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This book is dedicated to the many pioneers of smooth muscle 
research, especially my mentor, colleague and friend, Dr. Richard A. 
Murphy, to current investigators who have brought unique insight 
into this complex field of endeavor, and to future investigators who 
we hope will solve the numerous important questions that remain.
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Chapter 1

Introduction

Chi-Ming Hai

Department of Molecular Pharmacology,  
Physiology and Biotechnology,  

Brown University Providence, Rhode Island 02912, USA 
chi-ming_hai@brown.edu

This book covers core concepts in the structure and function of 
vascular smooth muscle cells in health and disease. Supplemental read-
ing may be drawn from the extensive number of references listed at 
the end of each chapter. Vascular smooth muscle cell is the major cell 
type in blood vessels. Dysfunction of vascular smooth muscle cells is 
an important cause of vascular diseases — for example, atherosclerosis, 
hypertension, and circulatory shock. Vascular smooth muscle cells are 
phenotypically plastic, capable of switching between two major  
phenotypes — contractile/differentiated phenotype and invasive/
proliferative phenotype — in response to environmental clues. This 
book is organized in three sections. Section I (chapters 2 to 4) addresses 
the structure and function of the contractile/differentiated phenotype 
of vascular smooth muscle cell. Section II (chapters 5 and 6) addresses 
the developmental basis of vascular smooth muscle cell phenotype and 
structure and function of podosomes (invasive organelles) in the inva-
sive/proliferative phenotype of vascular smooth muscle cell. Section III 
(chapters 7 to 9) addresses the role of vascular smooth muscle cell 
dysfunction in three vascular diseases — atherosclerosis, hypertension, 
and circulatory shock. 
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1.  Section I (Chapters 2 to 4) 

Structure and Function of Contractile/Differentiated Phenotype 
of Vascular Smooth Muscle Cell. In Chapter 2, Dr. Thomas 
Eddinger discusses the structure of blood vessel and contractile phe-
notype of vascular smooth muscle cell at multiple layers of organiza-
tion — blood vessel, smooth muscle cell, contractile filaments, 
cytoskeleton, membrane associated proteins, nucleoskeleton, regula-
tory proteins, organelles, and extracellular matrix. Contractile fila-
ments include thin and thick filaments, and the associated proteins 
and isoforms — for example, tropomyosin, myosin heavy chain and 
light chain isoforms. Cytoskeleton includes actin, intermediate fila-
ment (vimentin and desmin), microtubules, and their associated pro-
teins — for example, plectin, filamin, cadherins, and catenins. 
Regulatory proteins include tropomyosin, caldesmon, calponin, myo-
sin light chain kinase and myosin light chain phosphatase. Organelles 
include sarcoplasmic reticulum and nucleus. Dr. Eddinger concludes 
his chapter by posing some unanswered questions on vascular smooth 
muscle structure and function. 

In Chapter 3, Dr. Paul Ratz discusses receptor signaling mecha-
nisms for vascular smooth muscle contraction and relaxation. Dr. Ratz 
first provides an overview of the classification of smooth muscle cells 
into fast, phasic and slow, tonic subtypes, and their differential muscle 
mechanics, intracellular [Ca2+] regulation, and cell signaling. He then 
discusses extracellular stimuli (neurotransmitters, hormones and local 
mediators) that regulate smooth muscle contraction and the canonical 
control of smooth muscle contraction through regulation of myosin 
light chain phosphorylation. In particular, he discusses the phospho-
rylation of myosin light chain by Ca2+, calmodulin-dependent myosin 
light chain kinase and the modulation of Ca2+-sensitivity of myosin 
light chain phosphorylation by myosin light chain phosphatase. He 
further details the roles of small GTPases (rac and rhoA), rho-activated 
kinase (ROCK), calmodulin-dependent kinase II (CaMKII), mitogen 
activated kinase (Erk), and PKC in the regulation of myosin light 
chain phosphorylation and contraction. He concludes the chapter by 
discussing the function of multiple phosphorylation sites of myosin 
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light chain and non-canonical myosin light chain kinases in the 
regulation of smooth muscle contraction.

In Chapter 4, Drs. William Cole and Michael Walsh discuss the 
function of actin filament dynamics during vascular smooth muscle 
contraction. Drs. Cole and Walsh first discuss the contribution of 
vascular smooth muscle contraction to the control of blood flow and 
the concepts of Ca2+-induced vasoconstriction and Ca2+-sensitization 
of vasoconstriction. Specific Ca2+-sensitization mechanisms include 
RhoA, Rho-associated coiled-coil kinase (ROCK), myosin targeting 
subunit of myosin light chain phosphatase (MYPT1) and a 17-kDa 
cytosolic protein (CPI-17). They then discuss recent findings on the 
function of actin polymerization in Ca2+ sensitization of vasoconstric-
tion and signal transduction pathways mediating stimulus-evoked 
actin polymerization. Specific signaling mechanisms include Src family 
kinases (SFK), focal adhesion kinase (FAK), Pyk2, p130CAS and 
PKC. Specific cytoskeletal proteins include α-actinin, vinculin, talin 
and paxillin. They conclude the chapter by discussing the potential 
pathophysiological significance of actin polymerization in vascular 
dysfunction such as hypertension and cerebral vasospasm following 
subarachnoid hemorrhage.

2.  Section II (Chapters 5 and 6)

Developmental Basis of Vascular Smooth Muscle Cell Phenotype, 
and Structure and Function of Podosomes (Invasive Organelles) 
in the Invasive/Proliferative Phenotype of Vascular Smooth 
Muscle Cell. In Chapter 5, Drs. Christine Cheung and B C Narmada 
discuss the developmental basis of vascular smooth muscle cell pheno-
type by first emphasizing the diverse embryonic lineages of vascular 
smooth muscle cells from different blood vessels and even different 
regions within the same blood vessel. This observation suggests the 
hypothesis that lineage differences among vascular smooth muscle 
cells at different regions of the vasculature can explain region-specific 
vascular disease development. They then discuss the following specific 
topics: (a) triggers of phenotypic modulation, (b) influence of embry-
onic origins on regional differences of vascular smooth muscle cells, 
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and (c) molecular basis of lineage-specific differences in vascular 
smooth muscle subtypes — embryonic smooth muscle cells, postnatal 
smooth muscle cells, and human pluripotent stem cell-derived smooth 
muscle cells. They conclude the chapter by suggesting that stem cell-
derived vascular smooth muscle cells hold great potential for tissue 
engineering applications and regenerative medicine, high throughput 
drug screening and pharmacokinetic testing, and targeted therapeutic 
interventions for restoration of vascular health. 

In Chapter 6, Dr. Alan Mak discusses the structure and function 
of podosomes — invasive organelles that enable vascular smooth mus-
cle cells to degrade and invade the extracellular matrix. He begins the 
chapter by emphasizing the remarkable plasticity of vascular smooth 
muscle cells in switching between contractile and synthetic phenotypes 
and highlighting the importance of acquiring the migratory and inva-
sive phenotype for vascular smooth muscle cells to degrade the extra-
cellular matrix and cross the basement membrane in the process of 
reaching the intima. He then discusses the following specific topics:  
(a) podosomes in non-smooth muscle and vascular smooth muscle cells, 
(b) regulation of podosome formation in vascular smooth muscle cells 
by the PKC and cSrc-dependent pro-podosome and p53-dependent 
anti-podosome signaling pathways, and (c) regulators of podosome-
mediated extracellular matrix adhesion and degradation. He concludes 
the chapter by suggesting future directions for research on the struc-
ture and function of podosomes in vascular smooth muscle cells in 
relation to the specific roles of vascular smooth muscle cells in the 
pathogenesis and progression of atherosclerotic plaques.

3.  Section III (Chapters 7 to 9)

Role of Vascular Smooth Muscle Cells in Vascular Diseases —
Atherosclerosis, Hypertension, and Circulatory Shock. In Chapter 7, 
I discuss the role of vascular smooth muscle cell proliferation and 
invasion in atherosclerosis. I first emphasize the important role of 
vascular smooth muscle cells in atherosclerosis by highlighting the 
observation that vascular smooth muscle-rich regions of coronary 
arteries are more prone to the development of atherosclerosis, 

b2527_Ch-01.indd   4 9/21/2016   10:44:13 AM



Introduction  5

“9x6”	 b2527  Vascular Smooth Muscle Cells in Health and Disease

whereas vascular smooth muscle-sparse regions are more resistant to 
the development of atherosclerosis. I then discuss the multiple stages 
of atherosclerosis progression and the specific roles of vascular smooth 
muscle cells in promoting atherosclerosis development and plaque 
stabilization at each stage of atherosclerosis. I conclude the chapter by 
suggesting that there is emerging consensus that vascular smooth 
muscle cells are a central player in all stages of atherosclerosis and 
re-emphasizing the two opposing roles of vascular smooth muscle 
cells in atherosclerosis — detrimental role in promoting plaque devel-
opment during early stage of atherosclerosis but beneficial role in 
promoting plaque stabilization during later stage of atherosclerosis. 

In Chapter 8, Drs. Christopher Nicholson and Kathleen Morgan 
discuss the role of non-coding RNA in the control of vascular con-
tractility and disease. They begin the chapter by introducing the gen-
eral structure and function of microRNAs and long non-coding 
RNAs. In the first section, they discuss the following topics on the 
molecular biology of non-coding RNA: (a) microRNA biogenesis,  
(b) RNA-induced silencing complex, (c) microRNA target recogni-
tion, and (d) control of microRNA expression. In the second section, 
they discuss the following topics on the function of microRNA in 
vascular smooth muscle cells: (a) microRNA-dependent contractile 
differentiation of vascular smooth muscle cells, (b) role of microRNAs 
in vascular smooth muscle pathways of contraction, and (c) micro-
RNA dysfunction in hypertension, hyperlipidemia and diabetes, ath-
erosclerosis, and pulmonary vascular disease. They conclude the 
chapter by discussing the function of microRNA in extracellular com-
munication in vascular cells, function of long non-coding RNAs in 
vascular smooth muscle, and modulating microRNAs in the treat-
ment of vascular disease.

In Chapter 9, Drs. Liangming Liu, Tao Li, and Chengyang Duan 
discuss the potential of vascular smooth muscle cells as therapeutic 
target for the treatment of circulatory shock. They first discuss the 
clinical significance of circulatory shock, function of vascular smooth 
muscle cells in vasodilation and vasoconstriction, and the contribu-
tion of reduced vascular reactivity to circulatory shock. They then 
discuss the general concepts of inducing factors of vascular smooth 
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muscle cell damage and features of vascular dysfunction during 
circulatory shock. Third, they discuss the following topics on hemor-
rhagic shock: (a) biphasic change of vascular reactivity, (b) vascula-
ture, gender, and age-differences of vascular reactivity, (c) metabolic 
diseases suffering from hemorrhagic shock, and (d) similarities and 
differences between endotoxin/septic shock and hemorrhagic shock. 
Fourth, they discuss the following topics on shock-induced vascular 
smooth muscle cell damage and vascular hypo-reactivity: (a) receptor 
desensitization, (b) membrane hyperpolarization, and (c) calcium 
desensitization. They conclude the chapter by discussing treatments 
of circulatory shock based on mechanisms of vascular smooth muscle 
cell damage and vascular hypo-reactivity. 
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Chapter 2

Structure of Differentiated/Contractile 
Vascular Smooth Muscle Cells

Thomas J. Eddinger

Biological Sciences Department,  
Marquette University, Milwaukee, WI 53233, USA  

thomas.eddinger@marquette.edu

The study of structure and its relationship to function has been, and 
will continue to be, significant for advancing our understanding of 
organismal, systems, organ, tissue, cell and sub-cellular physiology. 
While novel organismal anatomical observations have become rather 
rare at the gross level, this is far from true at the molecular level where 
new data on molecular structures continue to expedite advancement 
of our understanding of their function. William Harvey (1578–1657) 
is credited with significant advances in our understanding of cardio-
vascular function through his “exercises” where he applied quantita-
tive reasoning with cardiac and vascular anatomy to derive 
physiological significance. In so doing he resolved major questions 
that had no answers, or perhaps worse, had answers but that were 
incorrect. He is credited with numerous cardiovascular advancements 
including both ventricles beating simultaneously (not asynchro-
nously), systole forcing blood through the vascular bed (not by vas-
cular contraction), one way circular flow (veins do not carry blood to 
the tissue), blood recirculation (it is not made in the liver and con-
sumed by the tissue), and valves preventing backflow of blood in the 
veins (not necessary when the blood is traveling to the tissues via the 
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veins) to list a few.1 Significant technological advances since Harvey, 
especially in the past century, have allowed cellular and subcellular 
anatomy to continue to add to our understanding of function at these 
levels. Not least of these advances are a host of new and/or refined 
crystallization methods and microscopic techniques that allow us to 
“see” things that were never possible before. Thus while much of 
what we know about the vascular system in general, and smooth mus-
cle cell structure and function specifically has been known for decades 
and longer, researchers continue to use old and new knowledge of 
structure (including protein distribution, localization, and interac-
tions) to facilitate our understanding of function. With this in mind, 
it is the goal of this chapter to review the major structural organiza-
tion of the vascular smooth muscle cell (SMC), but also to remind the 
reader that none of what is in the cell is there in isolation. Everything 
is connected to something else either physically or through sometimes 
very complex signaling pathways. This chapter will proceed with a 
brief overview of the vascular system followed by the major molecules 
in and around the vascular SMC, and then some observations about 
where this may lead us with further research. 

1.  Vascular Structure 

Smooth muscle tissue is one of the three contractile muscle tissues in 
the body (skeletal, cardiac, and smooth). Unlike skeletal and cardiac 
muscles which are both “striated” (showing a banding pattern with 
microscopy as a result of the highly organized and repeating pattern 
of the contractile proteins), smooth muscle is not striated. Smooth 
muscle tissue is a major component in the wall of hollow organs, 
which may include, beside the muscle cells, other components such as 
capillaries, nerves, endothelium, mucosa, secretory cells and so-forth. 
Smooth muscle cells are present in every major organ system either as 
a major cell type present (i.e., vascular, digestive, reproductive, urinary, 
and respiratory systems) or as a critical component (vascular system) 
for supplying nutrients to and removing waste products from other 
organ systems (i.e., skeletal, muscle, and nervous systems). In the vas-
cular system the SMC are typically located between the endothelium 
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(squamous epithelium on the luminal surface of vessels) and the 
adventitia (loose connective tissue layer with wandering cells, nerves, 
etc., on the adluminal surface) in all but the smallest of vessels (capil-
laries)2 (Fig. 1). In the high pressure arterial side of the vascular system 
the larger conduit vessels and elastic arteries have both an internal and 
external elastic lamina (internal between the endothelium and the 
media and the external between the media and the adventitia), and 
numerous elastin layers separating the medial SMCs into lamina. 
These alternating contractile SMC and elastic layers form functional 
units.3 With the blood pressure drop along the vascular system the 
arteries change to “muscular” arteries that do not have elastin layers 
in the medial layer and eventually lose all of their elastin layers. The 
capillaries have a single endothelial/pericyte cell surrounding their 
lumen which minimizes diffusion distances for exchange of gases and 
nutrients. The venous side of the arterial system is generically similar 
to the arterial side in containing endothelial, medial and advential lay-
ers. However, these layers may not be as well resolved, and include 
fewer smooth muscle cells with less elastic fibers while generally having 
more advential tissue.2 Between the SMCs, there are varying amounts 
of extracellular matrix including significant elastin (in the larger ves-
sels), collagen, laminin, fibrillin, fibulin and proteoglycans.4 Primarily 
in the adventitia, smaller blood vessels and nerves may be observed.

2.  Smooth Muscle Cells 

Numerous structural studies of smooth muscle including subcellular, 
cellular, and tissue level organization, going back approximately 50 
years, provide the basis for our current understanding of this tissue 
system and an excellent introduction to and/or review of vascular and 
smooth muscle cell anatomy and histology.5–14 Figure 2 shows elec-
tron micrographs (longitudinal and transverse to the SMC) at increas-
ing magnifications showing the distribution and density of structural 
components within the SMC. SMCs develop primarily from the lat-
eral plate mesoderm and the cranial neural crest cells.15,16 SMCs are 
spindle shaped with either a single tapered tip at each end or multiple 
tips at each end.17 Their size is variable and dependent on being in a 
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Fig. 1.    A and B show a mesenteric artery in transverse section (A) and cut longitu-
dinally right through the middle (B), examined by light microscopy. The lumen, 
emptied of blood, is at the top and is lined by an endothelium; four or five tiers of
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Fig. 1.    (Continued ) muscle cells form the media of this artery, and the adventitia is 
at the bottom. The thickness of the vessel’s wall is about 32 µm. (C), (D) and (E) are 
electron micrographs of three arteries of decreasing diameter (from the tree of a mes-
enteric artery), sectioned longitudinally right through the middle of their lumen. In all 
cases the lumen is to the right, and in (C) and (E) the lumen shows parts of red blood 
cells, and adjacent to it an endothelium and then an elastic lamella (which appears 
amorphous and almost unstained). In (C) the total thickness of the artery’s wall is 
about 80 µm, in (D) it is about 22 µm and in (E) it is about 5 µm. All the muscle cells 
are approximately in transverse section, and some of them show the nucleus; the out-
lines of the cells are markedly different in the three vessels, in relation to the different 
mechanical conditions. Courtesy of Dr. Giorgio Gabella, University College London.

relaxed or contracted state. Their length is generally one to two 
orders of magnitude longer than their width, and varies with species 
and tissue source. In general, vascular SMCs (50–200 µm) are smaller 
than digestive (100–600 µm) (personal observation) or urinary  
(200–1000 µm),18 and SMCs size also shows a positive correlation 
with animal size as mouse and rat SMCs are smaller than rabbit which 
are smaller than dog or pig (personal observation). Freshly isolated 
arterial SMCs from rabbit carotid or aorta are generally in the 100 µm 
range for length, which is shorter than those from the stomach 
(~300 µm).19–21 This is similar to some values reported using electron 
microscopy techniques (Gabella, 1984) and shorter than others 
for  visceral and detrusor SMCs which have been reported to be 
500–1000 µm in length.22,23 

Getting an exact size for SMCs is problematic as activation of the 
cells prior to isolation/fixation may result in cell shortening. Fixation 
itself can lead to cell shrinkage. Measurements in intact tissue are dif-
ficult because of resolution problems (including keeping the entire 
cell in the tissue section/focal plane), and in isolated cells the isola-
tion proceedure and the fixation can affect the cells. In addition, very 
long isolated cells are prone to breakage. With activation of smooth 
muscle tissues, the SMCs may shorten (even if the tissue is held in 
isometric conditions) which can affect cell length measurements. 
Cells with radial to length ratios less than ~1:5 are generally believed 
to be contracted. Unlike striated muscle where shortening is limited 
by the sarcomere structure and the extent of thin and thick filament 
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Fig. 2.    A. is an electron micrograph of an arteriole cut transversely (this vessel was 
fixed in a condition of mild contraction); red blood cells and the endothelium are 
visible at the top, while the media is formed by a single muscle cell which is curved
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overlap, isolated vascular SMCs can shorten to greater than ~50% of 
their initial length. Isolated visceral and detrusor SMCs have been 
reported to shorten 70–80% of their initial rest length.20,22,23 It remains 
unclear how it is possible for an isolated SMC cell to change its length 
by 80%, but there must be some significant rearrangment of orga-
nelles and filamentous systems for this to occur.

By far the most apparent organelle in the smooth muscle cell is the 
nucleus, which is generally centrally located in both the longitudinal 
and cross-sectional axes. Perinuclearly at either end of the nucleus on 
the long axis of the cell are large numbers of mitochondria, Golgi, and 
sarcoplasmic reticulum and other smaller organelles. Usually near the 
plasma membrane but also in other areas in the cytoplasm, regions 
with few or no filaments that may or may not have organelles are 
present.13,21,24 Changes in the shape and distribution of organelles  
during contraction are consistent with the increasing data that the 
various filament systems within the cell attach to and push or pull on 
these organelles during contraction.

3.  Contractile Filaments 

For this chapter, the term “contractile filaments” will be used in refer-
ence to the “thick” (primarily myosin) and “thin” (primarily actin) 

Fig. 2.    (Continued ) and is sectioned roughly along its length. Prominent dense 
bands, attachment sites for the contractile apparatus, are well in evidence, especially 
on the abluminal part of the cell. At the bottom is the adventitia, made of connective 
tissue; its collagen fibrils run predominantly longitudinally, preventing elongation of 
the vessel with contraction. The microscopic field is about 18 µm wide. B. shows a 
transversely sectioned muscle cell from a large artery, embedded in a vascular matrix 
which consists of collagen fibrils, elastic bands and fibers, amorphous material and 
microfibrils. The cell profile is mainly occupied by myofilaments (actin and myosin), 
and it also shows intermediate filaments, microtubules, dense bands that project 
deeply into the cytoplasm, sarcoplasmic reticulum of smooth and rough type, ribo-
somes, vesicles and mitochondria. The plasma membrane presents invaginations, 
known as caveolae, and is lined externally by a thick basal lamina. The microscopic 
field is about 5 µm wide. C. shows details of a similar cell from the same vessel at 
higher magnification. The width of the microscopic field is about 3 µm. Courtesy of 
Dr. Giorgio Gabella, University College London.
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filaments that are believed to be the primary source of contractile 
force generation in SMCs (“thin” filaments are also part of the cell 
cytoskeleton and are discussed later). The thick filaments are com-
posed primarily of the protein myosin while the thin filaments are 
composed of actin, tropomyosin and a number of other reported 
regulatory proteins. Repeated ATP-dependent interactions of the 
myosin S1 head with actin thin filaments are responsible for force 
generation and/or shortening of SMCs.

Myosins are a large family of proteins25 that are expressed in essen-
tially every cell. The contractile muscle protein myosin that most 
people think of when discussing muscles are part of the type two family 
of myosin (here simply referred to as “myosin”) that include a long 
α-helical coiled tail that can associate with other myosin to form a 
thick filament. Multiple reviews and books on myosin have been pub-
lished25–28 and so only the basics will be reviewed here. Myosin is a 
hexamer of two myosin heavy chains (MHC) and four myosin light 
chains (MLC) (two light chains associate with each of the heavy 
chains heads (S1 domains). The MHC can be separated into the S1 
head (consisting of the motor domain and the lever arm) which is 
responsible for force generation and/or cell shortening, while the rod 
(an α-helical coil) is the remainder of the MHC and is responsible for 
the association of the two MHCs to form the myosin molecule and 
for thick filament formation.26 There is a single SM MHC gene in 
smooth muscle cells which via alternate splicing can generate four dif-
ferent SM MHC isoforms.29–34 In addition there are three non-muscle 
(NM) MHC genes with alternate splicing of at least one of these.35–40 
The myosin light chains include two myosin light chain 20 (MLC20 — 
approximately 20,000 Daltons) isoforms which are the same size but 
the product of two different genes.41 This is the MLC that is 
phosphorylated at serine 19 (and other sites) to regulate myosin 
ATPase activity required for force generation and or shortening. In 
addition there are two myosin light chain 17 (MLC17 — approximately 
17,000 Daltons) isoforms, but these are the product of a single gene 
with alternate splicing.42–44 While adult SM tissues express primarily 
(solely in the case of rabbit) the SM MHC isoforms,41,45–47 both the 
SM and NM MLC20 and MLC17 isoforms are routinely expressed in 

b2527_Ch-02.indd   14 9/21/2016   10:49:30 AM



Structure of Differentiated/Contractile Vascular Smooth Muscle Cells  15

“9x6”	 b2527  Vascular Smooth Muscle Cells in Health and Disease

adult tissue.41,48–51 The reported correlations between expression of 
these various myosin heavy and light chain isoforms with animal 
development and tissue type appear to correlate with specific func-
tion, but this remains controversial and further work is required. 
Other chapters in this volume will discuss the expression of these SM 
and NM isoforms with development and disease. 

The thin filaments are composed of globular (G) actin monomers 
(42,000 Daltons, 375 amino acids,52 which assemble to form fila-
mentous (F) actin. There are six actin isoforms resulting from six 
different genes, including α- (skeletal, cardiac, and SM), β-non-
muscle, and γ- (smooth and non-muscle), which are all the same size 
(375 AA) with greater than 90% homology (all of the differences 
include up to 8 AA substitutions located within the first 18 NH2-
termius AA).52,53 While all SM tissues appear to contain multiple actin 
isoforms (α-SM, γ-SM, γ-NM, and β-NM), vascular tissues generally 
express a majority of the α-SM isoform while digestive tissues express 
larger amounts of the γ (SM and NM) isoform.54 Biochemical and 
electron microscopic measurements put the thin (actin) to thick 
(myosin) filament ratio in smooth muscle at ~15:15,55–57 as compared 
to 2:1 for skeletal muscle. This difference may be relevant for the thin 
filament’s role as part of the cell cytoskeleton in SM in addition to its 
role as a contractile protein.

Arterial SM is reported to have ~8 mg/g tissue of myosin and 25 
mg/g tissue actin which gives both weight and mole ratios of actin: 
myosin of greater than 3:1 and 30:1 respectively (these numbers are 
approximately ten times higher than those in skeletal muscle).55 
In veins there is a similar amount of myosin as in arteries, but the actin 
content is only about half of that expressed in arteries.58 In spite of 
only expressing approximately 25% of the myosin that is expressed in 
skeletal muscle, SM is reported to generate a similar stress per cross-
sectional area as skeletal muscle.55,59 

Associated with the F-actin is tropomyosin (low and high molecu-
lar weight forms — ~247 and ~284 amino acids and ~45,000 
Daltons), for reviews,60–64 an α-helical protein that forms dimers 
which lie along the length of the F-actin filament. A single TM is of 
a length to span 6–7 actin monomers on the F-actin filament. In 
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mammals there are four tropomyosin genes that through various 
regulatory processes can generate over 40 tropomyosin isoforms.65–67 
In striated muscle this protein in association with troponin acts to 
regulate contractile activity. In smooth muscle there is no troponin, 
leaving several options for the role of tropomyosin. Because there are 
several other proteins that can associate with the thin filament, they 
may function in a similar fashion to troponin in regulating actomyosin 
interactions via tropomyosin. Alternatively, while possibly difficult to 
perceive, tropomyosin may not play a regulatory role in SM, but be 
strictly involved in thin filament stability.60 Tropomyosin isoforms 
have been reported to be distributed in discrete subcellular domains 
on thin filaments, thereby affecting thin filament organization, and 
myosin interactions with actin.61,68–70 Proteins that can associate with 
the thin filament in SM and function to regulate tropomyosin include 
calponin (a calmodulin-binding troponin like protein), and caldes-
mon (an actin binding SM protein that may also interact with calmo-
dulin, myosin, and tropomyosin) along with a host of other less 
prevalent proteins. Specific tropomyosin isoforms have been reported 
to be involved in a diverse range of functions including formation and 
stabilization of stress fibers, focal adhesion formation, myosin recruit-
ment, maintaining transverse-tubule structure, filapodia formation 
and a host of growth and differentiation processes in a wide range of 
cell types (for review68). 

An interesting distinction between striated and smooth muscle is 
the dramatic difference (1) between the expressed levels of actin and 
myosin, (2) the length and stability of the thick and thin filaments, 
and (3) the organization of the thick filaments. Unlike skeletal and 
cardiac muscles, smooth muscles do not have highly organized 
repeating arrangements of thick and thin filaments resulting in the 
striated appearance with microscopy. Functionally, there are the 
equivalent of “sarcomeres” in smooth muscle (dense bodies associ-
ated with thin and thick filaments), but their arrangement is signifi-
cantly less organized with the contractile filaments not all necessarily 
in the exact same orientation. The thick filaments in SM have been 
described as being ‘side-polar’, with all the myosin heads on one side 
of the filament facing in one direction and all the myosin heads on 
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the other side of the filament facing in the other direction.71,72 This 
arrangement eliminates the “bare-zone” of the bi-polar filament 
organization of striated muscle, and along with the absence of 
“Z-lines”, allows for an apparent unrestrained thick and thin fila-
ment sliding during contraction. This may explain in part the greater 
amount of cell shortening that is observed in smooth vs. striated 
muscle.

Thick myosin and thin actin contractile filaments are often 
reported as being obliquely oriented relative to the long axis of the 
SMC,73–75 which can result in the corkscrew shortening that has been 
reported in isolated SMCs.74–76 However, there is evidence that the 
thin and thick filaments run parallel to the long axis of the SMC.22,77 

4.  Cytoskeleton and Membrane Associated Proteins 

The cytoskeleton is comprised primarily of thin (actin), intermediate 
(primarily vimentin and desmin) and larger microtubule filaments. 
The cytoskeleton is generally considered in its role connecting the 
various regions and structures of the cell, from the plasma membrane 
to the nucleus and everything in between. However, it is also involved 
in organizing and locating intracellular components as well as gener-
ating and or transmitting forces throughout the cell. In all these roles 
the cytoskeleton is dynamic so that where it is and what it is doing 
may not be the same at any two points in time. There is no way to 
explain, as mentioned above, how an isolated SMC can shorten by 
upwards of 80% of its rest length without significant remodeling of 
these filaments and their association with each other and the rest of 
the cells components. Each of these filament systems are specific in 
terms of their mechanical properties, the motors that associate with 
them to move things within the cell and or generate force, their 
distribution of monomer to polymer structures and filament stability, 
the other cell structures they interact with, and their ability to interact 
with each other.78,79 Future studies need to take into account not only 
what is happening in a SMC to thin, intermediate, or microtubule 
filaments generically with an experiment, but what is happening to 
the specific isoforms of these proteins in spatial and temporal terms. 
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It appears that recognizing changes in specific protein isoforms spa-
tially and temporally may be critical to fully understand SMC function 
and regulation. 

As mentioned above, thin filaments are composed primarily of 
actin which consists of 6 isoforms. Increasing data suggests that there 
are thin filaments with diverse composition and distribution within 
the SMC.80,81 As reviewed,78 in addition to the typical actin thin fila-
ments, there are also branched networks, filament bundles, cortical 
networks and stress fibers. There are at least 150 reported actin bind-
ing proteins.82 The nucleus is generally held near the center of the 
SMC by the cytoskeleton via a host of nuclear membrane pro-
teins,83,84 including actin stress fibers which may also be involved in 
positioning and stabilizing intranuclear chromatin.85 Thus, thin actin 
filaments near the plasma membrane, near the nuclear membrane, or 
in the nucleus itself may all have different functional roles depending 
on these locations, specific proteins they interact with in these loca-
tions and/or second messenger pathways working in these regions of 
the cell.

The major cytoplasmic intermediate filaments (type III) in 
smooth muscle are composed primarily of vimentin, desmin86 and 
synemin (type VI),87 with vimentin being the major intermediate fila-
ment present in vascular SM. These have common α-helical rod 
domains that form a coiled-coil dimer and then larger associations. 
Stimulation of SM cells may cause disassembly/reassembly of these 
intermediate filaments and/or detachment from the dense bodies, 
which via second messenger pathway activity or re-localization may 
affect force production, gene regulation, and other cell func-
tions.86,88,89 Intermediate filaments have also been reported to form 
connections with the nuclear envelope and mitochondria, possibly 
affecting function of these organelles and/or allowing their sub-
cellular localization to be maintained or returned to “normal” 
following extreme cell shortening.90 

Microtubules are present in smooth muscle cells where the 
dynamics between the α and β monomers within the microtubules 
they form has been postulated to be important for, among 
other  things, cell division, cell structure, intracellular transport, 
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contractility, and nuclear transcription.91 They can bind to the 
plasma membrane at caveolae,92 as well as to most other organelles 
including the nucleus.93,94 Being a polarized filament, the molecular 
motors kinesin and dynein can transport cargo along these filaments 
toward either the “plus” or the “minus” ends of these filaments, 
respectively. Determining their roles in SM function has been diffi-
cult as there is constant turnover of the tubulin monomers within 
the microtubule. Microtubules are stiffer than the intermediate or 
thin filaments, and thus while working well for chromosome sorting 
in mitosis, they can be a problem for extensive SMC shortening as 
they may cause an internal load that contraction would have to work 
against. Microtubule polymerization/depolymerization appears to 
be regulated in a contraction cycle dependent manner,95,96 and 
affects cell alignment in the tissue.97 Microtubule association with 
caveolae appears to have a direct effect on increasing polymeriza-
tion, which would thus also affect intracellular trafficking and cell 
function.92 

Plectin is one of numerous plakan isoforms of large MW proteins 
(~500 KD) that can cross link microtubules, thin, and intermediate 
filaments to each other, to other proteins, and to proteins in the 
plasma and nuclear membranes.79,98,99 The expression and distribution 
of the various plectin isoforms and their ability to link the various 
filament systems with each other and the membranes make them 
critically important in overall SMC mechanics.100 These molecules 
along with nucleation and depolymerizing promoting factors all 
appear instrumental in cell structure and function. 

Filamin is a high molecular weight (280 kD) protein that was 
identified as an actin binding protein.101,102 Three isoforms have been 
identified and the protein has been reported to interact with over 90 
proteins and is involved in cell signaling, cytoskeletal organization, 
force transmission, and transcription.103–106 Its interaction with integ-
rin is important in cell adhesion and migration, while its interaction 
with small GTPases are important for cytoskeletal remodeling.107,108 
Filamin can be phosphorylated by PKA and PKC,109,110 which can 
affect its interaction with actin, integrin and multiple other proteins, 
and can prevent its cleavage by calpain.111 Interestingly, its interaction 
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with actin, caveolae, and PKCα is critical for the linear distribution of 
caveolae at the plasma membrane.112 The dynamic inward trafficking 
of caveolae has been shown to be regulated by hormonal stimulation, 
PKCα dependent phosphorylation of proteins, and microtubule 
interactions.113–115 

Caveolae are flask shaped invaginations of the plasma membrane 
with caveolin present along with numerous cell signaling molecules, 
glycosphingolipids and cholesterol. These structures are directly 
involved in cell regulation via receptors and second messenger path-
ways, as well as endo- and exo-cytosis.116 They have been observed to 
alternate with focal adhesions along the plasma membrane, but are 
either absent or significantly fewer in number near the tapered ends 
of the SMCs.21,117 It remains unclear why these two structures (focal 
adhesions and caveolae) are so consistent in their close association, 
but with the increased concentration of receptors and second mes-
senger proteins at the caveolae, interaction and regulation of the 
extensive network of focal adhesion associated regulatory and 
cytoskeletal proteins appears to be critically linked. 

The cytoskeleton and the contractile component of the SMC 
need to be attached to the cell membrane (and the extracellular 
matrix/neighboring SMCs) via cell adhesion molecules (CAMs) 
including four major classes of proteins (cadherins, immunoglobulin 
super family, integrins and selectins) in addition to other membrane 
proteins.118,119 Cadherins are a large family (greater than 100120) of 
Ca2+ dependent cell-cell adhesion molecules that are critical for cell 
morphology and signaling.118,121–124 Via catenins, the intracellular 
domain of cadherin links ultimately to actin thin filaments to transmit 
force.125–127 These adherens junctions have also been implicated in 
signaling microtubule assembly as part of cytoskeletal regulation,128 
interacting with integrin,129,130 interacting with immunoglobulin cell 
adhesion molecules131 and with numerous other signaling events 
(see118 for review). Integrins are a large family of single transmem-
brane-spanning receptors that attach the cell’s cytoskeleton to the 
extracellular matrix132–134 and ultimately to a vast array of signaling 
molecules.135–137 These proteins can be clustered in localized domains 
or distributed widely throughout the membrane. Adapter proteins in 
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the cytosol can connect CAMs to the cytoskeleton in order to main-
tain cell shape and transmit forces, as well as affect gene expression 
and protein distribution for signalling.

Early evidence for potentially discrete distributions of contractile 
and cytoskeletal filament domains in SM has been available for 3-4 
decades,138–140 and has more recently found another resurgence69,141–144 
Actin isoforms have also been reported to be uniformly distributed 
amongst the thin filaments within a given tissue by some groups,145,146 
but to differ in expression between SM tissues.147 Some more recent 
studies suggest that there are in fact specific distributions of the actin 
isoforms that comprise the thin filaments and that these filaments 
play different roles in the SMCs. Discreet distribution of actin fila-
ments comprised of primarily or exclusively one actin isoform between 
the sub-plasmalemmal (cortical) vs. cytosolic domains has been 
described.142 Fletcher and Mullins78 review four actin filament organ-
izations (branched networks, bundled filaments, cortical networks, 
and stress fibers) that are specifically arranged to act on or respond to 
different cellular forces. It is unclear exactly what determines how 
these different arrangements are organized, localized and maintained 
in a given cell, but accumulating data suggests that there is physiolog-
ical relevance to these specific structures and their distribution within 
the cell. 

5.  Nucleoskeleton

The nucleoskeleton, while currently less well understood than the 
cytoskeleton, is also of major significance in the functioning of the 
cell. The nucleoskeleton is upwards of an order of magnitude stiffer 
than the cytoskeleton,148,149 with the cytoskeleton being critically 
dependent on it for its own function.94,150 Lamins (type V intermedi-
ate proteins) are present in the nucleus where they contribute to the 
nuclear skeleton and interact with numerous other proteins in the 
nucleoplasm and nuclear envelope, and are hypothesized to be 
involved in nuclear assembly, chromatin organization, and gene 
expression. Lamins and multiple other nuclear proteins form a 
nucleoskeleton that is connected to the cytoskeleton via LINC 
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proteins (linkers of the nucleoskeleton and cytoskeleton) (see93,151 
Meinke et al. 2015 for reviews). In addition to the intermediate 
filament lamins, many of the known cytoskeletal/transport proteins 
are also present in the nucleus including actin, myosin, titin, spectrin 
and kinesin, where they are believed to have structural functions 
similar to their roles in the cytoskeleton. There is also evidence that 
these proteins are involved with signaling roles for transcrip-
tion.152–158 This allows for direct communication between forces at 
the plasma membrane and genetic information and regulation in the 
nucleus,94,159,160 including nuclear and chromatin organization, 
replication, and transcription.161–163 LINC complex proteins at the 
nuclear membrane transmit force to and from the cytoskeleton and 
the nucleoskeleton (analogous in function to focal adhesions at the 
plasma membrane transmitting extracellular forces to and from the 
cytoskeleton).164 Changes in these LINC complexes affect 
mechanotransduction (altered gene transcription, replication and 
repair via second messenger pathways)165 via lamin and lamin binding 
proteins,166–168 cytoskeletal and nucleoskeletal organization, and cell 
differentiation.160,169 

6.  Regulatory Proteins 

Regulatory proteins that are reported to be involved in SM regulation 
include tropomyosin, desmin, vimentin, caldesmon, calponin, myosin 
light chain kinase, myosin light chain phosphatase, protein kinases, 
small GTPases, and a host of other second messengers which have 
been reviewed extensively. Localization within the SM cell, associa-
tions with each other or contractile/intermediate filaments, and 
localization with cell activation, force generation and or shortening 
are likely all critical to our full understanding of SM contraction. 
These proteins are involved in signal transduction for regulation of 
many cell functions including transcription and translation, contrac-
tion and relaxation, cell division and differentiation, and protein 
translocation.

As mentioned above under contractile proteins, four tropomyosin 
genes are responsible for over 40 tropomyosin isoforms. These may 
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specifically interact with particular actin isoforms in thin filaments 
based on isoform composition and location.61–63,68–70,81,170 Thus, while 
there are only four actin isoforms expressed in SMC’s, the large num-
ber of tropomyosins that can be expressed and associate with them 
significantly increases their potential specific functional roles in the 
cell. This includes not only differential regulation of actomyosin inter-
actions throughout the cell, but also localized domains for specific 
regional control. In addition, specific regulation of metabolic path-
ways, cell cycling, growth, and probably most other cell activities are 
affected by the individual expression, distribution and function of 
these thin filament-tropomyosin pairings (see above references). 

Caldesmon in smooth muscle (h-caldesmon, ~88kD; as compared 
the non-muscle expressed l-caldesmon — ~59kD)171 appears to 
co-localize with either thin or thick filaments172,173 in the cytoskeletal 
domain.174 Caldesmon has binding sites for actin and calmodulin,175 
myosin,176,177 and tropomyosin,178,179 where it is reported to affect 
actin-activated myosin ATPase activity.

Calponin was first described as an actin and calmodulin binding 
protein180 that was subsequently shown to have multiple isoforms, and 
bind to numerous other proteins including α-actinin,181 myosin,182 
PKC,183 tropomyosin,184 tubulin,185 and a host of other proteins. It 
has been reported to bind to G- and F-actin with similar affinity,186 
thereby affecting polymerization of actin monomers and bundling of 
F-actin. Calponin has also been reported to inhibit myosin ATPase 
activity.187 According to North et al.188 calponin in chicken gizzard 
can associate with actin in either the contractile (myosin, SM actin 
and caldesmon) or the cytoskeletal (β-actin, filamin and desmin) 
domains, and thus is most likely active in regulation of both the 
cytoskeletal and contractile functions of the SMC.

Myosin light chain kinase (MLCK) and myosin light chain phos-
phatase (MLCP) are believed to be the primary regulators of smooth 
muscle contractile function via regulation of myosin light chain phos-
phorylation levels.189 These enzymes are regulated in turn via a seem-
ingly endless number of second messenger pathways that continue to 
perplex our understanding of smooth muscle function.189–194 Isoforms, 
expression, distribution, localization and possible translocation of 
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many or all of these molecules with activation and relaxation of the 
tissue, appears to be relevant to the function of the SMC.

7.  Organelles 

The sarcoplasmic reticulum (SR) in SM is directly involved in [Ca2+] 
regulation. In tonic (aortic) SM there are both peripheral (near the 
plasma membrane) and central (not near the plasma membrane) SR 
domains (Fig. 2) with the central SR (often in a perinuclear location) 
being more prevalent.195,196 This is the opposite of phasic (vas defer-
ens) SM where the peripheral SR is dominant, with both the periph-
eral and central pools appearing to be continuous with each other and 
perhaps not functionally distinct.195 The SR is in close association with 
the mitochondria and the caveolae, and may be continuous from the 
plasma membrane to the nuclear membrane. Mitochondria and vesi-
cles may be observed throughout the cell, but often are present in 
greatest density near the nucleus.

As the nucleus may take up in excess of 60% of the cross-sectional 
area of the SMC where the nucleus is located, there needs to be a 
mechanism to transmit force across this region of the SMC. Data sug-
gests that the contractile filaments attach directly to the nuclear enve-
lope allowing force to be transmitted through the nucleus. Consistent 
with this, nuclear lengths in relaxed tracheal SMCs are shorter than 
those in isometrically contracted SMCs as the nucleus gets elongated 
during SMC contraction as it is pulled on by the force generated by 
contraction.77 

8.  Extracellular Matrix 

The extracellular matrix is a deposition of proteins and glycosamino-
glycans that are secreted by the SMC’s themselves or by other cell 
types that are also found in SM tissues. The protein fibers generally 
consist of collagen, fibrin, elastin, laminins, fibrillins and fibulins.4 
The presence of these fibers and other extracellular components are 
critical for SMC migration, replication, and differentiation, and thus 
overall function of SMCs.197–200 
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9.  SMC Structure and Function Questions

Smooth muscle cells and a host of other cell types exist in varying 
ratios within different SM tissue and can consequently have an impor-
tant impact on how they interact. In the vascular system, the media is 
generally primarily SMCs, but even then there are always non-muscle 
type cells closely associated at the luminal and adluminal surfaces. 
SMCs are either constitutively or transiently generating force, and 
thus their connections and interactions to each other and or the extra-
cellular matrix is critical for their (patho)- physiological function. 
In addition, SMC heterogeneity occurs between and within the vari-
ous regions of the vascular tree. In an attempt to simplify the experi-
mental system of all this variability for studying SMCs, and thereby 
increase our understanding of SMC function, numerous model sys-
tems have been developed. Isolated vessels, vessel rings and strips, 
isolated cells, cultured cells, and purified filaments or proteins are 
some of the systems commonly used to good effect. An ongoing 
concern, however, is the common assumption that much of what is 
learned from all of these systems is universally relevant to the intact 
SM tissue system. There is extensive evidence that SMCs removed 
from their 3-dimentional organization and constraints become at best 
a modified SMC, or at worst, something other than a SMC all 
together. There is also an ever increasing data base showing that eve-
rything that can potentially have an effect on a SMC in vivo or in vitro 
does have an effect on it. Thus while we know for example that SMCs 
and tissues can have a “memory” of previous activity that affects 
future activity, and that epigenetic changes occur independent of 
genetic regulation, we do not know enough about either of these 
things to know how SM tissue or cell preparations for in vitro meas-
urements change these phenomena. 

Besides the signals SMCs receive from neural, endocrine, parac-
rine, and autocrine mechanisms in vivo, their physical interactions 
and stress/strain relationship with their neighboring cells/matrix is 
important in determining their shape, function and cellular 
determination/differentiation.201,202 The ability of isolated SMCs to 
shorten by 50–80% of their initial length (not predicted to occur in 
SMCs in intact vessels), generate peak tension at multiple cell lengths, 
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and alter organelle distribution and function are all indicative of the 
distinctive ability of all the filament types to interact with each other, 
reorganize themselves, and for cell-cell interactions to be reorganized 
depending on the external conditions leading up to or at the time of 
measurement (much of this work has been done on respiratory SMCs 
and tissues.203–210 Another ongoing unresolved question includes the 
concentration of specific proteins within the SMC. Myosin light 
chain kinase for example, is expressed at a 10-fold lower concentra-
tion than the protein that it phosphorylates (MLCK ~4 µM and 
myosin ~40 µM). This raises questions of how full phosphorylation 
of MLC20 occurs in a physiologically relevant time frame. MLCK 
binding to the thin filament may allow the myosin to be “delivered” 
to the MLCK on the thin filaments as they slide past the thick fila-
ments.211 Thus knowing its location and distribution within the SMC 
may help resolve if there is localized activation of myosin, or if it 
progresses in a specific pattern across the cell. 

Smooth muscles contain approximately 10 times the actin and 
~1/4th the myosin expressed in skeletal muscle, but still manages to 
generate a similar force per cross-sectional area as skeletal muscle.55 
The ratios of actin to myosin filaments have been estimated to be as 
high as 50:1212 (Fig. 2) which makes one question why there is such 
an apparent excess of actin in the SMC. As noted above, there is evi-
dence for specific distributions of actin within the cell, and sugges-
tions that it is compartmentalized into contractile and cytoskeletal 
domains. The gross excess of actin to myosin filaments suggests that 
it has significant physiological relevance beyond acto-myosin force 
generation. Actin isoforms can combine to form a range of thin fila-
ments with distinct function across the phylogenetic tree.81 In addi-
tion, the physiological function of specific actin thin filaments and 
formation of various large scale actin associated structures (thin fila-
ments, stress fibers, podosomes) are inherently linked to the associat-
ing proteins in general, and the tropomyosin isoforms specifically.68,69 
Indeed, as reagents and methodologies advance, it appears that most 
(all) proteins that are expressed as multiple isoforms have some type 
of specific distribution within the cell that correlates with a particular 
function.
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Additional unique observations in contracting SM include the 
seemingly sporadic intracellular domains, (primarily near the plasma-
lemma) that appear to be devoid of myofilaments or other electron 
dense structures (Fig. 3 — “LOW” — low density area devoid of 
filaments) and can result in outward blebbing of the membrane at 
these sites with contraction.213 Why these would exist and what pos-
sible function they serve remains unknown. There are also multiple 
reports of cells or portions of cells that fail to contract with the 
remaining cells in a tissue, or another portion of the SMC. This may 
result in “wavy” cells that are being pulled shorter by surrounding 
contracting cells,21,213 contractile zones in isolated SMCs,214 or regions 
of freshly isolated SMCs (1/3 – 1/2 of the cell) that do not contract 
while the other portion of the cell does (unpublished data). 

As schematically shown in Fig. 3, there appears to be a direct 
physical link between all the contractile and cytoskeletal filaments, 
which in turn make connections from the plasma membrane to the 
nuclear membrane, and with all the other organelles in between. This 
also extends to the nuclear material within the nucleus and the extra-
cellular matrix material outside the cell, so that any changes in force 
acting on or generated within the SMC affects everything else 
upstream and downstream from that point.94,119,215–217 As shown in 
Fig. 2 (and represented in Fig. 3), there appears to be very little space 
within the cell that is not occupied by an organelle, structural or con-
tractile protein. Further, this does not take into account the hundreds 
of second messenger molecules and messenger pathways that are also 
known to be present within the cell to regulate cell function. How all 
these components affect each other as they interact and reorganize, 
with and without the significant cell shortening that is possible, 
remains an area of much needed work. Relevant to this chapter is the 
concept that actin for example, (but this would apply to any protein 
with isoforms present) located near the plasmalemma vs. actin in the 
cytosol, or near or in the nucleus etc., has specific temporal and spatial 
function.

A final observation is that there appears to be a consensus in the 
literature that SMCs need to de-differentiate in order to undergo cell 
division and that this de-differentiation to a “synthetic” phenotype 
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Fig. 3.    Schematic of smooth muscle cell showing representative locations, distribu-
tions and associations of major contractile, cytoskeletal and membrane associated 
proteins in the SMC. The complexity of the protein number, type and distribution in 
the figure is representative of a real SMC (see figure two), although grossly oversim-
plified. Actin thin filaments for example, may be comprised of different actin isoforms, 
in different locations (near plasma membrane receptors, caveolae or cell adhesion 
molecules, near (or not) myosin filaments, near nucleus or other organelles, or in the 
nucleus) and have different filament stabilities and functions in each of these locations. 
Abbreviations: AM = Actin-Myosin; C = Calveolae; CAD = Cadherin; CAM = Cell 
Adhesion Molecules; CHR = Chromosomes; COL = Collagen; DB = Dense Bodies; 
ELAS = Elastin; FIB = Fibronectin; IF = Intermediate Filaments; IMP = Integral 
Membrane Proteins; INT = Integrin and Associated Proteins; LAM = Lamins; LINC = 
Linker of Nucleoskeleton and Cytoskeleton; LMN = Laminin; LOW = Low Density 
Areas Devoid of Filaments; MICRO = Microtubules; MT = Mitochondria; PL = 
Plectin; PMP = Peripheral Membrane Proteins; REC = Receptors; SR = Sarcoplasmic 
Reticulum.
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and re-differentiation to a “contractile” phenotype is a routine occur-
rence in SMCs dependent on external conditions (for reviews198,218–220). 
In fact, there are multiple reports of SMC division without de-differ-
entiation from a “contractile” phenotype.221–224 This difference in 
observations is significant as it potentially leads to very different con-
clusions for relevance of de-differentiation in SMC replication. If 
SMC de-differentiation for SMC replication is a physiological process 
for growth and repair, then pathological conditions like intimal wall 
thickening in atherosclerosis may be a failure to regulate this process 
correctly. However, if the physiological process of SMC replication 
for growth and repair does not require de-differentiation of SMCs, 
then the intimal wall thickening in atherosclerosis may be due to fac-
tors causing SMC de-differentiation itself. De-differentiation and re-
differentiation of SMCs for vascular growth and repair may not be a 
physiological process, but a pathological process. Finding treatments 
and cures for smooth muscle diseases will look very different if the 
solution is to find a way to alter the mis-regulation of a physiological 
process vs. finding a way to prevent a pathological process.

In conclusion, while we have known a good deal about the anat-
omy of the SMC for quite some time now, new methods and tech-
nologies are allowing us to further clarify when proteins and their 
isoforms are expressed in SMCs. In addition, the organization, distri-
bution, localization, interaction and potential temporal translocation 
of these proteins/isoforms continues to be revealed. This new infor-
mation is allowing us to go beyond our understanding for example, 
that actin and myosin are the major contractile proteins in the SMC. 
Expression of their respective isoforms (and possibly also for all the 
protein isoforms present) are developmentally and (patho-) physiolog-
ically regulated. Isoforms appear to be distinctively localized through-
out the cell where they can associate with different proteins in different 
structural organizations at different times that are specifically regulated 
for particular functions via hundreds of regulatory proteins and path-
ways. Thus, specific actin and myosin isoforms in specific filament 
organization and association with specific other proteins in defined 
locations of the SMC are in fact “contractile filaments”. In addition, 
however, by changing any of these variables (specific actin or myosin 
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isoform, structural organization, specific associating proteins or their 
isoforms, location in the SMC, etc.) may result in a functional 
“cytoskeletal filament” that maintains stress, organizes intracellular 
distribution and location of other cellular structures, or redistributes 
cellular components in the cell. Or also possible, when specific iso-
forms of these proteins associate with each other, change from indi-
vidual proteins to filaments, or redistribute within the SMC they may 
now be a part of one or more regulatory pathways signaling contrac-
tion, cellular reorganization, changes in protein expression, or cell 
replication. We know SMC function is much more complex than we 
previously believed. If we, like William Harvey many centuries ago, 
will continue to use quantitative reasoning with anatomical informa-
tion, we will also be able to continue to derive physiological signifi-
cance from our new observations. In so doing we should be able to 
resolve just how complex the SMC is in its structure and function.
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Vascular Structure and Function
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Vascular smooth muscle motor protein regulation acutely adjusts vas-
cular diameters and determines the stress-strain characteristics of 
arteries and veins. Net muscle contraction occurs when the tension 
generated by motor proteins is greater than that generated by blood 
pressure, and net relaxation occurs when pressure- and radius-depend-
ent wall tension exceeds muscle tension. Numerous stimuli generated 
locally and distantly acting through multiple cell signaling systems 
modify the level of motor protein activation. Unlike skeletal muscle 
that is inactive until “called on” to contract, vascular smooth muscle 
is always “on” to some degree, even when no apparent stimuli are 
present. Smooth muscle down the vascular tree, and similar vascula-
tures across species, display some similarities, but also a significant 
degree of heterogeneity. The canonical vascular smooth muscle con-
traction control system involves regulation of 20 kDa myosin light 
chain phosphorylation by Ca2+ calmodulin-dependent myosin light 
chain kinase, rhoA kinase and protein kinase C. The latter two kinases 
act, in part, by inhibiting the activity of myosin phosphatase, and thus, 
by increasing the degree of force for a given increase in Ca2+. Several 
novel kinases also appear to participate in myosin light chain regula-
tion, including Ca2+-calmodulin-dependent kinase II, mitogen acti-
vated protein kinases, zipper-interacting kinase, integrin-linked kinase, 
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kinase inhibitor of NF-kB 2, and AMP-dependent protein kinase. 
Regulation of vascular smooth muscle contraction is not limited to 
modulation of myosin light chain phosphorylation. Non-canonical 
regulation includes control of actin and myosin polymerization, thin 
filament regulation, latch bridge formation and regulation of force 
transmission. Stimuli that increase nitric oxide, cyclic nucleotides and 
their kinases inhibit the contraction control system. The effect of such 
complex regulation is to maintain blood pressure at levels necessary 
for perfusion of essential organs, and to ensure appropriate nutrient 
supply to, and waste removal from, all cells of the body.

1.  Introduction

The vasculature is a network of heterogenous tubes through which 
blood is propelled by a pulsatile pump to perfuse every organ of the 
body. As multicellular organisms grew in size, the heart and vascula-
ture arose from the need to convectively supply O2 and substrates  
to and remove waste products from, cells too distant for diffusion to 
adequately exchange these metabolites.303 The vascular system also 
provides the conduit through which immune cells and hormones 
reach target tissues. In essence, the development of a vascular system 
gave life to large animals. Failure of this system leads to disorders such 
as hypertension, atherosclerosis, heart attacks, stroke, heart failure, 
thrombosis, and vasodilatory shock due to the traumas of hemor-
rhage and sepsis. Moreover, diseases such as diabetes and obesity lead 
to vascular complications. Together, these disorders represent the 
majority of human mortalities (see http://www.cdc.gov/injury/
wisqars/leadingcauses.html).

In mammals, the heart’s two muscular ventricles pump blood into 
the systemic and pulmonary vasculatures, separate circuits connected 
in-series.429 In a ~70 kg human at rest, ~5 L of blood is pumped per 
min (~70 ml/beat × ~72 beats/min). Thus, the entire blood volume 
circulates through the closed vascular system each minute. At any one 
moment, the majority of blood volume (~75%) is contained within 
the systemic veins at low pressures. Venous smooth muscle contrac-
tion constricts this reservoir, decreasing venous capacitance rather 
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than compliance, making more blood available to the heart to increase 
cardiac output.425,500 The heart pumps blood delivered from the large 
veins directly into the aorta and pulmonary artery at high pressure. 
Muscular arteries of reduced size (both luminal radius and wall thick-
ness) branch off these conduit (elastic) arteries to perfuse each organ 
system. Muscular arteries that enter (feed) organs branch further and 
become reduced in size forming the microcirculation, consisting of 
vascular bed feed arteries, precapillary arterioles, capillaries and post-
capillary venules ranging in size from ~5–400 mm.319,413 The surface 
area of each capillary bed is about 1,000-fold that of conduit arter-
ies.54 This, along with the extensive diffusive interactions among 
microvessels, dynamic VSM vasomotor regulation, and adaptive 
architectural remodeling, ensure that O2, nutrient, and fluid exchange 
occurs between the vascular compartment and the extracellular space 
bathing the cells of each organ according to local demand.17,370,381 
Most blood returns through many small veins into fewer larger veins 
in a reverse branching order until blood fills the large vena cava and 
pulmonary veins, the final reservoir before the heart. Some filtered 
plasma returns from the extracellular space through the lymphatics, a 
very low pressure, open, vascular system.326

In general, the tubular vasculature is a laminar structure, with an 
inner intima comprised of an endothelial cell layer, a middle media 
and outer adventitia.137,319,413 In the media of large and small arteries, 
more than a single layer of vascular smooth muscle (VSM) cells and 
extracellular matrix (ECM) surround the intima. The number of 
lamina is reduced as the vessel diameter decreases.319 This is true when 
moving down the vascular tree, and also when comparing analogous 
arteries from different species of different sizes. For example, femoral 
arteries from rabbit and mouse develop, respectively, ~12155 and ~3 
lamina. At a diameter of ~50 mm in the microcirculation, medial 
lamina give way to a VSM monolayer and then to pericytes, which 
appear also to exist in the intima of larger blood vessels.20,352 VSM cells 
are elongated fusiform bio-engines. Those isolated from pressurized 
swine carotid artery are ~10 × 240 mm when fully relaxed and ~120 mm 
long when fully contracted88 (Fig. 1A). In arteries, the long axis 
of  each VSM cell is oriented perpendicular to the long-axis of the 
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vascular tube319,521,522 (Fig. 1B), and in many veins, a fraction of VSM 
cells are also longitudinally-oriented.413 The role of VSM is to con-
tract, and thereby increase blood vessel wall stress (Fig. 1C, force per 
unit wall width × unit wall thickness; i.e., cross-sectional area; tension, 
the force per unit wall width, is also used for normalizing force of 
thin-walled blood vessels and to approximate stress). VSM contraction 
leads to constriction when wall stress is greater than the opposing 
dilating stress dependent on luminal blood pressure and tube radius 
(see Fig. 3B). Around the outermost medial lamina of arteries is an 
adventitial layer comprised of ECM and some cells such as fibroblasts, 
mast cells, dendritic cells, macrophages, progenitor cells and some 

Fig. 1.    Vascular smooth muscle (VSM) cells are long and thin (fusiform). The ratio 
of length, l, to width, w, for a VSM cell at rest is ~24:1. Single VSM cells can be 
stimulated to contract to ~half the rest-length (A). The long-axis of VSM cells (B.a., l) 
are oriented perpendicular to the long-axis of the vascular tube (B.a., w). Thus tissue 
stress, S, should be measured circumferentially, which can be accomplished using a 
vascular ring (B.b.) or strip (C) preparation. The degree of S is dependent on strain 
(normalized length, l). The strain at which Sa is a maximum is referred to as a refer-
ence length, lref., or as l0. The values w and h are width and thickness, respectively. An 
artery ring hung on tissue pegs (B.b.) is twice as thick and half as long as the same 
ring cut into a muscle strip, C. The Sa of a tissue strip made by cutting a ring open 
(B.a., dotted line), Sa2, would be equal to the Sa of that strip cut in half (C, dotted 
line, Sa3 or Sa4).
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Schwan cells. The percent of medial ECM is largest in elastic, conduit 
arteries (e.g., aorta, pulmonary artery, carotid artery and common 
iliac artery) and is reduced as the arterial tree becomes smaller in 
diameter (e.g., external iliac artery) and branches to perfuse separate 
organ systems (e.g., renal, femoral and mesenteric arteries and their 
branches). Arteries downstream from conduit arteries are called large 
and small muscular arteries. Perivascular adipose tissue encircles the 
adventitia of conduit and muscular arteries feeding organs. Larger 
arteries have a vasculature of their own, the vasa vasorum.318

VSM is sandwiched between sources of vasoactive stimuli that can 
be rapidly mobilized to control contractile activity.538 Endothelial cells 
release both contractile and relaxant stimuli31,95,101,256,293 and permit 
blood-borne hormones access to surrounding VSM.441 Sympathetic 
nerve varicosities35,46 and peptidergic sensory neurons183,230 invade the 
adventitia and adventitial-medial junction of certain vascular beds, 
releasing neurotransmitters and co-transmitters.538 Recent studies have 
revealed that perivascular adipose tissue releases stimuli that affect 
VSM contractile activity, including prostanoids and angiotensin 
II.295,356 The cells of each vascular bed produce stimuli that modulate 
the contractile state of the microcirculation according to local meta-
bolic demand.450 In addition, regulated gap junctions mediate direct 
intercellular communication between endothelial cells and between 
endothelial and VSM cells, permitting very rapid and efficient propa-
gated contraction and relaxation.17,138,449 Moreover, contractile and 
relaxant autacoids can be produced directly by VSM cells.

2. � Contraction (Shortening, Force Development  
and “Catch-slip Holding” Tension)

VSM cells are the engines of the vascular wall.390 The force-generating 
units, or motors, within smooth muscle cells are actomyosin (AM) 
crossbridges (XBs) arranged in poorly defined sarcomeric units6,172 
that, nevertheless, behave mechanically in a fashion similar to the well- 
characterized fast skeletal muscle sarcomere.323,390,545 In particular, 
when VSM in vitro is clamped at different muscle lengths (isometric) 
and stimulated to contract at each length to generate length-tension 
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curves, the maximum active isometric tension generated displays a 
parabolic dependency on muscle length. That is, muscle motor force-
generation is length-constrained (but see below). The maximum 
concentration of a contractile stimulus will engage the greatest num-
ber of motors when the tissue is at its optimum sarcomere length. 
Fewer motors are engaged at shorter and longer lengths, despite 
employing a maximum stimulus concentration. Thus, comparisons of 
the ability of stimuli to contract VSM must take muscle length into 
account. Both muscle length and tension can modulate the effective-
ness of stimulus-contraction coupling.379,380,512,514

Myosin is an ATPase with three domains; a head domain that 
“walks” on actin cables by forming a strong ionic bond with an actin 
monomer followed by an oar-like power stroke and then release from 
the cable and reversal of the stroke, a tail domain that is embedded in 
an assembly of myosins forming a thick filament, and a regulatory 
domain.79 Each myosin molecule is a heterohexamer consisting of two 
heavy chains, each with head and tail domains, and two pairs of myo-
sin light chains (MLCs; 20 kDa and 17 kDa) that wrap around the 
head’s neck region. The 20 kDa MLC, also termed the regulatory 
light chain, undergoes reversible phosphorylation, thereby regulating 
the motor’s activity (turning it “on” and “off”). Notably, actin-based 
thin filaments, myosin thick filaments and structures involved in 
force transmission of smooth muscles all appear to be acutely dyna-
mic,30,65,277,288,409,451,492,553 so the active length-tension curve is also 
acutely dynamic and the parabolic relationship can shift along the 
length-axis.7,24,452,497,526 Such acute dynamic plasticity enlarges the rep-
ertoire of smooth muscle contractile behaviors compared to striated 
muscles.

Arterial VSM is a composite material consisting of ECM that 
exerts passive mechanical properties, and VSM cells that appear to act 
as series-coupled force-transmitting engines.323,390 That is, isometric 
stress at any given muscle length is independent of the length of the 
tissue studied (i.e., cutting a tissue in half transversely to retain the 
original cross-sectional area will not affect the stress-level, Fig. 1C), 
and mechanical changes in tissue length will result in proportional 
changes in VSM cell length (and visa versa). Total stress consists of at 
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least two additive stresses, one from the motors (active stress, Sa) and 
one from the ECM (passive stress, Sp), because ECM and AM XBs act 
in-parallel. Other elements may contribute additional stress in-paral-
lel. An example is the giant intracellular protein titin found in striated 
muscle.274 Although the stress borne by titin is often considered to 
represent an additional passive stress, the titin stress-strain (strain = 
normalized length) curve is acutely regulated by cell signaling sys-
tems,174 indicating that titin’s contribution to total stress is not pas-
sive. Titin is also expressed by smooth muscle and may serve a 
mechanical role that is possibly regulated, but the precise function of 
smooth muscle titin remains to be determined.68,133 Throughout the 
functional length-range of bladder, a considerable amount of the 
stress borne when detrusor smooth muscle is at rest that was origi-
nally considered to be passive appears instead to be due to very slowly 
cycling AM XBs that undergo strain softening.405,471,473 To a lesser 
degree, this appears also to be true for VSM, contributing ~5–10% of 
total stress at the optimum length for contraction. These AM XBs act 
in parallel with those responsible for shortening more rapidly and 
developing stress, so their stresses are additive. The ability of AM XBs 
to “hold” stress for some time is characteristic of non-muscle, smooth 
muscle and slow striated muscle myosin II isotypes in which the 
power stroke is completed in 2-steps.204 “Holding” occurs when the 
XB power stroke stalls for some time at a position between the first 
and second steps due to mechanical strain and MLC dephosphoryla-
tion.339,469 Notably, in contrast to most non-covalent bonds that act as 
slip bonds where bond lifetimes decrease with load, the AM XB can 
act as a biological catch bond where, up to a point, bond lifetime 
increases (i.e., detachment rate decreases) with load.75,145

The ECM stress-strain curve of VSM is J-shaped such that when 
the VSM of an artery is fully relaxed, the artery will readily dilate at 
low pressures (Fig. 2A). The steep stress-strain slope of the curve at 
long strains provides a stress that resists further tissue strain, limiting 
the extent of acute increases in arterial lumen diameter with increas-
ing pressures. Failure of this system can result in aneurysm. Adding 
the parabolic active stress-strain curve to the J-shaped passive curve 
reveals an N-shaped total stress, St, curve (generally called an S-curve 
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because of the shape when the axes are inverted; Figs. 2B and 2C). 
What is apparent is that VSM motor-generated (active) stress domi-
nates at shorter muscle strains (smaller lumen diameters), and ECM 
stress dominates at longer strains (larger lumen diameters). 

Whereas the ECM is acutely static, slowly cycling AM XBs and pos-
sibly titin that operate in-parallel with rapidly cycling AM XBs within 
the smooth muscle compartment are subject to acute adjustments via 
cell signaling-dependent control. Thus, the stress (or tension) held by 

Fig. 2.    The preload tension-strain curve (artery segment not exposed to a contractile 
stimulus) is J-shaped (A), and the total tension-strain curve (artery ring stimulated to 
contract) includes a parabolic active tension relationship plus the J-shaped preload 
tension relationship, forming complex shapes dependent on the degree of vascular 
smooth muscle (VSM) activation (B–C). The intersections (stars) of isobaric curves 
(dashed lines) and tension curves (solid lines) reveal the level of VSM tension at given 
pressures in an artery tube not contracted (A), partially contracted (B) and fully con-
tracted (C) where the relationship between wall tension, T, and luminal pressure, P, is 
according the Laplace relationship (D, T = Pr), assuming a very thin wall. 
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smooth muscle “at rest” prior to activation by a contractile stimulus can 
be termed adjustable preload tension (Tap). The sum of ECM-
dependent passive tension, Tp, and regulated Tap can be termed the 
preload tension (Tpreload). When stimulated to contract, rapidly cycling 
AM XBs are activated and the muscle develops Ta. Thus, total tension, 
Tt, equals Ta + Tpreload, or, Tt = Ta + Tap + Tp.

The Laplace relationship reveals that the degree of wall tension, 
T, is a function of both lumen radius, r, and pressure, P; for a thin-
walled tube, T = Pr. In a cylindrically-shaped balloon partially blown 
up there exists simultaneously wider and narrower segments (Fig. 2D; 
note that T at the spherical interface between large and small cylin-
ders is less by half than T1). Pascal’s principle is that P is equivalent 
throughout the lumen of the static, closed system, so T1 > T2 because 
r1 > r2. Compared to the amount of VSM T that must be developed 
in the narrower segment to just balance the Pr2-dependent T2, the 
VSM T developed in the wider segment needed to offset the Pr1-
dependent T1 must be greater. Thus, contraction of an artery seg-
ment that causes a reduction in r when starting from a value equal to 
r1 (i.e., causes constriction) would need to initially be strong, but 
after causing constriction and a decrease in r (say to r2), could be 
weaker to maintain the new, smaller r. Notably, muscle shortening 
during vessel constriction moves the muscle down the ascending 
limb of its stress-strain curve, weakening the contractile strength. 
As will be discussed, mechanical strain also acts as a contractile stim-
ulus in most small (generally <300 mm) arteries, and reduced strain 
reduces the intensity of this myogenic stimulus to cause contraction. 
Moreover, the degree of strain can affect stimulus-contraction cou-
pling. The P gradient down the vascular tree falls from an average 
value of ~100 mm Hg in larger arteries to ~30 mm Hg in smaller 
arteries. In general, the motor proteins of large arteries are active to 
some degree so lumen diameters are between full dilation and full 
constriction. In the anesthetized mouse, the muscular femoral artery 
is constricted to ~½ its maximally dilated diameter, and most of this 
“basal tone” is dependent on basal sympathetic nerve activity.564 The 
VSM in these arterial segments bear high stresses indefinitely to pre-
vent the luminal Pr product from causing artery expansion and 
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movement into the strain region of a stress-strain curve where 
recruitment of ECM proteins are required to prevent further dilation 
(Fig. 2B). Contraction of smaller muscular arteries and arterioles 
generally cause more extensive vessel constriction (Fig. 2C), increas-
ing resistance to blood flow through that segment. This action regu-
lates not only organ perfusion, but also contributes to the control of 
total peripheral vascular resistance, and therefore, blood pressure.

3. � Classification of Contraction as Fast/Phasic  
and Slow/Tonic

Classification of smooth muscles into discrete categories has been a 
challenge that soon should be met by investigations combining 
molecular, developmental and functional analyses.106,406 In general, 
smooth muscles are classified as fast/phasic and slow/tonic muscles, 
based on the manner by which they contract.128 Stomach antrum and 
fundus provide classic examples because contractions of antrum are 
spike-like (phasic) and those of fundus are monotonic and sustain 
high levels of tension for as long as the stimulus is present.40,574 
Moreover, the maximum rate of cell shortening of isolated antrum 
smooth muscle cells is nearly 3-fold faster than fundus cells.92 Urinary 
bladder smooth muscle (detrusor) is relatively fast (maximum speed 
of shortening ~0.2–0.4 muscle lengths/s),211,506,507 and can display 
contractions that are entirely phasic.77,400 Thus, detrusor is generally 
classified as a fast/phasic muscle. However, detrusor contractions also 
can be entirely tonic.209 Notably, detrusor contractions often exhibit 
both behaviors because rhythmic contractions develop “on top of” a 
certain degree of sustained tone.77 During a tonic contraction, the 
strength of the sustained phase may be high (e.g., stimulation with 
endothelin)217 or moderate and weaker than that produced initially 
upon muscle activation (e.g., stimulation with KCl or a muscarinic 
receptor agonist).209,454 With a maximum rate of muscle shortening of 
~0.5 muscle lengths/sec211,507 and spike-like spontaneous contractions, 
portal vein fits the category of a fast/phasic VSM, whereas large 
conduit and muscular arteries generally are classified as slow/tonic 
VSMs. Large arteries often respond to contractile stimuli in a graded, 
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monotonic fashion, and stimulus concentration-response curves 
(CRCs) can be readily constructed. However, electrical oscillations do 
occur in these vessel segments.89,167,470 Moreover, many large and most 
small arteries display rhythmic contractions “on top of” tonic contrac-
tions when activated by contractile stimuli and, in some, rhythmicity 
occurs spontaneously.18,93,149,334,348–351,443,475 Rhythmic arterial contrac-
tile activity is often termed vasomotion,334 although this term is 
reserved by some for rhythmic diameter oscillations observed in small 
arteries in vivo. Arteries less than ~300 mm, and some arteries larger 
than this, display sustained contraction when rapidly stretched (myo-
genic tone). In summary, whereas large conduit arteries and portal 
vein generally fit the classifications of, respectively, slow/tonic and 
fast/phasic smooth muscles, muscular arteries and arterioles fit less 
well. Regardless, for VSMs stimulated to contract, the initial rapid 
contractile phase is termed the phasic component, and the sustained 
phase the tonic component.44 The strength of the sustained phase 
relative to the phasic phase often depends on the type and strength of 
the stimulus used to cause contraction.383

4.  Ca2+

Multiple highly dynamic Ca2+ compartments exist that, despite a high 
basal Ca2+ “leak (spontaneous releases of packets of stored calcium 
and Ca2+ entry through multiple channel types), act to maintain a 
~10,000-fold Ca2+ gradient between extracellular space and bulk 
cytosol in resting VSM.14,43,223,330,367,373,509 In general, application of 
moderate-to-high concentrations of a contractile stimulus to an iso-
lated artery in vitro induces a rapid increase in intracellular free Ca2+ 
([Ca2+]i) caused by release of intracellular Ca2+ stores and Ca2+ entry 
followed by a decline in [Ca2+]i that is sustained by Ca2+ entry.41,61,198,

224,309,396,403,508 The threshold for VSM contraction is ~100 nM, and 
full contraction occurs at ~300–1000 nM.83,115,387 Thus, the relation-
ship between steady-state active stress and [Ca2+]i is steep.

Whether the contractile response of a vascular segment is a direct 
reflection of the contractile response of individual VSM cells has been 
a question of interest for some time.199 When ionotropic P2X receptors 
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are activated by ATP released initially by periarterial adrenergic nerve 
stimulation in vitro, VSM cells display spatially discrete, asynchronous, 
junctional Ca2+ transients at a relatively high frequency associated with 
a weak transient contraction.259 Subsequent (delayed) activation of 
a1-adrenergic receptors causes a slow monotonic contraction associated 
with asynchronous propagating Ca2+ waves within individual VSM cells. 
Addition of exogenous stimuli to a tissue bath induces only a modestly 
different response. For example, a maximally effective concentration of 
a1-adrenergic receptor stimulus in veins428 and arteries566 induces an 
initial synchronous release of Ca2+ from sarcoplasmic reticulum stores, 
followed by asynchronous propagating Ca2+ waves. In all cases, Ca2+ 
waves begin in discrete subcellular domains and transient Ca2+ waves 
propagate through the cell.332 In short, contractile stimuli cause VSM 
tissue contraction by recruiting VSM cells, and by increasing the fre-
quency of asynchronous Ca2+ oscillations once the cells have been 
recruited.428 One attractive general model is that, at low stimulus con-
centrations, weak tissue contractions are sustained by recruitment of 
cells that generate asynchronous Ca2+ waves, and at moderate and high 
stimulus concentrations, intermediate and strong tissue contractions 
are sustained by asynchronous Ca2+ waves that increase, respectively, in 
frequency and velocity.263 Asynchronous Ca2+ waves reflect regenerative 
Ca2+ release from the sarcoplasmic reticulum.34,96,199,440

Rhythmic contractions appear to reflect entrainment of Ca2+ and 
contractile oscillations through the formation of interconnections.334 
That is, to entrain and produce rhythmic tissue contractions, cell-to-
cell coupling and coordination of Ca2+ oscillators would be required. 
Supporting this hypothesis, gap junction inhibition has been shown 
to abolish rhythmic contractions in small irideal arteries175 and myo-
genic contraction of cerebral arteries.258 Notably, rhythmic contrac-
tions originating from Ca2+ oscillations in VSM cells can be altered by 
Ca2+ oscillation-induced release of relaxants from endothelial cells.226 
The extensive sarcoplasmic reticulum of smooth muscle that is closely 
associated with the plasma membrane, caveolae, and mitochondria, 
acts as a superficial Ca2+ buffer barrier that regulates membrane 
potential, internal Ca2+ stores, mitochondrial Ca2+ (and ATP levels) 
and [Ca2+]i,

263,508,509 so subdomain Ca2+ signaling does not necessarily 
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correlate with contraction.298 In short, Ca2+ causes contraction when 
Ca2+ is delivered locally to contractile filaments. Like two circles of a 
Venn diagram, the set representing global [Ca2+]i and that represent-
ing AM-XBs responsible for contraction may not entirely ovelap.

These descriptions of Ca2+-induced contractions do not account for 
the likelihood that the tonic phase represents a dynamic process involv-
ing Ca2+ sensitization,222,355,465 a transition from rapidly cycling to slowly 
cycling AM XBs (formation of latch bridges),150–153,397,407 changes in actin 
polymerization and myosin filament formation, and sarcomere rear-
rangements that proceed slowly, perhaps continually.105,108,288,485,488,496,556 
The lack of tight coupling between stimulus-induced [Ca2+]i and tension 
in tonic smooth muscle can be seen as a temporal counterclockwise 
hysteresis between these parameters.115,177,465 For example, upon stimula-
tion of rabbit muscular arteries with a high [KCl], [Ca2+]i and tension 
change in two phases.402 [Ca2+]i initially rises rapidly (~22%/sec) within 
3 sec to ~65% of the maximum value, then more slowly (3%/sec), 
achieving the maximum value by 15 sec. During these 15 sec, tension 
rises at ~3–5%/sec to ~73% of its maximum level. From 15 sec to 3 min, 
tension continues to rise very slowly (~10%/min) to a maximum value 
that is sustained for at least 10 min, while [Ca2+]i falls back to ~65% of 
the maximum value by 10 min. The tension increase corresponding with 
the increases in [Ca2+]i corresponds to the phasic phase of contraction, 
and the delayed, very slow increase in tension that occurs independently 
of a further increase in [Ca2+]i (in this case, as [Ca2+]i falls) corresponds 
with the tonic phase of contraction.44 Both the sensitivity and strength 
of VSM stimulus-contraction coupling is a highly regulated parameter 
that can adjust up or down (stimuli can become more or less potent) 
relatively rapidly.125,131,191,300,377,379,380,387,391,395,399,404,445,446,512,514,566

5.  Cell Signaling

Cells may be thought of as computers that process numerous inputs 
to produce specific outputs.49 Rather than hardware and software, cells 
use wetware to interpret and act on the information derived from 
extracellular stimuli. Thus, biological information processing involves 
cell signaling pathways, and the general scheme is stimuli → cell 
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signaling → response(s). The first step in signaling involves binding of 
a stimulus to a receptor that generally is located in the plasma mem-
brane but may also be found in other membrane and cytosolic com-
partments. For clarity, signaling pathways were initially divided into 
discrete entities (modules), starting from a particular stimulus and 
ending with the response of interest. For example, the classical epi-
nephrine (Epi)-to-glucose output module for hepatocytes may be 
written as: Epi → [b-adrenoceptor → adenylyl cyclase (AC) → cyclic-
AMP (cAMP) → cAMP-dependent protein kinase (PKA)] → glycog-
enolysis → glucose, where cell signaling is identified in brackets. 
However, it is now clear that a single stimulus that produces a certain 
response often activates multiple cell signaling modules to varying 
degrees, and that a cell signaling cascade can lead to amplification such 
that the KD for a stimulus and its receptor may reside at a much higher 
stimulus concentration than the EC50 for the stimulus and its 
response.69 Moreover, temporal feedback mechanisms may “turn off” 
or “tune down” (i.e., desensitize) certain coupling mechanisms.573 
Most cell signaling pathways do not operated independently because 
elements within certain signaling modules often interact with elements 
of other modules. Molecular scaffolds and anchoring proteins such as 
proteins of the AKAP, annexin, RACK, 14-3-3, paxillin and PDZ 
families participate not only in spatial organization of signaling, but 
also in trans-modular crosstalk.52,136,188,423,460,567 In short, signaling 
pathways form highly complex networks that include feedback signal-
ing leading to ultrasensitivity, oscillations, bistability, and chaotic pat-
terns,23 and modest differences in certain protein isoforms can have 
profound differences in signaling outcome.99 It is most likely that in 
vivo, multiple stimuli simultaneously activate VSM cells, so threshold 
modulation, additivity and synergism of signaling systems probably 
occur.212,268,477,558 The extreme complexity of signaling systems was the 
driving force for developing new journals (Science Signaling, for 
example) and new computational tools used by modelers and systems 
biologists.462 The remainder of this chapter will focus on aspects of the 
arterial VSM signaling network involved in regulating the degree of 
20 kDa regulatory myosin light chain (MLC) phosphorylation 
(MLCp) responsible for controlling the degree of contraction. 
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The cell signaling pathways that regulate arterial VSM MLCp repre-
sent a highly heterogenous system. To gain insight into differences 
displayed by different arterial segments in VSM cell signaling, com-
parative studies are required. This area is poorly funded, so progress 
has been slow.

6. � Stimuli that Regulate the VSM Contraction 
Control System

Inputs that acutely regulate the degree of VSM contractile tension 
include contractile and relaxant stimuli, often termed vasoconstrictors 
and vasodilators, respectively (Fig. 3A). VSM cells actively shorten, 
and passively elongate. That is, the motor moves one-way only to 
cause VSM shortening. Thus, a relaxant stimulus does not actively 
cause vasodilation, but instead, reduces the degree of active tension 
generated by the motor proteins. VSM cells elongate when the 
motor’s tension is less than the opposing tension exerted by luminal 
pressure, causing vasodilation (Fig. 3B).

There is insufficient cardiac output to fully perfuse all organs 
simultaneously. In general, whole organism homeostatic regulation 
of VSM involves systemic production of neural and hormonal con-
tractile stimuli to limit cardiac output distribution and maintain 
blood pressure at levels sufficient to adequately perfuse the brain and 
heart, although adrenal medullary production of epinephrine par-
ticipates with local control in the maintenance of skeletal muscle 
blood flow at lower exercise intensities.213,542 The systemic outflow of 
contractile stimuli is made especially apparent during the trauma of 
hypovolemic shock.254 Opposing the demands of essential organs are 
those of individual cells and tissues that autoregulate blood flow 
locally by releasing relaxant and contractile stimuli, activating cell-
cell coupling mechanisms, and acutely modulating cell signaling 
systems.131,170,377,426,448,511 Thus, VSM and adjacent cells such as the 
endothelium are exposed to numerous stimuli in a dynamic spati-
otemporal manner to control the biomechanical activities of various 
blood vessel segments in all organs.58,447 A recent model of local 
blood flow regulation dispenses with hypoxia-induced release of 
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metabolites as controlling agents and incorporates recent informa-
tion on the opposing actions of reactive oxygen (contractile) and 
nitrogen (relaxant) species.129

Major contractile stimuli released by peri-arterial sympathetic 
post-ganglionic nerves71 include ATP and its metabolites (e.g., 
adenosine, Ado),53,234 norepinephrine (NE)564 and neuropeptide Y 
(NPY).229,541 Other contractile stimuli include angiotensin II (Ang II) 
produced by peptidase cleavage of Ang I in blood and tissues, includ-
ing the vascular wall and periarterial fat,295,490,539 arachidonic acid 
generated by phospholipases,130,304 endothelial-dependent contracting 

Fig. 3.    General model of the vascular smooth muscle (VSM) contraction control 
system that determines VSM tension (TVSM) based on the degree of activation by 
contractile and relaxant stimuli (A). Whether an artery constricts or dilates depends 
also on the degree of counteracting wall tension, which is dependent on luminal pres-
sure and radius (B).
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factors (EDCFs), histamine released from mast cells and adrenergic 
nerves in some species and blood vessels,66 serotonin (5-HT) released 
from platelets and possibly adrenergic nerves,71,535 thromboxane A2 
(TXA2) from platelets, urotensin II,516 and vasopressin (VP) from the 
posterior pituitary. EDCFs256 include endothelin-1 (ET1)489,490 arachi-
donic acid227 and its metabolites including 5-lipoxygenase products 
(leukotrienes), cyclooxygenase products such as TXA2 as well as other 
prostaglandins which subsequently diffuse to and activate TXA2 pros-
tanoid receptors on VSM212,256,353,547 and the cytochrome p450 metab-
olite 20-hydroxyeicosatetraenoic acid (20-HETE).402,421 Notably in 
some cases, the relaxant agent prostacyclin (PGI2) generated in this 
way activates VSM TXA2 receptors to cause contraction.102 Coronary 
artery spasm can be induced by acetylcholine (ACh) infusion in 
patients with variant angina,194 exogenous ACh releases endothelium-
dependent relaxant factor (EDRFs) in most vasculatures107,116,117 and 
EDCFs in the spontaneously hypertensive rat,546 and cholinergic 
nerves releasing ACh have been identified in certain vascular beds.486 
However, this neurotransmitter does not appear to act as a physiolog-
ical VSM stimulus in most species and vascular beds. Mechanical and 
electrical signals and cell-cell coupling also play important roles as 
VSM stimuli. In particular, the myogenic response and vascular con-
ducted responses, both vasodilation and vasoconstriction, represent 
major stimuli in small arteries ensuring that local O2 delivery balances 
O2 demand.17,176,378,416,448 In arterioles but not arteries of the rat,338 
NADPH oxidase and subsequent generation of reactive oxygen spe-
cies is a necessary step for stretch-activated myogenic contraction.338

There is considerable heterogeneity in vascular responsiveness to 
contractile stimuli within a particular vascular segment, down the 
vascular tree (compare Fig. 4A with 4B, 4C and 4E), and across spe-
cies (compare Fig. 4C and 4D). Mechanisms responsible for trans-
duction of the external signal to internal signals include receptors 
and associated coupled signaling systems (http://www.cellsignal-
lingbiology.org/csb/). Both receptors and receptor-coupled signal-
ing systems are highly complex, but in general, all of the contractile 
signaling systems converge on discrete intracellular signaling modules 
that control the myosin-based motor control system, and non-canonical 
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Fig. 4.    Examples of heterogeneity of responses to contractile stimuli within a particular 
arterial segment (A rabbit femoral artery, B rabbit epigastric artery, C rabbit mesenteric 
branch artery, D mouse mesenteric branch artery, E rabbit renal artery), comparing dif-
ferent arteries (A, B, C & D, E), and comparing the same artery across species (C & D). 
Data are active force normalized to the maximum force generated by KCl at the opti-
mum length for contraction, and are reported as means ±SE, n values (number of ani-
mals) are in parentheses. * indicates maximum stimulus-dependent force is >1 or <1.
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AM XB activating control systems (Fig. 5). For example, the stimulus 
phenylephrine activates a-adrenergic receptors to elevate the activities 
of certain trimeric G proteins that, acting as inputs to the Ca2+, ROCK 
and PKC control systems, alter inputs to the MLCp motor control 
system to cause a temporal change in the MLCp/MLC ratio. In very 

Fig. 5.    The canonical vascular smooth muscle (VSM) contraction control system 
(light blue) activated by a contractile stimulus (dark blue) is comprised of 4 cell sign-
aling control systems; a myosin light chain phosphorylation (MLCp) control system 
(a) consisting of myosin light chain kinase (MLCK) and protein phosphates 1 
(PP1M; see Fig 6B), a Ca i

2+ control system (b) that determines the level of Ca2+ input 
to (a), and rhoA kinase (ROCK, c) and protein kinase C (PKC, d) control systems 
that determine the level of active ROCK and PKC inputs to (a). Additional (non-
canonical) control systems that feed into (a) are bundled into (f), and a basal control 
system (e) regulates (a) when VSM is “at rest”. Also shown are non-canonical control 
systems downstream from the MLCp control system that determines contractile 
strength (i–v). A, actin; AM XB, actomyosin crossbridge; Ca i

2+, intracellular free Ca2+; 
FT, force transmission; CaM, calmodulin; CaMKII, calmodulin-dependent protein 
kinase II; LIMK, lim kinase.
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general terms, most VSM contractile stimuli activate G protein-
coupled receptors that transduce information delivered by the extra-
cellular signals into specific intracellular signaling via trimeric G 
proteins belonging to the Gq, G12/13 and Gi families.9,344 Also, in very 
general terms, the a subunit of Gq, G12/13, and Gi, respectively, acti-
vates phospholipase C to generate diacylglycerol and inositol-tris-
phosphate, activates rhoA-GEFs to generate active rhoA, and inhibits 
adenylyl cyclase. The Gbg subunits released by activation of G pro-
tein-coupled receptors may activate several signaling modules, 
including those that alter membrane potential. Although not high-
lighted above, certain growth factors activating receptor tyrosine 
kinases, and mechanotransduction mechanisms, also can provide 
inputs to the control systems regulating the MLCp motor control 
system of VSM. Thus, the red arrows in Fig. 5 linking the contractile 
stimulus with discrete control systems represent the cell signaling 
processes activated by each stimulus that provide inputs to Ca2+, 
ROCK, PKC, and other (non-canonical) control systems that, in 
turn, send inputs to the MLCp motor control system.

Major relaxant stimuli include Ado,53 adrenomedullin,48 ATP,53 bra
dykinin (BK),490 calcitonin gene-related polypeptide (CGRP),48,165,230,538 
cannabinoids,275,474 epinephrine (Epi),213,542 EDRFs,101 natriuretic 
peptides,287,548 vasoactive intestinal polypeptide (VIP),171,538 and uro-
cortin.216,279,366 EDRFs include nitric oxide (NO) and its metabo-
lites,107,116,117,555 H2S,31,527 and arachidonic acid metabolites including 
cyclooxygenase products (e.g., PGI2), cytochrome P450 products 
(e.g., epoxyeicosatrienoic acids (EETs) and glycerate EETs (GEETs)) 
and 12- and 15-lipoxygenase products.2,57,64,95,364 Endothelium-
dependent relaxation also involves a phenomenon termed endothe-
lium-dependent hyperpolarization, in which the participation of gap 
junctions may be obligatory.82 Relaxant stimuli such as Ado, ATP, BK, 
and CGRP act largely, but not exclusively, by causing release of 
EDRFs.53,170,234,490 Many vasoactive stimuli affect numerous cell signal-
ing systems in VSM and other tissues, and stimuli that generally are 
considered potent and strong contractile stimuli often also can cause 
relaxation. For example, the contractile stimulus Ang II and its 
metabolites can cause VSM relaxation.26 The mechanical stimulus of 
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shear stress acting on endothelial cells also is a strong stimulus for 
release of EDRFs.58 Many stimuli that act directly on VSM cells to 
cause contraction can stimulate endothelial cells to release EDCFs and 
EDRFs, and certain contractile stimuli can act indirectly to alter 
release of relaxant stimuli. For example, NPY can attenuate release of 
CGRP in mesenteric arteries,229 and both urotensin II and ET1, 
potentially potent contractile stimuli, often cause VSM relaxation by 
acting on endothelial cells.516 ACh release from sympathetic choliner-
gic fibers in skeletal muscle vascular beds of some species,214 and hista-
mine taken up and released by adrenergic nerves190 can cause VSM 
relaxation by stimulating release of vasodilators from endothelial 
cells.66,164 ET1 and Ang II stimulate VSM directly, causing contraction, 
and stimulate endothelial cells to release NO and PGI2 and cause 
relaxation.489,490 NADPH oxidases and reactive oxygen species also 
participate in the regulation of contraction.19,156 For example, hydro-
gen peroxide can act both as a contractile and relaxant stimulus.121,280

Most vasodilators reduce the degree of VSM motor activation by 
generating the cyclic nucleotides, cAMP and cGMP. Cyclic nucleotide 
signaling is represented by a network that involves significant crosstalk 
in which these messengers modulate each other’s synthesis, degrada-
tion, and effectors.33,110,362 The primary effectors are PKA and PKG, 
and despite their names, these kinases are not wholly selective for the 
cyclic nucleotides for which they are named. Notably, cAMP can acti-
vate PKG, and the ability of the AC activator forskolin to cause reduc-
tions in VSM Ca2+ entry is due to activation by cAMP of PKG, not 
PKA.210,272,273 In addition to kinase activation, cyclic nucleotides regu-
late cyclic nucleotide phosphodiesterase activities, and can activate 
cyclic nucleotide-gated (CNG) Ca2+-permeable nonselective cation 
channels that, when expressed in endothelial cells cause relaxation 
and, when expressed in VSM, may enhance contraction.110,271 Moreover, 
cAMP binds the exchange protein activated by cAMP (Epac) to ele-
vate activity of ras family members, rap GTPases.418 In VSM, the 
cAMP-Epac-rap signaling system causes relaxation by activation of 
rho-GAP.576 In cutaneous vasculature, the cAMP-Epac-rap module 
activates rhoA-ROCK to cause increased translocation along 
microfilaments of internal a2c adrenergic receptors to the plasma 
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membrane, with a consequent increase in adrenergic-dependent 
contraction.208,314 Relaxant stimuli that couple to cAMP do so via 
activation of one or more of the 9 adenylyl cyclase (AC) isotypes,139,158 
and relaxant stimuli that couple to cGMP do so via activation of the 
NO receptor (soluble) guanylate cyclase and the peptide-sensitive 
particulate guanylyl cyclase.113,548 Relaxant stimuli that bind G pro-
tein-coupled receptors may cause relaxation by activating the a subu-
nit of Gs, which activates all 9 AC isotypes, or by releasing Gbg 
subunits that stimulate AC2, AC4 and AC7. However, Gbg subunits 
also can inhibit AC1, AC5, and AC6, and increases in [Ca2+]i inhibit 
activation of AC5 and AC6. Interestingly, increases in [Ca2+]i activate 
AC1, AC3, and AC8. Thus, isoform expression plays an important 
role in cyclic nucleotide signaling. In VSM cells, Gq-dependent 
increases in [Ca2+]i cause reductions in AC5 and AC6 activities,520 and 
intimal but not medial VSM cells populating atherosclerotic lesions 
express AC8.142 Whereas cyclic nucleotides represent the primary 
relaxant signaling system, relaxant agents can act by other mecha-
nisms. For example, NO not only elevates cGMP levels, but also can 
cause nitrosylation reactions that affect contractile activity,72 and 
relaxant stimuli can, by elevating microdomain Ca2+ (Ca2+ sparks), 
activate Ca2+-dependent K+ channels to cause VSM hyperpolariza-
tion.261 Interestingly, Ca2+ can act as a VSM relaxing signal. Ca2+-
activation of a Ca2+-sensing receptor expressed by adventitial 
perivascular sensory nerves induces release of EETs, GEETs, and 
anadamide, causing mesenteric artery relaxation.22 EETs and GEETs 
cause relaxation by activating VSM K+ channels, and anadamide acts 
on VSM cannabinoid receptors.

Contractile and relaxant stimuli control the number of AM XB 
motors that are “on” and able to transmit force in a fashion that is 
somewhat distinct from the way that a potentiometer controls a DC 
motor. A potentiometer “dials in” the amount of energy to supply a 
motor. Whereas energy availability represents one of several control 
systems for VSM contraction (see below and129), the level of energy 
(ATP) for each AM XB motor (and for the multiple phosphorylation 
events involved in motor-control) is not the primary physiological 
motor controller. The central control system of the canonical VSM 
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contraction control system is the MLCp motor control system (Fig. 5(a)) 
comprised of calmodulin (CaM), CaM-dependent myosin light chain 
kinase (MLCK) and the protein phosphatase 1 catalytic subunit161 
(PP1M) that together regulate the degree of MLC phosphorylation. 
Thus, the output of the VSM contraction control system, via the 
motor control system, is a certain ratio of phosphorylated-to-total 
MLC (MLCp/MLC). The rate of force development is limited by the 
rate of MLC phosphorylation rather than by intrinsic properties of 
the AM XBs.468 The three primary canonical inputs to the motor 
control system include outputs from the Ca2+ control system 
(Fig. 5(b)), the rhoA-dependent coiled coil kinase (ROCK) control 
system (Fig. 5(c)), and the protein kinase C (PCK) control system 
(Fig. 5(d)).382,466 The outputs represent certain levels of Ca2+, and 
ROCK and PKC activities, determined by the effect of stimulus-
induced receptor activation (Fig. 5, red arrows from “Stimulus” to 
control systems). In VSM, mechanical stretch activates Ca2+ and other 
control systems,176,262,306,515,537,571 or may bypass these to directly acti-
vate MLCK27 within the motor control system (Fig. 5, curved arrow 
labeled “stretch”). This latter possibility seems plausible given that 
MLCK is a member of the family of mechano-sensing cytoskeletal 
giant proteins that include titin,122,247 and that MLCK could readily 
sense sarcomeric strains because opposite ends of this elongated mol-
ecule may simultaneously bind myosin and actin.184,187 The VSM 
MLCp motor control system is not completely quiescent in the 
absence of external stimuli. Thus, a basal control system is also 
included in this model (Fig. 5(e)). Whether this system represents 
constitutive activities of the Ca2+, ROCK and PKC control systems, 
other control systems (Fig. 5(f)), or the action of a basal level of 
stimulation, remains to be determined.

The output of the VSM contraction control system (the MLCp/
MLC ratio), in conjunction with non-canonical control systems 
(Fig. 5(f) and Fig. 5i–v) determines the number of active AM XBs and 
force transmission to the extracellular matrix, adjacent VSM cells and 
ultimately the whole tissue. Non-canonical systems include (i) actin 
activation permitting myosin engagement (tight-binding) with actin, 
and actin inhibition permitting rapid relaxation,4,16,146,150,238,366,408,525  
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(ii) actin polymerization,30,180,488,553 (iii) thick filament assembly,414,461 
(iv) latch bridge formation56,150,152,155,324 and/or sarcomere structural 
rearrangements,108 and (v) regulation of force transmission from motor 
proteins to the ECM and other VSM cells.135,238,488,525

Dynamic control of the microfilament-based cytoskeleton is 
regulated by over 100 actin-binding proteins.376 The rho GTPase, 
PKC and other (e.g., p21-activated kinase, PAK) control systems par-
ticipate in this process by regulating dual specificity LIM kinases 
(LIMKs), cofilin and heat shock protein 27.284,306,307,575 In rat cerebral 
arteries, rhoA knockdown leads to reduced stimulus-mediated con-
traction not by reduced MLCp, but by attenuated actin polymeriza-
tion.78 However, actin polymerization is also regulated in part by 
MLCp, such that increases in MLCp increase the degree of actin 
polymerization65 (Fig. 5, dark green arrow from MCLp motor control 
system to actin polymerization control system). The myosin head (S1 
fragment) can bind two adjacent actin monomers,45,231 so elevated 
MLCp may serve as an actin polymerization nucleating factor.105 
In addition to directly altering force transmission, changes in actin 
polymerization and crosslinking modifies cell viscosity, indirectly 
affecting contractile biomechanics.240,255,390 Lastly, non-canonical con-
trol systems feed indirectly into regulation of contraction by modulat-
ing other control systems and also by feeding directly into the MLCp 
control system (Fig. 5).179 Examples of non-canonical control systems 
include AMP-dependent protein kinase (AMPK), Ca2+-calmodulin-
dependent kinase II (CaMKII), extracellular signal-regulated kinase 
1/2 (ERK1/2) of the mitogen-activated protein kinase (MAPK) fam-
ily, kinase inhibitor of NF-kB 2 (IKK2), integrin-linked kinase (ILK), 
myotonic dystrophy protein kinase (DMPK) and the related myotonic 
dystrophy-related Cdc42-binding kinases (MRCK), PAK, MAPK-
activated protein kinase 1/p90 kDa ribosome S6 kinase 2 (RSK2, 
a.k.a. p90RSK and MAPKAP-K1), MAPK-activated protein kinase 2 
(MK2, a.k.a., MAPKAP-K2), and a member of the ubiquitously 
expressed death-associated protein kinase (DAPK) subfamily, zipper-
interacting kinase (ZIPK). Thus, the degree of pseudo steady-state 
contractile force is determined by molecular algorithms that use, as 
inputs, data from the multiple control systems that may be activated 
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to varying degrees. Relaxant stimuli activate cell signaling control 
systems that interact with one or more of these contractile control 
systems to attenuate their ability to increase contractile strength.

7.  Motor Control via Regulation of MLCp

7.1.  Canonical Control

Research on control of the VSM contractile state has focused primary 
on regulation of MLCp. This is because early work on non-muscle 
cells, platelets, AM filaments, permeabilized smooth muscle and mus-
cle tissues revealed that a Ca2+-dependent increase in MLCp is neces-
sary for contraction.1,28,60,62,87,162,463 That is, contraction of smooth 
muscle and non-muscle cells is primarily thick filament-regulated, 
which is unlike Ca2+-dependent contraction of striated muscle that is 
thin-filament-regulated (although MLCp modulates striated muscle 
contraction long-term).112,220 While it is generally accepted that 
MLCp is necessary for in vitro assembly of smooth muscle myosin 
into filaments and for actin-activation of myosin ATPase activ-
ity,186,493,494 whether these steps are sufficient to explain the full-range 
of in vivo contractility is more controversial. As mentioned, other 
forms of regulation play critical roles (Fig. 5, i–v). In arterial VSM the 
relationship between active stress and MLCp/MLC is quite steep and 
saturating.397 The most rigorous analysis to-date indicates that basal 
MLCp/MLC is ~0.15 and maximum stress occurs at ~0.25–0.3 
(Fig. 6A),410 supporting the notion of AM XB cooperativity.468 The 
function and regulation of high basal levels of MLCp in VSM has not 
been resolved. However, in detrusor smooth muscle basal MLCp sup-
ports Tap, the “tensional platform” upon which active contraction can 
rapidly develop,405,471,472 and a similar mechanism may exist in VSM.

Major elements of the canonical MLCp control system that deter-
mine the MLCp/MLC ratio are CaM, MLCK, and PP1M (Fig. 6B). 
CaM is a universal cell Ca2+ sensor70 and regulatory subunit of 
MLCK.513 There is insufficient cellular CaM to activate all CaM-
dependent systems.363 However, CaM does not appear to be limiting 
for smooth muscle activation because it remains tightly bound to 
myofilaments at low resting Ca i

2+ levels, and even in the absence of 
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Ca2+.544 As with most proteins, CaM is subject to regulation by phos-
phorylation,32 and in VSM, the level of free CaM may be elevated by 
PKC,193 increasing the CaM “input” to other control systems.

Early studies identified MLCK as the major cell signaling 
system  responsible for causing increases in MLCp111,369 leading to 
VSM contraction.60 Ca i

2+ levels are highly regulated by multiple 
ion  channels and pumps, by unique spatial arrangements and 

Fig. 6.    The relationship between the ratio of myosin light chain phosphorylation 
to total myosin light chain (MLCp/MLC) and steady-state active tension is steep, 
and the threshold level for active tension occurs at a relatively high basal MLCp/
MLC value of ~0.15 in tonic artery (A). The MLCp control system is comprised of 
calmodulin-dependent myosin light chain kinase (CaM-MLCK) and myosin light 
chain phosphatase consisting of the catalytic subunit of protein phosphatase 1 
(PP1M), a large myosin phosphatase targeting regulatory subunit (MYPT1) and 
small subunit (M20). Ca2+ and active rhoA kinase (ROCK) and protein kinase C 
(PKC) serve as inputs to the MLCp control system (B). [Ca2+]i determines the level 
of MLCp/MLC (C) and tension (D). These relationships can be shifted leftward 
(green lines) by ROCK and PKC, and rightward by relaxants (red lines). 
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interactions of subcellular compartments, and by feedback 
mechanisms.14,34,91,143,203,294,373,398,509,529,571,572 Thus, activation of MLCK 
is controlled upstream by complex Ca2+ signaling systems that deter-
mine the spatio-temporal level of [Ca2+]i that “feeds” the MLCp 
control system. Of the many signaling systems involved in [Ca2+]i 
control, the L-type voltage-operated Ca2+ channel (VOCC) plays a 
prominent role.181,331,537 Ablation of the VOCC isotype specific to 
smooth muscle, Cav1.2b, decreases mean arterial blood pressure by 
~30 mm Hg, and in vitro, greatly diminishes contractions induced by 
a-adrenergic receptor activation and stretch.305 However, other Ca2+ 
entry pathways, such as receptor-operated Ca2+ channels, store-oper-
ated Ca2+ channels,100,143,260,270 reverse-phase Na+–Ca2+ exchange),571,572 
and Ca2+ release from intracellular pools34,509 also play major roles. 
Interestingly, the other primary inputs into the MLCp control system, 
PKC337,401,411 and ROCK,124 and elements of the MLCp control sys-
tem, MLCK291 and CaM,100,154,368 have been reported to participate in 
control of Ca i

2+ and membrane potential (Fig. 5, gray arrows). The 
actions of ROCK and MLCK on [Ca2+]i signaling may be indirect, 
involving the regulation of cytoskeletal proteins and subcellular 
protein trafficking.290,291

7.2.  MLCK

MLCK, a member of the CaM kinase family of serine-threonine 
kinases,285 is highly selective for the regulatory MLC of non-muscle 
and smooth muscle cell.186 In fact, MLC appears to be the sole sub-
strate for MLCK.219 Specific deletion experiments reveal that MLCK 
is essential for smooth muscle contraction.168,169,531 MLCK binds 
tightly to both actin and myosin, and the current view is that MLCK 
localization to AM is via high affinity actin-binding.186,187 Notably, 
although the concentration of smooth muscle myosin is greater than 
MLCK, one MLCK molecule rapidly phosphorylates many MLC 
subunits.185 To accomplish this, MLCK moves along actin filaments, 
permitting phosphorylation of unphosphorylated MLCs.184 As with 
many other ser-thr kinases, an intrasteric autoregulatory sequence, 
termed a pseudosubstrate domain because of its sequence similarity to 
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the substrate,109,233 binds the MLCK catalytic active site, retaining the 
kinase in an inactive state until activated by Ca2+–CaM.248

When bound to the Ca2+-sensor CaM, ~1 mM Ca2+ maximally 
activates MLCK.481 MLCK activation occurs when the pseudosub-
strate domain is sequestered by allosteric binding of Ca2+–CaM to 
MLCK, permitting MLC access to the active site.219,247 The [MLC] 
in smooth muscle is estimated to be similar to the apparent Km for 
MLCK, ~30–50 mM, and the estimated molecular activity of 
MLCK for MLC is ~3/sec.12,103,481 In maximally stimulated carotid 
artery, MLCp rises with a half-time of ~1 second.459 Alternative 
splicing of the mylk1 gene produces large (220 kDa) and small 
(130 kDa) MLCK isotypes.173,219 Moreover, an Ig domain C-terminal 
to the protein kinase domain can be transcribed from mylk1 inde-
pendently of MLCK and expressed exclusively by smooth muscle 
tissues as a 17 kDa protein termed telokin (a.k.a., kinase-related 
protein, KRP).119,458

7.3. � CaMKII, ERK and Regulation of MLCK-dependent  
Ca2+ Sensitivity

A non-canonical VSM contraction control system, CaMKII, can cata-
lyze phosphorylation of MLC in vitro with Km and Vmax values ~10-
fold higher and lower, respectively, than MLCK when MLC is used at 
about the same substrate concentration.94 The affinity of CaM for 
MLCK is over 100-fold greater than for CaMKII, and MLCK is 
bound to AM even when VSM is “at rest”. Thus, CaMKII is generally 
not considered a physiological activator of MLCp. However, [Ca2+]i 
may be elevated to high levels initially upon VSM stimulation which 
could cause CaMKII activation, and a Ca2+-independent partial 
CaMKII activity may be retained for some time after Ca2+ has declined 
towards pre-stimulus levels at the steady-state of a stimulus-induced 
contraction (i.e., CaMKII has “molecular memory”).536 This autono-
mous CaMKII activity has been associated with VSM tension-mainte-
nance,320 but not because of CaMKII-dependent MLCp. A more 
likely form of MLCp regulation by CaMKII is to cause a reduction in 
Ca2+ sensitivity (Fig. 6D, red sigmoidal curve, and Fig. 7). In short, 
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the degree of activation of MLCK by Ca2+-CaM may be limited at 
high Ca2+-CaM concentrations because CaMKII can phosphorylate 
MLCK, reducing the affinity of CaM for MLCK.219,464,487,552 Similar 
phosphorylation-dependent inhibition of CaM affinity for MLCK is 
induced by PKC, PKA and PAK126,219,434 (Fig. 7). Because CaM is 
tightly bound to MLCK even at low [Ca2+]i, the extent to which this 
system operates to reduce the sensitivity of MLCK to Ca2+ in VSM 
remains to be fully elucidated. Like CaM, MLCK, PKC and ROCK, 
CaMKII serves as an input into the [Ca2+]i control system232,267 
(Fig. 5, gray lines).

Another non-canonical VSM contraction control system, ERK, 
can enhance the ability of CaM-dependent MLCK to phosphorylate 

Fig. 7.    Vascular smooth muscle contraction/relaxation control system signaling 
network.

β
Contractile stimuli

Relaxant stimuli
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MLCp.219,239,244,464,540 That is, ERK can theoretically elevate the degree 
of force produced for a given [Ca2+]i (i.e., cause Ca2+ sensitization; 
Figs. 6C and 6D, green lines). ERK activity is associated with VSM 
contraction,238 and a CaMKII-g G2 variant antisense knockdown study 
revealed that the ERK-activated increase in MLCp in ferret aorta is 
downstream from CaMKII (286). CaMKII and ERK may also play a 
role in thin filament and cytoskeletal control systems.238 In other VSM 
tissues, ERK does not appear to play a role in regulation of thick or 
thin filament-regulated contraction.132,336,392 In rabbit femoral artery 
in particular, ERK appears to play a role in transmission of informa-
tion to the cell about the degree of a1-adrenergic receptor-induced 
contraction, rather than in a contraction control system.392 
Interestingly, ERK is partially phosphorylated in resting, differenti-
ated rabbit artery. Thus, MEK is constitutively “on” in VSM. 
However, an intact endothelium reduces the degree of ERK phos-
phorylation by a mechanism other than PKG activation, which tends 
to elevate ERK phosphorylation.251,392

7.4. � Smooth Muscle PP1cd (PP1M) and its Regulatory  
Subunits

Whereas the human kinome encodes over 400 ser-thr kinases, only 
5 catalytic subunit genes encode the two most abundant protein 
phosphatases, PP1c and PP2Ac.519 These protein phosphatase cata-
lytic subunits acquire selectivity for particular substrates by binding 
different regulatory subunits. PP1c alone binds to over 50 regula-
tory subunits.76 Many of the regulatory subunits target PP1c to dif-
ferent cellular locations, enhancing dephosphorylation selectivity as 
well as regulating phosphatase activity. The PP1c isotype expressed 
in VSM, thought to primarily be PP1cd, is termed MLCP, SMPP-1M 
and PP1M. Although inhibitor-1 is the canonical inhibitor of PP1c 
activity, this regulatory subunit does not appear to play a major role 
in regulation of PP1M and VSM contraction.59 However, several 
other proteins regulate PP1M, including the large regulatory 
subunit, myosin phosphatase targeting subunit (MYPT1),161 PKC-
dependent protein phosphatase 1 inhibitor 17 (CPI-17) and related 
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members,97 telokin, prostate-apoptosis response-4 protein (Par-4),282,518 
smoothelin-like protein (SMTNL1),47,499,510 and the AMP-dependent 
protein kinase (AMPK)-related kinase, ARK5 (a.k.a., NUAK1).565 
Binding of VSM PP1M with MYPT1134 confers selectivity towards 
myosin,5 enhances phosphatase activity,196,457 and provides a mecha-
nism for regulation.197,206 However, in MYPT1-deleted (smooth 
muscle conditional knock-out) mesenteric arteries in which ~50% of 
PP1M was retained, PP1M still recognizes and dephosphorylates 
MLCp. In addition to MYPT1, a small regulatory subunit, M20, 
also is associated with PP1cd in the holoenzyme (PP1M-
MYPT1-M20). A highly homologous gene to that expressing MYPT1 
transcribes MYPT2 in striated muscle, and a second promoter acti-
vated in smooth muscle on the MYPT2 gene generates M20. The 
function of M20 in smooth muscle remains obscure, but may involve 
regulation of microtubule assembly.483 MYPT1 acts as a scaffold for 
several proteins in addition to PP1M, M20 and MLCp, including 
14-3-3b, Par-4, HSP27, and myosin phosphatase-rho interacting 
protein (MRIP, a.k.a. p116RIP).134

7.5.  Regulation of Ca2+ Sensitivity by PP1M Inhibition

The relationship between steady-state [Ca2+]i and tension is not fixed, 
as might be expected if the sensitivity of MLCK to Ca2+ was fixed, and 
if PP1M activity was constant and unregulated (Fig. 6D, black line). 
However, MLCK activity for a given Ca2+ level can be modulated, and 
activation of ROCK and PKC, the canonical control systems regulat-
ing the MLCp/MLC ratio via inhibition of PP1M activity, can dra-
matically increase Ca2+ sensitivity222,365,465 (Figs. 6C and 6D). Notably, 
ROCK, novel and atypical PKC isotypes, and non-canonical MLCp 
regulators such as ILK and ZIPK, can function independently of 
global increases in Ca2+. Moreover, relaxant stimuli that activate PKA 
and PKG can alter the level of steady-state tension independently of 
alterations in the level of [Ca2+]i to cause Ca2+ desensitization. Thus, 
the current model is that VSM tension is controlled by (1) changes in 
[Ca2+]i, and (2) regulation of PP1M activity independently of changes 
in [Ca2+]i. For example, VSM can be contracted from point (p) to point 
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(q) in Fig. 6D by increasing [Ca2+]i from (r) to (s) (Figs. 6C and 6D, 
black arrows) because elevated [Ca2+]i would activate MLCK. 
Alternatively or additionally, VSM can be contracted by increasing the 
sensitivity of the MLCp control system to Ca2+ (increase in the slope 
of the [Ca2+]i-MLCp relationship) by inhibiting PP1M, which would 
cause a leftward shift in the [Ca2+]i,-tension curve (Fig. 6D, green 
arrow and sigmoidal curve). That is, the relationship between [Ca2+]i 
and tension is not fixed, but is represented by a series of curves, the 
nature of which depends on the levels of concomitant regulation of 
MLCK and PP1M activities. This scenario divides activation mecha-
nisms into Ca2+-dependent and Ca2+-independent, where the former 
involves Ca2+-dependent activation of MLCK, and the latter involves 
changes in the ability of Ca2+ to activate MLCK and in the regulation 
of PP1M activity, both of which can be completely or relatively Ca2+-
independent. 

Unregulated PP1M is “on”, and dephosphorylation of MLCp by 
PP1M turns contraction “off” (Fig. 8Ba). MYPT1 phosphorylation 
at T472, T696 and T853 inhibit PP1M activity, and phosphoryla-
tion at T695 by PKA and PKG prevents T696 phosphorylation, 
thereby enhancing net T696 dephosphorylation134,206,327,551 (Fig. 8A). 
In one model, the mechanisms by which MYPT1-pT696 and 
MYPT1-pT853 inhibit PP1M activity are distinct.206 Phosphorylation 
at pT696 inhibits PP1M activity (Fig. 8Bci), whereas phosphoryla-
tion at pT853 displaces PP1M from myosin so that the catalytic site 
has poorer access to its substrate, MLCp (Fig. 8Bcii).517 A more 
recent model of the PP1M-MYPT1-M20 holo-enzyme supports the 
hypothesis that phosphorylation of MYPT1 at either T696 or T853 
converts the phospho-MYPT region into an autoinhibitory domain, 
where the phosph-MYPT domain docks with and “covers” the 
PP1M active site, causing complete inhibition of phosphatase 
activity236 (Fig. 8Bciii). Because the pT696 site is a more potent 
autoinhibitor than the pT853 site, this model suggests that the two 
phospho-MYPTs provide different degrees of PP1M inhibition. 
MYPT1-pT472 is recognized by 14-3-3b resulting in dissociation of 
PP1M from myosin and reduction of PP1M activity towards 
MLCp249 (Fig. 8Bd).
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Two alternative splice variants of MYPT1, leucine-zipper positive 
(MYPT1-LZ+) and negative (MYPT1-LZ–) isoforms, are differentially 
expressed by smooth muscles.86,192,235,358 Fast, phasic smooth muscles 
express primarily MYPT1-LZ– that lacks the C-terminal LZ motif to 

Fig. 8.    Vascular smooth muscle protein phosphatase 1 (PP1M) activity is inhibited 
by multiple mechanisms, including MYPT1 (abbreviations as in other figure legends 
and text) when phosphorylated at T696, T853 and T472, and by CPI-17 when 
phosphorylated at T38 (A). MYPT1 and CPI-17 are phosphorylated by ROCK, 
ZIPK and PKC. PKA and PKG prevent this inhibition by phosphorylating SMTNL1 
at S301, telokin at S13 and MYPT1 at S695. Par-4 can inhibit ROCK-induced phos-
phorylation of MYPT1, and Par-4 phosphorylation at T155 prevents this action. 
When PP1M is not regulated, then it is “on” and free to catalyze the hydrolysis of 
MLCp, which turns the actomyosin crossbridge motor “off” (B.a.). Proposed mech-
anisms by which PP1M is “turned off” (B.b.–B.d.)

p

p p

δ
p

(A)

(B)

a.

b.

pi

↑

c.i. c.ii.

p
↑

a. b.c.

c.iii. d.

p

b2527_Ch-03.indd   79 9/21/2016   10:50:30 AM



80  P. H. Ratz

	 	 b2527  Vascular Smooth Muscle Cells in Health and Disease� “9x6”

which PKG1a can bind, and slow, tonic smooth muscles express 
MYPT1-LZ+. With regard to VSM, this information supports the 
hypothesis that the relaxant response of large conduit, not smaller 
muscular, arteries to stimuli that activate PKG1a may operate via 
reversal of MYPT1 inhibition of PP1M activity.86,359 In rabbit femoral 
artery where KCl causes contraction correlating with a steady-state 
increase in MYPT1-pT853, stimuli that activate PKA and PKG cause 
strong Ca2+-independent reductions in Ca2+ sensitivity resulting in 
relaxation, but only PKA activation abolishes the increase in MYPT1- 
pT853.377 Notably, activation of PKG causes strong relaxation of 
mouse mesenteric artery in which MYPT1 was deleted, suggesting 
that MYPT1 regulation is not essential for PKG-dependent relaxation 
of this small, muscular, phasic artery.383

Several studies indicate that contractile stimuli, including KCl, 
cause increases in the level of MYPT1-pT853, not MYPT1- 
pT696.242,377,543 ROCK can phosphorylate both sites, but MYPT1- 
pT853 is the preferred site, and is used as an indicator of ROCK 
activity in smooth muscle and other cell types.228,321 Members of the 
non-canonical MLCp regulators that phosphorylate MYPT1, such as 
ZIPK,281 ILK,157,241 and DMPK322 can phosphorylate MYPT1 at T696 
but not T853.466 Notably, MYPT1-pT853 and MYPT1-p696 levels 
are elevated at rest in rabbit muscular arteries10,377,401 and rabbit375 and 
mouse495 bladder. Pharmacological blockade of ROCK and activation 
of PKA reduce the level of MYPT1-pT853 but not MYPT1-pT696, 
whereas hypoxia,533 and the potent non-selective kinase inhibitor stau-
rosporine225,568 when used at 1 mM,10 reduce the basal level of both 
MYPT1-pT853 and MYPT1-pT696.

CPI-17-pT38 inhibits PP1M complexed with MYPT1 (Fig. 8Bb) 
with an IC50 value of ~1 nM.97 CPI-17 is expressed in greater abun-
dance in VSM compared to visceral smooth muscles549 (interestingly, 
CPI-17 is not expressed by chicken arterial VSM).243 For example, 
rabbit portal vein and femoral artery express ~4–5-fold more CPI-17 
than urinary bladder. MYPT1 expression also is not identical in all 
smooth muscles, although the degree of difference is less. For exam-
ple, rabbit portal vein expresses ~2-fold more MYPT1 than femoral 
artery, and urinary bladder also may express somewhat more MYPT1 
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than femoral artery.549 In VSM, CPI-17 is a substrate for PKC, 
ROCK, ILK, ZIPK and PAK,97,157 and thus, stimuli that activate these 
control systems may cause increases in CPI-17-pT38.242 Of note is the 
finding that ROCK, not PKC, causes an increase in CPI-17-pT38 
induced by U-46619 in VSM cells.357 As with phosphorylation of 
MYPT1 at, for example, T696, the net effect of increases in CPI-
17-pT38 on PP1M activity is inhibition, which leads to an increase in 
the MLCp/MLC ratio when a myosin kinase is active. 

7.6.  Rac, rhoA and ROCK

PAK and ROCK are activated by the rho family of small GTPases, 
rac and cdc42, and rhoA, respectively42 and play critical roles in 
signaling systems controlling the cytoskeleton and AM fila-
ments.11,13,283,382,417,467 Inactive rhoA (rhoA-GDP) translocates from a 
cytosolic location bound to a guanine nucleotide dissociation inhib-
itor (GDI) to the plasma membrane where it is activated to rhoA-
GTP. Two primary downstream effectors of rhoA include ROCK 
and the actin polymerization nucleator mDia, the function of which 
is to establish and maintain bundles of AM filaments.39,329,424 The Kd 
values of active rhoA (rhoA-GTP) for mDia and ROCK are, respec-
tively, 6 and 130 nM. Thus, low levels of rhoA activation favor linear 
actin polymerization, whereas higher rhoA-GTP levels activate 
ROCK. In rabbit aorta, U-46619, NE, 5-HT, histamine and ET1 
cause increases in active rhoA, whereas Ang II and phorbol dibu-
tyrate do not,431 suggesting that most contractile agonists can poten-
tially activate mDia and ROCK in VSM. Independently of its action 
to increase linear microfilament formation, mDia stabilizes microtu-
bules.29 Notably, microtubule disruption enhances the strength of 
VSM contraction269,371,455,569 by enhancing GEF-H1 activity, and 
thus, rhoA and ROCK activities.38,63,372,570 RhoA-GTP becomes inac-
tivated by intrinsic hydrolysis of GTP, the rate of which is enhanced 
by rhoGAPs.

ROCK1 (ROKb) and ROCK2 (ROKa) are AGC-family ser-thr 
kinases related to DMPK and myotonic dystrophy kinase related-
Cdc42 related kinases (MRCK).13,215,285,360,417,502 ROCK1 and ROCK2 
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are expressed by different genes and share high sequence homology 
(92%) within the kinase domains, and low homology within the 
coiled-coil domains (55%). These isotypes are generally co-expressed 
and, although some overlap is apparent, they do not appear to be 
functionally redundant.562 Recent evidence suggests that ROCK2 
plays the primary role in regulation of VSM contraction.532 ROCK 
appears to cause smooth muscle contraction indirectly by increasing 
phosphorylation of MYPT1 and reducing PP1M activity,382 and 
directly by acting as a MLC kinase.257 There are data supporting the 
model that ROCK can feed back to prolong its duration of activation 
by phosphorylating p190A-rhoGAP, which inhibits the ability of the 
GTPase rnd to bind and enhance rhoGAP activity, thus sustaining 
rhoA activation312 (Fig. 7). In addition to increasing MYPT1-pT853, 
ROCK can phosphorylate MYPT1 at S472, a site also phosphorylated 
by NUAK1.565 It is interesting that MLCK and ROCK differentially 
regulate MLCp in different cell compartments within fibroblasts to 
differentially control cell movement and adhesion.491 Whether such 
compartmentation plays a role in the regulation of VSM contraction 
remains to be determined.

ROCK is activated not only by rhoA-GTP (active rhoA), but also 
by arachidonic acid and other lipids including phosphatidylinosi-
tol.103,141,382,466 Inactive rhoA-GDP is retained in its inactive conforma-
tion in the cytosol because of enhanced binding of rhoA’s prenyl 
group with guanine nucleotide dissociation inhibitor (GDI). Activation 
of rhoA involves displacement from GDI, insertion of rhoA’s prenyl 
group into the plasma membrane, and nucleotide exchange catalyzed 
by a guanine nucleotide exchange factor selective for rhoA (a rhoA-
GEF). Activation of ROCK by rhoA is therefore also generally con-
sidered to occur at the plasma membrane, and work by Urban et al.503 
revealed that KCl induces a transient, Ca2+-dependent translocation of 
ROCK to plasma membrane caveolae. To activate AM XBs, ROCK or 
downstream proteins such as ZIPK must translocate to AM XBs in 
the cytosolic compartment to inhibit PP1M, inducing Ca2+ sensitiza-
tion and tension-maintenance.466 One proposal is that ROCK acti-
vates ZIPK which, in turn, translocates to PP1M at the AM XBs. 
Alternatively or additionally, rhoA and ROCK may become activated 
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at the AM XBs by binding to the scaffold protein, MRIP, that colocal-
izes rhoA, PP1M and actin315,317,415 (Fig. 7). However, MRIP likely 
facilitates relaxation rather than contraction, because MRIP overex-
pression inactivates rhoA.315–317 MRIP binds both inactive rhoA 
(rhoA-GDP) and active rhoA (rhoA-GTP),479 and because MRIP acts 
as a GTPase activating protein (GAP), will “turn off” rhoA250 (Fig. 7). 
Notably, MRIP binds the LZ domain of MYPT1,479 and thus, will not 
act in tissues that express MYPT1-LZ–. Of clinical interest is the find-
ing that insulin stimulates MRIP-MYPT1 binding in VSM cells and 
enhances relaxation,264 and rac1 knockout causes hypertension by 
altering the MRIP-rhoA inactivation system.315–317

RhoA and the rho-family GTPase rac often act in a counter-
regulatory manner.417 In VSM, rhoA activates ROCK to phosphoryl-
ate MYPT1, inhibiting PP1M and causing Ca2+ sensitization, and rac1 
activates PAK1 to inhibit MLCK activity causing Ca2+ desensitiza-
tion575 (Fig. 7). Rac1-dependent activation of PAK1 also inhibits the 
cGMP-specific phosphodiesterase, PDE5,439 elevating cGMP levels 
which also would cause Ca2+ desensitization, in this case, via PKG-
dependent inhibition of rhoA and activation of PP1M. Upstream rac1 
signaling in VSM involves NO-induced activation of the tyrosine 
kinase src via nitrosylation385 which, in turn, activates the rho-family 
GEF vav2.276,439 In addition, both rhoA and rac1 bind MRIP, and the 
NO pathway promotes dissociation of MRIP-rac1 and promotes asso-
ciation of MRIP-rhoA. Notably, the MRIP-rhoA complex also pro-
motes rhoA phosphorylation and inactivation (Fig. 7). This model is 
consistent with the finding that inducible inactivation of mouse 
smooth muscle rac1 causes an ~15 mmHg increase in blood pres-
sure.15 Thus, rac1 appears to exert a VSM relaxant action in two 
ways.15 One is via NO-dependent rac-mediated activation of PAK 
which inhibits PDE5, reducing cGMP degradation, and another is an 
increase in MRIP-rhoA association permitting PKG-dependent rhoA 
phosphorylation and inactivation. 

However, rac1 may not act in VSM solely to cause relaxation. 
In rat aorta, rac1 is activated by receptor-dependent contractile stim-
uli, but not by KCl, and appears to enhance PKC translocation from 
the plasma membrane to facilitate PKC-dependent phosphorylation 
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of MYPT1 and CPI-17, inhibiting PP1M and promoting contrac-
tion.456 In mouse mesenteric and saphenous arteries and aorta, phar-
macological inhibition of rac1 attenuates contractions induced by 
several stimuli, including KCl and PDB, due to alterations in regula-
tion of the Ca2+ control system.384 Rac1-PAK3 may participate in 
caldesmon phosphorylation and thin filament activation. Rac1 is one 
component necessary for activation of NADPH oxidase,301,559 and 
rac1 overexpression can elevate blood pressure by activation of 
NADPH oxidase causing generation of reactive oxygen species that 
mediate VSM contraction.166,338

7.7.  Basal MLC Phosphorylation

A general hypothesis is that the MLC kinase responsible for increasing 
MLCp upon VSM stimulation is “off” when VSM is “at rest” (i.e., 
when a stimulus is not present). Moreover, PP1M is assumed to be 
“on” to ensure a very low level of MLCp. To activate contraction, 
MLCK is “turned on” by an increase in [Ca2+]i. In this case, simulta-
neously “turning off” PP1M would increase the degree of MLCp for 
a given increase in [Ca2+]i (Ca2+-sensitization). Thus, there is a general 
notion that the MLCp/MLC ratio is ~zero at rest, and that a stimulus 
causes dual regulation to “turn on” MLCK by elevating [Ca2+]i and 
“turn off” PP1M by elevating ROCK and PKC activities. However, 
in tonic VSM “at rest”, basal MLCp is not zero, but ~0.15.410 This 
level can be reduced at least 50% by ROCK blockade, and nearly 
abolished by 1 mM staurosporine.10,401 The MLCK inhibitors wort-
mannin and trifluoperazine do not reduce the basal level of MLCp. 
Notably, strong reductions in basal MYPT1-pT853 are induced by 
ROCK blockade,377,543 adenylyl cyclase activation by forskolin,377 and 
bromoenol lactone-induced inhibition of “Ca2+-independent” phos-
pholipase A2 (iPLA2),

402 an enzyme responsible for basal production 
of arachidonic acid in VSM.147 Moreover, reductions in basal 
MYPT1-pT696 and -pT853 are induced by staurosporine.10 As these 
sites are substrates for several kinases, including ROCK, ILK and 
ZIPK, and reductions in MYPT1 phosphorylation at these sites would 
be expected to permit elevations in PP1M activity, it is likely that 
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PP1M in tonic VSM “at rest” is regulated (inhibited), and a kinase 
other than MLCK is active. In vitro, ~50 mM arachidonic acid acti-
vates ROCK by ~5.5-fold, whereas active rhoA induces an ~2-fold 
increase.103 Thus, basal iPLA2 activity may be responsible for generat-
ing sufficient arachidonic acid to activate ROCK and elevate 
MYPT1-pT853, causing a certain degree of PP1M inhibition that, in 
conjunction with basal MLC kinase activity, ensures that MLCp is 
basally “set” at ~0.15 in tonic VSM. Although the CaM-dependent 
smooth muscle MLC kinase (i.e., MLCK) may be “off” at rest, the 
notion that all MLC kinases are “off”, and that PP1M is “on” and 
unregulated, is an oversimplification. Rather, PP1M and one or more 
of the several MLC kinases are most likely at some intermediate value 
within their range of activities between fully “on” and “off”. MLC is 
a good substrate for ROCK (103). Thus, basal ROCK activity may act 
both as a MLC kinase and inhibitor of PP1M. Recent evidence sup-
ports the contention that IKK2 also is a basal MLC kinase.389,560 
In summary, VSM appears to be “idling” when at rest because MLCp 
is ~0.15 due in part to the constitutive activities of phospholipases 
and one or more kinases that, in turn, regulate the activities of MLC 
kinases and PP1M. Precisely which kinase(s) participate in this regula-
tion remains to be fully elucidated.

These results support the hypothesis that PP1M cannot be con-
sidered fully “on” in resting VSM because basal phosphorylation of 
MYPT inhibits PP1M activity. Moreover, non-myogenic VSM has 
tone at rest that can be reduced by ROCK inhibition and by strain 
softening (loading the tissue by stretching from a rest-length to a 
longer length, then unloading by releasing back to the original rest-
length). Inhibition of resting tension by a ROCK inhibitor and strain 
softening appear synergistic rather than additive, suggesting that they 
work on separate systems. 

7.8.  KCl-induced ROCK-dependent Contraction

Membrane depolarization using high concentrations of K+ (KCl or 
K2SO4) in the presence of receptor antagonists to block activation by 
release of paracrine agents is often used as a tool to bypasses receptor 
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activation and cause smooth muscle contraction primarily by changing 
the K+ equilibrium potential, clamping membrane potential at some 
value above the resting level, and increasing Ca2+ entry through 
VOCCs.44 Thus, for many years, KCl was thought to represent a much 
“simpler” stimulus that could be used for comparison with the more 
“complex” stimulus-response coupling systems activated by receptor-
mediated stimuli.51 However, KCl can cause release of Ca2+ from the 
sarcoplasmic reticulum246,504 and can activate channels in addition to 
VOCCs.393 Moreover, the Ca2+ sensitivity of KCl-induced contractions 
can change.399,557 Notably, VOCCs appear to exert not only an iono-
tropic effect but also a metabotropic effect.104,181,505 The metabotropic 
effect of KCl-induced VOCC activation involves downstream  
G protein activation independently of the ion-conducting property of 
the CaV1.2 channel, and the ionotropic effect (Ca2+ entry) can activate 
more proteins than MLCK. For example, Ca2+ can activate the tyros-
ine kinase pyk2 (a.k.a, FAK2)296,297,561 and PI3K-C2a.530,563 In many, 
but not all, experiments assessing KCl-induced contractions, receptor 
antagonists are duly employed to block spurious activation of G pro-
tein-coupled receptors. However, an artery is a collection of several 
cell-types, and membrane depolarization may release not only parac-
rine agents from non-smooth muscle cells, but also may cause release 
of autacoids from VSM itself that potentially could contribute to 
smooth muscle stimulation. Moreover, receptor tyrosine kinase 
activation may occur, and inhibitors of this class of receptors are not 
routinely employed during in vitro studies when KCl is used as a 
stimulus. 

With this caveat in mind, Ca2+ sensitization appears to play nearly 
as important a role in KCl-induced tension maintenance as it does in 
receptor stimulus-induced contractions in tonic VSM.387,394 Signaling 
systems that appear to participate in KCl-induced Ca2+ sensitization 
include those that activate ROCK and PKCz. In the presence of adr-
energic, histamine, Ang II and thromboxane A2 receptor antagonists, 
KCl causes a strong and sustained activation of rhoA in endothelium-
denuded rabbit aorta,432 and rhoA inhibition reduces KCl-stimulated 
phasic contractions of guinea pig intestine and rabbit portal vein.114,354 
A different technique employed to “strip away” the complexity of 
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receptor-dependent signaling and “clamp” Ca2+ at known levels is 
chemical permeabilization of artery segments using Triton X-100, 
b-escin (and the related detergent, saponin) and a-toxin.511 
Interestingly, in b-escin-permeabilized smooth muscle, rhoA inhibi-
tion reduces the maximum efficacy but not the potency of Ca2+-
induced contraction of guinea-pig intestinal smooth muscle,354 and 
the ROCK inhibitor H-1152 when used at 1 mM produces a similar 
effect in rabbit and mouse femoral arteries.74

ROCK inhibition reduces the tonic phase of KCl-induced con-
traction in several artery-types.21,299,430,432,437,503 In rabbit artery, KCl-
induced increases in Ca2+ appear to cause ROCK translocation to 
punctate plasma membrane regions rich in caveolae.503 Potential 
mechanisms by which KCl can cause an increase in ROCK include 
activation of a rhoA-GEF,104,296,297,412,505,561 PI3K-C2a,530,563 20-HETE, 
PKCz, and iPLA2.

402 KCl can activate PKC and ERK,392,401 and these 
signaling systems can elevate the level of 20-HETE. Moreover, PKC 
is an upstream activator of rhoA and ROCK.182 KCl, by causing a 
strong transient increase in [Ca2+]i can activate CaMKII,419,476 which 
along with ERK can activate cPLA2

325 to generate arachidonic acid.
In rat aortic VSM cells, knockdown of pyk2 or the rhoA GEF, 

PDZ-RhoGEF, reduced rhoA activation by the Ca2+ ionophore 
A-23187, suggesting that pyk2-PDZ-RhoGEF is activated down-
stream of Ca2+ to cause rhoA-ROCK-dependent Ca2+ sensitization.561 
In VSM cells stimulated with Ang II, the [Ca2+]i rise activates a Jak2-
dependent mechanism to induce Arhgef1/RhoA signaling and Ca2+ 
sensitization.144 If Ca2+ alone is sufficient to activate ROCK and cause 
Ca2+ sensitization, then any receptor stimulus that elevates Ca2+ and 
membrane depolarization would also be expected to activate ROCK. 
However, in rabbit tonic arteries, Bay K 8644, a dihydropyridine that 
promotes Ca2+ channel clusters to operate in a persistent Ca2+ influx 
mode, causes a strong increase in [Ca2+]i, MLCp and contraction, and 
induces a transient increase in rhoA, but fails to elevate the ROCK 
substrate MYPT1-pT853, suggesting that an increase in [Ca2+]i alone 
is insufficient to activate ROCK to cause Ca2+-sensitization. Despite 
the lack of Bay k 8644-induced activation of ROCK, the ROCK 
inhibitor H-1152 nearly abolishes a Bay k 8644-induced contraction. 
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This is due not to inhibition of a stimulus-induced increase in ROCK 
activity, but to the strong inhibition of basal ROCK activity, as evi-
denced by the very low basal MYPT1-pT853 in the presence of 
H-1152, and the inability of Bay k 8644 to elevate the depressed basal 
MYPT1-pT853. 

7.9.  PKC

PKC, a member of the AGC subfamily of ser-thr kinases,360 is 
expressed as 10 isotypes categorized as convention (a, bI, bII, g), 
novel (d, e, h, q) and atypical (z and i/l).266,302,433 Although most PKC 
isozymes are ubiquitously expressed,302 and a, b, g, d, e and z 
isoforms have been shown to be expressed in various arteries,221,311 
there is evidence that PKCb is not expressed by splanchnic VSM, and 
that PKCg expression in arteries is of neuronal origin.345 Conventional 
PKCs (cPKCs) are Ca2+-dependent; novel (nPKC) and atypical 
(aPKC) are not. In the presence of membrane phosphatidylserine, 
diacylglycerol (DAG), a product of phospholipase D-phosphatidate 
phosphohydrolase activities, and of hydrolysis of phosphatidylinositol 
and phosphatidylcholine by phospholipases C (PLC), bind and acti-
vate cPKCs and nPKCs.120 PKC, and DAG acting independently of 
PKC, also play roles in Ca2+ signaling and in membrane potential 
changes by regulating the activities of several ion channel types, 
including TRP, VOCC and potassium.3,245,433,435 Importantly, consti-
tutively active PKCa is necessary for maintaining basal VOCC-
dependent Ca2+ entry in VSM,330,331,374 which appears to produce a 
small but significant degree of basal tone in muscular arteries.401 
PKCa-dependent regulation of VOCCs also are responsible for Ca2+ 
entry during myogenic contraction.330 Many contractile stimuli acti-
vate receptors coupled to PLC, and DAG levels in smooth muscle 
increase in response to norepinephrine, Ang II and VP.266 Moreover, 
VSM contraction is induced by phorbol esters, a DAG-mimetic that 
induces a sustained and irreversible activation of PKC followed by 
PKC downregulation.302 Thus, PKC is considered a canonical activa-
tor of VSM.266,345 Phorbol esters can cause contraction in permeabi-
lized muscle at very low Ca2+ levels, and can cause contraction in 
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intact VSM without causing increases in [Ca2+]i. These findings, along 
with work identifying the PP1M inhibitor CPI-17 as a PKC substrate, 
supports the hypothesis that PKC converges with ROCK to partici-
pate in PP1M inhibition causing Ca2+ sensitization.97,524 Notably, one 
action of PKCd in coronary artery is to activate ROCK. Thus, ROCK 
can be a downstream effector of PKC.

The precise roles played by PKC isotypes in the regulation of 
VSM contraction remains an active area of investigation.433 In addi-
tion to regulating multiple ion channels and ATPase-dependent 
pumps, PKC activates the ras-raf-MEK-ERK1/2 pathway in several 
cell types36 by stimulating the production of growth factor auta-
coids.501 In smooth muscle, calponin may act as a scaffold to facilitate 
PKC-ERK1/2 activation.310 Such activity has been linked to caldesmon 
phosphorylation and thin filament regulation.433 In pig coronary 
arteries, both PKC and ROCK appear to be involved in U-46619- 
and 5-HT-induced contractions,221,337 whereas PKC plays no role in 
the contraction of the rat caudal artery induced by this stimulus.543 
PKC activation appears to potentiate contractile strength indepen-
dently of an increase in MLCp in pig coronary artery activated by 
ET1 and 5-HT.340 In rabbit renal artery, KCl does not cause an 
increase in inositol-trisphosphate production,388 suggesting that this 
stimulus does not activate PLC nor elevate DAG levels. Supporting 
this notion, KCl does not induce CPI-17 phosphorylation of rabbit 
femoral artery,85 and the relatively selective inhibitor of cPKC iso-
types, Go 6976,140,292 does not inhibit a KCl-induced contraction. 
Interestingly, the green tea catechin, epigallocatechin-3-gallate, 
enhances the strength of a contraction induced by K+-depolarization 
(KCl) via a PKCd-dependent increase in CPI-17 phosphorylation in 
pig coronary artery.343 Based on a study in which long-term applica-
tion of phorbol ester was used in rat mesenteric artery to cause PKCa 
and PKCd degradation, these PKC isotypes were found to be neces-
sary for phorbol ester-induced contraction, and not for contractions 
induced by norepinephrine and VP.345

The general consensus at this time is that, although ROCK and 
PKCs converge on the Ca2+ sensitization signaling system in VSM, 
ROCK appears to play a more dominant role. Arteries isolated from 
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the spontaneously hypertensive rat display greater myogenic tone 
than arteries from Wistar Kyoto rats, and the increase is attributed to 
ROCK-dependent rather than PKC-dependent Ca2+ sensitization.207 
The PKC inhibitor GF-109203X (a.k.a, Bisindolylmaleimide 1 and 
Go 6850), when used at 1 mM, is a relatively selective strong inhibitor 
of cPKCs and nPKCs.80,98,118,357 The rank order of potency of 
GF-109203X for inhibition of PKC isotype activation in an in vitro 
enzyme assay is a > bI > e > d > z, with IC50 values ranging from 
~0.01 mM for PKCa to ~0.2 mM for PKCd, and ~6 mM for PKCz.292 
In rabbit epigastric artery, a small (~400 mm), muscular, phasic artery 
feeding a musculocutaneous vascular bed, 1 mM GF-109203X 
reduces the potency of a PE-induced CRC, and reduces the average 
value of the maximum contraction induced by U-46619, but has no 
inhibitory effect on Ang II- and VP-induced CRCs (Fig. 9A, 9C–F). 
In this artery, the MLCK (and PI3K)554 inhibitor wortmannin  
(1 mM)25,80 and ROCK inhibitor H-1152 (1 mM)436 each produce a 
relatively strong inhibition of contractions (Fig. 9A, 9C–F). A similar 
trend is produced in the larger and more tonic rabbit renal artery by 
these kinase inhibitors (Fig. 9B). These data support the conclusion 
that cPKC and nPKC isotypes play a minimal role in Ca2+ sensitization 
of VSM.118,467 However, in other arteries activated by different stim-
uli, PKC appears to play a more significant role. For example, PKC 
participates via phosphorylation of HSP-72 in the cytoskeletal reor-
ganization of cerebral arteries required for a strong myogenic con-
traction.307 There is evidence that ROCK and PKC act at different 
times during a stimulus-induced contraction. PE-induced contraction 
of rabbit femoral artery is biphasic, with a fast/phasic phase followed 
by a slow/tonic phase. During the phasic phase [Ca2+]i, increases rap-
idly, then falls slowly to achieve a lower tonic level.402 During both 
phases, Ca2+ sensitization is activated, but during the phasic phase, 
increases in CPI-17-T38 dependent on cPKC cause inhibition of 
PP1M, whereas during the tonic phase, cPKC, nPKC and ROCK 
maintain CPI-17-pT38, and ROCK increases MYPT1-pT853 to 
maintain PP1M inhibition.85

There are significant differences in the relative effectiveness of 
protein kinase inhibitors to diminish contractile strength when 
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Fig. 9.    Relaxation quotient for rabbit epigastric (A) and renal (B) arteries, and con-
centration-response curves for epigastric artery (C–F) comparing the relative abilities
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comparing arteries and stimuli (Fig. 9). For example, wortmannin 
and H-1152 produce a stronger inhibition of contraction induced by 
VP in renal artery compared to epigastric artery (Fig. 9A–B). These 
data invite criticism because each drug has some off-target effect. 
Indeed, using the PKC C1 regulatory domain inhibitor calphostin C 
(100 nM) in rat small mesenteric artery, PKC was identified as con-
tributing to Ca2+ sensitization of norepinephrine-induced contrac-
tion.55 However, subsequent work revealed that off-target effects of 
calphostin C that do not involve PKC inhibition but likely involve the 
phorbol ester/DAG (C1)-binding domain of other proteins include 
the very potent inhibition of VOCC activity,163 potent inhibition of 
phospholipase D (IC50 ~100 nM),444 inhibition of rhoA-membrane 
association,90 and inhibition of Golgi-associated transport.8 With this 
caveat in mind, the comparative assessment of kinase inhibitory activ-
ities in Fig. 9 supports the hypothesis that different vascular segments 
express unique levels and combinations of contractile protein regula-
tory systems. In short, the VSM of the vascular tree, and likely also 
vascular trees of different species, cannot be treated as a single 
homogenous organ.

Atypical PKCs (aPKCs) are not activated by DAG or phorbol 
esters, but are activated by lipids such as arachidonic acid, phospha-
tidic acid, ceramide and phosphatidylinositols such as PIP3.

178 
Moreover, certain proteins can bind to and inhibit aPKC activation. 
For example, Par-4 binds the aPKC C1 motif preventing activa-
tion.313 In several cell-types, PKCz functions as a MEK kinase to 
activate ERK independently of raf1. In rabbit VSM, activation of 
PKCz by arachidonic acid causes Ca2+ sensitization.118 There is evi-
dence that, like PKCa,331 ERK,392 ROCK and iPLA2,

402 PKCz is 
active in rabbit arterial VSM at rest, and that basal PKCz activity 

Fig. 9. (Continued)    of PKC (abbreviations as in other figure legends and text), 
MLCK and ROCK inhibitors (1 mM GF-109203X, 1 mM wortmannin and 1 mM 
H-1152, respectively) to affect contractions produced by Ang II (C), PE (D), U-46619  
(E) and VP (F). Data in A and C–F are means ±SE, n = 4. Data in B is for 2–3 arteries. 
Relaxation quotient = 1-(area under curve with drug/area under control curve). 
Thus, a value of 0 means no relaxation, and a value of 1 means complete relaxation 
(inhibition of contraction).
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inhibits Ca2+ entry through non-VOCC channels that appear to sup-
ply intracellular stores rather than AM XBs.401 Notably, PKCz is 
found not only in a peri-nuclear location, but also diffusely through-
out the cytosol and in a punctate fashion at the membrane in 
regions distinct from those housing focal contacts.401 Moreover, a 
stimulus-induced increase in [Ca2+]i further activates PKCz to cause 
a feed-back “braking” effect on the degree of increase in [Ca2+]i, 
through VOCCs, and a feed-forward increase in MYPT1-pT853. 
Thus, PKCz and ROCK appear to converge on the MLCp motor 
control system to inhibit PP1M activity, inducing strong Ca2+ sensi-
tization. Interestingly, in certain cell-types, PKCz activates IKK.313 
As mentioned, IKK2 is thought to act as a MLC kinase in resting 
VSM, and PKCz is also active basally, but whether constitutive 
PKCz activity participates in basal IKK2 activation in VSM remains 
to be determined.

8.  MLCp Sites and Non-Canonical MLC Kinases

The primary phosphoprotein site involved in covalent regulation of 
proteins is phospho-serine, accounting for ~86% of 6600 phospho-
rylations on 2244 human proteins. However, phospho-threonine also 
participates in regulation, accounting for ~12%.347 The sequence of 
the first 19 amino acids at the amino terminal end of MLC reveals 6 
potential phospho-serine and phospho-threonine sites. Five of these 
sites are phosphorylated in tissues and play roles in the regulation of 
contraction:

       S(1)S(2)KRAKAKT(9)TKKRPQRAT(18)S(19).361,484,534�  (1)

8.1.  Mono-phosphorylation

MLCK phosphorylates S19 and is generally considered to cause 
MLC mono-phosphorylation, although T18 can also become phos-
phorylated, but to a lesser degree, with a slower time course, and at 
a non-physiologically high [MLCK].94,179,200,201,342 In vitro phospho-
rylation of either S19 or T18 permits myosin filament formation. 
Interestingly, when MLC is phosphorylated only on T18 in vitro, 
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AM-ATPase activity is lower than when MLC is phosphorylated 
only on S19, and yet, each moves actin at equivalent velocities in a 
motility assay.50

It is unsurprising that several other kinases have been identified 
that phosphorylate MLC, because MLC phosphorylation plays criti-
cal roles in regulation of cell motility and contraction of non-muscle 
cells, and in cytokinesis following mitosis. The precise roles kinases 
other than MLCK play in the regulation of VSM contraction is an 
ongoing subject of investigation. Other kinases that can cause 
monophosphorylation of MLC exclusively at S19 include CaMKII,94 
MK2,252 PAK,67,386,568 and ROCK.12 Although RSK2 was shown to 
monophosphorylate MLC,478 neither MLC nor MYPT1 are listed 
among the ~40 substrates of the RSK family in a recent review,422 sug-
gesting that RSK2 has not been identified as a significant contributor 
to the regulation of contraction. Whether PAK causes an increase or, 
through MLCK phosphorylation, decrease in MLC phosphorylation in 
smooth muscle remains to be fully elucidated.42 Although ROCK 
phosphorylates MLC at about half the rate of MLCK, the Km of MLC 
for ROCK is about 10-fold lower (~2 mM) than for MLCK, suggest-
ing that ROCK can phosphorylate MLC when this substrate is avail-
able at low cellular levels.12,103 DMPK and MRCK, kinases closely 
related to ROCK, can phosphorylate MLC and MYPT in vitro, but 
whether they do so in VSM in vivo remains to be determined. There 
is evidence that these kinases may participate in regulation of MYPT 
in certain cell-types.502

MK2 and IKK2 play roles in the cellular response to stress. 
In particular, MK2 is a primary substrate of the p38 MAPK stress 
response, and IKK is activated by pro-inflammatory stimuli that gen-
erate nuclear factor-kB.328 Using an MK2 knockout mouse, Martinka  
et al.289 showed that adenosine, acting not through plasma membrane 
adenosine receptors but via an intracellular mechanism, enhanced the 
ability of Ang II to cause mesenteric artery contraction by a 
p38-MK2-dependent increase in MLCp. MK2 also acts on the actin 
polymerization control system by elevating phosphorylation of  
HSP-27, resulting in a loss of HSP-27’s actin capping property and 
increased actin polymerization.148
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8.2.  Di-phosphorylation

In vitro S19 phosphorylation of MLC alone is sufficient to increase 
AM ATPase activity,218,484 and the Ca2+-MLCK-MLC mono-phospho-
rylation signaling system, enhanced by ROCK-dependent Ca2+ sensiti-
zation, is sufficient to cause and maintain maximum arterial contractions 
induced by such stimuli as KCl87,394 and U-46619.543 However,  
di-phosphoylation of MLC at S19 and T18 can enhance actin-activated 
myosin Mg2+-ATPase activity in vitro, and although physiologically a 
rare-event, MLC di-phosphorylation has been shown to occur during 
stimulation with ET1, and to increase the rate of arterial contraction 
induced by PGF2a.

523 Kinases that phosphorylate smooth muscle MLC 
at both S19 and T18 include ILK and ZIPK.37,84,333 DAPK primary 
causes MLC mono-phosphorylation, but can cause di-phosphorylation. 
DAPK is regulated by CaM in a manner analogous to MLCK, but 
ZIPK lacks the CaM regulatory domain, and ZIPK and ILK cause 
MLC di-phosphorylation by an entirely Ca2+-independent mechanism. 
Par-4, an actin-binding protein that participates in PP1c regulation, 
contains a death domain-motif and can bind ZIPK. Thus, the ZIPK-
Par-4 complex represents a DAPK-mimic.37 As its name implies, a 
primary function of DAPK is to regulate cell death in response to 
stress, resulting in the characteristic death morphology of peripheral 
super-contraction resulting in cell-rounding and membrane blebbing. 
Whether ZIPK participates in cell death is not clear. Notably, MLC 
di-phosphorylation is revealed under conditions of the hyper-contrac-
tile states of coronary, cerebral and peripheral artery vasospasm.482 In 
motile fibroblasts, ZIPK causes MLC di-phosphorylation primarily of 
stress fibers in the tail region opposite the leading edge where cell 
retraction occurs, mono-phosphorylated MLC is located at the leading 
edge, and ROCK inhibits PP1M.253 Whether ZIPK and ROCK, as well 
as MLCK, PKC and ILK, play similar location-dependent roles in the 
regulation of VSM contraction remains to be determined.

8.3.  Tri-phosphorylation

The strength and duration of a response can be regulated by multiple 
phosphorylation and dephosphorylation events. In vitro, PKC can 
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phosphorylate MLC at S1, S2, and T9, with T9 being phosphorylated 
the most rapidly, followed more slowly by phosphorylation of either S1 
or S2, and a third phosphorylation only very slowly.202,335 Phosphorylation 
of T9 alone by PKC inhibits subsequent phosphorylation on S19 by 
MLCK due to a 6-fold increase in the Km.498 Myosin phosphorylated 
by both PKC at T9 and MLCK at S19 has a lower actin-activated 
Mg2+-ATPase activity than myosin phosphorylated by MLCK alone, 
due to a lower affinity of myosin for actin. Thus, PKC activation in vivo 
might be expected to exert a negative regulatory influence on contrac-
tion both prior to and during activation by a stimulus that increases 
S19 phosphorylation. However, threonine phosphorylation of MLC 
was found not to occur in intact pig carotid artery stimulated with 
phorbol ester, and in permeabilized artery activated by direct addition 
of PKC, suggesting that, PKC does not cause inhibition of contrac-
tion.480 By contrast, PKC appears to participate in tension decline in 
dog basilar artery.342 In this tissue, the increase in [Ca2+]i and myogenic 
contraction induced by a slow (over 1 min) step-stretch reaches a peak 
within another min, and by ~10 min, [Ca2+]i declines to the basal level 
and tension fades to ~10% of the peak value. The decline in tension 
from ~1 to ~5 min correlates with a decline in MLCp, but from 5 to 
15 min, MLCp increases. Notably, total MLCp was found to reflect 
temporal changes in site-specific phosphorylation of MLC not seen 
when tissues were stimulated instead with KCl. In particular, the early 
contraction was due to increases in MLCp at S19 induced by MLCK 
activation, and the subsequent increase in phosphorylation reflected 
di- then triphosphorylation of MLC. The di-phosphorylation was at 
S19 and T18 sites, and the third phosphorylation site was thought to 
reflect PKC activity that served as a “braking” mechanism to prevent a 
sustained myogenic contraction.342 Interestingly, the relaxant effect of 
okadaic acid on canine basilar artery involves activation of PKCa and 
phosphorylation of MLC at T9.341

9.  AMPK and Summary of Relaxation Mechanisms

Smooth muscle is dependent on an immediate supply of ATP because, 
unlike striated muscles that maintain high levels of phosphocreatine as 
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an energy reserve to resupply ATP during contraction, the level of 
phosphocreatine in smooth muscle is about equal to the level of 
ATP.205 AMPK, a ubiquitous sensor of metabolic stress, is activated 
by liver kinase B1 (LKB1), a constitutively active enzyme, and by Ca2+-
calmodulin-dependent kinase kinase b (CaMKKb), both of which 
cause AMPK phosphorylation at T172.160,195 An increase in the cellular 
AMP/ATP ratio regulates AMPK by (a) promoting further phospho-
rylation at T172, (b) inhibiting AMPK-pT172 dephosphorylation, and 
(c) allosteric activation of AMPK. Increases in [Ca2+]i and AMP can act 
synergistically to activate AMPK.159 AMPK has been shown to poten-
tially interact with multiple smooth muscle contractile protein regula-
tory systems to decrease stimulus-response coupling, effectively putting 
a “brake” on contraction to reduce and conserve ATP consumption for 
use by ion pumps to maintain ion homeostasis and cell viability. AMPK 
activation inhibits VSM contraction,127,427,442 and evidence has been 
presented suggesting that, to cause relaxation, AMPK may inhibit the 
activities of MLCK,189,265 PKC81 and ROCK528 (Fig. 7). In mesenteric 
resistance artery, activation of AMPK by A-769662 does not appear to 
inhibit any of these systems, but instead, reduces [Ca2+]i.

442 Thus, the 
precise mechanism by which AMPK inhibits VSM contraction under 
different conditions remains to be determined. 

Inhibition of rhoA-GEFs or activation of rhoA-GAPs can reduce 
the level of active rhoA (rhoA-GTP), and thus, reduce ROCK activity. 
An alternate mechanism by which rhoA-GTP “turns off” involves 
rhoA-GTP phosphorylation at S188, which also protects rhoA from 
ubiquitin/proteasome-mediated degradation in VSM.123,278,420,438,439 
PKA, PKG and AMPK can inactivate rhoA-GTP by this mechanism. 
PKA inactivates rhoA by a second mechanism involving rhoA-GDI, 
phosphorylation at S174 that increases rhoA-GTP affinity for binding 
to rhoA-GDI, resulting in rhoA-GTP sequestration in the cytosol.346 
There is also evidence that a cAMP-activated, PKA- and PKG-
independent, Epac-Rap1 GTPase signaling pathway contributes to 
cAMP-induced inhibition of smooth muscle Ca2+ sensitization.576 In 
addition to reducing the levels of active rhoA, PKA and PKG can 
activate PP1M by inducing phosphorylation of SMTNL1 on 
S301,47,499,550 MYPT1 on S695, and telokin on S13 (Fig. 8A). 
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Telokin-pS13 elevates PP1M activity to cause smooth muscle 
relaxation not by initiating MYPT1-pT853 or –T696 dephosphoryla-
tion, but by permitting activation of the full-length, inactive, 
phospho-MYPT1-PP1M.237 Another mechanism by which telokin-
pS13 inhibits contraction is by shielding the activating phosphoryla-
tion sites on MLC (Fig. 7).453 Telokin does not exert a strong 
relaxation of VSM compared to visceral smooth muscle (e.g., 30% 
relaxation of femoral artery compared to 90% for ileum), and this is 
consistent with the differential telokin expression levels in these 
tissues (6 and 27 mM, respectively).73 An early study using the Ca2+ 
indicator aequorin revealed that stimuli that relax contracted VSM by 
elevating PKA do not concomitantly reduce [Ca2+]i, and in some 
cases, increase [Ca2+]i, and that although stimuli that activate PKG 
reduce [Ca2+]i, the degree of relaxation is greater than can be 
accounted for by the decrease in [Ca2+]i.

308 Mechanisms by which 
PKG decreases [Ca2+]i include inhibition of PLC and inositol 1,4,5- 
trisphosphate formation, activation of Ca2+ sequestration, and activa-
tion of the large conductance Ca2+-activated K channel.86,383
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Chapter 4

Actin Filament Dynamics During  
Vascular Smooth Muscle Contraction

William C. Cole and Michael P. Walsh*

University of Calgary, Calgary, Alberta, Canada  
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Regulation of arterial diameter by control of vascular smooth muscle 
contraction plays a key role in regulation of blood flow and thereby the 
supply of O2 and nutrients to tissues and organs and removal of CO2 
and waste products. A host of contractile stimuli, including agonists 
such as angiotensin II, serotonin, norepinephrine and endothelin-1, 
and increases in intravascular pressure (via the myogenic response), 
elicit vasoconstriction via an increase in cytosolic free Ca2+ concentra-
tion ([Ca2+]i) leading to activation of calmodulin-dependent myosin 
light chain kinase, phosphorylation of the regulatory light chains of 
myosin II (LC20) and cross-bridge cycling. Many contractile stimuli 
also elicit Ca2+ sensitization of contraction via activation of the RhoA/
Rho-associated kinase (ROCK) pathway leading to phosphorylation of 
MYPT1 (the myosin targeting subunit of myosin light chain phos-
phatase), a decrease in phosphatase activity and increased LC20 phos-
phorylation without a change in [Ca2+]i. A third signaling pathway has 
more recently been implicated in the regulation of vasoconstriction, 
which involves stimulus-induced polymerization of a pool of actin 
localized to the sub-plasmalemmal region of the cell and which 
involves formation of adhesion complexes that transmit force from 
the myofilaments to the extracellular matrix via transmembrane 
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integrins. Both ROCK and protein kinase C (PKC) have been 
implicated in stimulus-evoked actin polymerization, ROCK leading to 
phosphorylation of cofilin (most likely via activation of LIM kinase) 
and PKC leading directly to phosphorylation of HSP27. Defects in 
ROCK and PKC signaling and actin polymerization have been impli-
cated in various cardiovascular pathologies.

1. � Vascular Smooth Muscle Contraction  
and the Control of Blood Flow

Arterial diameter, particularly of so-called resistance vessels (<200 μm 
internal diameter), controls blood flow and thereby the supply of O2 
and nutrients to downstream tissues and organs, and the removal of 
CO2 and metabolic waste products.1 Arterial blood flow is governed 
by Poiseuille’s Law2:

η
π∆=

4Pr
Blood flow rate (Q)  

8 L

where DP is the pressure difference between the two ends of the 
artery, r the radius of the vessel, h the blood viscosity and L the length 
of the vessel. Since flow rate is proportional to the 4th power of the 
radius, a small change in arterial diameter has a profound effect on 
blood flow. It is of critical importance, therefore, that arterial diame-
ter be precisely controlled to meet physiological demands. 
Furthermore, loss of such fine control is associated with severe patho-
logical conditions such as hypertension, diabetes, ischemic stroke and 
sub-arachnoid hemorrhage.3–7 

Arterial diameter is regulated by the contraction and relaxation of 
vascular smooth muscle cells of the medial layer. Numerous physiolog-
ical stimuli elicit vasoconstrictor responses in arterial smooth muscle, 
including a variety of circulating or locally-released vasoactive molecules 
such as angiotensin II, serotonin, norepinephrine and endothelin-1, as 
well as increased intravascular pressure, which reduce arterial diameter 
and thereby blood flow.8–12 Vasoconstriction/vasodilation induced by 
increased/decreased intraluminal pressure is referred to as the myo-
genic response and is an inherent property of the vascular smooth 
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muscle cells9. The actions of circulating and locally-released vasoactive 
molecules are superimposed on the myogenic response to achieve the 
desired arterial diameter and blood flow for the prevailing physiological 
conditions. 

2.  Ca2+-induced Vasoconstriction

Vasoconstriction typically involves an agonist- or pressure-induced 
increase in cytosolic free Ca2+ concentration ([Ca2+]i), the sources of 
Ca2+ being the extracellular milieu and/or the sarcoplasmic reticulum, 
depending on the nature of the stimulus. The increase in [Ca2+]i 
leads to activation of Ca2+/calmodulin-dependent myosin light 
chain kinase (MLCK), phosphorylation of the 20-kDa regulatory 
light chains of myosin II at serine-19, activation of the actomyosin 
MgATPase activity, cross-bridge cycling and contraction (Fig. 1, left 
side).13–16 Following termination of the stimulus, [Ca2+]i is restored 
to resting levels, resulting in inactivation of MLCK, and myosin is 
dephosphorylated by myosin light chain phosphatase (MLCP), lead-
ing to dissociation of actin and myosin and relaxation (Fig. 1).17

3. � Ca2+ Sensitization of Vasoconstriction  
Induced by Inhibition of Myosin Light  
Chain Phosphatase

It was thought for many years that vasoconstriction could be explained 
exclusively by MLCK activation, but numerous observations of 
stimulus-dependent differences in the Ca2+ dependence of force 
generation led to detailed investigations of the regulation of MLCP 
activity. This resulted in the discovery of the phenomenon of Ca2+ 
sensitization, whereby contractile agonists coupled to the G12/13 
family of heterotrimeric G proteins activate the small GTPase RhoA 
via a guanine nucleotide exchange factor (a Rho-GEF) (Fig. 1, right 
side).18–20 In the unstimulated vascular smooth muscle cell, RhoA 
contains bound GDP, is associated with Rho-GDI (a guanine nucle-
otide dissociation inhibitor protein) and located in the cytosol. 
Activated Rho-GEF exchanges RhoA-bound GDP for GTP, resulting 
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Fig. 1.    Ca2+-induced activation and Ca2+ sensitization of vascular smooth muscle 
contraction. Vascular smooth muscle contraction is activated principally by an 
increase in [Ca2+]i due to stimulus-induced entry of extracellular Ca2+ via sarcolemmal 
Ca2+-permeant ion channels or G protein-coupled receptor (GPCR)-mediated Ca2+ 
release from the sarcoplasmic reticulum (SR) via inositol 1,4,5-trisphosphate (IP3) 
receptors. Ca2+ binds to calmodulin (CaM), which activates myosin light chain kinase 
(MLCK) to phosphorylate serine-19 (pS19) of the two 20-kDa light chain subunits 
of smooth muscle myosin II. This enables actin interaction, which markedly 
increases the MgATPase activity of myosin, leading to cross-bridge cycling and con-
traction driven by the energy derived from the hydrolysis of ATP within the heads 
of myosin II. Ca2+ sensitization of contraction involves GPCR-mediated activation 
of the RhoA/Rho-associated kinase (ROCK) pathway leading to inhibition of 
myosin light chain phosphatase (MLCP), either directly by phosphorylation of the 
myosin targeting subunit of MLCP (MYPT1) or indirectly via phosphorylation of 
CPI-17 (the 17-kDa phosphoprotein inhibitor of MLCP). Protein kinase C (PKC) 
can also induce Ca2+ sensitization via phosphorylation of CPI-17 in some instances. 
Gq/11: heterotrimeric G proteins coupled to phospholipase Cb (PLCb), which hydro-
lyses phosphatidylinositol 4,5-bisphosphate (PIP2) to diacylglycerol (DAG) and IP3. 
G12/13: heterotrimeric G proteins coupled to guanine nucleotide exchange factors for 
the small GTPase RhoA (Rho-GEFs), which activate RhoA by GDP-GTP exchange. 
Activated RhoA-GTP activates ROCK.
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in dissociation of the RhoA-GDI complex and translocation of 
RhoA-GTP to the plasma membrane where it inserts into the mem-
brane via an exposed geranylgeranyl (lipid) moiety, which is buried 
within the RhoA-GDP/GDI structure under resting conditions. 
Activated RhoA then activates the serine/threonine kinase Rho-
associated coiled-coil kinase (ROCK), which phosphorylates MYPT1 
(the myosin targeting subunit of MLCP) at threonine-697 and 
threonine-855 (rat numbering)17 and/or CPI-17 (a 17-kDa 
cytosolic protein) at threonine-38.21 Phosphorylation of MYPT1 at 
either site in vitro reduces the activity of MLCP, although numer-
ous studies indicate that threonine-855 is the predominant regula-
tory site in situ.22,23 Phosphorylation of CPI-17 at threonine-38 
results in a conformational change, which enables high-affinity 
binding of the phosphoprotein to the catalytic subunit of MLCP 
and potent inhibition of its activity.24–26 CPI-17 can also be phos-
phorylated at threonine-38 by protein kinase C.27 The net result of 
reduced MLCP activity via activation of the RhoA/ROCK pathway 
is an increase in LC20 phosphorylation (due to an increase in the 
MLCK: MLCP activity ratio) and contraction. Therefore, enhanced 
force is achieved without a change in [Ca2+]i since the RhoA/ROCK 
pathway is not Ca2+ dependent. This increased vasoconstrictor 
response at constant [Ca2+]i is thus referred to as “Ca2+ sensitiza-
tion”.18 Pressure-induced vasoconstriction also involves Ca2+ 
sensitization via the RhoA/ROCK pathway,28 but this occurs via 
phosphorylation of MYPT1 (at threonine-855) and not CPI-17 
phosphorylation.29–31

4. � Ca2+ Sensitization of Vasoconstriction Induced  
by Actin Polymerization

The possibility that vasoconstrictor responses could be explained 
completely by a combination of Ca2+-induced activation of MLCK 
and Ca2+ sensitization evoked by MLCP inhibition was short-lived. 
For example, the involvement of an additional mechanism during 
agonist- and pressure-evoked constriction of cerebral arteries was sug-
gested by several lines of evidence: (i) siRNA-mediated depletion of 
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RhoA in organ-cultured rat cerebral arteries abolished the vasocon-
strictor response to UTP or increased intraluminal pressure without 
affecting the stimulus-induced increase in LC20 phosphorylation32; 
(ii)  inhibition of PKC activity abolished the myogenic response of 
intact cerebral arteries but had no effect on LC20, MYPT1 or CPI-17 
phosphorylation29; (iii) serotonin-induced vasoconstriction at low 
(10 mm Hg) and physiological (60 mm Hg) intraluminal pressures 
was markedly reduced by inhibition of ROCK or PKC activities, but 
the level of LC20 phosphorylation declined only to the level observed 
in control tissues at 60 mm Hg where a significant myogenic response 
was observed29,30; (iv) serotonin induced an increase in LC20 phospho-
rylation of ~25% at 10 mm Hg and ~10% at 60 mm Hg, but a sig-
nificantly greater vasoconstrictor response was observed at 60 mm 
Hg30; (v) pressure- or agonist-induced vasoconstriction was observed 
without an increase in LC20 phosphorylation above the pre-existing 
level of ~0.5 mol Pi/mol LC20 under three different experimental 
conditions: an increase in intraluminal pressure from 80 to 120 mm 
Hg (the normal physiological pressure range), application of serotonin 
at 80 mm Hg, or an increase in pressure from 10 to 80 mm Hg in the 
presence of serotonin31; and (vi) spontaneous development of myo-
genic tone during equilibration of freshly-isolated cerebral arteries at 
60 mm Hg was associated with actin polymerization without a change 
in LC20 phosphorylation.33  

A likely mechanism to explain these results involves dynamic regu-
lation of the actin cytoskeleton, i.e., de novo formation of actin fila-
ments is required for force development, actin polymerization 
and  LC20 phosphorylation are independent events, and both actin 
filament formation and LC20 phosphorylation are required for smooth 
muscle contraction.12,34 Several examples have been described of actin 
polymerization occurring in vascular smooth muscle tissues exposed 
to contractile agonists, increased extracellular K+ concentration 
(membrane depolarization), tissue stretch, osmotic volume change or 
increased intravascular pressure.35–37 An important role for actin 
polymerization in smooth muscle contraction was originally sug-
gested by the effects of inhibitors of polymerization (latrunculins, 
which sequester G-actin monomers, and cytochalasins, which bind to 
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the barbed end of actin filaments): these agents attenuated the con-
tractile responses of various smooth muscles, including vascular 
smooth muscle.35,38–46 In contrast, jasplakinolide, which stabilizes actin 
filaments and opposes depolymerization, induced vasoconstriction.35 
Furthermore, direct measurements of G- and F-actin revealed that 
smooth muscle contraction is accompanied by a small increase (~10–
12%) in F-actin content.37,47–50 For example, G-actin content progres-
sively decreased as intraluminal pressure was increased in cerebral 
arteries from 10 to 80 to 120 mm Hg, and G-actin levels were 
significantly lower in the presence than in the absence of serotonin at 
80 mm Hg, and at 80 mm Hg after pre-treatment with serotonin, 
compared with 10 mm Hg in the presence of serotonin.33 Latrunculin 
B dilated vessels pressurized to 80 mm Hg to the passive diameter 
observed in the absence of extracellular Ca2+ without altering the level 
of LC20 phosphorylation. Similar effects of latrunculin B were 
observed in vessels pre-constricted with serotonin at 80 mm Hg and 
in vessels constricted by increasing intraluminal pressure from 10 to 
80 mm Hg after pre-treatment with serotonin. G-actin content was 
reduced in every instance in which vasoconstriction occurred in the 
absence of a change in LC20 phosphorylation.33 In rat cerebral arteries, 
UTP-induced vasoconstriction was accompanied by actin polymeriza-
tion and both were prevented by siRNA-mediated RhoA depletion, 
which did not reduce UTP-evoked LC20 phosphorylation.32 

What has emerged from such studies is the concept of two dis-
tinct pools of actin in smooth muscle51–53: (i) a contractile actin pool, 
which is involved in the contractile machinery (mini-sarcomeres), 
and (ii) a cytoskeletal actin pool, which is localized to the cell cortex 
(sub-plasmalemmal domain) and subject to dynamic regulation of its 
polymerization state. The contractile and cytoskeletal actin pools con-
sist of smooth muscle a-actin and non-muscle b- and g-actin isoforms, 
respectively.54,55 Contractile and cytoskeletal actins are associated with 
different tropomyosin isoforms.56 Polymerization of cortical actin in 
response to contractile stimuli is postulated to increase the formation 
of adhesion complexes, multi-protein complexes that connect the 
contractile apparatus to integrins (transmembrane proteins that 
connect to the extracellular matrix).34 These adhesion complexes 
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distribute and transmit force generated by cross-bridge cycling at the 
myofilament level across the plasma membrane and to the extracellu-
lar matrix. The fact that latrunculin B induced complete vasodilatation 
of cerebral arteries at 120 mm Hg, or at 80 mm Hg in the presence 
of serotonin, to the passive diameter rather than to the pre-existing 
diameter at 80 mm Hg, or at 10 mm Hg in the presence of serotonin, 
suggests that pressurization evokes a remodeling process whereby 
existing connections between the contractile apparatus, plasma mem-
brane and extracellular matrix, required for force distribution and 
transmission, are broken.33 The assembly of adhesion complexes is 
also necessary for the activation of signaling processes that regulate 
actin polymerization.34   

There is some debate about whether Ca2+ sensitization is the appro-
priate term to describe the role of actin polymerization in the vasocon-
strictor response. Our sense is that, if Ca2+ sensitization is defined as an 
increase in force without a change in [Ca2+]i, then increased actin 
polymerization via a signaling pathway that does not require Ca2+ is 
indeed a form of Ca2+ sensitization. It is important to note that inhibi-
tion of MLCP activity or activation of actin polymerization will not 
evoke contraction in physiologically-relevant conditions unless [Ca2+]i 
is sufficiently high to activate MLCK and achieve a threshold level of 
LC20 phosphorylation for cross-bridge cycling to occur.

5. � Signal Transduction Pathways Mediating 
Stimulus-evoked Actin Polymerization

Insights into the signaling pathways that mediate stimulus-induced 
actin polymerization in smooth muscle have come largely from 
studies of acetylcholine-induced contraction of canine tracheal 
smooth muscle.34,57 There is an increasing body of evidence that early 
events following agonist-receptor interaction or an increase in intra-
luminal pressure involve the recruitment of numerous proteins to 
integrin-containing adhesion complexes at the level of the sarco-
lemma. These include a variety of protein kinases, including tyrosine 
kinases such as Src family kinases (SFK), focal adhesion kinase (FAK) 
and the other FAK family member Pyk2, scaffolding/adaptor 
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proteins such as Crk-associated substrate (p130CAS),47,58 cytoskeletal 
proteins such as a-actinin, vinculin, talin and paxillin,45,59–63 which 
link actin filaments to the sarcolemma, proteins that facilitate actin 
polymerization such as N-WASp (neuronal Wiskott-Aldrich Syndrome 
protein), cofilin, profilin, HSP20 and HSP27 (heat shock proteins), 
and VASP (vasodilator-stimulated phosphoprotein),12,37,46,49,64–68 and 
the small GTPase RhoA, which regulates adhesome assembly.50,69 
Recent studies of the myogenic response of rat cerebral arteries 
revealed pressure-dependent increases in phosphorylation of FAK at 
tyrosine-397 and tyrosine-576/577, SFK at tyrosine-416 (tyros-
ine-527 phosphorylation decreased), vinculin at tyrosine-1065, pax-
illin at tyrosine-118 and phospholipase C-g1 at tyrosine-78370,71. 
Function-blocking antibodies to a5-integrin, the FAK inhibitor 
FI-14 or the SFK inhibitor SU6656 attenuated these changes in 
adhesion complex protein phosphorylation and prevented the pres-
sure-dependent increase in MYPT1 phosphorylation at threo-
nine-855 and of LC20 at serine-19, as well as actin polymerization. 
These observations support a mechanotransduction mechanism 
involving integrin-containing adhesion complex formation and sign-
aling to enhance Ca2+ sensitization via MLCP inhibition and actin 
polymerization.70

PKC has long been implicated in the regulation of smooth muscle 
contraction,72,73 but its mechanism, including the identification of key 
substrates, has been elusive. Recent evidence has implicated PKC in 
the regulation of actin polymerization in vascular smooth muscle via 
the phosphorylation of HSP27 at serine-82.33 HSP27 may suppress 
actin polymerization by directly binding to G-actin74,75 or by capping 
the barbed end of F-actin to prevent filament elongation.76 
Phosphorylation of HSP27 at serine-8277,78 facilitates actin polymeri-
zation by alleviating the inhibition exerted by the unphosphorylated 
protein or by binding to and stabilizing actin filaments.79 Indeed, 
phosphorylation of HSP27 at serine-82 occurs in the same time-frame 
as agonist-induced vasoconstriction.37 Inhibition of rat cerebral arterial 
PKC with GF109203X (which affects both Ca2+-dependent and inde-
pendent isoforms) or Gö6976 (a selective inhibitor of Ca2+-dependent 
PKC isoforms) attenuated pressure-induced vasoconstriction without 

b2527_Ch-04.indd   153 9/21/2016   10:51:21 AM



154  W. C. Cole and M. P. Walsh

	 	 b2527  Vascular Smooth Muscle Cells in Health and Disease� “9x6”

affecting LC20 phosphorylation,29 whereas GF109203X inhibited ser-
otonin-induced vasoconstriction and LC20 phosphorylation.30 
Furthermore, treatment with the PKC-activating phorbol ester, phor-
bol 12,13-dibutyrate (PDBu), induced significantly greater vasocon-
striction than serotonin, but a comparable increase in LC20 
phosphorylation.80 PDBu-induced vasoconstriction was largely 
reversed by sequestration of G-actin monomers by latrunculin B, 
implicating actin polymerization in the phorbol ester response. In sup-
port of this conclusion, direct quantification of G-actin levels revealed 
that PDBu treatment induced actin polymerization, which was 
reversed by GF109203X.80 

ROCK has also been implicated in stimulus-evoked actin polym-
erization in rat cerebral arteries,33 most likely via phosphorylation and 
activation of LIM kinase, which in turn phosphorylates cofilin at 
serine-3.81 Similar results were reported for canine pulmonary arterial 
smooth muscle82 although a decrease in cofilin phosphorylation was 
observed upon depolarization of swine carotid arterial rings,83 which 
also correlated with actin polymerization,84 suggesting there may be 
stimulus-, tissue- or species-dependent variations in the effects of 
cofilin phosphorylation. Cofilin binds to and severs actin filaments, 
and this activity is alleviated by phosphorylation at serine-3.85,86 
Phosphorylated cofilin binds to the scaffolding protein 14-3-3, which 
sequesters cofilin and prevents it from being dephosphorylated.87 An 
increase in cerebral arterial pressure from 10 to 120 mm Hg increased 
the phosphorylation of both HSP27 and cofilin. ROCK inhibition by 
H1152 prevented the pressure-induced phosphorylation of cofilin 
and PKC inhibition by GF109203X prevented the pressure-induced 
phosphorylation of HSP27.33 Furthermore, enhancement of cofilin 
phosphorylation by cyclosporin A (an inhibitor of the type 2B protein 
serine/threonine phosphatase that dephosphorylates cofilin) induced 
further vasoconstriction and actin polymerization. On the other hand, 
blockade of PKC-mediated HSP27 phosphorylation by direct bind-
ing of the biphenyl isoxazole derivative, KRIBB3, reversed the myo-
genic response and actin polymerization.33 The signaling pathways 
suggested to mediate actin polymerization in vascular smooth muscle 
are summarized in Fig. 2.

b2527_Ch-04.indd   154 9/21/2016   10:51:21 AM



Actin Filament Dynamics During Vascular Smooth Muscle Contraction   155

“9x6”	 b2527  Vascular Smooth Muscle Cells in Health and Disease

6.  Pathophysiological Considerations

Vascular smooth muscle contractile dysfunction underlies numerous 
pathologies such as hypertension and cerebral vasospasm following 
subarachnoid hemorrhage. Defects in signaling mechanisms likely 
contribute to such pathologies and ROCK and PKC have received 
particular attention in this regard.73,88 Given their involvement in 
regulation of actin filament dynamics, it is conceivable that deficien-

Fig. 2.    Signaling pathways leading to actin polymerization in vascular smooth 
muscle in response to contractile stimuli. Agonists and increased intraluminal pres-
sure trigger the formation of adhesion complexes leading to the activation of ROCK 
and PKC. One of the substrates of activated ROCK is LIM kinase (LIMK), which 
phosphorylates cofilin, whereas HSP27 is phosphorylated by PKC. Phosphorylated 
cofilin and HSP27 enhance actin polymerization in the sub-sarcolemmal domain. 
This involves branching of cortical actin filaments and the formation of new sites of 
interaction with the sarcolemma via integrins, thereby enhancing force transmission 
from the contractile machinery to the extracellular matrix and vasoconstriction.
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cies in ROCK and/or PKC signaling may be involved in the etiology 
of cardiovascular defects. For example, inward eutrophic remodeling 
of resistance arteries, triggered by prolonged vasoconstriction, is 
detected early in the development of essential hypertension, and is 
dependent upon actin polymerization.89 Changes in the actin 
cytoskeleton of vascular smooth muscle cells also contribute to 
increases in aortic stiffness during ageing.90,91 Defective ROCK sign-
aling has been implicated in dysfunctional myogenic regulation of 
cerebral blood flow in type 2 diabetes.92–94 In a streptozotocin-
induced rat diabetic model, enhanced myofilament Ca2+ sensitivity 
observed in mesenteric and tail arteries was attributed to increased 
ROCK and, to a lesser extent, PKC activities.95 Recent studies of the 
Goto-Kakizaki (GK) rat model of non-obese type 2 diabetes sug-
gested that abnormal ROCK-mediated Ca2+ sensitization of rat cer-
ebral arterial constriction contributes to the dysfunctional myogenic 
control of cerebral blood flow observed in this disease condition.96 
Specifically, basal myogenic tone, LC20 phosphorylation and phos-
phorylation of MYPT1 at threonine-855 were elevated and G-actin 
content was reduced in cerebral arteries of pre-diabetic GK rats 
exhibiting normal serum insulin and glucose levels. Furthermore, 
pressure-dependent myogenic vasoconstriction, LC20 and MYPT1 
phosphorylation and actin polymerization were suppressed in both 
pre-diabetic and diabetic GK rats. As more is learned about the sign-
aling pathways responsible for Ca2+ sensitization of vascular smooth 
muscle contraction, and the defects that lead to pathological situa-
tions, the potential for development of novel therapeutics will be 
enhanced. 
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Vascular smooth muscle cells (SMCs) comprise the predominant cell 
type in the walls of blood vessels.1 In adult organisms, SMCs play a 
role in vascular homeostasis, and their contractile capability helps to 
sustain vessel tone, as well as mediate hemodynamics. It is intriguing 
that certain vascular diseases, such as atherosclerosis and aneurysms, 
tend to afflict specific regions of the larger blood vessels despite most 
of the identified risk factors being systemic.2 Interestingly, there is 
now compelling evidence that SMCs from different blood vessels and 
even different regions within the same vessel originate from diverse 
embryonic lineages.3 This raises the question of whether the intrinsic 
differences between SMCs underlying different regions of the vascu-
lature may contribute to disease development.

Due to the difficulty of obtaining SMC progenitors from embryos 
and SMC subtypes from tissues in sufficient quantities, the relation 
between heterogeneity of SMC embryonic origins and anatomic 
localization of vascular diseases has not been studied extensively. 
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Human embryonic stem cells (ESCs) and induced pluripotent stem 
cells (iPSCs) offer an unparalleled resource to obtain early SMC 
progenitors and SMCs of defined lineages. The growing importance 
of SMC lineage diversity in the site-specific manifestation of vascular 
diseases is beginning to be recognized. Despite a paucity of studies 
investigating the molecular-genetic differences between SMC sub-
types, several notable lineage-specific differences in SMC develop-
ment, as well as their relevance to disease will be presented.

1.  Phenotypic Modulation of Smooth Muscle Cells

Plasticity is a hallmark of SMC phenotypes. In the physiological state, 
SMCs are highly contractile with low proliferative and migrative capac-
ities. On the other hand, in cases of vascular pathologies such as ath-
erosclerosis, SMCs migrate from media layer into the intima, and 
transform from contractile state to synthetic phenotype. These two 
contrasting phenotypes have several demarcating characteristics. 
Morphologically, contractile SMCs are spindle-shaped whereas syn-
thetic SMCs are epitheloid or form a monolayer with their cobblestone 
appearance. Functionally, contractile SMCs are important for maintain-
ing the structural integrity of blood vessel walls. Their ability to contract 
and relax helps to control vessel tone, hence sustaining normal blood 
pressure. Distinct profiles of secreted proteins also underpin the differ-
ences between the two SMC phenotypes. Healthy SMCs express con-
tractile filament proteins such as alpha-smooth muscle actin, smooth 
muscle myosin heavy chain, smoothelins and cellular retinol binding 
protein, which are largely involved in their contractile ability and main-
tenance of vessel wall architecture. However, synthetic SMCs produce 
a plethora of proteins associated with extracellular matrix, vessel remod-
eling and repair. Specific proteins such as S1004A and calmodulin have 
been associated with the synthetic phenotype, whereas smooth muscle 
myosin heavy chain is only expressed by contractile SMCs.

1.1.  Triggers of Phenotypic Modulation

Injury to the endothelial lining gradually develops into excessive lipid 
accumulation, apoptosis, necrosis, and accumulation of plaque within 
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the vessel wall.4 Endothelial cells modify circulating low-density 
lipoproteins (LDLs) into their oxidized form.5 Exposure to oxidized 
LDLs induces phenotypic switching of the medial SMCs by down-
regulating contractile markers.6 Oxidized LDLs also cause an increase 
in nuclear translocation of kruppel-like transcription factor 4 (Klf4).7 
Extensive studies showed that the G/C repressor regulated by Klf4 
binding is required for transcriptional supression of SMC marker 
genes.8,9 Interestingly, Klf4 and Klf5 are major targets for microRNAs 
miR-145, miR-146a and miR-25. These microRNAs are known to 
promote the expression of contractile and cytoskeletal proteins in 
SMCs. It has also been shown that inflammatory cytokines like 
TNF-a and IL-1b can increase the expression of lipoprotein scaven-
ger receptors including the lectin-type oxidized LDL receptor 1 in 
both SMCs and endothelial cells, causing atherogenesis.10 A recent 
study demonstrated platelet-derived growth factor–BB-induced dedi-
cator of cytokinesis-2 (DOCK-2) as a novel regulator of the SMC 
phenotype. High expression of DOCK-2 leads to a suppression of the 
SMC contractile phenotype. DOCK-2 was shown to work hand in 
hand with Klf4 in the inhibition of myocardin binding to serum 
response factor, thereby attenuating myocardin-dependent SMC pro-
moter activity.11

Another important contributor of SMC phenotypic switching is 
mechanical stimuli, both directly on SMCs or indirectly through 
differences in endothelial-based regulation of vascular tone. 
Endothelial cells mediate blood flow and pressure through nitric 
oxide release, as well as direct cell-cell interactions. Mechanical trig-
gers such as shear and tensile stresses, in turn, could induce 
endothelial cell-based changes in the vasculature and thereby alter 
SMC phenotypes. Co-culture of SMCs with endothelial cells was 
able to cause phenotypic switching to a synthetic SMC phenotype.12 
On the other hand, mechanical strain causes a shift towards the 
contractile phenotype.13 Changes in the mechanical strain of the 
matrix substrates can also alter the SMCs phenotype directly as 
shown by increased expression of caldesmon in SMCs grown on 
laminin compared to those on collagens.14 Mechanosensing 
pathways are postulated to result in an increased expression of 
smooth muscle myosin heavy chain.15 Shear stress can vary largely 
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between a pro-atherogenic and an anti-atherogenic flow. Phenotypic 
modulation of resident wall SMCs partly contribute plaque devel-
opment and formation of fibrous cap. Response of SMCs to varying 
shear stress patterns may determine plaque stability to rupture.16 
Studies in animals have investigated the role of shear stress in 
plaque formation by exposing the hypercholesterolaemic apolipo-
protein E-deficient mice with two different shear stress fields. These 
studies have found that low non-oscillatory shear stress induces 
thin-cap fibrous atheromas which are the major cause of coronary 
heart diseases. Increased expression of adhesion factors, chemokines 
and macrophage activating factors occur in the presence of low 
non-oscillatory shear stress. This culminates in elevated uptake and 
activation of inflammatory cells in the plaques, leading to thin-cap 
fibrous atheromas found in murine and porcine models, as well as 
human carotid and coronary arteries.17–21 On the contrary, low 
oscillatory shear stress patterns lead to the formation of stable 
plaques. Thus, phenotypic modulation of SMCs could impact on 
the regulation of vascular tone, composition and stability of plaque, 
and pathogenesis of atherosclerosis.

1.2. � Influence of Embryonic Origins on Regional  
Differences of Vascular Smooth Muscle Cells

The heterogeneity of vascular SMCs could be attributed to their 
diverse embrylogical origins. These subtypes localize in particular 
domains within the vascular tree with almost no intermixing. This 
leads to an interesting hypothesis that specific SMC subtypes and 
their location within the systemic vasculature play a critical role in 
the distinct physiological functions. This heterogeneity might even 
determine the pathological outcomes that manifest only in certain 
vessel regions depsite a systemic trigger.22 One such example would 
be the proximal aorta with SMCs originating from two diverse 
embryonic origins: neural crest and somitic mesoderm.23,24 The SMC 
subtypes from different embryonic origins in the aorta at such prox-
imity ascertained the existence of distinct phenotypic differences 
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within the aortic sub-regions, which merges into a single phenotype 
in the adult aorta.25 This shows that the specific SMC phenotypic 
features are determined to a large extent by their embryonic line-
ages. Congenital cardiovascular disorders also occur at the bounda-
ries of vessel subdomains with SMC subtypes from different lineages. 
Coarctation of the aorta and aortic arch interruption are two such 
congenital disorders with regional susceptibility.26,27 Surgical repair 
of affected regions does not entirely prevent the patients from re-
coarctation later in their lives,28 suggesting that the root of the prob-
lem remains unsolved. Further studies focusing on the relationship 
between SMC embryonic origins and spatial-specific vulnerability 
would shed light on mechanistic insights and intervention to control 
these disease conditions. A classic example would be the variant Hox 
gene expressions that underpin distinct vascular phenotypes.29,30 
Hox6–10 genetic signatures was postulated to preserve the posi-
tional identity of vascular tree based upon their embryonic origins. 
Embryonic origins influence SMC phenotypes and hence may give 
rise to differential predispositions to atherosclerosis in the thoracic 
aorta and the atherosclerosis-prone ascending aorta.31 Such position-
specific hox expression profile was also observed during in vitro dif-
ferentiation of human pluripotent stem cells towards neural 
crest-derived SMCs and somite-derived aortic SMCs. Correspondingly, 
both basal and TNF-a-stimulated NFkB activation and DNA bind-
ing were greater in SMCs of the atherosclerosis-prone ascending 
aorta compared to that in the atherosclerosis-resistant thoracic 
aorta.31,32 Thus embryonic origin of the vascular SMCs indeed is one 
of the key determinants of their physiological and pathological pro-
cesses. On the other hand, a corollary hypothesis to investigate 
would be the study of SMC subtypes of the same lineage but within 
different vessels to understand importance of regional relevance and 
the environmental influences. For example, SMCs of the neural crest 
lineage reside within two different vessels namely the ductus arterio-
sus and the atherosclerosis-prone ascending aorta. Regional differ-
ences in genetic signatures and ion channel expressions are observed 
despite similar SMC lineage.33 Further insights into the phenotypic 
differences from embryonic origins and their positional relevance 
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could lead to novel therapeutic interventions that address the causal 
problem of vascular diseases.

2. � Molecular Basis of Lineage-specific Differences  
in Vascular Smooth Muscle Subtypes

2.1.  Embryonic Smooth Muscle Cells

The molecular mechanisms of how SMC progenitors arising from 
diverse lineages commit to a common SMC fate during development 
remain elusive. Nonetheless, a few transcriptional co-activators of 
serum response factor have been found to be implicated in regulating 
SMC differentiation in a lineage-specific manner. Myocardin-like 2 
protein (MKL2) is one such transcriptional co-activator of serum 
response factor. Its loss-of-function in mice is embryonic lethal but 
the main cardiovascular defects are manifested in cardiac outflow 
tract34 and branchial arch arteries,35 both of which are neural crest 
derivatives. Therefore, there is a unique involvement of MKL2 in 
neural crest-derived SMCs. On the other hand, TGFb signaling seems 
to influence SMC development differently depending on the location 
of SMCs in the vasculature. Mouse embryos with conditional deletion 
of the TGFb type II receptor (TGFBR2) gene in cells expressing the 
SMC-specific TAGLN gene displayed defective SMC differentiation 
only in the mesoderm derivatives such as coronary vessels and 
descending thoracic aorta but not pulmonary trunk, a neuroectoderm 
derivative.36 Another SMC-specific TGFBR2 knockout study demon-
strated abnormalities of extracellular matrix protein synthesis and 
SMC differentiation in descending aortas but not cardiac outflow ves-
sels.37 Impairment of TGFb signaling exacerbates SMC development 
primarily in mesoderm-derived vessels. Hence, various embryonic 
lineages appear to differentiate into SMCs through distinct pathways.

Embryonic SMCs respond in a lineage-dependent way to environ-
mental cues during vascular development and morphogenesis. When 
cardiac neural crest and nodose placode are ablated in the avian 
embryo, lateral plate mesoderm-derived SMCs are in turn recruited to 
make up the walls of aortic arch arteries.38 Under normal circumstances, 
lateral plate mesoderm does not contribute SMCs to proximal arterial 
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structures. Nonetheless, in the absence of neuroectodermal features, 
replacement by lateral plate mesoderm-derived SMCs has resulted in 
disorganized and hypoplastic vessel walls of aortic arch, subclavian and 
pulmonary arteries. This is apparently due to the incapacity of lateral 
plate mesoderm-derived SMCs to respond correctly to local signals for 
remodeling of the proximal arteries. Moreover, SMCs isolated from 
different aortic regions in avian embryos exhibit differential growth 
and contractile responses to TGFb1. TGFb1 promotes cell prolifera-
tion of cultured neuroectodermal SMCs but inhibits growth of meso-
dermal SMCs derived from the same aortic vessels.39,40 In addition, 
collagen I and elastin are found to be more abundant in neuroectoder-
mal SMCs upon TGFb1 stimulation. It is postulated that Myb and Myc 
function specifically in neuroectodermal SMCs to potentiate TGFb1-
induced mitogenesis and matrix synthesis. Conversely, TGFb1 elicits a 
stronger contractile response by mesodermal SMCs than neuroecto-
dermal SMCs in collagen gel contraction assay, possibly mediated 
through greater expression of a5b1-integrin in mesodermal SMCs.40 
Therefore, SMCs from different embryonic origins respond in lineage-
specific ways to common stimuli during growth and remodeling of 
blood vessels.

2.2.  Postnatal Smooth Muscle Cells

The phenotypic diversity of SMCs in the mature vascular tree could 
be attributed to their heterogeneous embryonic origins as well. 
Interestingly, the wall of aorta is a mosaic of SMC subtypes arising 
from distinct origins but with well-defined boundaries separating 
regions of origin-specific SMCs. The frequently observed site-specific 
pathologic patterns in the aorta have spurred transcriptome profiling 
of different aortic regions from animal models. A genome-wide 
microarray compares gene expression of SMCs from aortic arch and 
thoracic descending aorta in apolipoprotein E-deficient mice which 
are the standard mouse model for atherogenesis.41 Genes which are 
differentially upregulated in aortic arch SMCs of neuroectodermal 
origin are related to pro-atherogenic processes such as cell prolifera-
tion, motility, immune response and apoptosis, consistent with aortic 
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arch being the more atherosclerosis-prone region. Another microarray 
analysis of baboon aortas reveals intrinsic expression differences of a 
panel of HOX genes in the thoracic and abdominal aortas.42 In par-
ticular, HOXA4, a DNA-binding transcription factor, is spatiotempo-
rally regulated during development to regulate morphogenesis and 
differentiation. HOXA4 is significantly higher in SMCs of human 
thoracic aortas compared to that of abdominal aortas. Human 
abdominal aortic aneurysmal tissues demonstrate decreased HOXA4 
expression versus non-aneurysmal controls. Furthermore, cultured 
human SMCs show decreased levels of HOXA4 when treated with 
interferon-g, an inflammatory cytokine implicated in the development 
of abdominal aortic aneurysm. These evidences seem to imply a pro-
tective role of HOXA4 and could explain why the thoracic aorta is 
relatively less susceptible to aneurysms due to higher endogenous 
level of HOXA4. 

SMC subtypes from different origins, and hence different vascular 
regions may respond variably to systemic disease mediators. 
Angiotensin II (Ang II) infusion into mice induces medial expansion 
throughout the aorta but its pathogenesis in ascending aorta pro-
ceeds via a different mechanism from the rest of the aorta.43 Ascending 
aortic SMCs of neuroectodermal origin undergo hyperplasia when 
induced by Ang II while SMCs of mesodermal origins from other 
aortic regions exhibit hypertrophy. Inhibitor of differentiation 3 
(Id3), a critical downstream regulator of BMP signaling, is then 
found to exist in higher abundance in SMCs of ascending aorta and 
that Id3 deficiency is able to abrogate the effect of Ang II-induced 
hyperplasia in ascending aortic SMCs. Thus, Id3 may function 
uniquely in neuroectodermal SMCs to mediate cell proliferation. 
Aortic arch which is composed of neuroectodermal SMCs is also 
found to develop medial calcification faster than the other arterial 
regions in a mouse model deficient in matrix Gla protein, a potent 
calcification inhibitor. The expression of tissue non-specific alkaline 
phosphatase, an indicator of SMC osteogenic conversion, is signifi-
cantly upregulated in aortic arch during mineralization but hardly 
activated in the descending aorta which is made up of mesodermal 
SMCs. Therefore, the spatiotemporal development of vascular 
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diseases may be a consequence of lineage dependent differences in 
SMC subtypes. Other determinants of differential SMC responses, 
such as non-uniform hemodynamics and morphogenetic cues should 
not be neglected nonetheless.

2.3. � Human Pluripotent Stem Cell-derived  
Smooth Muscle Cells

A model system which allows us to study the sole contribution of 
SMC origins to disease susceptibility would be valuable. A myriad of 
methods to derive smooth muscle progenitors and cells from human 
ESCs and iPSCs, collectively referred to as human pluripotent stem 
cells (hPSCs), has been reviewed.44 Insights from developmental biol-
ogy are imperative in guiding rationales for hPSC differentiation. 
Directed differentiation of SMCs from hPSCs induction has lever-
aged mostly on the developmental paradigm of embryoid body for-
mation, mesoderm induction and further induction to SMCs using 
specific growth factors.45–48 It has been found that after an initial 
mesoderm induction by GSK3 inhibition and BMP4, followed by 
activin A and platelet-derived growth factor (PDGF)-BB, lead to 
highly efficient generation of CD140b+ SMCs. CD140b, a receptor 
for PDGF, marks a highly proliferative subset of SMCs, enabling 
them to respond to mitogens.49 Cheung et al. developed a methodol-
ogy to generate lineage-specific vascular SMCs from hPSCs in large 
numbers using chemically defined conditions.50,51 This method 
elegantly allows the derivation of specific SMC subtype progenitors 
in  vitro through neuroectoderm- and mesoderm- lineages which 
would otherwise be difficult to obtain from developing embryos.52 

Such lineage-specific SMCs had comparable characteristics as primary 
SMCs. Although the morphologies of SMC subtypes are indistin-
guishable, each SMC subtype maintained its own unique proliferative 
and secretome profile upon cytokine stimulation. Other recent work 
demonstrates that faithful recapitulation of early developmental cues 
in vitro enables efficient differentiation of hPSCs into epicardium and 
its derivatives. Stage-wise activation of BMP and Wnt signaling path-
ways by Witty et al. showed effective derivation of epicardial lineages 
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from hPSCs.53 Likewise, Iyer et al. reported an in vitro model of 
epicardium, and epicardium-derived smooth muscle cells from hPSCs 
using a combination of agonists for BMP, Wnt and retinoic acid sign-
aling pathways.54 

Given a multitude of microenvironment signals that guide differ-
entiation of SMC subtypes in embryos, some aspects of SMC develop-
ment may be difficult to realize through in vitro differentiation. Further 
morphological maturation could entail incorporation of biomimetic 
factors. Mechanical stimuli,55 co-culture with other cell types56 and 
three-dimensional cultures57 have been known to promote vascular 
differentiation and maturation. It is likely that such dynamic culture 
situations could enhance refinement of SMC functional phenotypes. 
Our knowledge of how different embryonic lineages commit to a 
common SMC fate is still limited. As aforementioned, there are a few 
studies of lineage-dependent requirement of various serum response 
factor co-activators in vascular SMC development but epigenetic regu-
lation in origin-specific SMC differentiation remains largely unknown.58 
The hPSC-derived SMC subtype system represents a great opportu-
nity to dissect molecular pathways and to determine which pathways 
are common SMC pathways and which are lineage-specific.

3. � Disease Modeling with Lineage-specific Smooth 
Muscle Cells

Embryonic origins of SMCs could be crucial in governing blood vessel 
health and disease. Generation of the lineage-specific SMCs in vitro can 
be an efficient tool to study congenital and vascular disorders with 
major lineage relevance.50,51 One of the key findings reveals that SMC 
subtypes of different embryonic origins displayed differential proteo-
lytic abilities to degrade extracellular matrices in response to interleu-
kin-1b, an inflammatory cytokine commonly involved in vascular 
diseases. This could suggest that origin-specific SMC subtypes may 
have different vascular remodeling capabilities during disease settings. 
Subsequent work showed that specific SMC subtypes have varying lev-
els of Notch 3 gene expression. The differential Notch 3 levels in turn 
regulate SMC markers in mature neuroectoderm-derived and paraxial 
mesoderm-lineages but not the lateral mesoderm-derived lineage.59 For 
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modeling of brain vasculature in neurodegenerative diseases, neural 
crest-derived SMCs have been used to recapitulate amyloid beta uptake 
and clearance mechanism in vitro, whereas mesoderm-derived SMCs 
were not as effective.60 Such lineage-specific SMC subtypes can create 
useful platforms to investigate origin-dependent disease susceptibility 
and downstream therapeutic targets.61

There has been increasing recognition of the role of embryonic 
lineage on the regional distribution of certain congenital and acquired 
vascular diseases. The regional susceptibility to atherosclerosis in thoracic 
aneurysm was postulated to be caused by SMC subtypes arising from 
diverse mesenchymal populations in the embryo.62 Another example 
would be Marfan syndrome, caused by the misfolding of fibrillin-1, that 
results in weakening of vessel walls of the ascending aorta and arch 
which are populated with SMCs of neuroectodermal origin. Studies 
have shown that neuroectoderm-derived vascular SMCs respond 
appropriately to the physiological stimuli of Marfan syndrome.63 

With the advent of CRISPR/Cas9 technology, genome editing 
provides an avenue to study genetic disorders affecting specific 
regions of the vasculatures. Mutations and genetic risk variants could 
be introduced or genetically corrected to create isogenic sources of 
SMC subtypes. This allows unbiased comparison between wild type 
and mutant cell lines for mechanistic interrogation of disease-causing 
mutations. Genome-wide association studies in patient cohorts have 
identified polymorphisms that confer susceptibility to coronary 
artery disease, such as the 9p21 variants.64 Lineage-specific SMC 
subtypes could be amenable to genome editing to unravel the causal-
ity of genetic risk variants in predisposing individuals to vascular 
pathologies. 

4.  Conclusion

Heterogeneity of vascular SMC phenotypes may have been deter-
mined early by the diversity of developmental origins (Fig. 1), along-
side other factors such as hemodynamics. It is evident from both 
embryonic and postnatal SMCs that distinct pathways contribute to 
functional differences among SMC subtypes underlying different 
sites of the vasculatures. In vitro differentiation of SMCs from hPSCs 
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has enabled the generation of large numbers of SMCs, which would 
otherwise be difficult to obtain due to donor unavailability. These 
stem cell-derived SMCs hold great potential for tissue engineering 
applications and regenerative medicine.65 Large populations of pure 
SMCs can be used to perform high throughput drug screening and 
pharmacokinetic testing.63 The robustness of iPSC technology has 
allowed the derivation of iPSCs from a wide range of tissues.66 
Patient-specific iPSCs could capture genetic risk variants to facilitate 
investigation of causal disease mechanisms. Such patient iPSC plat-
forms hold promise to predict individual responses to new therapies, 
moving one step closer to personalized medicine. Taken together, 
the use of lineage-specific SMCs will underpin the success of mode-
ling genetic disorders affecting certain SMC subtypes. Our knowl-
edge of the developmental basis of SMC could pave the way to 
devise more targeted therapeutic interventions for restoration of 
vascular health. 
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Unlike skeletal and cardiac muscle cells, mature contractile vascular 
smooth muscle cells (VSMC) are remarkably plastic, capable of 
switching to the de-differentiated, synthetic/proliferative phenotype, 
which is motile and invasive. This is achieved in part by remodeling 
of the actin cytoskeleton triggered by growth factors in response to 
vascular injury and inflammation. Switching of VSMC from the con-
tractile to the synthetic phenotype is readily demonstrated by passag-
ing VSMC excised from vascular tissues in culture dishes. Expression 
of contraction-associated markers such as myosin II heavy chain, SM 
a-actin, calponin, heavy h-caldesmon and SM22a are significantly 
down-regulated after 3-4 passages of primary VSMC in culture with 
concomitantly upregulation of migratory markers such as light iso-
form of caldesmon, l-caldesmon. (Reviewed in).65,66

Acquiring the migratory and invasive phenotype is a prerequisite for 
VSMC to degrade the extracellular matrix (ECM) and cross the internal 
elastic ileum and basement membrane to reach the intimal layer and 
injury sites at the endothelium. This innate physiological wound-healing 
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response, however, can also cause intimal thickening and formation of 
atherosclerotic plaques. Identification of VSMC and smooth muscle-like 
cells in the cap and interior of atherosclerotic plaques is indicative of 
cross-tissue migration of VSMC during atherosclerotic plaque forma-
tion. However, investigation of how VSMC contribute to plaque forma-
tion and stability have been stymied due to lack of specific VSMC 
markers and reliable lineage-tracing studies to identify origins of VSMC 
during atherosclerotic lesion development.21,35 

The mechanisms of phenotypic switching and possible roles of 
VSMC in atherosclerosis is reviewed elsewhere in this monograph. 
In this chapter, I will focus on the structure of actin-based invasive 
organelles called podosomes, and regulation of their formation in 
VSMC. It is necessary, however, to provide a brief introduction to 
podosomes in non-smooth muscle cells such as monocytes, which 
have been more extensively studied. 

1.  Podosomes in Non-smooth Muscle Cells

Actin-based structures known as podosomes and invadopodia, col-
lectively named invadosomes, are specialized adhesive and invasive 
membrane protrusions that degrade ECM proteins allowing cell 
migration across tissues.51,83 Though they share many structural and 
functional characteristics, podosomes and invadopodia differ in life 
span, size and invasiveness. Invadopodia are large and highly invasive 
ventral protrusions of several µm in length, found in cancer and trans-
formed cells, with a life time of over an hour. Podosomes are the 
smaller (< 1 µm), short life (~ 10 min) and less invasive cousins found 
in normal, untransformed cells of monocytic cell lineage such as mac-
rophages, dendritic cells and osteoclasts, as well as endothelial cells 
and SMC in the vasculature. Src-transformed cells produce a unique 
invadosome superstructure called rosette that comprises features char-
acteristic of both invadopodia and podosomes.

Pododomes were first reported in Rous sarcoma virus-trans-
formed BHK cells78 and have since been identified in other myeloid 
cell lineage.9,50,57,82 Podosomes are structurally and functionally tai-
lored to the needs of cell types in which they are produced. They are 
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required for monocytes in extravasation in inflammation, osteoclasts 
in bone resorption, endothelial cells in sprouting during angiogenesis, 
and VSMC in medial-intimal tissue crossing in atherosclerosis. 
Podosomes are remarkably dynamic organelles. Individual podosomes 
are assembled and disassembled in a matter of minutes, and capable 
of turning over core actin a few times within a life span.20,80 The 
dynamic nature of podosome structure is necessary for temporal 
requirement of its multi-faceted functions in adhesion, matrix sens-
ing, recruitment, secretion and degradation of ECM. Dynamics of 
assembly and disassembly of podosome superstructures such as 
rosettes, however, is less understood. 

A typical podosome comprises a vertical column of actin filaments 
that ranges from 0.5–1 µm in length, surrounded by a ring of focal 
adhesion proteins51 (See Fig. 1). The actin core contains bundles of 
branched actin filaments and actin-binding proteins such as the 
Arp2/3 complex, N-WASP, gelsolin, cofilin, cortactin and caldesmon 
that regulate actin nucleation, polymerization and branching.13 The 
ring of focal adhesion proteins include a-actinin, vinculin, talin and 
paxillin. A cap-like structure has been identified on top of the actin 
column52 containing the formin FMNL159 and supervillin, a member 
of the villin family.5 The function of the cap is not known, but has been 
suggested to act as a point of attachment for unbranched actomyosin 
filaments that form a network or ‘actin cloud’ connecting individual 
podosomes to form complex superstructures such as sealing zones in 
osteoclasts, clusters in SMC and rosettes in endothelial cells and Src-
transformed cells.53 Unbranched contractile actomyosin filaments also 
connect the top of the podosomes to the ventral surface of the plasma 
membrane thought to be involved in the regulation of vertical growth 
of actin cores and recruitment of adhesion proteins to the ring.80 

Recent advances in single molecule activation super-resolution 
microscopy, such as dSTORM, has provided finer structural details to 
our standard ‘core and ring’ model of the podosome structure.58,81 
There is new evidence that vinculin strands form polygonal rings sur-
rounding the actin core and project out of the corners of the poly-
gons, suggesting nucleation sites for new podosomes. Interestingly, 
talin appears in both the ring and the core.84 Thus, it now appears that 
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Fig. 1.    Podosomes and rosettes in Src(Y527F)-transfected rat aortic smooth 
muscle cells. 
A, F-actin filaments were stained with FITC-labelled phalloidin (red) and cortactin 
with TRITC-labelled anti-cortactin antibodies (green). Three types of podosomes 
co-stained with actin and cortactin (yellow) are shown in the same cell: individual 
podosome clusters, incompletely formed open rosettes and closed rings of rosettes. 
B, Inset shows a cluster of individual podosomes. 
C, Inset shows an open and a closed rosette of podosomes. 
D, Illustration of aggregates of individual podosomes in a rosette. 
E, Illustration of a vertical section of two podosomes connected by linear actomyosin 
filaments. 
F. Immunofluorescence microscopic images of podosomes (red) invading a FRITC-
fibronectin (green) substrate. F-actin was stained with FITC-phalloidin.

key adhesion molecules such as integrins, vinculin and talin are not 
arranged in a circular ring around the core but rather consists of islets 
of talin-integrin complexes. There is little doubt that future super-
resolution images will further refine our understanding of the podo-
some structure and function. 

There is no known protein that exclusively localizes to podosomes. 
However, cortactin and its Tyr-phosphorylated counterpart always 
exist in podosomes, and have been widely used as podosome markers.87 
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Cortactin is a major Src-substrate that stabilizes branch points of actin 
filament network in lamellipodia and podosomes by binding to the 
Arp2/3 complex, N-WASP and F-actin. Another Src substrate and 
adaptor protein, Tks5, has been consistently identified in invadosomes 
and has also been used as a reliable podosome marker.16 Considering 
the functional diversity, structural complexity and dynamic nature of 
podosomes, it is not surprising that the list of reported podosomal 
proteins has grown significantly since their discovery. Using Stable 
Isotope Labelling by Amino acids in Cell culture) (SILAC) / mass 
spectrometry, a podosome proteomics study performed on human 
macrophages has identified 203 potential podosomal proteins in 
podosome-enriched ventral membranes, of which 33 have been previ-
ously reported and 170 potentially novel ones.10 As expected, proteins 
involved in the regulation of actin cytoskeleton and adhesion are 
enriched in podosomes. Unexpectedly, ribosomal and RNA-binding 
proteins such as hnRNP-K and WDR1/AIP-1 have also been identi-
fied in the core of macrophage podosomes that echoes previous dis-
covery of RNA-binding proteins in focal adhesions and spreading 
initiation centers.19 These studies have certainly provided new targets 
for future studies on podosome function and structures. 

2.  Podosomes in Vascular Smooth Muscle Cells

Depending on the pore size of the fibrillary networks of collagen and 
fibronectin in the ECM, cells can move through the ECM either by 
non-proteolytic amoeboid movement similar to leukocytes squeezing 
through inter-fibrillar spaces.54 or by proteolytic degradation of densely 
meshed ECM with MMPs secreted by podosomes and invadopodia. 
To the best of my knowledge, there is no evidence that VSMC are able 
to move by amoeboid movement through the vascular basement mem-
brane that is densely populated by type IV collagen filaments.72 On the 
other hand, podosome formation and degradation of ECM by VSMC 
have been clearly demonstrated in vitro and hinted in in vivo.48,55

Peripheral SM a actin-containing columns were first reported in 
the VSMC cell line, A7r5, in response to phorbol-ester treatment.28 
These were recognized as actin- and a-actinin-containing podosomes 
by Hai et al in 2002,40 who also showed that conventional PKC-a 

b2527_Ch-06.indd   187 9/21/2016   10:57:07 AM



188  A. Mak

	 	 b2527  Vascular Smooth Muscle Cells in Health and Disease� “9x6”

mediates PDBu-induced podosome formation. Podosomes induced 
by PDBu exist as individual actin-containing dots under the epifluo-
rescence light microscope. When observed by a confocal microscope, 
SMC podosomes appear as vertical columns protruding from the 
ventral plasma membrane of the cell when grow on fibronectin or 
collagen substrates. Gimona and colleagues have shown that A7r5 cells 
degrade fibronectin substrate at the podosome sites in a 2-D cul-
ture.7,8 They have also demonstrated that podosomes grow from sites 
joining the ends of actin stress fibers and focal adhesions, called 
microdomains. Recruitment of cortactin and the RhoA inhibitor, 
p190RhoGAP, to the microdomains may cause disassembly of actin 
stress fibers and local inhibition of contractility signaling the initiation 
phase of podosome formation in VSMC. This is consistent with the 
earlier report that h1 calponin inhibits PDBu-induced podosome for-
mation by stabilizing actin stress fibers.32 Interestingly, l-caldesmon, 
which is another stress fiber stabilizing protein and actin-branching 
inhibitor97 also inhibits podosome formation.25,63 These early studies 
suggest that stress fiber-stabilizing proteins such as h1 calponin and 
l-caldesmon may act as podosome inhibitors in VSMC.32

Solid evidence of podosome formation in VSMC in vivo is still lack-
ing; however, podosome-like structures are produced by PDBu- stimu-
lated VSMC when embedded in reconstituted basement membrane to 
simulate the 3-D environment in vascular tissues.8 Invadopodia-like 
structures have also been seen in VSMC embedded in a 3-D matrix of 
type I collagen.28,29

3. � Regulation of Podosome Formation in Vascular 
Smooth Muscle Cells

Unlike monocytic cells, primary VSMC and A7r5 SM cell lines do not 
form podosomes constitutively in vitro, but require external stimu-
lants such as phorbol-esters and PDGF. A number of pathways have 
been identified in the regulation of podosome formation in VSMC 
that operate under the control of two pro-podosome signaling hubs, 
PKC and cSrc, and one anti-podosome network involving the tumor 
suppressor, p53. (Fig. 2).
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4. � The Pro-Podosome Signaling Hubs: PKC  
and cSrc 

4.1.  PKC-associated pathways

Historically, phorbol-esters were first found to induce podosome for-
mation in A7r5 VSMC cell lines.28 Phorbol-esters such as phorbol 12, 
13 dibutyrate (PDBu) and phorbol 12-myristate 13-acetate (PMA) 
are pharmacological analogues of diacylglycerol (DAG), the physio-
logical activator of conventional PKCs (a, bI, bII, γ), and novel PKCs 
(δ, ε, η, θ) but not the atypical PKC ζ and λ.2 Not surprisingly, PKC 
a was subsequently shown to mediate the effects of phorbol-esters in 
podosome formation in VSMC.40 It has also been shown that nicotine 
and PKC activation synergistically augment podosome formation and 
ECM degradation in human aortic SMC.37

When treated with 1 µM of PDBu for 30 min, over 90% of A7r5 
cells develop podosomes, which are capable of degrading fibronectin 

Fig. 2.    Pathways known to regulate podosome formation in vascular smooth 
muscle cells.
The pathways are grouped under the regulation of three major hubs: cSrc, PKC, and 
p53. The cSrc/PKC- and p53-associated pathways are pro-podosome and anti-
podosome, respectively, and are mutually antagonistic. 
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substrate.8,40,46,89 Interestingly, similar dosage of PDBu has no effect 
on primary rat aorta SMC (RASMC) on either podosome formation 
or ECM degradation.29 However, 10-folds increase in PDBu concen-
tration causes 5-10% of RASMC to form podosome-like structures 
that degrade fibronectin substrate. These findings indicate significant 
differences in A7r5 cells and primary VSMC in podosome formation 
in response to PDBu stimulation. This could be attributed to genetic 
differences in the two cell types that may have altered down- stream 
effectors of PDBu. A7r5 cells, which are generated from embryonic 
rat aorta, are tetraploids that display the adult SMC phenotype 
expressing some differentiated protein markers such as SM-a actin, 
myosin heavy chain and SM22.27 RASMC used in invasion and migra-
tion studies are usually limited to within 5-6 passages to minimize 
progressive genetic changes that may alter the primary SMC pheno-
types. Nevertheless, A7r5 cells in culture bear resemblance to differ-
entiated VSMC by expressing prominent arrays of stress fibers, thus 
providing a useful cell model to study dynamics of actin remodeling 
during the transition from stress fibers to podosome formation. 

4.1.1.  AFAP-1 and AFAP1L1

One of the key signals linking PKCa and podosome formation in A7r5 
cells is the family of Actin Filament-binding and Adaptor Proteins 
(AFAP).22,31 AFAP-1 (or AFAP-110) is an adaptor protein that links 
actin filaments and cSrc by virtue of its ability to bind actin filaments 
and cSrc.4 Activation of PKCa by PMA leads to phosphorylation of 
AFAP1 and targets it to form a complex via its SH3-binding domain 
with cSrc, resulting in cSrc activation and induction of actin cytoskel-
eton remodeling and podosome formation in A7r5 cells.31,85 

AFAP1 and its homologue AFAP1L1 have been shown to localize 
to podosomes in A7r5 cells and overexpression of AFAP1 and AFAP1L1 
is able to induce podosome formation without stimulation by phorbol-
ester.75 AFAP1 alters actin filament integrity and organization by acting 
as an actin filament cross linker.4,69 There is evidence that AFAP mem-
bers can affect podosome formation and dynamics directly by their 
interaction with the actin core of podosomes. It was shown that PDBu 
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induces phosphorylation of AFAP1 at Ser277, and a Ser277Ala mutant 
localizes to podosomes and increase the number of long-lived 
podosomes, suggesting that phosphorylated AFAP1 promotes disas-
sembly of podosomes.22 AFAP1 and AFAP1L1 may also play a role in 
the actin core stability by interacting with cortactin. While AFAP1L1 
co-immunoprecipitated with cortactin, AFAP1 does not, suggesting 
that AFAP1L1 is localized to podosomes via interaction with cortactin, 
and the two isoforms complement each other in the regulation of podo-
some formation by interacting with cortactin in A7r5 cells.75 

AFAP1 and cSrc complex formation and subsequent Src activa-
tion has been shown to require activation of phosphatidyl-inositol 
3-kinase (PI3K).85 In addition, PMA directly activates PI3K to pro-
duce phosphatidylinositol 3,4,5-trisphosphate (PI(3,4.5)P3), which 
recruits AFAP1 by binding to its PH1 domain. This finding provides 
evidence that the PKCa-PI3K signaling acts upstream of AFAP1-cSrc 
activation in PMA-stimulated podosome formation. Furthermore, it 
also suggests a physical link between the PH1 domain of AFAP1 and 
PI(3,4.5)P3 at the perinuclear membrane, where inactive cSrc is 
mainly located and thus activated by AFAP1. Since cSrc is also a known 
agonist of the PI3K/Akt pathway, which plays a pivotal role in podo-
some signaling42 (see below), it suggests the presence of a feed-back 
loop between PKCa-PI3K and cSrc. 

4.1.2.  PAK1-PIX-Rac/Cdc42

The p21-activated kinases (PAK) have also been shown to play a key 
role in mediating podosome formation in A7r5 cells induced by 
phorbol-esters, and by extension, PKC.88 There are two major families 
of PAK kinases in mammalian cells, Group 1 (PAK1, 2, 3) and Group 2 
(PAK 4, 5, 6).26 Although all three Group 1 kinases are expressed in 
VSMC, PAK1 is the most abundant. PAK1 is a key effectors of acti-
vated GTP-bound Rac/Cdc42, and its binding partner PIX, which is 
a guanine exchange factor (GEF) for Cdc42/Rac. 

Using kinase active and inactive mutants of PAK1, we have shown 
that the kinase activity of PAK1 is not required for PDBu-induced 
formation of podosomes in A7r5 cells, but plays a role in podosome 

b2527_Ch-06.indd   191 9/21/2016   10:57:08 AM



192  A. Mak

	 	 b2527  Vascular Smooth Muscle Cells in Health and Disease� “9x6”

turnover.88 Furthermore, interaction between PAK and PIX is 
required for PAK1 to promote core actin formation in podosomes, 
and to translocate PIX and the G-protein-coupled receptor kinase 
interacting protein (GIT) to focal adhesions next to site of podosome 
growth. These data suggest that podosome formation is initiated by 
recruitment PAK1, PIX and GIT to focal adhesions at the microdo-
mains, while phosphorylation of podosomal proteins by PAK1 may 
signal disassembly of the podosomes. This is supported by findings 
that PAK3, another member of the conventional PAK family, phos-
phorylates cortactin at Ser113 in the first actin-binding repeat  
in vitro, resulting in a significant reduction of binding of cortactin to 
actin columns in PDBu-induced podosomes in A7r5 cells.91 Other 
podosomal protein substrates of PAK include caldesmon, MLCK and 
vitmentin. Phosphorylation of caldesmon by PAK has also been 
shown to downregulate its interaction with actin filament.23 Expression 
of wild-type PAK1 in primary RASM cells does not affect podosome 
formation,29 but the kinase inactive mutant (PAK1-LL/R), which has 
lost its PIX-binding site, has also lost most of its ability to induce 
podosome formation and ECM digestion in primary RASM cells. 
These data further underscore the importance of the protein-binding 
domain of PAK1 rather than the kinase activity in podosome forma-
tion in VSMC. 

The roles of PAK in podosome formation seem to be different in 
other cell types. Hence, in contrast to VSMC, PAK1 and 2 suppress 
podosome formation in Rous sarcoma virus-transformed fibroblasts 
by phosphorylation of caldesmon.61 PAK4, a member of Group 2 
PAK kinases, has also been shown to play a central role in podosome 
formation in primary human macrophages.36 siRNA-knockdown of 
PAK4 and truncation PAK4 mutants cause a reduction of number of 
podosomes per cell; kinase active mutants increase while inactive 
mutants decrease podosome sizes. 

Evidence for a correlation between PKC and PAK-PIX is strong, 
however, a causative link between them in podosome formation, 
especially in VSMC, has not been defined. Nevertheless, recent data 
from non-VSMC studies have provided some clues. Using PKCγ 
knock-out mice and a phosphoproteome analysis, it has been shown 
that bPIX is a direct substrate of PKCγ. bPIX phosphorylation leads 
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to its translocation to the membrane where it may be involved in 
Cdc42/Rac activation during dopamine release in the striatum of 
mice.73 Another possible link may be provided by direct interaction 
between PKCγ and fascin, the actin-bundling protein that contrib-
utes to cell protrusions.67 It has been shown that PKCγ/fascin com-
plex formation is regulated by Rac1 in a PAK1-dependent manner 
in colon carcinoma cells in vitro. These data underscore the differ-
ences in podosome regulatory mechanisms between VSMC and 
other cell types. 

4.1.3.  Calponin

h1 calponin inhibits PDBu-induced podosome formation in A7r5 
cells by stabilizing actin stress fibers.32 These studies suggest that local 
disassembly of actin stress fibers and loss of contractility at the podo-
some formation sites at the junction of stress fibers and focal adhe-
sions characterize early stages of podosome formation. Stress 
fiber-stabilizing proteins such as h1 calponin and l-caldesmon may act 
as podosome inhibitors VSMC.

4.1.4.  Myosin light chain kinase (MLCK)

Using electron microscopic images77 and FRET analyses,79 it has been 
shown that siRNA-knockdown of myosin light chain kinase (MLCK) 
inhibits PDBu-induced podosome formation in A7r5 cells. It was 
further demonstrated that the interaction between the actin-binding 
domain of kinase dead MLCK and the actin core plays a critical role 
in podosome formation. However, the mechanism by which PKC 
regulate MLCK and actin interaction and podosome formation is not 
known. 

4.1.5.  Monocyte chemotactic protein 1 (MCP1)

Although the roles of phorbol-esters and PKC in podosome formation 
have been solidly established, data on upstream signaling specific 
for these events in VSMC involving surface receptors and agonists 
are surprisingly lacking in the literature. Monocyte Chemotactic 
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Protein 1 (MCP1), a G protein-coupled receptor agonist, has been 
shown to stimulate human VSMC migration by upregulating the 
phosphorylation of cortactin on Ser405 and Ser418, and its interaction 
with WAVE2.44 In addition, the MCP1-induced cortactin phospho-
rylation was dependent on phospholipase C b3 (PLCb3)-mediated 
PKCδ activation, both are activated by DAG. 

4.2.  The cSrc Signaling Hub

The PKC-AFAP-cSrc axis is only one of many signaling pathways that 
converge on the non-receptor tyrosine kinase cSrc, which is a major 
hub linking membrane receptors such as growth factor receptors and 
integrins to signaling molecules that regulate cell migration, podo-
some and invadopodia formation in many cell types including VSMC. 

When transformed with the constitutively active cSrc mutant, 
(SrcY527F), RASMC and fibroblasts undergo major reorganization 
of the actin cytoskeleton marked by a significant loss of stress-fibers 
giving way to dot-like podosomes and large ring-like superstructures 
called rosettes in over 95% of the cells without exogenous stimula-
tion.29,62 Extensive digestion of ECM containing fibronectin or col-
lagen usually occur within 48 hours. Some of the digested areas 
co-localize with rosettes, and large imprints of digested areas in cell-
free regions are often visible, indicating that these cells are able to 
exhibit random migration over the ECM substrate. 

Many downstream effectors of cSrc contributes to invadosome 
formation and regulation of their adhesive and invasive functions. 
These include lipid kinases (PI3K), protein kinases (PAK, Akt) and 
phosphatases (PTEN), regulators of actin polymerization and 
branching (RhoGTPases, Arp2/3, NWasp, cofilin), structural podo-
somal proteins (Tks5, cortactin), and proteases in ECM digestion 
(MMP1, 2 and 9). 

4.2.1.  PI3K-Akt

One of the key downstream effectors of cSrc, is the PI3K/Akt path-
way that plays a pivotal role in podosome signaling.42 We have shown 
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that Akt phosphorylation is upregulated in RASMC that stably 
express Src(Y527F) in a retroviral vector. This is accompanied by 
podosome formation and subsequent ECM degradation.68 The mech-
anisms by which Akt may upregulate podosome formation, however, 
is not clear. This is complicated by antagonistic roles of Akt isoen-
zymes in cell migration and invasion. We have recently shown that 
siRNA-knockdown of Akt1 reduces, while Akt3 knockdown enhances 
Src(Y527F)-induced podosome and rosette formation and ECM deg-
radation in mouse embryonic fibroblasts. Knockdown of Akt2 has not 
effect.24 Interestingly, both Akt1 and Akt3 suppress, while Akt2 
enhances, phorbol ester-induced podosome formation. These data 
show that Akt1, Akt2 and Akt3 play different roles in podosome for-
mation and ECM invasion induced by Src or phorbol ester, thus 
underscoring the importance of cell context in the roles of Akt iso-
forms in cell invasion.

Although numerous potential Akt substrates have been identified, 
few are known to be involved in cell invasion. Akt interaction with 
Pak1has been reported and may provide a link between Akt and PAK 
signaling in podosome formation. Phosphorylation of Pak1 by Akt 
enables Pak1 to bind to the adaptor protein, Nck, and modulates cell 
migration.98 Additionally, Pak1 may act as a scaffold for Akt1 and 
PDK1 allowing for their recruitment to PI(3,4,5)P3 at the plasma 
membrane resulting in Akt1 activation.24,41 Whether similar mecha-
nism exist in VSMC requires further study. 

4.2.2.  Stat3

One of the substrates of cSrc and Jak kinases is the Signal Transduction 
and Activator of Transcription family member Stat3.30,74 Stat3 plays a 
role in cancer cell invasion and metastasis via both transcriptional 
activities, e.g. in the transactivation of MMPs, and non-transcriptional 
means through protein interactions. We have found that similar mech-
anisms may be present in VSMC podosome formation. Stat3 and its 
inactivated mutant, pY705Stat3, are localized to Src(Y527F)-induced 
podosome formation in primary RASMC.63 Furthermore, shRNA-
knockdown of Stat3 significantly reduces Src-induced podosome for-
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mation, indicating that Stat3 is a mediator of Src-induced podosome 
formation in VSMC. This finding suggests that translocation of Stat3 
to podosomes may facilitate its activation by Src. However, the down-
stream effectors of Stat3 specific for podosome formation remains to 
be determined. 

4.2.3.  RhoGTPases

The RhoGTPases are key regulators of actin cytoskeleton architecture 
in cell migration and invasion.43,64,82 In primary RASM cells, expres-
sion of the active Cdc42V12 mutant was almost as effective as 
Src(Y527F) in inducing podosome formation and ECM invasion, 
while active Rac1L61 was half as effective. In contrast, expression of 
the dominant negative Cdc42N17 and Rac1N17 inhibits Src(Y527F) 
to induce podosome formation indicating that Cdc42 and Rac1 act 
downstream of cSrc.29 These findings seem to support the general 
idea that Cdc42 is the major regulator of invadosome dynamics in a 
variety of cell types such as endothelial cells60 and cancer cells, where 
Cdc42 acts downstream of EGFR and Src to target NWasp to Arp2/3 
at sites of actin polymerization.96 Interestingly, microinjection of the 
active Cdc42V12 mutant in human macrophages induces podosome 
disassembly50 emphasizing cell- and expression level-dependent roles 
of RhoGTPases. 

The role of RhoA and cytoskeletal contractility in podosome for-
mation has been clearly demonstrated in VSMC7 where activation of 
cSrc by PKC-AFAP1 induces upregulation of p190RhoGAP resulting 
in inactivating RhoA and actin stress fiber contractility, which is pre-
requisite to podosome formation. However, dependent on the cell 
types, RhoA is required for podosome formation e.g. fibroblasts, 
osteoclasts and endothelial cells56 but excess activity appears to inhibit 
podosome formation in macrophages. 

4.2.4.  Tks5

The adaptor protein, Tks5, is a cSrc substrate that localizes to 
invadosomes in all cell types studied heretofore, thus providing a 
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reliable podosome marker. It contains one PX-domain and five 
protein-interacting SH3 domains that functions as an adaptor 
protein for recruitment of a number of proteins to the podosomes. 
Using siRNA knockdown and an approach based on mislocalizing 
Tks5 to mitochondria, it has been shown that in PDBu-treated 
A7r5 cells, Tks5 recruits AFAP1, p190RhoGAP and cortactin to 
sties of podosome formation. Thus, RhoGTPase would downregu-
late local contractile activity and stress fiber disassembly by 
inactivating RhoA, AFAP1 would activate cSrc and cortactin may 
contribute to remodeling actin stress fibers to allow the initiation 
of podosome formation.17

4.2.5.  Cortactin

Cortactin is an F-actin-binding protein that was originally identified 
as the major Tyr-phosphorylated protein in Src-transformed cells.94 
Its roles in actin polymerization is emphasized by its localization to 
cortical actin networks such as invadosomes, lamellipodia and mem-
brane ruffles.87 Tyr-phosphorylated cortactin is found in all inva-
dosomes and has been used as a podosome marker. Cortactin 
comprises multiple protein-interacting domains that allow it to bind 
to actin-branching points, Arp2/3, and NWasp. 

We have shown that siRNA-knockdown of cortactin abolishes 
podosome formation in A7r5 cells and Src-transformed cells indicat-
ing that it is required for both PKC- and cSrc-induced podosome 
formation.89,90,99 In VSMC, cortactin clusters in the microdomain 
between focal adhesions and stress fibers in the early phase of 
podosome formation and localizes in the actin core of mature 
podosomes.7,46,89 Using various functional and truncation mutants of 
cortactin, we have shown that the initial clustering of cortactin 
requires the C-terminal SH3 domain but not the actin-binding repeat 
region which, however, is required for subsequent binding to the core 
actin column.89 In addition, phosphorylation of cortactin by cSrc at 
Tyr sites (Y421 and Y466) does not affect its translocation to 
podosomes in.A7r5 cells. Since Tyr-phosphorylated cortactin and 
cSrc are present in mature podosomes, phosphorylation by cSrc likely 
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occurs after cortactin is translocated to podosomes, and plays a critical 
role in assembly and turnover of the actin core structure in mature 
podosomes.99

These data provide evidence for a model of how cortactin may be 
involved in early and late phases of podosome formation in VSMC. 
Many details are still missing, however. For example, the mechanisms 
for cortactin translocation, the effects of cortactin phosphorylation on 
podosome dynamics in VSMC and non-smooth muscle cells.

4.2.6.  Palladin

Palladin is a widely expressed phosphoprotein known to act as a scaf-
fold protein that is involved in polymerization and cross-linking of 
actin filaments.34 SiRNA-knockdown of palladin reduce the number 
of A7r5 cells that produce podosomes by 50% in response to PDBu 
treatment. Interestingly, knockdown of palladin expression down-
regulates Rac activity suggesting that Rac mediates palladin promo-
tion of podosome formation. Using a yeast-two-hybrid screening, 
palladin has been shown to interact with the Tyr-kinase receptor 
substrate, Eps8, and both palladin and Eps8 were shown to colocalize 
in PDBu-stimulated podosomes in A7r5 cells. Since Eps8 contributes 
to Rac-associated actin remodeling by forming a complex with Abi-1 
and Sos-1, it was suggested that palladin interaction with Eps8 may 
stabilize the Eps8/Abi-1/Sos-1 complex and promote formation of 
podosome and other cortical actin structures. 

5.  The p53 Anti-Podosome Signaling

The most widely studied tumor suppressor, p53, better known for its 
regulatory roles in cell cycle and apoptosis, has emerged in recent 
literature as a suppressor of cell invasion as well, especially in cancer 
cell metastasis.3 Many mutants of p53 in human not only lose the 
normal capacity to suppress tumor growth and progression, but often 
acquire new functions that promote cell invasion.33 Most of these 
‘gain-of-function’ mutations occur within the DNA-binding domain 
of p53 and account for causing about 50% of all cancers in human. 
While many of the downstream effectors of p53 and its mutants are 
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direct p53 transcriptional targets that regulate cell invasion, cell 
migration and ECM degradation, others are key regulatory proteins 
in cell invasion and cell division affected indirectly by p53. 

In VSMC, we have shown that p53 also functions as an invasion- 
and podosome-suppressor by a two-pronged mechanism involving 
the upregulation of PTEN and l-caldesmon on the one hand, and 
downregulation of cSrc and its effectors, Stat3 and PI3K-AKT on the 
other.55,56 It has also been shown that miR-143 and miR-145, are 
positive p53 targets that may partly mediate p53-suppression of Src-
induced podosome formation in VSMC.70 

5.1.  PTEN

The tumor suppressor, PTEN (Phosphatase and Tensin homolog 
deleted on chromosome Ten), antagonizes the cSrc-PI3K pathway by 
hydrolyzing PI(3,4,5)P3 to PI(3,4)P2, leading to inhibition of Akt 
and RhoGTPases.71 We have shown that PTEN expression in VSMC 
can be upregulated by p53 and overexpression of PTEN inhibits cSrc 
and Stat3 activation.63 This is in agreement with reports that PTEN 
inhibits the pro-invasion Src-PI3K-Akt pathway in non-SMC.11,45 
Although PTEN is a predominant lipid phosphatase, it also possesses 
protein phosphatase activities that have been shown to be involved in 
cell migration and invasion.18,49 Interestingly, both lipid and protein 
phosphatase activities of PTEN contribute to the suppression of Src-
induced podosome formation in primary RASMC.68 

These data taken together suggest that PTEN plays a significant 
role in mediating p53-suppression of podosome formation in 
VSMC stimulated by the Src-Stat3 and Src-PI3K pathways. The 
mechanisms appear to require dual lipid and protein phosphatase 
activities of PTEN; however, in vivo protein substrates for PTEN 
remain to be identified. 

5.2.  l-Caldesmon

 The ‘light’ isoform of caldesmon (l-caldesmon) is expressed in syn-
thetic VSMC instead of its ‘heavy’ h-caldesmon counterpart found in 
differentiated, contractile VSMC.86 l-caldesmon is a multi-domain 
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protein containing sites for binding to F-actin, tropomyosin and Ca2+-
calmodulin. It stabilizes actin stress fibers by inhibiting actin-severing 
proteins, enhances contractility by modulating actin-activated myosin 
ATPase activity,12 and inhibits Arp2/3-mediated actin nucleation at 
branching sites by competing with Arp2/3 binding to F-actin.61,97 
Furthermore, PAK phosphorylation of l-caldesmon was shown to 
augment its inhibition of Arp2/3 and podosome formation.

 l-caldesmon was first shown to localize to podosomes and inhibit 
their formation in Rous sarcoma virus-transformed fibroblasts61 and 
later in Src-transformed primary RASMC and PDBu-treated A7r5 
cells.25,62 We have shown that l-caldesmon is translocated from stress 
fibers to the actin core of podosomes in VSMC that is dependent on 
its actin-binding domain and, unexpectedly, the Ca2+-calmodulin-
binding site at the C-terminal half of the molecule. These data sug-
gest that binding to Ca2+-calmodulin may trigger the release of 
l-caldesmon from actin stress fibers thus allowing remodeling of actin 
architecture at the onset of podosome formation. Subsequent binding 
of l-caldesmon to the actin core may provide stability of the podo-
some structure. 

Using primary RASMC that stably expressing Src(Y527F), we 
have shown that l-caldesmon plays a role in mediating p53- suppres-
sion of podosome/rosette formation and ECM degradation. shRNA-
knockdown of p53 expression or chemically inhibition of its activity 
by pifithrin-a (PFA) reduces caldesmon expression in RASMC and 
NIH3T3 cells,62 suggesting that caldesmon may be a transcriptional 
target of p53. This is consistent with chromatin-immunoprecipitation 
(ChIP) analyses that caldesmon is a possible transcriptional target of 
p53.92 

5.3.  miR-143 and miR-145

The microRNAs, miR-143 and miR-145, are known contributors to 
regulate the switch from contractile to synthetic phenotypes of 
VSMC. It has been shown that prolong treatment of A7r5 cells with 
PDGF (>24 hours) downregulates miR-143 and miR-145, and 
induces podosome formation.70 Based on a bioinformatics search, 
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the downstream targets of miR-143 are likely PKC-ε and PDGF 
receptor a, while fascin was identified as a miR-145 target. Since 
both PKC-ε and fascin localize to podosomes and are positive regu-
lators of podosome formation, it appears likely that miR-143 and 
miR-145 suppress podosome formation by downregulating PKC-ε 
and fascin. 

The link between miR-143 and miR145 to p53 was provided 
by the identification of two possible p53-binding sites at the pro-
moter regions, suggesting that they are potential positive transcrip-
tional targets of p53. In contrast, Src activity can inhibits expression 
of miR-143 and miR-145 and acts as a p53 antagonist. Taken 
together, these data suggest that PDGF/PDGF receptor activates 
cSrc, which in turn upregulates PKC-ε and fascin, by inhibiting p53 
and thus downregulating miR143/145, resulting in podosome 
formation. 

6. � Regulators of Podosome Functions in Vascular 
Smooth Muscle Cells: ECM Adhesion  
and Degradation

ECM degradation and adhesion are hallmarks of podosome functions 
in the majority of invasive cells.51 Although podosome formation, 
ECM degradation and adhesion are intimately linked, they appear to 
be regulated quite independently depending on the cell type.83 For 
example, podosomes of sealing zones of osteoclasts are highly adhesive 
but have no protease activities; podosomes can be formed in endothe-
lial cells without MT1-MMP recruitment;51 while conventional PKC-a 
and PKC-δ are required for podosome formation in A7r5 cells stimu-
lated by phorbol-esters, atypical PKCζ regulates MMP-9 recruitment 
to podosomes in primary bronchial epithelial cells.95

6.1.  MMP Recruitment and ECM Degradation

Invadopodia in cancer cells are larger but fewer in number than 
podosomes, and protrude deeper into the substrate allowing more 
concentrated ECM degradation. Although podosomes only make 
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shallow penetrations into the substrate, they are able to degrade ECM 
extensively due to their large numbers per cell. 

It has been well-documented that MMP-2, MMP-9 and MT1-
MMP are secreted by podosomes in endothelial cells and Src-
transformed fibroblast, and podosomes in A7r5 cells and primary 
VSMC are capable of causing extensive ECM degradation in vitro. 
Surprisingly little has been reported about MMPs in podosomes of 
VSMC. Using cultured human saphenous veins it was shown that 
VSMC migration positively correlated with MMPs-mediated loss of 
type IV collagen in vascular basement membrane.1 MT1-MMP colo-
calizes with Tyr-phosphorylated cortactin in Src-induced podosomes 
in primary RASMC.29 Gu et al38 showed that MMP-2 localize to 
podosomes in PDBu-treated A7r5 cells, and we have shown that 
siRNA-knockdown of MMP1 reduces cSrc-induced ECM digestion 
and in vitro invasion of Matrigel. In addition, overexpression of p53 
suppresses mRNA levels of MMP1 by 35%, suggesting that down-
regulation of MMP1 may in part mediate p53-suppression of podo-
some formation in primary VSMC.62 

How MMPs are transported to podosomes is not clear. 
Microtubules may provide an efficient transport system to deliver 
vesicle-loaded MMPs and perhaps other podosomal proteins to the 
sites of podosomes,14,93 whether such mechanisms exist in VSMC 
remain to be investigated. 

6.2.  Adhesion and Mechanosensing of ECM

It appears that disassembly of focal adhesions and recruitment of adhe-
sion proteins such as paxillin and integrin is part of the podosome ini-
tiation process, perhaps to allow adhesion of budding podosomes at the 
appropriate spots on the substrate.46 Mature podosomes must be able to 
recognize and adhere to the substrate proteins via integrin ECM recep-
tors, and to recruit and secret MMPs. ECM composition and rigidity in 
turn provides outside-in signals to integrin surface receptors to control 
podosome numbers and maturation.42 

Since blood vessel walls are constantly subject to shear stress and 
static pressure, mechanical stimulation of VSMC migration and 
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invasion is highly relevant under physiological conditions. Using 
engineered polyacrylamide gels to mimic microenvironments of 
blood vessels, and custom-built pressure chambers, Kim et al47 have 
recently shown that podosome formation can be induced in A7r5 
cells by physiological relevant physical cues in a Src- and Cdc42-
dependent manner. These include topographical cues presented by 
microenvironments of arteries, and imposed static pressure that 
mimics stage II hypertension. Furthermore, they have demonstrated 
podosome formation occurs in cells at the wound front in a 2-D 
scratch injury assay. These data demonstrate that physical stimulation 
by extracellular milieu that simulate arterial walls can induce podo-
some formation in VSMC in vitro. In addition, it suggests that 
injury to the blood vessels caused by surgical intervention may 
stimulate podosome formation in VSMC. 

7.  Conclusion

The involvement of VSMC migration and invasion in atherosclerosis 
has been recognized and supported by numerous reports. However, 
our knowledge of mechanisms that regulate actin cytoskeleton remodel
ing and the formation of podosomes in VSMC trails behind of what 
is known in endothelial, cancer and monocytic cells. Although podo-
some formation and regulation in VSMC and other invasive cell types 
have many similarities in regulatory mechanisms in podosome struc-
ture and function, discovery of features specific to VSMC is crucial to 
our understanding of their roles in initiation and progression of ath-
erosclerosis. In the same vein, in order to understand specific roles of 
VSMC in the pathogenesis and progression of atherosclerotic plaques, 
conditional and SMC-specific knockout of individual proteins, rather 
than global knockout approaches, in animal models are required. 

Most of our knowledge about VSMC invasion is based on in vitro 
cell culture studies. Data on VSMC invasion of ECM in a 3-D envi-
ronment similar to that exists in vivo is lacking. With recent develop-
ments in super-resolution light microscopy, cryo-electron microscopy 
and intravital microscopy, we can anticipate exciting and interesting 
imaging data in the coming years.
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Atherosclerosis, an inflammatory disease of arteries, is a leading cause 
of death worldwide.7 Atherosclerosis is characterized by the formation 
of lipid-laden plaque in the vessel wall, causing narrowing of the vessel 
lumen and reduction in blood flow. In advanced stages of atheroscle-
rosis, the rupture of atherosclerotic plaque can cause the catastrophic 
event of luminal thrombosis, complete vascular occlusion, cessation of 
blood flow, and organ damage. The three layers of arterial wall — 
intima, media, and adventitia — play different roles in the develop-
ment of atherosclerosis.97 Intima is the inner layer between endothelium 
and internal elastic lamina; media is the middle layer between internal 
elastic lamina and external elastic lamina; adventitia is the outer layer. 
Vascular smooth muscle cells are present in both intima and media. 
The importance of vascular smooth muscle cells in the development 
of atherosclerosis is indicated by the observation that vascular smooth 
muscle-rich regions of coronary arteries are more prone to the develop
ment of atherosclerosis, whereas vascular smooth muscle-sparse 
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regions are more resistant to the development of atherosclerosis.25 
Recent findings suggest that vascular smooth muscle cells play a 
central role in both the development of atherosclerosis and plaque 
rupture. During the early stage of atherosclerosis development, vas-
cular smooth muscle cells play a detrimental role in promoting plaque 
formation. Invasion of medial vascular smooth muscle cells from 
media to intima and proliferation of vascular smooth muscle cells in 
the intima together contribute to plaque formation. During the 
advanced stage of atherosclerosis, vascular smooth muscle cells play a 
beneficial role in plaque stabilization. Specifically, vascular smooth 
muscle cells at the fibrous cap of fibroatheroma provide mechanical 
stability to the structure. Apoptosis of vascular smooth muscle cells at 
the fibrous cap of atheroma is a major cause of plaque rupture, lumi-
nal thrombosis and fatal acute coronary syndrome.10 

Stary et al.89–91 defined the multiple stages of atherosclerosis progres-
sion as adaptive intimal thickening (type I), fatty streak formation 
(type II), preatheroma formation/pathologic intimal thickening (type III), 
atheroma formation (type IV), fibroatheroma formation (type V), and 
complicated lesion with surface defect and thrombus formation (type 
VI). This review discusses the specific roles of vascular smooth muscle 
cells in each one of these stages of atherosclerosis. 

1.  Adaptive Intimal Thickening (Type I)

Vascular smooth muscle cell proliferation is a major mechanism of 
adaptive intimal thickening. Intimal thickening is a life-long process, 
beginning early in the peri/post-partum period and continuing 
throughout life.36,61 Adaptive intimal thickening appears to be a 
physiological response to hemodynamic stress/strain and normally 
does not significantly narrow the vascular lumen.89 Arteries exhibit-
ing significant intimal thickening — for example, coronary arteries, 
renal arteries, and carotid arteries — are typically the first to develop 
atherosclerosis, suggesting that intimal thickening is an initial step of 
atherosclerosis.65 The observation of differential spatial distribution 
of intimal thickening has led to the hypothesis that vascular cells in 
the atherosclerosis-prone and atherosclerosis-resistant regions of the 
arterial system are fundamentally different before the development 
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of atherosclerotic lesions. Van Assche et al.100 tested this hypothesis 
by comparing transcriptomes of vascular smooth muscle cells in 
atherosclerosis-prone and atherosclerosis-resistant regions in ApoE–/– 
mice (animal model of atherosclerosis) before plaque development 
and in C57Bl/6 mice using whole-genome mouse microarrays. 
Consistent with the hypothesis, they observed differential expression 
of 70 and 244 genes between atherosclerosis-prone and atheroscle-
rosis-resistant regions in C57BI/6 and ApoE–/– mice, respectively. 
Furthermore, 201 genes related to atherosclerotic processes were 
expressed exclusively in ApoE–/– mice. 

Intimal thickening is caused by the proliferation of vascular 
smooth muscle cells residing in the intima. Orekhov et al.,72 using 
light and electron microscopy, showed that majority of the cells in 
normal intima of human aorta are differentiated smooth muscle cells, 
characterized by an elongated cell shape and presence of microfila-
ments and dense bodies. Aikawa et al.,2 using immunolabeling 
against smooth muscle-specific myosin heavy chain and actin, also 
identified vascular smooth muscle cells as the major cell type in the 
intima of human coronary arteries. To determine the origin of inti-
mal vascular smooth muscle cells, Murry et al.63 investigated clonality 
of intimal vascular smooth muscle cells by examining X chromosome 
inactivation patterns in the intima of human arteries. They showed 
that the intima is populated by a monoclonal population of vascular 
smooth muscle cells. Schwartz and Murry84 proposed several hypoth-
eses to explain the origin of clonality of vascular smooth muscle cell 
population in the intima, among which the migration/trapping 
hypothesis appears to be most consistent with the observed vascular 
smooth muscle proliferation in early development. The migration/
trapping hypothesis suggests that clonality of intimal smooth muscle 
cells in human coronary arteries arises from a sequence of events dur-
ing development: a) trapping of rare cells during early embryogenesis, 
b) migration of rare cells across the internal elastic lamina at later 
times to become intimal smooth muscle cells, and c) rapid rate of cell 
proliferation during early development. Chung et al.20 investigated 
whether clonal expansion occurs only with plaque formation or also 
with normal development by mapping X chromosome inactivation 
patterns in micro-dissected samples of normal and atherosclerotic 
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aortic smooth muscle. They observed monoclonal X-activation 
patterns in tissue samples of both media and intima from normal and 
atherosclerotic aorta. Their observation suggests that clonal expan-
sion of vascular smooth muscle cells is part of normal growth and 
development in both media and intima. The observed relatively large 
patch size of monoclonal vascular smooth muscle cell population in 
normal arteries led Chung et al.20 to propose that human arteries 
grow by expanding coherent vascular smooth muscle clones, with 
little mixing of adjacent clones. This observation has also led Chung  
et al.20 to conclude that X-inactivation analysis cannot discriminate 
between monoclonal and polyclonal origin of plaque vascular smooth 
muscle cells. 

An important mechanism by which intimal thickening leads to 
the development of atherosclerosis is the retention of lipoproteins in 
the extracellular matrix secreted by intimal vascular smooth muscle 
cells.17,66,67 The response-to-retention hypothesis proposes that 
retention of lipoprotein by extracellular matrix in the arterial wall is 
necessary and sufficient for initiating atherogenesis.28 Consistent 
with this hypothesis, biglycan, a proteoglycan, has been shown to 
colocalize with lipoproteins at the site of atherosclerosis.48 Further
more, biglycan overexpression in transgenic mice, under control of 
the smooth muscle a-actin promoter, has been shown to result in a 
greater degree of atherosclerosis.99 Intimal thickening appears to be 
a unique characteristic of human and primate arteries, as it is not 
observed in arteries in mice and rats.88 For this reason, research 
in  adaptive intimal thickening has been challenging and under- 
developed. 

2.  Fatty Streak Formation (Type II)

Fatty streaks are macroscopically visible yellow-colored streaks, 
patches, or spots on the luminal surface of arteries.91 Fatty streaks 
consist primarily of vascular smooth muscle and macrophage foam 
cells, with the ratio of vascular smooth muscle/macrophage foam cell 
population changing with the advancement of fatty streaks to fibrous 
plaques. Katsuda et al.,41 using antibodies against vascular smooth 
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muscle and macrophage-specific proteins, showed that vascular 
smooth muscle cells represent the majority of lipid-loaded foam cells 
in late stage of fatty streak development in human aorta. Similarly, 
Allahverdian et al.,4 by costaining for oil red O and smooth muscle 
a-actin, reported that vascular smooth muscle cells accounted for 50% 
of total foam cells in fatty streaks of human coronary arteries. The 
process of vascular smooth muscle foam cell formation consists of 
several steps: a) secretion of extracellular matrix by intimal vascular 
smooth muscle cells, b) retention of lipoproteins by extracellular 
matrix in the intima, c) modification of lipoproteins, and d) endocy-
tosis of modified lipoproteins by vascular smooth muscle cells via cell 
surface scavenger receptors.40 

Lipid content in a vascular smooth muscle cell is determined by 
the relative magnitude of cellular endocytosis via scavenger receptors 
and cellular export via membrane transporters.3 Scavenger receptors 
are cell membrane receptors that bind and internalize modified low-
density lipoproteins (LDLs) and pathogens.109 The most important 
scavenger receptors for binding and uptake of oxidized LDL by vas-
cular smooth muscle cells are the SR class A and SR-B2 (CD36) 
receptors.107 Ishikawa et al.,38 by immunostaining for SR-B1/2 and 
smooth muscle a-actin, demonstrated the presence of SR-B1/2-
positive vascular smooth muscle foam cells in the intima around fatty 
streak in atherosclerotic human aorta. In comparison, SR-B1/ 
2 receptors-positive vascular smooth muscle cells were not detected 
in normal intima. This observation suggests the presence of a vicious 
cycle, in which uptake of oxidized LDL and cholesterol by vascular 
smooth muscle cells induces up-regulation of scavenger receptors for 
further uptake of lipid, resulting in high level of cellular lipid accu-
mulation and vascular smooth muscle foam cell formation.51,60,79,105 
Other classes of scavenger receptors — for example, SR-D1 (CD68), 
SR-E1 (LOX-1), SR-G, and SRJ receptors — are also expressed in 
vascular smooth muscle cells.106 It is noteworthy that the scavenger 
receptor, SR-D1 (CD68), is often considered a marker of mac-
rophages. By costaining cells in atherosclerotic human coronary 
arteries for CD68 and smooth muscle a-actin, Allahverdian et al.4 
recently showed that 18% and 40% of CD68-positive cells express 
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smooth muscle a-actin in early (type I and II) and advanced (type III 
and IV) atherosclerotic lesions, respectively. Their finding suggests 
that many CD68-positive intimal cells, previously considered mac-
rophages, are actually vascular smooth muscle cells exhibiting the 
macrophage-like phenotype. There is emerging consensus that vas-
cular smooth muscle cells may play a more important role in foam 
cell formation than previously recognized.16 

Export of cellular lipids by vascular smooth muscle cells is medi-
ated mostly by ATP-binding cassette transporter A1 (ABCA1). It is 
noteworthy that ABCA1 expression is down-regulated in intimal 
vascular smooth muscle cells in atherosclerotic lesions in human 
coronary arteries.19 In vitro experiments indicate that oxidized LDL 
and cholesterol induce down-regulation of ABCA1 in vascular 
smooth muscle cells.79,105 Thus, oxidized LDL-induced up-regulation 
of scavenger receptors and down-regulation of ABCA1 expression 
together enhance cellular lipid accumulation and vascular smooth 
muscle foam cell formation. 

Lipid-loading of vascular smooth muscle cells can lead to stimula-
tion of inflammatory gene expression and cell proliferation by the 
release of autocrines — for example, platelet-derived growth factor 
and fibroblast growth factor-b.43 The effects of these growth factors 
on phenotypic modulation and proliferation of vascular smooth mus-
cle cells have been reviewed recently.18

3. � Preatheroma Formation/Pathologic Intimal 
Thickening (Type III)

Type III and more advanced atherosclerotic lesions are often 
described as “plaque”. Preatheroma/pathologic intimal thickening 
(type III) is characterized by the presence of extracellular lipid pools 
among the layers of smooth muscle cells. Lipid pools typically con-
tain microvesicular lipid without vascular smooth muscle cells. 
However, the presence of “caged basal lamina” — thick basement 
membrane that previously surrounded vascular smooth muscle cells —  
suggests death of vascular smooth muscles within lipid pools.44,82 
Pathologic intimal thickening can be detrimental. One study showed 
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that pathologic intimal thickening constitutes higher than 10% 
sudden coronary deaths.95 Pathologic intimal thickening, followed by 
subsequent infiltration of macrophages, is an important step in the 
progression of atherosclerosis toward atheroma and fibroatheroma 
formation.73 

4. � Atheroma (Type IV) and Fibroatheroma 
Formation (Type V)

Atheroma and fibroatheroma are characterized by the presence of a 
core of extracellular lipid. The lipid core is also known as necrotic 
core, because it consists of lipids and cell debris. The necrotic core is 
surrounded by a fibrous cap consisting of vascular smooth muscle 
cells and extracellular matrix. Stary et al.90 classified atheroma (type IV)  
lesion histologically as the first advanced atherosclerotic lesion having 
extensive accumulation of extracellular lipid in the form of a lipid 
core, and classified fibrotheroma (type V) lesion as having a fibrous 
cap layer in addition to the lipid core. Virmani et al.103 have proposed 
an alternative classification of atherosclerotic lesions, which catego-
rizes types IV and V lesion together as fibroatheroma having a lipid 
core and a fibrous cap. Virmani et al.102,103 defined the fibrous cap as 
a distinct layer of connective tissue completely covering the lipid core. 
Comparison and illustration of these two classifications of human 
atherosclerosis have been presented by Plasschaert et al.75 The fibrous 
cap consists of vascular smooth muscle cells in a collagen-proteogly-
can matrix, with varying degrees of infiltration by macrophages and 
lymphocytes. Vascular smooth muscle cells are the major producers of 
collagen, elastin, and proteoglycans in the fibrous cap. The fibrous 
cap is critical for stabilizing the lesion. 

Growth of atheroma/fibroatheroma is driven by invasion of vas-
cular smooth muscles from the media to intima and proliferation of 
vascular smooth muscle cells in the intima.10,18 Invasion of vascular 
smooth muscle cells from media to intima is a well-recognized mech-
anism of atheroma formation,32,81 but data in support of this mecha-
nism is relatively scanty. Thomas et al.98 using radioactive labeling of 
arterial cells with tritiated thymidine prior to feeding swines with 
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hypercholesterolemic diets, following by radioautography of intima 
and media in atherosclerotic arteries, showed that cells in atheroscle-
rotic lesions are polyclonal in origin. Their finding is significant in 
suggesting that non-intimal cells, presumably medial cells, contribute 
to the development of atherosclerotic lesions. Feil et al.,26 using a 
genetic approach to investigate the contribution of medial vascular 
smooth muscle cells to atherosclerotic plaque formation, pulse-
labeled vascular smooth muscle cells using the tamoxifen-dependent 
Cre recombinase, CreERT2, expressed from the endogenous SM22a 
locus combined with Cre-activatable reporter genes that were inte-
grated into the ROSA26 locus. The fate of medial vascular smooth 
muscle cells during atherogenesis was then tracked by tamoxifen 
treatment of ApoE–/– mice before the development of atherosclerosis. 
They found that, during atherogenesis, medial vascular smooth mus-
cle cells underwent clonal expansion, lost expression of the smooth 
muscle marker (smooth muscle a-actin), and converted to mac-
rophage-like cells. Their data analysis indicated that vascular smooth 
muscle-derived macrophage-like cells constituted majority of the cel-
lular component of advanced atherosclerotic lesions. 

Transdifferentiation of vascular smooth muscle cells to macrophage-
like cells has been confirmed by cell culture studies. Rong et al.79 loaded 
mouse aortic smooth muscle cells with cholesterol using cholesterol: 
methyl-b-cyclodextrin complexes and demonstrated vascular smooth 
muscle foam-cell formation by staining lipid droplets. Using immu-
nostaining against smooth muscle and macrophage marker proteins, 
they demonstrated down-regulation of protein expression of smooth 
muscle cell-related genes — for example, smooth muscle a-actin and 
myosin heavy chain — and up-regulation of protein expression of 
macrophage-related genes — for example, CD68 — in cholesterol-
loaded vascular smooth muscle cells. Furthermore, these changes in 
protein expression were accompanied by macrophage-like phagocytotic 
activity. Recently, Vengrenyuk et al.101 reported that down-regulation 
of the miR-143/145-myocardin axis induced by cholesterol loading is 
an important mechanism underlying the conversion of vascular smooth 
muscle cells to macrophage-like cells. Findings from these and other 
studies have led to the recognition that transdifferentiation of medial 
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vascular smooth muscle cells to macrophage-like cells contributes 
substantially to plaque formation.49 

Several alternative hypotheses have been proposed to address the 
origin of intimal vascular smooth muscle cells during the development 
of atherosclerotic lesions. Schwartz and Murry et al.84 asserted that 
the conventional paradigam — that invasion of vascular smooth mus-
cle cells from media to intima is a major mechanism of plaque forma-
tion — has been developed mostly based on animal models of balloon 
injury to normal blood vessels. They proposed the alternative hypoth-
esis that intimal vascular smooth muscle cells in atherosclerosis-prone 
arteries spontaneously form atherosclerotic lesions in response to 
hyperlipidemia. Other investigators have proposed the alternative 
hypothesis that circulating hematopoietic and multipotent vascular 
stem cells are the major contributors to plaque formation,83,94 but 
findings from several laboratories appeared to contradict this hypoth-
esis.9,11,12 In a recent review, Tabas et al.93 emphasized the current 
controversy regarding the origin of vascular smooth muscle cells in 
atherosclerotic lesions, and stated that the concept that medial vascu-
lar smooth muscle cells contribute to atheroma formation in athero-
sclerosis remained unproven in humans. Despite the controversy 
regarding the origin of vascular smooth muscle cells in atherosclerosis 
plaques, there is emerging consensus that interconversion of vascular 
smooth muscle cells among three phenotypes — contractile pheno-
type, synthetic phenotype, and macrophage-like phenotype — is an 
important mechanism underlying plaque formation and stabilization. 
In particular, differentiated vascular smooth muscle cells play a critical 
role in plaque stabilization by forming the fibrous cap of atheroma, 
but relatively little has been published on the origin of differentiated 
vascular smooth muscle cells in the fibrous cap of atheroma. One pos-
sibility is that a population of differentiated vascular smooth muscle 
cells is pushed from intima and/or media toward the luminal surface 
to form the fibrous cap. Another possibility is that synthetic or mac-
rophage-like vascular smooth muscle cells near the luminal surface 
convert to the contractile phenotype during fibrous cap formation. 

Degradation of basement membrane and extracellular matrix by 
matrix metalloproteinases is necessary for invasion of medial vascular 
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smooth muscle cells from media to intima during atheroma 
formation.68 Matrix matalloproteinases are released by multiple cell 
types, including vascular smooth muscle cells. Galis et al.,29 using in 
situ zymography, demonstrated matrix metalloproteinase activity in 
frozen sections of atherosclerotic but not normal human arterial 
tissues. Segers et al. 85 demonstrated the colocalization of matrix met-
alloproteinase activity with vascular smooth muscle cells in histologi-
cal studies of aortic segments dissected from hypercholesterolemic 
rabbits. Furthermore, results from cell culture studies indicate that 
vascular smooth muscle cells of the synthetic phenotype are capable 
of releasing matrix metalloproteinases in response to inflammatory 
cytokines and growth factors.23,68 The release of matrix metallopro-
teinases by invasive cells, for example, macrophages, is regulated by 
podosomes — cellular organelles consisting of columns of filamen-
tous actin and actin-binding proteins, surrounded by a ring of adhe-
sion and signaling proteins.52,53,57,62 Vascular smooth muscle cells 
form podosomes in response to PKC activation.35,50,55 Using immu-
noelectron microscopy of podosome markers, Quintavalle et al.77 
demonstrated the formation of podosomes in vascular smooth muscle 
cells in the aorta of microRNA-143 knockout mice, but not in the 
aortas of wildtype mice. Their finding suggests that down-regulation 
of microRNA-143 and -145 promotes the formation of podosomes 
in vascular smooth muscle cells. It is noteworthy that down-regula-
tion of the miR-143/145-myocardin axis promotes the conversion 
of vascular smooth muscle cells to macrophage-like cells.101 Findings 
from these two studies together suggest the intriguing concept that 
podosome formation may represents a step in the process of transdif-
ferentiation of vascular smooth muscle cells to macrophage-like cells. 
Nicotine, an addictive substance in cigarette smoke, induces the for-
mation of podosome rosettes in vascular smooth muscle cells.33 
Podosome rosettes are highly invasive cellular organelles found in 
highly invasive cells. This observation suggests that enhancement of 
vascular smooth muscle cell invasion via formation of podosomes and 
podosome rosettes is an important mechanism by which cigarette 
smoking and nicotine consumption increase the risk of developing 
atherosclerosis. 
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5.  Complicated Lesion (Type VI)

Complicated lesion is characterized by plaque rupture and thrombus 
formation. Rupture of atherosclerotic plaque can potentially cause the 
catastrophic event of luminal thrombosis, complete vascular occlu-
sion, cessation of blood flow, and organ damage. Plaques vulnerable 
to rupture are characterized by the presence of thin fibrous caps, large 
number of macrophages, small number of vascular smooth muscle 
cells, small amount of extracellular matrix proteins, and large lipid 
cores. A major cause of plaque rupture is the progressive thinning of 
fibrous cap as a result of vascular smooth muscle cell apoptosis and 
extracellular matrix degradation by macrophage-derived matrix metal-
loproteinases.69,70,87 Apoptosis and necrosis of vascular smooth muscle 
cells are also important contributors to necrotic core formation. The 
vast majority (95%) of the fibrous caps of ruptured plaques is less than 
64 µm in thickness. Based on this observation, Kolodgie et al.47 intro-
duced the term “thin-cap fibroatheroma” to describe fibroatheroma 
having a fibrous cap less than 65 µm in thickness. A major difference 
between the thick fibrous cap in early fibroatheroma and the thin 
fibrous cap in late fibroatheroma is the different extent of vascular 
smooth muscle cell death. Because fibrous cap thinning can poten-
tially lead to plaque rupture and thrombosis, thin-cap fibroatheroma 
is also known as vulnerable plaque or high-risk atherosclerotic plaque. 

Apoptosis of vascular smooth cells is recognized as a major cause 
of fibrous cap thinning and plaque rupture. Bennett et al.,8 using time-
lapse videomicroscopy, electron microscopy, and DNA fragmentation, 
studied apoptosis of vascular smooth muscle cells isolated from normal 
human coronary arteries and human coronary plaques. They found 
that apoptosis was a major cause of cell death in both normal and 
plaque-derived vascular smooth muscle cells. However, normal vascu-
lar smooth muscle cells died only upon removal of serum growth fac-
tors, whereas plaque-derived vascular smooth muscle cells died even in 
high serum conditions. Their finding suggests that vascular smooth 
muscle cells at atherosclerotic plaques are highly susceptible to 
apoptosis. To study the effect of vascular smooth muscle cell apoptosis 
on atherosclerotic plaque stability in vivo, Clarke et al.21 generated 
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transgenic ApoE–/– mice expressing the human diphtheria toxin receptor 
for inducing apoptosis. They showed that high level of vascular 
smooth muscle cell apoptosis induced significant thinning of the 
fibrous cap in atherosclerotic plaques, whereas high level of vascular 
smooth muscle cell apoptosis in normal arteries did not induce vascu-
lar remodeling or aneurysm formation. Using the same mouse model 
of inducible vascular smooth muscle-specific apoptosis in ApoE–/– 
mice, Clarke et al.22 showed that chronic low level of vascular smooth 
muscle apoptosis accelerated growth of fibroatheroma. Based on the 
recognition that vascular smooth muscle cell apoptosis is a major cause 
of plaque destabilization, pharmaceuticals are being developed to tar-
get apoptotic processes in the treatment of atherosclerosis.58

Pro-inflammatory cytokines, for example, IFN-γ, FasL, and TNF-a, 
promote vascular smooth muscle proliferation and/or apoptosis 
during atherosclerosis.31 IFN-γ, a member of T-cell-derived pro-
inflammatory cytokines, is present at high levels in atherosclerotic 
plaques and has been shown to promote apoptosis of vascular smooth 
muscle cells and atherosclerosis. Gupta et al.,34 using IFN-γ –/–/
ApoE–/– double-knockout mice fed with Western-style diet, showed 
that IFN-γ deficiency substantially reduced atherosclerotic lesion size. 
Taking a different approach, Koga et al.45 investigated the effect  
of blocking IFN-γ function by overexpressing a soluble function- 
blocking mutant of IFN-γ receptor in ApoE–/– mice fed with Western-
style diet. They found that blockade of IFN-γ function increased 
vascular smooth muscle cell number, increased fibrotic area, and 
improved plaque stability. Koga et al.46 then investigated the effect of 
blocking postnatal IFN-γ function by repeated gene transfers of the 
soluble mutant of IFN-γ receptor into the thigh muscle of ApoE–/– 
mice fed with high-fat diet. They found that blockade of postnatal 
IFN-γ function decreased plaque progression and stabilized advanced 
plaques by increasing the size of fibrotic area and number of vascular 
smooth muscle cells. Altogether, these findings suggest that IFN-γ 
promotes atherosclerosis and plaque vulnerability in part by modulat-
ing proliferation and apoptosis of vascular smooth muscle cells. 

Fas-mediated vascular smooth muscle cell apoptosis has been 
hypothesized as a mechanism of atheroma cap thinning.31 The death 
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receptor Fas and its ligand FasL have been identified in atheroscle-
rotic human carotid and coronary arteries. Majority of the Fas-
positive vascular smooth muscle cells are found in atherosclerotic 
plaques in the intima.14,30 Double staining of atherosclerotic plaques 
indicated colocalization of Fas and DNA fragmentation in vascular 
smooth muscle cells in areas containing T cells and macrophages, sug-
gesting that activated T cells induce vascular smooth muscle cell 
apoptosis by activating Fas.30 In cell culture experiments, treatment 
with IFN-γ, TNF-a, and IL-1b together has been shown to induce 
Fas expression on the cell surface of vascular smooth muscle cells. 
Furthermore, incubation of cytokine-primed vascular smooth muscle 
cells with an activating anti-Fas antibody triggered apoptosis.30 This 
finding supports the hypothesis that induction of Fas expression is an 
important mechanism by which inflammatory cytokines promote vas-
cular smooth muscle cell apoptosis. In support of this hypothesis, 
Geng et al.30 showed that activated monocytes and supernatant col-
lected from activated monocytes induced apoptosis of vascular 
smooth muscle cells. They further identified FasL as the causative 
agent in the supernatant, and showed that anti-Fas IgG1 blocked the 
ability of supernatant to induce apoptotis. These findings together 
suggest the involvement of Fas/FasL pathway in monocyte-induced 
apoptosis of vascular smooth muscle cells. Fas can translocate dynam-
ically between cell surface and intracellular compartments.96 Rosner et 
al.80 showed that IFN-γ primes vascular smooth muscle cells to FasL-
induced apoptosis by stimulating the translocation of Fas from intra-
cellular compartment to the cell surface. Taking a genetic approach to 
investigate FasL-mediated vascular smooth muscle cell apoptosis, 
Zadelaar et al.108 induced FasL overexpression in the fibrous cap of 
plaque in ApoE–/– mice using adenovirus-mediated FasL gene trans-
fection. They showed that FasL overexpression significantly increased 
vascular smooth muscle cell apoptosis in the fibrous cap, accompanied 
by enhanced plaque vulnerability. Altogether, these findings implicate 
the involvement of Fas and FasL in apoptosis of vascular smooth mus-
cle cells and atheroma cap thinning. 

TNF-a is a member of the TNF superfamily molecules. TNF-a is 
present at high concentration in the extracellular matrix within 
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atherosclerotic human arteries. Persistently elevated plasma concen-
trations of TNF-a is a characteristic of post-myocardial infarction 
patients at increased risk for recurrent coronary events.78 To investi-
gate the role of TNF-a in atherogenesis, Ohta et al.71 generated 
TNF-a–/–/ApoE–/– double knockout mice and showed that TNF-a 
gene disruption diminished development of atherosclerosis in 
ApoE–/– mice. Consistently, cell culture studies indicated the ability of 
TNF-a to induce vascular smooth muscle cell apoptosis. Jia et al.39 
studied the effect of TNF-a on vascular smooth muscle cells isolated 
from human carotid plaques, and showed that TNF-a induced apop-
tosis of vascular smooth muscle cells by stimulating caspase-3 activity 
and activating FoxO1 transcription factor. Altogether, these and other 
human and animal studies indicate that TNF-related molecules, 
including TNF-a, regulate cell survival and promote atherosclerosis 
progression and plaque rupture.6 

Autophagy, or “self-eating”, is an important mechanism for regu-
lating death and survival of vascular smooth muscle cells in atheroscle-
rosis. Autophagy is a cellular process that degrades cellular components 
for recycling. Basal autophagy promotes plaque stabilization by 
enhancing survival of vascular smooth muscle cells in the fibrous cap 
of atheroma. However, excessive autophagy can cause plaque destabi-
lization by inducing autophagic death of vascular smooth muscle 
cells.86 Xu et al.,104 using fluorescence microscopy and transmission 
electron microscopy for detecting autophagic vacuoles, showed that 
loading of vascular smooth muscle cells with excess free cholesterol 
induced autophagy. Furthermore, they showed that inhibition of auto
phagy by 3-methyladenine enhanced apoptosis of free-cholesterol-
loaded vascular smooth muscle cells, whereas stimulation of autophagy 
by rapamycin attenuated cell death. Their finding suggests that 
autophagy promotes vascular smooth muscle cell survival. Swaminathan 
et al. 92 compared the gene expression of 59 selected proteins, includ-
ing proteins involved in autophagy, between carotid plaques excised 
from symptomatic patients (unstable plaques) and asymptomatic 
patients (stable plaques). They observed differential gene expression 
of several proteins associated with autophagy pathways between the 
two patient groups. In particular, mRNA and protein expression of 
MAP1LC3B, a marker of autophagy, exhibited a five-fold decrease in 
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symptomatic samples, suggesting that autophagy enhances vascular 
smooth muscle cell survival and promotes plaque stability. Based on 
these findings, Swaminathan et al.92 concluded that carotid athero-
sclerotic plaques exhibiting under-expression of MAP1LC3B would 
have low levels of autophagy, high levels of dead cell accumulation, 
and plaque destabilization. 

Autophagy has also been shown to promote plaque vulnerability. 
ATG16L1 is an essential protein for early stages of autophagy. Magne 
et al.,54 using histological analysis, demonstrated expression of 
ATG16L1 in areas surrounding the necrotic core and shoulder 
regions of plaques excised from human atherosclerotic carotid arteries. 
Using double immunofluorescence labeling and immunogold labe-
ling, Magne et al.54 demonstrated abundant expression of ATG16L1 
in phagocytic cells, endothelial cells, vascular smooth muscle foam 
cells, and mast cells in advanced plaques. Furthermore, they corre-
lated protein expression of ATG16L1 with plaque content of proin-
flammatory cytokines and matrix metalloproteinases. By analyzing 
ATG16L1 expression during atherogenesis induced by incomplete 
ligation and cuff placement in carotid arteries of ApoE–/– mice, 
Magne et al.54 showed that colocalization of ATG16L1 and vascular 
smooth muscle cells occurred only in early atherosclerotic lesions. 
Altogether, the findings of Magne et al.54 indicated that early stage of 
autophagy as measured by ATG16L1 protein expression is associated 
with events at earlier stages of atherosclerosis — foam cell formation, 
development of inflamed plaque phenotype, and plaque vulnerability.

Thrombotic occlusion of a coronary plaque can result in myocar-
dial infarction, cardiac death, or stroke. Based on this recognition, 
detection of highly vulnerable plaque by invasive and noninvasive 
imaging modalities has been proposed as an approach to identifying 
high-risk patients and improving prognosis.27 However, recent 
findings suggest that plaque rupture does not always result in cata-
strophic thrombotic occlusion. Instead, plaque rupture and its heal-
ing are often asymptomatic, but could lead to progressive lumen 
obstruction.1,5,13 The healing process consists of thrombolysis by the 
fibrinolytic system, followed by proliferation of vascular smooth 
muscle cells, secretion of extracellular matrix by vascular smooth mus-
cle cells at the rupture site, and resurfacing of the rupture site by 
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endothelial cells.13,56 As a result, healing of plaque rupture increases 
the number of vascular smooth muscle cells and amount of extracel-
lular matrix in the plaque, thereby contributing to plaque enlarge-
ment and further narrowing of the vessel lumen. 

In addition to promoting atheroma formation and plaque stabili-
zation, vascular smooth muscle cells also mediate vascular calcifica-
tion, an unfavorable event in the progression of atherosclerosis that 
strongly predicts cardiovascular morbidity and mortality.24,59 Vascular 
smooth muscle cells contribute to plaque calcification by two mecha-
nisms — apoptosis and osteogenic transdifferentiation.40,74,76 Vascular 
smooth muscle cells promote two types of vascular calcification — 
micro-calcification (0.5 to 15 µm in diameter) and sheet-like macro-
calcification (>5 mm segment of continuous calcium), with different 
impacts on plaque vulnerability. In micro-calcification, also known as 
spotty calcification, apoptotic bodies and matrix vesicles released by 
vascular smooth muscle cells and macrophages serve as spotty nuclei 
of calcification. Micro-calcification induces viscous cycles of further 
inflammation and calcification, progressive thinning of the fibrous cap 
and plaque rupture. Clarke et al.,22 using a mouse model of inducible 
vascular smooth muscle cell-specific apoptosis, showed that chronic 
apoptosis of vascular smooth muscle cells caused development of cal-
cified plaques in young animals and promoted calcification within 
established plaques. Biomechanical modeling predicts that the pres-
ence of small micro-calcifications within the fibrous cap of the plaque 
can increase the local stress on the cap to the level sufficient for plaque 
rupture.15,37 Kelly-Arnold et al.42 tested this model prediction by 
examining the spatial distribution, clustering, and shape of almost 
35,000 micro-calcifications in the fibrous caps of 22 non-ruptured 
human atherosclerotic plaques using high-resolution microcomputed 
tomography. Their analysis indicated that only a small subset of 
micro-calcifications had the potential for rupture, suggesting that 
micro-calcification does not necessarily increase the risk of plaque 
rupture. 

Macro-calcification, also known as dense calcification, is character-
ized by large plates of organized calcium deposits resembling bone 
formation. Macro-calcification is considered beneficial for plaque sta-
bilization. Vascular smooth muscle cells promote macro-calcification 
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by transdifferentiating to osteoblast-like cells. Naik et al.,64 using 
genetic fate mapping to trace cells of smooth muscle origin via 
SM22a-Cre recombinase and Rosa26-LacZ Cre reporter alleles, 
showed that vascular smooth muscle cells accounted for 80% of osteo-
chondrogenic cells and all of chondrocytic cells in atherosclerotic 
arteries of ApoE–/– mice. By tracing cells derived from vascular smooth 
muscle cells during vascular calcification in matrix Gla protein defi-
cient mice using the SM22-Cre recombinase and Rosa26-LacZ alleles, 
they found that vascular smooth muscle cells transdifferentiate to 
osteochondrogenic precursor- and chondrocyte-like cells by down-
regulating the expression of smooth muscle lineage markers (a-smooth 
muscle actin, SM22a) and up-regulating the expression of the osteo-
chondrogenic transcription factor Runx2/Cbfa.

6.  Conclusion 

There is emerging consensus that vascular smooth muscle cells are a 
central player in all stages of atherosclerosis. Paradoxically, vascular 
smooth muscle cells play two opposing roles in atherosclerosis — a 
detrimental role in promoting plaque development during early stage 
of atherosclerosis but a beneficial role in promoting plaque stabiliza-
tion during later stage of atherosclerosis. Proliferation, invasion, and 
transdifferentiation of vascular smooth muscle cells promote the develop
ment of atherosclerotic lesions. Apoptosis of vascular smooth muscle 
cells promotes thinning of fibrous cap of atheroma and plaque rup-
ture. Given the two opposing roles of vascular smooth muscle cells in 
promoting the development of atherosclerosis and plaque rupture, it 
is challenging but necessary to find new approaches to controlling 
these two processes in the treatment and prevention of atherosclerosis. 
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Chapter 8

The Role of Non-coding RNA  
in the Control of Vascular  
Contractility and Disease

C. J. Nicholson and K. G. Morgan

Boston University, Boston, Massachusetts, USA

Over the last decade, the cellular impact of non-coding RNAs, defined 
as RNA molecules not translated into protein, have emerged as an 
area of great interest. Once thought to only regulate generic functions 
of cells, namely transcription, translation and splicing, several diverse 
functions of non-coding RNAs, such as described below for micro
RNAs and long non-coding RNAs, are now well established.1 

1.  MicroRNAs

By far the most studied of these molecules are microRNAs (miRNAs), 
a family of short (21–25 nucleotide) RNAs, which normally post-
transcriptionally downregulate gene expression through interacting 
with the 3′ untranslated (3′ UTR) region of mRNA targets. The first 
miRNA, lin-4, was discovered more than 20 years ago to be impor-
tant in C. Elegans larval development.2 The current release of the 
miRNA database (miRBase) has documented 2661 human miRNAs, 
which could collectively regulate the expression of thousands of pro-
tein-encoding genes with many cellular and developmental processes. 
However, it should be noted that the true functional importance of 
these miRNAs has yet to be fully determined.3,4 Each miRNA has only 
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a moderate effect on gene expression of their targets, and hence pro-
vides a ‘fine-tuning’ role on gene expression.5 It is common, however, 
for one miRNA to influence multiple targets in the same biological 
pathway, and consequently miRNAs can have profound influences on 
gene expression.6 Moreover, miRNAs can become aberrantly expressed 
in pathophysiological conditions, such as cardiovascular disease and 
cancer, leading to an important role in disease development.

1.1.  MicroRNA Biogenesis

In humans, miRNAs are primarily encoded by introns of non-coding or 
coding transcripts, however, some are encoded by exonic regions.4 It is 
also common for several miRNA loci to be clustered together in a poly-
cistronic unit, and therefore co-transcribed.7 Some miRNA loci are 
located in the introns of protein coding genes, and could therefore be 
under the influence of the protein-encoding promoter and, thus, tran-
scription factors.4,7 In the nucleus, RNA polymerase II transcribes miR-
NAs into long primary transcripts (Pri-miRNA)7 (Fig. 1A). Following 
transcription, pri-miRNAs are modified by the RNAse III enzyme 
Drosha8 into a 70 nucleotide hairpin structure termed preliminary miR-
NAs (pre-miRNA) and exported from the nucleus by a nuclear pore 
complex, formed by the protein exportin 5.9–11 In the cytoplasm pre-
miRNAs undergo further processing into a 21–25 nucleotide duplex, 
by the distinct RNAse III endonuclease enzyme Dicer (Fig. 1B).12 Dicer 
binds to pre-miRNAs at the PAZ (PIWI-AGO-ZWILLE) domain and 
cleavage is initiated by the c-terminal RNAse III domain.13 The proxim-
ity of these domains has been proposed to act as a ‘molecular ruler’ to 
determine the 21–25 nucleotide size of the miRNA duplex.14 

1.2.  RNA-induced Silencing Complex

The mature miRNA strand is incorporated onto Argonaute (AGO) 
protein to form the RNA-induced silencing complex (RISC) 
(Fig. 1C).12,15 The miRNA sequence acts as a guide to target mRNA, 
whereas the AGO proteins recruit cofactors that ultimately lead to the 
translational repression and/or decay of target mRNA. In humans, 
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there are four AGO proteins (AGO 1-4) that associate with distinct 
sets of miRNAs.4,16–18 The guide strand is preferentially loaded into the 
RISC by virtue of a relatively unstable 5′ end terminus and, addition-
ally, a U at nucleotide position 1.19–23 The passenger strand is often 
degraded immediately upon release. The selection is not entirely rigid, 
however, and the passenger strand in some cases has cellular function, 
albeit far less pronounced than the predominant guide strand.4 

Fig. 1.    Summary of the main mechanisms of miRNA biogenesis and function.  
(A) MiRNAs are primarily encoded by introns of non-coding or coding transcripts, 
into long primary transcripts termed pri-miRNAs. Following transcription, pri- 
miRNAs are modified by Drosha into a 70 nucleotide hairpin structure termed pre-
liminary miRNAs (pre-miRNA). (B) Following export into the cytoplasm through 
the Exportin 5 containing pore complex, pre-miRNAs undergo further processing, 
by Dicer, into a 21–25 nucleotide duplex. (C) The mature ‘guide’ miRNA strand is 
incorporated onto AGO protein to form the RNA-induced silencing complex 
(RISC), whilst the ‘passenger’ strand is unwound and degraded in the cytoplasm. 
The miRNA sequence acts as a guide to target mRNA, whereas the AGO proteins 
recruit cofactors, such as GW182, that ultimately lead to the translational repression 
and/or decay of target mRNA. (D) When miRNAs form near perfect complimentary 
base pairs with their targets, mRNAs are endonucleolytically cleaved by RISC (often 
observed in plants). Mammalian miRNAs associate with target mRNA through bind-
ing of a 6–8 nucleotide ‘seed’ sequence at the 5′ end of the miRNA. This has been 
proposed to; (E) result in translational repression through the recruitment of trans-
lational repressors or dissociation of the poly (A)-binding protein, and/or (F) recruit 
deadenylases onto target mRNAs, leading to mRNA decay.122
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In plants, miRNAs form near perfect complimentary base pairs with 
their targets, and this results in miRNA endonucleolytic cleavage by 
RISC (Fig. 1D).24 This degree of complementarity is rarely observed in 
mammals. Alternatively, mammal miRNAs associate with target mRNA 
through binding of a 6-8 nucleotide sequence at the 5′ end of the 
miRNA.6,25 This ‘seed’ sequence functions as a guide for RISC, which 
subsequently recruits the effector protein GW182, which influences 
mRNA translation by recruiting (i) deadenylases onto target mRNAs, 
leading to mRNA decay (Fig. 1F), and/or (ii) translational repressors 
(Fig. 1E).26 The association of AGO1 with GW182 is essential for this 
process since gene silencing is abolished in the absence of GW182.27 

1.3.  MicroRNA Target Recognition

The influence of miRNAs on target mRNA translation is in large part 
determined by the degree of complementarity of the seed sequence to 
the 3′ UTR of target mRNA. Indeed, even a change of one nucleotide 
in this region of a miRNA results in a vastly different set of mRNA 
targets.28 Furthermore, this region is the most evolutionarily conserved 
site across species, suggesting great importance to miRNA function.25 
Although less important, complementarity at the 3′ end of miRNAs 
may enhance target recognition or compensate for mis-matches in the 
seed sequence.25 The position of interaction on the target mRNA is 
also important in determining the potency of miRNA effects. For 
example, the miRNA is most likely to influence mRNA translation if 
the seed sequence interacts with the 3′ UTR of mRNA, at least 15 
nucleotides away from a stop codon, away from the center of long 
UTRs and close to target sites of co-expressed miRNAs.25 Binding to 
the 5′ UTR is ineffective due to the RISC complex becoming displaced 
by the transcriptional machinery.29  

1.4.  Control of miRNA Expression 

The importance of miRNA biogenesis has been elucidated in 
Knockout (KO) studies, in which KOs of Drosha, Dicer, and AGO are 
embryonically lethal.17,30,31 It is also important to note that each stage 
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of miRNA biogenesis can be regulated, which may have profound 
effects on miRNA abundance. For example, the activity of transcrip-
tion factors or changes in the methylation status of CpG regions 
associated with miRNA genomic loci may influence miRNA transcrip-
tion.32–34 In addition, the expression levels of the downstream effector 
molecules Drosha, Dicer, Exportin and AGO can all affect miRNA 
biogenesis and eventual loading into RISC.4 Furthermore, cell signal-
ing pathways, such as the mitogen-activated protein kinase (MAPK) 
pathway, can phosphorylate and stabilize Drosha, Dicer and AGO, 
therefore regulating miRNA abundance.4,35–37 It is possible that 
defects in these pathways lead to aberrant miRNA expression that 
have been implicated in human disease. 

2.  Long Non-coding RNAs

In addition to miRNAs, LncRNAs (long non-coding RNAs of more 
than 200 nucleotides), which were once thought to be merely ‘tran-
scriptional noise’ or ‘genetic junk’, have emerged as critical regulators 
of gene expression (reviewed in38–44). LncRNAs have a much more 
widespread mode of action than miRNAs through DNA, RNA and 
protein interactions, making the establishment of LncRNA functions 
and mechanisms a challenging task.40 Perhaps the most well character-
ized function of LncRNAs is in the recruitment of histone-modifying 
complexes, through which they play an important role in X chromo-
some inactivation.45,46 However, they have also been implicated in 
other epigenetic processes, such as DNA methylation47 and chromo-
some looping.48,49 LncRNAs are sometimes transcribed as natural 
antisense transcripts (NATs) to protein-coding transcripts (i.e. on the 
opposite strand of DNA), and can influence how their sense counter-
parts are processed by interacting with transcription factors or altering 
splicing patterns.50–53 Interestingly, LncRNAs also modulate protein 
activity, location and structure, thereby influencing the post-transcrip-
tional processes that they regulate.41,51,54,55 

Adding to the complexity of LncRNAs, their function is intertwined 
with that of miRNAs. For instance, they can post-transcriptionally 
silence the expression of genes by way of binding complimentary 
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sequences in target mRNA 3′ UTR.56 Furthermore, they can bind to 
and sequester the activity of miRNAs, thus attenuating miRNA regula-
tion of gene expression.57,58 Recently, it has been suggested that certain 
LncRNAs are also precursors to small non-coding RNAs like miRNAs. 
Although the exact function of LncRNAs has yet to be fully elucidated, 
they are emerging as important regulators of cardiovascular develop-
ment and disease.41  

3.  MicroRNAs in Vascular Smooth Muscle

The expression of microRNAs in vascular smooth muscle is now 
known to play a vital role in (i) the differentiation of VSMCs into the 
mature, contractile phenotype in development, and (ii) the mainte-
nance of VSMC contractile protein expression. Mismanagement of 
miRNA expression in VSMCs plays a role in the development of car-
diovascular diseases, such as hypertension, atherosclerosis and aortic 
aneurysms. As noted above, Dicer KO mice are embryonically lethal, 
but a great deal of knowledge has been revealed from the phenotype 
of the smooth muscle-specific Dicer KO mouse. Interestingly, smooth 
muscle miRNAs are vital to the entire body since SM22a-targeted 
deletion of Dicer also induced embryonic lethality due to widespread 
hemorrhaging.59 The authors further demonstrated that the SM22a-
targeted deletion of Dicer was restricted to the aorta, umbilical artery 
and cardiomyocytes, with no effect on smooth muscle from the 
esophagus, trachea or bladder. Taken together, this study suggests 
that miRNA expression in cardiovascular smooth muscle is essential 
for development. Furthermore, KO of dicer was associated with a 
dramatic reduction in contractility of ex vivo umbilical arteries from 
embryonic mice, partially explained by a reduction in the expression 
of myocardin, smooth muscle myosin heavy chain (SM-MHC), cal-
ponin and SM22a.60 Further studies using a tamoxifen-inducible 
SMC-specific knockout of Dicer, which allows knockout of Dicer after 
development, suggested miRNAs are required for blood pressure 
regulation and VSMC contractile function.60 It was suggested that the 
VSMC Dicer KO results in a decrease in contractile protein expres-
sion, leading to impairment of both receptor- and calcium-mediated 
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contractions of small mesenteric arteries, which consequently resulted 
in reduced blood pressure.60 Furthermore, the stretch-dependent 
contractile differentiation of mouse portal veins is dependent on 
Dicer expression.61 Myogenic tone, an important response in resist-
ance arteries to increased blood pressure, was abolished from Dicer 
KO mice, which was associated with a loss of calcium influx through 
the L-type calcium channel.62 Since myogenic tone is crucial in the 
maintenance of peripheral arterial resistance, aberrant miRNA expres-
sion may be involved in the development of hypertension. These stud-
ies, when taken together, suggest that miRNAs play a role in VSMC 
differentiation into the contractile phenotype. 

3.1. � MicroRNA-dependent Contractile Differentiation  
of Vascular Smooth Muscle Cells

The miR-143/145 cluster has emerged as a master regulator of vas-
cular smooth muscle differentiation. Indeed, knockout of this cluster 
induces a phenotype that resembles the one observed for Dicer KO, 
whilst overexpressing miR-145 rescues the effect of Dicer KO on 
vascular smooth muscle cell differentiation.59,60,63–68 The miR-143/145 
family can influence ion channel (see below), actin cytoskeletal and 
contractile gene expression,65 to support the promotion of the vascu-
lar smooth muscle contractile phenotype. In smooth muscle cells 
(SMCs), the serum response factor (SRF) and myocardin transcrip-
tional complex drive contractile gene expression via CArG boxes in 
promoter regions of SMC differentiation markers, such as SM-MHC, 
calponin and SM22a. This mechanism is counteracted by KLF4-
mediated inhibition of SRF binding to the CArG-containing genes. 
The primary pro-contractile property of the miR-143/145 cluster is 
through the targeted downregulation of KLF4 and 5, which results in 
the upregulation of contractile proteins (Fig. 2).69–72 The contractility 
to AngII and phenylephrine was almost abolished in the femoral 
artery and aorta from miR-143/145 KO mice, confirming an impor-
tant pro-contractile function for this cluster.59,63,67–69,72,73 Interestingly, 
the same impairment was observed in airway, but not bladder smooth 
muscle, suggesting tissue-specific effects of miR-143/145 in smooth 
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muscle.67 The impaired contractile response in these mice is partially 
due to an accumulation of synthetic SMCs, but also specific defects in 
receptor-mediated signaling pathways (see below).63 An alternative 
mechanism involving aberrant angiotensin signaling is also involved in 
the regulation of VSMC function by miR-143/145.63 Angiotensin 
converting enzyme (ACE) is a verified target of miR-145, and its 
cleavage of angiotensin I to, angiotensin II (AngII), plays an impor-
tant role in VSMC contraction and phenotype regulation.63 Loss of 
miR-145 leads to enhanced angiotensin stimulation through the 
upregulation of ACE. The subsequent chronic promotion of the syn-
thetic phenotype leads to impaired contractility and stimulation of 
atherosclerotic pathways. In addition, this aberrant chronic signaling 

Fig. 2.    The pro-contractile functions of miR-145 in vascular smooth muscle cells. 
miR-145 primarily promotes the contractile phenotype through the targeted down-
regulation of KLF4/5, which relieves its suppression on SRF/myocardin-induced 
expression of contractile genes, including calponin, SM-MHC and SM22a. It also 
negatively regulates the expression of ACE, which upregulates AngII signaling and 
reversion to the synthetic, proliferative smooth muscle phenotype. Finally, miR-145 
targets CamKIIδ, relieving its suppression of L-Type calcium channel expression, 
therefore promoting VSMC contraction. The expression of miR-145 can itself be 
regulated by signaling pathways, such as ERK1/2 and JAG1/Notch.
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may desensitize VSMCs to angiotensin, explaining the reduced 
AngII-induced contractility of vascular strips from miR-143/145 
KO mice.63 

The expression of miR-24 is similarly induced by bone morpho-
genic protein (BMP) signaling, which leads to contractile differentia-
tion by targeting Tribbles-like protein-3.74 The expression of certain 
miRNAs can also act in negative feedback loops, perhaps as mecha-
nisms to fine-tune the expression of contractile proteins. For example, 
myocardin ordinarily promotes contractile differentiation, but it also 
enhances miR-1 expression, which blocks the expression of contrac-
tile proteins a-SMA and SM22.75 Additionally, miR-21 promotes the 
contractile phenotype by targeting Programmed Cell Death 4 in 
response to BMP signaling.76 However, it also negatively regulates the 
expression of myosin phosphatase, Rho-interacting protein and cofi-
lin-2, which are involved in smooth muscle relaxation.77

3.2. � Smooth Muscle Pathways of Contraction: A Role  
for MicroRNAs?

Further to having a role in phenotypic regulation of VSMCs, miRNAs 
may directly regulate both classical and novel pathways of VSMC 
contraction, such as those affecting actomyosin activity or focal adhe-
sion remodeling, respectively. For example, miR-1, -133 and -155 
downregulate myosin light chain kinase (MLCK) expression, thereby 
influencing myosin activation or smooth muscle contraction.78–82 In 
addition to targeting MLCK, miR-1 also downregulates calmodulin 
expression, and could therefore play an anti-contractile function in 
smooth muscle. The microRNAs of the miR-200 family target 
numerous members of cytoskeletal effectors that control actin polym-
erization and actomyosin contractility.83

The focal adhesion, which had previously been assumed to be 
largely static in differentiated smooth muscle, remodels in response to 
vasoconstrictor stimulation, facilitating the transmission of force 
developed by actomoyosin bridges. This has been suggested to occur 
through activation of the non-receptor tyrosine kinase Src, which 
promotes focal adhesion kinase-dependent tyrosine phosphorylation 
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of the focal adhesion proteins Crk Associated Substrate (CAS) and 
Paxillin.84–86 This regulatory pathway is impaired in aged mouse aorta, 
which was associated with defects in aortic stiffness and contractility 
maintenance.84,87 Interestingly, the expression levels of miRNAs that 
target Src tyrosine kinase were elevated with aging in mouse aorta. 
Therefore, abnormal miRNA expression could play a role in the re-
programming of focal adhesion in VSMCs, leading to impairment of 
vascular contractile and stiffness regulation in aged aorta.87

3.3.  �MicroRNA Expression Gone Awry: Implications  
for Vascular Disease

3.3.1.  Hypertension

The aberrant expression of miRNAs involved in controlling the phe-
notypic switch of VSMCs from the synthetic to the contractile state 
could contribute to the development of vascular disease. A diminished 
or enhanced capacity of an artery to respond to agonist-mediated 
contraction will display aberrant regulation of blood pressure. Clinical 
studies have highlighted miRNA expression changes that favor the 
contractile phenotype, and hence could increase the risk of hyperten-
sion. For example, the expression of miR-145, -143, and -133 were 
lower in peripheral blood mononuclear cells from hypertensive 
patients, and miR-1 and -21 were higher.88 The finding that miR-145 
was lower in hypertensive patients is contradictory to the known pro-
contractile function of miR-145. It also remains to be determined if 
the same pattern is seen in VSMCs, which are less accessible than 
blood cells. Moreover, the expression of miR-145 is induced by Jag1/
Notch signaling,69 and repressed by ERK1/2 signaling (Fig. 2).89 
Therefore, the expression levels of miR-145 are altered in different 
physiological situations, such as stress and mechanical stretch, in-turn 
altering the phenotype of VSMCs and risk of hypertension. 

A clinical study of a Chinese population demonstrated a single 
nucleotide polymorphism in the prostaglandin F2a receptor gene to 
be more likely in hypertensive individuals.90 This was associated with 
a defect in miR-590-3p binding, thereby upregulating prostaglandin 
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F2a receptor expression and augmenting prostaglandin-mediated 
contractility.90 

3.3.2.  Hyperlipidemia and diabetes

In mouse models for diabetes and hyperlipidemia, in which contractil-
ity of the renal artery is increased, the expression of miR-10a, -139b, 
-206 and -222 are drastically reduced.91 This was associated with 
increases in the expression of Rho kinase and Cx43. The increase in 
contractility was attenuated by overexpression of miR-10a, -139b, 
-206 and -222 in VSMCs.91 In a separate study, miR-145 was upreg-
ulated in VSMCs from type 2 diabetic rats92 and humans,93 which 
consequently heightened the expression of contractile proteins. In 
addition, glucose-induced contractile differentiation of mouse SMCs 
was recently found to be dependent on miR-143/145, further sup-
porting this view.94 In the diabetic rat model, the increase in miR-145 
expression was associated with increased aortic contractility and cal-
ponin levels.92 Furthermore, high glucose treatment to human coro-
nary SMCs, which increases AngII signaling, suppressed miR-145, 
promoting a switch to the synthetic phenotype.95 Taken together, 
these studies suggest that miRNAs could play a role in the increased 
cardiovascular disease risk associated with type 2 diabetes. 

3.3.3.  Atherosclerosis

In contrast to the above, an uncharacteristic miRNA expression that 
promotes a switch to the synthetic VSMC phenotype could enhance 
the development of atherosclerosis. Vascular injury, such as endothe-
lial dysfunction, mechanical stress or inflammation, induces VSMCs 
to switch from the contractile to the synthetic phenotype. This 
involves a suppression of genes that promote contraction, and an 
enrichment of those that regulate proliferation, inflammation, and 
migration, which precedes the development of atherosclerosis.96,97 
The downregulation of miR-145 would lead to an increase in 
KLF4/5 expression, subsequently decreasing the expression of con-
tractile markers, such as calponin and MHC. Indeed, the expression 
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of miR-145 is suppressed in both animal models of vascular injury and 
human atherosclerosis.70,98 

3.3.4.  Pulmonary vascular disease

There is accumulating evidence that miRNAs play an important role 
in the development and progression of pulmonary hypertension, 
which is marked by increased pulmonary artery smooth muscle cell 
(PASMC) proliferation and vasoconstriction. Several studies have sug-
gested a role for the miR-130/301 family in the promotion of pul-
monary artery remodeling, through the control of peroxisome 
proliferator activated receptor (PPAR-ϒ).99–101 Furthermore, miR-
21,102 -124,103 -145,104 and -204,105,106 have all been suggested to 
modulate proliferation pathways in PASMCs. In addition to its pro-
proliferative role, the miR-130/301 family also indirectly increases 
the expression of endothelin-1, which enhances the contractility of 
PASMCs.107 Abnormal vasoconstriction is also caused by the aberrant 
expression of ion channels in the VSMC membrane, which are influ-
enced by miRNAs. For example, the expression of a1C subunit of the 
L-type calcium channel is downregulated by miR-328.108 Conversely, 
miR-145 promotes the targeted down-regulation of CamKIIδ, result-
ing in increased expression of the a1C subunit of the L-type calcium 
channel, which causes increased VSMC contractility (Fig. 2).64 In a rat 
model of pulmonary arterial hypertension, miR-190 expression was 
increased in PASMCs. This miRNA increases the contractility of pul-
monary arteries, through the targeted downregulation of the potas-
sium channel Kv7.5, which, when activated, promotes VSMC 
relaxation.109 Indeed, overexpression of miR-190 in ex vivo PA rings 
increased both KCl- and PE-induced contractility.109 Similarly, miR-
9a-3p downregulates the expression of the SUR2B domain of the 
KATP channel, which causes dysregulation of vascular contractility.110 

3.4.  Extracellular Communication in Vascular Cells

Importantly, miRNAs expressed in one cell type are able to transport 
to other cell types. This cell-to-cell communication has been proposed 
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to be crucial in vascular biology, especially with regard to the expres-
sion of miR-143/145. For example, endothelial cells subjected to 
physiological shear stress or statin treatment were induced to trans-
port miR-143/145 in extracellular vesicles to SMCs, promoting an 
atheroprotective phenotype.111 On the other hand, miR-143/145 
transfer from aortic SMCs to endothelial cells (ECs) inhibits EC pro-
liferation, through targeted downregulation of hexokinase II and 
integrin beta 8. This transfer occurs through tunneling nanotubules, 
which are small plasma membrane protrusions, and is promoted by 
TGFb signaling. Therefore, this transfer arises under vascular stress, 
and hence may be critical for the response.112 Similarly, TGFb can 
promote the transfer of miR-143-3p from PASMCs to pulmonary 
artery endothelial cells (PAECs) via exosomes, which are small (50–
90 nm) membrane vesicles. Interestingly, and in contrast to the for-
mer study in aortic SMCs, not only was this specific to miR-143 (i.e. 
miR-145 was not enriched in these exosomes), but it promoted the 
migration and angiogenesis of PAECs. Moreover, miR-143 enriched 
exosomes were discovered in both calf models of pulmonary hyper-
tension (PAH) and PAH patients. The use of in vivo anti-miR-143 
therapy reversed experimental PAH in mice. This highlights both the 
potential of detecting miRNA-enriched exosomes as biomarkers of 
disease and the ability to subsequently treat such disorders.113

4. � Long Non-coding RNAs in Vascular  
Smooth Muscle

LncRNAs are both expressed in VSMCs and play a role in phenotype 
regulation. Deep sequencing studies identified smooth muscle and 
endothelial cell-enriched migration/differentiation-associated long 
non-coding RNA (SENCR), which acts in the phenotype regulatory 
pathway of SMCs. Depletion of SENCR acts in similar manner to 
miR-145 KO, decreasing the expression of myocardin, which drives 
the switch from the contractile to the synthetic phenotype.114 
Similarly, knock down of the p53-induced LincRNA-p21, led to 
increased VSMC proliferation through interfering with p53 transcrip-
tional activity. Significantly, this LncRNA was reduced in carotid 
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arteries and peripheral blood mononuclear cells from atherosclerotic 
patients.115 In contrast, Lnc-Ang362 is induced by AngII, which may 
promote the risk of hypertension by encouraging the proliferation of 
VSMCs.116 It is not currently known how LncRNAs influence the 
expression or activity of VSMC contractile proteins, but this is a rap-
idly developing field and we expect many further advances in the 
coming years.

5. � Modulating MicroRNAs in the Treatment  
of Vascular Disease 

Two main techniques have been utilized to study the functions of 
miRNAs in vitro and in vivo; (i) increasing the expression of a down-
regulated miRNA by use of a miR mimic, which is chemically 
designed to mimic the endogenous sequence, and (ii) blocking the 
effects of an abnormally upregulated miRNA by using an anti-
miRNA, which is designed to be complimentary to the endogenous 
miRNA and hence block its function. The cellular entry of a miR 
mimic is enhanced by the addition of a passenger strand, which is 
chemically modified to aid membrane uptake (e.g. by the addition of 
a phosphate group). The passenger strand is also designed to contain 
many mismatches so that it quickly dissociates from the guide strand 
after entry into the cell. The in vivo stability of anti-miRNAs has been 
improved by several modifications, such as locked nucleic acid and 
phosphodiester additions.

The aberrant expression of miRNAs in disease states, and the 
relative ease at which to manipulate them, has given great promise to 
pharmacologically target them to counteract disease. There are many 
benefits to regulating miRNAs such as; (i) their fine-tuning effect on 
target protein expression, meaning responses would not be severe,  
(ii) their evolutionary conservation amongst species, enabling pre-
clinical studies, and (iii) their ability to target many members of the 
same signaling pathway, therefore having a greater combined effect 
than siRNA treatments (which typically only regulate one target). The 
latter of these benefits is also a potential weakness since they could 
have multiple off-target effects. To work around this problem, 
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miRNA adenovirus constructs have been combined with delivery 
systems to target the therapy to specific tissues. This also has the con-
siderable advantage of moderately modulating miRNA levels back to 
physiological levels, rather than using miR mimics, which typically 
increase miRNA expression to supraphysiological levels. This approach 
has been demonstrated to treat hypoxia-induced pulmonary 
hypertensive rats with an anti-miR-145 therapy without significant 
off-target effects.117 In addition, several in vivo mouse studies have 
demonstrated the usefulness of miRNA therapy in treating experi-
mental pulmonary hypertension107,109 and abdominal aortic aneu-
rysm,118–121 signifying the potential for miRNA therapeutics to treat 
cardiovascular disease. Furthermore, miRNA therapies, such as 
anti-miR-33 (atherosclerosis, Regulus Therapeutics), anti-miR-92 
(peripheral artery disease, miRagen Therapeutics) and anti-miR-145 
(vascular occlusion, miRagen Therapeutics), have already emerged in 
preclinical trials. However, there is still a great deal to be determined 
in the field of vascular smooth muscle contractility. Further advance-
ments in the knowledge of miRNAs and LncRNAs in both small and 
large arteries may aid the development of treatments to prevent sys-
temic hypertension and aortic stiffness, which are major risk factors 
for age-related morbidity and mortality. 
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Vascular smooth muscle cells (VSMCs), the important functional cell 
in blood vessels, play important roles in vaso dilation and vaso consc-
triction functions. Circulatory shock-induced ischemia and hypoxia, 
and internal environment disorder can damage the structure and 
function of VSMCs, and result in the disorder of vascular contraction 
and relaxation, which presents as low reactivity to vasoconstrictors 
and vasodilators is called vascular hypo-reactivity. This reduced vascu-
lar reactivity severely interferes with the treatment of circulatory 
shock, especially interferes with the efficacy of vasoactive agents. 
Consequently, it is very important to elucidate the mechanisms and 
search for the effective treatments for VSMC damage and vascular 
hypo-reactivity. In recent years, many studies focused on the factors 
inducing VSMC damage, the different features and mechanisms for 
vascular hyporeactivity, and the treatment approaches following 
shock. VSMCs are an important target for the treatment of circula-
tory shock.
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Circulatory shock, a common clinical critical illness, includes 
hemorrhagic, traumatic, endotoxic/septic, cardiogenic and anaphy-
lactic shock. Traumatic hemorrhagic shock is often seen both in civil-
ian and military situations. It is the major cause of early death at the 
battle field and during disasters, accounting for about 50% of deaths 
of battle personnel.1 Sepsis and septic shock are the common and 
severe complications in intensive care unit. Despite substantial 
advances in medical science and technology, the mortality of severe 
sepsis remains between 52%–60%.2–6 There are about 1,400 deaths 
because of sepsis everyday globally.7 

Vascular smooth muscle cells (VSMCs), the important functional 
cell in blood vessels, play key roles in vaso dilation and vaso consctric-
tion. Shock-induced ischemia and hypoxia, and internal environment 
disorder can damage the structure and function of VSMCs, and result in 
abnormal vascular contraction and relaxation, called vascular hypo-
reactivity. This reduced vascular reactivity severely interferes with the 
development and treatment of circulatory shock, especially interferes 
with the application of vasoactive agents. Also, this reduced vascular 
reactivity severely interferes with the tissue perfusion and organ func-
tions, which is the important reason for the incidence of irreversible 
shock. In recent years, many  studies focused on the mechanisms and 
treatment of vascular hyporeactivity following shock.8 VSMCs are 
thought to be an important target for the treatment of circulatory shock. 

1. � The Inducing Factors of VSMCs Damage  
and the Features of Vascular Dysfunction  
during Circulatory Shock

1.1.  �The Inducing Factors for VSMCs Damage

A large number of factors may induce damage the VSMCs and inter-
fere with the vascular function/reactivity following circulatory shock 
including cytokines such as tumor necrosis factor-α (TNF-α), inter-
leukin (IL)-1β, and IL-6, inflammatory mediators such as nitric oxide 
(NO), endothelin (ET) and bradykinin, endogenous opioid peptides 
(EOP) such as β-endorphin, and so on.8 These factors can impact the 
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function of VSMCs by interfering with the ion channels and receptors 
of VSMC membranes.9–11 Also, these factors can induce cellular oxida-
tive stress and endoplasmic reticulum stress (ERS), which affect the 
mitochondrial function and induce necrosis and apoptosis, in VSMCs. 
finally they damage the vascular function.12 In addition, circulatory 
shock induced ischemia and hypoxia, endotoxin released by bacteria 
and internal environment disorder such as acid-base disorder can 
directly cause damage to VSMCs. 

1.2. � The Features of Vascular Dysfunction following 
Circulatory Shock

Studies show that there were obvious changes in vascular function/
reactivity after shock. The main focus in recent years is hemorrhagic 
shock and endotoxic/septic shock. The main features of vascular dys-
function after shock are vascular hyporeactivity. Vascular reactivity has 
biphasic change, vascular difference and gender/age-differences.

1.3.  �Hemorrhagic Shock

1.3.1. � Biphasic change of vascular reactivity 

Research showed that vascular reactivity appeared as biphasic change 
after hemorrhagic shock.13–17 Most studies demonstrated that vascular 
reactivity is increased at early-stage shock and decreased at late-stage 
or prolonged shock (2 hours after shock). Available studies showed 
that save for the neural and humoral factors, the balance of RhoA/
Rac and angiopoietin 1/2 (Ang1/Ang2) are present in the occur-
rence of the hemorrhagic shock-induced biphasic change of vascular 
reactivity. Our research team found that the activity of RhoA was 
increased and the activity of Rac1 was decreased in early-stage of 
shock, while in late-stage of shock, the activity of RhoA was decreased, 
and the activity of Rac1 was increased,18 and that the changes of the 
ratio of RhoA/Rac1 positively correlated with the vascular reactivity. 
RhoA/Rac1 regulates the vascular reactivity mainly through their 
downstream molecules, Rho kinase and P21-activated kinase (PAK). 
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Rho A may activate Rho kinase and inhibit PAK to increase the vas-
cular reactivity, while Rac1 may activate PAK and inhibit Rho kinase 
to decrease the vascular reactivity.17–20 Further study found Rho kinase 
regulates vascular reactivity mainly through inhibition of myosin light 
chain phosphatase (MLCP) and induction of 20-kDa myosin light 
chain (MLC20) dephosphorylation. PAK regulates vascular reactivity 
mainly through inhibition of myosin light chain kinase (MLCK) and 
MLC20 phosphorylation.19 

Angiopoietin (Ang) is the important factor promoting angiogen-
esis and vascular repair. Xu J et al. found that Ang participated in the 
occurrence of biphasic change of vascular reactivity following hemor-
rhagic shock.21 They found that Ang-1 was increased at early shock, 
which positively correlated with the changes of vascular reactivity after 
hemorrhagic shock, whereas Ang-2 was increased at the late stage of 
shock, and negatively correlated with the changes of vascular reactiv-
ity after hemorrhagic shock.21 The exogenous application of Ang-1 
maintained the vascular hyper-reactivity at early-stage shock and 
improved hypo-reactivity at late-stage shock while exogenous applica-
tion of Ang-2 suppressed the vascular hyper-reactivity at early-stage 
shock and aggravated hypo-reactivity at late-stage shock. Studies 
showed that Ang-1 and Ang-2 regulate vascular reactivity mainly 
through the regulation of the endothelial cell-selective receptor tyros-
ine kinase Tie2.21,22 Ang-1 increases the vascular reactivity at early-
stage shock mainly through the activation of Tie2-Akt- eNOS 
pathway, resulting in the appropriate amount of nitric oxide release, 
which brings the protection of vascular endothelial cells, while Ang-2 
decreases the vascular reactivity mainly through Tie2-ERK-iNOS 
pathway at late-stage shock leading to a considerable amount of NO 
release, which brings the damage to vascular endothelial cells.

1.3.2. � Vasculature difference 

Hemorrhagic shock induced-vascular hypo-reactivity appears as vas-
cular bed diversity, which means blood vessels at different sites appear 
with different change features. For example, our studies23–25 found 
that following hemorrhagic shock, superior mesenteric artery (SMA), 
renal artery (RA), femoral artery (FA), celiac artery (CA), and middle 

b2527_Ch-09.indd   266 9/21/2016   10:58:48 AM



Vascular Smooth Muscle Cells as Therapeutic Target  267

“9x6”	 b2527  Vascular Smooth Muscle Cells in Health and Disease

cerebral artery (MCA) had different speeds and severity in vascular 
reactivity loss. SMA, RA and FA decreased more severely and rapidly 
than that in CA and MCA. This may be the main reason that causes 
the different blood distribution and different tissue perfusion to dif-
ferent organ following shock. 

Further studies showed that vasculature differences in vascular 
reactivity correlated with the different expressions of cytokines and 
inflammatory mediators in various vasculatures. Our studies found 
that the expressions of cytokines and inflammatory mediators (IL-1β, 
TNF-α and ET-1, et al.) in intestinal and kidney tissues were signifi-
cantly higher than that in brain and liver tissues after shock.25 These 
inflammatory mediators have been confirmed as the inducing factors 
for vascular hypo-reactivity.10,11,22,25–27

1.3.3. � Gender- and age-difference of vascular reactivity 

Studies demonstrated that the host responses to trauma and hemor-
rhagic shock presented age and gender diversity. The research team of 
Chaudry found that females tolerated trauma stimuli much better 
than males, and estrogen played a protective role in this process.28 
Angele et al. found that male patients under the age of 50 had a 
higher mortality late than females after severe blunt trauma, while the 
difference was not evident in patients older than 50, which suggests 
that postmenopausal women without the protection of estrogen had 
no advantages against trauma insult.29–30 In addition, Maranon R et al. 
found that pre-menopausal women had less cardiovascular events as 
compared with men of the same age. However, after menopause, this 
advantage was diminished.31 These results suggest that estrogen has 
an important contribution to the protection of organ function in 
females following trauma and hemorrhagic shock. 

Studies showed that the gender- and age-differences not only 
exist in the tolerance and outcome of trauma, but also in vascular 
function/reactivity. Proctor et al. found that 7-week-old rats had 
higher vascular reactivity than rats of other ages, and as age increased 
the vascular reactivity was gradually decreased.32 Our studies found 
that female rats in reproductive age had higher vascular reactivity and 
better tolerance to traumatic shock than male rats of the same age or 
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female rats not at the reproductive age.33 A clinical study found that 
in healthy subjects, the vascular reactivity was gradually decreased as  
the subjects aged. Middle-aged and young healthy women had higher 
vascular reactivity than men of the same age. Sex-based differences in 
vascular reactivity were not obvious in an aged population. Similar to 
the healthy participants, vascular responsiveness in middle-aged and 
young trauma patients was greater than in the elderly trauma patients. 
Female patients had stronger responsiveness than males, whereas aged 
population had no obvious sex-based differences in vascular reactiv-
ity.33 Further studies showed that estrogen and its receptor (GPR 
30)-mediated activation of Rho kinase and PKC lead to the protective 
effects on vascular reactivity. 

1.3.4. � Metabolic diseases suffering from hemorrhagic shock

Hypertension, diabetes, and hyperlipidemia are the common car-
diovascular diseases which seriously threaten human health; the 
morbidity is increasing year-by-year. There are 190 million diabetic 
patients and two billion hypertensive patients globally as at 2012.34 
In addition, the number of patients with hyperlipidemia is also rap-
idly increased. Some studies indicate that these cardiovascular dis-
eases can affect the presentation and outcome of trauma and shock. 
Ahmad et al. reported that patients with diabetes exposed to trauma 
had higher hospital morbidity and mortality, and longer intensive 
care unit stays, and increased complications.35 Lusternberger ana-
lyzed 1272 patients with traumatic brain injury and showed that 
patients with traumatic brain injury and diabetes had nearly a 1.5-
fold increase in mortality as compared to similar patients without 
diabetes.36 Our studies showed that hemorrhagic shock (40% fixed 
hemorrhage or mean arterial blood pressure at 40 mmHg for 2h) 
induced more severe damage on vascular reactivity, hemodynamics, 
tissue perfusion and mitochondrial function of vital organs, and led 
to a more rapid death in hypertensive, diabetic, and hyperlipidemic 
rats than in health rats. Our results show that some basic diseases 
can aggravate the cardiovascular injury when suffering from severe 
trauma or shock. More attention should be paid to the diagnosis 
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and treatment for these diseases subjected to severe trauma or 
shock.37 

1.4. � Endotoxic/septic Shock 

Studies showed that vascular reactivity after endotoxic shock also 
appears biphasic change and vasculature-difference as compared with 
hemorrhagic shock.38,39 As compared with hemorrhagic shock, vascu-
lar hypo-reactivity is more serious than hemorrhagic shock but 
appears late.40,41 Our studies found that vascular reactivity was 
increased within 1 hour after endotoxic shock, while 2 hours after 
endotoxic shock, the vascular reactivity was rapidly and seriously 
decreased. The vascular reactivity had only 20% of normal level at  
4 hours after endotoxic shock.11,42 

We found that the vascular reactivity after endotoxic shock also 
appeared differently in different vasculatures. At the early stage of 
endotoxic shock, vascular reactivity in superior mesenteric artery was 
not obviously increased while in the celiac artery and renal artery it 
was obviously increased, at the late stage of endotoxic shock, the vas-
cular reactivity in superior mesenteric artery was greatly decreased 
(reduced by 34.8%), next for renal artery (33.7%) and celiac artery 
(16.7%). As for the vasodilation to Ach, the superior mesenteric artery 
showed significant hypo-reactivity while celiac artery showed hyper-
reactivity and renal artery had no obvious change.42 Studies showed 
that males and aged individuals had a higher risk of the development 
of sepsis and multiple organ failure after severe trauma.43,44 Bone et al. 
reported that male patients with sepsis had more morbidity and mor-
tality as compared with females.45 Schroder et al. found that women 
had a significantly higher survival rate (74%) as compared with men 
(31%) following the onset of sepsis.46 

2. � The Mechanisms for VSMCs Damage and Vascular 
Hyporeactivity After Shock

As mentioned above there are many factors affecting VSMCs and 
vascular function. Shock-induced ischemia, hypoxia, cellular ERS and 
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oxidative stress can directly damage VSMCs. Cytokines and inflam-
matory mediators can affect the signal transduction of VSMC and 
which in turn, affect vascular function (vascular reactivity). Available 
documents show there are three mechanisms responsible for vascular 
hypo-reactivity after circulatory shock: receptor desensitization mech-
anism; membrane hyper-polarization mechanism; and calcium desen-
sitization mechanism. 

2.1. � Receptor Desensitization Mechanism of Vascular  
Hypo-reactivity

It has been reported that the adrenergic receptors (ARs) are desensi-
tized following circulatory shock including hemorrhagic or endo-
toxic/septic shock.47 Studies showed that following shock, a high 
concentration of catecholamines could cause receptor desensitization. 
In addition, shock-induced ischemia and hypoxia, the release of 
cytokines as well as endogenous opioid peptide (EOP) may also 
inhibit the functions of adrenergic receptors and result in receptor 
desensitization. Receptor desensitization includes receptor amount 
down-regulation, receptor affinity drop and uncoupling.47 

2.1.1. � Down-regulation of receptor amount 

Down-regulation of the receptor number is one of the important 
mechanisms for receptor desensitization. Sandrini et al.48 investigated 
the changes of ARs with hypovolemic shock rats and found that the 
amount of α1- and, β-ARs in the heart and α2-ARs in the spleen were 
significantly reduced. Tait and Onuma et al. investigated the changes 
of ARs with traumatic shock rats, and found the β-ARs were down-
regulated in the liver and heart.49–50

Studies recognized that down-regulation of the receptor number 
includes two steps. The first step is the decrease of receptor number 
on the cell membrane, but the total quantity of receptors in each cell 
did not change. The second step is the decrease in total quantity of 
receptors, which means that the real down-regulation of receptors.  
In the early stage of shock, receptor desensitization may be mainly due 
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to the decrease of the receptor amount on the cell membrane and this 
possibly correlated to the internalization of surface receptors.51 The 
real down-regulation of receptors is related to the degradation of 
internalized receptors and the decrease of receptor expression, which 
appears at 3–5 hours even 1–2 days after the first step. Many factors 
including high concentration of catecholamine and cytokines during 
shock may down-regulate the adrenergic receptors. High concentra-
tion of catecholamine can result in the internalization of adrenergic 
receptors.47 Cytokines such as TNF-a and IL-1β may down-regulate 
the amount of adrenergic receptors via inhibition of the transcription 
of the adrenergic receptor. Our studies.10,11 found that in-vitro incu-
bation with IL-1β (12.5–50ng/ml) could significantly decrease the 
vascular reactivity of superior mesenteric artery to phenylephrine and 
down-regulate the mRNA expression of α1-adrenergic receptors (α1-
AR). AG490 (10µmol/L), an inhibitor of JAK2 (Janus kinase 2), 
could partly reverse IL-1β-induced down-regulation of α1-AR 
mRNA and suppressed the DNA binding ability of STAT3 (Signal 
transducer and activator of transcription 3). The results indicate that 
IL-1β down-regulates the expression of α1-AR mainly by activating 
JAK2-STAT3 pathway.11

2.1.2. � The decease of receptor affinity 

A drop in receptor affinity is another important mechanism for AR 
desensitization and often happens before the decrease of receptor 
number on the cell membrane. Previous studies showed that the 
affinity of β-AR was generally declined but the affinity of α-AR 
remained constant during endotoxic and hemorrhagic shock.52,53  
A decrease in receptor affinity may also lead to receptor uncoupling 
and thereby decrease the binding ability of adrenergic receptor to 
agonists. Therefore, the coupling obstacles between adrenergic recep-
tor and adenylyl cyclase (AC) may be the most important factor for 
receptor desensitization. Save for causing the internalization of adren-
ergic receptor, a high concentration of catecholamine, EOP and 
cytokines can also cause the decrease of adrenergic receptor affinity. 
For e.g., Romano et al. found that agonist-induced receptor desensi-
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tization was mainly correlated with the phosphorylation of adrenergic 
receptor in the early stage of shock.54 Besides, Shepherd et al. found 
that the decrease of adrenergic response was closely related to the 
inhibition of adenylyl cyclase activity. These findings suggest that the 
inhibition of adenylyl cyclase activity may be the key point to affect 
the coupling between adrenergic receptor and adenylyl cyclase. The 
mechanism for the down-regulation of adenylyl cyclase activity may 
be correlated with G proteins. For e.g., Wong et al. found EOP and 
TNF-α inhibited adrenergic receptor affinity and the decrease of ade-
nylyl cyclase activity.55,56 However, the precise mechanisms for the 
interaction of adrenergic receptor, G protein and adenylyl cyclase are 
not clear and need further investigation.

2.2. � Membrane Hyperpolarization Mechanism of Vascular 
Hypo-reactivity

Membrane hyperpolarization is another crucial mechanism for vascu-
lar hypo-reactivity after shock. Membrane hyperpolarization of vascu-
lar hypo-reactivity mainly involves in two kinds of potassium channels: 
ATP-dependent K+ channel (KATP) and Large conductance Ca2+- 
activated K+ (BKCa) channel. 

2.2.1. � KATP channels 

In physiological conditions, cytoplasm ATPs are in mMol level, which 
is of course enough to completely close the KATP channels on cell 
membranes.57 While in some pathophysiological conditions such as 
shock, cell oxidative stress or severe decrease of ATP would cause KATP 
channels open on cell membranes.58,59 The over-open of KATP channels 
in VSMCs would result in membrane hyperpolarization of VSMC.60 
This event would inhibit potential dependent calcium channels and 
decrease the Ca2+ inflow, and finally result in vascular hypo-reactivity. 
The important inducing factors that cause the opening of KATP chan-
nels include intracellular acidosis, nitric oxide (NO), and so on.

 Intracellular acidosis induced by ischemia and hypoxia after shock 
may markedly reduce the inhibitory effect of ATP on KATP channels. 
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Liu J et al. 61 found that, in the absence of ATP, a decrease of intracel-
lular pH (pHi) significantly reduced the conductance of single KATP 
channel. The open time and time constant of the channels were 
slightly increased. While in the presence of ATP, a decrease of pHi 
significantly increased the conductance of single channel and the open 
probability of KATP channel. These results suggest that intracellular 
acidosis activates KATP channels in the presence of ATP. NO has strong 
activity to dilate the vascular vessels. In physiological conditions, the 
endothelial NO synthase (eNOS) in vascular endothelial cells (VECs) 
may catalyze the continuous synthesis of NO, which makes great con-
tribution to vaso-dilation. In the early stage of hemorrhagic shock, 
NO is slightly increased, which makes the vascular reactivity a little bit 
increase. In the late stage of or severe hemorrhagic shock, NO is 
significantly increased and large amount of OONO- is generated with 
superoxide anion, which induces over-opening of KATP channels in 
VSMCs, and finally results in vascular hypo-reactivity.62

2.2.2.  �BKCa channels 

Although KATP channel makes a great contribution to membrane 
hyperpolarization of VSMC and vascular hypo-reactivity following 
shock, it has only one channel per 10µm2 membranes. However, BKCa 
channels broadly distributes on VSMCs (1~4 channels/µm2 mem-
brane), which can be activated by voltage and intracellular Ca2+ and 
plays important role in the regulation of vascular reactivity.63 The BKCa 
channel consists of α-subunit and accessory β-subunit, which co-influ-
ence the characteristics of its physiology and pathophysiology.64 Nelson 
et al. reported that Ca2+ sparks are the physiological activators of BKCa 
channels. A single Ca2+ spark may induce the opening of its surround-
ing BKCa and K+ outflow, which forms spontaneous transient outward 
current (STOC).65 This process may induce membrane hyperpolariza-
tion. In turn, over-opened BKCa channels decrease the external calcium 
influx and finally make the VSMCs in the state of hypo-reactivity. 
Similar to the KATP channel, many factors such as nitric oxide (NO), 
endothelin (ET) and endogenous opioid peptide (EOP) can regulate 
the opening of BKCa channels and result in vascular hyporeactivity.65 

b2527_Ch-09.indd   273 9/21/2016   10:58:49 AM



274  L. Liu, T. Li and C. Duan

	 	 b2527  Vascular Smooth Muscle Cells in Health and Disease� “9x6”

Studies showed that NO regulates the opening of BKCa channels 
following hemorrhagic shock mainly through the tyrosine phospho-
rylation of BKCa α subunit. Zhou R et al. found that this tyrosine phos-
phorylation of BKCa α subunit was further regulated by protein tyrosine 
kinase (PTK) and/or protein tyrosine phosphatase (PTP).9,65,66 Further, 
Wu L et al. 67 reported that after the treatment with dehydrosoyasapo-
nin (DHS, a BKCa β subunit probe), the open probability of BKCa chan-
nel did not change, while the excitatory effect of sodium nitroprusside 
(SNP) on BKCa channel was reduced. This suggests that SNP regulates 
BKCa channel mainly through β subunit of BKCa channel, but the pre-
cise mechanisms need further investigation. In addition, although ET 
is a peptide with vasoconstrictor properties, our research showed that 
long-time ET stimulation could also induce vascular hypo-reactivity 
through cAMP-PKA pathway and BKCa channel activation.66

It was reported that opioid receptors play an important role in the 
pathogenesis of shock.68,69 Our studies found that naloxone (10 µM), a 
non-selective opioid receptor antagonist, significantly down-regulates 
the activity of BKCa by reducing its open probability and open frequency. 
Naltrindole (δ-opioid receptor antangonist) and nor-binaltorphimine 
(κ-opioid receptor antagonist) have the similar effects to naloxone, 
while no significant effect was found on the activity of channels after 
β-funaltrexamine (μ-opioid receptor) treatment. These results sug-
gested that δ- and κ-opioid receptors, but not µ-receptors, participate 
in the regulation of BKCa channel after hemorrhagic shock.64

2.3.  �Calcium Desensitization Mechanism of Vascular  
Hypo-reactivity

An interesting phenomenon is that restoration of adrenergic recep-
tors, K+ and Ca2+ channels’ function cannot return the vascular 
reactivity to normal level, which suggests that there are other mecha-
nisms to regulate the vascular reactivity following shock. The key 
event of receptor desensitization and membrane hyperpolarization 
mechanism responsible for vascular hyporeactivity as mentioned 
above is the decrease of intracellular [Ca2+]. While at late stage of 
shock or in severe shock, the intracellular [Ca2+] in VSMCs is often 
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over loaded. Nevertheless, vascular hyporeactivity still exists.15 This 
phenomenon indicates that VSMCs may exist with calcium desensiti-
zation after shock and that calcium desensitization may play a critical 
role in vascular hypo-reactivity.70 Our studies proved  the hypothesis 
that VSMCs have calcium desensitization after shock and this calcium 
desensitization contributes a critical role to vascular hypo-reactivity. 
Further studies showed that Rho kinase and PKC pathways are the 
two main pathways to regulate the calcium sensibility of VSMCs 
following shock.

2.3.1. � Rho kinase pathway 

Rho kinase, a Ser/Thr protein kinase and important member of the 
small G protein family, is identified as a GTP- Rho binding protein. 
A number of previous studies showed that Rho kinase is present in the 
regulation of many biological cellular functions, such as proliferation, 
differentiation and migration of tumor cells, and the migration and 
invasion of trophoblast cells, etc.71 Li T and Schmitz et al. reported 
that Rho kinase played an important role in the regulation of vascular 
reactivity and calcium desensitization following hemorrhagic shock.13,71 
The regulation of calcium sensitivity of VSMC depends on the phos-
phorylation and dephosphorylation of myosin light chain (MLC), 
which is respectively regulated by myosin light chain kinase (MLCK) 
and myosin light chain phosphatase (MLCP).72 Studies showed that 
there are three ways for Rho kinase to regulate the calcium sensitivity 
of VSMC: (1) Rho kinase phosphorylate MLC20 directly, but the 
extent of Rho kinase to phosphorylate MLC20 is far less than MLCK 
does. The strength of Rho kinase phosphorylating MLC20 is about 
one third of MLCK. So this way is not the main way. (2) Rho kinase 
phosphorylates myosin-binding subunits (MBS) of MLCP at Thr2695, 
Thr2850 and Ser2854, and via which inhibits the activity of MLCP 
and increases the phosphorylation level of MLC20.73 This way is the 
main way of Rho kinase regulating calcium sensitivity. (3) Rho kinase 
activates CPI-17 via phosphorylation of the Thr238 site of CPI-17.
The activated CPI-17 enhances the phosphorylation of MLC20 
through inhibiting the MLCP.

b2527_Ch-09.indd   275 9/21/2016   10:58:49 AM



276  L. Liu, T. Li and C. Duan

	 	 b2527  Vascular Smooth Muscle Cells in Health and Disease� “9x6”

2.3.2. � PKC pathway

Protein kinase C (PKC), a Ser/Thr protein kinase, plays a critical role 
in cell adaptability to extracellular environment. PKC is also involved 
in varieties of physiologic functions including cell proliferation, dif-
ferentiation and migration, cytoskeletal structure, and apoptosis.74,75 
PKC is a big family consisting of at least 12 isoforms, and the main 
isoforms distributed in the vascular system are PKC α, ε, δ and ξ. 
Basic research shows that PKC isoforms, especially PKCα and PKCε, 
may be activated by transferring from cytoplasm to membrane, and 
then trigger a series of cascade reactions that ultimately interacts with 
the contractile myofilaments and leads to VSMC contraction.76 

Many studies showed that PKC participated in the regulation of 
vascular reactivity and calcium sensitivity following shock. Our previous 
study found that PKC agonist, phorbol-12- myristate-13-acetate 
(PMA), could improve and stabilize the hemodynamic parameters and 
play beneficial effect for hemorrhagic shock in rats through improving 
the vascular reactivity and calcium sensitivity.18,77 There are several 
mechanisms by which PKC regulates the vascular reactivity and calcium 
sensitivity.76–78 Woodsome T et al. found that PKC may phosphorylate 
CPI-17, and then inhibits the MLCP activity, via which increases the 
MLC20 phosphorylation and calcium sensitivity of VSMC.76 Our 
research team found that the inhibitory effect of PKC on MLCP is not 
only related to CPI-17 but also related to zipper-interacting protein 
kinase (ZIPK)78 and integrin-linked kinase (ILK).77,78 Our results 
showed that ZIPK and ILK may be the direct downstream molecules of 
PKC α and ε, in which CPI-17 may play an indirect modulating role on 
MLCP. Our very recent study found that Rho kinase is the downstream 
molecule of ILK and ZIPK, and the upstream molecule of CPI-1733.

2.3.3. � MAPKs pathway 

Except for Rho kinase and PKC pathways, mitogen-activated 
protein kinases (MAPKs), adenosine receptors and myoendothelial 
gap junction (MEGJ) and its connexin proteins were also found 
participating in the regulation of vascular reactivity and calcium sen-
sitivity of VSMCs. MAPKs belong to a family of serine/threonine 
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protein kinases, which include extracellular-signal regulated kinase 
(ERK), jun NH2 -terminal kinase (JNK), and p38 MAPK in mam-
mals. It was reported that they mediated the fundamental biological 
process to external signals, such as cytokines and inflammatory 
mediators.15

Previous studies showed that MAPK played a critical role in regu-
lating cell differentiation, proliferation and cell death.79,80 A recent 
study of Yang15 investigated the potential role of MAPK in vascular 
reactivity after hemorrhagic shock and found that the changes of ERK 
and p38MAPK activity were positively correlated with the changes of 
vascular reactivity after hemorrhagic shock. In SMAs, ERK and 
p38MAPK activity was significantly increased at early shock (0.5 
hour) and decreased at late shock (2 hour), ERK and p38MAPK 
inhibitors decreased the vascular reactivity. This suggests that MAPKs 
pathway participates in the regulation of vascular reactivity and cal-
cium sensitivity following shock. 

2.3.4. � Adenosine receptor 

Adenosine is one of the most important endogenous modulators 
released excessively in tissue after severe trauma, ischemia or hypoxia. 
It has been demonstrated that adenosine mainly produces the marked 
effect through adenosine receptor in VSMC. There are four types of 
adenosine receptors (AR) in VSMCs, including A1AR, A2aAR, 
A2bAR and A3AR. Adenosines which combine with specific AR may 
cause vasoconstriction (A1AR) or vasodilatation (A2aAR, A2bAR). 
Srinivas SP et al. reported that exogenous adenosine may reduce the 
phosphorylation of MLC in bovine cornea epithelial cells.81 However, 
the report of Lai EY et al. demonstrated that exogenous adenosine 
may induce MLC phosphorylation on VSMCs and increase its 
calcium sensitivity.82 The results suggest that adenosine is closely 
related to vascular reactivity and calcium sensitivity. Huang J et al. 73 
demonstrated that A1AR agonist (N6- cyclopentyladenosine, CPA, 
10-5mol/L) can induce renal artery constriction, which can be antag-
onized by Rho kinase inhibitor (Y-27632). This indicates that Rho 
kinase is correlated with A1AR in the regulation of vascular tone. 
Tawfik HE et al. 83 found that the PKC inhibitor U-73122 could 
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abolish the vasoconstriction induced by A1AR, and A1AR agonist 
may enhance the activity of PKCε. This indicates that A1AR regulat-
ing vascular calcium sensitivity is also related to PKC pathway.

However, A2aAR and A2bAR can activate adenylate cyclase 
which causes the increase in cAMP concentration and PKA activation. 
The activated PKA may inhibit the activity of Rho kinase. This will 
induce MLC dephosphorylation and vascular smooth muscle dilation. 
Besides, Gardner AM et al. showed that A2aAR may down-regulate 
the activity of PKC and A2aAR agonist CGS21680 may inactivate 
PKCε.84 The study of Zhou R and Abbracchio M et al. found that 
A3AR was also involved in the modulation of vascular reactivity fol-
lowing shock and this regulation is closely related to Rho kinase path-
way.85,86 These studies suggest that A3AR regulating vascular reactivity 
and calcium sensitivity is related to PKCδ pathway.

2.3.5 � MEGJ 

MEGJ, the important connecting structure between vascular endothe-
lial cell and VSMCs, plays important roles in vascular tone and vascu-
lar synchronism motion. Our studies found that MEGJ and its 
connexin proteins participated in the regulation of vascular reactivity 
following shock.87–89 There are over 20 connexins (Cx) distributed in 
varieties of tissue cells. Studies showed that the cardiovascular system 
mainly contains Cx37, Cx40, Cx43, Cx45 and Cx46. Our studies 
showed that Cx43 participated in the regulation of the vascular reac-
tivity following hemorrhagic shock. Further studies found that Cx43 
mediated the vasoconstriction effect of platelet derived growth factor 
(PDGF) and high dosage of bradykinin which mainly related to Rho 
kianse and PKC pathways.88,89

3. � Treatment Measures Based on VSMCs Damage  
and Vascular Hypo-reactivity after Shock 

3.1. � Based on VSMC Damage

As mentioned above, many factors including ischemia-, hypoxia- 
induced oxidative stress, ERS and mitochondrial dysfunction may 

b2527_Ch-09.indd   278 9/21/2016   10:58:49 AM

app:ds:synchronism


Vascular Smooth Muscle Cells as Therapeutic Target  279

“9x6”	 b2527  Vascular Smooth Muscle Cells in Health and Disease

damage VSMCs. Based on these factors, some measures were found 
protective. Polydatin, an effective monomer extracted from a Chinese 
medicine polydate, was found to be protective for the mitochondrial 
function of VSMCs and vascular reactivity in hemorrhagic shock 
rats by Dr. Zhao KS et al .90 Our lab found that after traumatic 
hemorrhagic shock in rats, the mitochondrial permeability transition 
pore (MPTP) in VSMCs was over opened. Over opened MPTP 
inhibited the vascular constriction function. Cyclosporine A (CsA, 
5mg/kg, iv), the inhibitor of MPTP, could inhibit the opening of 
MPTP of VSMCs and improve the vascular constriction function and 
overall outcome of shock rats.12 Some studies showed that activated 
protein C (APC) and recombinant human erythropoietin (rhEPO) 
could prevent septic shock-induced VSMC damage and vascular 
hypo-reactivity.91–93 Nacira S and Favory R et al. found APC increased 
the pressor response of adrenergic receptors agonists in septic shock 
rats and patients. The mechanism was related to APC decreasing tis-
sular inflammation and oxidative stress.91,92 Bianca R et al. found 
rhEPO had important non-erythropoietic effects including inhibition 
of inflammatory response and apoptosis.93 

Our recent study found 4-phenylbutyrate (PBA) has beneficial 
effects on traumatic hemorrhagic shock in rats by attenuating oxida-
tive stress. It could protect vital organ functions and markedly 
improve the survival outcomes of shock rats. Studies showed PBA 
could significantly inhibit the production of reactive oxygen species, 
increase the antioxidant enzyme levels such as superoxide dismutase, 
catalase, and glutathione, and improve the mitochondrial function in 
rat artery and VSMCs. Further studies found PBA increased the 
nuclear levels of Nuclear factor NF-E2-related factor 2 (Nrf2), and 
decreased the nuclear levels of Nuclear factor kappa B (NF-κB) in 
hypoxic VSMCs.94

3.2. � Based on Receptor Desensitization Mechanism  
of Vascular Hyporeactivity

Studies showed that glucocorticoid (GC) may promote the cate
cholamine biosynthesis and potentiate the vasoconstriction effect of 
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vasopressin (AVP), Angiotensin II and endothelin (ET) by increas-
ing the sensitivity of their receptors.95–97 Further, cortisol has signifi-
cant inhibitory effect on pro-inflammatory mediators, such as 
TNF-α and IL-1β, which are confirmed to be correlated with adren-
ergic receptor desensitization.98 A recent study showed that dexa-
methasone improved LPS-induced hypo-reactivity of VSMC. Except 
for increasing the sensitivity of adrenergic receptors, dexamethasone 
was found to be able to increase the phosphorylation of MLC20 via 
activation of RhoA-Rho kinase pathways.99 This finding demon-
strated that glucocorticoid increasing the vascular reactivity is not 
only related to increasing the sensitivity of related receptors, but also 
related to increasing the calcium sensitivity of VSMC.99 The survival 
benefit of glucocorticoid in septic shock patients is controversial. 
Annane D et al. reported that a 7-day treatment with low doses of 
hydrocortisone and fludrocortisone significantly reduced the risk of 
death in patients with septic shock and relative adrenal insufficiency 
without increasing adverse events.100 However, Sprung CL et al. 
reported that hydrocortisone did not improve survival or reversal of 
shock in patients with septic shock, either overall or in patients who 
did not have a response to corticotropin, although hydrocortisone 
hastened reversal of shock in patients in whom shock was reversed.101 
Thus, the application of glucocorticoid in sepsis or septic shock 
including the application dosage, opportunity need more clinical tri-
als and investigations.

Recently, two research teams from France and Australia found α2 
adrenergic receptor agonists clonidine and dexmedetomidine could 
decrease the vasopressor requirements and increase the pressor 
response of sepsis or septic shock animal (rats and sheep) to norepi-
nephrine (NE), phenylephrine and angiotensin II. They found that 
the possible mechanisms included central and peripheral actions102–104 
Clonidine and dexmedetomidine can activate the centralα-2 adren-
ergic receptors to reduce the peripheral sympathetic nerve activity. 
Thus, the decreased α-1 receptors in peripheral blood vessels in sep-
tic shock become progressively up-regulated upon α-2 agonist 
administration.102–104
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3.3. � Based on KATP Channels and Membrane 
Hyperpolarization

Glybenclamide is a kind of KATP channel antagonist. Zhao KS et al.105 
found that vascular reactivity was significantly increased after use of 
glybenclamide combined with NaHCO3 in hemorrhagic rats. 
The blood pressure, arteriolar blood flow as well as the 24-hour 
survival rate were also markedly increased in shock rats after treat-
ment, which indicates that glybenclamide combined with NaHCO3 
is an effective regimen in the treatment of severe hemorrhagic shock 
with vascular hypo-reactivity. 

Nitric oxide (NO) is an important inducing factor for the open-
ing of KATP channels, OONO- with superoxide anion is the impor-
tant executive of NO. Kim HW et al. found NO scavenger 
hemoglobin alone or in combination with NO synthase inhibitor 
N-nitro L-arginine methyl ester (L-NAME) could significantly 
improve septic shock induced vascular hypo-reactivity.106 Zhao KS  
et al. found that superoxide anion scavenger Tiron could block the 
effect of OONO- in hemorrhagic shock rats, inhibited the mem-
brane hyperpolarization of VSMC and improve shock-induced vas-
cular hypo-reactivity.107 Bianca E et al. found dexamethasone, except 
for increasing receptor sensitivity and inhibiting tissular inflamma-
tion, could also modulate the opening of KATP channels and improve 
the vascular hypo-reactivity induced by LPS.108 The recent studies of 
Liu C and Vellinga NA et al. found that Ketanserin, a serotonin 
receptor antagonist, have protective effect on endotoxic shock by 
inhibiting the expression of inducible NO synthase (iNOS) and 
improving micro-circulation.109,110

Methylene blue (MB) has been used as an antidote for toxin-
induced and hereditary methemoglobinemia, ifosfamide-induced 
encephalopathy, and ackee fruit and cyanide poisoning. Recent years, 
MB was found protective in the treatment of shock states including 
septic shock, anaphylactic shock, and toxin-induced shock.111–113 The 
putative mechanism of the action of MB in the treatment of shock is 
inhibition of endothelial nitric oxide within the microvasculature and 
improving the responsiveness to endogenous catecholamines such as 
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norepinephrine (NE).114,115 Up to date, since no many clinical trials 
have been done, so the effects of MB on morbidity and mortality of 
sepsis/septic shock remain unknown. Well-designed, prospective 
evaluations are needed to define the role of MB in the treatment of 
septic shock.116 

3.4. � Based on Rho A-Rho Kinase Pathway 

Based on “calcium desensitization mechanism of vascular hypo- 
reactivity”, Rho kinase and PKC pathway are two important potential 
targets for the treatment of hemorrhagic shock and endotoxic shock. 
Studies showed arginine vasopressin (AVP) and its analog terlipressin 
(TP) have important roles in vasodilatory shock animal and patients.117 
Some previous reports showed that the anti-shock effect of AVP was 
mainly related to its V1a receptor activation and then the increase in 
intracellular Ca2+.118–122

Our recent study found that AVP (0.03 U/kg/h) and TP(2.6μg/
kg/h) significantly improved the decreased vascular reactivity in hem-
orrhagic shock and endotoxic shock rats and rabbits, This effect of 
AVP and TP is closely related to activation of Rho A-Rho kinase path-
way.39,123,124 In septic shock patients, we further found that a small dose 
of TP (1.3 μg/kg/h) in combination with NE continuous infusion, 
except for decreasing the mortality and NE requirement, could better 
improve and stabilize the hemodynamics, improve the tissue blood 
flow, increase the blood oxygen saturation and urine volume, and 
decrease the lactate level and complication rate. These results show 
that low-dose of TP continuous infusion can help NE achieves good 
resuscitation effect by improving vascular reactivity, stabilizing hemo-
dynamics, and protecting organ function in septic shock patients.125 

Further studies showed that ischemic preconditioning may activate 
Rho A-Rho kinase pathway and improve the vascular reactivity in hem-
orrhagic shock rats.126 Hu Y et al. 126 observed the effects of ischemic 
pre-conditioning on vascular reactivity after hemorrhagic shock in rats 
and found that a 5% hemorrhage for 30 minutes before hemorrhagic 
shock may prevent the decrease in vascular reactivity and calcium sen-
sitivity after hemorrhage. The study showed that hemorrhagic shock 
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may attenuate Rho-kinase activity while ischemic preconditioning may 
reverse this process. The further study of Hu Y et  al. found BKCa 
opener, NS1619 pre-treatment could protect against shock-induced 
vascular hypo-reactivity through PDZ-Rho GEF-RhoA-Rho kinase 
pathway in rats.127

3.5. � Based on PKC Pathway 

Phorbol-12- myristate-13-acetate (PMA), a non-specific PKC iso-
form agonist, was found to have good protective effect on shock. 
Fang YQ et al. observed the beneficial effect of PMA in rats that suf-
fered hemorrhagic shock. They found 1μg/kg PMA could signifi-
cantly enhance the vascular reactivity and calcium sensitivity of 
hemorrhagic shock rats and improve the hemodynamic indexes as 
well as hepatorenal function.77 Although PMA is not used in clinic 
now, these findings provide a rational ground to develop this kind of 
drug or search for other approaches to induce or activate PKC to play 
protective effect on shock in clinic.

Pinacidil, an adenosine triphosphate–sensitive potassium channel 
(KATP) opener, is a common agent used to induce preconditioning 
protection against ischemia insult.126,129–130 Xu J et al. used 25µg/kg 
of pinacidil administered 30 min before hemorrhagic shock to mimic 
ischemic pre-conditioning in rats and found that pinacidil pretreat-
ment could activate PKC α and ε and improve the vascular reactivity 
and calcium sensitivity in rats suffering hemorrhagic shock.131 This 
suggests that pre-treatment with pinacidil can improve the vascular 
reactivity and calcium sensitivity after hemorrhagic shock, the mecha-
nism is closely related to the activation of PKC α and ε. 

4.  Conclusion 

Circulatory shock-induced ischemia, hypoxia, inflammatory response 
and internal environment disorder can damage VSMCs and vascular 
function. Shock-induced vascular function disorder (hypo-reactivity) 
can severely interfere with the pathological process and treatment of 
circulatory shock, especially interferes with the application of vasoactive 
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agents. Three mechanisms including receptor desensitization, mem-
brane hyperpolarization, and calcium desensitization mechanisms for 
shock- induced vascular hypo-reactivity have been raised. Based on the 
inducing factors and the important signal regulatory molecules, some 
beneficial treatment measures have been found for VSMCs damage and 
vascular hypo-reactivity. Of course, there are still some issues that need 
further investigation such as the more detailed mechanisms and the 
more beneficial measures for VSMCs damage and vascular reactivity 
needing further studies. In addition, some available measures also need 
to be confirmed with large scale of clinical trials. 
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