set H. This set of choices results S, which is designated as 
the outcome of the process. Each patient has a set of preference over 
these outcomes. We assume that each patient’s preference over S can 
be represented by von Neumann-Morgenstern utility function [9], 
which means all patients make decisions that maximize their 
expected utility payoff. At the end of a certain choice, the patient  
n ∈ N will obtain a utility ( , ),-n n nu s s  where - - +1 2 1 1= { , , , , },n n n Ns s s s s s
which is the choice of all patients except patient n. In our model, the 
utility that each patient receives depends not only on the hospital 
selected by the patients according to their own preferences but also 
on the other patients’ choices. Before constructing we the utility 
function, we will study the factors that influence patients’ choice.
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7.2.1. Patients’ preference

We classify the factors into static factors and dynamic factors, as 
shown in Table 7.1. The static factors are determined before the 
patients select a hospital. These factors include the patients’ attrib-
utes (patients’ age, education, and income) and the attributes of 
healthcare facilities (distance, service capacity, price, and quality). 
The information about these factors is explicit in most cases. By 
contrast, the dynamic factors are not realized until the selection of a 
hospital by the patients. The dynamic factors include the waiting 
time and rejection probability. These factors dynamically change 
while the selection process by the patients is ongoing, and they are 
realized until all the patients select their hospitals. Patients cannot 
obtain the information on these factors in the hospital choice pro-
cess. To make a better decision, the patients must conjecture this 
information according to public information and their assumptions 
on other patients’ preference. To include all the three types of fac-
tors, we assumed the time when the patients select a hospital where 
they first obtain a certain utility, which is determined by static fac-
tors. The disutility increases as the patients start to select the same 
hospitals. This part of utility is designated as cost. We first con-
structed the utility determined by static factors. We assumed that 
every hospital h ∈ H has available public information tuple 

= ( , , ),h h h hI P Q D  but that the patients obtain different utilities 
because of their own preferences.

Table 7.1.  Attributes that impact the patients’ choice.

Static factors

Facilities’ attributes

Price (P)

Quality (Q)

Distance (D)

Service capacity (c)

Patients’ attributes Income, education, 
age, etc.

Dynamic factors
Factors that change along with the patients’ 

choices, such as hospital’s waiting time.
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However, a unique utility function for each patient is unneces-
sary and intractable. In this chapter, we have focused on how outpa-
tient cost, service quality, and distance affect the decision of patients 
with different characteristics (income, education, age, and work) 
with regard to hospital choice. Three types of patients are consid-
ered in this research: price-driven (PD), quality-driven (QD), and 
distance-driven (DD). The patients’ attributes were considered in 
this classification. The PD patients are mostly concerned about the 
outpatient cost. The QD patients are mostly concerned about 
the service quality. Similarly, the DD patients are the patients 
whose hospital choice decisions are mainly influenced by the dis-
tance between their homes and the hospital. The set of patient’s type 
described above is denoted as Θ. We use θn ∈ Θ to denote the type of 
patient n. We assumed that each patient is uncertain about the other 
patients’ type. However, the probability distribution over patients’ 
types B(θn) is identical and independent, and this information is 
known to all patients suffered from common disease in this region.

To consider all the static factors, we have constructed a multi-
attribute utility function to describe the preferences of the patients. 
First, we have studied the relationship between these factors and 
constructed a single-attribute utility function for different factors. 
Then, we have used certain forms of theoretically valid multi-attribute 
utility functions to determine how the performance on each factor 
aspects the overall performance. We have constructed different 
utility functions for different types of patients.

In this chapter, we have used the exponential utility function to 
describe the patients’ preference for each factor in the set of hospital 
attributes. The exponential utility function is flexible enough to 
model a wide variety of preferences. It not only captures the risk-
seeking utility but also describes the risk-avoidance preference. 
Meanwhile, it is tractable to collect the data and estimate these 
parameters. We use x to denote the outcome of the game. Let V(x) 
denote the utility associated with x. The exponential utility function 
can be determined by the following formula:

 
ϖν d-( ) = xV x e  (1)
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where ϖ is the patients’ assessed risk tolerance and v and d are scal-
ing constants for the factor.

We have assumed that each patient’s preference is the same when 
only one of the hospital’s attributes is considered, but different types 
of patients have different key factors affecting their choices when all 
of the hospital’s attributes are considered. We have used the additive 
models to combine the three factors in the set of hospital attributes. 
The additive models are generally quite robust, and they typically 
provide a good approximation of the preferences that do not satisfy 
the additive independence [8]. We have used the weight of the fac-
tors in the additive model to discriminate the types of patients. 
Analytic hierarchy process (AHP) is used to obtain these sets of 
weight. θ( , )n nu s  is used to denote the utility obtained when the 
patient who is classified as type θn selects a hospital Sn, which is 
determined by static factors. It is expressed as follows:

 θ θ θθ + +,1 ,2 ,3( , ) = ( ) ( ) ( ),
n n nn nu s w V P w V R w V D

 
(2)

 θ θ θ+ +,1 ,2 ,3 = 1.
n n n

w w w
 

(3)

• V(P), V(R), V(D) ∈ [0,1] is the single-attribute utility function to 
outpatient cost, service quality, and distance, respectively.

• θ , , = 1,2,3
n iw i  is the weight of each factor, which is determined 

by the patients’ type θn. The influence of a patient’s attributes is 
indicated by this parameter.

Definition 1 Patient’s Type Characterization: As we have described 
above, it is intuitive that each type of patient can be defined accord-
ing to the rank of the weight in each factor:

1. PD patients: θ θ θ θ≥ ≥,1 ,2 ,1 ,3,w w w w
2. QD patients: θ θ θ θ≥ ≥,2 ,1 ,2 ,3,w w w w
3. DD patients: θ θ θ θ≥ ≥,3 ,1 ,3 ,2,w w w w

Definition 1 figures out the characteristic of each type of patients 
analytically. In the Definition 1, the rank of the weights shows the 
most important factor for each type of patients when they select a 
hospital. The PD patients are mostly concerned about the outpatient 
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cost, and thus, the influence of the outpatient cost is larger than the 
distance and service quality. The QD patients are mostly concerned 
about the service quality, such that when they are treated in a hospi-
tal with better service quality, they are likely to select this hospital 
regardless of the outpatient cost and distance. Similarly, the DD 
patients are mostly concerned about the distance.

In the above paragraph, we have determined how to describe 
the patients’ preferences. However, more patient preference data is 
required to estimate the parameters in the patients’ utility function. 
The large data revolution in healthcare is now under way. The 
sources of the large data in healthcare contain activity (claims) and 
cost data, clinical data, pharmaceutical research and development 
data, and patient behavior and sentiment data [7]. We can obtain 
information on the diseases that can be treated in CHCs through the 
clinical data. The activity (claims) and the cost data contain the out-
patient cost information. Furthermore, patient behavior and senti-
ment data facilitate the classification of patients and the accurate 
estimation of the parameters in the patients’ utility function.

To estimate the parameter of the patients’ utility function on 
each factor, we have analyzed the data in aspect of each factor. We 
have obtained the minimum and the maximum value of each factor. 
We have also determined the point of each factor that represents the 
probability of the patients’ selection of hospital, with the value of 
this factor being less than or equal to 0.5. With these three points, 
we can determine the patients’ utility function on each factor.

In addition, considering the patient behavior and sentiment data, 
we can obtain a better classification of patients through cluster 
analysis, using the attributes of the patient. After the classification, 
we can use the data to estimate the patients’ weight of each factor in 
the additive multi-attribute utility function by Bayesian preference 
elicitation method [10].

7.2.2. Patients’ decision model

Intuitively, too many patients selecting the same hospital deteriorates 
the accessibility of the healthcare service, which leads to utility loss 
for the patients. Hence, we have assumed that if the number of 
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patients selecting the hospital 
ns

N surpass this hospital’s service 
capability, these patients get a cost A. The cost is rising as the 
increasing number of patients are selecting the same hospital. Then, 
patients finally obtain the net utility ,net

nu  
which is the difference 

between the utility θ( , )n nu s  and the cost A, as shown by the follow-
ing equation,

 θ --= ( , ) ( , )net
n n n n nu u s A s s  (4)

We have assumed that the capacity ch of hospitals h ∈ H is 
known to all patients. We defined cost A as a function of the  
load 

ns
L of the hospital selected by patient n ∈ N. We defined the 

load as follows,

= /s s sn n n
L N c

We then formulated the cost as follows,

θ- -( , ) = max(0,1 1 / ) ( , )n n s n n nn
A s s L u s

The total utility that a certain hospital can control is sn
c . When 

the number of patients that selected this hospital is less than sn
c , they 

obtain utility θ( , )n nu s , which is determined by their preferences and 
choices. When the number of patients selecting this hospital is more 
than sn

c , the patients must pay a cost to make up for the utility 
shared by the excess patients. To obtain better utility, every patient, 
then, not only selects a better hospital but also considers the number 
of patients who have the same preferred hospital.

With the identification of the choice set and the net utility of 
each patient, we have modeled each patient as an individual agent, 
belonging to one of the three agent types. Furthermore, we have 
found that each agent changes their decisions to maximize their net 
utility according to the current system status. Thus, we can derive 
the steady-state distribution of number of the patients accepted by 
each hospital.
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7.3. Case Study

In the above section, we have defined the agents and their behavior. In 
this section, we have set up an agent-based simulation model accord-
ing to the data collected from the current policy in real-time using 
commercial software, and validated the model. Lastly, we have pro-
vided a comprehensive analysis based on the model to obtain insight.

7.3.1. Input parameter

We selected a region in Beijing, China, which consisted of 14 hospi-
tals and seven streets, as well as five GHs and nine CHCs. We col-
lected the data on hospitals’ attributes from the “Annual Chinese 
health statistics report” and from the official statistics report of each 
hospital. The data included the service capacity, mean outpatient 
cost (RMB), and service quality. We calculated the number of 
patients in each street using the street’s population and the Two-
week Hospital Visit Rate, which was obtained from “Sixth Population 
Census Of Beijing” and “China Social Statistical Yearbook 2013”. 
A total of 3,992 patients competed to choose their preferred hospi-
tals, while the total service capacity was 3,527. Based on the geo-
graphical location, the distance between a street and a hospital was 
collected using GoogleMaps. The attributes of each hospital are 
listed in Table 7.2.

To obtain the exponential utility function defined in Eq. (1), we 
surveyed a group of patients about three parameters: the least pre-
ferred outcome a, the most preferred outcome b, and the median 
preferred outcome x0 (the patient will get utility 0.5 with this out-
come), corresponding to three different factors. We then used the 
data to calculate the parameter Ψ, defined in Eq. (5). Finally, the 
exponential utility function was determined with Eq. (6). The results 
are shown in Table 7.3.

 

- - - Ψ
- - - Ψ

1 exp( ( ) / )
( ) =

1 exp( ( ) / )
x a

V x
b a  

(5)
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ν

d

ϖ

- - - Ψ
Ψ

- - - Ψ

-
Ψ

1
=

1 exp( ( ) / )

exp( / )
=

1 exp( ( ) / )

1
=

b a

a
b a

 

(6)

According to the patient’s type characterization and the data on 
the patient attributes we collected, we divided the patients into three 

Table 7.2.  The attributes of hospitals included in the case study.

Hospital
Outpatient 

Cost (RMB)
Service 

Capacity Quality

GH1 242.1 952 9

GH2 242.1 162 9

GH3 242.1 480 9

GH4 157.4 110 6

GH5 157.4 200 6

CHC1  84.6 168 1

CHC2  84.6 182 6

CHC3  84.6  71 1

CHC4  84.6 214 3

CHC5  84.6  74 3

CHC6  84.6 253 6

CHC7  84.6 114 6

CHC8  84.6 267 4

CHC9  84.6 280 3

Table 7.3.  Single attribute utility function.

Attribute (b,1) (a,0) (x0, u(x0)) Utility Function

Price (70,1) (260,0) (140,0.5) 0.1237 (exp(1.2956 - 0.005p) - 1

Quality (9,1) (1,0) (6,0.5) 0.5431 (exp(0.1305q - 0.1305) - 1

Distance (0.18,1) (11.5,0) (3.2,0.5) 0.1237 (exp(2.2419 - 0.1949d) - 1
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groups: PD patients, QD patients, and DD patients. Because we 
defined the different multi-attributes utility function for different 
types of patients, we surveyed three groups of patients regarding the 
weight of the three factors with AHP. Meanwhile, we obtained the 
proportion of patient types. The results are shown in Table 7.4.

7.3.2. Simulation analysis

Commercial simulation software AnyLogic was used for the study. 
We set up an agent-based simulation model to represent the decen-
tralized decision-making process of the patients. Figure 7.1 provides 
the interface of our simulation. The simulation logic can be summa-
rized as follows:

1. Initialization: At the beginning of the simulation, the model ran-
domly assigned the patients’ type according to the distribution of 
the patients’ type. The model subsequently distributed the 
patients with different types to each street.

2. Decision-making: Every minute, the patients selected the most sat-
isfactory hospital according to their utility function and the real-
time information of hospital. Every 50 minutes, we recorded the 
distribution of the number of patients accepted by each hospital as 
a sample.

3. Output: We used this model to obtain the steady-state distribu-
tion of the number of patients accepted by each hospital.

The length of the simulation is 90,700 minutes (model time), 
and we obtained 1,814 samples. The “warm-up” period of 700 min-
utes was observed to be sufficient to reduce the issues of the initial 

Table 7.4.  Multi-attribute utility function.

Types
The Weight of 

Factors (wP, wQ, wD)
The Proportion of 

Different Type of Patients

PD (0.85, 0.14, 0.01) 0.3

QD (0.1, 0.8, 0.1) 0.5

DD (0.1, 0.2, 0.7) 0.2
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conditions. We used the batch mean method [11] to obtain the esti-
mation of the number of the patients who selected each healthcare 
facility. We, initially, grouped these samples into batches of 400 and 
calculated the corresponding batch means. We, then, calculated the 
lag-1 auto-correlation of the batch means. A lag-1 auto-correlation 
of the batch mean was close to 0, indicating that the batch means 
were nearly independent. This result appeared mainly because of the 
50-minute sampling we conducted. We, then, regrouped these sam-
ples into batches with 40 individuals each, and the new correspond-
ing batch means were computed. We used the later batch means to 
estimate their mean. Table 7.5 summarizes the results of the simula-
tion analysis.

Here, we defined an overcrowded ratio ORh, h ∈ H as a measure 
of the congestion of the hospital h as follows: ORh = (Nh - SCh)/ 
SCh, where Nh is the number of patients selecting hospital M, and 
SCh is the service capacity of hospital h.

First, we analyzed the selected result of each type of the patients. 
The result showed that 94.84% of the PD patients selected CHC, 
and 69.36% of the PD patients selected the CHC with the best 

Figure 7.1.  The simulation environment.
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 service quality (CHC2, CHC6, CHC7, their service quality is “6”, 
which is the best service quality among the CHCs). The PD patients, 
thus, had preference for CHCs, especially when the CHCs exhibited 
high service quality. Some 92.08% of the QD patients selected GHs. 
This result indicated that the QD patients preferred GH. AS much 
as 79.06% of the DD patients selected the top three nearest hospi-
tals, and 55.24% of them selected GHs. The DD patients, thus, 
preferred the nearest hospital. More patients selected GHs because 
CHCs were not significantly closer to the patients, relative to the 
GHs (the average distance between the patients and the GHs was 
5.287 km, and that between the patients and CHCs was 5.157 km, 
and we considered the center of the street as the origin point of all 
the patients in that street when we collected the data for distance), 
and that the service quality, which was the second most important 

Table 7.5.  Summary of results.

The Selection Result of Each 
Type of Patients

Hospital PD QD DD Overcrowded Ratio

GH1 0.03908 0.45691 0.18136 0.15924

GH2 0.00476 0.17485 0.04008 1.38704

GH3 0 0.27079 0.20741 0.47104

GH4 0.00526 0.00927 0.06112 -0.33091

GH5 0.00251 0.00902 0.06237 -0.64600

CHC1 0.02680 0 0.05962 -0.52560

CHC2 0.33742 0.01954 0.01879 1.51703

CHC3 0.01754 0 0.00301 -0.67042

CHC4 0.07690 0 0.11698 -0.13318

CHC5 0.04484 0 0.04684 0.23108

CHC6 0.21969 0.04785 0.12625 0.81581

CHC7 0.13652 0.01177 0.07565 1.17018

CHC8 0.04584 0 0 -0.79438

CHC9 0.04284 0 0.00050 -0.81536
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factor in DD patients, significantly affected the result. We, then, 
analyzed the overcrowded ratio of each hospital. The result showed 
that congestion mainly occurred in GHs and CHCs with high service 
quality, such as GH1, GH2, GH3, CHC2, CHC5, CHC6, and 
CHC7. This finding appeared because of the service quality being 
the second most important factor in PD and DD patients. The 
results are consistent with our assumption on the characteristic of 
each patient type, thus validating our model.

To investigate the impact of the proportion listed in Table 7.4 on 
the results, we compared the result shown in Table 7.5 with the 
result when the proportion of different type of patients was “PD:0.4, 
QD:0.4, DD:0.2”. The result is displayed in Fig. 7.2. From this fig-
ure, we find that hospitals with positive (negative) overcrowded 
ratio when the proportion is “PD:0.3, QD:0.5, DD:0.2” remain 
positive (negative) overcrowded ratio when we change the propor-
tion to “PD:0.4, QD:0.4, DD:0.2”. It implies that even if we slightly 
adjust the proportion, the fact that the hospital with relative higher 
quality is crowded, while the hospital with lower quality is idle is 
unchanged. In Fig. 7.2, when we increase the proportion of the PD 
patients and decrease the proportion of QD patients simultaneously, 
the overcrowded ratio of CHC2 and CHC7 increase significantly, 
while, the overcrowded ratio of GH3 decrease significantly. It is 

Figure 7.2.  The change of overcrowded ratio for each hospital with the change in 
the proportion of different type of patients.
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mainly because more PD patients change their choice from GH to 
CHC with relatively higher quality.

7.3.3. Two incentive policies

As we addressed in this chapter, the patients’ decisions was not 
determined by a single factor. As indicated in the above case study, 
the outpatient cost and service quality acted as the most important 
factors affecting the patients’ hospital choice behavior. This section 
presents the the continued case study to improve the system by 
changing the outpatient cost and the lowest service quality of CHCs.

7.3.3.1. Reducing the outpatient cost of CHCs

Price is an important factor that affects the patients’ hospital choice 
behavior. The government frequently introduces policies to regulate 
the patients’ hospital choice behavior by adjusting the price. 
However, the result is frequently distinct from the situation due to 
individual or single factors. In this section, we have provided an 
analysis on the prices of CHCs and have also studied how the price 
affects the patients’ hospital choice. We have varied the CHCs’ price 
from RMB 75 to RMB 125 by five a step and studied the change 
pattern on the percentage of patients selecting a particular hospital. 
The results are shown in Fig. 7.3. The change in the price did not 
significantly change the number of patients who selected GH1-GH4 
and CHC2-CHC9. However, an increase in the price significantly 
increased the number of people who selected GH5. In CHC1, this 
performance decreased significantly. This finding was mainly 
because 65.4% of the total capacity of GH5 was not used when the 
price was $84.6. When the price of the low-quality CHC increased, 
a large number of patients who initially selected CHCs eventually 
preferred GH5.

However, this result was counter-intuitive. We expected that 
part of patients would change their choice from GHs to CHC due to 
an reduction in the price of CHCs. When we only reduced the CHCs’ 
price, we might encourage some patients to select CHCs, resulting in 
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the GHs with low quality getting low utilization, while the hospitals 
with the best quality remained crowded.

7.3.3.2. Improving the lowest quality of the CHC

As solely adjusting the CHCs’ price cannot encourage more patients 
to select CHCs and balance the utilization of CHCs and GHs simul-
taneously, we attempted to improve the lowest quality of CHCs. We 
varied the lowest quality of CHCs from 1 to 3 by one a step and 
studied the change pattern of the number of people selecting a 
 particular hospital. The results are shown in Fig. 7.4.

Since the change of the lowest quality was not significantly dif-
ferent, this change did not cause a significant difference in the overall 
layout of the entire urban healthcare service system. However, we 
could still get the trend of this change. The result showed that this 
measure did not change the percentage of people who selected 
CHC2-CHC9 and GH4. However, it relieved the congestion of 
GH1-GH3 and improved the utilization of GH5 and CHC1 and 
CHC3. The reason was that CHC1 and CHC2, which had the low-
est quality, were located around the GH1-GH3. Thus, CHC1 and 
CHC2 attracted some patient whose original strategy was to select 
GH1-GH3. When CHC1 and CHC2 were congested, some patients 

GH1 GH2 GH3 GH4 GH5 CHC1 CHC2

CHC3 CHC4 CHC5 CHC6 CHC7 CHC8 CHC9

Figure 7.3.  The change in the number of patients due to an increase in the CHCs’ 
price.
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selected GH5, which had some idle resource. These results indicate 
that minimal improvement in the CHCs’ lowest quality, without 
changing the overall layout of the entire urban healthcare service 
system, can relieve the congestion of GH1-GH3 and can balance the 
load of GH and CHC.

7.4. Conclusion

In this study, an agent-based simulation model was proposed to ana-
lyze the obtained data and examine the effects of different factors on 
resource allocation in hospital selection. We considered different 
preferences of various patients and the relevant dynamic factors. 
Using some public data and referring to the current situation in the 
urban healthcare service system in Beijing, China, we validated our 
simulation model. We, then, performed a sensitive analysis on the 
expenditures and quality of CHCs to obtain interesting insights.

The improvement of the quality of CHCs and the reduction of 
CHC expenditures can encourage more patients to select CHCs. 
However, reducing the CHCs expenditures influences patients who 
prefer GHs with the lowest rank. Hospitals with the highest rank 
remain crowded. Furthermore, GHs with low rank are poorly uti-
lized. The improvement of the low-quality CHCs can help decongest 

GH1 GH2 GH3 GH4 GH5 CHC1 CHC2
CHC3 CHC4 CHC5 CHC6 CHC7 CHC8 CHC9

Figure 7.4.  Change in the number of patients who selected each hospital along 
with the improvement of the lowest quality.
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GHs and balance the load of GHs and CHCs. Therefore, alleviating 
the gap of diagnosis and treatment quality between CHCs and GHs 
is the key to solving this problem.

Considering the limited data, we classified the patients into three 
groups on the basis of the preference for GHs or CHCs. The precise 
classification of patients on the basis of large data can provide fur-
ther insights into hospital selection. The proposed agent-based 
approach can be applied not only to hospital selection but also to 
other processes regarding decentralized or localized decisions that 
address resource allocation problems.
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Abstract

Liver transplantation has been the standard treatment of end stage 
liver disease for over three decades. While demand for liver trans-
plants has increased over the years, the number of transplants 
performed have decreased or stagnated over the last decade. 
Health trends in the general population could play a role in the 
growing gap between the supply and demand of livers for trans-
plantation. Obesity, diabetes, and an aging population are the 
cause of declining donor liver quality as well as the cause of grow-
ing transplant waitlists. We use United Network for Organ Sharing 
(UNOS) data to develop statistical and simulation models to evalu-
ate post- transplant outcomes of liver allocation in the USA in light 
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of these trends. In particular, we predict the characteristics of the 
donor population, create a population dynamics model of the 
recipient population, match donors and recipients, and predict 
survival outcomes after transplantation based on an existing sur-
vival analysis model. We find that despite dynamic trends in both 
donor and recipient populations, overall survival outcomes will 
remain stable over the next ten years. However, the trend is not the 
same for all diseases groups, with some experiencing an increased 
risk and  others a decreased risk, adding to disparities in outcomes 
between disease groups.

8.1. Introduction

Approximately 35 million Americans are impacted by varying levels 
of liver and biliary diseases. Hepatitis, cirrhosis, and liver cancer are 
among the most serious causes of liver disease, which is the 12th 
leading cause of death in USA. It is estimated that chronic liver dis-
ease and cirrhosis are the cause of 36,000 deaths and 100,000 hos-
pitalizations annually [1, 2].

Since the 1980s, liver transplantation has been the standard 
treatment for end-stage liver disease (ESLD). While living donation 
is possible, the majority of liver transplants performed in USA use 
the liver of a deceased donor. The waitlists and allocation processes 
are managed by the United Network for Organ Sharing (UNOS) and 
are prioritized by the Model for End-Stage Liver Disease (MELD) 
score, a measure of disease severity based on readily available patient 
data. Currently, there are more than 15,000 individuals on the liver 
transplant waitlist. In 2015, approximately 6,000 liver transplants 
were performed, and an estimated 1,400 individuals died waiting for 
a transplant [3].

Although the number of donor livers available for transplanta-
tion is growing with the population, the utilization of these livers has 
been decreasing and is projected to continue to decline during the 
next decades. The utilization rates are declining largely due to chang-
ing demographics and health trends in the donor population, spe-
cifically, the increasing rates of obesity and diabetes, an aging 
population, as well as increased rates of organ donation after cardiac 
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death (contrasted with brain death). In addition to liver utilization 
rates, these health trends also significantly impact the demographics 
of transplant recipients.

In this study, we investigate the trends at play in liver transplan-
tation and evaluate the effects of these trends on the transplant 
recipient population and resulting predictors of survival, namely the 
survival probability and the D-MELD score.

8.2. Existing Work and Motivation

In recent years, liver transplantation has been a rich area of research 
in the field of medical decision-making. In the following literature 
summary, we provide an overview of studies that investigate and 
propose varying strategies to improve or optimize outcomes from 
both an overall systems perspective and an individual patient per-
spective. Our analysis builds on the existing studies about donor liver 
availability and utilization, which we have discussed in more detail.

8.2.1. Liver transplantation

Several studies approach the problem from a systems level perspec-
tive, such as the design of allocation policies [4, 5] and redistricting 
of regions [6–9]. These papers focus on improving outcomes via 
improved resource allocation. The problem is complex due to the 
trade-off between equity and efficiency, which is inherent in the dis-
tribution of such a tightly constrained, scarce, and highly valued 
life-saving resource. Donor liver availability is stochastic both in 
timing and geographical distribution. This stochastic nature of the 
availability, coupled with the deterioration of organ quality associ-
ated with travel distances, makes districting and allocation rules 
critical to efficiency and equity in outcomes.

Other studies related to liver transplantation approach the prob-
lem from an individual patient perspective. These studies focus on 
several decisions of the patient or the surgeon, such as the decision 
to accept or reject a cadaveric liver that becomes available [10, 11], 
the decision of timing for living donor liver transplants [12], or the 
decision of choosing among cadaveric and living donor livers [13].
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8.2.2. Donor liver availability and utilization

Additionally, recently published studies, [14–16], forecast a decline 
in donated liver utilization due to population health and demo-
graphic changes.

Parikh et al. analyze Organ Procurement and Transplantation 
Network (OPTN) data from 2000 to 2012, calculating the number 
of donor livers over time in subgroups stratified by age, race, and 
body mass index (BMI). They then apply general population demo-
graphic and health trends predicted from census data and national 
nutritional surveys to make projections of donor liver availability 
and utilization, concluding that population growth will outstrip 
donor population growth in the coming decade.

Similarly, Toro-Diaz et al. and Orman et al. seek to forecast 
donor liver availability in the coming years but utilize a different 
approach. Comparing health and demographic measures, they find 
that donor trends are not well represented by general population 
trends seen in census data and nationwide health surveys like the 
National Health and Nutrition Examination Survey (NHANES) and 
the Behavioral Risk Factor Surveillance System (BRFSS).

Using historical clinical UNOS data, Toro-Diaz et al. develop 
multiple statistical models to predict relevant donor characteristics, 
including gender, age group, race, BMI (obese or not), alcohol use, 
diabetes status, cause of death (stroke or not), mechanism of death 
(cardiac or brain), and biological marker values (bilirubin and alanine 
transaminase (ALT) levels). Based on these donor characteristics, they 
use logistic regression to compute the probability of liver utilization. 
These statistical models are implemented in a discrete event simula-
tion model, which generates the donor characteristics and viability of 
each liver in a donor population. They conclude that cadaveric liver 
utilization will decline significantly in the coming years.

8.2.3. Transplant recipient outcomes

Numerous studies in the clinical literature have attempted to quan-
tify or characterize survival outcomes based on the characteristics of 
transplant liver donors and recipients [17–19].
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Ioannou develops and validates a proportional hazards survival 
model based on the characteristics of a donor-recipient pair [17]. 
The model is based on UNOS data from 1993 to 2003 and predicts 
post transplant survival based on three donor characteristics (age, 
gender, and race/ethnicity), transplant recipient characteristics (age, 
BMI, MELD score, UNOS priority status, gender, race/ethnicity, 
diabetes status, cause of liver disease, and serum albumin level), as 
well as cold ischemia time (CIT), the amount of time the donor 
organ is chilled between harvest and transplant. Ioannou develops a 
model specific to recipients with Hepatitis C and another model that 
predicts survival for all other recipients. In general, livers from 
female, minority, and older donors are associated with increased 
post transplant risk. Recipients who were older than 50, male, or 
African American were also associated with increased post transplant 
risks.

Rana et al. develop the Survival Outcomes Following Liver 
Transplantation (SOFT) score with the goal of balancing the waitlist 
mortality captured by MELD score with predicted 3-month post 
transplant outcomes based on donor, recipient, and operational 
characteristics [18]. The analysis uses data from 2002 to 2006 to 
create a logistic regression model, predicting recipient survival for 
3 months after transplant. The authors use the odds ratios from the 
regression model to develop a point system to use as a score measure 
of survival risk for the recipient-donor pair.

Halldorson et al. propose that the D-MELD, the product of the 
donors’ age and the recipients’ MELD score, provides a simple but 
effective predictor of post-transplant mortality [19]. The authors 
conclude that D-MELD scores greater than 1,600 predict poor 
post transplant outcomes and recommend this as a cut-off in liver 
allocation decisions.

8.2.4. Methodology overview

In this study, we predict characteristics of donors by replicating and 
building on the methodologies used in Toro-Diaz, et al. [14], develop 
methods to predict recipient characteristics, and evaluate and fore-
cast survival outcomes at the macro scale by implementing these 
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with Ioannou’s survival model [17] in a discrete event simulation. 
That is, we have modified an existing population dynamics model to 
predict the donor population. Then, we create a population dynam-
ics model of the recipient population. Lastly, donors and recipients 
are matched, and an existing survival analysis model is used to 
 predict survival outcomes after transplantation.

8.3. Statistical Models

The statistical models developed to predict donor and recipient char-
acteristics are based on 2004–2014 data from the UNOS Standard 
Transplant Analysis and Research (STAR) file provided by the 
Organ Procurement and Transplantation Network (OPTN) which 
contains de-identified patient level data. The statistical analysis was 
conducted using SAS 9.4.

8.3.1. Recipient characteristics

According to the UNOS STAR data, 68,822 deceased liver transplants 
were performed during 2004–2014. From these, we excluded Status 1 
patients with acute liver failure, split liver transplants, pediatric 
patients, and adult patients who received very young pediatric livers 
(less than 10 years old). These cases were excluded as their character-
istics were very distinct from the characteristics of the general recipient 
population, leaving 56,296 transplants. Additional exclusions were 
made due to incomplete records, resulting in 55,489 data points, 
which were used to create statistical models of recipient characteristics.

Significant recipient characteristics identified in Ioannou’s sur-
vival model are age, race, gender, BMI, diabetes status, disease type, 
albumin levels, and laboratory MELD score. Table 8.1 provides an 
overview of the statistical methods used to predict each variable, as 
well as the independent variables that were used to predict each 
dependent variable. The input variables for each response variable 
were based on both clinical significance and statistical significance, 
with an effort to minimize the number to variables necessary to pre-
dict each response. Historical data demonstrated that the proportion 
of males and females in the recipient population was fairly consistent 
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over time. Therefore, an empirical constant discrete distribution was 
used (32.3% female and 67.7% male).

Race categories were defined as non-Hispanic white, non- 
Hispanic black, Hispanic, and other. Predictions of race were strati-
fied by gender, and the proportion of the population falling into each 
race group was based on a linear regression of historical trends by 
year. Age groups were defined as 18–42, 43–49, 50–56, 57–63, and 
over 63. A multinomial logistic regression was used to predict age 
group, based on gender and year.

BMI categories were defined as 18–25, 25–30, 30–35, 35–40, 
and 40–55. This was modeled using a multinomial logistic regres-
sion, with independent variables gender, race, and year. Diabetes 
status was a binary recipient attribute, which was modeled using 
logistic regression based on the recipient’s gender, race, and BMI.

Disease types were categorized into seven groups: alcoholic cir-
rhosis, cryptogenic cirrhosis, primary biliary cirrhosis, Hepatitis B, 
Hepatitis C, hepatocellular carcinoma, and “other”. Independent 
variables for predicting recipient disease type were gender, race, age, 
BMI, diabetes status, and year.

Albumins are blood plasma proteins produced in the liver, 
and levels are grouped into five categories: less than 2.1, 2.1–2.4, 

Table 8.1.  Summary of statistical methods and variables used for modeling 
 recipient characteristics.

Dependent Variable Independent Variable Statistical Model 

Gender — Constant Discrete Distribution

Race Group Gender, Year Linear Regression

Age Group Gender, Year Multinomial Logistic Regression

BMI Category Gender, Race, Year Multinomial Logistic Regression

Diabetes Gender, Race, BMI Logistic Regression 

Disease Gender, Race, Age, 
BMI, Diabetes, Year

Multinomial Logistic Regression

Albumin Level Age, Disease, BMI Ordered Logistic Regression 

MELD Disease, Year Empirical Distribution with 
Linear Parameter Trends
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2.4–2.8, 2.8–3.3, and greater than 3.3. Recipient albumin levels 
were predicted based on an ordered logistic regression model, using 
age, disease type, and BMI as independent variables.

MELD score is a measure of expected patient survival without 
transplant and is used to determine waitlist priority. The “laboratory 
MELD” was is calculated based on creatinine, bilirrubin, and inter-
national normalized ratio (INR) values as shown in equation (1). 
Exception points were, then, added to account for specific circum-
stances (disease type and other health measures), and this summed score 
determined the order of the waitlist. The value of interest here was the 
computed laboratory MELD score, not the waitlist MELD score. 

 

= +
+

(0.957) ln  ( )

(0.378) ln  ( )

(1.12) ln  ( )

LabMELD creatinine

bilirrubin

INR

*
*

*  

(1)

According to experts disease type and year are the most impor-
tant predictors of the recipient MELD score. In order to incorporate 
these independent variables, we stratified the MELD score data by 
disease type and year, and performed a best fit analysis of the result-
ing distributions using the SAS Univariate procedure. Figure 8.1 
shows the distribution of MELD scores for alcoholic cirrhosis trans-
plant recipients in 2004. 

The Weibull distribution was chosen as providing a good fit for 
the strata. For each disease, a linear annual trend was fitted to the 
each of the Weibull parameters. Using this approach, the distribu-
tion of MELD scores for each disease type can be predicted for 
future years. The Weibull distribution parameters for MELD scores 
of alcoholic cirrhosis recipients are shown in Fig. 8.2, along with the 
linear trend fitted to each parameter.

8.3.2. Donor characteristics

Donor characteristics were modeled using the same methodologies 
described in Toro-Diaz et al. [14] while utilizing the most recent 
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Figure 8.1.  Histogram and distribution fit of MELD scores for alcoholic cirrhosis 
transplant recipients in 2004.

Figure 8.2.  Weibull parameters for MELD scores of alcoholic cirrhosis recipients 
and predictive linear trends used to model these parameters over time.
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STAR data available (2004–2014). The analysis of the historical 
transplant data shows that approximately 10% of adult transplant 
recipients receive pediatric livers. On the basis of this, we created a 
set of new models to characterize pediatric donor livers, which were 
allocated to adult recipients using similar methodologies. We used 
step-wise parameter selection for all pediatric statistical models. For 
some statistical models of pediatric donor liver characteristics, fewer 
independent variables were significant when compared to adult 
donor liver models (e.g., gender was not a significant predictor of 
obesity for pediatric donors while it was significant for adult 
donors). Additionally, we found that stratifying the data by gender 
yielded a better-fit statistical model for the cause of death. A sum-
mary of the statistical methods and variable relationships is shown 
in Table 8.2.

8.3.3. Cold ischemia time

The parameter of Cold Ischemia Time (CIT) is the number of hours 
the organ is chilled between procurement and transplantation, and is 
typically a function of the travel time required. In Ioannou’s model 
CIT was categorized as less than 6.4, 6.4–8.8, 8.8–11.3, 11.3–14.3, 
and 14.3- 60 hours. The historical proportion of transplants with 
CITs in each category can be seen in Fig. 8.7. The figure indicates 
clear trends in decreasing CIT each year. In the 2004–2014 trans-
plant data, approximately 4% of transplants had unknown CIT. We 
replaced these with the median CIT for each year and used multino-
mial regression to predict the CIT category for each donor-recipient 
pair using year as the indedpendent variable.

8.4. Simulation Model

The statistical models described in Section 8.3 were implemented in 
a simulation model to generate donated livers and recipients to fore-
cast population level survival outcomes of liver transplant recipients. 
We implemented the model in Arena 14.7 (Rockwell Automation).
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Table 8.2.  Summary of statistical methods for modeling donor characteristics.

Independent Variable 

Dependent 
Variable Adult Pediatric Statistical Model

Gender — — Constant Discrete 
Distribution

Age Gender, Year — Linear Regression

Race Gender, Year Gender, Year Linear Regression

Obesity Gender, Age, Race, 
Year 

Race, Year Logistic Regression

Alcohol Use Gender, Age, Race — Logistic Regression

Diabetes Gender, Age, Race, 
Year, Obesity 

Year, Gender, 
Obesity 

Logistic Regression

Cause of Death 
(Stroke or not)

Gender, Age, Race, 
Year 

Gender, Race Logistic Regression

Bilirrubin — — Constant Discrete 
Distribution

DCD Year — Linear Regression/
Constant Discrete 
Distribution

ALT Gender, Age, Race, 
Year 

Year Ordered Logistic 
Regression

Utilization Gender, Age, Race, 
Obesity, Alcohol 
Use, Diabetes 
Cause of Death, 
DCD, ALT, 
Bilirrubin, Year

Gender, Race, 
Obesity, 
Diabetes, 
Stroke, DCD, 
ALT, Bilirrubin, 
Year

Logistic Regression 

8.4.1. Model description

Simulation used the statistical models discussed in Section 8.3.2 to 
probabilistically assign the attributes of each donated liver and then 
determine whether that liver was viable for transplant utilization. 
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For livers that were utilized, the attributes of the recipient and CIT 
were probabilistically generated based on the statistical models dis-
cussed in Section 8.3.1. Thus, each donated and utilized liver “pulls” 
a recipient. There are no matching characteristics modelled (such as 
blood type) that will preclude a donated liver from finding a recipi-
ent. While this model can certainly be refined to include this level of 
detail (as discussed in Section 8.6.2), this assumption is not too lim-
iting as currently the number of patients on the list far outnumber 
the number of donations, such that it is very rare for a viable liver to 
be discarded. For each of these donor-recipient matches, a hazard 
rate according to Ioannou’s survival model was calculated and 
recorded for each transplant, and the average overall transplant haz-
ard rate was also recorded. Figure 8.3 provides a high-level overview 
of the simulation model structure.

8.4.2. Model validation

In order to validate our model, we compared the historical preva-
lence of all donor and recipient characteristics to the prevalence of 
the characteristics in the simulated donor and recipient populations. 
In the case of recipient MELD score, we compared the percentiles of 
historical MELD scores for each year and disease stratum to the 
distribution of the simulated MELD scores. For example, Table 8.3 

Figure 8.3.  Simulation model structure showing interaction between statistical 
models.
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Table 8.3.  Recipient MELD score percentiles and historical versus simulated 
 values.

Pctl. Alc.C HepB HepC PBC Crypt.C HCC Other 

5th 10 10 7 7 8 9 10 10 9 11 6 6 8 8 

10th 12 12 9 7 10 10 12 12 11 12 7 7 10 10 

25th 16 16 12 11 14 14 15 16 15 16 8 9 14 14 

50th 21 21 18 18 19 18 20 19 19 20 11 11 19 19 

25th 27 29 29 29 26 26 26 25 25 27 15 14 26 26 

90th 34 37 40 38 33 35 32 35 32 36 23 19 33 34 

95th 39 40 40 40 37 39 35 40 37 39 28 26 39 39 

shows the simulated versus historical MELD score percentiles for 
each recipient disease category in 2004. The simulated and historical 
distributions matched closely and passed the Kolmogorov-Smirnoff 
test at a 95% confidence level. For all other recipient and donor 
characteristics, the simulated prevalence was within +/-2% of the 
historical prevalence. Table 8.4 shows the average absolute differ-
ence of simulated versus historical prevalence for various recipient 
characteristics. Figure 8.4 shows the historical and simulated preva-
lence of key donor characteristics.

8.5. Results

The simulation was run for 15 replications for each year from 2004 
to 2024, with 10,000 donated livers in each run. The number of 
replications was chosen to achieve a desired 95% confidence interval 
half-width of 2% or less about the estimates of donor liver utilization 
for all years.

8.5.1. Proportional hazard model

We evaluated survival outcomes based on calculated hazard ratios, 
as outlined in Ioannous survival model. For each individual, we cal-
culated a risk score, X, by adding the adjusted regression coefficients 
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shown in Table 8.2 of [17]. These coefficients are associated with 
donor and recipient characteristics. Then, the probability of survival 
at time t is given below, where HazardRatio(X) = e(X).

 S(t, X) = S0(t)HazardRatio(X) (2)

The simulation results revealed no significant trends in overall 
average transplant hazard ratios. However, stratifying the simulated 

Table 8.4.  Recipient characteristics, average absolute deviation between 
historical and simulated values.

Recipient Characteristic
Average  

(Simulated-Historical)

Recipient Age 18 to 43 0.67% 

43 to 50 0.70% 

50 to 57 1.11% 

57 to 63 1.56% 

over 63 1.40% 

Recipient Race White 0.73% 

Black 0.35% 

Hispanic 0.38% 

Other 0.30% 

Recipient Diabetic Diabetic 0.74% 

Recipient BMI 1: 15 to <25 0.61% 

2: 25 to <30 0.66% 

3: 30 to <35 0.77% 

4: 35 to <40 0.60% 

5: 40 to <55 0.35% 

Recipient Disease Alcoholic cirrhosis 1.16% 

HepB 0.30% 

HepC 0.63% 

Primary Biliary cirrhosis 0.25% 

cryptogenic cirrhosis 0.42% 

hepatocellular carcinoma 1.28% 

other 0.50% 
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transplants into risk groups low, intermediate, and high (with hazard 
ratios less than 1, 1-1.5, and greater than 1.5, respectively) revealed 
gradual trends in the distribution of risk among transplant recipients, 
as seen in Fig. 8.5. The simulation results forecast growth in the pro-

Figure 8.4.  Historical versus simulated prevalence of donor characteristics.

Figure 8.5.  Trends in risk group shown as proportion of population in each risk 
group.
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portion of both high and low risk transplants (0.14% and 0.08% per 
year on average, respectively) and a decreasing proportion of trans-
plants that were categorized as intermediate risk (-0.22% per year 
on average), indicating a gradual polarization of risk in the trans-
plant recipient population. A possible explanation for this polariza-
tion can be seen by looking at forecasted hazard ratios stratified by 
disease, as shown in Fig. 8.6. The increased risk is likely due to the 
recipient population (as the donors will likely get uniformly worse). 
The polarization effect could be driven by exception points (which 
were points added to lab MELD if the patient had  cancer, for exam-
ple) which moved patients up on the waitlist. As there were so many 
patients on the list, the median MELD score at transplant was 
increasing over time. Thus, patients with some diseases, such as cir-
rhosis, will have to get very sick to receive an offer while another 
cohort of patients with cancer (HCC) can have a low lab MELD and 
receive a transplant. The very sick patients are likely to have high 
risk, while the HCC patients will have low risk. Changes in donor 
and recipient populations were associated with both  harmful and 

Figure 8.6.  Trends in average forecasted hazard ratios over all transplants.
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protective effects in Ioannou’s survival model, creating canceling 
effects. This contributed to the stable overall average hazard ratios. 
For example, growing prevalence of diabetes and obesity in the 
recipient population (though these have been small) are associated 
with much increased risk; in contrast, the trend in decreasing CIT is 
associated with decreased risk. Figure 8.7 shows some examples of 
recipient characteristics that have competing effects on risk.

Although these trends effectively cancel each other out in the 
scope of this analysis, there may be a limit to how long these trends 
counteract each other. For example, the prevalence of diabetes may 
continue to increase, but it is unlikely that CIT will decrease much 
further due to operational constraints.

8.5.2. D-MELD

In addition to using the simulation model to forecast hazard ratios 
according to Ioannou’s survival model, we also evaluated average 
D-MELD, the product of the donor age and recipient MELD score. 
D-MELD is a simple but effective predictor of post-transplant graft 
survival as described in Halldorson et al. [19]. As shown in Fig. 8.8, 
there are clearer trends in overall average D-MELD with an average 
increase of 7 points per year. 

Figure 8.7.  Trends in recipient characteristic prevalence, dashed lines are associ-
ated with decreased risk, while solid lines are associated with increased risk.
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8.6. Summary and Discussion

Although the simulation forecasts significant trends in D-MELD for 
transplants taking place in the next 10 years, the more detailed meas-
ure of Ioannou’s hazard ratios do not demonstrate any changes in 
overall survival outcomes. However, in both the evaluated risk 
measures more drastic trends were seen when isolating each disease 
type, with some trends increasing while others are decreasing. These, 
in effect, cancel each other out such that average risk over all trans-
plants does not reflect the underlying dynamics of survival risk in the 
transplant recipient population.

8.6.1. Limitations

The primary limitation of this study is the structure of random 
donor-recipient matching. This structure overlooks the careful 
 allocation strategies that are implemented in matching donated 
organs to recipients, including biological and operational constraints 
such as blood type compatibility and regional allocation rules. 

Figure 8.8.  Trends in average forecasted D-MELD over all transplants.
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However, we believe that our modeling approach is capable of 
 capturing population-level trends although estimates may be consist-
ently conservative. Additionally, the dynamics of transplant waitlists 
are not in the scope of this analysis, although it may provide more 
granular insights.

Another limitation is that the survival model used to predict out-
comes may benefit from incorporating updated medical realities such 
as Hepatitis C treatments, as well as more recent data.

8.6.2. Future work

Opportunities for future work include incorporating more detailed 
dynamics of donor-recipient matching, as well as waitlist population 
dynamics. These may provide additional insights about transplant 
recipient outcomes for more specific contexts.

The development of an updated survival model may better 
 capture current dynamics of graft survival and risk. Lastly, the 
 methodologies outlined in this analysis can be used as a basis for 
characterizing transplant survival in different scenarios, providing 
a framework to evaluate changes in allocation rules or medical 
 technologies.
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Abstract

Rapid advancement of mobile sensing and Internet-of-Things (IoT) 
technology provides an unprecedented opportunity to realize smart 
and connected health. However, large-scale IoT systems lead to big 
data. Realizing the full potential of big data depends, to a great 
extent, on the development of new human-centered computing 
methodologies for real-time health monitoring, on-the-fly disease 
diagnosis, and timely delivery of life-saving treatments. Thus far, 
very little has been done to develop advanced IoT technologies for 
smart monitoring and control of heart health. This chapter presents 
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a new IoT technology of Mobile and E-Network Smart Health 
(MESH) specific to the heart, also called the Internet of Hearts 
(IoH), to advance the cardiac mHealth with IoT sensing, stochastic 
modeling and network analytics. The MESH technology will ena-
ble and assist (1) the acquisition of electrocardiogram (ECG) sig-
nals pertinent to space-time cardiac dynamics anytime, anywhere; 
(2) real-time management and compact representation of multi-
lead ECG signals; (3) big data analytics in large-scale IoT contexts. 
In particular, we first developed a spatiotemporal approach to 
visualize the real-time motion of 3D VCG cardiac vectors. Then, an 
optimal model-based representation algorithm was developed to 
facilitate the compression of ECG signals and the extraction of 
features pertinent to disease-altered signal patterns. Further, we 
developed stochastic network models for real-time patient-centered 
monitoring, modeling, and analysis of stochastic variations between 
heartbeats from an individual and among human subjects. The 
MESH technology shows a great potential in providing an indis-
pensable and enabling tool for realizing smart heart health and 
wellbeing for the population worldwide.

9.1.  Introduction

Cardiac diseases are the leading cause of death in the world. About 
30% of global deaths (17.3 million) are due to cardiac diseases. 
According to the report from World Health Organization (WHO), 
this number will increase to 23 million by 2030. In United States, 
heart diseases are responsible for one in every four deaths, amount-
ing to an annual loss of $448.5 billion [1]. Cardiac diseases claim 
more lives each year than the next four leading causes of death 
combined — cancer, chronic lower respiratory diseases, accidents, 
and diabetes mellitus. As opposed to chronic ones, most of the car-
diac diseases are acute and can occur at any time in daily life [2]. For 
example, a heart attack is caused by the blockage in coronary arter-
ies, which results in insufficient blood and oxygen supply to cardiac 
muscles. When a heart attack occurs, every minute counts. Patients 
who experience acute heart attacks are required to receive the treat-
ment within 90 minutes after the onset of the symptom. A delay 
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could result in permanent heart muscle damage and increased risk 
of death. However, if the sign of heart attack is detected early, life-
saving medications and treatments can be delivered to avoid hospi-
talization and even reduce the mortality rate. Therefore, the optimal 
management and treatment of cardiac diseases hinge on the identi-
fication of cardiac disorders in the early stage and the delivery of 
timely medical interventions.

In the past decade, mobile health (mHealth) has gained increas-
ing attention from the health-care research community. Advances in 
sensing technology and the rapid expansion of mobile networks 
have made remotely monitoring of patient’s condition and provision 
of timely feedback possible and affordable. mHealth technologies, 
therefore, offer a great opportunity to improve diagnosis, treatment, 
and adherence; increase access to health services, and lower health-
care costs. The applications of cardiac mHealth have increased in 
recent years. Wireless sensors are readily available to measure single-
lead electrocardiogram (ECG). Patients can forward recorded ECG 
signals to physicians and receive feedbacks remotely. However, the 
existing mHealth technologies are limited in their ability to analyze 
complex patterns of ECG signals for the identification of cardiac 
diseases. This is mainly because the spatiotemporal cardiac electrical 
activity manifests stochastic behaviors. It poses significant challenges 
on the existing mHealth systems, which implement simple algo-
rithms to recognize disease patterns. It is well known that ECG sig-
nals are initiated at the sinoatrial (SA) node, then conducted in both 
atria, relayed through the atrioventricular (AV) node to further 
propagate through the bundle of His and Purkinje fibers toward 
ventricular depolarization and repolarization [3, 4]. Such electrical 
conduction, nevertheless, is a stochastic process and can be influ-
enced by various types of uncertainties. For example, the excitation 
of SA node may be too slow or too fast, may pause, or fail to exit the 
SA region. To investigate the underlying mechanisms, researchers 
developed multiscale recurrence models [5–8] that revealed  nonlinear 
stochastic dynamics in vectorcardiogram (VCG) signals. Furthermore, 
the process of orchestrated depolarization and repolarization of 
 cardiac muscle cells are controlled by the orchestrated function of 
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individual ion channels in the cell membrane and are, thereby, cou-
pled with real-world uncertainties [9, 10]. Notably, cardiac electro-
mechanical function is closely related to cyclic changes in the 
differences between intracellular and extracellular concentration of 
ions. The potential difference increases as multiple ions travel across 
the cell membrane through ion channels. Ions flow through these 
channels and, thus, change the action potential across the cell mem-
brane [11, 12]. The rate at which ionic channels open and close is in 
a stochastic manner and is based largely on the potential difference 
across the membrane. 

The stochastic behavior of the cardiac electrical activity consists 
of two aspects: within-a-patient and between-patient stochastic 
dynamics. On the one hand, cardiac electrical activity within a patient 
demonstrates temporal dynamics. As shown in Fig. 9.1a, a 10-second 
ECG signal is generated from continuous monitoring. It may be noted 
that the amplitude of the 4th cycle of the ECG signal is smaller than 
the first three, so as the 8th cycle. Furthermore, the 6th cycle shows a 
significant S wave and an elevated T wave. Moreover, apparent vari-
ability can be identified even among those cycles that look similar, for 
example, cycle #1, #2, #3, #9, and #10. The stochastic behavior of 
cardiac activity for an individual patient is critical to the identification 
of arrhythmic events. Taking consideration of historical variabilities 
in cardiac activity is conducive to the delivery of personalized treat-
ment planning. On the other hand, the cardiac activity is different 
between patients. As shown in Fig. 9.1b, 2-second ECG signals of six 
patients demonstrate big variability. For example, the heart rate is 
apparently different among these patients. Patient P1, P3, and P6 
have only two ECG cycles, but the others have 2.5–3 cycles within 
2 seconds. Also, the morphology of these ECG signals shows signifi-
cant dissimilarities. Patient P3 shows inverted T waves (i.e., T wave 
is pointing downward instead of upward). P3 has an abnormal wave 
before the onsite of Q wave, and the R peak of P6 is notched. 
Notably, between-patient stochastic behaviors are closely pertinent to 
the disease-altered cardiac patterns. The detection and differentiation 
of cardiac diseases hinge on the effective characterization of both 
within-a-patient and between-patient stochastic behaviors.
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Figure 9.1.  (a) Within-a-patient and (b) between-patient stochastic behaviors of cardiac electrical activity.
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In the present investigation, we developed a new technology of 
Mobile and E-Network Smart Health (MESH) to advance the car-
diac mHealth with stochastic modeling and network analytics [13]. 
The MESH technology is developed in the world’s most widely used 
iOS mobile operating system, which is compatible with iPhone, iPad, 
and iPod Touch devices. In addition, it supplies in-situ information 
processing capabilities and enables physicians to access the patients’ 
ECG signals in real time, remotely interact with the patients, and 
rapidly respond to life-threatening cardiac disorders. The MESH 
system is composed of three components: real-time visualization of 
three-dimensional (3D) VCG trajectory and feature detection, opti-
mal model-based representation of ECG signals, and stochastic net-
work modeling and online diagnosis.

The remainder of this chapter is organized as follows: Section 9.2 
presents the background of ECG sensing and signal patterns; 
Section 9.3 throws light on the present analytical modules for large-
scale ECG sensing systems; Section 9.4 provides the design of the 
MESH system, including the wearable sensor, MESH database, and 
smart phone applications; Section 9.5 presents marketing research, 
and Section 9.6 concludes this chapter.

9.2.  Background

The human heart is essentially an autonomous electro-mechanical 
blood pump that operates near-periodically to maintain vital living 
organs. The heart consists of four compartments: right and left atria 
and right and left ventricles. This autonomous pump circulates 
blood in the body and constantly produces a sequence of electrical 
activities within every heartbeat. It is well known that an electrical 
activity begins in a specified pacemaker region, called the SA node, 
to excite the atrial muscle contraction. Then, the activity spreads 
through the upper chambers of the heart (the atria) and reaches the 
AV node. The AV node propagates the stimulus through bundle of 
His and Purkinje fibers toward the ventricles [3, 4]. The ordered 
stimulation, starting from the SA node, leads to the orchestrated 
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contraction of the heart, thereby, pumping the blood throughout 
the body.

The ECG system, designed by Augustus Waller in 1889 and fur-
ther improved by Willem Einthoven in 1901, has been used for over 
100 years for the monitoring of cardiac electrical activity and clinical 
diagnosis of cardiovascular disorders [14]. One lead ECG captures 
one-dimensional (1D) temporal view of a space-time cardiac electri-
cal activity. Multi-lead ECG systems provide multi-directional views 
of such space-time dynamics [15]. A normal ECG tracing is often 
segmented into P wave, QRS complex, and T wave (see Fig. 9.2a 
[16]). Atrial depolarization (and systole) is represented by the P 
wave, ventricular depolarization (and systole) is represented by the 
QRS complex, and ventricular repolarization (and diastole) is repre-
sented by the T wave [17, 18]. It may be noted that ECG signals 
contain a wealth of dynamic information pertinent to cardiac opera-
tions, which is indispensable for cardiac care — from monitoring 
and diagnosis to treatment planning to smart health management. 
Existing time-domain algorithms were developed to quantify the 
characteristics of ECG wave deflections (i.e., P, QRS, and T waves) 
for the identification of cardiac diseases. Examples of ECG features 
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include PR interval, RR interval, ST elevation/depression, QT inter-
val, and R amplitude. 

However, time-domain projections of space-time cardiac electri-
cal activity will diminish important spatial information of cardiac 
pathological behaviors. As such, medical decisions that are made can 
be significantly influenced by such an information loss [3]. Therefore, 
3-lead vector cardiogram (VCG) is designed to provide multi- 
directional views of space-time electrical activity. VCG observes the 
heart potentials as a cardiac vector in three orthogonal components 
instead of the scalar amplitude (ECG curve) [19]. In VCGs, the 
mutually orthogonal bipolar measurements are taken by placing 
parallel electrodes on the opposite sides of the torso. As shown in 
Fig. 9.2b, VCG signals contain P loops, QRS loops, and T loops, 
which correspond to P wave, QRS complex, and T wave in the ECG, 
respectively. Dower et al. and our previous studies [20–22] have 
demonstrated that 3-lead VCG can be linearly transformed to 
12-lead ECG by multiplying a generalized transformation matrix. 
Thus, the information in 12-lead ECG is redundant and the 3-lead 
VCG surmounts not only the information loss in 1-lead ECG but 
also the redundant information in 12-lead ECG.

In clinical practice, the 12-lead ECG is widely used because phy-
sicians are trained and are accustomed to using them. It has, thus, 
proven its value, time-tested, and considered as the gold standard. It 
is generally difficult for physicians to interpret disease patterns via 
the high-dimensional VCGs. However, VCGs capture important 
space-time information of cardiac electrical activity, which is not 
contained in ECG signals. The methodologies developed in our pre-
vious research were proved to be efficient and effective for identify-
ing disease patterns in VCG signals. Those algorithms have fueled 
increasing interests in VCG signals. However, they have not been 
applied to clinical practice due to lack of user-friendly software. 
Therefore, there is a need to develop software that implements those 
advanced algorithms. MESH incorporates novel pattern recognition 
algorithms that will serve as a tool to enable and assist physicians in 
characterizing VCG patterns and identifying early signs of cardiac 
disorders. The MESH system not only enables access to patients’ 
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data anywhere and anytime but also extracts valuable diagnostic 
information from the signals to help physicians in the decision-
making process. MESH is designed to enable physicians and nurses 
to access and visualize the patients’ ECG signals in real time, as 
well as timely analysis of patient’s data and rapidly respond to life-
threatening cardiac disorders.

9.3.  Analytical Modules

As shown in Fig. 9.3, the proposed MESH system consists of three 
analytical modules. We first develop a spatiotemporal representa-
tion approach to visualize the real-time dynamics of 3D VCG tra-
jectories. This enables physicians and nurses to easily interpret the 
high-dimensional VCG patterns and extract space-time characteris-
tics. Second, an optimal model-based representation algorithm is 
developed to facilitate the compression of cardiac signals and extrac-
tion of features pertinent to the disease-altered cardiac activity. Third, 
a stochastic network model is designed for real-time patient-centered 
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Figure 9.3.  The overall structure of the proposed MESH system.
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monitoring of cardiac variations. The developed spatiotemporal 
warping algorithm characterizes the cardiac variations in a warping 
matrix, which is further embedded into a high-dimensional net-
work to facilitate classification and prediction of patients’ cardiac 
conditions. 

9.3.1.  Real-time spatiotemporal visualization  
and feature extraction

ECG signals are recorded on body surface to track the continuous 
dynamic details of cardiac functioning. Such valuable real-time 
information is usually unavailable in static and discrete clinical labo-
ratory tests, for example, computer imaging, chest x-ray, and blood 
enzyme test. Even if routine laboratory examinations are performed 
multiple times per day, discontinuity often fails to prevent the lethal 
consequences of acute cardiac disorders. The awareness about the 
importance of real-time cardiac monitoring for the early identifica-
tion pathological patterns is increasing as it tracks cardiac dynamic 
behaviors, as opposed to static screenshots.

However, lead ECG signals only capture one perspective tempo-
ral view of the space-time excitation and propagation of cardiac 
electrical activities. Multiple lead ECG systems, for example, 12-lead 
ECG and 3-lead VCG, are designed to capture the multi-directional 
view of space-time cardiac electrical activities [23]. Time-domain 
visualization is the traditional routine for representing cardiac elec-
tric signals. It is the major function of most of the existing cardiac 
mHealth systems. The medical doctors are used to the time-domain 
identification of cardiac disease patterns. Therefore, this module is 
preserved in MESH. The characteristic points of cardiac signals, for 
example, locations of R peak and the end of T wave, are automati-
cally detected by implementing the wavelet-based algorithm devel-
oped in our previous research. 

However, cardiac electrical dynamics are initiated and propa-
gated spatiotemporally. The projection of spatiotemporal activity 
into 1D time domain diminishes important spatial information 
underlying cardiac electrical activities. In MESH, a novel dynamic 
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spatiotemporal visualization of VCG signals is implemented [23]. 
In the Frank XYZ lead system, VCG is represented as three orthogo-
nal scalar measurements with respect to time, which is given as:

 

( )
( )
( )

.
x

y

z

v f t

v g t

v h t

 =


=
 =

 

The dynamic VCG signal representation embeds the cardiac 
vector, composed of three scalar measurements, in real time. As 
shown in Fig. 9.4, three scalar x, y, and z components are plotted 
in the top and the simultaneous 3D movement of cardiac vectors in 
the bottom.

The top plot displays VCG signals in three-vector components as 
a function of time, and the bottom part shows the real-time cardiac 
vector movement in the 3D space. Head (green) gives the current 
position of cardiac vector. Body (red) indicates the direction and 
rotation of cardiac vector movements [23].

Figure 9.4.  Real-time spatiotemporal VCG representation.
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This real-time spatiotemporal VCG representation makes it 
easier to integrate with prior knowledge and experiences of time-
based ECG. As shown in Fig. 9.4, this representation consists of 
three components, namely, head (green), body (red), and tail (blue). 
Head gives the current position of the cardiac vector. Body records 
a short history of the cardiac vector movements, which clearly indi-
cates where the current vector is from. It avoids the confusion 
regarding the group of heart activity to which the current cardiac 
vector belongs as they usually intersect at the isoelectric points. The 
tail provides full history pertinent to the complete topological shape 
of VCG state space. By following the cardiac vector movement with 
respect to time, the P, QRS, and T waves will be easily located in the 
VCG state space [23].

The real-time visualization of spatiotemporal ECG signals is an 
enabling tool that can be used in clinical practices of cardiac care. 
This approach incorporates additional dynamical properties of car-
diac vector movements (such as curvature, velocity, octant, and 
phase angle) with the color coding scheme, which can be used for the 
interpretation of high-dimensional cardiac vectors by physicians or 
nurses. Our prior research [23] showed that the proposed dynamic 
VCG surmounts some drawbacks of time-domain representation 
and provides critical spatial, as well as temporal information of the 
heart dynamics. The cardiovascular pathological patterns are found 
to be effectively captured by this new 3D dynamic representation 
approach. The presence of both spatial and temporal characteristics 
in dynamic representation improves the automatic assessment of 
cardiovascular diseases with the use of VCG signals.

9.3.2.  Optimal model-based representation

The proposed MESH system enables long-term continuous cardiac 
monitoring. However, continuous sensing in days, months, and even 
years generates enormous amount of data, which contains a rich 
amount of information pertinent to the evolving dynamics of process 
operations. As such, it provides physicians with a spatially and tempo-
rally data-rich environment in the process of medical decision-making. 
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Big data poses significant challenges for human experts (e.g., physi-
cians, nurses, and quality technicians) to accurately and precisely exam-
ine all the generated high-dimensional sensor signals for fault diagnosis 
and quality inspection. Moreover, the proliferation of sensing data also 
provides an unprecedented opportunity to develop sensor-based meth-
odologies for realizing the full potential of multidimensional sensing 
capabilities toward real-time process monitoring and disease diagnosis.

In MESH, a new model-driven parametric monitoring strategy 
[16, 24] is developed for the detection of dynamic fault patterns in 
high-dimensional functional profiles that are non-linear and non-
stationary. Specifically, a sparse basis function model is developed 
to represent high-dimensional functional profiles, which mini-
mizes the number of basis functions involved but maintains suffi-
cient explanatory power. As such, large amount of data is reduced 
to a parsimonious set of model parameters (i.e., weight, shifting, 
and scaling factors in basis functions) while preserving the signal 
information. 

The 3D VCG is represented as the superposition of M multiscale 
basis functions:

 ( ) ( )ϕ m σ ε
=

= + - +∑ �� � �
0

1

, ( ) / ,
M

j j j j
j

v t w w w t  

where ϕ(t) is the general basis function form, which is not limited to 
Gaussian function, mj

 is the shifting factor, and σj is the scaling factor. 
The objective is to minimize the representation error, that is, 

( ) ( ) ( ){ }=
 - -  ∑ �� �� 2

0 1
argmin , , ,

M

j jj
t t M tν ϕ ϕw w w , between VCG signals 

and basis function models. In a matrix form, the basis function 
model is rewritten as V = WTϕ, where W is the weight matrix and ϕ 
is the basis function matrix.

An iterative procedure, i.e., a matching pursuit algorithm [25], 
was developed to search the suboptimal solution based on character-
istic wave patterns in the VCG/ECG signals. The VCG matching 
pursuit method is started from an initial approximation S(0) = 0, 
residual ( )(0)R v t= � , and dictionary ( ){ },   1,2, , jD t j Nϕ= = … .  
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The first step identifies the basis function in the dictionary that best 
correlates with the residual, that is, finding γ0 such that 

( ) ( ) ( ) ( )γ γϕ ϕ〈 〈〉 〉=0 0 0, max ,R R , γ ∈ N and ϕ(γ0) ∈ D. Then, the current 

approximation will be ( ) ( ) ( ) ( ) ( )γ γϕ ϕ= + 〈 〉1 0 0 0 0,s s R , and the residual is 

defined as ( ) ( ) ( ) ( ) ( )γ γϕ ϕ= - 〈 〉1 0 0 0 0,R R R . If the orthogonal wavelet 
bases are used, it may be noted that ϕ(γ0) is orthogonal to R(1) 
because:
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Hence, ( ) ( ) ( )γ γϕ ϕ〉〈 0 0 0,R  is also orthogonal to R(1) so that

( ) ( ) ( ) ( ) ( )γ γϕ ϕ= +
22 20 1 0 0 0,R R R

At step j + 1, the residual R(j+1) is treated as R(0) in the first step, 
yielding

( ) ( ) ( ) ( ) ( )γ γϕ ϕ+ = - 〈 〉1 ,j j j j jR R R

( ) ( ) ( ) ( )γ γϕ ϕ+

=

= 〈 〉∑1

1

 ,
j

j i i i

i

s R

After M such steps, one has a representation of the form of addi-
tive decomposition: 

( ) ( ) ( ) ( )γ γϕ ϕ
-

=

= 〈 〉 +∑
1

1

( ) ,
M

i i i M

i

v t R R

The adaptive algorithm will stop when the residual sum of 
squares is less than a small threshold at step M (i.e., ( ) < εMR ). An 

intrinsic feature of matching pursuit algorithm is that when the 
dictionary has orthogonal bases, it works perfectly after a few steps 
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yielding a sparse adaptive representation using only a few basis 
functions. An example of fitting high-dimensional nonlinear profile 
using the superposition of basis functions is shown in Fig. 9.5. It 
may be noted that the basis function model (red/solid) effectively 
represents the original data (blue/dashed). 

It may be noted that optimal representation of 3D VCG topology 
in the MESH system will lead to the following benefits:

• Feature extraction: The model parameters such as weights, shift-
ing, and scaling factors in the basis functions can be potentially 
used as features for the diagnostic application. As a result, large 
amount of VCG and ECG data is reduced to a limited amount 
of features (i.e., model parameters) while preserving the same 
information. 

• Data compression: It is well known that hundreds of gigabytes 
of VCG and ECG data will be stored in the real-time cardiac 
monitoring. Since the basis function model yields a good repre-
sentation (>99%) of real-world VCG signals, model parameters 
can be saved instead of long-term VCG signals. 

• Algorithm evaluation: This proposed basis function model is 
data-driven and can be fitted to ECG signals from different kinds 
of cardiovascular diseases. The fitted model for different pathol-
ogies can generate large amount of VCG/ECG signals that can be 

-0.4 -0.2 0 0.2 0.4-0.5
0

0.5
-0.4

-0.2

0

0.2

0.4

Figure 9.5.  3D trajectory of VCG signals from basis function model (red/solid) and 
real-world data (blue/dashed) [16].
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used to test the algorithms of QRST cancellation, adaptive filter-
ing, and classification.

• Disease prognostics: Because the basis function model captures 
all the characteristics from actual data, real-time ECG monitor-
ing signals can be compared with the model representation 
trained in healthy condition. The differences of pattern similar-
ity can be used as a performance measure for the prognostic 
purpose.

The model parameters and their derivatives can be used as fea-
tures for the detection of process faults. However, the dimensionality 
of these features is high and can potentially lead to sensitive predic-
tive models. Thus, we further utilize lasso-penalized logistic regres-
sion model [16] to investigate the “redundancy” and “relevancy” 
properties between these parameter-based features and fault patterns 
to identify a sparse set of sensitive predictors from a large number of 
features for fault diagnostics. 

Let p(x, b ) be the probability for y to be a success (y = 1) and, 
thus, 1 - p(x, b ) is the probability for y to be a fault (y = 0), where 
b = (b0, b1, b2,...,bp)T is the coefficient vector. The logistic regression 
model is:

 
 

= - 
( , ) 

log
1 ( , ) 

Tp
p
x x

x
b b

b  

The likelihood function of b = (b0, b1,...,bp)T, given the observa-
tion data X = (x1, x2,...,xn)T, y = (y1,...,yn)T is:

 ( ) -
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As such, the log likelihood function becomes:
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The lasso-penalized logistic regression is formulated to minimize 
the following objective function with the constraint that the upper 
limit of L1-norm of b is less than C,

( )-min | ,L
b

b X y

≤
1

subject to Cb

This is equivalent to solve the following unconstrained optimiza-
tion problem, with λ be the regularization parameter:

( )
λ

λ- +
1,

min | ,L
b

b bX y

The optimal solution b of the unconstrained optimization prob-
lem given λ also solves the constrained minimization problem with 

b
=

= = ∑1 1

p

ii
C b . To solve this constrained optimization problem, let 
us first obtain the solution to the general logistic regression model. The 
objective function of general logistic regression model is as follows:

 ( )-min | ,L
b

b X y  

From the Newton-Raphson algorithm, it may be noted that the 
update of parameters is obtained by approximating the objective 
function with the second-order Taylor expansion. Let b(k) be the cur-
rent parameters, then Newton–Raphson method finds the new set of 
parameters γ(k) based on the quadratic approximation:

 ( ) ( ) 1
,k T T-

= X WX X Wzγ  

where 1( )-= + -z X W y pb  and W is the diagonal matrix with 
( ) ( )( )( ) , 1 ,ii i ip p= -W x xb b . As such, solving for γ(k) is equal to 

finding the solution to the following weighted least squares problem:

 
 

= -  

1 1
( ) 22 2

2 arg mink

γ
γ γW X W z  
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For lasso-penalized logistic regression, there is a need to add the 
L1 constraint to the unregularized logistic regression to ensure ||γ  ||1 ≤ 
C, that is,

 

 
-  

≤

21 1
2 2

1

2

Subject t

in

o

m

C

γ
γ

γ

W X W z

 

As a result, the lasso-penalized logistic regression is transformed 
to an iteratively reweighted least square problem. At each iteration, 

we update the 
1
2W X  and 

1
2W z , based on the new estimate of coef-

ficients. After γ (k) is obtained, we update b(k) by:

 ( ) ( )θ θ+ = - +( 1) ( )1 kk kb b γ  

where [0,1]θ ∈  is the learning rate for the parameter update. In this 
study, we adopted the coordinate descent algorithm to solve the 

regularized problem. If we write =
1
2 

V

W X  X  and =
1
2

V

 W z y , only 
one bj is changed at each time, while the other parameters ( )k k jb ≠  
stay the same.

The lasso penalized logistic regression model is implemented in 
MESH to investigate the “redundancy” and “relevancy” properties 
between features and fault patterns, thereby identifying a sparse set 
of sensitive predictors for fault diagnostics. This model was evalu-
ated in our previous study, and the experimental results showed that 
more than 60% of features had the KS statistic greater than the 
critical value 0.17, indicating significant differences between control 
and fault conditions. Furthermore, the lasso-penalized logistic 
regression model yields a superior accuracy of 97.13%, with a par-
simonious set of 81 features. The proposed approach facilitates the 
modeling and characterization of high-dimensional nonlinear pro-
files and provides effective predictors for real-time fault detection, 
thereby promoting the understanding of fault-altered spatiotemporal 
patterns in the complex cardiovascular systems.
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9.3.3.  Stochastic network modeling and online diagnosis

A remarkable feature of MESH is its information-processing capabil-
ity to perform spatiotemporal recognition of disease patterns using 
3D trajectories of cardiac electric signals. As shown in Fig. 9.6, there 
is spatiotemporal dissimilarity between the 3-lead VCGs of MI (red 
dashed loops) and HC (blue solid loops) subjects. The quantification 
of such dissimilarity will provide a great opportunity for the identi-
fication of cardiovascular diseases. However, it is challenging to 
measure the spatiotemporal dissimilarity between two functional 
signals in both space and time. Due to phase shift and discrete sam-
pling, two VCG signals can be misaligned, for example, both signals 
show a typical pattern and yet there are variations in shape, ampli-
tude, and phase between them. In the clinical practice, various meth-
ods are developed to measure the dissimilarities between misaligned 
signals. Figure 9.7 illustrates some of them using simple two- 
dimensional (2D) ECG signals. To compare the ECG signals (blue 
and red), the intuitive way is to directly take the difference between 
them (see Fig. 9.7a). As such, the difference may be huge even for 
similar signal patterns because of the misalignment. For example, the 
QRS wave (ventricular depolarization) of the blue ECG may be com-
pared to the P wave (atrial depolarization) of the red ECG, which 

Vz

Vy

Vx

Figure 9.6.  Spatiotemporal VCG signals of control (blue/solid) and diseased 
 subjects (red/dashed).
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generates misleading results. For years, physicians used offset-based 
alignment to improve the solution. In other words, R peaks from 
two ECGs are first aligned together and then take the difference (see 
Fig. 9.7b). In this way, the ventricular depolarization of two subjects 
are compared together, but the atrial depolarization (P wave) and 
ventricular repolarization (T wave) are still misaligned. Finally, 
dynamic time warping [26, 27] is a viable method that may help 
optimally align two ECG signals (see Fig. 9.7c). Such an alignment 
is critical to compare the corresponding electrical activity of heart 
chambers. For example, we are comparing the ventricular depolari-
zation (i.e., QRS complex) for two subjects, as opposed to the incor-
rect comparison between atrial depolarization (P waves) from one 
subject and ventricular depolarization from the other subject.

Importantly, the first step of stochastic network modeling is to 
implement our dynamic spatiotemporal warping approach to 
measure the dissimilarities between space-time functional record-
ings [3, 28]. As opposed to traditional time-domain warping (see 
Fig. 9.7c), spatiotemporal warping is innovatively created to solve 
the problem of misalignment in both space and time. As shown in 
Fig. 9.8, P, QRS, and T loops are aligned for two subjects in both 
space and time. Notably, little work has been done to measure the 
differences between VCG loops by means of dynamic time warping. 
However, 3-lead VCG signals are analogous to the voice from the heart. 

(a) (b) (c)

Figure 9.7.  Measuring dissimilarities between misaligned ECG cycles: (a) Direct 
difference, (b) Offset based alignment, and (c) Dynamic time warping.
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Our algorithm is the first of its kind to utilize space-time warping of 
VCG signal patterns for the identification of disease patterns and has 
been granted two patents [29, 30].

Given two 3D VCG signals 
���

1( )tv  and 
���

2( )tv , the time-normalized 
spatial distance between 

���
1( )tv  and 

���
2( )tv  is calculated as 

∈
-∑

��� ���
1 2( , )
( ) ( )

i jt t p i jt tv v  by alignment p. The warping path p(i, j) con-

nects (1, 1) and (N1, N2) in a 2D square lattice as well as satisfying 
constraints such as monotonicity condition and step size condi-
tion. To find the optimal path, an exhaustive search of alignment 
path is intractable and computationally expensive. However, this 
problem is solved efficiently using dynamic programming (DP) 
methods. The DP algorithm is started at the initial condition: 

= = -
��� ���

1 1 2 1(1,1) (1,1) ( ) ( )g d t tv v  and the warping window - <| |i j r . 
The algorithm is searching forward as follows:

 

+ 
 = - - +
 

- + 

( ,  – 1)  ( ,  )

( , ) ( 1,  1)  ( ,  ) 

( 1,  )  ( ,  ) 

g i j d i j

g i j min g i j d i j

g i j d i j

 

Figure 9.8.  Spatiotemporal alignment of 3-lead VCG signals [3].
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Finally, the time-normalized spatial distance is calculated as 
 follows:

 ( ) ( )1 2
1 2

1 2

,
,

g N N

N N
∆ =

+

��� ���
v v  

where N1
 and N2 are the length of 

���
1( )tv  and 

���
2( )tv , respectively. The 

( )1 2,∆
��� ���
v v  represents the spatiotemporal dissimilarity between two 

multidimensional functional recordings. Therefore, disease-altered 
characteristics of 3-lead VCG signals are obtained in the warping 
matrix. 

However, it may be noted that the warping matrix itself cannot 
be used as features for the identification of disease properties in 
classification models. In addition, the measure of Euclidean dis-
tance is not directional and can mix the distances that are equal in 
magnitudes but along different spatial directions. A novel method 
needs to be developed to transform the warping matrix into feature 
vectors that preserve the warping distances among functional 
recordings. The spatial embedding method represents the func-
tional recordings as the points in a high-dimensional space. These 
points can be used as feature vectors that recover not only the 
distance matrix but also directional differences between functional 
recordings [28].

This is similar to a network problem, that is, how to reconstruct 
the location of nodes in a high-dimensional space if the node-to-
node distance matrix is known. As shown in Fig. 9.8, a network 
comprises a number of nodes that are connected by edges. Each 
node stands for an individual component in the system, and the 
edges show the relationship (e.g., distances or causal relationships) 
between nodes. As given in Fig. 9.9a, assume the distance matrix ∆ 
for five nodes is known. If the network is reconstructed in the 3D 
space, this is analogous to optimally identify the coordinate vector 

= = …1 2 3  ( , , ),   1, 2,  ,5i i i ix x x ix  for five nodes that can preserve the 
distance matrix ∆. As shown in Fig. 9.9b, all the nodes and their 
connections preserve the dissimilarities matrix ∆. The matrix D is the 
pairwise distances between reconstructed nodes in the 3D space. 

b2922_Ch-09.indd   232 8/28/2017   8:44:59 PM

 



b2922 Stochastic Modeling and Analytics in Healthcare Delivery Systems“6x9” 

 9. Internet of Hearts — Large-Scale Stochastic Network Modeling 233

It may be noted that we are bridging from functional signals to the 
distance matrix to feature vectors (nodes in the network). The fea-
ture vectors will approximately preserve the distance matrix ∆ 
between functional signals.

Let us assume that δij denotes the dissimilarity between ith and jth 
functional recordings in n × n warping matrix ∆, xi, and xj denotes 
the ith and jth feature vectors in a high-dimensional space. Then, the 
objective function of feature embedding algorithm can be formulated 
as follows: 

( )δ
<

- - ∈∑min ;  ,  [1, ]i j ij
i j

i j nx x

where ||  || is the Euclidean norm. To solve this optimization prob-
lem, the Gram Matrix B is firstly reconstructed from the n × n dis-
tance (dissimilarity) matrix ∆:

 ( )21
  

2
B H H= ∆-  

where the centering matrix H = I - n-111T and 1 is a column vector 
with n ones. The ∆(2) is a squared matrix and each element in ∆(2) is 

(a)

(b) (c)

Figure 9.9.  (a) Original distance matrix ∆, (b) reconstructed network and nodes in 
the 3D space, and (c) reconstructed distance matrix D [3].
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2
ijδ  (i.e., the squares of δij in the matrix ∆). The element bij in matrix 

B is:

 
2 2 2 2

2
1 1 1 1

1 1 1 1
 

2

n n n n

ij ij ik kj gh
k k g h

b
n n n

δ δ δ δ
= = = =

 
= - - - + 

  
∑ ∑ ∑∑  

It is known that the Gram Matrix B is defined as the scalar prod-
uct B = XXT, where the matrix X minimizes the aforementioned 
objective function. The Gram Matrix B can be further decomposed 
as T TB V V V V= Λ = Λ Λ , where V = [v1, v2, … , vn] is a matrix of 
eigenvectors and Λ = diag (λ1, λ2,..., λn) is a diagonal matrix of eigen-
values. Then, the matrix of feature vectors is obtained as  .X V= Λ  
The algorithm embeds each functional recording as a feature vector 
in the d-dimensional space (d = 2, 3, 4, …).

To this end, a network is optimally constructed in the high-
dimensional space. Notably, such network is not static. It is a 
dynamic network that contains both within-a-patient and between-
patient stochastic behaviors. For example, each cycle of the 
10-second ECG signal from an individual patient (see Fig. 9.1a) is 
represented as a node in the network. It may be noted that the 
node location is changing over time due to the cycle-to-cycle sto-
chastic dynamics. As shown in Fig. 9.10, network nodes are located 
closely when ECG cycles have similar morphology. However, when 
there is a significant change, for example, cycle #6, the node moves 
far away from the previous cycles. Such stochastic network reveals 
the cycle-to-cycle dynamics and provides physicians useful informa-
tion pertinent to the underlying changing of cardiac conditions of 
an individual patient.

Figure 9.11 demonstrates the stochastic network for different 
patients. Like Fig. 9.10, two nodes are distributed closely when two 
patients share similar cardiac conditions. The positions of nodes are 
changing if cardiac conditions vary with respect to time. For exam-
ple, when patient P1 also gets myocardial infarction symptoms as P3, 
the corresponding node will move toward P3. As such, physicians are 
quickly alerted and are able to deliver life-saving therapies in time.
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Figure 9.10.  Stochastic network for monitoring cycle-to-cycle dynamics of an 
individual patient.

The proposed stochastic network model can be readily used for 
online diagnosis. As shown in Fig. 9.12, when a new VCG recording 
is presented, the pattern dissimilarity will be measured against the 
database of N patients. Then, a new row and column will be obtained 
in the warping matrix, and a new feature vector will be embedded in 
the high-dimensional space. Finally, the classification model will pre-
dict cardiac conditions with this feature vector [31].

However, the large number of patients in MESH poses great 
challenges for real-time analytics and management. On one hand, 
MESH is aimed at integrating patients all over the world to reduce 
the risk of cardiac diseases and improve the quality of life. More 
than 17.5 million people die from cardiac diseases every year, 
and this number is expected to grow to over 23.6 million by 2030. 
It is extremely expensive to process millions and billions of patients 
and provide feedbacks within a reasonably short time. On the other 
hand, MESH is aimed at long-term monitoring of patients’ cardiac 
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Figure 9.11.  Stochastic network for monitoring patient-to-patient dynamics.
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conditions for personalized cardiac care. Continuous monitoring of 
an individual patient generates a large amount of data when per-
formed in hours, days, months, and years. There is lack efficient 
tools to handle such ever-increasing volume of data. 

Therefore, we further have developed a new map-reduce frame-
work in MESH for large-scale computing. That is, we have decom-
posed the large-scale stochastic network optimization problem into 
local networks and resolved them in a parallel manner [32]. By 
applying stochastic gradient descent, local networks are optimally 
casted. Then, the global stochastic network is built by optimally 
piecing together the local ones. Notably, the proposed strategy 
facilitates the implementation of parallel computing on a multitude 
of processors and significantly improve the computation efficiency of 
the MESH system.

9.4.  MESH Design

As shown in Fig. 9.13, the proposed MESH system integrates wear-
able ECG sensors and mobile computing with network analytics for 
smart heart health management. The wearable sensing device will 

Figure 9.12.  The flowchart of stochastic network modeling and online diagnosis.
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continuously monitor cardiac conditions. Patients will be able to 
install the MESH App onto their smartphones and tablets to register 
and get connected to the system. After proper authorization, physi-
cians will be able to access patients’ data, review results in each 
analytical module, and communicate with patients and other physi-
cians for timely cardiac care.

In the past decade, the Internet of Things (IoT) was hailed as a 
revolution in health care. The IoT system deploys a multitude of 
wireless sensors, mobile computing units, and physical objects in an 
Internet-like infrastructure. This provides an unprecedented oppor-
tunity to realize a smart automated system that consists of medical 
devices and analytical modules to advance connected cardiac care. 
Connected care has been advocated by the Office of the National 
Coordinator for Health Information Technology for years. As 
opposed to traditionally isolated care, a highly connected cardiac 
care system resembles a large-scale network, which seamlessly con-
nects physicians, patients, devices, databases, and other entities. 
Optimizing the connectivity in cardiac care provides a data-rich 
environment for medical decision-making, enables smart cardiac 
telehealth, facilitates personalized patient-centered care, and dimin-
ishes care disparities. 

Figure 9.13.  The overall framework of the designed MESH prototype [32].
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However, most of the existing products focus on wearable sens-
ing and fitness applications while being limited in the capability for 
cardiac sensing and clinical applications. Very little work has been 
done to develop advanced IoT technologies for smart monitoring 
and maintain heart health. Therefore, the proposed MESH system is 
developed to fill this gap. MESH is a new IoT technology specific to 
the heart, and it is aimed at realizing the next-generation of the car-
diac mobile health system (namely the Internet of Hearts), proposed 
by our research group. 

9.4.1.  Wearable sensing device

The existing electrodes are foam-made, fixed-shape, and attached to 
the skin by electrolyte gel. They do not adhere well to the irregular 
body surface, thereby, resulting in artifacts during body movement. 
In this study, we have exploited microdevices assembled on stretch-
able substrates to develop a new generation of ECG sensors that can 
stretch, fold, twist, and wrap around the complex surface of the skin. 
Furthermore, we embedded wireless module (e.g., Bluetooth LE) into 
the ECG sensor. Thin film circuits of the wireless module were pat-
terned on the soft material so that they can accommodate to large 
deformations. Moreover, the skin-like substrate architecture quanti-
tatively reproduces mechanics of the non-linear property of the real 
skin. This, in turn, significantly improved the wearability and facili-
tate unobtrusive long-term monitoring. As shown in Fig. 9.14a, 
stretchable sensors have been developed to measure EMG signals in 
the state of the art [33, 34]. Also, we have developed an ECG sensing 
board with Bluetooth LE module (Fig. 9.14b) to wirelessly transmit 
sensing data to mobile devices [13].

Furthermore, the sensor-skin contact can be oftentimes influ-
enced by sweating, motion, among other factors. Thus, the contact 
is not only static but also dynamic. Notably, the performance of 
ECG sensors with microelectrodes deteriorates significantly in 
dynamic contact. As such, the segments of ECG signals or even an 
entire lead can be missing. In other words, it is not uncommon to 
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encounter sensor failures in body area sensor networks. For  example, 
a subset of sensors often loses contact with the skin surface in ECG 
sensor networks because of body movements. Maintaining strict skin 
contacts for hundreds of sensors is not only challenging but also 
greatly deteriorates the wearability of ECG sensor networks. 
Therefore, we have proposed a novel strategy, named stochastic sen-
sor network, which allows a subset of sensors at varying locations 
within the network to transmit dynamic information intermittently 
[35]. Notably, the new strategy of stochastic sensor networks is gen-
erally applicable in many other domains. For example, a wireless 
sensor network is often constrained by finite energy resources. 
Hence, optimal scheduling of activation and inactivation of sensors 
is imperative to realize long-term survivability and reliability of sen-
sor networks. This information-theoretic approach is integrated with 
sparse particle filtering to impute missing ECG segments and com-
pensate missing lead(s). In our previous study, we implemented 
sparse particle filtering for modeling space-time dynamics in an car-
diac activity with stochastic sensor networks. The wearable sensing 
device of MESH will yield an efficient hardware-software solution to 
ensure the extraction of sufficient diagnostic information from ECG 
sensor networks.

9.4.2.  MESH database

An advanced cloud database, that is, MESHDB, is developed to 
store user data of the proposed MESH system. The cloud platform 

(a) (b)

Figure 9.14.  (a) Stretchable bio-sensors [33, 34], (b) Wireless ECG sensing board.

b2922_Ch-09.indd   240 8/28/2017   8:45:05 PM

 



b2922 Stochastic Modeling and Analytics in Healthcare Delivery Systems“6x9” 

 9. Internet of Hearts — Large-Scale Stochastic Network Modeling 241

optimally allocates the memory among the cluster of servers, which 
enable nearly unlimited space for storage. At the same time, the 
MESH system will protect the information stored in the MESHDB. 
The objective of data management is to specifically focus on optimal 
management and handling of cyber security issues of cloud database. 
Notably, the MESH system will only allow the use of MESH app 
(please refer to Section 9.4.3 for details) and the cloud database from 
registered users. The users will also be allowed to add notes for each 
patient and send alert information to the care group. In addition, 
MESH is designed to connect to ECG data management systems 
hosted in each hospital. For example, GE MUSE system is a central 
database that stores all the patients’ data and information in the 
cardiology unit at hospitals. The GE MUSE system provides rich 
information on cardiology assessments, making administrative 
workflow and sharing and securing information. 

The MESH technology will realize smart and connected cardiac 
health, once it is available to everyone in the world. It is well-known 
that the large-scale database is critical to big data analytics, which 
has the potential to transform the next-generation health care [36]. 
Big data presents a “gold mine” of this era (21st century). Toward 
this end, cardiac health care in the future is envisioned to be equipped 
with the mobile technology, mobile-based data acquisition and cloud 
database and big data analytics. With new wearable ECG sensing 
devices, users can directly collect and upload cardiac signals to the 
MESH system. Each recording will be automatically analyzed by 
MESH and stored in a cloud database. The more users involved, the 
bigger the database is, the more powerful the MESH will be. 
Notably, low-dimensional embedding of a large-scale network can 
include millions of patients around the world.

Figure 9.15 shows the data flow in the MESH system. Note the 
arrows indicate the direction of data flows. Primary physicians and 
care providers in hospitals and home care services have access to 
their assigned patients in the GE MUSE database hosted by hospitals 
and home care facilities, as well as in the cloud database hosted by 
MESH. They can review real-time cardiac recordings for analysis 
and send back instant feedbacks and care alerts. This will greatly 
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promote early identification and diagnosis of life-threatening cardiac 
events (e.g., heart attacks and cardiac arrest). Furthermore, if the 
patient wants to seek diagnosis results and treatment advice from 
cardiac experts all around the world, the MESH system can also 
enable remote physicians to review and analyze the patient’s data. 
In this way, better treatments of cardiovascular diseases can be 
achieved by teamed efforts from physicians with different background 
and expertise. Individual users worldwide will be able to monitor 
their cardiac electric activity in real time, upload data into the cloud 
database, and consult the physician online. It should be noted that 
MESH realizes the patient-centered cardiac care anywhere and any-
time with the mobile technology and the internet. It is expected that 
the MESH system will provide an indispensable enabling tool for real-
izing smart health and wellbeing for the population worldwide.

9.4.3.  MESH smartphone application

We have developed a mobile application to implement partial func-
tions of the proposed MESH system. This application is developed 

Figure 9.15.  Database design of the proposed MESH system.
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in the world’s most widely used iOS mobile operating system (which 
is compatible with iPhone, iPad, and iPod Touch devices). It enables 
physicians to access the patients’ ECG signals in real time, remotely 
interact with patients, and rapidly respond to life-threatening cardiac 
disorders. 

Screenshots of designed MESH application are shown in Fig. 9.16. 
Figure 9.16 guides the user through login and patient selection. First, 
the Login page allows the authorized users to enter their username 
and password to log into the MESH system. This guarantees the 
security of the data stored in MESH and protects the privacy of 
the users. Then, the users such as physicians will be directed to the 
Sites page that lists hospitals and homecare services. The patients’ 

Figure 9.16.  Screenshots of designed MESH APP on iPhone.
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profiles and data are categorized by the hospital or homecare service. 
The user can select one site to list his/her assigned patients associated 
with that site. On the Patients page, all patients associated with the 
selected healthcare site are listed. Patients are organized by their 
categories. If a patient is not shown in the list, the doctor needs to 
go back and select the correct healthcare site. This can be done by 
clicking on the Sites button on the navigation bar.

Figure 9.16d–f demonstrate three major functions of the MESH 
system, that is, dynamic visualization of space-time VCG signals, 
optimal model-based representation, and stochastic network analyt-
ics. On “3D visualization” page, dynamic space-time VCG signals 
are displayed on the upper panel. The red point gives the current 
position of the cardiac vector. The cyan loops record the full history 
pertinent to complete the topological shape of the VCG state space. 
The plot is automatically rotating counter-clockwise on the z-axis. The 
rotation facilitates a 360° view of spatiotemporal signals. 
Spatiotemporal features are updated in real time in the lower panel, 
including the percentage of data points in each of the eight octants, 
and the angle of P, QRS, and T axis. 

On “Model Representation” page, multiple cycles are collected 
from each of the three VCG channels and displayed on the upper 
panel (blue → X channel, yellow → Y channel, and green → Z chan-
nel). The red curves (with large line width) are the basis function 
models obtained from the summation of six adaptive Gaussian func-
tions. It is noteworthy that the models effectively capture the mor-
phology of signals. The parameters of basis functions, including 
center, standard deviation, and weight, are listed in the lower panel 
for basis 1 (B1) to basis 6 (B6).

On the last page, that is, “dynamic network analytics”, 3D visu-
alization of VCG loops are shown in the upper panel. The blue tra-
jectory is from a normal subject, and the red trajectory is from 
myocardial infarction. The yellow indicator moving along the VCG 
cycles represents the current cycle we are looking at. The plot is 
automatically rotating counter-clockwise on the z-axis, providing a 
360° view of spatiotemporal cardiac patterns. The embedded net-
work is displayed on the lower panel. Nodes are the patients in the 
database: red nodes are myocardial infarction patients and blue 
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nodes are healthy subjects. The yellow node in the network indicates 
the current position of the patient (e.g., Kevin Chamber in this 
screenshot). When the yellow indicator in the upper panel is moving 
along the blue cycles, the yellow node on the lower panel is within 
the group of healthy subjects (i.e., blue nodes). However, when the 
yellow indicator in the upper panel moves into the red cycles, the 
yellow node in the network is switched to the cluster of myocardial 
infarction patients (i.e., red nodes).

9.5.  Discussion

The developed MESH system is aimed at a large market for patient-
centered cardiac care. In 2013, more than 83.3 million American 
adults (>1 in 3) had heart diseases. The increasing prevalence of 
cardiac disease calls for smarter cardiac care services. The growing 
presence of smartphones and tablets provides an unprecedented 
opportunity to advance cardiac telemedicine and realize the smart 
cardiac care anytime anywhere, which is not only responsive but also 
cost effective.

In the NSF I-Corps program, which aimed at developing entre-
preneurial skills to translate research results from academic labora-
tories, we did an extensive marketing research regarding the 
developed MESH system. We interviewed over 100 cardiac patients, 
physicians, and cardiac nurses; identified unprecedented marketing 
opportunities; and found the following:

(1) There is a lack of wireless sensing devices for continuous moni-
toring of multi-channel ECG signals. Existing products focus on 
portable cardiac monitors, which can only monitor a single-
channel ECG and are limited in their ability to facilitate the 
diagnosis of complex cardiac disorders in the clinical practice. 
Furthermore, most of the existing monitors adopt dry elec-
trodes. It is uncomfortable to take daily activity with them, and 
they may result in skin irritation. The proposed MESH system 
is not only able to record hospital-grade multi-lead ECG, but 
also comfortable, flexible, and reliable to facilitate long-term 
continuous monitoring.
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(2) Currently, there is a great shortage of physicians in the United 
States, and this situation will worsen in the next decade. Patients 
with acute cardiac disorders need 24/7 monitoring, but physi-
cians cannot stay in hospitals or with the patients all the time. 
Currently, when doctors are outside hospitals, they ask nurses 
to take pictures of ECG signals and send them through the 
phone. This is apparently not an efficient approach because cer-
tain delays are unavoidable, and the resolution of pictures is 
limited. Equipped with advanced cloud database, the proposed 
MESH system can be ready to help physicians access patients’ 
data anywhere and anytime to give a timely diagnosis and 
medical intervention. 

(3) There is a lack of enabling tools to extract useful information 
from big data that is generated from continuous cardiac moni-
toring. Early identification of disease patterns hinges on 
 information-processing and data mining algorithms. The exist-
ing devices are only capable of extracting simple ECG character-
istics or transferring data to physicians for visual inspection. 
MESH innovatively adopts stochastic network analytics for 
disease pattern recognition. Unlike traditional warping that can 
only be used to align signals in time domain, the proposed 
method is able to quantify the space-time dissimilarities between 
3D trajectories of cardiac signals. One remarkable feature of the 
MESH system is that it considers both within-a-patient and 
between-patient stochastic dynamics for network-based pattern 
recognition of cardiac diseases. This will assist and enable physi-
cians in the decision-making process.

9.6.  Summary

Cardiovascular diseases are the leading cause of death around the 
world. According to WHO, cardiac diseases contribute to more than 
30% of the global deaths each year. Optimal management and treat-
ment of cardiac diseases hinge on the development of advanced car-
diac telemedicine system for the detection of fatal disease patterns in 
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the early stage and timely delivery of life-saving therapies. However, 
the cardiac electrical activity manifests significant stochastic prop-
erties in both space and time. The existing approaches are either not 
concerned with underlying changes of cardiac conditions for an indi-
vidual patient or not capable to effectively differentiate different 
cardiac conditions among patients. There is an urgent need to fully 
address underlying stochastic properties and uncertainties in the car-
diac electrical activity. 

This chapter presents new visualization and data analytics 
tools for stochastic modeling and analysis of cardiac electrical sig-
nals, which advance cardiac telehealth-care service with excep-
tional features such as personalization, responsiveness, and superior 
quality. Specifically, we first developed a spatiotemporal approach 
to capture space-time heart dynamics by displaying the real-time 
motion of 3D VCG cardiac vectors. Then, an optimal model-based 
representation algorithm was developed to facilitate the compres-
sion of cardiac signals and the extraction of features pertinent to the 
disease-altered cardiac activity. Then, a stochastic network model 
was designed for real-time patient-centered monitoring, modeling, 
and analysis of cardiac variations. Finally, we leveraged the devel-
oped algorithms and built the next-generation cardiac mHealth 
system, MESH.

MESH bridges gaps in the current cardiac telemedicine systems 
and serves as an enabling tool to reduce the risk of life-threatening 
cardiac disorders and deliver personalized therapies.

We expect that this chapter will spur further investigations in 
stochastic modeling and analysis of spatiotemporal ECG signals to 
accelerate the discovery of knowledge in cardiovascular research.
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Abstract

In the past decade, computational social sciences have become a 
vibrant research area, partially due to rapidly advanced computer 
simulation tools, such as agent-based social simulation. At present, 
we can simulate complex social systems in detail. One important 
field of study looks at social dynamics that incorporates differences 
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among individual agents and adaptive choice behavior. In this 
chapter, we showcase a recent study on an agent-based social influ-
ence simulation that aimed to investigate the change of individual 
attitudes and the formation of public opinions over time through 
scale-free networks. This simulation study is expected to help 
facilitate the ongoing integration of systems science and behavioral 
and social sciences, which is of tremendous value to tackling 
healthcare challenges.

10.1.  Introduction and Background

Systems science methodologies, such as microsimulation, system 
dynamic modeling, agent-based modeling, social network analysis, 
discrete-event analysis, and Markov modeling, have been increas-
ingly applied in the past decades to help understand complex 
dynamical behavioral and social science processes relevant to health 
problems. The application areas include sociology [1], economics 
[2], social psychology [3–4], and anthropology [5]. These modeling 
methodologies are mainly used to understand connections between 
a system’s structure and its collective behavior over time. Together 
with other novel analytic tools, they can illuminate complex and 
interconnected pathways between the social, economic, and envi-
ronmental causes of poor health. These tools can be used to inform 
and support policy-making and decisions on resource allocation in 
health care.

Among methodologies in computational social sciences, agent-
based modeling (ABM) has gained increasing popularity in recent 
years as it can capture population-level inference from explicitly pro-
grammed, micro-level rules over time and space [6]. ABM builds 
social structures within a simulated population with the use of a 
“bottom-up” approach to investigate social and organizational phe-
nomena [7–9]. With ABM, a complex social system is modeled as a 
collection of autonomous decision-making entities called agents. 
ABM enables the investigation of systems in which (1) individual 
behavior is nonlinear and can be characterized by thresholds, if-then 
rules, or nonlinear coupling; (2) individual behavior exhibits memory, 
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path-dependence, and hysteresis, non-Markovian behavior, or tem-
poral correlations, including learning and adaptation; and (3) agent 
interactions are heterogeneous and can generate network effects. 
Typically, in the execution of an ABM, each agent assesses its own 
situation, makes its rule-based decisions to optimize some payoff, 
and behaves accordingly. With an update on each agent’s situation, 
the system evolves according to the collective update. Repetitive 
(and often competitive) interactions between agents are a key fea-
ture of ABM, which relies on the power of computers to explore 
dynamics out of the reach of pure mathematical models. ABM has 
been applied to investigate complex human systems pertaining to 
sociology [1], stock market [10], epidemics [11], and ancient civili-
zation [12].

In this chapter, we present a study that applies ABM to investi-
gate (1) how individual attitudes toward some contentious issue 
change over time through social influence; (2) how and when public 
opinion may be formed as some collection of individual attitudes; 
and (3) how the formation of public opinion is affected by social 
networking characteristics and the decision rules taken by the indi-
viduals in the network. We have thereby modeled individual agents 
within a social network and simulate social influence processes at the 
population level with the bottom-up approach. We have integrated 
two dimensions into an ABM: the structure of social networks and 
psychologically plausible models of individual decision-making. Our 
study rests on two main categories of assumptions: assumptions 
about individual decision-making and public opinion formation that 
are motivated through psychological models and assumptions about 
opinion diffusion and network structure. Based on these assump-
tions, we design the dynamic model for public opinion and apply 
agent-based simulation to investigate the dynamics numerically and 
its relationship with the model parameters. 

When the public faces contentious issues (e.g., the measles out-
break and vaccine controversy; see DeStefano and Chen [13]), indi-
viduals hold diverse opinions at the beginning. However, the public 
opinion, that is, the opinions of the majority of members and sig-
nificant minorities, is shaped over time through dynamic influence 
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processes in which the opinions of individual members are formed. 
These dynamic processes may have different outcomes: opinions 
may polarize, thus, yielding two large factions or, in other situations, 
a majority may form fast without strong fractionalization. To be 
able to predict better and explain the outcomes of the formation of 
public opinions, it is important to characterize and model public 
opinion dynamics. For general introductions to research on social 
dynamics, see Friedkin [14], Hegselmann and Krause [15], and 
Janssen and Jager [16]. For a review on computational models of 
public opinions and collective behaviors, we refer to Goldstone and 
Jassen [17].

Earlier studies in this area found that public opinion on conten-
tious issues depends on the way autonomous but interdependent 
individuals process information and make decisions on the issues 
[18, 19]. Further studies identified several important individual 
factors that impact public opinion and its formation. First, public 
opinions depend on the distribution of initial opinions held by 
individuals in the system [20]. Second, public opinion is influenced 
by the formation of simple heuristics used by individuals [21–23] 
and the effectiveness of communication approaches [18, 24, 25]. In 
addition, public opinion is affected by the structure of the social 
network and associated environmental factors, including the avail-
ability of authoritative figures on the issues [26, 27]. Our study 
builds on this research by proposing an ABM-based study plat-
form. Our study confirms that public opinion is sensitive to initial 
composition of individual opinions and collective opinions are 
affected by how individuals seek and process information in the 
social network.

In the remainder of the chapter, we will first review the literature 
on applying computational modeling to study social networks, with 
emphasis on the modeling of the dynamics of social contagion and 
interpersonal influence processes. Next, we will present the concep-
tual design of our ABM and discuss its implementation. We will 
report several simulation experiments and provide policy insights 
based on the simulation results. At the end, we will draw conclusions 
and outline our future research.
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10.2.  Computational Models of Social Contagion  
and Influence

There have been many studies on computational modeling of social 
contagion and influence processes. For literature reviews, we refer to 
Smith and Christakis [28] and Christakis and Fowler [29, 30]. 
In general, modeling and characterization of social networks have 
been a vibrant research area for more than two decades. For exam-
ple, systems scientists, back in the 1990s, appreciated the limit on 
describing systems composed of nonidentical elements, which had 
diverse and nonlocal interactions [31, 32]. Such limit hindered the 
advances in many disciplines, ranging from molecular biology 
[33, 34] to computer science [35–37]. The limit laid partly in the 
topology of the systems, as many of them form rather complex net-
works whose vertices are the elements of the system and whose 
edges represent the interactions between them. Complex networks 
also occurred in social science. Social networks typically have verti-
ces representing individuals and organizations and edges represent-
ing the social interactions or connections between them [38]. Social 
networks can vary from small interacting groups (e.g., in a work-
group or students in a classroom) to large-scale communities or 
societies, for which the network topology is largely unknown. What 
is even less known, but perhaps more important, is the dynamical 
and topological stability of the networks.

Traditionally, networks of complex topology have been described 
with the so-called Erdös–Rényi (ER) theory [39] in the literature of 
random graphs [40]. However, in the absence of data on large com-
plex networks, the predictions of the ER theory were rarely tested in 
the real world. Driven by the computerization of data acquisition, such 
topological information is increasingly available, raising the possibility 
of understanding these networks. One noteworthy piece of the work 
in this area is Barbasi and Albert [41]. The authors proposed a net-
work generation algorithm that exploited a common feature inherent 
in many large networks, namely that the vertex connectivity followed 
a scale-free power-law distribution. A network model based on this 
feature reproduced the observed stationary scale-free distributions, 
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which allowed the social science research community to conduct 
model-based large complex network topology study more efficiently.

This line of research became systematic around 2002 when Drs. 
Nicholas A. Christakis, James H. Fowler, and their colleagues 
explored previously unused paper records held by the Framingham 
Heart Study (FHS) [42, 43], a longitudinal epidemiological cohort 
study, to reconstruct social network ties among 12,067 individuals 
over 32 years. An uncommon feature found in the data was that 
numerous attributes of each individual in the network were longitu-
dinally observed. In 2007, Christakis, Fowler, and their colleagues 
began to model social networks computationally (i.e., network 
topology identification and characterization), using the FHS dataset 
[44–48], the National Longitudinal Study of Adolescent Health 
(AddHealth, a public-use dataset with social network information 
on 90,000 children in 114 schools) [49], online social network data 
[50, 51], and de novo data they extracted [52, 53]. The researchers 
also examined various network phenomena with these experimental 
data [54, 55].

Undoubtedly, the FHS data and others offered important insights 
and opportunities for the study of social networks. As the research 
in this area deepened, the relevant investigation was divided into two 
categories: studies of network topology (and its determinants) and 
studies of the spread of phenomena across network ties. The former 
categories include Fowler et al. [56], O’Malley and Christakis [57], 
Christakis et al. [58], Onnela and Christakis [59], Onnela et al. [60], 
and Fowler et al. [61]. In this social-network category, the line of 
work identified the influence of several health determinants on the 
system outcomes, including genetic makeup and other health traits. 
This line of work also investigated the human connectivity in real-
world social networks, based on empirical data.

In this chapter, we are focusing on the latter category, which 
includes analyses of the flows of behaviors and affective states. 
The work on social influence covers several application domains 
and relies on diverse data and modeling approaches. Data sources 
explored in this area include influenza [52], obesity [62, 63], 
smoking [44], alcohol consumption [45], health screening [64], 
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happiness [46], loneliness [47], depression [48], drug use [65], and 
food consumption [66]. Experiments that have been conducted in 
this area include the analysis of the development and dynamics of 
public opinions. In general, this line of work builds on prior research 
on “peer effects” and interpersonal influence by examining data 
from networks containing large cohorts. In this area, we have 
witnessed the fast growth of network statistics, which provides 
viable methodological options. For useful reviews, we refer to 
Wasserman and Faust [38], Jackson [67], Goyal [68], O’Malley 
and Marsden [69], Newman [70, 71], Easley and Kleinberg [72], 
and Kolaczyk [73]. Each of these methodologies focuses on spe-
cific aspects of networks and is, thus, suited for specific situations. 
There is no generic methodology that will best answer every ques-
tion one may want to ask with observational or experimental data. 
Furthermore, the research community needs to address challenging 
issues including the treatment of missing data (such as missing 
nodes, ties, covariates, and waves), sampling issues (design effects 
and incomplete network ascertainment), the computation of stand-
ard errors, and the interpretation of model parameters. A strength 
of agent-based simulations consists in the computational flexibility 
of modeling social network dynamics. However, the computation-
ally efficient procedures and guidelines by which these methods are 
applied for network dynamics modeling and characterization remain 
hot research topics.

In the following section, we showcase an agent-based social 
influence simulation study on public opinion dynamics in scale-free 
networks. 

10.3.  An ABM Approach

The agent-based social influence simulation model aims to analyze 
how each individual’s opinion regarding certain contentious matter 
changes over time in a social network and whether these changes 
lead to the formation of public opinion on the matter. Figure 10.1 
presents a schematic overview of the developed agent-based simula-
tion model.
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In the simulation, we considered a scale-free network, with 
nodes representing individuals and edges indicating connections 
between individuals in the network. Individuals that are directly con-
nected are neighbors. Each individual in the network is assumed to 
be in contact with its neighbors in the network according to some 
criterion, termed contact criterion. This criterion defines with whom 
the individual communicates about the risk of the contentious mat-
ter. Influenced by the communication, each agent updates his/her 
opinion according to some decision rule, which reflects how the 
agent synthesizes the opinions of their neighbors. 

Moreover, we assigned an expertise index to each agent in the 
social network to indicate its expertise on the subject. Individuals 
often adapt opinions of others who are assigned a high expertise 
[74, 75]. We used AnyLogic simulation software (www.anylogic.
com) for the implementation. AnyLogic supports a decentralized, 
individual-centric approach to modeling. It also provides a visual 
language to simplify the development of ABMs. The network used 
to simulate social influence processes was a randomly generated 
scale-free network of 200 agents, with each one of them connected 
to seven neighbors on an average. 

Figure 10.1.  Schematic overview of the agent-based simulation model.
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We used the Barabási–Albert (BA) algorithm [41] to generate the 
network. Scale-free networks are networks that have a power-law 
distribution of number of links connecting to an agent, that is, a 
majority of agents have less-than-average links, while a small frac-
tion of agents are connected to many other agents. Many networks 
in the real world are conjectured to be scale-free, including social 
networks and many kinds of computer networks.

We analyzed the impact of individual decision rules and contact 
criteria on the social influence dynamics. Table 10.1 summarizes the 
decision rules and contact criteria used in this study. These rules and 
criteria describe psychologically viable information processing and 
social influence mechanisms that have been observed across a vari-
ety of different groups and social settings (see e.g., Schwenk and 
Reimer [23]).

Table 10.1.  A summary of the social influence parameters.

Decision Rule Simple Majority (SM) An agent takes the opinion of 
the majority of its neighbors.

Weighted Majority (WM) An agent weights and integrates 
the opinions of its neighbors 
based on their expertise 
index.

Follow the Leader (FL) An agent takes the opinion of 
its neighbor with the highest 
expertise index.

Contact Criterion All Neighbors (AN) An agent seeks opinion from all 
its neighbors.

More Expertise (ME) An agent seeks opinion only 
from those who have higher 
expertise indices.

Initial Opinion 
Distribution

Uncorrelated (UC) The initial opinion of each 
agent is uncorrelated with its 
expertise.

Positively Correlated (PC) The initial opinion of each 
agent is positively correlated 
with its expertise index.
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We assigned identical decision rules and contact criteria to 
all agents. As an additional dimension that has been shown to 
influence the effectiveness of social influence mechanisms, we sys-
tematically varied the assumed expertise of agents (e.g., see the 
follow-the-expert rule, Reimer and Hoffrage [25]). We randomly 
selected a subset of agents to be “experts” and assigned their 
expertise indices, which were higher than the rest of the popula-
tion. Further, we considered two scenarios that specified whether 
each agent’s initial opinion was correlated to its assigned exper-
tise. The first scenario, termed uncorrelated (UC), assumed that 
each agent’s initial opinion is uncorrelated to its expertise index. 
The second scenario, termed positively correlated (PC), assumed 
that each agent’s initial opinion is positively correlated with its 
expertise index. The second scenario was motivated by the 
assumption that expert opinions are often not independent from 
each. Often, the opinions of experts are to some extent correlated 
when one course of action is more appropriate or effective than 
another course of action [22]. 

To initialize the simulation, the initial opinion for each agent was 
generated. At each tick (or generation) in the simulation, all agents 
were activated and updated their state based on a randomly gener-
ated sequence. When an agent was activated, it could take one of the 
two actions: maintaining its opinion or changing it to the opposite. 
The action taken was based on the interaction with other agents 
(as described in the contact criterion) and how the agent formed 
its opinion (as described in the decision rule). We terminated the 
simulation when the percentage of the population holding positive 
opinions oscillated within a threshold or the maximum number of 
the generation was reached. After each simulation replication, we 
recorded the terminal percentages of the population that held posi-
tive opinion and the number of generations. See Fig. 10.2 for a snap-
shot illustration of the simulation execution. For detailed description 
of the system dynamics induced by the contact criteria and decision 
rules as well as the initial individual opinion distribution, we refer to 
the Appendix.
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10.4.  Simulation Results and Discussions

With the agent-based simulation developed, we investigated the 
association between the initial individual opinions and the terminal 
individual opinions, from which we concluded whether stable pub-
lic opinions could be formed in a reasonable amount of time. 
Furthermore, we analyzed the impact of alternative decision rules 
and contact criteria on the social influence dynamics, as well as 
effects of the correlation between agent’s initial opinions and their 
expertise on the subject.

In our numerical studies, there were nine sets of simulation exper-
iments (see Table 10.2). Note that once the agents took the decision 
rule “Follow the Leader,” there was no difference between the two 
contact criteria they might apply since each agent identified the same 
leader from its two different social networks. Hence, we combined 
UC_FL_AN and UC_FL_ME, and PC_FL_AN and PC_FL_ME. 

Figure 10.2.  A snapshot of the simulation execution.
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Table 10.2.  A summary of the test cases.

Case Label

Initial 
Opinion 

Distribution Decision Rule
Contact 
Criteria

Index 
in 

Figures

SM_AN Uncorrelated 
with the 
expertise 
index (UC)

Simple Majority 
(SM)

All Neighbors 
(AN)

(a)

UC_SM_ME More Expertise 
(ME)

(d)

UC_WM_AN Weighted 
Majority 
(WM)

All Neighbors 
(AN)

(b)

UC_WM_ME More Expertise 
(ME)

(f)

UC_FL Follow the 
Leader (FL)

— (h)

SM_AN Positively 
Correlated 
with the 
expertise 
index (PC)

Simple Majority 
(SM)

All Neighbors 
(AN)

—

PC_SM_ME More Expertise 
(ME)

(e)

PC_WM_AN Weighted 
Majority 
(WM)

All Neighbors 
(AN)

(c)

PC_WM_ME More Expertise 
(ME)

(g)

PC_FL Follow the 
Leader (FL)

— (i)

In addition, regardless of how initial opinion distribution was cor-
related with the expertise index, each agent’s social network 
remained roughly the same for the homogeneity among the agents. 
Meanwhile, when “Simple Majority” decision rule and “All 
Neighbors” contact criterion were applied, the expertise index was 
essentially not used in the social simulation dynamics. As a result, 
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the two cases UC_SM_AN and PC_SM_AN achieved the same 
results, with sufficiently many simulation runs. We, thus, combined 
the two cases and simply called them both SM_AN.

In each of the 10 experiment sets, we varied the percentage of 
agents in the network that held a positive initial opinion in favor of 
the subject or contentious action, from 0% to 100% (with 2% incre-
ment). For example, if this percentage was 60%, 60% of agents in 
the network had a positive opinion regarding the contentious mat-
ter at the outset and 40% held a negative opinion. To terminate a 
simulation run, we either stopped the simulation when the system 
reached relative stable state (i.e., percentage oscillation was within 
2% of agents, that is, the number of members with positive opin-
ions stayed within a range of +4 and -4 for 10 consecutive time 
units) or after sufficiently long simulation duration (i.e., 1,000 time 
units) even if the system state continued to oscillate noticeably. For 
each experimental specification, we ran the simulation for 1,000 
replications.

10.4.1.  Simulation results

Figures 10.3 and 10.4 present simulation results. Each figure con-
tains nine subfigures. In each subfigure, the x-axis represents the 
percentage of agents holding positive opinion on the studied subject 
at the beginning of the simulation, and the y-axis represents the per-
centage of agents holding positive opinion at the termination. Each 
subfigure of Fig. 10.3 presents a box plot for each given initial condi-
tion on the x-axis (i.e., percentage of positive opinion). In addition, 
Fig. 10.3 shows the Pearson product-moment correlation coefficient 
to measure the linear correlation between the initial percentage of 
agents holding positive opinion and average terminal percentage 
over the 1,000 replications.

Each subfigure of Fig. 10.4 either reports the time (number of 
time units or ticks in AnyLogic) that it took for the public opinion 
in the social network to stabilize or indicates that the public opin-
ion still oscillated even after a sufficiently long time (i.e., 200-unit 
time intervals). 
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UC_WM_ME

SM_AN

UC_SM_ME 

UC_WM_AN

PC_WM_ME

PC_SM_ME 

PC_WM_AN 

(a)

(b) (c)

PCC = 0.898

(d)

(f)

PCC = 0.984 (e) PCC = 0.913 

PCC = 0.928 PCC = 0.825

PCC = 0.989 (g) PCC = 0.688 

Figure 10.3.  (Continued )
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PC_FL 

UC_FL 

(h) PCC = 0.999 (i) PCC = 0.701 

Figure 10.3.  The correlation between initial and terminal public opinions in the 
nine cases (PCC = Pearson correlation coefficient).

UC_SM_ME 

SM_AN

PC_SM_ME 

UC_WM_AN PC_WM_AN

(a)

(b) (c)

(d) (e)

Figure 10.4.  (Continued )
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Correlation between Initial and Terminal Public Opinions: We 
analyzed the correlation between initial public opinion (x-axis) and 
terminal public opinion (y-axis) over multiple simulation runs. We 
conducted three investigations on how different social influence 
parameters impacted the influence dynamics. 

The first investigation was intended to study the impact of the 
correlation between expertise index and initial individual opinions 
(UC vs. PC), by comparing Figs. 10.3b and c, 10.3d–f and 10.3g, 
10.3h and i. The comparison suggests that the terminal public opin-
ion was more likely to be in favor of the subject when more experts 
on the subject held positive opinion initially. This suggestion can be 
explained by the difference between the Pearson correlation coeffi-
cients (e.g., PCC = 0.98 in case UC_SM_ME vs. PCC = 0.91 in case 
PC_SM_ME). Moreover, in UC cases, the average percentage of 
agents holding positive opinion at the termination exceeds the initial 
percentage, until the initial percentage is above 50% (i.e., a population 

UC_FL
PC_FL

UC_WM_ME PC_WM_ME

(f) (g)

(h) (i)

Figure 10.4.  The public opinion stabilization results in the nine cases.
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is already in favor of the subject at the beginning). In contrary, in PC 
cases, this happens even when there are less than 20%–25% of 
agents holding positive opinions at the beginning. Finally, we com-
pared the variances on the simulated terminal percentage over the 
multiple simulation replications. The comparison suggested that 
noticeable differences only appeared while comparing UC_FL and 
PC_FL.

The second investigation was intended to study the impact of the 
decision rule (SM vs. WM vs. FL) by comparing Figs. 10.3a, b, and h; 
Figs. 10.3d, e, and h; Figs. 10.3a, c, and i; Figs. 10.3a, e, and i. The 
comparison suggests that the relationship between initial and termi-
nal public opinion will look like a stepwise function with the deci-
sion rule of SM, follow a S-shaped curve with WM, and will follow 
a straight diagonal line in the UC cases. SM ignored expertise com-
pletely but aggregated the opinions of all agents contacted in the 
social network, whereas FL took expertise into account and ignored 
the opinions of most agents connected in the social network. This 
implies that in the former cases, the dominant individual opinion 
(i.e., opinion held by more than 50% of the agents) can propagate 
among the agents effectively through the social influence mechanism; 
whereas in the latter cases, the dominant individual opinion cannot 
be magnified for its homogenous distribution among experts and 
nonexperts. In terms of linear correlation between initial and termi-
nal public opinions, there are differences between the UC cases and 
PC cases (e.g., in UC cases UC_SM_AN, UC_WM_AN, and UC_FL_
AN, the PCC value increases from 0.898 to 0.928 to 0.999; in PC 
cases PC_SM_AN, PC_WM_AN, and PC_FL_AN, the PCC value 
decreases from 0.898 to 0.825, 0.701). These differences can be 
explained by the nonlinear social influence from the experts in the 
social network. WM is a hybrid decision rule between SM and FL. 
The results associated with WM were usually between the corre-
sponding SM and FL cases. Finally, we compared the variances in 
the simulated terminal percentage. The comparison suggests that the 
variance is generally small in SM cases but may be larger in WM and 
FL cases when the initial individual opinion is uncorrelated with the 
expertise.
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The third investigation was intended to study the impact of the 
contact criterion (AN vs. ME), by comparing Figs. 10.3a–c with 
Figs. 10.3d–g. The comparison suggests that the terminal public 
opinion is more likely to be linearly related to the initial public opin-
ion when each individual in the social network only seeks opinion 
from people having higher expertise indices. This is particularly true 
when the initial individual opinion is uncorrelated to the expertise. 
In other words, when the social network is close to even split 
between the two sides on the subject, the contact criterion of AN 
tends to help form more unanimous public opinion than the contact 
criterion ME (e.g., see the comparison between Figs. 10.3b and f). In 
addition, we compared the variances in the simulated terminal per-
centage. The comparison suggests that noticeable difference only 
appears while comparing the two cases UC_WM_AN and UC_WM_
ME. Moreover, when the initial public opinion is evenly split, the 
variance in the terminal percentage of holding positive opinions in 
the population is smallest when the contact criterion ME is used; 
moreover, when the initial public opinion is noticeably strong on one 
side, the variance in the terminal percentage is rather high. 

Stabilization of Social Influencing Process and Formation of 
Public Opinion: To a large extent, the stabilization process coincides 
with the variation on the terminal percentage of individuals holding 
the positive opinion on the subject. In the majority of the cases and 
for most of the initial conditions, the public opinion can stabilize 
quickly (i.e., within 20–30 iterations). In few cases and initial condi-
tions, the system continues to oscillate up to the pre-specified limit 
on simulation duration (i.e., 200 iterations). More specifically, sig-
nificant public opinion oscillation only appears in cases where the 
contact criterion is AN (e.g., see Figs. 10.4a, d, and e).

10.4.2.  Discussion on policy implications

Simulation experiments offer valuable insights into facilitating social 
influences for altering individuals’ opinions on contentious topics 
related to health risks. In the following, we use the example of vaccina-
tion intake risk perception to discuss the relevant policy implications. 
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First, it is important to assess individuals’ initial opinions when some 
outbreak has been identified. The current simulation suggests that if 
most of the population already has positive opinions on vaccine 
intake, spending much effort on public health campaigns persuading 
them to undergo vaccination is unnecessary. Within the constraints 
and limitations of the current framework, majority opinions typi-
cally prevail, unless in cases in which agents use an expert-based 
decision rule. If most of the population holds negative opinions 
at the onset, one promising strategy may be to foster the use of 
expertise-based decision strategies among consumers and to target 
expert multipliers and key personnel in social networks and per-
suade them to change their opinions. The simulation study suggests 
that it is important to understand how individuals seek opinions 
from their neighbors in social network and how these opinions are 
processed. 

The results of the presented simulation demonstrate that even a 
small percentage of initial positive opinion of experts may be suffi-
cient to trigger the formation of stable positive opinions among the 
large majority of the population. The percentage of the population 
holding positive opinion is sensitive to the decision rule. If the deci-
sion rule is SM, the relationship between the terminal public opinion 
and the initial public opinion is close to a step function, which 
implies that (1) most populations, after some time, will hold either 
positive opinion or negative opinion and (2) there is a relatively 
sharp threshold, around 50%, for the percentage of initial positive 
opinion. If the decision rule is FL, this relationship is close to a 
straight, linear function, which implies that the percentage of termi-
nal public opinion is similar to that of initial public opinion. If the 
decision rule is WM, the relationship can be best described by a 
sigmoid function, which implies that the percentage of terminal pub-
lic opinion is somewhat between the other two decision rules.

The public opinion in the cohort typically reached the steady 
state in 30–40 decision cycles. The configurations with which the 
public opinion in the population could not quickly reach the steady 
state were those where initially about half of the population held 
positive opinions while the other half held negative opinions.
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10.5.  Conclusions and Future Work

We applied agent-based simulations to capture the dynamics of 
social influence processes after some potentially disastrous events, 
such as a disease outbreak. We simulated and assessed how indi-
vidual opinions were altered and to what extent the public opinion 
was a function of given initial individual opinions. We also meas-
ured how quickly the public opinion was formed. In the model, we 
assumed the topology of a scale-free social network and tested the 
impact of several representative decision rules and contact criteria. 
We also assessed the effect of having initial individual opinions 
positively correlated with the expertise in the social network. The 
main take-home messages are as follows: (1) the distribution of the 
final public opinions are positively correlated with the initial distribu-
tion; (2) the relationship between the distribution of final public 
opinions and initial distributions is systematic but typically not lin-
ear, reflecting social influence processes; (3) under certain circum-
stances (namely, when the majority holds positive opinion), the social 
influence process can quickly alter the opinions for others holding 
negative opinions and, thus, it is not necessary to make huge effort in 
public campaigns for adopting the health intervention (e.g., vaccine 
intake); and (4) when the initial assessment indicates significant obsta-
cle in adopting the intervention, it is critical to influence and alter the 
opinions of certain experts at the beginning of the campaigns. 

One main benefit of our work lies in the suggestion to consider 
infectious disease control immediately following a disease outbreak 
when the disease is relatively unknown to the general public. The 
work may also be translated to the prevention of infectious diseases 
at the endemic stage. For example, research has shown that adher-
ence to measles-mumps-rubella vaccination has been suboptimal 
due to low perceived risk infection and lack of immediate benefit. 
In summary, this work could potentially benefit policy makers in 
making informed resource-allocation decisions on public health 
campaigns for infectious disease prevention and control.

There are several limitations in this work. First, it ignores the 
impact of several social elements, such as social events. Second, it 
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ignores the impact of information filtering techniques in recommen-
dation systems such as mass media. Third, it does not differentiate 
individuals in the social network with heterogeneous decision rules 
and contact criteria, as well as with different risk perceptions and 
efficacy beliefs on the matter of interest. Finally, in the presented 
simulation, individuals in the network are assumed to be static and 
not adaptive in choosing their contact and decision rules during the 
social influence process. Future studies may model individual decid-
ers that adapt their decision and contact rules and heterogeneous 
populations that involve agents using different strategies. 

Appendix

Detailed Description of the Social Influence Dynamics 
Modeling

We consider a social network that contains a set of agents, denoted 
by N. For each agent i ∈ N, we denote N(i) to be the set of agents 
immediately connected to agent i (or say agent i’s neighbors). In 
addition, we associate each agent i with an expertise index, denoted 
by pi. Without loss of generality, we assume this index ranges 
between 0 and 1, inclusively, that is, pi ∈ [0, 1] for all i ∈ N, with 1 
implying the absolute authority on the subject, and 0 implying the 
complete novice on the subject. We let N’(i) ⊆ N(i) be the set of agent 
i’s neighbors whose expertise indices are greater than pi, that is,

= ∈ >'( ) { ( ) | }N j iN i j i p p . 
At any time t >= 0, we denote each agent i’s attitude to be xi(t). 

Let x(t) = (x1(t), … xN(t)). We assume that each agent holds dichot-
omous attitude toward the subject, that is, each agent can only be in 
favor of the subject or against it. We label xi(t) = 1 if agent i’s atti-
tude is for the subject; and xi(t) = 0 otherwise. To specify the initial 
attitude of each agent, that is, xk(0) for each k ∈ N, we further con-
sider two scenarios, depending on whether the initial attitude is 
formed based on the individual’s expertise. If the scenario is IN, we 
generate xi(0) randomly and independently of pi. If the initial atti-
tude is assumed to be positively correlated to the expertise, termed 
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scenario PC, we generate xi(0) with the following procedure. We 
randomly select 20% of the agents to be “experts” and assign their 
expertise indices according to a uniform distribution between 0.8 
and 1. We assign each of the remaining 80% (i.e., nonexperts) an 
expertise index according to a uniform distribution between 0.1 and 
0.5. Note that experts constitute 20% of the entire population. So, 
if the percentage of agents holding positive attitude initially is given 
to be less than 20%, those agents that hold initial positive attitude 
are randomly generated among the experts only. If such percentage 
is given to be greater than 20%, all the agents representing experts 
are assigned with initial positive attitude. Then, some agents from 
the remaining 80% nonexpert population are randomly selected and 
assigned with initial positive attitude. Once we complete the assign-
ment of initial positive attitude, we assign the remainder of the 
population with initial negative attitude.

At time t > 0, we assume that individual attitudes are updated 
following some pre-specified order, denoted by list L. That is, we 
update xi(t) until we have updated the attributes of all entities in S(t) 
preceding i. Even though an agent’s attitude has been updated at 
time t, we assume that it does not influence the agents that are 
updated later (i.e., later in the list L) at time t. The updates are 
simulated in a discrete fashion. Thus, we use integers to index the 
time points at which the system is updated. We present the system 
update algorithm as follows.

Environment Parameters: N(i), pi for all i ∈ N; L; individual 
decision rule and contact criterion that determine the updating 
scheme.

Input: x(t – 1)
Output: x(t)
Step 0: Let x(t) ← x(t - 1) and k = 1.
Step 1: Select the kth agent in L to update and use i to represent 

the label of the agent. Update xi(t) based on one of the following 
updating schemes.

Updating Scheme I: Decision rule is “SM”; contact criterion 
is “AN”:

If 
∈

- ≤∑ ( )

| ( ) |
( 1)

2jj N i

N i
x t  (i.e., among agent i’s neighbors, if more 
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neighbors are against the subject), then xi(t) = 0; otherwise, xi(t) = 1.
Scheme II: Decision rule is “SM”; contact criterion is “ME”:

If 
∈

- ≤∑ '( )

| '( ) |
( 1)

2jj N i

N i
x t  (i.e., among agent I’s neighbors whose 

expertise indices are higher than i’s, if more neighbors are against the 
subject), then xi(t) = 0; otherwise, xi(t) = 1.

Scheme III: Decision rule is “WM”, and contact criterion is 
“AN”:

If 
∈ ∈

- ≤ - -∑ ∑( ) ( )
( 1) (1 ( 1))j j j jj N i j N i

x t p x t p  (i.e., among agent i’s 

neighbors, if the expertise index weighted sum of individual attitudes 
for those against the subject is greater than the weighted sum for 
those for the subject), then xi(t) = 0; otherwise, xi(t) = 1.

Scheme IV: Decision rule is “WM”, and contact criterion is 
“ME”:

If ( )∈ ∈
- ≤ - -∑ ∑' '( ) ( )

( 1) 1 ( 1)j j j jj N i j N i
x t p x t p  (i.e., among agent i’s 

neighbors whose expertise indices are higher than i’s, if the expertise 
index weighted sum of individual attitudes for those against the sub-
ject, is greater than the weighted sum for those for the subject), then 
xi(t) = 0; otherwise, xi(t) = 1.

Scheme V: Decision rule is “FL”, and contact criterion is “AN”:
Let 

( )
arg max j

j N i
j p

∈
=*  (i.e., j* has the largest expertise index among 

agent i’s neighbors), then xi(t) = xj*(t – 1).
Scheme VI: Decision rule is “FL,” and contact criterion is “ME”:
Let 

'( )
arg max j

j N i
j p

∈
=* *  (i.e., j** has the largest expertise index, 

among agent i’s neighbors whose expertise indices are higher than 
i’s), then xi(t) = xj**(t – 1) (Note that this scheme yields the same 
updates as Scheme II. So, we ignore it.)

Step 2: k = k + 1. If k = |N|, STOP, otherwise go to Step 1.
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Abstract

Background: Anthropometric measurements such as weight, height 
(stature), and body mass index (BMI) provide reliable indicators of 
children’s growth. The national standards in USA for these meas-
urements are the 2000 Centers for Disease Control and Prevention 
(CDC) growth charts, which were generated using data from 1963 
to 1994. In this paper, methodologies identical to that of the CDC 
were used to generate growth charts from more recent datasets. 
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These charts, derived from both publically available and hospital 
system datasets, provide a glimpse of the current growth of 
American children. 

Methods: The datasets were from the National Health and 
Nutrition Examination Survey (NHANES) for years 1999 to 2010 
and from NorthShore University HealthSystem’s Enterprise Data 
Warehouse (NS-EDW) for years 2006 to 2012. The weight-for-age, 
stature-for-age, and BMI-for-age percentile curves and the associ-
ated L, M, and S parameters for both boys and girls aged 2–20 
years were generated. A free-standing software program to achieve 
this was also created. 

Results: The weight and BMI percentile curves generated from 
NS-EDW and NHANES data differ substantially from the CDC 
percentile curves, while those for stature do not. The weight and 
BMI of children at each of the percentiles are significantly higher at 
all ages compared with the CDC reference standard curves. 

Conclusion: A software program that generates growth curves 
of any population of children using the CDC method was devel-
oped and successfully applied to two recent datasets. Meaningful 
comparisons between the growth curves generated from these data-
sets, and the CDC’s reference curves were provided. These charts 
provided a visual representation of how dramatically the weight 
and BMI growth curves of today’s children differ from the CDC’s 
reference standard curves.

11.1.  Introduction

Children’s growth curves are very useful and a variety of reference 
curves have recently been developed and published [1–8]. The growth 
curves developed by the CDC are the most widely used ones in USA for 
clinicians to track the growth of children, serving as a reference stand-
ard, upon which a diagnosis of overweight and obesity can be made 
[9]. The curves, which were last updated in 2000, are based on a com-
posite of data collected from five national health and examination 
surveys between 1963 and 1994) and five supplemental data sources 
[9]. Thus, the included data are relatively old and may not reflect the 
rapidly changing demographic trends in the US population. Furthermore, 

b2922_Ch-11.indd   282 8/28/2017   8:45:41 PM

 



b2922 Stochastic Modeling and Analytics in Healthcare Delivery Systems“6x9” 

 11. Growth Curves of American Children Differ Significantly from CDC 283

given the increasing prevalence of obesity, it is not clear whether the 
shape or trajectory described by the CDC curves can be extrapolated 
to describe the growth patterns of children today. It is well known that 
today’s children are heavier than those of prior generations [10, 11]. 
However, it is not clear to what extent the shape or growth trajectory 
of today’s children differs from the reference standard curves [12]. 
The better representation of the current patterns of weight gain 
among children will require more up-to-date growth curves.

The overall purpose of this study is to replicate the methodology 
used by the CDC and apply it to more recently collected sources of 
pediatric growth data using an innovative software program. This 
paper applied the methodology to data collected from a large repos-
itory of electronic health records (EHR) information — NorthShore 
University HealthSystem Enterprise Data Warehouse (NS-EDW) 
[13,14]. NorthShore University HealthSystem is an integrated 
healthcare delivery system that serves patients throughout the 
Chicago metropolitan area [15]. As data from this source may not 
represent American children as a whole, the CDC’s methods were 
also applied to data from the National Health and Nutrition 
Examination Survey (NHANES), carried out between 1999 and 
2010 [18,19]. The prevalence of obesity in USA has been evaluated 
based on the NHANES data [19, 20]. Since CDC curves used data 
collected prior to 1994, the curves from the more recent NHANES 
data represent the current condition of child population in a better 
way. The specific objective here was to identify significant differ-
ences between the growth curves constructed from the two recent 
sources and the CDC curves. This is the first time that a practical, 
software-based strategy applying the CDC’s methodology to data 
collected from clinical sources has been carried out. 

11.2.  Methods

As stated above, the aim of the study was to reproduce the CDC’s 
methodology to create growth charts and apply it to two current 
sources of data: NHANES (1999–2010) and NS-EDW (2006–2012). 
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The methods used to generate the 2000 CDC growth charts were 
described by Kuczmarski et al. [9]. Statistical procedures were 
applied to the observed data in two stages: first, to generate initial 
smoothed curves for selected major percentiles, and second, to gener-
ate the parameters that were used to construct the final smoothed 
curves and additional percentiles. In the smoothing stage, selected 
empirical percentiles were smoothed with a variety of parametric and 
non-parametric regression procedures. In the transformation stage, 
the smoothed curves were approximated using a modified LMS esti-
mation procedure to provide the transformation parameters, λ, m, and 
σ (LMS), and compute additional percentiles and z-scores. The details 
of the statistical procedures, including smoothing (Procedure 1) and 
transformation (Procedure 2), are shown in Appendix A. Discussions 
regarding the performance of the CDC’s LMS transformation [9] and 
the LMS methods by Cole [3–6] are presented [21]. 

11.2.1.  Data sources

The general information of each data source and the corresponding 
charts they generated are summarized in Table 11.1. The timeline of 
the three data sources is illustrated in Fig. 11.1. The information, 
stratified by sex and race/ethnicity for the NS-EDW and NHANES 
datasets, is summarized in the Data Statistics section. A detailed 
description of the CDC dataset is given by Kuczmarski et al. [9].

11.2.1.1.  NorthShore University HealthSystem  
Enterprise Data Warehouse

To enhance the capability of carrying out research using information 
from EHRs, NorthShore University HealthSystem (NS) developed a 
state-of-the-art clinical informatics system, an Enterprise Data 
Warehouse (EDW) [13, 14]. The EDW captures clinical and admin-
istrative data for quality improvement and research. Data from more 
than 400,000 encounters from years 2006 through 2012 are col-
lected [15]. All data available for research are fully de-identified. 
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Table 11.1.  Data characteristics.

Dataset Year Subject Sex Chart 

NS-EDW Data 

NS-EDW 2006–2012 Age:2–20 M,F W,S,BMI 

NHANES Data 

NHANES 1999–2010 Age:0–26 M,F W,S,BMI 

NHANES 1999–2002 Age:0–26 M W 

NHANES 2003–2006 Age:0–26 M W 

NHANES 2007–2010 Age:0–26 M W 

CDC Data 

NHES2 1963–1965 Age:6–12 M,F W,S,BMI 

NHES3 1966–1970 Age:12–18 M,F W,S,BMI 

NHANES1 1971–1974 Age:1–20 M,F W 

NHANES1 1971–1974 Age:2–25 M,F S,BMI 

NHANES2 1976–1980 Age:1–20 M,F W 

NHANES2 1976–1980 Age:2–25 M,F S,BMI 

NHANES3 1988–1994 Age:1–6 M,F W 

NHANES3 1988–1994 Age:2–25 M,F S 

NHANES3 1988–1994 Age:2–6 M,F BMI 

Figure 11.1.  Timeline for data sources.
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11.2.1.2.  National Health and Nutrition Examination  
Survey

The National Health and Nutrition Examination Survey (NHANES) 
is a program of studies designed to assess the health and nutritional 
status of adults and children in USA [16]. The survey combines inter-
views, including demographic, socioeconomic, dietary, and health-
related questions; physical examinations, consisting of medical, 
dental, and physiological measurements; and laboratory tests admin-
istered by highly trained medical personnel [16, 17]. 

11.2.2.  Inclusion criteria

Data from six NHANES national surveys (99–00, 01–02, 03–04, 
05–06, 07–08, 09–10) were pooled to construct growth charts. To 
achieve better precision of empirical percentiles, pooling was intro-
duced to enhance the number of subjects for each age group, thereby 
increasing the stability of the outlying percentile estimates. Only 
data from children and adolescents aged 2 to 20 years were included 
for all data sources. 

11.2.3.  Exclusion criteria

Several exclusions were made prior to data processing. NS-EDW 
data without weight, stature, or BMI information were excluded. NS 
children with less than five weight and stature measurements were 
also excluded. Weights greater than 200 kg and statures greater than 
242 cm were assumed to be outliers due to inaccurate measurements 
or recordings and, hence, were excluded. BMI values less than 6 kg/m2 
or greater than 100 kg/m2 were also excluded. 

Similarly, the NHANES data were first filtered by encounters 
whose ages were within the scope of the study (2–20 years). Then, 
data with missing weight, stature, or BMI information were excluded. 
Weights greater than 200 kg and BMIs greater than 100 kg/m2 were 
also excluded. 
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11.2.4.  Data statistics

NS-EDW data were extracted from the EHR information database. 
The query results after data exclusion were 7,592 boys and 6,878 
girls between the ages of 2 and 20 years, each with a minimum of 
five BMI measurements separated in time. The BMI values ranged 
from 6.7 to 63.1 kg/m2. 

The NHANES data had 62,160 encounters in total, with 
approximately 10,000 encounters for each bi-yearly dataset. After 
the exclusion of missing values, there were 11,820 encounters from 
boys and 11,538 encounters from girls with complete information 
regarding age at sampling, weight, stature, and BMI. The BMI values 
ranged from 7.99 to 66.32 kg/m2. 

To generate the CDC-like growth charts with NS-EDW and 
NHANES data for boys and girls, the statistical procedures using 
custom written computer programs were replicated in R [21]. The 
quantile() function [22] was applied to generate empirically selected 
percentiles, and the lowess() function [23] was applied for locally 
weighted regression. After smoothing, the lm() function [24] was 
used to generate generalized linear regression models for weight-for-
age and BMI-for-age percentile curves, and nls2() function [25] was 
used to construct non-linear regression models for stature-for-age 
percentile curves. To compare to the CDC growth charts, we referred 
to Martino [26], which implemented a function in R to re-create the 
CDC growth charts according to the data provided by the CDC [27]. 
Additional details about the R software programs are available from 
the authors upon request. 

11.3.  Results

The detailed demographic information for the filtered NS-EDW 
and NHANES data are summarized in Tables 11.2 and 11.3, 
respectively. The age distributions of the two datasets are shown in 
Fig. 11.2. Two-sample KS tests were conducted to compare the age 
distribution of the two datasets for boys and girls. Both boys’ and 
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Table 11.2.  Demographic information for NS-EDW data.

Boys Girls 

Encounters 50,775 45,390 

Patients 7,592 6,878 

Race/Ethnicity 

African American 5.9% 5.5% 

American Indian 0.6% 0.7% 

Asian 3.6% 4.5% 

Caucasian 57.8% 57.9% 

Hispanic/Latino 5.0% 4.8% 

Other 27.0% 26.6% 

Measurement

Wt (kg) 7.2–180.1 4.2–163.2 

St (cm) 60.9–241.3 53.0–221.0 

BMI (kg/m2) 6.73–63.11 6.76–56.69 

Table 11.3.  Demographic information for NHANES data.

Boys Girls 

Encounters 11,820 11,538 

Ethnicity 

Mexican American 31.2% 31.8% 

Other Hispanic 6.3% 6.4% 

Non-hispanic White 28.5% 27.9% 

Non-hispanic Black 29.2% 28.5% 

Other multi-racial 4.8% 5.3% 

Measurement

Wt (kg) 9.7–239.4 8.9–174.8 

St (cm) 79.0–204.4 78.0–187.2 

BMI (kg/m2) 11.98–66.32 7.99–62.08 
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girls’ age distributions of the two populations were significantly 
different (p < 0.001). Chi-square tests were conducted to compare 
the sex distribution of the two datasets. The difference between 
the two datasets with respect to sex distribution was significant  
(p < 0.001). 

For each dataset, weight-for-age, stature-for-age, and BMI-for-age 
percentiles were generated separately for boys and girls and compared 
with the 2000 CDC growth curves (see Figs. 11.3–11.8). Furthermore, 
to illustrate the variation trend over years of sampling, the NHANES 
data were separated into three non-overlapping datasets of four years 
(NHANES 99–02, NHANES 03–06, and NHANES 07–10). Five 
weight-for-age growth charts for boys were generated from the 2000 
CDC data, Using the three non-overlapping four-yearly NHANES 
datasets, and 2000 CDC data and NS-EDW 06–12 data, five weight-
for-age growth charts for boys were generated and compared in 
Fig. 11. 9. The curves show an ascending trend from datasets one 
to five. To better illustrate the difference, three selected representa-
tive percentiles (3rd, 50th, and 97th) were compared, as shown in 
Fig. 11.10. 

Figure 11.2.  Age distributions of NHANES and NS-EDW datasets.
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Figure 11.3.  Boys’ weight-for-age (2–20 years).

Figure 11.4.  Boys’ stature-for-age (2–20 years).
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Figure 11.5.  Boys’ BMI-for-age (2–20 years).

Figure 11.6.  Girls’ weight-for-age (2–20 years).
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Figure 11.8.  Girls’ BMI-for-age (2–20 years).

Figure 11.7.  Girls’ stature-for-age (2–20 years).
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Figure 11.9.  Boys’ weight-for-age comparison.

Figure 11.10.  Selected weight-for-age percentiles.
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11.3.1.  Stature-for-age

The comparison of stature-for-age charts of the CDC, NS-EDW, and 
NHANES data for boys and girls show that these curves do not dif-
fer much, i.e., the stature growth pattern of American children has 
been fairly consistent over the past 50 years (see Figs. 11.4 and 11.7, 
where the black curves were generated by the published LMS value 
from the CDC website [27], and the red curves were generated from 
NS-EDW and NHANES datasets). 

11.3.2.  Weight-for-age

The weight-for-age charts from both NS-EDW and NHANES 
datasets (red curves) differ substantially from the CDC data (black 
curves). The curves generated from NS-EDW and NHANES are 
shifted upward, indicating a progressive increase in American chil-
dren’s weight through these years for both girls and boys. The 
upward shifts also became more and more significant with age. 
The accelerating trends for boys’ weight in the NS-EDW and 
NHANES data were similar, while the girls’ weight in the 
NHANES data increased even more significantly than in the 
NS-EDW data (see Figs. 11.3 and 11.6).

11.3.3.  BMI-for-age

The BMI-for-age charts from both NS-EDW and NHANES datasets 
(red curves) also differed from the CDC data (black curves). As pre-
viously mentioned, the children’s stature growth pattern did not 
change much, while the weight growth pattern accelerated substan-
tially. A similar acceleration of BMI is, thus, expected since BMI is 
directly proportional to weight. The shape of the BMI-for-age curves 
of both NS-EDW and NHANES datasets also changed. In child-
hood, BMI typically increased through the first year of life, dropped 
off and declined to a minimum later in childhood, and then increased 
again, as shown in the CDC BMI-for-age charts. This phenomenon 
is known as adiposity rebound (AR) [28, 29].
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However, as shown in the NHANES and NS-EDW curves, there 
was no obvious AR phenomenon for the 95th and 97th percentiles 
of children aged 2 to 20 years. Unlike the CDC data, the nadirs of 
those percentiles were not very obvious. This might partly be due to 
the insufficiency of accurate sampling for children aged 1 to 2 years. 
Furthermore, AR points for other percentiles also shifted to the left, 
which was consistent with the observations for the 95th and 97th 
percentiles (whose AR could be regarded as occurring even before 
the age of 2). 

11.3.4.  LMS statistics

Comparisons with respect to the L, M, and S parameters of weight, 
stature, and BMI data for boys and girls were conducted among 
the three data sources. Figures comparing the L, M, and S param-
eters of the CDC, NS-EDW, and NHANES weight-for-age for boys 
are shown as illustrative examples (see Figs. 11.11–11.13). The 
L parameter is the power in the Box-Cox transformation. Curves of 
L parameters are significantly different, reflecting different degrees 
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Figure 11.11.  L parameters of boys weight-for-age.
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of skewness along ages among the three datasets. The M parameter 
stands for the median along ages. The median weight for boys is found 
to be considerably higher in the NHANES and NS-EDW datasets 
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Figure 11.12.  M parameters of boys weight-for-age.
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Figure 11.13.  S parameters of boys weight-for-age.
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than the CDC. The S parameter stands for the generalized coefficient 
of variation. The shapes of the S curves of the three data sources are 
similar, and the NHANES data show the highest coefficient of vari-
ation, while the CDC data have the lowest. The values of the L, M, 
and S parameters that were generated after transformation stages are 
not shown in detail. 

11.3.5.  Curve analysis

The smoothed percentile curves for boys and girls from the 
NHANES, NS-EDW, and CDC datasets were compared graphically 
as shown in Figs. 11.3 through 11.8. Moreover, attention is drawn 
to the extent of the differences between the shape or growth trajec-
tory of children growing up in recent years and the CDC reference 
standard curves. Tables 11.4 through 11.7 summarize the BMI per-
centile shifts for boys in NS-EDW and NHANES compared to the 
CDC at ages 4, 9, and 15 years. These findings indicate an upward 
shifting trend of percentiles in the two more recent datasets. For 
example, for boys aged 9 and 15 years, the 50th BMI percentile in 

Table 11.4.  BMI percentile shift (Boys): Comparing NS and CDC.

Boys Age 4 Age 9 Age 15 

NS Percentiles CDC Percentile CDC Percentile CDC Percentile 

 3 below 3 10   5 

 5 3 10 10 

10 10 25 25 

25 25 50 50 

50 50 75 75 

75 90 90 90 

85 95 95 95 

90 97 97 97 

95 above 97 above 97 above 97 

97 above 97 above 97 above 97 
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Table 11.5.  BMI percentile shift (Girls): Comparing NS and CDC.

Girls Age 4 Age 9 Age 15 

NS Percentiles CDC Percentile CDC Percentile CDC Percentile 

 3 below 3 10   5 

 5   3 10 10 

10 10 25 25 

25 25 50 50 

50 50 75 75 

75 85 90 85 

85 90 95 95 

90 95 97 97 

95 97 above 97 above 97 

97 above 97 above 97 above 97 

Table 11.6.  BMI percentile shift (Boys): Comparing NHANES and CDC.

Boys 

CDC Percentile CDC Percentile CDC Percentile 
NHANES  
Percentiles 

 3   3 10   5 

 5 5 10 10 

10 10 25 25 

25 25 50 50 

50 50 75 75 

75 85 90 85 

85 95 95 95 

90 97 97 97 

95 above 97 above 97 above 97 

97 above 97 above 97 above 97 

Age 4 Age 9 Age 15 
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the NS dataset is located around the 75th BMI percentile in the 
CDC dataset. Additionally, Table 11.8 shows the age in months 
where the minimum BMI for boys is reached in the CDC dataset, 
and shifts from this standard can be seen in the NHANES and NS 
datasets. In the two more recent datasets, the mimimum BMI for 
each percentile is reached at earlier ages. For instance, at the 90th 
percentile for boys, the minimum BMI occurs at month 57 in the 
CDC dataset, at month 33 in the NHANES dataset, and at month 
27 in the NS dataset. Moreover, Table 11.9 shows the ascending 
trends in the minimum BMI values, comparing NS and NHANES 
data with the CDC data. 

11.4.  Conclusions

The CDC growth curves, which were last updated in 2000, are used 
as a reference standard and are not intended to reflect children’s cur-
rent growth trends. In this study, a software program that generates 

Table 11.7.  BMI percentile shift (Girls): Comparing NHANES and CDC.

Girls 

CDC Percentile CDC Percentile CDC Percentile 
NHANES 
Percentiles 

 3   3   5   5 

 5   5 10 10 

10 10 25 25 

25 25 50 50 

50 50 75 75 

75 85 90 90 

85 95 97 97 

90 97 above 97 above 97 

95 above 97 above 97 above 97 

97 above 97 above 97 above 97 

Age 4 Age 9 Age 15 
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Table 11.8.  Age (months) shift of minimum BMI.

Percentiles 3 5 10 25 50 75 85 90 95 97 

Boys

CDC min 
(months) 

75 75 75 75 69 65 57 57 51 45 

NH min shift 
(months) 

0 0 6 12 12 20 18 24 24 18 

NS min shift 
(months) 

12 12 12 18 12 20 18 30 14 18 

Girls 

CDC min 
(months) 

69 69 69 63 63 57 51 51 39 39 

NH min shift 
(months) 

0 0 0 0 6 12 12 18 6 12 

NS min shift 
(months) 

12 12 12 6 12 12 12 18 12 12 

growth curves using the CDC’s method was developed and success-
fully applied to two other datasets (NS-EDW and NHANES). By 
comparing the CDC’s reference curves to the growth curves from 
more recent datasets, it is confirmed that the CDC curves do not 
accurately reflect the weight or BMI of today’s American children. 
It has been shown that children in the NS-EDW and NHANES 
1999–2010 datasets are heavier at any given age compared with 
children in the CDC dataset. In addition, adiposity rebound [30] occurs 
at an earlier age, or may not even exist, in these two groups of children. 
These findings suggest a progressive fattening of American children, 
and the growth charts generated in the past as standards for measuring 
growth might no longer be applicable to today’s population. 

11.4.1.  Significance

The significance is two-fold. First, this work successfully repro-
duced the CDC’s methodology for the creation of growth curves 
and developed a straightforward algorithm and software program 
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Table 11.9.  Minimum BMI value for each percentile.

Percentiles 3 5 10 25 50 75 85 90 95 97 

Boys

CDC BMI (kg/m2) 13.35 13.63 13.994 14.67 15.40 16.29 16.88 17.38 18.18 19.01 

NHANES BMI  
(kg/m2)

13.53 13.80 14.17 14.92 15.88 16.99 17.67 18.17 18.86 19.34 

NS BMI (kg/m2) 13.53 13.81 14.21 14.95 15.83 16.90 17.51 17.94 19.09 19.97 

Girls

CDC BMI (kg/m2) 13.04 13.31 13.66 14.33 15.14 16.15 16.85 17.46 18.36 18.93 

NHANES BMI  
(kg/m2)

13.22 13.46 13.90 14.63 15.61 16.79 17.62 18.17 19.14 19.46 

NS BMI (kg/m2) 13.19 13.44 13.89 14.62 15.61 16.67 17.34 17.87 18.55 19.35 
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that can be applied to any population of children whose growth 
data (weight, height, etc.) had been recorded during ages 2–20. The 
CDC curves do not necessarily reflect normal growth in sub-popu-
lations of children, and this is important as USA is a racially and 
ethnically diverse country. Secondly, meaningful comparisons 
between today’s children and the children whose cross-sectional 
data make up the CDC curves have been provided. For example, 
based on NS-EDW data, the 50th percentile of BMI-for-age for girls 
is nearly equivalent to the 80th percentile on the corresponding 
CDC curve. These observations provide a unique way to quantify 
the scope of the obesity epidemic among children. 

11.4.2.  Long-term goal

The eventual goal of this study is to incorporate this program into 
EHR software. This tool is aimed to provide clinicians access to the 
overall profile of a certain population using the data collected from 
EHRs, allow clinicians to identify growth patterns in the population 
and compare with the national standards, and help clinicians deter-
mine the growth status of individual children in their practices. It is 
anticipated that such a tool will be useful for clinical practice, ben-
eficial to both clinicians and parents, and helpful in conducting the 
study of children’s growth patterns. 

11.4.3.  Limitations

NHANES data were based on accurate measurements recorded by 
trained researchers. NS-EDW data were collected in clinical settings 
and may be less accurate. Given that, the CDC methodology uses 
cross-sectional data, the creation of growth curves based on longitu-
dinal data collected from NS-EDW is under investigation. NS-EDW 
data were largely collected from children in an economically 
advantaged region and may not be representative of children in 
USA. However, the data were found to be similar to that of more 
recent NHANES surveys.
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advance CTS cancellation policy, 
87

agent-based modeling, 254
agent-based simulation model,  

170
aging population, 140
appointment scheduling in  

outpatient clinics, 3
areas of improvement, 33, 35

Bayesian estimation, 153
Bayesian survival analysis, 138
best-fitted distributions, 41
binary classification, 138
Body Mass Index (BMI), 281, 286, 

287, 289, 294, 295, 297, 299, 
300, 302

cardiac diseases, 212
cardiac mHealth, 212
care continuum, 137
central operations, 36
claims data, 152
clinical informatics, 284
common and frequently  

encountered diseases, 169

confidence interval on the  
optimality gap, 20

contact criterion, 260, 262
contract decisions, 86
coordinated multidisciplinary  

process, 117
coverage within a target time,  

33

decision rules, 255, 260, 261, 263, 
272

deployment of SMUR teams, 46, 
48

design and operational  
changes, 33

discrete event simulation (DES), 
32, 33, 51, 194

discrete event simulation model, 
121

discrete-event simulation  
model, 5

dynamic factors, 172

electronic health records (EHR), 
283, 284, 287, 302

emergency department, 57
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emergency medical services (EMS), 
32, 33

end-stage liver disease (ESLD), 190
expertise, 260, 263, 272
external operations, 38

factorial design, 58, 72, 74, 80

growth curves, 282, 283, 289, 
299, 300, 302

healthcare delivery systems, 33
hierarchical healthcare systems, 

168
hospital choice behavior, 169
hospital readmission, 138
hospital selection, 169

IDEF0 method, 57, 62, 80
impeding processes, 124
individual heterogeneity, 151
Internet of Hearts (IoH), 212
Internet-of-Things (IoT), 211

joint patient assignment, 97

large-sized hospital, 59
liver transplantation, 190
long-term care, 150

major accident situations, 57, 61, 
62, 68–72, 77, 79, 80

mHealth, 213
Model for End-Stage Liver Disease 

(MELD), 190
modeling and simulation, 57

network analytics, 212
normal situation, 57, 67, 78

obesity, 190, 282, 283, 302
open access, 3
optimality gap, 20
outpatient cost, 183
overbooking, 3
overcrowded ratio, 180

patient appointment scheduling, 2
patient assignment control policy, 

86
patient no-show, 7
pre-hospital care, 31, 32, 46, 52
proportional hazard model, 201

reducing dispatching time, 49
response time, 32, 33, 43, 45, 46, 

49
responsibility of a pharmacist,  

120

sample average approximation 
(SAA) method, 11

service quality, 183
SIMIO, 58, 66, 71, 72, 79, 80
social contagion and influence, 

257
social networks, 254–260, 264, 

265, 272
stochastic mixed integer program, 
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stochastic modeling, 212
superconvex, 103
supermodular, 102
surgery scheduling, 11
survival outcomes, 192

time-to-transition, 138
transportation work, 121
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travel time matrices, 42, 45
two primary parallel processes, 118

United Network for Organ 
Sharing (UNOS), 190

unobserved factors, 152
utility function, 170

“what-if” analysis, 124
without directly assigning patients 

to RTS, 107
workflow of a social worker/case 

manager, 120
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