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Preface

This book evolved from a graduate course on applications of statistical thermody-
namics to biochemical systems. Most of the published papers and books on this
subject used in the course were written by experimentalists who adopted the
phenomenological approach to describe and interpret their results. Two outstanding
papers that impressed me deeply were the classical papers by Monod, Changeux,
and Jacob (1963) and Monod, Wyman, and Changeux (1965), where the allosteric
model for regulatory enzymes was introduced. Reading through them I felt as if
they were revealing one of the cleverest and most intricate tricks of nature to
regulate biochemical processes.

In 1985 I was glad to see T. L. Hill’s volume entitled Cooperativity Theory in
Biochemistry, Steady State and Equilibrium Systems. This was the first book to
systematically develop the molecular or statistical mechanical approach to binding
systems. Hill demonstrated how and why the molecular approach is so advanta-
geous relative to the prevalent phenomenological approach of that time. On page
58 he wrote the following (my italics):

The naturalness of Gibbs’ grand partition function for binding problems in biology is
evidenced by the rediscovery of what is essentially the grand partition function for this
particular type of problem by various physical biochemists, including E. Q. Adams, G.
S. Adair, H. S. Simms, K. Linderstrom-Lang, and, especially, J. Wyman. These treat-
ments, however, were empirical or thermodynamic in content, that is, expressed from
the outset in terms of thermodynamic equilibrium constants. The advantage of the
explicit use of the actual grand partition function is that it is more general: it includes
everything in the empirical or thermodynamic approach, plus providing, when needed,
the background molecular theory (as statistical mechanics always does).

Indeed, there are two approaches to the theory of binding phenomena. The first,
the older, and the more common approach is the thermodynamic or the phenom-
enological approach. The central quantity of this approach is the binding polyno-
mial (BP). This polynomial can easily be obtained for any binding system by
viewing each step of the binding process as a chemical reaction. The mass action
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viii Preface

law of thermodynamics associates an equilibrium constant with such a reaction.
The BP is constructed in terms of these constants (see an example in Section 2.3).
It has the general form

BP=1+B,C+B,C*+B,C*+--- (1)

where P, are products of the equilibrium constants K, and C is the ligand concen-
tration in a reservoir at equilibrium with the binding system.

The statistical mechanical approach starts from more fundamental ingredients,
namely, the molecular properties of all the molecules involved in the binding
process. The central quantity of this approach is the partition function (PF) for the
entire macroscopic system. In particular, for binding systems in which the adsorb-
ent molecules are independent, the partition function may be expressed as a product
of partition functions, each pertaining to a single adsorbent molecule. The latter
function has the general form

PF = Q(0) + Q(L)L + QA2 + - - - 2)

where (i) is the so-called canonical partition function of a single adsorbent
molecule having i bound ligands, and A is the absolute activity of the ligand in the
reservoir being at equilibrium with the binding systems.

Both the BP and PF are polynomials of degree m for a system having m binding
sites. However, the PF is the more fundamental, the more general, and the more
powerful quantity of the two functions. It is more fundamental in the sense that it
is based on the basic molecular properties of the molecules involved in the system.
Therefore, from the PF one can obtain the BP. The reverse cannot, in general, be
done. It is more general in the sense that it is applicable for any ligand concentra-
tion" in the reservoir. The BP, based on the mass action law, is valid only for ligand
reservoirs in which the ligand concentration is very low, such that A = A,C, i.e., an
ideal-dilute with respect to the ligand.

Thermodynamics cannot provide the extension to the BP for nonideal systems
(with respect to either the ligands or the adsorbent molecules). The statistical
mechanical approach can, in principle, provide corrections for the nonideality of
the system. An example is worked out in Appendix D.

Finally, it is more powerful in its interpretative capability. In particular, the
central concept of the present book—the cooperativity—may be interpreted on a
molecular level. All possible sources of cooperativity may be studied and their
relative importance estimated. None of this can be done with the phenomenological

“In general, the statistical mechanical approach may also be applied to systems where the adsorbent
molecules are not necessarily independent. However, in this book we shall always assume independence
of the adsorbent molecules.



Preface ix

approach. The BP can give the general form of the binding curve.” In spite of this
limited interpretative power of the BP, it is astonishing to see so many formal
manipulations applied to it or to its derivative, the binding isotherm (BI). They
range from rearrangements of the BI and plotting it in different forms, differenti-
ating the BP followed by integration, taking the roots and rewriting the Bl as a
product of linear factors, or “cutting” and “pasting” the cuts. None of these
manipulations can enhance or improve the interpretative power of the BP.

Returning to the quotation from Hill, I fully agree with its content except for
the word “rediscovery,” which he uses to describe the BP, referring to it as
“essentially the grand partition function,” while the PF as cited in Eq. (2) is referred
to as “the actual grand partition function.”

A genuine rediscovery of the PF should provide the functional dependence of
the coefficients of the BP in terms of the molecular properties of the system. This
has never been done independently since Gibbs’ discovery. Therefore, one should
make a clear-cut distinction between the phenomenological BP on the one hand
and the molecular PF on the other. Unfortunately, the distinction between the two
quantities is often blurred in the literature, the two terms sometimes being used as
synonyms.

The main objective of this book is to understand the molecular origin of
cooperativity and its relation to the actual function of biochemical binding
systems.

The term cooperativity is used in many branches of science. Two atoms
cooperate to form molecules, molecules cooperate to build up a living cell, cells
cooperate to construct a living organism, men and women cooperate in a society,
and societies and nations cooperate or do not cooperate in peace and war. In all of
these situations, cooperation is achieved by exchanging signals between the co-
operating units. The signals may be transmitted electromagnetically, chemically,
or verbally. In this book we confine ourselves to one kind of cooperativity—that
between two (or more) ligands bound to a single adsorbent molecule. The type of
information communicated between the ligands is simple: which sites are occupied
and which are empty. The means of communication are varied and intricate and are
explored herein, especially in Chapters 4, 5, and 9.

Even when the term cooperativity is confined to binding systems, it has been
defined in a variety of ways. This has led to some inconsistencies and even to
conflicting results.

In this book, we define cooperativity in probabilistic terms. This is not the most
common or popular definition, yet it conveys the spirit and essence of what
researchers mean when they use this term. Since the partition function embodies
the probabilities of the occupancy events, the definition of cooperativity can

*This is true ouly for ideal systems with respect to both the ligand and the adsorbent molecules (see
Appendix D).
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immediately be translated in terms of molecular properties of the system. Thus, the
sequence of concepts leading to cooperativity is the following: molecular parame-
ters — molecular events (which sites are occupied) — correlation between molecu-
lar events — cooperativity between bound ligands.

The term interaction is sometimes used almost synonymously with coopera-
tivity. In this book we reserve the term interaction to mean direct interaction energy
between two (or more) particles. Indeed, sometimes interaction, in the above sense,
is the sole source of cooperativity, in which case the two terms may be used
interchangeably. However, in most cases of interest in biochemistry, interaction in
the above sense is almost negligible, such as in two oxygen molecules in hemoglo-
bin. Cooperativity in such systems is achieved by indirect routes of communication
between the ligands.

The practice of using the term interaction (or related terms such as interaction
parameters, interaction free energy, etc.), though legitimate, can lead to misinter-
pretation of experimental results. An example is discussed in Chapter 5.

The contribution of the direct interaction to cooperativity is easy to visualize
and understand. On the other hand, the indirect part of cooperativity is less
conspicuous and more difficult to grasp. There are two “lines of indirect commu-
nication” between the ligands: one through the adsorbent molecule and the other
through the solvent. Both depend on the ability of the ligands to induce “structural
changes” in either the adsorbent molecule or the solvent. The relation between the
induced structural changes and the resulting cooperativity is not trivial. Neverthe-
less, by using very simplified models of adsorbent molecules we can obtain explicit
relations between cooperativity and molecular parameters of these simplified
models. The treatment of the more difficult communication through the solvent is
left to Chapter 9, where we outline the complexity of the problem rather than derive
explicit analytical results.

While there are several books that deal with the subject matter of this volume,
the only one that develops the statistical mechanical approach is T. L. Hill’s
monograph (1985), which includes equilibrium as well as nonequilibrium aspects
of cooperativity. Its style is quite condensed, formal, and not always easy to read.
The empbhasis is on the effect of cooperativity on the form of the PF and on the
derived binding isotherm (BI). Less attention is paid to the sources of cooperativity
and to the mechanism of communication between ligands, which is the main subject
of the present volume.

There are three books that review the experimental aspects of cooperativity
using the phenomenological-theoretical approach. Levitzki (1978) develops the
binding isotherms for various allosteric models, based on the relevant mass action
laws. Imai (1982) describes the function of hemoglobin as an oxygen carrier in
living systems, emphasizing experimental methods of measuring binding oxygen
to hemoglobin and ways of analyzing the obtained experimental data. Perutz (1990)
emphasizes structural aspects of hemoglobin and other allosteric enzymes. Perutz
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also raises some fundamental questions regarding the exact molecular mechanism
of the allosteric model.

Two more recent books by Wyman and Gill (1990) and by DiCera (1996)
present the phenomenological approach in much greater detail. Wyman and Gill
describe a large number of binding systems, illustrating various experimental
aspects of the binding data, but the theoretical treatment is cambersome, sometimes
confusing. They treat the BP as equivalent to the PF. The concept of cooperativity
is introduced in several different ways, without showing their formal equivalence.
This inevitably leads to some ambiguous statements regarding the cooperativity of
specific systems.

DiCera’s book starts with the construction of the PF of the system, then
switches to the BP based on the mass action law, but still refers to it as the PF of
the system. Much of the remainder of the book contains lengthy lists of mass-ac-
tion-law equations for binding reactions and the corresponding equilibrium con-
stants. This is followed by lengthier lists of contracted BPs (referred to as contracted
PFs). The contracted BPs (or PFs) do not provide any new information that is not
contained in, or can be extracted from, the PF of the binding system, nor do they
possess any new interpretive power.

In summary, although each of the aforementioned books does touch upon some
aspects of cooperativity in binding systems, none of them explores the details of
the mechanisms of cooperativity on a molecular level. In this respect I feel that the
present book fills a gap in the literature. I hope it will help the reader to gain insight
into the mechanism of cooperativity, one of the cleverest and most intricate tricks
that nature has evolved to regulate biochemical processes.

This volume is addressed mainly to anyone interested in the life sciences. There
are, however, a few minimal prerequisites, such as elementary calculus and
thermodynamics. A basic knowledge of statistical thermodynamics would be
useful, but for understanding most of this book (except Chapter 9 and some
appendices), there is no need for any knowledge of statistical mechanics.

The book is organized in nine chapters and eleven appendices. Chapters 1 and
2 introduce the fundamental concepts and definitions. Chapters 3 to 7 treat binding
systems of increasing complexity. The central chapter is Chapter 4, where all
possible sources of cooperativity in binding systems are discussed. Chapter 8 deals
with regulatory enzymes. Although the phenomenon of cooperativity here is
manifested in the kinetics of enzymatic reactions, one can translate the description
of the phenomenon into equilibrium terms. Chapter 9 deals with some aspects of
solvation effects on cooperativity. Here, we only outline the methods one should
use to study solvation effects for any specific system.

Many students and friends have contributed to my understanding of the binding
systems discussed in this book. In particular, I am most grateful to Dr. Harry Saroff,
who introduced me to this field and spent so much time with me describing some
of the experimental binding systems. I am also grateful to Drs. Robert Mazo,
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Mihaly Mezei, Wilse Robinson, Jose Sanchez-Ruiz, and Eugene Stanley for
reading parts of the manuscript and sending me their comments and suggestions.
The entire manuscript was typed by Ms. Eva Guez to whom I am deeply grateful
for her efforts in deciphering my handwriting and preparing the first, second, and
third drafts.

Finally, I wish to express my thanks and admiration to Wolfram Research for
creating the Mathematica software. I have used Marhematica for simplifying many
mathematical expressions and for most of the graphical illustrations.

Arieh Ben-Naim
Jerusalem
October 2000
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Introducing the Fundamental Concepts

1.1. CORRELATION AND COOPERATIVITY

Let us consider a system of m binding sites. Each site can be in one of two states:
empty or occupied by a ligand L. First, we treat the case where the system
contains a fixed number of ligands, n. In thermodynamic terms, we refer to such
a system as a closed system with respect to the ligands. We are interested in
asking probabilistic questions about this system. To this end we imagine a very
large collection, an ensemble of such systems, all of which are identical in the
sense that each has a fixed number of n ligands occupying n of the m sites
(n < m). If the sites are distinguishable but the ligands are indistinguishable,

then altogether we have
m
——m (1.1.1)
n) nlim-—n)

distinguishable configurations of such a system.

Figure 1.1 shows all of these configurations for m =4 and n = 2. In this example
there are altogether (g) = 6 distinguishable configurations. Note that if the sites were
indistinguishable, there would be only one configuration for such a system. On the
other hand, if the ligands were labeled (say, blue and red in the case of Fig. 1.1)
then the number of distinguishable configurations would be m!/(m — n)!, or 12 in
the case of Fig. 1.1. In general, the (}) configurations will have different prob-
abilities, i.e., different frequencies of occurrence in an ensemble of such systems. For
instance, if two ligands attract each other, then a configuration for which the two ligands
are closer will have higher probability. For the moment, we assume that each of these
configurations has equal probability. Since there are () distinguishable configura-
tions, the probability of finding a system in one specific configuration is (’,',’)'1.

What is the probability of finding a specific site, say the ith site, occupied? The
answer can be given by using the so-called classical definition of probability

1
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Figure 1.1. The six distinguishable configurations of a four-site system (m = 4) with two bound ligands
n=2).

(Feller, 1957; Papoulis, 1965), namely,

n-1) ,
P(l)= S S s 0
In the denominator we have the total number of configurations; in the numerator
we have the number of configurations that fulfill the requirement “site i is occu-
pied.” To count the latter, we simply place one ligand at site i and count the number
of ways of arranging the remaining (n — 1) ligands on the remaining (m — 1) sites,
(',': :11). Clearly, since all the sites are identical the same result holds for any
specific i.
Next, we seek the probability of finding two specific sites i and j simultaneously
occupied. This can be calculated again by the classical definition of probability,

(1.12)

-
\"=2)_ n@n-1) _gr d-1/m) (1.1.3)
(m) m(m—1) 1 -1/m)

n

Py1,1)=

As in Eq. (1.1.2) we have the total number of configurations in the denominator,
and the number of configurations that fulfill the condition “site i and site j are
occupied” in the numerator.

Two events 4 and B are said to be independent, if and only if the probability
of the joint event 4 - B (read: 4 and B)" is the product of the probabilities of the
two events, i.e.,

P - B)=PAP(B) (1.1.4)
If 4 is the event “site i is occupied” and 2 is “site j is occupied,” then clearly

1-1/n
1-1/m

i.e., the two events 4 and 2 are not independent.’

P - $)=P,.j(1, 1)=62[ J¢92=Pi(1)Pj(1)=P(ﬁl)P($) 1.1.5)

*Another notation for 4 - Bis 4 M B, referred to as the intersection of the two events .4 and 3.
TWe use the notation P(4 - B) for any two events .7 and 3, Pji(1, 1) is used for the two specific events
“site i is occupied” and “site j is occupied.”
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For any two events 4 and 2, we define the correlation function by the ratio”

We say that the correlation is positive whenever g — 1 > 0, or g > 1, and negative
whenever g — 1 <0, or g < 1. For independent events g = 1, i.e., the correlation is
unity."

We see from Eq. (1.1.5) that for any m > 1 and 1 < #n < m, the correlation between
the two events “site 7 is occupied” and “site j is occupied” is negative, i.e., g < 1.
Recall that we have assumed that all of the () configurations have equal prob-
abilities. This is usually the case when there are no interactions between the ligands
occupying different sites.

The conditional probability of an event 4 given the occurrence of event 2 is
defined by

PA-B)_POP(B)eA, 3)
P(2) P(3)

PA/B) = = P(2)g(4, B) (1.1.7)

and similarly

p(wz)=%= P(Be. B) (1.18)

Thus, the correlation g(4, B) measures the extent of the difference between the
conditional probability and the unconditional probability.*
Returning to Pij( 1, 1), we find that the correlation function is always negative, i.e.,

l—l/n<

< 1.1.
1-1/m (1.1.9)

gL D)=

Usually the conditional probability of “site i is occupied” given that “site j is
occupied” is different from the unconditional probability of “site i is occupied,”
whenever there exists some kind of “communication” between the sites, i.e., when
a ligand at site i “knows” or “‘senses” the state of occupation of site j. This book is
devoted to the study of various mechanisms for transmitting such information

*This definition of correlation differs from the common definition of correlation in the mathematical
theory of probability (Feller, 1957; Papoulis, 1965). The latter is defined, up to a normalization constant,
as the difference P(4 - B) — P(A)P(B).

fWhen g(A4, B) > 1 it is often said that 4 supports 2 (and vice versa), and when g(4, 8) < 1, 4 does not
support & (and vice versa).

iSt.l‘ictly speaking, every probability is a conditional probability. For instance, Pi(1) is the probability
of finding site { occupied given the condition that the experiment of selecting site ¢ and determining its
state of occupation has been performed. In general, the condition “the experiment . . . has been
performed” is suppressed whenever this is the only condition. However, whenever the experiment may
be performed in various ways, one must specify the exact manner in which it is performed, since this
could affect the probabilities of the various outcomes.
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between different sites. Usually, the type and extent of communication between
two sites depends on the specific sites i and j. For instance, if two ligands attract
each other, then the correlation between two ligands at sites i and j would depend
on the distance between the sites; the larger the distance, the weaker, in general,
the correlation (a detailed example is discussed in Section 4.3). There are also
examples where the correlation between the two ligands does not depend on the
distance between the sites, but only on the fype of the sites i and j (an example is
the model treated in Section 4.5). The correlation written in Eq. (1.1.9) does not
depend on the specific sites i and j. It is the same for any pair of sites.

Clearly, the correlation function computed in Eq. (1.1.9) is aresult of our choice
of the fixed and finite values of n and m. If we let n — oo and m — o in such a way
that the ratio n/m remains constant, we obtain gij(l, 1) > 1 and

P,(1,1)=P(1)P(1) = ° (1.1.10)

In this limit the two events become independent. This is what we expect from a
system where no “communication” between the sites exists. In the example of Fig.
1.1, the conditional probability of finding “site i is occupied given that site j is
occupied” differed from the unconditional probability, only because of the finite
values of n and m. If one site is occupied, then there remain only (r — 1) ligands to
be arranged at the (m — 1) sites. This is the only reason for the correlation between
the sites. One site “knows” that another site is occupied only due to the fact that
the number of arrangements has changed from (7)) to (7, - 11). Clearly, in this example
it does not matter which site is { and which site is j (i #j). Whenn — cc and m —
oo, this “communication” between the sites is lost, i.e., g — 1.

In this book we examine various types of correlations that arise from (direct
or indirect) “communication” between the ligands at different sites. We require that
the correlation functions be unity whenever the two sites are physically inde-
pendent. This excludes the type of correlation we found in Eq. (1.1.9). Yet, we wish
to study systems with small values of m. This can be achieved by opening the system
with respect to the ligands. We still keep m fixed, but now the ligands bound to the
system are in equilibrium with a reservoir of ligands at a fixed chemical potential,
or at a fixed density (see also Section 1.2).

Once we open the system to allow exchange of ligands between the sites and
the reservoir, the number of occupancy states of our system is not () (or 6 in the
case of Fig. 1.1), but 2™ (or 2% =16 as in Fig. 1.2). This is so because any site can
be either empty or occupied, i.e., 2 states for each site, hence 2" states for the m
sites. Clearly, in an open system these 2™ configurations are not equally probable.
For calculating the probabilities of the various events statistical mechanics provides
a general recipe which differs from the classical method used above. The latter is
applicable only when there are Q equally probable events (say, six outcomes of
casting a die with probability 1/6 for each outcome).
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Figure 1.2. Al of the sixteen configurations for a system with four sites, arranged in five groups with
n=0,1,2,3,4.

‘We shall present here an intuitively plausible argument on how to construct the
probabilities of the various events of our new system, having m independent sites,
opened with respect to the ligand. Eachssite, say j, can be in one of two states: empty,
with probability P,(0), and occupied, with probability P(1). Since the system is at
equilibrium with the ligand at some fixed chemical potential, it is reasonable to
assume that the probability ratio P,(1)/P0) is proportional to two factors: one that
measures the affinity of the site to the ligand, which we denote by g;, and the second
that depends on the concentration C of the ligand in the reservoir, i.e.,

B _
PJ.(O)_aqjC (1.1.11)
where a is a constant. The rationale for this choice of probability ratio is that the
stronger the attraction between the site and the ligand, the larger the probability
ratio. In addition, the site is exposed to incessant collisions by ligand molecules.
The larger the number of such collisions, the larger the probability ratio. Statistical
mechanics provides more general and more accurate recipes to compute such ratios.
We shall discuss this in Section 1.5. Instead of being proportional to the attractive
energy, the theory tells us that the probability ratio is proportional to exp(—BU )
where B = (kg T)! and U, is the interaction energy. Instead of being proportional to
the ligand concentmnon C, the theory tells us that it should be proportional to the
absolute activity (which is a monotonic increasing function of C). Hence, one
should identify aC with A, the absolute activity of the ligand (see also Section 1.2).
For the purpose of this section we retain the form (1.1.11), and add only the
requirement

P(0)+P(1)=1 (1.1.12)
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to obtain
PO)=—L—  pay=—24C_ (1.1.13)
J 1+agC’ J 1+agq,C o

Clearly, when either C — 0 or g; — 0, the probability of finding the site
occupied tends to zero. On the other hand, when either g; — oo or C — <o, the site
will be occupied with certainty.

The quantity

g=1+aq,C=1+)\q, (1.1.14)

will be referred to as the grand partition function (GPF) of a single site. We shall
see later how to construct the GPF for more general systems. Here, we extend
our qualitative argument to construct the GPF of an adsorbent molecule P,
having m identical and independent sites, opened with respect to the ligand at
some fixed chemical potential or absolute activity (see also Section 1.2 for more
details).

For a system of m identical and independent sites, the probability of finding

k specific sites (say, j=1, 2, 3, .. ., k) occupied and the remaining sites
(G=k+1,k+2,...,m)empty is
k m—k &
Py=|—2C 1 ), (1.1.15)
1+aqC){1+aqC a+a"

Note that since all the sites are identical, we have 4;=9 forallj=1,2,...,m. From
the assumption of independence we constructed P (k) by taking a product of &
factors Pj(l) and m - k factors Pj(O). We stress that P (k) refers to a specific set of
k sites. The probability of finding any k sites occupied and the remaining sites empty
is

P(k)= [’Z) P k) (1.1.16)

In calculating P(k) we simply sum the probabilities of the ('Z) disjoint events, each
of which has the same probability P(k).

We denote the denominator in Eq. (1.1.15) by &, and refer to this quantity as
the GPF of a single adsorbent molecule,

§=(1+7\4)’"=i(':)(7\q)k (1.1.17)

=0

Clearly, each term in this sum represents one configuration of the system. There
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are altogether

m

m 1.1.18
Z(k)=(1+1)'"=2m (-1.18)
k=0

configurations (see Fig. 1.2 for m = 4), collected inm + 1 groups (k=0, 1,2, ...,
m). Each term in the GPF is also proportional to the probability of the “event”
it represents. As we shall see in Section 1.4, this is a very general property of
the GPF.

In Eq. (1.1.17) we derived the GPF of a system having m independent sites.
Statistical mechanics provide the recipe for constructing the GPF for more general
systems. This is discussed in Section 1.4. Here, we present the general form of the
GPF of a single adsorbent molecule with m (identical or different) binding sites,
namely,

m

&= i QA =Y (’”) X357 (1.1.19)
k=0 k

k=0

In the first sum, Q(k) is referred to as the canonical partition function (CPF) of the
system having a fixed number of k bound ligands. This quantity is itself a sum over
terms, each of which represents one arrangement of the k ligands at the m sites. The
terms could be different or equal, depending on whether the sites are different or
identical. If all the sites are identical” then we can take one representative, denoted
by Q,(k), and multiply it by the number of such terms (}). In this case, the second
equality on the right-hand side (rhs) of Eq. (1.1.19) holds.

The rule for reading the probabilities of the various events (here the events are
the occurrence of a specific configuration of the & ligands; we discuss other derived
events in Section 1.5) is

O ()
&

Compare this with Eq. (1.1.15). In general, the probabilitics P (k) cannot be
factorized into a product of probabilities each pertaining to a single site [as in Eq.
(1.1.15)]. We define the pair correlation function by

Pk) = (1.1.20)

P41, 1)

(1.1.21)
P1)P(1)

gl )=

*In Section 2.2 we shall distinguish between sites that are identical in a strict or in a weak sense. Here,
“identical” means that all Qs(k) are equal, independently of the specific set of & sites.
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which measures the extent of dependence between two ligands occupying the two
specific sites. Similarly, one defines the triplet correlation functions by

Py(1,1,1)

- (1.1.22)
P(1)P(1)P(1)

and so on, for higher-order correlations. Note that the correlation function is defined
for a specific set of sites. In general, different sites might be differently correlated.
We say that a specific set of sites is uncorrelated whenever the corresponding
correlation function is unity. It is positively or negatively correlated when the
correlation function is greater or smaller than unity.”

The term correlation is used throughout this book as a measure of the extent
of dependence between any two (or more) events pertaining to a binding system.
The term interaction is frequently used in the literature also as a measure of
dependence. We shall refrain from such usage since this might lead to some
misinterpretations. An example is discussed in Section 5.10. Instead, we shall
reserve the term interaction to mean interaction energy. Two (or more) particles
are said to be interacting with each other whenever there exists a potential
energy change in the process of bringing these particles from infinite separation
to their final configuration in vacuum. Usually, the existence of interaction
between two ligands occupying two sites also implies the occurrence of corre-
lation between the corresponding events (unless there exists an accidental
cancellation by an indirect correlation, see Chapter 4). The reverse is, in
general, not true. Two ligands occupying two sites may be correlated but not
interacting with each other. These correlations will be the subject of most of
this book, beginning in Chapter 4.

The term cooperativity will be used almost synonymously with correlation,
except for restricting its usage to a particular type of event, namely, “site i is
occupied and site j is occupied.” In Eq. (1.1.21), we defined the pair correlation
between two such events. In Eq. (1.1.22), we defined the triplet correlation among
three such events.

It should be noted that the existence (or nonexistence) of one type of correlation
does not, in general, imply the existence (or nonexistence) of another type of
correlation. For instance, a system can be pairwise correlated but not triply
correlated. In Appendix A, we present two simple probabilistic examples where
there exist pair correlations but not triple correlations, and vice versa.

*In the theory of probability the term correlation is normally applied to two random variables, in which
case correlation means that the average of the product of two random variables X and Y is the product
of their averages, i.e., (X - ¥ )=(X X Y). Two independent random variables are necessarily uncorrelated.
The reverse is usually not true. However, when the term correlation applies to events rather than to
random variables, it becomes equivalent to dependence between the events.
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1.2. THE SYSTEMS OF INTEREST

As in any treatment of a thermodynamic system one must first describe the
system, the properties of which are to be examined. The typical system to be studied
in this book consists of M adsorbent molecules, P, each having m sites. Each site
can accommodate a single ligand molecule L. There are only two occupancy states
of the site: empty or occupied.” For the entire molecule P there are m + 1 occupancy
states. For instance, in hemoglobin, the occupancy states are 0, 1, 2, 3, 4, according
to the number of bound oxygen molecules.

The real system, consisting of P and L molecules, is usually dissolved in a
solvent denoted by w (w can be a pure one-component liquid, say water, or any
mixture of solvents and other solutes) and maintained at some fixed temperature T
and pressure p.

Figure 1.3 depicts a series of systems in which the real system is reduced to a
more simplified system that is more manageable for theoretical study.

First, we remove the solvent and consider only the system of adsorbent and
ligand molecules. We make this simplification not because solvent effects are
unimportant or negligible. On the contrary, they are very important and sometimes
can dominate the behavior of the systems. We do so because the development of
the theory of cooperativity of a binding system in a solvent is extremely complex.
One could quickly lose insight into the molecular mechanism of cooperativity
simply because of notational complexity. On the other hand, as we shall demon-
strate in subsequent chapters, one can study most of the aspects of the theory of
cooperativity in unsolvated systems. What makes this study so useful, in spite of
its irrelevance to real systems, is that the basic formalism is unchanged by
introducing the solvent. The theoretical results obtained for the unsolvated system
can be used almost unchanged, except for reinterpretation of the various parame-
ters. We shall discuss solvated systems in Chapter 9.

Second, we define our system (whether in a solvent or not) as the system of M
(M being very large) adsorbent molecules, including any ligands that are bound to
them. The new system is at equilibrium with a very large reservoir of ligand
molecules at a fixed chemical potential j. Thermodynamically, our system is now
closed with respect to P but open with respect to L. The free ligand molecules are
not considered as part of the system but rather part of the environment. Like a
thermostat that maintains a fixed temperature 7, the ligand reservoir maintains a
fixed chemical potential L.

"We shall never discuss a continuous state of occupation. For instance, a ligand L approaching a site
might interact with P according to some interaction potential U(R), where R is the distance (and, in
general, also the relative orientation) between the ligand and the site. One can, in principle, define the
(continuous) state of occupation with respect to the distance R or the interaction energy U(R). In this
book we assume that the site is either empty or occupied, and no intermediate states are considered.



01

L/w .o..o.......o.o:

i,
P:OJoE.%: 5 EE. .Bﬂ -’.::' RN
@ ;—’ @).'.“’HEHEEIH:IFFHEHFH

‘;i:@

o o

[«
@*Kr

o o0 ®o

a b c

Figure 1.3. Three stages in the process of simplification of the thermodynamic system under consideration. (a) The original system consists of M adsorbent
molecules (P), each of which has four binding sites, solvent (w) and ligand (L) molecules, all in a volume V and at temperature 7. (b) The solvent is removed.
(c) The final system consists of M localized adsorbent molecules opened with respect to the ligands.
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In general, the chemical potential of any species L can be written as'

p=p"+k,Tln CA? (1.2.1)

where kj is the Boltzmann constant (1.3807 10“23JK‘1), T is the absolute tempera-
ture, and C is the number density C = N/V (where N and V can be either fixed or
average quantities, depending on the type of ensemble); A® is the momentum
partition function, or the de Broglie thermal wavelength, and is given by

N = kY 122
N2mmk,T 122

where A is Planck’s constant (6.626 x 1073* Js) and my is the mass of a single
molecule. We note that A3 has dimensions of V', hence CA3 is a dimensionless
quantity. We also note that for classical systems, for which Eq. (1.2.1) is valid,
CA® < < 1. The quantity " is referred to as the pseudo-chemical potential. In
general, 1 depends on the density C, but for our purposes we shall always assume
that p* is independent of C. This is true either when the ligand is in an ideal gas
phase, or when it is in a very dilute solution in a solvent.
We define the absolute activity of the ligand by

A= exp(B) = A,C (1.2.3)

where 3 = (kBT)‘l. Note that whatever the dependence of u" on the density C,
thermodynamic stability requires that |1 or A be a monotonically increasing function
of C. In our special case discussed above, we assume that A, (or u*) is independent
of C. Hence A is simply proportional to the density C.

The third step of our simplification is to “freeze-in” the translational and
rotational degrees of freedom of the entire P molecules. Clearly, our system is now
different and all the thermodynamic functions, such as energy, entropy, etc., are
changed. However, being interested in the binding properties of the system, it can
be shown that if the ligands are very small compared with the adsorbed molecules,
then the binding isotherm, hence the cooperativities, will be almost unchanged by
this simplification.? We refer the reader to Appendix B for further discussion of this
step.

Finally, we reduce the multitudinal number of energy levels of each molecule,
P or L, to a very few, enough to obtain insight into the mechanism of communica-
tion between the sites. Once this insight is gained, it is easy to reintroduce all the
original energy levels into the final results. The more general results are obtained
by reinterpreting the various parameters involved in the simplified models. This is
very much the same as we do by eliminating and reintroducing the solvent.

See any textbook on statistical thermodynamics, such as, Hill (1960) or Ben-Naim (1992).
*An exception to this assumption is discussed in Section 5.10.
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1.3. STATES OF THE SYSTEM AND THEIR ENERGIES

Having defined the system to be studied, we proceed to characterize the states
of the system and the corresponding energies. These are the fundamental building
blocks for constructing the grand partition function (GPF) of the system (Section
1.4).

The states” of our macroscopic system P are numerous and unknown, so we
shall always consider only a few macrostates and their corresponding energies. The
transition from the microstates of the system to the macrostates used throughout
the book is described in Appendix C. Also, it is shown there that the “energy levels”
of the macrostates when applied to the real system are actually free-energy levels.
The free-energy character of these “energy levels” is suppressed, first, for conven-
ience, otherwise there is no way to proceed with the theory using the entire set of
true energy levels, and second to gain insight into the way free energies emerge as
aresult of the averaging process. We shall encounter two types of averaging process
in the following chapters.

For convenience, we shall distinguish two types of states.

1. Conformational states. Since P is either a macromolecule such as hemo-
globin, or even a relatively small molecule such as succinic acid, it has a very large
number of conformations. We shall reduce these to a very few conformations and
refer to them as the macrostates, or simply as the states of P. In most cases the
ligand will be considered to be in a single macrostate. Only in one case (Section
5.10) we shall allow different conformations for ligand L.

2. Occupancy states. When the sites are different, we shall need to specify
which of the sites are occupied and which are empty. On the other hand, when the
sites are identical it is often sufficient to specify only the number of occupied sites.

In order to compute the binding isotherm (Section 2.1) of any system, one must
know all the microstates of the system. This cannot be done for even the smallest
binding system. However, in order to understand the origin of cooperativity and the
mechanism by which ligands cooperate, it is sufficient to consider simple models
having only a few macrostates. This understanding will be helpful for the selection
of methods to extract information from experimental data, and for the meaningful
interpretation of this information.

Once we have enumerated all the states of our system, we assign energies to
these states. If we have only two macrostates, say L and H, we shall assign the
corresponding energies E; and E,,. These are not derived from either experiment
or from computation. They will be used in the theory as parameters of the model.
We shall then examine how the cooperativity, or the correlation function, depends
on these parameters.

*These are the solutions y; of the time-independent Schrodinger equation Hy; = Epy;, where H is the
Hamiltonian operator of the system and E; is the energy corresponding to the state ;.
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When a ligand binds to a site j, we assign to the process a binding energy U,.
This is essentially the work required to bring the ligand from rest at some fixed
point infinitely far from the site, to the empty site j. As with the parameters E; and
Ey, U, is also a free energy (Appendix C), but it will be convenient to suppress the
free-energy character of this quantity. Of course, for different ligands and different
sites we must assign different binding energies.

Two ligands situated at different sites will usually interact via an intermolecular
potential function U(R). We shall refer to this interaction as direct interaction. By
direct interaction we mean the work, or the change in energy, for the process of
bringing the two ligands from infinite separation to the final distance (and possibly
also orientation), in vacuum, i.e., the work arises only from the interaction between
the two ligands. Since we assume discrete sites, and only a single state for the
ligand, the function U(R) reduces to a single number, say U(R,), where R, is the
ligand—-ligand distance at the two sites. Sometimes we shall use the notation U(1,
1) or U, (1, 1) when the two occupied sites are of the same or different kind.

The triplet direct interaction between three ligands is defined as the work, or
the energy change, associated with the process of bringing the three particles from
infinite separation between each other to the final configuration, say (R, R,, R5),
in vacuum. Again, this work arises from the direct interactions among the three
particles. A similar definition applies for any number of ligands being at some
specified configuration.

We shall always assume that the direct interaction among any group of ligands
is pairwise additive. For example, for three ligands at (R;, R,, R;) we write

UR,, R, Ry) = UR,, R,) + UR,, Ry) + UR,, Ry) (1.3.1)

which means that the work associated with the process of bringing the three
particles from infinite separation to the final configuration (R;, R,, R;) is the sum
of three works, each associated with the process of bringing a pair of particles to
the final configuration (R,, R,), (R}, R,), and (R,, R,).

In subsequent chapters we shall see that part of the ligand-ligand correlation
in a binding system is due to the direct interaction between two (or more) ligands.
This will be referred to as the direct correlation. However, there is a second part of
the correlation referred to as indirect, which is not related to the direct interactions
between the ligands. The indirect correlations are sometimes far more important
than the direct correlations. We shall devote the remainder of this section to examine
some properties of the direct interactions. The indirect part of the correlations will
be the subject of most of the subsequent chapters.

Consider first two point dipoles. The interaction energy between them, as a
function of the distance R = IR, — R, and of the orientations (8, ¢,) and (0,, ¢,),
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is
2
ul,2)= %3' [sin 6, sin 6, cos(¢, — ¢,) — 2 cos 6, cos 6,] (1.3.2)

where  is the dipole moment” (assumed identical for the two dipoles). The various
angles are shown in Fig. 1.4 (¢;, = ¢, — ¢,).

Now, suppose we fix the orientations 9, =0, = % T, ¢, = ¢, = 0, which will be
referred to as up-up, and for which

w2
Uall,2)=+ 15 (1.3.3)

This is a repulsive interaction that changes with distance as R™>. On the other hand,
fixing the orientation 9, = % %, 0,=— % 7T, §; = 0, = 0, referred to as up-down, we
find

U1 2)=—&2 (1.3.4)
9 R3

This is an attractive interaction, again changing as R™. Now, suppose we average
over all possible orientations of the two dipoles, giving equal weight to each
orientation. We find

Jua, 24040, . (1.3.5)

Jag,d,

where | dQ, = [§ sin8 40, ﬁ" do,. This average is always zero, for any distance R.
The reason for this result is simple. For any orientation of the two dipoles there
exists another orientation obtained by inverting the direction of one dipole. Since
we have given equal probability to each orientation, the sum of the attractive
interactions will exactly cancel out the sum of the repulsive interactions and the net
result is zero.

The actual average interaction between two dipoles is not zero, however.
At equilibrium, the different configurations are weighted by the Boltzmann
distribution

exp[-BUQ,, Q,)] (1.3.6)

PQ, Q)=
T [explBUQ, Q)1Q,d0,

and the average interaction under equilibrium conditions is

Ueq = IP(QP QZ)U(QP Q2)d91dg2 (137)

*Not to be confused with the chemical potential.
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z

Y

Figure 1.4. Two dipoles at distance R = IR, — R}], where R; is the locational vector of the center of the
dipole i. The orientation of the dipoles is defined by the two angles 6; and ¢;. Only the relative dihedral
angle ¢,, = ¢, — ¢, enters into the dipole—dipole interaction [Eq. (1.3.2)].

This result is always attractive. The reason is again very simple. At any orientation
for which U(Q,, Q,) is positive, U > 0, there exists another orientation (obtained
by inverting the direction of one dipole) for which U < 0. The weights given by the
Boltzmann factors are now different; we have exp(-pfl) > 1 for U < 0, and
exp(-BU) < 1 for U > 0. The average is therefore biased in favor of the attractive
orientations, therefore the net result is U, g < 0. We note also that when either the
distance or the temperature increases so that |BUl < < 1, we can expand the exponent
in Eq. (1.3.7) to obtain

” fi1-BU@, V@, Q)Y 2 ¢ (38
“ [i1-pu@, @404, 3%,T RS

i.e., the distance dependence is now as R5. Note also that for any given R, when
T — o we have U, — U — 0. At this limit the Boltzmann factor becomes
independent of Q and we obtain the average result (1.3.5). Figure 1.5 shows
U, (R), U (R), U(R), and the approximate limit of U, eq [see Eq. (1.3.8)]. Once we
appreciate the effect of averaging on the interaction between two particles, it is easy
to understand the effect of averaging on the interaction between three or more
particles.

The additivity assumption, as written in Eq. (1.3.1), is exact for hard-sphere
particles, point charges, or point dipoles at fixed orientation (point dipoles at fixed
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Figure 1.5. The form of dipole—dipole interactions U, (R), U,(R), U(R), and U, q(R) forp, =p,=1
and B = (k7)Y '=1.

orientations are essentially the same as point charges at fixed locations). Let us
examine again the case of three dipoles. We have seen that the pair interaction
between two dipoles changes upon averaging over all orientations with the
Boltzmann distribution (1.3.6). It is easily realized that when a third dipole is
present, the average pair interaction U, (1, 2) will be modified, since the Boltzmann
distribution is now dependent on Q,, i.c.,

exp-BUQ,, Q,, Q)]

PQ,, Q,/Q,) = (1.3.9)
[expl-BUQ,, Q,, Q,)1dQ,dQ,
hence
U,(1,2/3)= [ PQ, Q/Q)U(Q,, Q,)d0,dQ,
# [ PQ, U, ©,)d0,dQ,
=U,(1,2) (1.3.10)

As an extreme example suppose we have two dipoles, as before. The equilib-
rium average interaction between them is always attractive [see Eq. (1.3.7) or
(1.3.8)]. We now introduce a point charge of any sign as shown in Fig. 1.6. If the
dipole—charge interaction is strong, it could orient the dipoles in such a way that
the average dipole—dipole interaction will become repulsive. Clearly, similar
effects will be observed when a third dipole is present. In this case the additivity
assumption (1.3.1) becomes invalid.

In spite of what we have seen above, we shall always assume the validity of
Eq. (1.3.1) for three or more ligands. In most cases this is indeed a good approxi-
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% N

Figure 1.6. Two dipoles in the presence of a point charge e.

mation, e.g., for two inert molecules, or polar molecules at large distances. It is
sometimes exact (e.g., for a fixed distribution of point charges). The nonadditivity
in the triplet interactions discussed above results from averaging over the degrees
of freedom (orientations in the case of dipoles) of the particles involved in the
interactions. We shall encounter other types of correlations—referred to as indi-
rect—that arise from averaging over degrees of freedom of molecules other than
the particles involved in the interactions. This is the case when we average over the
states of the adsorbent molecule (Chapters 5-8) or over configurations of the
solvent molecules (Chapter 9).

We conclude this section by adding one more type of interaction that will
appear in some models discussed in this book. These are interactions between
subunits in a multisubunit model for adsorbent molecules. The subunit—subunit
interaction will in general depend on the conformational states of the subunit. For
instance, two subunits in states o,  will be assigned interaction energy Eyg As
with ligand- ligand interaction, subunit—subunit interaction is modified when we
average over all states of the subunits.

1.4. CONSTRUCTION OF THE PARTITION FUNCTION

Below we present the rules for constructing the partition function (PF) of a
binding system.

1. Enumerate all the microstates of the molecule. Each microstate of the
molecule, having k ligands bound to k specific sites, is characterized by an energy
level E(k). We usually combine many microstates into one macrostate denoted by
o, and write the corresponding canonical PF as

Q, (k)= exp[-BE(K)] (1.4.1)

ieq

where the sum is over all the microstates belonging to the macrostate o (see
Appendix C). We shall usually consider only very few macrostates; say one or two
(except for Section 4.8, where we take the continuous rotation about a C—C bond
in succinic acid).
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2. Sum over all macrostates ¢ of the molecule to obtain the canonical PF of
the molecule with k ligands bound to & specific sites (s),

0=, 0,k (14.2)

3. Sum over all specific sites s to obtain the canonical PF of the molecule
with & bound ligands,

o)=Y 0,k = (’l’:) 0.) (143)

In some cases where the canonical PF of all the (}) specific configurations are equal,
we say that the system has m identical sites in the strict sense. Only in this case
does the last equality on the rhs of Eq. (1.4.3) hold. Thus, from Eq. (1.4.1) to (1.4.3)
we have proceeded from Q (k) to Q(k), the latter being the canonical PF of an
adsorbent molecule with & (unspecified) sites occupied by ligands.

4. The grand PF (GPF) of the molecule is now constructed by

E= i O(k)AF (1.4.4)
k=0

where A = exp(PL) is the absolute activity of the ligand. The sum in Eq. (1.4.4) is
over all occupation numbers k (k=0, 1,2, ..., m). Normally we shall assume only
a few macrostates, say L and H, to which we shall ascribe corresponding “energy
levels” E; and E, (see also Appendix C). In these cases the construction of the GPF
is quite simple.

As an example, consider a system with two conformations L and H, each having
two different sites, say a and b. The canonical PFs of the systems are

Q0)=0,(0)+ 0(0)=0; + Oy (1.4.5)

O(1y=Q,(a, 0)+ Q,(0, b) + Q(a, 0) + 0,0, b)
=0191,% Q11+ Orna + Crldms (1.4.6)
and
Q)= 0,(a. b) + Qpfa, b) = Q19,4151 + CednAmSun (1.4.7)

where O = exp(—BE,), 4., = exp(-BU,,), and S, = exp[-BU,(1, 1)]. Thus, each
Q(k) is a sum over all the states corresponding to a fixed occupation number k. The
PF Q(0) has only two states, L and H; Q(1) has four, L occupied at a, L occupied
at b, H occupied at a, and H occupied at b; and Q(2) has two states, L fully occupied
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and H fully occupied. Each of the terms in Q(k) consists of a product of a factor
@, (0.= L, H) for the conformational states of P, one factor g ; (0. =L, H,i=a, b)
for each ligand occupying the site i, and a factor S, for the direct interaction
[Uqo(1, 1)] between the two ligands occupying the sites a, b when the state is o (o
=L, H).

We shall treat more complicated cases, such as systems with a larger number
of identical or different sites, and also cases of more than one type of ligand. But
the general rules of constructing the canonical PF, and hence the GPF, are the same.
The partition functions, either Q or &, have two important properties that make the
tool of statistical thermodynamics so useful. One is that, for macroscopic systems,
each of the partition functions is related to a thermodynamic potential. For the
particular PFs mentioned above, these are

A=—kTIn Q (1.4.8)
and
pV=k,TInE (1.4.9)

where Q and E are the canonical PF and GPF for macroscopic systems, A is the
Helmbholz energy, V is the volume, and p is the pressure of the system.

The second property is that each term of the PF is proportional to the probability
of occurrence of the particular state it represents when the system is at equilibrium.
We shall use mainly the second property of the PE. The next section is devoted to
this aspect of the theory. Once we have the probabilities of all possible “events” we
can compute average quantities pertaining to the system at equilibrium. Of these,
the average occupation number, or the binding isotherm, will be the central quantity
to be examined and analyzed in this book.

The skeptical reader may reasonably ask from where we have obtained the
above rules and where is the proof for the relation with thermodynamics and for
the meaning ascribed to the individual terms of the PF. The ultimate answer is that
there is no proof. Of course, the reader might check the contentions made in this
section by reading a specialized text on statistical thermodynamics. He or she will
find the “proof” of what we have said. However, such proof will ultimately be
derived from the fundamental postulates of statistical thermodynamics. These are
essentially equivalent to the two properties cited above. The fundamental postulates
are statements regarding the connection between the PF and thermodynamics on
the one hand (the famous Boltzmann equation for entropy), and the probabilities
of the states of the system on the other. It just happens that this formulation of the
postulates was first proposed for an isolated system—a relatively simple but
uninteresting system (from the practical point of view). The reader interested in the
subject of this book but not in the foundations of statistical thermodynamics can
safely adopt the rules given in this section, trusting that a “proof” based on some
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more basic postulates has already been established. The ultimate proof of any
physical theory lies in its capacity for predicting results that agree with experiments.
Such “proofs” have been abundantly obtained ever since the establishment of
statistical thermodynamics almost a century ago.

1.5. PROBABILITIES

The quantity most referred to in this book is the binding isotherm (BI). This is
simply the average number of bound ligands (per site or per molecule) as a function
of the ligand activity (or concentration, or partial pressure). To compute any average
quantity at equilibrium one needs to know the probabilities of all the events that
contribute to that average. Some of the probabilities can be read directly from the
GPF, others may be derived by using elementary rules for calculating probabilities
of sums (or unions) and products (or intersections) of events. We shall encounter
many examples throughout the book. Here, we present a few examples of these
rules.

Consider again the example of a system having two conformational states, L
and H, and two different sites, a and b. The relevant canonical PFs are given in Eqgs.
(1.4.5)-(1.4.7). The event “the system is in state L, having a ligand bound on site
a, and empty on site b” is denoted by (L; a, 0). The probability of this event is
proportional to the corresponding term in the GPF, i.e.,

A
P(Lya,0)=—""" (1.5.1)

where the proportionality constant is simply & 1. This guarantees that when we sum
over all possible states (both conformational and occupancy) we shall obtain unity,
as expected from any distribution. When one speaks of the probability of an event,
referring to a single molecule, one can interpret this as being equivalent to the mole
fraction of finding that event in a very large ensemble (M — ) of such molecules
under the same conditions of T and A (and of the composition of any solvent, if
present).

Two events are said to be disjoint or mutually exclusive if the occurrence of
one excludes the occurrence of the other. We write this as .7 - 8= where &
denotes the event having zero probability. The product .2 - B (or 4 N B) denotes
the occurrence of 4 and B. If 4 and B are two disjoint events, then the probability
of the event “either 4 or B,” denoted by A + B (or 4 L B), is given by

P(A + B) = P(A) + P(B) (15.2)

In the example of Section 1.4, the system can be either in conformational state L
or in H. Therefore, for any state of occupation, the two events “L” and “H” are
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disjoint. Hence the probability of finding the system empty, in either state L or H,
is simply

P0,0)=P(L;0,0)+ P(H;0,0) = & + Cu (15.3)

& ¢

Note that whenever we sum over all possible states of one variable, we eliminate
the notation of that variable from the resulting probability. In Eq. (1.5.3), we refer
to P(0, 0) as the probability of the event “site @ and site b are empty.” This is obtained
by summing over all possible states (here, L and H) of the empty system.

Similarly, the event “the system is either singly or doubly occupied” is obtained
by the sum

P[(a, 0)+ (0, b) + (a, b)] = P(a, 0) + P(0, b) + P(a, b)

- zaroqouz}” + z"(;thcq().b}“ + EaQuqouzqabSua}"z
3 g g
where the sum over « is over the two states L and H. Clearly, the three events
“(a, 0),” “(0, b),” and “(a, b)” are disjoint, and the probability of the sum is the sum
of their probabilities. Note that the sign “+” on the left-hand side (lhs) of Eq. (1.5.4)
stands for the union of two events. The “+” on the rhs stands for the addition of
two numbers.

When the two events 4 and B are not disjoint, i.e., when the occurrence of one
event does not exclude the occurrence of the other, we have the relation

(1.54)

PA + B)=PA)+ P(B)-PA - B) (1.5.5)

Compare this with Eq. (1.5.2). Here, we must subtract the probability of the product
(or the intersection, also denoted 2 M B) of the two events.

The two events “the system is in state L” and “the system is singly occupied”
are clearly not disjoint. The occurrence of one does not exclude the occurrence of
the other. In order to construct the probability of the sum of these two events, we
need the following three ingredients:

2
Y 0, (N

k=0
Ply=—7—

§

[Q,(a, 0) + Q,(0, b) + Qifa, 0) + Q (0, b)IA
&

(1.5.6)

P(1)=P[(a, 0) + P(0, b)] = (1.5.7)

and
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[Q,(a, 0) + 0;(0, H)IA
3

Hence the probability of the required event “either L or singly occupied” is given
by

P(either L or singly occupied) = P(L) + P(1) — P(L and singly occupied)

(1.5.8)

P(L and singly occupied) =

2
Y, 0, (N + [Qy(a, 0) + Oy (0, HYIA
k=0

&

0, + 19 (D) + QDA+ 0, (2)N
- g

Note that if we do not subtract Eq. (1.5.8) from the sum of Eqgs. (1.5.6) and (1.5.7),
we would have counted twice the term [Q; (a, 0) + Q, (0, b)JA/E. The last result on
the rhs of Eq. (1.5.9) can also be obtained by directly collecting all the relevant
terms from the GPF; first, take all the terms having subscript L [i.e., Q;, Q,(1) and
Q,(2)], then add the term with subscript H pertaining to single occupation only
[i.e., Qy(D)].

Two events are said to be independent if and only if the probability of their
product (or intersection) is equal to the product of their probabilities, i.e.,

(1.5.9)

P(A - B) = P(A B) = P(A) - P(B) (1.5.10)

The independence of two events means that the occurrence of one event does not
affect the probability of occurrence of the second. We define the conditional
probability of occurrence of 4, given that the event B occurred, by

PA/B)= ﬂ;;) (1.5.11)
and similarly
PA- B)
Po/m == (15.12)

Clearly, when A and B are independent it follows from Eq. (1.5.10) that the
conditional probability is equal to the unconditional probability,” i.e.,

*Strictly speaking, any probability is “conditional” in the sense that an experiment has been performed.
Normally we suppress this condition in our notation.
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P P(B)

P/B) = "% =P(2) (1.5.13)

The events “the system is singly occupied” and “the system is in state L” are
clearly not independent,

P(singly occupied) = P(1) = P[(a, 0) + (0, b)] (1.5.19)

P(L)y=P(L;0,0) + P(L; a,0) + P(L; 0, b) + P(L; a, b) (1.5.15)
The conditional probability is [from Eqgs. (1.5.7) and (1.5.8)]

. . 0,(a, 0)+ 0,0, b)
P(L/singly occupied) = 0,(@ 0)+ 0,0, b) + 0@ 0) + 0,0, b) (1.5.16)

On the other hand [from Egs. (1.5.8) and (1.5.15)]

[Q1(a, 0) + 0, (0, BYIA

Plsingly occupied/L) = 616 @ 0)+ 0,00, YA+ Oy(a, BV

(1.5.17)

Replacing the condition “L” by “H” will result in a different conditional probability,

[@y(a, 0) + Qx(0, bH)IA

P(singly occupied/H) = 0+ [0, )+ 040, BN+ O, BT

(1.5.18)

Whenever two events are not independent, i.e., when Eq. (1.5.10) is not fulfilled,
we define a correlation function by

P(1- B)
g, 59)=W (1.5.19)
or, equivalently, by
P(A/B) = g(A4, B)P(A) (1.5.20)
and
P(B/A) = g(A, BYP(B) (1.5.21)

*The definition of correlation functions in this book differs from the definition of the correlation
coefficient in the theory of probability. The difference is essentially in the normalization, i.e., whereas
8(4, B) can be any positive number 0 < g < oo, the correlation coefficient varies within [-1, 1]. We have
chosen the definition of correlation as in Eq. (1.5.19) or (1.5.20) to conform with the definition used
in the theory of liquids and solutions.
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The correlation function measures the extent of deviation from independence.”
Clearly, when the two events are independent then g(4, B) = 1. Note that inde-
pendence is defined symmetrically with respect to 4 and B. Hence, also g(4, B) is
symmetrical with respect to 4 and B. Thus, whenever the occurrence of 4 affects
the probability of occurrence of event B, also the occurrence of B will affect the
probability of 4. This is also clearly seen from Egs. (1.5.20) and (1.5.21). We shall
say that the events 4 and ‘B are positively correlated whenever P(4/B) > P(A) or,
equivalently, g(4, B) > 1. They are negatively correlated whenever P(4/B) < P(A)
or, equivalently, 0 < g(4, B) < 1.

We have defined the correlation function for any two events. Of particular
interest in this book will be correlations between events such as “site a is occupied”
and “site b is occupied.” For the specific system described in the previous section
we have

P(site a is occupied) = P[(a, 0) + (a, b)]
_[0,(@,0)+ Qy(a, 0)IA + [0,(@, b) + Qy(a, IV

: (1.5.22)
P(site b is occupied) = P[(0, b) + (a, b)]
_10,0.5)+ 040, B)IA +[Q,(a, b) + Opfa, BN (15.23)
3
P(site a andssite b are occupied) = P(a, b)
_ [Q,(a, b) + Qyfa, BN (1.5.24)

&

The correlation function for these two events is clearly a ratio of two polynomials
in A. We shall need only the A — 0 limit of this correlation function, which in this
case is

g (a, b)=lim g(a, b)
A—0

__ [0a.b)+0y(a b0, + Q)
[0,(a. 0) + Oya. O)IIQ,(0. b) + 040, b)]

This, and similar quantities defined for more than two sites, will be studied
extensively in the following chapters.

(1.5.25)



The Binding Isotherm

2.1. THE GENERAL FORM OF THE BINDING ISOTHERM

The binding isotherm (BI) of any binding system was originally referred to as a
curve of the amount of ligands adsorbed as a function of the concentration or partial
pressure of the ligand at a fixed temperature. A typical curve of this kind is shown
in Fig. 2.1. Numerous molecular models have been studied that simulate particular
experimental Bls.

The formal derivation of the BI from the GPF is based on the thermodynamic
relation

1—\,—=(8(1DV)Jr @2.1.1)
oM Jrv

where N is the average number of molecules in a macroscopic open system, V is
the volume of the system, and p is the partial pressure. The connection with the

2 4 6 8 10

C

Figure 2.1. A typical binding isotherm, 6, as a function of the concentration, C, for k= 1.

25
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GPF of the system [Eq. (1.4.9)] leads to

— dIn = (2.1.2)
N =k, T|—— -t
s { an l,v

Since we have assumed that our macroscopic system consists of M independent
adsorbent molecules, we can use either Z = E¥/M! or Z = ¥ (see Appendix B) to
obtain

Kk om
5Y 2 [a In §l= DO S o 213)
n g &

where we have used the relation L = k;T In A to convert the derivative with respect
to the chemical potential into a derivative with respect to the absolute activity A;
n is the average number of bound ligands per adsorbent molecule. The last equality
in Eq. (2.1.3) confirms this interpretation of zn; P(k) is the probability of finding the
adsorbent molecule with & bound ligands; hence ZkP(k) is the average number of
bound ligands.

Thus, accepting the rules for assigned probabilities discussed in Section 1.5 is
sufficient for calculating the average number of bound ligands, or any other average
relevant to our system. The function n =7(T, A) is the equation of state of the bound
ligands. Following 7 as a function of A (or concentration) provides the required
binding isotherm. Normally, when all the sites are identical, one follows the average
number of ligands per site. For an m-site system, this is simply defined by
H (2.14)
m

0=

The study of BIs per site is important when the sites are different, in which case we
have a different individual binding isotherm 6, for each site i. To obtain these from
the GPF we simply collect all terms for which site i is occupied. For the example
given in Section 1.4, we have

0. [0,(a, 0) + Qy(a, O)A 2 [Q4(@, b) + Opfa, IV P 2.1.5)

and

6, [Q,(0, b) + 00, B)IA + [Q,(a, b) + Qp(a, BN
§
Thus, 8, is simply the probability of finding site a occupied and 8, is the probability
of finding site b occupied, so we have the identity
n=0,+0, 2.1.7)

=PB) 216
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and, in general, for m different sites

_ 2.1.8)
n=Xxo,

It should be noted that although 6, is the probability of finding “site i occupied,”
the sum 7 is not the probability of the sum (or union) of these events. In fact, 7@
is not a probability at all. What we actually sum over are not probabilities but
average quantities. To see this, we reinterpret P(a) {which is a genuine probability
0 < P(a) < 1] as an average quantity,

0,=0-[1-P(a)] +1 - P(a)=P(a) 2.1.9)
and
0,=0-[1-P(b)] +1-P(b)=P(b) (2.1.10)

Since site a can be either empty [with probability 1 — P(a)] or occupied [with
probability P(a)], 0, is the average occupation number for the site a. Clearly,
0<6,<1. When forming the sum7 in Eq. (2.1.7) or (2.1.8), we sum over all average
quantities 0, and obtain the average occupation number for the entire molecule.
Clearly 0 <7 < m, and in general 7 is not a probability.

There are many other averages that can be defined by collecting the relevant
probabilities from the GPF. We mention here two more types of individual Bls.
Before doing so, we rewrite P(a) and P(b) as P(a, _) and P(_, b), respectively. The
blank “_ denotes an unspecified state. Thus, P(a) is the probability of finding “site
a occupied,” which is the same as the probability of finding “site a occupied and
the state of site b unspecified.” We can now construct two conditional probabilities,
hence individual Bls for which the state of site b is specified.

The first is denoted by P(a/b = O)* which, for the model of Section 1.4, is

pasb=0y=F@0 _ Qa1+ Q)
P(b=0) QO +Qy+(01q;,+Cpan )t
-+ Xy @2.1.11)
I+ (nglﬂ + XOHqHa)A’

Clearly, this is a simple Langmuir (see Section 2.4) isotherm with a binding constant
for site a that is an average of the binding constants for site a in a system at states
L and H, with weights Xg and X?{ respectively. Similarly, we define the conditional
probability of finding site a occupied given that site b is occupied which, for the

*a/b=0 means: a is occupied given that b is empty. a/b =1 means: a is occupied given that b is
occupied.
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model of Section 1.4, is

_Pabd _ (1919151 + Qo9 Sur)™
P(b=1) (0,41, + Qudwn) + (0191915511 + Qeiriarn S

Pa/b=1)

%P4 Sy + XS
1+ (X 9S00+ X5 Sk

2.1.12)

This is again a simple Langmuir (see Section 2.4) isotherm with a binding constant
to site a which is the average of the binding constants to site a when the system is
in states L and H. The quantities Xg’ ) and X(}I’) are the mole fractions of states L and
H given that site b is occupied.

Clearly, both P(a/b = 0) and P(a/b = 1) can be interpreted as individual BIs for
site a (and similar definitions apply to site b). It should be noted that all three
individual Bls defined above can, in principle, be measured experimentally. The
conditions of the experiments are different. In P(a/b = 0) [Eq. (2.1.11)], we follow
the average occupation of site a while maintaining site b empty. On the other hand,
in P(a/b = 1) [Eq. (2.1.12)], we follow the average occupation of site a while we
secure the occupation of site b. In 9, [Eq. (2.2.9)], we follow the occupation of site
a while leaving site b unrestricted to bind ligands under the same conditions as if
we were to measure 0, or 77, but monitor the binding on a only.

The binding isotherm is a monotonous increasing function of A. This follows
from the thermodynamic stability of the macroscopic system. Thus

1| (2.1.13)
A~ M (ax]fo

The thermodynamic stability requires that N be a monotonous increasing function
of A. Due to the independence of the adsorbent molecules, the same is true also for
7 as a function of A.

The statistical mechanical interpretation of the stability condition is quite
simple. From Eq. (2.1.3) we obtain by differentiation

A gg = Tk2P(k) — [ZkP(k)]? = (k%) — (k)? (2.1.14)

This is the fluctuation, or the variance, of & for a single adsorbent molecule. This
is always positive since

(= 0 = (k) =2 (R)KY + (kY = (&) = (k)Y 2 0 (2.1.15)

The slope of the Bl is related to the slope of the titration curve (see Section 2.6).
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The latter is sometimes referred to as the binding capacity. It measures the amount
of acid (or base) that should be added to the solution so that the pH will increase
by one unit.

2.2. THE INTRINSIC BINDING CONSTANTS

We introduce here the quantities referred to as intrinsic binding constants. They
are intrinsic in the sense that they pertain to a specific site or sites. They are also
related to the free-energy change for bringing a ligand from some specified state in
the reservoir onto a specific site. We shall also introduce the conditional binding
constants, and binding constants for a group of specific sites. In all cases, whenever
we specify the binding site (or sites), there are no combinatorial factors such as the
ones that appear when the site (or sites) are not specified. The latter appear in the
thermodynamic binding constants discussed in the next section.

To maintain brevity and keep the notation simple, we shall introduce all the
relevant quantities for a three-site system. The generalization to an m-site system
is quite straightforward. We start with three different sites, denoted by a, b, and c.
The corresponding GPF is

3
E=Y QN 2.2.1)
k=0

In this section we characterize our system only by the pattern of occupations
of the sites and overlook the conformational states. Hence, we write

Q(0) = 0(0,0,0) (2.2.2)
(1) =0(a, 0,0+ 20, b,0)+ 00,0, ¢ (2.23)
02)=Qa,b,0)+ Q(0, b, c) + Q(a, 0, c) 2.24)
0(3)=Q(a, b,0) (2.2.5)

Here Q(k) is the canonical PF of the system with k sites occupied, while on the rhs
of Egs. (2.2.2)~(2.2.5) we specify the sites that are occupied. For instance, Q(a, 0,
0) is the PF for the system occupied at site @ but empty at b and c.

In what follows we shall always write A = A,C. We assume that the ligand is
provided from either an ideal gas phase or an ideal dilute solution. Hence, 2, is
related to the standard chemical potential and is independent of the concentration
C. On the other hand, for the nonideal phase, A, will in general depend on
concentration C. A first-order dependence on C is discussed in Appendix D. Note
also that A is a dimensionless quantity. Therefore, any units used for concentration
C must be the same as for (7»0)‘1.
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We define the following seven infrinsic binding constants,
_ 0(a,0,0) Ay _90,b,0) 0) _00,0,¢0) c)
¢ 000,0,00” 5~ 0(0, 0, 0) b ° 0(0, 0, 0) b
— Q(a, b’ 0) 2 = Q(O, b’ C) - Q(a’ 0’ C) (226)
ab Q(O, 0’ 0) }\0’ bc Q(O, 0, 0) }\'0’ ac Q(O, O, O) }\'0
_ Q(a, b, c) 7\.(3)
abe ™ 0(0, 0, 0)

We stress again that these binding constants are intrinsic only in the sense that they
refer to a specific set of sites. In terms of these constants, the GPF of the adsorbent
molecule is written as

£=0(0,0,0)[1 + (k, + k, + k)C + (k,, + k, + k, )C*+k_, CO1 (22.7)
and the BI per molecule now has the more familiar form

_ (ky+ky +k)C+2(ky + Ky, + k, )CP + 3k, C° (22.8)
BT U+ ky + K )C+ (ky+ hy + K )CE 4K,y C -

Since ?\.0 is presumed to be independent of C, all the intrinsic constants are also
independent of C. Note also that the factor Q(0, O, 0) does not appear explicitly in
71, although it is contained in the definitions of all the binding constants.

The individual BI can be obtained either from the probabilities read from the
GPF, as we have done in Section 2.1, or from Eq. (2.2.8). For instance, the individual
BI of site a, expressed in terms of the intrinsic constants, is

2 3
6, k,C+ (k,,+ kaf)C +k, C 2.2.9)
3
with similar expressions for 8, and 0 . The sum of these gives
n=0,+06,+6, (2.2.10)

Note that & is simply &/0(0, 0, 0), i.e., the denominator of Eq. (2.2.8).

Each of the intrinsic binding constants may be interpreted either as a probability
ratio or as a free-energy change for a specific binding process. Both meanings are
derived directly from definitions (2.2.6). For instance,

po=2@tn, Fa00) 2.2.11)
0(0,0,0)"~ P(0,0,0)
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and similarly

Q(a, b,0) A2 = P(a, b,0)

k.C:= =
o 0(0,0,0) " P(0,0,0)

a

(22.12)

The thermodynamic interpretation of k,C follows also from definitions (2.2.6),
k,C = exp{-B[A(a, 0, 0) — A(0, 0, 0) — ]} (2.2.13)

The quantity in square brackets is the Helmholtz energy change for the process of
bringing a ligand from the reservoir at a given chemical potential |1 onto a specific site,
here a, of an empty molecule. The process is carried out at constant temperature 7.

One could also interpret &, itself in terms of a similar process where the ligand
is brought from a hypothetical “standard state” corresponding to C = 1. This
interpretation is somewhat risky and should be avoided.” Symbolically, we write
the process as

L+(,0,0)>(a0,0) (2.2.14)

Similarly, the quantity & abCZ is related to the Helmholtz energy change for the
process

2L + (0,0,0) = (a, b, 0) (2.2.15)

i.e., the process of bringing two ligands from the reservoir at |, onto two specific
sites, here a and b, of an empty molecule. Although the intrinsic constants are
commonly defined for a single site, there is no reason for not defining them for any
group of sites. The important point in defining an intrinsic binding constant is that
we refer to a specific site or group of sites. This requirement applies both when the
sites are different and when they are identical.

Itis sometimes convenient to introduce conditional intrinsic binding constants.
These are defined in the same way as the conditional probabilities, namely,

_ kab _ Q(a’ b’ 0)

=== 2 22.16
= F, 00.5.0) " (2210
The probabilistic meaning of k, ,,C [compare with Eq. (2.2.11)} is
P(a, b, D)
k, ,C=—"—""—""— 2.2.17
¥ P(0,b,0) @210

which is the probability ratio for the events (a, b, 0) and (0, b, 0).“ The corresponding

*For a discussion of the meaning of such hypothetical states of C = 1, see Ben-Naim (1972).

*Note that this is slightly different from the conditional probability of finding sites a and b occupied and
¢ empty, given that b is occupied and ¢ is empty. Here, the denominator is the probability of the event
(0, b, 0) and not the event “site b is occupied.”
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process is
L +(0,b,0) > (a,b,0) (2.2.18)

Similarly, the conditional intrinsic constant k ;. is defined by

kare Qfa, b, ¢)
k. o ab_ ’ (2.2.19)
a/bc ‘k; Q(O, b, c) }"0

The probabilistic and thermodynamic interpretations of k. follow directly from
the definition. By substituting the various binding constants, one can rewrite the
GPF as well as the BI in terms of the conditional constant. Particularly simple are
the expressions for the individual BIs. For instance,

ea - kaC + ka(kb/a + kc/a2C2 + kakb/akc/abc3 (2.2.20)

g

with similar expressions for 6, and 6. Note the pattern of the conditions in each
term in the numerator of Eq. (2.2.20).

We now turn to the case of identical sites. Actually, we require that the sites be
identical in a strict sense, as we explain below. We use again the three-site case, but
instead of three different sites a, b, and ¢ we assume that the sites are identical.
Since we are dealing with localized molecules, the sites are still distinguishable.”

The canonical PFs listed in Egs. (2.2.2)—(2.2.5) now reduce to

Q(0)=0(0,0,0) (2.2.21)

0(1) = 0(1,0,0) + 0, 1,0) + 0(0,0, 1) =30(1,0,0)  (2.2.22)
02)=01,1,0)+ 0O, 1, 1)+ 01,0, 1) =30(1,1,0)  (2.2.23)

03)=0(1, 1, 1) (2.2.24)

We say that the sites are identical in a weak sense whenever the three PFs Q(1, 0, 0),
0(0, 1, 0), and Q(0, 0, 1) have the same value. This is identical to the requirement
that the single-site intrinsic constant is the same for any specific site. In this case
we can replace these three PFs by three times one representative PF, as is done on
the rhs of Eq. (2.2.22). We shall say that the sites are identical in a strict sense
whenever the PF of any given occupation number is independent of the specific
group of occupied sites. For instance, in an equilateral triangle all PFs with two
sites occupied are equal. Hence we can replace the sum on the ths of Eq. (2.2.23)
by three times one representative PF. This cannot be done, in general, for a linear
arrangement of the three sites, in which case Q(1, 1, 0) is different from Q(1, 0, 1),
even when the sites are identical in the weak sense (see Chapter 5). Similarly, for

*They become indistinguishable when the molecule gains rotational freedom. See Appendix B.
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a tetrahedral arrangement of identical sites, all pairs and all triplet sites give the
same PF. Clearly, identical sites in a weak sense do not imply identity in the strict
sense.” A simple example is three identical subunits arranged linearly. The PFs for
nearest-neighbor pairs might not be the same as the PF for next-nearest-neighbor
pairs. (This case is studied in Section 5.10). Similarly, four identical subunits
arranged in a square might have two different PFs for a pair of occupied sites
(nearest and next-nearest neighbors).

We proceed with the case of three identical sites in the strict sense and define
the corresponding intrinsic constants

_0(1,0,0) _QqQ, l,O)K(Z) k _0a,1, 1))\%

17 00,0, 0) Ao 1700, 0,0) -

111 0(0,0,0) (2.2.25)

compared with the seven constants in Eq. (2.2.6). The probabilistic and thermody-
namic interpretation of these constants is the same as for the different sites. One
should note, however, that all of the constants in Eq. (2.2.25) refer to specific sites.
These should be distinguished from nonintrinsic constants defined below and in the
next section.

One can also define conditional constants, similar to those defined in Egs.
(2.2.17) and (2.2.19). For instance,

_Q(l,l,O)%=&

= 2.2.26
1=00,0.00 0 K, @220
and similarly
o1, L1 k111
k == ‘A =— 2.2.27
VT 0) 0 Ry (2220

Again, we stress that these conditional constants always refer to a specific
configuration before and afier the addition of the ligand; &, k,;, and k;,;, may be
referred to as the intrinsic constants for the first, second, and third ligands. These
should be distinguished from the normally used first, second, and third thermody-
namic constants, defined in Section 2.3. In the latter, the specification of the sites
is not required.

In terms of these intrinsic constants the GPF is written as

&= 0Q(0,0,0)(1 + 3k,C + 3k, C* + k,,,C%)
=Q(0, 0, 0)(1 + 3k,C + 3k;k, ,,C* + kik, 1k, ,1,C%) (2.2.28)

*Sometimes, the term “equivalent” is used instead of “strict sense.” This can be confusing. For instance,
in an equilateral triangle the three sites are equivalent, but in a linear case they are not equivalent.
However, the term equivalent might not be suitable to distinguish between square and tetrahedral
models. In both cases, identical sites are also equivalent because of symmetry. Yet, one has strict
identical sites and the other weak identical sites in the sense defined here. For more details, see
Chapter 6.



34 Chapter 2

Although we shall not use nonintrinsic constants in this book, we mention them
here since they are sometimes used in the literature. The nonintrinsic constants are
obtained from the intrinsic constants by simply removing the requirement of a
specific set of sites. For the three-site case, these are defined by

k, =3k, k,=3k; K=k (2.2.29)

Thus %, is the first binding constant to any site. The general relation between the
two sets of binding constants is, for any /,

Fe (m)k (2.2.30)
!

where & on the lhs refers to any [ sites while k on the ths refers to a specific set of
I sites.

In summary, the intrinsic binding constant to be used throughout this book
always refers to a specific set of sites. They are defined in terms of the molecular
properties of the system through the corresponding canonical PFs. They are also
interpreted as probability ratios or as free energies of binding processes. In sub-
sequent chapters we shall see how to extract from these quantities various correla-
tion functions or, equivalently, cooperativities.

2.3. THE THERMODYNAMIC BINDING CONSTANTS

The thermodynamic approach starts from a sequence of binding processes at
equilibrium that define the corresponding equilibrium constants, after which the BI
is obtained.

Consider again, for simplicity, the case m = 3. The adsorbent molecule P can
form one of the three complexes which we denote by P,, P,, and P, respectively,
while P, denotes the empty adsorbent molecule. The three binding processes and
the corresponding equilibrium constants are

P
P,+L—>P, Kl=ﬂ 2.3.1)
[P,1C
P
P, +L—>P, K,= Pl (2.3.2)
[P,]C
P
P,+L—oP, K,= L) (2.3.3)
(p,]C

We use capital Ks to denote thermodynamic equilibrium constants, and we use
square brackets to denote concentrations, say, in moles per unit volume.

Note that K|, K,, and K, are sequential equilibrium constants for the first,
second, and third binding of ligands. The configurations of the ligands on the sites
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before and after the binding processes are not specified. This is the fundamental
difference between the thermodynamic and the intrinsic binding constants.

Since [P,] is the concentration of adsorbent molecules having i bound ligands,
the total average number of bound ligands in the macroscopic system containing
M molecules in volume V is

3
N=VY i[P] = V(K,[P,C + 2K, K [PIC? + 3K K, K,[PICY)  (234)

i=1
The total (fixed) number of adsorbent molecules is
3
M=V [P]=VIPJ(1 +K,C +K,K,C? + K, K,K,C%) (23.5)
=0
Hence the average number of bound ligands per adsorbent molecule is
K,C +2K,K,C* + 3K K K, C
1+K,C+KK,C*+ K K,K,C?

__N
n=4r= (2.3.6)
This is the Bl expressed in terms of the measurable equilibrium constants K. Since

we require that the BI as represented by the thermodynamic constants be the same
as that represented by the intrinsic constant, we can make the identifications”

K, =(k,+k,+k)=3k
KIKZ = (kab + kac + kbc) = 3kll | (2.3.7)
KKKy =k = kipy

where for each line, the first equality holds for different sites and the second for
identical sites (in the strict sense).
From Egs. (2.3.7) we also obtain

K =3k, K,=k,, K3=%k1/11 (23.8)

These equations relate the sequential thermodynamic constants (first, second, and
third) to the sequential intrinsic constants. The difference between the two sets
arises from the requirement to specify the sites in the latter but not in the former.
The generalization to m identical sites (in the strict sense) is quite straightforward.

*Note that in this section we have a thermodynamic system of molecules possessing translational and
rotational degrees of freedom. In the previous sections we treated a system of localized molecules.
Therefore, the GPFs of the two systems are different but their Bl is the same, provided the approxima-
tions made in Appendix B are valid.
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The generalization of Egs. (2.3.7) is
m
KK, - K= (j )klkl/lkl/ll kg (239

where k,; ,;..; denotes the conditional intrinsic binding constant to the jth specific
site, given that j — 1 specific sites are already occupied. Solving for the thermody-
namic constants we obtain

K, =|" |k, = mk,
1
m
2 m-—1
K2=—m‘k1/1=Tk1/1
1
K=\ moj+l, (2.3.10)

J m kijr.a= j 1/1-1

The ratio between the jth thermodynamic constant and the corresponding intrinsic
constant is the ratio between the number of specific configurations of the ligands
before and after the addition of the jth ligand.

The overall equilibrium constant for binding j ligands to an empty molecule is
defined for the reaction

Py+/L P, (2.3.11)
by
_ [P] m _
K=—'—=KK,---K=|"\|k,_, =k 2.3.12
= g =Kk K (,) ST (23.12)

where %, is the nonintrinsic constant for j ligands [see Egs. (2.2.29)]. Clearly,
when we remove the requirement of specific sets of sites, the overall thermody-
namic constants f] become identical to the quantities k; , (1 - - - 1 stands for j
unities).

Throughout the remainder of this book we shall use only the intrinsic binding
constant as defined by the corresponding canonical PFs in Section 2.2, The K s are
the quantities that are obtained directly from experiments. However, if we wish to
interpret these quantities, say in terms of cooperativity, we must convert to the
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language of intrinsic binding constants. This was recognized implicitly by Bjerrum
(1923), and later by Kirkwood and Westheimer (1938), who interpreted 4K,/K, as
a quantity that measures the “interaction” between two protons in dibasic acids
(this is discussed further in Chapter 4)." Since K, = 2k, and K,= 1kysp
4K,/K, = k;,/(k;)*, which is the pair correlation function. Thus, the inclusion of
the factor 4 in 4K,/K effectively converts from the thermodynamic into the intrinsic
language.

Furthermore, K;s as phenomenological equilibrium constants cannot tell us
much about the way they depend on the molecular parameters. This is possible only
when our starting point is a molecular approach based on the PF of the system. This
is particularly true if we are interested in studying the molecular origin of coopera-
tivity. If one defines “interaction energy” (or free energy of interaction), in terms
of the thermodynamic constant, one could easily be misled in interpreting these
interactions. A typical example of such an erroneous interpretation is given in
Chapter 5 (Section 5.10). The reason for such potential misinterpretations is that,
although the thermodynamic constants are certainly determined by the molecular
parameters, they do not reveal the way in which they depend on these parameters.
Specifically, the interaction energy between two ligands is defined in this book
independently of the adsorbent molecule. The molecular approach shows how the
correlation between the two ligands depends on this interaction energy. Sometimes,
the whole correlation is due exclusively to this interaction energy. At other times,
it consists of the product of direct and indirect factors. Yet in other cases, the direct
and indirect parts are so intertwined that no such factorization is possible. Examples
of these cases will be discussed in Chapter 4.

The polynomial within parentheses in Eq. (2.3.5) [or in the denominator of Eq.
(2.3.6)] is called the binding polynomial and is used extensively in the pheno-
menological approach to binding systems. It is often identified (up to a multiplica-
tive constant) with the partition function of the system. This identification is
erroneous and misleading for two fundamental reasons. First, the coefficients of the
binding polynomial are determined by the equilibrium constants of the binding
processes, Egs. (2.3.1)—(2.3.3). As such, they are phenomenological constants that
do not reveal their dependence on the molecular properties of the system. On the
other hand, the coefficients in the partition function are defined in terms of
molecular parameters and therefore, in principle, are calculable from molecular
properties of the binding system. Specifically, all possible sources of cooperativity
may be studied from the coefficients of the partition function, but none can be
extracted from the phenomenological binding constants. Second, the partition-
function approach is also more general in the sense that it provides, in principle,
the form of the BI for systems that are not infinitely dilute with respect to either or
both of the adsorbent molecules and the ligand. On the other hand, the phenom-

*Here, we employ the term “interaction” as used in the literature. The quantity 4K»/K; is actually a
“correlation” and not interaction in the sense of Section 2.1.
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enological approach is limited to the infinite dilute region only. It offers no means
for estimating the form of the BI when the system deviates from this limit. We shall
discuss in Appendix D the first-order deviation of the BI from this ideal-dilute limit.

24. THE SIMPLEST MOLECULAR MODEL FOR THE LANGMUIR
ISOTHERM

In this section we derive the simplest adsorbing isotherm from a molecular
model. It can also be derived by thermodynamic considerations, as discussed in
Section 2.3. Originally, it was derived by Langmuir in 1918, applying kinetic
arguments on the rate of evaporation and deposition of ligands. We describe here
the “minimal model”” that gives rise to the characteristic Langmuir isotherm. Our
system consists of M particles or adsorbing molecules, each having one site for
binding a ligand L. We assume that the molecules are identical and independent.
For simplicity, we also assume that they are localized so that the GPF of the entire
system is Z = EM, If they are not localized the GPF is £ = £M/M!, but this does not
affect the BI (see Appendix B). We assume that the internal degrees of freedom of
both the adsorbent molecules and the ligands are unaffected by the binding process.
No degrees of freedom are ascribed to the ligand occupying the binding site. When
a ligand binds to the site, the energy change in the process is described by one
parameter U, referred to as the binding energy.

By virtue of the assumption of localization, the adsorbent molecules are
distinguishable, but the ligands are indistinguishable, i.e., interchanging two
ligands occupying different sites does not produce a new configuration. The ligands
are supplied from an ideal gas reservoir; the only degree of freedom that changes
upon binding is its translation. Other degrees of freedom, if any, are presumed
unchanged upon binding.

With these assumptions we write the GPF of the entire system and of a single
molecule as

E=EY,  £=00)+00)q,,4qM 2.4.1)
where g = exp(—BU), g,,, is the internal PF of the ligand, and A is given by
3
A= exp(B) = ‘; € _ac 242)
int

Since we have assumed that g, , is the same in the ideal gas phase and at the site, it

*The minimal models used here and elsewhere in the book are models that can be described and solved
to demonstrate a phenomenon with a minimal number of molecular parameters—sometimes, this is
the same as the maximal number of simplifying assumptions.
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0

X

Figure 2.2. The Langmuir isotherm 6 as a function of x = kC. The experimental range of x and 0 is the
shaded area 0 < x < oo and 0 < 0 < 1. The function 8(x) has been plotted here in the range -1 <x <3 to
stress the hyperbolic character of the curve. The center of the hyperbolaisx=-1and 6 = 1.

cancels out in the product g, A. The Bl is thus

popop O __kC _ x 24.3)
oA 1+kC 1+x
where
h
k=gA?=exp(-BINA3, A=——— 244
q exp(-BU) 2T ( )

We see that this model produces the typical hyperbolic function depicted in Fig.
2.2." This curve was first derived by Langmuir and it describes many experiments
of binding ligands to surfaces or to independent molecules. In the thermodynamic
derivation of Eq. (2.4.3), k is an equilibrium constant. Nothing can be said about
its dependence on the molecular parameters of the system. On the other hand, in
the molecular approach we have an explicit expression for the binding constant k
in terms of the molecular parameters in Egs. (2.4.4). In this particular model, there
are only two: the binding energy U and the mass of the ligand my . This allows us
to predict that replacing a ligand by its heavier isotope will decrease the binding
constant. Likewise, if we take two ligands with identical mass but different
electronic charge or dipole moment, then we can predict the direction of change of
the binding constant. Note that in the Langmuir model the thermodynamic constant
is equal to the intrinsic constant.

*Equation (2.4.3) can be rearranged to the form (8 — 1)(kC + 1) = —1. A plot of 0 as a function of x =
kC gives a hyperbola centered at x = —1 and 0 = 1, with the two asymptotes y = 1 and x = -1 (Fig. 2.2).
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Thus, in general, the thermodynamic approach provides us with an equation of
state of the form 8, T, A) = 0. The molecular approach provides us with an explicit
equation of state for each specific set of molecular parameters, which in this case
isfi0, T, A, my, U)y=0.

2.5. A FEW GENERALIZATIONS

We present here a few straightforward generalizations of the Langmuir iso-
therm. The essential assumptions made in Section 2.4 are retained.

2.5.1. Mixture of Two (or More) Types of Adsorbing Molecules

If the system consists of M molecules of type a and M, molecules of type b,
the GPF of the entire system is

E(T, M,, My, 1) =E)+§} = [Q,(0) + 0 (DAIY[Q,(0) + O, (A

= Q(0)Q,(0Y[1 + k C1"[1 + k,C]"> (2.5.1)

where we set k,C = Q_(1)A/Q,(0) and k,C = Q,(1)A/Q,(0). The corresponding BI
is

AdlmE M, kC M, kC 2.52)
M g Mi1+kC M1+kC

where M = M, + M,; k, and k, are the binding constants for sites of type a and b,
respectively.

It should be stressed here that although each type of molecule by itself produces
a Langmuir isotherm, the combination in Eq. (2.5.2) has a form different from the
typical hyperbolic form of the Langmuir isotherm. Figure 2.3 shows the BI for a
mixture of two types of molecules with k, # k,. The BIs are quite different from the
Langmuir isotherm. We shall see in Chapter 4 that this is a typical BI for a two-site
system with negative cooperativity. We shall also discuss in Sections 3.5 and 4.6
how experimental data could be misinterpreted in such cases. At this stage we stress
again that our system consists of M independent adsorbent molecules, and coop-
erativity in the sense defined in this book (see Chapter 4) is not definable in this
system. The generalization to any number of types of sites is quite straightforward.
The BI per site of the mixture is simply

i=0=

k,C
A=y X, —= (25.3)
2% 1+k,C

where X, is the mole fraction of the oi-component in the mixture.
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Log,,C

Log,,C

Figure 2.3. The BI (full line) of a mixture of two types of single-site molecules with k,=1and varying
ky, as indicated next to each curve. The dashed curves are the Bls of pure a and b. [The plots are § (logC);
see Section 4.]

2.5.2. Mixture of Two (or More) Ligands Binding to the Same Site

Again, the system consists of M adsorbent molecules fulfilling all the simpli-
fying assumptions listed for the Langmuir model. The sites can be occupied by
either one of the two different ligands A and B which are in equilibrium with a
reservoir at fixed absolute activities A, and A, respectively. The GPF of the entire
INAcroscopic system is

(T, M, Ay, Ag) = EM 2.5.4)
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where now the single-molecule GPF is
§=0(0)+ QA + Q(B)Ay
=Q(0)1 +k,C, + kgCp) (25.5)

Here, since the two ligands differ in their internal properties, we set k,C, =
Q(A)A,/Q(0) and kyCp = Q(B)Az/Q(0). The three terms on the rhs of Eq. (2.5.5)
correspond to the three occupation states of the molecule: empty, occupied by A,
occupied by B. In this case we can define a BI for each type of ligand,

o Ma_; AmE_ kG (2.5.6)

ATM A 9N, 14k, C, kG o
and

0 =é=x oG __ kCs 2.5.7)

BoM "B o), 1+k,Cu+ksCy -

Clearly, if either C, or Cy is zero, then this case reduces to the simple Langmuir
isotherm. When C, # 0 and Cp # 0 we still have a Langmuir isotherm for A and B,
but the effective binding constant depends on the concentration of the other ligand.
Thus, we can write

kiCy
AT+ KEC,

ky

where k; = W
‘B~'B

(2.5.8)

and a similar expression for 0.

Figure 2.4 shows 0, as a function of C, for three different values of kzC. Since
B competes with A for binding on the same site, the larger the value of kzCy, the
smaller the effective binding constant &, and the corresponding Langmuir isotherm
becomes less steep. The rate of change of 0, with Cj, for a system with given values
of k, and kg is

kL) —k 4k
—2| = #5Ca - (2.5.9)
9Cy | (1 +k,Cy+kyCp)

A

which is always negative—this is clearly a result of the competition for the same
site. Since & is a well-behaved function of C, and Cy, the rate of change of 8, with
respect to C, is the same as the rate of change of 8, with respect to Cy, i.e., we have
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Figure 2.4. The BI of A as a function of C, for different values of Cy, as indicated next to each curve
(ky=kg=1).

the relation

(a&] =(@z] (2.5.10)
3G, |G |,

B

The generalization for any number of ligands is straightforward. The BI of

ligand A for any number of ligands has the form
kyCa
, = I—-I-Z—QEC: (2.5.11)

where the sum is over all the different ligands. Again, all the Bls are of simple
Langmuir form, with an effective binding constant that depends on all products
k,C, forallo#A.

2.6. EXAMPLES

2.6.1. Normal Carboxylic Acids

The simplest binding molecule is a weak acid that releases a proton into the
solution. The anionic group A~ may be viewed as an adsorbent system for a proton

A +H" —HA (2.6.1)

Normally, instead of the binding constant k, data reported in the literature are given
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in terms of the dissociation constant, k., defined for the dissociation reaction

diss’

HA— A +H (2.6.2)

The relation between the two constants is simply

p AT 1 (2.6.3)
diss = [HA] “k

The dissociation constants are commonly determined from the titration curve,
which simply related to the BI as follows: The titration curve for the monoacid is
obtained from the following four equations:

[HIOH] =K, =10
,,m =[A][H)/[HA]

N;=[A] + [HA]

[A] + [OH] = [H] + [Np]

(2.6.4)

The first equation defines the ionization constant of water at 25 °C (we omit the
sign of the charges to simplify notation). The second is the same as Eq. (2.6.3),
while the third is the conservation of the total initial concentration of the (weak)
acid Ny (we assume that there is no change in volume during the titration, hence
this is the same as the conservation of the total number of acid molecules). The
fourth equation is the electroneutrality condition, where [N,] is the concentration
of the added (strong) base.

Solving for Ny as a function of [H], and letting N, = 1 [say, one mole per liter,
or any other units chosen consistently in Eq. (2.6.4)], we obtain the required
function

—{H - ky [HP + K [H] + ky K, + kg, [H] (2.6.5)
[H]2 + kdiss[H]

The corresponding BI expressed in terms of the dissociation constant & ;;__is simply
obtained from the Langmuir isotherm, Eq. (2.4.3), by substltutmg k = Uk
namely,

NB=NB([H])=

[H]
[H] lSS

Clearly the two functions (2.6.5) and (2.6.6) are different’; the relation between the
two is

0=0([H]) = (2.6.6)

Ny((HD) = 1 - 8(H]) — [H] + K, [H]™" 2.6.7)

*In many publications, these are referred to as equivalent functions.
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Figure 2.5 shows N, and the function 1 — 6, plotted as a function of pH = —log, O[H]*
for acetic acid with pk;, . = 4.754. In order to superimpose the two curves we must
transform O([H]) into 1 — 6([H]). Since K, is very small, the two curves Ny([H]) and
1 — O([H]) are almost identical in the range 3 < pH < 11. The dissociation constant
k;;,,may be obtained either from the BI at 8 = 1/2, or from the titration curve
at Ny = 1/2. Table 2.1 presents some values of pk, = -log,, k. for linear (or
normal) carboxylic acids, in water at 25 °C. It is clear that, except for formic acid,
the values of pk;, . converge to an average value of about 4.88.

We now show that as the number n of carbon atoms in the acid increases,
k., must converge to a constant value. The qualitative argument is simple. Adding
a methylene group far from the carboxylic group is not expected to affect the
binding properties of the carboxylic group.

A more precise argument is the following: We write the statistical mechanical

expression for the dissociation constant as
kiss = exp{-BIn°(A,) + n°(H) — u’[(HA,)]} (2.6.8)

where u°(ov) is the standard chemical potential of the species o and A, is the anion
of length n. Assuming that the hydrocarbon chains are linear and rigid, we can write
each standard chemical potential as’

Ho(o) = W(o)) + kgT In Al (2.6.9)
where W(a) is the coupling work of the species o to the solvent, A?x is the
momentum partition functions [see Eq. (1.2.2)], and g, ,, is the internal partition
function of o. Here, g, ,, is essentially the rotational-vibrational PE. If o is not
rigid, one must take the appropriate average over all possible conformations of ¢;
but we do not need to consider this case in the present argument. We now write the
coupling works W(A,) and W(HA ) as

WA,)=W(R,) + W(COO/R,) (2.6.10)

and
W(HA,) = W(R,) + W(COOH/R)) (2.6.11)

where W(R,) is the coupling work for the hydrocarbon chain of length n, and
W(COO™/R,) is the conditional coupling work of the carboxylate group given that
R, has already been coupled. Also, since the mass of the hydrogen ion is much
smaller than the mass of the entire molecule, we can assume that adding a proton

*The experimental titration curve is normally the pH as a function of the added number of moles of base.
This is the inverse function of Eq. (2.6.5).
tFor details, see Chapters 1 and 2 in Ben-Naim (1987).
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Figure 2.5. The titration curve N (dashed line), and the BI, plotted as 1 — 6 (full line) as a function
of pH = ~log,,[H] for acetic acid with pK,, = 14, pk ;. = 4.754. (Note that higher pH corresponds to
lower concentration [H].)

does not change much the translational and the rotational PF of the molecule; hence
we set (see also Appendix B)

Ay =Dys dms, =4 (2.6.12)

With these approximations we rewrite &, _ as

k. = exp{-B[-U + W(COO™/R,) — W(COOH/R,)1} @L_E;}Vﬂ

iss (2.6.13)
The factor on the rhs of Eq. (2.6.13) is simply A, defined in Section 2.4 and in
Appendix B; U is the binding energy, i.e., the interaction energy between the proton

Table 2.1
Values of pk ;. = ~logyg k 4 for Normal
Carboxylic Acids in Water at 25 °C (pk = —pk;,)°

Carboxylic acid Phigs
H-COOH 3.752
CH,;-COOH 4756
CH;—CH,~COOH 4.874
CH;-(CH3),-COOH 4.820
CH;—(CH,);—COOH 4.842
CH,;—(CH,),~COOH 4.857
CH;—(CH,)s—COOH 4.893
CH;-(CH,)s—COOH 4.894
CH;—(CH,);—-COOH 4.955

“Data from Robinson and Stokes (1959).
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and the molecule at the binding site. Clearly, as n increases all the factors in Eq.
(2.6.13) become independent of n.”
If there is no solvent, then &, reduces to

Ky = eﬁU/AiI (2.6.14)
which is the inverse of the (binding) constant k, given in Section 2.4.
2.6.2. Normal Amines

Table 2.2 presents the dissociation constants for linear amines. Here, the values

of pk ;; . converge to about 10.64 for large n.
The statistical mechanical expression for the dissociation constant
_ [BllH]
diss = [HB] (2.6.15)
is similar to Eq. (2.6.13) and has the form
exp[—-BW(
kgiss = exp{-—B[-U + WINH,/R,) - WINH}/R )1} cxpl AV (2.6.16)

Ay

The factor on the rhs is the same as in Eq. (2.6.13).
We now take the ratio of the average values of k

iiss TO1 large n for the acids and
bases. From Egs. (2 6.13) and (2.6.16) we have

kdiss(aCid)

k. (base) = exp[B(Ulacid) — BU(base)]

x exp{BIW(COOH/R,) + W(NH,/R,) - W(COO™/R,) - W(NH3/R )]}

= (binding energies) (solvation) 2.6.17)
The experimental value of this ratio is

kgsdlacid) 107488

= =57%10° 2.6.18
k. (base) 1071064 ( )

*“The conditional coupling works W(COO™/Ry,) and W(COOH/Ry) depend on n for small #. The range
of this dependence is the same as the range of the pair correlation function between two particles in a
solvent. For more details, see Ben-Naim (1987) and Ben-Naim and Mazo (1993).
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Table 2.2
Values of pk ;. = —logyg k4 for Normal Amines at 25 °C
k= _Pkdiss)a
Amine DPkiss
CH,—CH,—NH} 10.631
CH ;—(CH,),~NHj 10.530
CH;3—~(CH,);-NH} 10.597
CH,;~(CH,),~NH} 10.630
CH ;—(CH,)s~NH} 10.640
CH;~(CHy)s—NH} 10.66
CH;—~(CH,);-NHj 10.65
CH;3~(CHy)g-NH} 10.64
CH,—(CH,)o~NH} 10.64

“Data from Robinson and Stokes (1959).

In Eq. (2.6.17) we see that this ratio is determined by the product of two factors.
One factor depends on the difference in the binding energies of the proton to the
negatively charged carboxylate and to the neutral amine group. Clearly, this must
be a very small number on the order of

exp [—B ;ﬁ} 10724 (2.6.19)

0

with kzT ~ 0.6 keal/mol, €? = 332.8 kcal A/mol, and r, ~ 1 A. On the other hand,
the second factor, referred to as the solvation effect, is very large—it involves
cancellation of the conditional solvation free energies of the charged groups to form
neutral molecules. The reaction is shown schematically in Fig. 2.6a.

To estimate the solvation effect, consider the two “reactions” b and c in Fig.
2.6. The free energies of these “reactions” are 207 and 174 kcal/mol, respectively;
hence the second factor is on the order of

exp(207B) = 5 x 10%! (2.6.20)

The two estimates (2.6.19) and (2.6.20) should not be taken too seriously. The
purpose of making these estimates is only to show that the ratio (2.6.18) is
determined by the product of two factors: one very small and the other very large.
The experimental result (2.6.18) indicates that the solvation factor is the one that
gains in the competition. Clearly, had we ignored solvation effects leaving only the

*Data from Ben-Naim (1987).



The Binding Isotherm

NH;F COO" NH,
a i + | —_—

Rn Rn Rl'l
b Lit + Cc — 2Ne
C Nat + Br —— 2Ar

+

COOH
Rn
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Figure 2.6. (a) The transfer of a proton from the ammonium ion to the carboxylate ion, giving two
neutral molecules. (b) and (c) Approximate “reactions” where charge is transferred from one ion to

another to form two neutral atoms of similar size.

Table 2.3
Values of pk ;. = —log, k4, for Some Substituted
Acetic Acids at 25 °C*
Acid Dkiss
Acetic acid 4756
Todoacetic acid 3.174
Bromo acetic acid 2.901
Chloro acetic acid 2.865
Fluoro acetic acid 2.584

“Data from Robinson and Stokes (1959).

binding energies to determine the ratio k; (acid)lk , (base), we would have
obtained an extremely small value. This is expected intuitively. Since U(acid) is far
more negative than U(base), the binding constant to the acid must be much larger
than the binding constant to the base, i.e., k(acid) > > k(base) or, equivalently,

k. (acid) < <k, (base).

Table 2.3 presents some values of pk,  for various substituted acetic acids.
Since the electronegative substituents on the methyl group reduce the negative
charge on the carboxylate ion, the binding constant becomes smaller, or the

dissociation constant becomes larger, i.e., increasing the acidity of the acid.



Adsorption on a Single-Site Polymer with
Conformational Changes Induced by the
Binding Process

3.1. INTRODUCTION

One of our main assumptions in the derivation of the Langmuir model [and
implicitly made by Langmuir himself (1918)] is that the binding process does not
affect the distribution of states of the adsorbent molecules. Removal of this
assumption has a profound effect on the form of the BI of systems with more than
a single site.

The qualitative reason is quite simple. Consider an adsorbent molecule the
states of which are labeled by index j. The probability of finding an empty molecule
instate j is P (0). Suppose the molecule has m binding sites, and the binding constant
to the first site is k,(j) when the molecule is in state j. If m = 1, then, as in Section
2.5, we shall obtain a Langmuir isotherm with binding constant k, which is simply
an average ijl(j)Pj(O), the sum being over all the states of the molecule. If there
are m identical sites, the intrinsic binding constant is again k; = Xk, (j)PJ.(O). When
a second ligand approaches the molecule, the conditional binding constant k,,
might differ from k, for two conceptually different reasons. It might interact with
the ligand on the first site, which will produce correlation between the two sites, to
which we shall refer as direct correlation (Section 4.3). A second cause for the
difference between k; and k,,; might be a change in the distribution of states induced
by the first ligand, say from P(0) to Pj(l). Thus, the second ligand approaching the
molecule with a new distribution of states Pj(l) will have a binding constant of the
form &, = 2k, ,( j)Pj( 1), where k,,,(j) is the conditional binding constant for the
state j. Clearly, even when there are no direct interactions between the ligands (e.g.,
between two oxygens in hemoglobin), in which case k,,;(j) = k,(j) for each state j,
the average conditional binding constant k,,, will differ from &, simply because the
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distribution has changed from Pj(O) to Pj(l). We shall explore this effect on the
cooperativity of the system beginning in Chapter 4. In this chapter we examine only
the change in the distribution of states induced by a single ligand. We shall do so
in a “minimal model” of two states, denoted by L and H, with energies E; and E,,
respectively.

If the study of cooperativity is likened to the study of chemical bonds, then the
model] studied in this chapter would be the analogue of the hydrogen atom model.
The hydrogen atom does not have a chemical bond, yet its thorough understanding
is crucial for understanding molecules.

Likewise, this book is devoted to the study of cooperativity arising from
correlation between at least two ligands occupying different sites. The model of this
chapter, like the Langmuir model, has by definition no cooperativity.” However, its
thorough understanding is crucial for understanding the mechanism by which
ligands communicate in a multisubunit system.

3.2. THE MODEL AND ITS PARTITION FUNCTION

As in the Langmuir model we focus on a single adsorbent molecule, P, having
a single site for accommodating a ligand L. The new feature of this system is that
each P molecule can be in either one of the two conformational states. We shall
refer to these two states as the energy levels of our system—although in reality these
are free-energy levels (see also Appendix C).T The two states are denoted by L and
H for low and high, respectively. The corresponding energies are denoted by E, and
E,, and we shall assume that

E, <Ey 3.2.1)
The PF of the empty system is simply

&0)=0,+ 0y (3.2.2)
where
Q, = exp(-BE)), 0Oy =exp(-BEp) 3.2.3)

At equilibrium, the probability of finding the empty system in one of the two states
is the same as the equilibrium mole fractions, and these can be read from the PF,

*Wyman and Gill (1990) express an apparently different view, referring to single-site systems as
cooperative. We shall see in Section 3.5 and in Section 4.6 that this is not a genuine cooperativity, and
we shall refer to it as spurious cooperativity.

TWe suppress the free-energy character of these two states in order to highlight the emergence of new
free energies whenever we average either over conformational states (e.g., Section 3.3) or over solvent
configurations (see Chapter 9).
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£(0), in Eq. (3.2.2) as follows:
o Oy

> XO:
L QL+QH H QL+QH

where we denote by Xg and X(P’I the mole fractions of L and H in an ensemble of a
large number of empty systems at equilibrium. The equilibrium constant for the
“reaction”

3.24)

L=H 3.2.5)
is thus
X0
K= _Q_Ii = exp[—B(EH — EL)] =_" (3.2.6)
L X;
In terms of K, we write the mole fractions Xg and X?i as
1 K
X0=—— Xx0= 3.2.7
L1+’ "# 1+K G27)

since we have chosen E; — Ey<0,ie., L is more stable than H, 0 < K <1 and we
always have X% < X?.

We note that in Eq. (3.2.6) we have defined K in terms of the molecular
parameters of the system (E; and E,). By virtue of the equilibrium condition, K is
also equal to the ratio of the two mole fractions X% and XJ. In the subsequent sections
we shall follow the changes of X,; and X; upon binding of ligands, and we shall
continue to use the parameter K as defined in terms of Q,, and Q. The equilibrium
constant for the reaction L = H will, however, be changed upon binding.

Next, we turn to the PF of a system with ligands. There are altogether four
states of our system, denoted symbolically by

(L, 0), (H,0), (L, 1), (H, 1) (3.2.8)

i.e., empty L, empty H, filled L, and filled H. We denote by U, and Uy, the binding
energies of L on the two conformations L and H, respectively. The PF of the system
is now

E(T, M) =0, +Qy+ 0,9, M+ Quayh (3.2.9)

where A = exp(Bp) is the absolute activity of the ligand and we have introduced the
notation

g, =exp(-BU)), gy =exp(-BUy) (3.2.10)

The four terms in the PF correspond to the four states of the system, as described
symbolically in (3.2.8).
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The probabilities of these four states are

P(L,0)=Q,/E, P(H,0)=Q,/t
(3.2.11)

P(L, 1)=Q,q;M&, P(H, 1)=Qug ME

These are the probabilities of the fundamental states of our system, as described in
(3.2.8).

The marginal probabilities are obtained by summing over all possible states
that we do not care to specify. Thus, the probability of finding the system empty,
irrespective of its conformational state, is

P(0)=P(L,0) + P(H,0) = O+ Oy : Ou (3.2.12)

Similarly,

(QLq L+ QH‘I H)}"

(3.2.13)
3

P(1)=P(L, 1)+ P(H, 1)=

The probability of finding the system at conformational state L, irrespective of its
occupational state, is

P(L) = QL+TQL"L7” (3.2.14)
and similarly
P(H) = W (3.2.15)

Some conditional probabilities are

P(L,O) O

PL/O)= PO) - 0.+ 0,

(3.2.16)

which is clearly the same as Xg in Eq. (3.2.4), only here we have explicitly used the
condition “0” (empty) in the notation. Note that P(L, 0) in Egs. (3.2.11) refers to
the probability of finding “state L and empty,” whereas P(L/0) in Eq. (3.2.16) is the
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conditional probability of finding state L given that it is empty. Similarly,

PLY)_ Q4
PA) Q19+ Opayn

Note that the probability of finding state L changes with A according to Eq. (3.2.14),
which is also the mole fraction of the L state as a function of A. We shall denote this
function by X, (A), which changes from X? [i.e., X; (A = 0)], when A = 0 to X{" for
the fully occupied system at A — . Thus,

P(L/1)= (3.2.17)

)
X =X,(A=0)=PL/0)=—2= (3.2.18)
1 =X;( ) ) 0.+ 0,
and
XP=X (A=o0)=P(L/1)= A (3.2.19)
0141+ Oy
The equilibrium constant for the reaction L == H is also a function of A,

XN 0.+ 0qh

The equilibrium constant defined in the empty system, Eq. (3.2.6), is now identified
as K = K(A = 0). For A — o we have the fully occupied system, for which the
equilibrium constant is

KW = K\ = 00) = quH (3.2.21)

1491

Compared with K [i.e., K(\ = 0)], the new equilibrium constant K"’ corresponds to
a new system of two levels with energies E, + Uy and E; + U, as depicted in
Fig. 3.1.

Ey

~ -
~
-
-~
-

B -

Ey+Uy

— B+

Figure 3.1. Schematic energy-level diagram of a system before (left) and after (right) the binding of
a ligand.
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3.3. THE BINDING ISOTHERM

From the GPF in Eq. (3.2.9) we derive the average number of ligands per
system,”
dln § _ (QLqL + QHQH))"
o ¢

Incidentally, 7 is the same as P(1). The reason is that 7, as an average over two
possible occupation states, can also be written as

O=n=>A 3.3.D)

1
n=Y iP()=0-PO)+1-P(1)=P(1) (33.2)
=0

We now define the intrinsic binding constant  as the ratio Q(1)A,/Q(0) (Section
2.2),

QD _ 0y, + Oy

= = (3.3.3)
Q(0) 0, +0y %
and rewrite the BI as
kC
e =n=
n [+ kC (3.3.4)

which is the same as the BI for the simple Langmuir model. It is easy to show that
the form of the BI is independent of the number of states chosen for P (see

Appendix C).
If we define the binding energy function' by
Blon = U, if a=L
()= U, if a=H (3.3.5)

we can express the binding constant k [Eq. (3.3.3)] as an average of the form
k= X0k, + Xky, = ( exp[—BBI Yy Aq (3.3.6)

where k; and k,, are the binding constants for binding on L and H, respectively, and
the average is taken with respect to the probabilities of L and H in the empty system.

*We shall use 7 for the average number of ligands per system or per adsorbent molecule, and 6 for the
average per site. Here, they are identical.
*This is a random variable defined over the space of the two conformational states L and H.
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In the Langmuir model k is related to the energy change for the process of
binding. More precisely,

kC= o2u A =exp{-BlA(1) — A(0) —p]} (3.3.7)
(0

A(1) — A(0) is simply U in the Langmuir model. Here, on the other hand, A(1) —
A(0) is a free-energy change, not an energy change. Recall that in defining U we
emphasize that U is chosen as an energy of binding, although in reality it is always
a free energy (see Appendix C for more details). This was done to emphasize the
emergence of free energy as a result of the averaging over the states of the molecule
in Eq. (3.3.6). In the simple Langmuir model, U is presumed to be independent of
temperature. On the other hand, the quantity A(1) — A(0), which replaces U in the
present model, is temperature-dependent,

Q(l) QLqL+QHqH
A(1) - A(0) = —k,TIn =— =k, Tln —— "%
(1) =A0) 00~ "o 70,
=—k,T In (X}g; + X3qy) (33.83)

If there is only one state, or when g, = g, then A(1) — A(0) = U. However, when
there are more than one state and g; # gy, the change in temperature would change
the equilibrium concentrations of L and H, and hence A(1) — A(0) becomes
temperature-dependent. This has important consequences for the thermodynamics
of the binding process, such as the entropy and the energy of the binding process.”

3.4. INDUCED CONFORMATIONAL CHANGES

We now examine the extent of conformational changes induced by the binding
process. Since for any A we must have

XM +XgM)=1 (34.1)
it is sufficient to study only one of the mole fractions. We already had
X,(00) = P(L) = Ot ?LqL (3.4.2)

where P(L) is the probability of finding the state L, here expressed as a function
of A. We have earlier seen two limiting cases of X, (A) in Eqgs. (3.2.18) and (3.2.19).

Instead of examining the nonlinear function X; (A) in the range 0 < A < oo, it is
more convenient to study the function X, () in the range 1 <6 < 1. By eliminating

*More details on this topic can be found in Chapter 3 of Ben-Naim (1992).
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A from Egs. (3.4.2) and (3.3.1) and using the two dimensionless quantities

K=_9 h=— .4.
0, 4 (3.4.3)

we obtain the explicit dependence of X; on 6,

K(1-h)
K®=X0+0—""—"—
0)=X; + 1+ K01+ 1K) 34.4)
This is a linear function in 0 (Fig. 3.2a), the slope of which is
d=| | K=k (345)
06 (1+K)(1 +hK)

Note that the slope is determined by the parameter o. When 2 =1, d; = 0. The sign
of the slope d; depends on whether 4> 1 or 4 < 1. Figure 3.3 shows d; as a function
of X? for various values of h. This function is obtained from Eg. (3.4.5) by
substituting K = (1 — Xg)/ 7 Le.,

_A-h1-X)

- 3.4.6
L -h+h/x9) (40

The quantity d; will be referred to as the extent of the conformational change
induced by the ligand. Whenever d; = 0, we shall say that the binding of the ligand
does not induce conformational changes. This can occur either because K =0 (or
K = o), in which case we say that the adsorbent molecule is not responsive to the
binding process, or because h = 1, in which case we say that the ligand cannot
induce conformational changes in the molecule P. Clearly, “either K=0orh=1"
is a necessary and sufficient condition for d; = 0. Because of its fundamental role
in the transmission of information between ligands—hence the emergence of
indirect cooperativity—it is worthwhile pausing to examine the behavior of d; in
some limiting cases:

1. When K — 0, the energy difference E,; — E; — o. The L conformer is
infinitely more stable relative to H. Thus, for any finite value of A the
system is infinitely resistant to conformational changes. (Clearly, the
same is true for K — oo, but we have chosen the energy levels such that
E,—E >0)

2. When h =1, i.e., U, = Uy, the ligand has no preference for binding on L
or on H. Therefore, for any finite value of K the ligand cannot induce
conformational change.

3. When b — 0, Uy, — U, — oo, in which case binding on L is overwhelm-



Adsorption on a Single-Site Polymer 59

XL 1 0.001
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Figure 3.2. X as a function of  [Eq. (3.4.4)] for various values of A. (a) For K = 1, at @ = 0, the initial
value of X is X0 = 1/2. (b) For K = 0.001, the initial value of X; is X} = (1.001)™! = 1. With 4 = 1000,
X; drops to almost zero at @ = 1. Pure L and pure H are shown as a square and a circle, respectively.
Intermediate equilibrium values of L and H are indicated by the intermediate shades of gray.
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Figure 3.3. Dependence of d; on Xg for various values of % (as indicated next to each curve).

ingly preferable relative to H. In this case the ligand induces the maximum
possible conformational change. For instance, if K = 1, then Xg = X% =
1/2 and d; = 1/2, i.e., there is a total conversion of H into L. The opposite
effect will be observed for i — oo, for which d, — ~1/2. In general, for
h — 0, d; — K/(1 + K) = X%, meaning that all the H form is converted
to L.

4. For h — oo, in which case binding on H is overwhelmingly preferable
relative to L, we have d; = —-1/(1 + K) = —X‘Z. Therefore, as K becomes
very small,” i.e., Xg ~ 1, we have d; ~ -1, which means that almost all of
the L-form is converted to the H-form. This is clearly the maximum effect
that a ligand can have on the equilibrium concentrations of H and L. This
case is shown in Fig. 3.2b.

3.5. SPURIOUS COOPERATIVITY

The term cooperativity, as defined qualitatively in Section 2.1 and in more detail
in Chapter 4, requires at least two ligands that can “communicate” on the same
adsorbent molecule. Clearly since this chapter is devoted to single-site molecules,
the term cooperativity is not even definable in such systems. Nevertheless, we
discuss in this section a phenomenon referred to as spurious cooperativity, which

*One should be careful about the order in which we let # — o and X — 0. Here, we first let 4 be very
large so that d, ~ —1/(1 + K), and then let K be small enough so that dy, ~ 1.
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is not a genuine cooperativity." Spurious cooperativity can occur in any system
consisting of a mixture of different adsorbing molecules.

In multiple-site systems, spurious cooperativity can occur along with genuine
cooperativity (as defined in subsequent chapters). It is only in the single-site system
that any apparent cooperativity is necessarily spurious, and therefore we place the
discussion of this phenomena in this section. We shall return to spurious coopera-
tivity in two-site systems in Section 4.6. The reader should keep in mind the
possibility of spurious cooperativity whenever processing and interpreting experi-
mental data, especially when one has reason to suspect that the two or more
conformations might not be in equilibrium.

In this section we find it more convenient to start with an ensemble of M
independent and indistinguishable systems (i.e., the systems are identical but not
localized, as assumed in Section 2.4), each of which has a single binding site. We
stress from the outset that the concept of cooperativity, as defined in Section 4.2,
does not apply to such systems. What we shall show is that under certain conditions
a single-site system can exhibit behavior that is similar to the behavior of a
cooperative system.

The GPF of the ensemble is

E(T, M, Ay =EM/M! (3.5.1)
If each system can be in one of two conformational states, L or H, we write?

. gt Gt ..
ETMMN=E+E)"M = Y THyTs X E@M Mg
MaM=m L TTH M =M (3.5.2)

where M, = M — M. The quantity E" is the GPF of the same system but having a
fixed number M, of L-systems, and the rest having M, of H-systems. Since
Z(T, M, A\) is a sum over many positive numbers =T, M 1» My, \), we must have
the inequality

E(T, M, \) > EXT, My, M, V) (3.5.3)

Thus, the GPF of the equilibrated system, defined by the variables (T, M, A), is
always larger than the GPF of a system (T, M;, My, A) with any arbitrary but fixed

A minimum of two ligands must cooperate to observe a cooperative system. A different view is
expressed in Wyman and Gill (1990). These authors correctly point out that in a single binding site
there can be no cooperativity (page 51). However, three pages later they refer to a mixture of single-site
molecules as being negative cooperative. No less confusing is the usage of two different definitions of
“macroscopic” and “microscopic” cooperativities [Bradsley and Waight (1978), Whitehead (1980),
Briggs 1984), DiCera (1996)]. These authors rely on the shape of the BI to define cooperativity. As we
shall see in this and in the next chapter, definitions of cooperativity based on the shape of the BI could
be quite misleading.

¥The GPF of this system depends also on the volume V, but we suppress this dependence in our notation.
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values of M; and M, = M — M. We shall refer to the system (T, M;, M, ) as the
“frozen-in” system.

There is a particular value of M, (and hence of M, =M — M;) for which the
inequality (3.5.3) turns into an almost equality. This is the equilibrium value of
M, , denoted by M; (hence M, = M — M), given by

§ 3
M=M=, My=M=" (3.5.4)
g g
for which
(T, M, \)=E"(T, M, Mg, M) (3.5.5)

Although we have used the equality sign in Eq. (3.5.5), the reader should be aware
of the fact that this is not an equality in the strict mathematical sense. It is, however,
an equality only in the thermodynamic sense; i.e., when we take the logarithm of
the two quantities, the difference in the resulting quantities is negligibly small,
hence we can view them as practically equal.” A qualitative argument is the
following: Suppose we start with a fully equilibrated ensemble of systems, for
which the PF is E(T, M, ). We then “freeze-in” the conversion L = H (say, by
introducing an inhibitor). We convert our ensemble into a mixture of fixed values
of M; and M, The thermodynamic quantities obtained directly from Z, or by its
first derivatives (such as the entropy, energy, free energy, etc. ), are unaffected by
this operation. Note, however, that second and higher derivatives are affected.®

We next write the BI of the two systems. The first is the “equilibrated system,”
the GPF of which is = on the lhs of Eq. (3.5.5),

N_AdlmE |05 &,
eeq = ==————=— | —— —
M M ) E{oA
dln dln
S, s Su
oA oA
Note that X;? and X7 are the mole fractions of L and H in the equilibrated system.

Similarly, the BI for the “frozen-in” system is obtained from =", defined in Eq.
(3.5.2),s0

=AX7 = X390, + X596, (3.5.6)

0/=—=22"" _xr9 +X[0, (357

A more detailed discussion of this point can be found in Chapter 2 of Ben-Naim (1992).
Examples are the heat capacity, the compressibility, etc. For more details, see Chapter 7 in Ben-Naim
(1992).
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In both cases 6°7 and 6 are averages of the BIs of the pure individual conformers
L and H. However, the weights used in 6° and in 0/ are different. The values of the
weights X;? and X}/ are determined by the equilibrium conditions, given by Eqgs.
(3.5.4), while X/ and X/, are determined by the arbitrary values of M, and M,,
chosen in the preparation of the mixture of L and H. Since both 6°¢ and 6 are
averages of 0, and 0, the two curves 8°4()) and 6/() will always fall between the
curves 8, and 6,,. Specifically, for a single-site system 8°4(A) > 6/(A) for any A, i.e.,
the equilibrated BI is everywhere “above” the frozen-in curve. Details are given in
Appendix E.

The reason for the different behavior of 82 and 6/ is quite simple. Suppose we
start with an equilibrated system and follow the BI, 6°4(A). If, at some point, we
“freeze-in” the equilibrium L = H, then at that point X3 =X/ (hence also
X% = X%), and also 6°7 = &/, It is only when we continue the binding process that
the two curves diverge. It can be shown (see Appendix E) that at that point the slope
of 6% is always larger than that of 6/,

‘We next apply Egs. (3.5.6) and (3.5.7) to the special case of a single-site system,
for which we have

E.=0,+01a/h Ey=0uy+ Oyap (3.5.8)

The equilibrated Bl is [see Eq. (3.5.6)]

(DA kC
09 = = 5.
1+{gA 1+kC (3.5.9)
where k = (X%, + X%q,,)\,» as obtained in Section 3.3.
Next, we derive the BI 6/ for the particular choice of the mole fractions Xg and
X?{ (i.e., we freeze the equilibrium of the empty system, A = 0). Equation (3.5.7)
yields

ah g
=X} 1 +Lqu+X% Th g A= X0+ Xily (3.5.10)

In the general equations (3.5.6) and (3.5.7), we viewed both 6°¢ and 0’ as
averages of 0, and 6, but with different weighting mole fractions X;?, X77 in the
first and X%, , X%, in the second. In the special case derived above 6% is viewed as
a simple Langmuir isotherm, the binding constant & of which is an average of the
binding constants for L and H. Thus, in 6°/ we first average over k ; and ky, and then
form the Langmuir isotherm. In 6/, on the other hand, we first form the BI of L and
H, and then average over 6, and 8. Clearly, the resulting curves will differ. They
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2
Log A

Figure 3.4. The BI (upper panel) and corresponding slopes (lower panel) for the equilibrated (dotted)
and “frozen-in” (dashed) systems. The full lines are 6; and 6. The parameters chosen for these
illustrations are QL= QH =land(@) g, =1,qy= 100; (b) q=1,qy= 103; ©qr=1, qy= 10*,

do have initially the same slope, i.e.,

00 00/
= — =X2qL+XOHqH (3.5.11)
oA Ac0 oA 220
but the higher derivatives are different, e.g.,
0%6%4 2%/
2| = ~(X0q; + X3ap) v X, q; + X1 (3.5.12)
A=0 A=0

Figure 3.4 shows the BIs 8, and 8, and the derived quantities 8°¢ and 8 for the case
Q, =0y, =1, hence X = X, = 1/2, and with (2) g, = 1, ¢, = 100; (b) g, = 1, gy =
10% (¢) =195 = 10*. For reasons to be explained in Section 4.3, it is more
convenient to draw 0 as a function of log,, A or log,, C. This is also in accord with
the tradition of plotting titration curves, which are similar to the BI; see Section
2.6. In Fig. 3.4 we also show the slopes of the BI, again drawn as a function of
log,q A

The locations of the maximal slope of 8, and 8, are clearly discernible in the
maxima in the plots of the slopes of the BI. Thus, in Fig. 3.4, the maximum slope
of 0, is always at the point log;, A = 0, but as g, increases the location of the
maximum slope of 6, moves leftward. Note that 8°7 is similar in shape to the
Langmuir isotherm, but the form of 6/ is quite different. As can be seen from the
lower panel of Fig. 3.4, in this particular case there are two points at which the curve



Adsorption on a Single-Site Polymer 65

Figure 3.5. The BI and corresponding slope for the case ¢; = 1 and gy = 10%, but different values of
X{ and X}. Curves 1,2, and 3 correspond to Xo = X5 = 1/2; Xy = 2/3, X3 = 1/3; and X2 = 3/4, X3 = 1/4,
respectively. Note that the distance between the locations of the maximal slopes of 6/ is the same for
the three cases. The relative steepness of the curves is a measure of higher-order spurious cooperativities
(Appendix F).

has a maximum. The separation between the two peaks of the slopes of the Bls is
determined by the difference g, — g, or k; — k,.*

Figure 3.5 shows how the BI 8/ changes with the ratio K = Q,/Q,, i.e., the
initial concentrations X? and X};. For this illustration we fixed the values of ¢, = 1,
qy = 100, and chose different values of K, i.e., K=1, K=1/2, and K = 1/3 or,
equivalently, X? = X% = 1/2; X0 = 2/3, X%, = 1/3; and X = 3/4, X%, = 1/4. Note that

*One may wonder how a system with two conformers, having the same energies, can differ so widely
in their binding energies. This is possible. Consider a binding molecule with an asymmetric (or chiral)
center. In that case the two enantiomers, one being a mirror image of the other, have exactly the same
energy. If the ligand is a single enantiomer of an asymmetric molecule, then it is possible that it will
bind with very different binding energies to the two enantiomers of the adsorbent molecule.
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here the separation between the two peaks of the slopes of the Bls is fixed
(determined mainly by g,/q;), but the relative heights of the two peaks changes. In
Appendix F we show that these curves can be described in terms of Bls of systems
having pair, triplet, and quadruplet spurious cooperativities. We also discuss in
Appendix F the general case where the initial concentration is any X(z

The two illustrations in Figs. 3.4 and 3.5 are presented here because we have
devoted this chapter to a single-site system that can be in an equilibrium between
two conformers. We have seen that whenever the equilibrium is “frozen-in,” the BI
behaves differently. This is similar to the change in heat capacity, compressibility,
thermal expansion coefficient, and similar quantities. What makes the behavior of
the BI so special and potentially misleading is the fact that once the equilibrium is
“frozen-in,” the system behaves as a mixture of two nonconvertible species, as
discussed in Section 2.5. Such systems are, from the standpoint of the form of the
BI, indistinguishable from a cooperative system. Therefore, in general, one might
be misled in assessing the cooperativity of a system if cooperativity is defined
only in terms of the form of the BI. We shall further elaborate on this point in
Section 4.3.

In the particular case of a single-site system, as discussed in this chapter and
in Section 2.5, if we know that the adsorbent molecules are single-site systems, then
observing a cooperative-like form of a BI is unlikely to be misleading. We can
immediately tell that this form is the result of the presence of more than one species
with different binding constants. The situation is much more complicated and
potentially misleading if we know that the system has two or more sites. Here,
relying on the form of the BI might mislead us to believe that the system is
negatively cooperative even when the system is noncooperative, or even positively
cooperative. We defer the discussion of these cases to Chapter 4.

In this section we derived the Bls of a system where the equilibrium conversion
between the species L and H has been “frozen-in.” The more general case is a
mixture of two (or more) components of any concentration. This case is discussed
further in Appendix F.



Two-Site Systems: Direct and Indirect
Cooperativity

4.1. INTRODUCTION

In this chapter we begin to study cooperative systems. We start by defining the term
correlation between any two events. The term “cooperativity” is then identified
with the term “correlation” when applied to a particular event such as “sites iy, . .
., i, are occupied.” We examine two fundamental sources of cooperativity: direct
and indirect. The first is due to direct ligand-ligand interaction. The second can
arise from various sources: (1) effect of the ligand on the translational and rotational
PF of the molecule; (2) effect of the solvent; (3) effect of the ligand on the
conformational state of the molecule. The first possibility is usually negligible since
the ligands are very small compared with the adsorbent molecule (Appendix B).
The binding of proteins to DNA, discussed in Section 5.10, is an exception. The
second is important and should be considered whenever a solvent is present. We
shall discuss solvent effects in Chapter 9. What remains is the effect of the ligand
on the conformational state of the adsorbent molecule. This is discussed beginning
in Section 4.5 and is shown to be one of the most interesting aspects of cooperativity.
In Chapters 5 and 6, we shall see that the mechanism of transmitting information
by the adsorbent molecule is, in some formal sense, essentially the same as through
the solvent. We shall see that in order to transmit information through the adsorbent
molecule, which in general consists of several subunits, three conditions must be
fulfilled. First, the ligand must discriminate between the different conformations.
In the case of a two-conformation model, this means that the binding energies to
the two conformations must be different. Second, the conformational equilibrium
denoted by H = L between the states L and H must be responsive, i.e., conforma-
tional changes in the adsorbent molecule must be induced upon ligation (see
Section 3.4). Finally, when there are two (or more) subunits, there should be
transmission of information across the subunit—subunit boundaries. Corresponding

67
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to these three effects we shall introduce the three fundamental parameters #, K, and
1. We shall see also that the same parameters are necessary to describe indirect
cooperativities in more complicated binding systems.

If the model treated in Section 3.4 was likened to the “hydrogen atom” of the
binding system, the models of this chapter may be referred to as the analogue of
the “hydrogen molecule.” The new phenomenon of the chemical bond, formed
when there are two hydrogen atoms, is the analogue of the cooperativity between
two (or more) ligands in a binding system.

4.2. THE GENERAL DEFINITION OF CORRELATION AND
COOPERATIVITY IN A TWO-SITE SYSTEM

Our system is a single adsorbent molecule denoted by P, having two binding
sites denoted by a and b. These could be identical or different, but in this section
the treatment is general and applies to any case.

We shall use probabilistic language to define the terms “correlation” and
“cooperativity.” The probabilities pertaining to the various events are read from the
appropriate terms in the GPF, which for our system is

E(T, 1) = 0(0, 0) + [Q(a, 0) + Q(0, b)]A+ Qla, bA? @2.1)

The four terms in Eq. (4.2.1) correspond to the four occupancy states of the
system (Fig. 4.1).
The average number of ligands per system is

hop 0InE_ [0, 0)+Q(0, b\ +20(a b))’
"7 T 00,0)+[0@ 0)+ 00, bYA+ 0@, bRz (422

and the BI per site is
1
== 423
] 7 n (4.2.3)
R t 4
0.0) (a,0) 0,b) (a,b)

Figure 4.1. The four occupancy states of a two-site system.
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In terms of the intrinsic binding constants, we transform the BI into

1 (et k)C+2k,C?

60== 4.2.4
2 1+ (k, + k,)C+k,C? @24
where the binding constants are defined in terms of the PFs as
0(a, 0) 0(0, b) Q(a,b) ,,
k,==——=A,, k, = , andk = A
00,0 %7000 *7 90,00 @

with A=A, C. The four fundamental probabilities corresponding to the four “events”
depicted in Fig. 4.1 may be read directly from the PF in Eq. (4.2.1). These are

P(0,0)=Q(0, 0)/E, P(a, 0) = O(a, O)A/E,

(4.2.6)
P(0, b) = Q(0, b)L/E, P(a, b) = Q(a, b)A*/E
We shall also need the (marginal) probabilities
P(a)=P(a, _)=P(a,0)+ P(a, b) 427)

P(b)=P(_, b)=P(0, b)+ P(a, b)

A blank space in the argument of P means “unspecified” or “anything” Thus, P(a, _)
[or simply P(a)] is the probability of the event “site a is occupied.” The state of site
b is unspecified and could be anything, empty or occupied.
The correlation between any two events 4 and B is defined by
' P4 B)

= 4.2.8
8A D)= (42.8)

Clearly, this quantity measures the extent of dependence between the two events.
The two events 4 and B are independent if and only if”
P4 - B) = P(4A) - P(B) 4.2.9)
or, equivalently,
84, B)=1 (4.2.10)

In the context of this book the term correlation as defined in Eq. (4.2.8) applies
for any two events. For instance, the correlation between the events “site a is empty”
and “site b is empty” is

©0,0=—200 4.2.11)
PO, )P(. 0)

*See also the footnote between Egs. (1.1.8) and (1.1.9) in Section 1.1.
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The same applies for the two events “site a is occupied” and “site b is occupied,”
for which the correlation is

- P(a, b) _ P(a, b) (4212)
P(a)P(b) P(a, )P(, b)

It is only for the latter events that we shall apply the term cooperativity. Thus, while
the term correlation is applied, as a measure of the extent of the dependence,
between any two (or more) events, the term cooperativity is applied only to a
subclass of events involving ligands occupying sites. It will measure the extent of
the dependence between two (or more) ligands bound to their sites. For the latter
events, the terms cooperativity and correlation will be used synonymously. When-
ever events of this type are correlated, we shall say that the ligands occupying the
two sites cooperate, or simply the system is a cooperative. Sometimes we shall also
say loosely that in this case there exists communication between the two ligands
occupying the sites a and b. Communication is used here in the sense that a ligand
at one site “knows” or “senses” the presence of another ligand at the second site.

Whenever g(a, b) = 1, we say that there is no correlation between the events
“site a is occupied” and “site b is occupied,” and hence the system is noncoopera-
tive. If g(a, b) > 1, we say that the two ligands cooperate positively, and when
g(a, b) < 1, they cooperate negatively."

In terms of conditional probabilities we have

(a, b) (a, b)

p P
P(a/b) = P(b) =P(a)g(a,b) and P(b/a)= Pla)

8(a, b)

=P(b)g(a, b) (4.2.13)

Thus, positive cooperativity means that the conditional probability, say P(a/b), is
larger than the unconditional probability, i.e., the fact that “b is occupied” enhances
the probability of the event “a is occupied.” Since g(a, b) is defined symmetrically
with respect to a and b, it follows from g(a, b) > 0 that both P(a/b) > P(a) and
P(bla) > P(b). Similarly, negative cooperativity, g(a, b) < 1, implies P(a/b) < P(a)
and P(bla) < P(b).

In general, g(a, b) is dependent on A. Two limiting cases are of interest:

lim g(a, b)=1 (4.2.14)
A—ye0
and
g%a, b)=1im g(a, b) = Q@ £)0(0,0) (4.2.15)

A0 Q(a, 0)Q(0, b)

*In some earlier publications the term “cooperativity” is used for positive cooperativity and “anticoop-
erativity” is used for negative cooperativity. In this book “cooperativity” is used whenever g = 1.

TSometimes, when there is positive cooperativity one says that a ligand at a supports or favors the binding
of a ligand at b, and vice versa.
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When A —> o, each of the probabilities P(a), P(b), and P(a, b) tends to unity, hence
also g(a, b) = 1. On the other hand, when A — 0, all these probabilities tend to
zero, but the ratio defining g(a, b) in Eq. (4.2.12) tends to a constant.”

Figure 4.2 shows he dependence of g(a, b) on A various values of &%a, b).
Whatever the initial value of g%(a, b), the correlation function g(a, b) will tend to
unity when A — oo,

In all our applications we shall need only g%a, b). This is the only quantity that
appears in the BI. For instance, if we wish to express k, in Eq. (4.2.5) in terms of
k, and k,, we find that

_Q@b),o_

®=30.0) g%a, bk k, (4.2.16)

For this reason, we shall always refer to g°(a, b) as the pair correlation in the system,
and drop the superscript zero.

At this point we again stress the sequence of definitions leading to Eq. (4.2.16).
First, the correlation function is defined as a measure of the extent of the depend-
ence between the two events in Eq. (4.2.12) [or, equivalently, in Eq. (4.2.13)]. The
probabilities used in the definition of g(a, b) were read from the GPF of the system,
e.g., (4.2.1). This “side” of g(a, b) allows us to investigate the molecular content
of the correlation function, which is the central issue of this book. The other “side”
of g(a, b) follows from the recognition that the limiting value of g(a, b), denoted
by g%a, b), connects the binding constants k,, and k_ - k,. This “side” of g%a, b)
allows us to extract information on the cooperativity of the system from the
experimental data. In other words, these relationships may be used to calculate the
correlation function from experimental data, on the one hand, and to interpret these
correlation functions in terms of molecular properties, on the other.

The more traditional approach is to define an “interaction coefficient” [the
equivalent of our g’(a, b)] in terms of the experimental binding constants by

b= kab
oUa, )=% 4.2.17)

Whenever ola, b) # 1, one says that the two events “site a occupied” and “site b
occupied” are dependent. However, based on experimental data for k,, ky, and k ,,
one cannot trace the source of this dependence. In some cases it can be due to direct
ligand-ligand interaction, in other cases it could be due to indirect communication
between the ligands mediated through the adsorbent molecule or through the
solvent. It could also be due to the effect of the ligand on the momentum and the

*Incidentally, we note that g(0, 0) defined in Eq. (4.2.11) behaves in an opposite manner. In these limits,
£(0, 0) = g%a, b) for . — oo, but £(0, 0) — 1 for A — 0. For other similar behavior, see Chapter 4 in
Ben-Naim (1992).
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Figure 4.2. The dependence of g(a, b), defined in Eq. (4.2.12), on A for the special case Q(a, b) = S,
Qfa, 0) = Q(0, b) = Q(0, 0) = 1. This is the case of direct correlation only, discussed in Section 4.3. The
values of the initial correlation g(A = 0) = go(a, b) = S are indicated next to each curve.

rotational partition function (see Section 5.10). Therefore, care must be exercised
when ascribing the meaning of “interaction parameters” to the quantity o(a, b).

The concept of cooperativity can also be translated into free-energy change by
the relation

W(a, b) = —kzTn g%a, b) (4.2.18)

where W{(a, b) is the work” involved in the “reaction” that may be written symboli-
cally as

(a,0)+(0,b) > (a,b)+(0,0) 4.2.19)

i.e., the formation of a fully occupied system (a, b) from two singly occupied
systems.

The quantity W(a, b) is the analogue of the potential of the mean force in the
theory of liquids. We shall see in the following sections that this quantity sometimes
behaves as an energy, but in most cases it is a free energy. In terms of W(a, b) we
may also define noncooperative systems whenever W(a, b) = 0, and positive and
negative cooperativity for W(a, b) < 0 and W(a, b) > 0, respectively. The reader
should note the potentially confusing statement that a positive cooperativity
involves negative values of W(a, b), and vice versa.

*If the system is a single adsorbent molecule, then W(a, b) is either a Gibbs or a Helmholtz energy. When
the system is immersed in a solvent, then there is a difference between the Gibbs and the Helmholtz
energies according to the conditions under which the reaction (4.2.18) is performed (constant pressure
or constant volume).
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4.3. TWO IDENTICAL SITES: DIRECT CORRELATION

The simplest case of cooperativity occurs when there exists direct interaction
between the two ligands occupying the two sites. The internal properties of the
adsorbent molecule are still assumed to be unaffected by the binding process. The
four possible states of the system are as in Fig. 4.1, but a and b are now identical.
The corresponding coefficients in the GPF are

00,0, 01,0=00,1D=00,0q, QU1,1)=00,04S 43.1)

where

g=exp-BU),  S=exp[-BUL, 1)] 432)

U is the binding energy of the ligand to the site and U(1, 1) is the direct interaction
energy between the two ligands. By direct we mean the intermolecular interaction
energy between the ligands in vacuum. Figure 4.3 shows the general form of this
interaction energy for two oxygen molecules and for two protons in vacuum. Any
modification to the correlation between the two ligands imposed by the presence
of the adsorbent molecule (Section 4.5) or of the solvent (Chapter 9) will be referred
to as indirect.
The BI, per site, for this system is

gh+ @SN kC+ kst
1+2g0+ @SA2 1 +2kC+i2SCP

0=0 =
== @3.3)

where the intrinsic binding constant is k = gA,,. In this particular model, we identify

U(kcal/mol) U(kcal/mol)

o R(A)
0131 4 5 10 15 20 25
Ne ’\/‘ o) -20
od2f —UHy
i -40
ot} 60
i
L4 5 _6—"7 8 9 10 ~80
-0.1 ".“\ P R(A) -100
VoA -120
-0.2 4

Figure 4.3. Examples of direct interaction between particles. (a) Lennard-Jones potential U(1, 1) =
4¢[(6/R)' - (6/R)®] for neon (e = 0.071 keal/mol, 6 = 2.82 A), argon (€ = 0.238 kcal/mol, 6 =34 A,
and oxygen (€ = 0.224 kcal/mol, 6 = 3.5 A). (b) Two protons in vacuum. The Coulombic interaction is
of the form €%/R, where ¢ is the electron charge and R is the distance; €* = 332.8 keal A/mol.
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the correlation function

_24.De0.0) _o_ 434
g1, 1)= 0(L0)00. 1) =§=exp[-BU(1, 1)] (4.3.4)

and the corresponding work [Eq. (4.2.18)]
W(1, 1)=—kgTIn g(1, 1)=U(1, 1) (4.3.5)

Note that in the case of two identical sites, occupied and empty sites are denoted
by 1 and 0, respectively. When the sites are different we replace the “1” by the
symbol used to name the site, say “a” or “b,” and insert zero when the site is empty.

We shall refer to this particular correlation as direct correlation, simply because
it originates from the direct interaction between the two ligands. These interactions
could be quite strong, as in the case of two protons in dicarboxylic acids (Section
4.8). In some cases of interest they are very weak and can be neglected. Such is the
case for oxygen molecules occupying the sites of hemoglobin (Chapter 6).

In the present system, S = 1, {or, equivalently, U(1, 1) = 0] means that the system
is noncooperative. The system is positively, or negatively, cooperative when S > 1,
or S < 1, respectively.

The effect of U(1, 1) on the conditional probabilities [see Eq. (4.2.13)] is easily
understood. When there exists attraction” between the ligands, a ligand occupying
one site attracts the second ligand, and hence increases the probability of binding
the second ligand—hence positive cooperativity. The reverse holds when the two
ligands repel each other.

Two properties of the direct correlation should be noted, especially when
compared with indirect correlation. (1) The interaction energy U(1, 1), and hence
g(1, 1), are strongly dependent on the distance between the ligands. (2) Since U(1,
1) is temperature-independent, the correlation g(1, 1) depends on T only through
B = (kBT)_1~

Figure 4.4 shows the BI, 6(x), where x = gA = kC is a dimensionless concen-
tration, for (a) S = 1 and (b) S < 1. Note that the initial slope of 6(C) is determined
by k. The initial curvature is determined by both & and §,

a9 9’0
— = _— = - 4.3.6
(a l k, ( 21: 2k2(S 2) ( )

*Usually, the terms attraction and repulsion refer to the forces operating between the particles. The force
is the gradient of the potential. Therefore, it is not always true that a negative potential is attractive, or
that a positive potential is repulsive. The important quantity that determines the cooperativity is the
potential and, in more general cases, the work W(1, 1), not the force.

Note, however, that U(1, 1) itself could be a free energy—see Appendix C. Here, as well as in other
parts of the book, we suppress the free-energy character of U(1, 1) to stress the emergence of free
energy that is superimposed on U(1, 1) whenever we average over states of P, or of the solvent.
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Figure 44. The BI for (a) positive cooperativity with S = 10° (= 0, 4) and (b) negative cooperativity
with § = 107 (i = 0, 3). Values of i are indicated next to each curve.

For a given k, the BI with larger S will be everywhere “above” the BI of a system
with a smaller S, i.e.,

0(x, $,) —8(x, §;) > O for §, > §,, for any x 4.3.7)

For positive cooperative systems, all the curves with S > 2 start with positive
curvature [Eq. (4.3.6)] and then, at x =, , the curvature becomes negative, where
X,y 18 defined as the point for which the slope is maximal, i.e.,

0"(x=x,,)=0 4.3.8)

For S =2, the value of x,,, is zero. As we increase S > 2, the value of x,, . initially
increases up to S = 6.4, where x,,, attains its maximal value of 0.125. Further

increase of S moves x,,, to lower values, and at S — o, x, . — 0, and 6'(x,,,) — .
When S < 1, i.e., negative cooperativity, the BI starts with a negative curvature
[see Eq. (4.3.6)]. When S is very small, we observe an apparent “saturation” at
0 = 1/2, but at higher values of x we reach the eventual saturation at 6 = 1. This is
difficult to observe in a single plot of 8(x), as in Fig. 4.4. It is therefore more
convenient to plot 6 as a function of y =log, x,” where we can plot the BI for both
positive and negative cooperativities, with a much wider range of values of S. Figure

*One should be careful about the double meaning of the symbol 6: once as the name of the function,
and once as the value of the function, at some specified value, say, x = x1. In writing 8(log10(x)) we do
not refer to the compound function f{x) = 6(logto(x)), but to the values of 0 plotted as a function of the
new variable y =logo x. The actual function plotted is g(y) = 6(10%), i.e., it is obtained from the original
BL 6(x), by substituting x — 10”. Likewise, the slopes of the plotted functions are g'(y) plotted as a
function of y. The choice of y = log1o x is convenient because it allows a large variation in x, and it also

conforms to the tradition of plotting titration curves, where pH = —logio[H]}.
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Figure 4.5. 0 as a function of log,, x for § = 10' (-8 <i<8). The plotted function is £ (v) = 6(10°), where
we substitute x — 10 in 6(x). Below are the derivatives, f*(¥), plotted as a function of y = log, x. Values
of i are indicated next to each curve.

4.5 shows 8(log,, x) for S = 10, -8 < i < 8, and the corresponding derivatives.” It
is clearly seen that both positive and negative cooperativities can be exhibited in
one plot. Also, the apparent saturation at © = 1/2 and the eventual saturation at @ = 1 as
x — oo can be seen in the same plot. These plots are also closely related to the
titration curves, where we choose the pH scale for the abscissa (see Fig. 2.5 and
Appendix G). Note that the § = 0 curve has one point of maximum slope at x = 0.

“We note, however, that there is nothing more fundamental in plotting 0 as a function of x (or of A), or
as a function of logio x (or log A). The chemical potential is not more fundamental than the absolute
activity. (Wyman and Gill, 1990).
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For S 2 2 there is only one point of maximum slope, but for S < 0 there are two
points of maximum slope.

There are several ways of obtaining the cooperativity S from the experimental
data. The simplest is to take the value of x at which 0(x) = 1/2; the solution for x is

1
X1n= ﬁ 4.3.9)

Another graphical method is the so-called Hill plot, which is a plot of
log[6/(1 — 0)] as a function of log x. The Hill coefficient is defined by

T dlog[6/(1-0)] 1 00

= = 3.1
H dlog x 0(1—0) dlog x (4.3.10)
and, at the point, x,,, the value of n, is
L Vs
= =4 =2 4.3.11
=) dlogx 14§ (43.11)

Clearly, the quantity ng(x =x, ,,) maps the region 0 < § <  into the interval
0 < ny £2. The value of ny = 2 is the maximum value of the Hill coefficient for
the case m = 2. One should be careful, however, to note that these particular methods
are valid only for the case of two sites. When m > 2 there are various types of
cooperativities and, in general, there is no single parameter that describes the
cooperativity in the system. Even for the case m = 2 one could be misled in
estimating the cooperativity of the system if one were to rely only on the form or
the shape of the BI or any of its transformed functions, as will be demonstrated in
Section 4.6 and again in Section 4.8 and Appendix F.

To conclude, we emphasize that the form or the shape of the BI (or any of its
transformed functions) is a manifestation of the type of cooperativity in the system.
In the particular case (m = 2) discussed in this section, either Eq. (4.3.9) or Eq.
(4.3.11) may be used to characterize the cooperativity of the system. In the general
case (m > 2), one cannot use the form of the BI (or of any of its transformed
functions) either to characterize or to define cooperativity. Unfortunately, the
characterization of cooperativity by the form (especially of the Hill plot) is still
very common in the biochemical literature.

4.4. TWO DIFFERENT SITES: SPURIOUS COOPERATIVITY
The partition function and the binding isotherm of a general two-site model

were discussed in Section 4.2. Here, we examine a special case of direct correlation
only. The model is essentially the same as in the previous section, except that now
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we have two different sites. The corresponding coefficients of the PF are

0(0,0), Q(a,0)=0Q(0,0)q,, 0O0O,b)=0Q(0,0)q, Q(a,b)=0Q0,0)q,4q,S,
“4.4.1)
where
q,=exp(-BU,), q, = exp(-BU,), S, =exp[-BU(a, b)] (44.2)
The BI for this case is [compare with Eq. (4.3.3)]

1 (q,+g)h+2q,9,S ,A°

O=—=—
2 1+(q,+g)h + q,9,5 ;A

n
2

1 (k,+k)C+2k kS, C*
T2 14k, +k)C +k kS, C

(4.4.3)

where k, = g\, is the intrinsic binding constant for site o.. Note that the Bl in this
model is determined by three constants, k , k,, and S ,,, as compared with only two
in the model of Section 4.3. Experimentally, only the two quantities X, and K,
defined by

K =k, +k, KK,=kkS, (4.4.4)

may be determined from the Bl in Eq. (4.4.3). To obtain all three parameters &, k,,,
and S, one can either use some approximations (see the example in Section 4.8.3),
or measure the individual Bls for the two sites. The latter are defined as the average
occupation number of ligands at the specific site. Thus,

6,=n,=Pa, )=0-PO, )+1-P(a,_)

O(a, O N Ola, b)A?

=P(a,0)+ P(a, b) =

g 3
k,C +k kS, C*
= ¥ . 4.4.5)
1+ (k, + k)C + kK S, C
and similarly
2
k,C + kS, C 4456)

YT T (k, + ky)C + k jo,5,C°

where 6, + 6, = 20. Clearly, having experimental data on 6, and 6,, one can easily
resolve for the three parameters k , k,, and S ;.
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It is important to note that 6, is not the Bl of an isolated site of type a. To see
this we rewrite 8,, in Eq. (4.4.5) in the modified form

KC 1+kS,C
 =—2— with ki=k 1+ kS C 447
1+k,C 1+k,C

When S, # 1, the effective binding constant kZ will be dependent on C and therefore
0, is not a simple Langmuir isotherm. Clearly, when we focus on site a and follow
its average occupation as a function of A (or C), the effective binding constant £,
is affected by what happens at site b.

When S, = 1, k, = k,. Both 6, and 8, become simple Langmuir isotherms. The
BI of the entire system 6 = (0, + 0,)/2 will, in general, not be a Langmuir isotherm,
ie.,

1 k,+k)C+2kKkC* 1 kKC 1 kC

= == += (4.4.8)
214Uk, +k)C+EKC* 21+kC 21+kC

0

Thus, although each of 8, and 0, is a simple Langmuir isotherm, the average of the
two has a different form. Figure 4.6 shows 6, 6,, and O for a noncooperative
(S, =1) system with k, = 1 and k, = 10%, 10°, and 10,

A glance at Fig. 4.6 reveals that the curves are the same as those in Fig. 3.4
(provided the corresponding binding constants are the same). The reason is the
obvious fact that in each case the sites a and b are independent. Whether they are
located on different molecules, as in Section 3.5, or on the same molecule, as in
this section, they exhibit the same binding behavior. However, the two systems are
different. For later generalization we write here the GPF of a system a of 2M

o000
MR

[= 2K~ 2=y -]

2
Log A

Figure 4.6. The BIs and their derivatives for a two-site system with different binding constants:
(a) k, = 1,k, = 100; (b k, = 1, k, = 10%, (¢) k, = 1, k, = 10°. Here, a and b correspond to L and H in
Fig. 3.4. The full line is © [see Eq. 4.4.8)]. The dashed lines are 6, and 6.
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independent molecules each having a single site, M, = M of which are of type L
and M, = M of type H'

= GG 0Ll + g, A)M0,0)Mn(1 + g

2T MMy, M, M,

(4.4.9)

and of a system b of M identical and independent two-site molecules each having
two different and independent sites,

= _ o, O)M(l + (qL + qH)K + quH)“Z)M
b M!

(4.4.10)

Clearly the two systems are different, yet they have the same BI. The factors
0,(0), @,(0), and Q(0, 0) and the factorials M, !, My!, and M! do not affect the BL.
Itis evident that if M, = M and M,, = M, the two systems are equivalent in the sense
of having the same BI. This follows immediately from the identity of the two
polynomials

(1+ g1 +ggh) =1+ (g, + gk + 4,4, (4.4.11)
The more remarkable and well-known fact is that the two systems a and b are also
equivalent (in the above sense) to a system ¢ of M identical and independent

molecules, each having two identical but dependent sites, with one intrinsic
constant k and pair correlation S. The GPF of this system c is

= _ 000,01 +2gA + g*SAH

=, i (4.4.12)
The two systems a and ¢ are equivalent provided
O (4.4.13)
2 7 (q L+ CIH)Z
or, equivalently,
p ke dkky (4.4.14)
2 (ky + k)
The corresponding Bl is
kC + K*SC* 4.4.15)

¢ 1+2kC+12SC?
The three systems are shown schematically in Fig. 4.7.

"We use the notation L and H for a and b, respectively, to conform with the notation of Section 3.5 and
Appendix F.
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Note that we have switched from the notation a and b for the two sites to L and
H. This has been done in order to emphasize the equivalence of the system b of this
section with the system discussed in Section 3.5. There, L and H originated from
“freezing-in” an equilibrated mixture L = H. Here, on the other hand, the PF in
Eq. (4.4.9) pertains to a mixture of L and H, with M; = M, = M, not necessarily
originating from “freezing-in” an equilibrated system.

From the experimental BI one cannot distinguish between the three systems a,
b, and ¢. (Note, however, that other properties of the system, such as the pressure,
energy, entropy, etc., are different.) This fact could, in some cases, lead to misin-
terpretation of the cooperative behavior of the system. If k; # ky, S defined in Eq.
(4.4.14) must be smaller than unity. This follows from the identity

Ak kyy (e — k)’ _ .
- (kL + kH)2 - (kL+ kH)2 = (4.4.16)

i.e., the BI of system c is negatively cooperative.

If we know that our system is either a or b, then observing the BI of the form
of Fig. 4.6 is unlikely to mislead us into believing that our system is cooperative.
The two peaks in the slope plot will be recognized as originating from the two
different binding constants k; and k. Therefore, the apparent cooperativity ob-
served in either a or b must be spurious. It will be distinguished from the genuine
cooperativity if the system is c. We shall see in Section 4.8 that in some cases such
a clear-cut distinction is not easy, even when we know that we have a two-site
system. Of course, if we observe a Bl of the type of Fig. 4.6 without knowing the
system, we cannot tell whether the system is cooperative or not.

The qualitative physical reason for the equivalence of system a (or b) and c is
easily comprehended in the case where k;; > > k,, in which case we observe an

3] H
@Eﬂ = [=
~ AL ] ~ m
] m M@ ~ ~ m
H] — [H]L |
[t] []
a b c

Figure 4.7. Schematic illustration of the three equivalent systems a, b, and ¢, corresponding to Egs.
(4.4.9), (4.4.10), and (4.4.12). System a consists of a mixture of single-site particles, in b we have
double-site particle where the sites are different and independent and in ¢ the two sites are identical but
dependent.
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apparent “saturation” at © = 1/2. The (negative) spurious cooperativity in this case
is

T, B P @4.17)
(kL+kH) dy

A system ¢, with a very strong (genuine) negative cooperativity, will first be filled
only at one of its sites on each molecule. The reason is that two ligands on the same
molecule will strongly repel each other. Only at very high ligand activity will the
ligands be forced to occupy the second site on the molecules. When the system is
cither a or b, then again, because k> >k, the sites of type H will first be
filled—and sites of type L will remain empty—not because of repulsion, but simply
because of the overwhelming preference to binding on H. Again, we shall observe
an apparent “saturation” at 8 = 1/2. At very high ligand activities, when nearly all
the preferred sites A have been occupied, the sites of type L will start to be occupied.
Thus, we see that the patterns of occupation, and hence the BI, are the same
[provided relations (4.4.14) are fulfilled], though the physical reasons for the
apparent saturation at 6 = 1/2 are different.

We shall discuss in Section 4.6 and Appendix F a generalization of this behavior
where higher-order spurious cooperativities can be observed in noncooperative
systems.

The main moral of this section (as well as of Appendix F) is that cooperativity
cannot be determined from the form of the BI. Unfortunately, this practice is still
very popular among biochemists, who use the form of the Hill plot to determine
cooperativity (sometimes referred to as macroscopic cooperativity). As we have
already noted in Section 3.5, this could lead to the absurd reference to a single-site
system as being cooperative, though cooperativity is not even defined in such
systems.

4.5. TWO SITES WITH CONFORMATIONAL CHANGES INDUCED
BY THE LIGANDS: INDIRECT CORRELATIONS

The model discussed in this section combines aspects of both the model of
Section 3.4 and of 4.3. As in Section 3.4, the adsorbent molecule has two macro-
states, the transition between which is induced by binding of aligand. As in Section
4.3, the adsorbent molecule has two sites, which can be either identical or different.

We start with two identical sites. Since the sites are distinguishable (the system
is localized), there are altogether eight states for the system, shown in Fig. 4.8. The
GPF of a single system is

£ =0(0) + (LA + Q)2 4.5.1)
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B S

Loo) @09 LLY Ly @LLh LD
Lo,1)  (H0.1)

Figure 4.8. The eight possible configurations of a two-state system with two identical sites. The L form
is represented by a rectangle (white) and the H form by an ellipse (black).

where, using obvious notation,

Q(0) =Q(L; 0, 0) + O(H; 0, 0)
o) =0Q; 1,0)+ Q(H; 1,00+ Q(L; 0, 1) + Q(H; 0, 1) “452)
02)=0L; 1, )+ QW#H; 1, 1)

By introducing the notation

q = exp(—p U), qu= exp(-P Uy

4.5.3)
S, =exp[-BU,(1, 1)], Sy =exp[-BU1, 1)]
we can write the BI as
0= o (Q14; + Q) + (01435, + QudiSIN
2 (Qp+ Q) +2Quq; + Qudh + (QudiS, + Qi SV
kC+k, C?
= “4.54)
1+ 2k,C+k,C*

where the two intrinsic constants k, and k,, were defined in Section 2.2.
There are many probabilities that can be either read directly from, or con-
structed from, the corresponding terms in the GPF. For example,

. . . 2
PL;0,00=2L09 5 0)= Q@ LM PL; 1, 1= 2L L DV
& & 3
4.5.5)
Some marginal probabilities are
X, =P(L)=(Q, +20;q;A + Q,2S, AM/E
(4.5.6)

Xy =P(H) = (Qp + 205q,M + OpaiSih?)/E
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Here, X, and X, are the mole fractions, or the probabilities, of finding the
conformation L and H, respectively. Three special cases are:
1. The empty system: In this case

_PL00) 98 9
EOPO,0) (@08 O+ 0y

X=1-X @57

which is the conditional probability of finding L given that the system is empty.
This is, of course, the same as the equilibrium mole fraction of the empty system
as in Section 3.2.

2. The singly occupied system: The conditional probability of finding L given
a specific site (say the lhs) occupied and the second site empty is

H_ P(L; 1,0) _ Q9,18 _ 0149
L7 PA,0) (0,9, + QpgpME Quay+ Qudy

(4.5.8)

(When the sites are different, say a and b, we must distinguish between X{ and X{.)
3. The doubly occupied system: Finally, the conditional probability of finding
L given that the system is doubly occupied is

o PLLYL_ QdS
VTP 0,488+ 04aiSy

Figure 4.9 shows X, (6), X,(8), and K(0) = X(6)/X,(0) for the case Q; =Qp =1
and g, =10,¢9,=1,5, = S&’ =8 = 1. Clearly, since g, /g, > 1, X, increases with A
or with 0. The values of Xf,‘ ) X(Ll), and Xg) are in this case 0.5, 0.909, and 0.99099,
respectively (Fig. 4.9d). The value of X; = 0.99099 is the limiting value of X,
atA —> oo, 0r 0 — 1.

Two other useful probabilities are

P(1, 1)=(Q,q:S, + QpazSi)h* /&

4.5.9)

(4.5.10)
P(1)=P(1, )=P(, 1)=(Qq;, + Cpap)h/§

The first is the probability of finding a molecule doubly occupied—the conforma-
tional state of the molecule is unspecified. Clearly, this is the sum of two
probabilities,

P(1,1)=P(L; 1, 1)+ P(H; 1, 1) 4.5.11)

The second is the probability of finding the molecule singly occupied—both the
conformational state and the occupational state of the second site are unspecified.



Two-Site Systems: Direct and Indirect Cooperativity 85

K

1 1
0.8 XL 0.8
0.6 0.6
0.4 0.4
0.2 XH 0.2

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
0 0

C d

Figure 4.9. (a)X,(0) and X;(0) as given by Eq. (4.5.6). (b) K (8) = X;(8)/X,(8). (¢) The equilibrium
mixture of L and H is represented by superposition of the rectangle and the ellipse (gray). (d) The three
different occupancy states are represented by a mixture of L and H (varying shades of gray).

The pair correlation is defined by

P, 1)

= ml—) (4.5.12)

&L 1)

As we have seen in Section 4.2, all we need is the A — 0 limit of this correlation
function, which is

o, 1)Q(0,0)

4.5.1
(1,000, 1) @>13)

¢, D =1lim [g(1, DI =
A—0

For the remainder of this book we shall always refer to g°(1, 1) as the pair
correlation, and drop the superscript zero. We saw in Section 4.2. that this correla-
tion measures the deviation of k,, from (k, ), i.e.,
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k, =g(1, L2 (4.5.14)
Using the notation K = Q,,/Q, and h = q,/q;, we rewrite Eq. (4.5.13) in the form

S+ SyKh*)(1 + K)
- (1+Kh):

g1, 1) (4.5.15)

It is seen that the correlation function g(1, 1) is not simply related to the direct
correlations S; and Sy, Clearly, this is not an average of the two direct correlations
[see also Eq. (4.5.24) below]. In this section we wish to focus on the indirect
correlation, Therefore, for the moment, we assume that the direct correlations are
either negligible, i.e., S; ~ Sy ~ 1, or that they are independent of the conformation,
i.e., S, =S, =S. Hence, g(1, 1) may be written as

gL, ) =y(1, 1S (4.5.16)
where the factor y(1, 1) is defined as the indirect correlation

(1+Kh2)(1+K)_1 K(1 - h)?
(1+Kk? (1 +Kh?

y1,1)= 4.5.17)

The indirect correlation is the major source of cooperativity in biochemical sys-
tems, such as hemoglobin (Chapter 6) or allosteric enzymes (Chapter 8). The model
treated in this section is the simplest binding model having indirect correlation.

‘We now examine some of the outstanding properties of the indirect correlation
¥1, ).

First, we note that y(1, 1) = 1 (i.e., no indirect correlation) if, and only if, either
K =0 or h = 1. This follows directly from the equality on the rhs of Eq. (4.5.17).
Incidentally, this necessary and sufficient condition for the occurrence of an indirect
correlation is exactly the same as the necessary and sufficient condition for inducing
conformational changes (i.e., d; #0; see Section 3.4). Therefore it follows that
indirect correlation occurs if, and only if, the ligand induces conformational
changes in the adsorbent molecules. Analytically, we may eliminate 4 from Eq.
(3.4.5), and from Eq. (4.5.17), to obtain a relation between y(1, 1) and 4,,
namely,

(1+K)

yL)=1+4d X

(4.5.18)

Thus, for each value of K (recall that we have restricted 0 < K < 1 by the choice of
E, < Ep), ¥(1, 1) is a parabolic function in d;. Figure 4.10 shows this function for
the four values K =0.2, 0.4, 0.6, 1. The two functions y(1, 1) and d; were drawn as
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y(L1) 5

K=0.2

0.1 0.2 0.3 0.4 0.5 dL

Figure 4.10. y(1, 1) as a function of d; [see Eq. (4.5.18)] for different values of X, indicated next to
each curve. Each curve is a parametric plot of y(K, h) and d;(K, h) for a fixed value of Kand 0 <h < 1.

parametric plots by fixing the value of K and letting 0 < k < 1. Each of the curves
starts with y(1, 1) =1 at 4, = 0 for 2 = 1 and terminates at a limiting point for & —
0. These limiting points are: for K = 0.2, (0.167, 1.2); for K = 0.4, (0.28, 1.4); for
K =0.6, (0.37, 1.6); and for K = 1, (0.5, 2). Note that 0 < 2 < 1 means the ligand
has preference for binding on L, hence d; is always positive. Similar plots with
negative values of d; may be obtained for 1 </ < .

For any fixed value of A, y(1, 1) has a maximum as a function of KX at the point
K=n Figure 4.11 presents y(1, 1) as a function of X for several values of A. At
the point K = h!, the maximal value of y(1, 1) is

-1 1
ymx=2+h4+h =2+K4+K 4.5.19)

where we recall that K = exp[-B(E, — E;)] and h = exp[-B(Uy — Up)]. Thus, for
very large A (or very small K = A1), Ymay 18 determined either by the difference of
the binding energies Uy, ~ U, or by the difference of the energies E, ~ E, .

It is clear that always y(1, 1) = 1. This follows from Eq. (4.5.17). We also see
from Eq. (4.5.19) that y, . can be very large, depending on the values of E, — E;
or Uy — Uy, but not on S or U(1, 1). Thus, whenever there exists conformational
change induced by the binding process we should find a positive contribution to
the cooperativity. The physical reason for this behavior is quite simple. When the
ligand has preference for one conformation, i.e., & # 1, the binding of the first ligand
will shift the equilibrium L == H toward the species that it favors. The second ligand
approaching the second site will find a new equilibrium concentration of L and H,
namely, X{¥ and X{) (this is shown schematically in Fig. 4.9d). Hence, the
conditional probability of binding to the second site is larger than the (uncondi-
tional) probability of binding to the first site.

In terms of free energies we have W(1, 1) = —k5T In g(1, 1) and, assuming
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0.005 0.01 0.015 0.02
K

Figure 4.11. y(1, 1) as a function of K for several values of 4, as indicated.

§; =8y =S, we find
W(1, 1)=U(, 1) + [A(1, 1) + A(0, 0) — A(0, 1) — A(1, 0)]
=U(1,1)+0A (4.5.20)
where 8A < 1, 8A being the indirect part of the work associated with the process
O,D+(1,0>(,1)+(0,0 (4.5.21)
The quantity A can also be rewritten as
0A =[A(1, D - A0, 1) - p] - [A(1,0) - A0, 0) -]
=AA"(1/1) - AA*(1/0)< 0 (4.5.22)

where AA*(1/0) and AA™(1/1) are the binding free energies on the first and second
sites, respectively.

We now summarize the main difference between the direct and indirect
correlations:

1. The sign of the direct correlation depends on the direct interaction between
the ligands. The sign of the indirect correlation is always positive (for two identical
sites; see below for two different sites), and is independent of U(1, 1), but dependent
on the difference of binding energies Uy, — U,, and the difference of energies of the
two conformers E, — E, .

2. The direct interaction depends on the distance between the ligands and has
the same range as the ligand-ligand pair potential. The indirect correlation, in this
particular model, is independent of the ligand—ligand distance. It does depend on
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the capacity of the ligand to induce conformational changes (% # 1), and on the
responsiveness of the adsorbing molecule (K # 0).

3. U(1, 1) is presumed to be temperature-independent,* while W(1, 1) is in
general temperature-dependent. In terms of correlations, the sign of the temperature
dependence of S depends on the sign of U(1, 1). If U(1, 1) < 0, then § decreases
with 7; when U(1, 1) > 0, S increases with T as shown in Fig. 4.12a. On the other
hand, the dependence of y(1, 1) on T (Fig. 4.12b) is determined by the enthalpy
change associated with the process (4.5.21). In biochemical processes the indirect
correlation can enormously increase the cooperativity, far beyond the normally
weak, or even negligible, direct cooperativity that depends on the ligand-ligand
interactions (say, two oxygen molecules in hemoglobin). The trick of the indirect
route is to use the changes in energies of the macromolecule to produce a very large
cooperativity in spite of the weak ligand—ligand interaction. This spectacular and
sophisticated trick has been selected by the long and incessant evolutionary search
for more efficient ways of regulating biochemical processes. We shall return to
this aspect when discussing hemoglobin (Chapter 6) and regulatory enzymes
(Chapter 8).

The temperature dependence of y(1, 1) is

dolny -AH* -AE'
OT  kgI* kT

(4.5.23)

where AH" and AE" are the enthalpy and the energy associated with the indirect
part of the work W(l, 1), i.e., with A in Eq. (4.5.20). Figure 4.12 shows that ISI is
always a monotonically decreasing function of 7, while y can increase or decrease
with T for a given set of molecular parameters, 4 and K. This fact could serve as a
diagnostic test for the existence of an indirect correlation. If the temperature
dependence of the total correlation is of the type b in Fig. 4.12, then it is very likely
that indirect correlations are operative.

‘We have started our discussion of the properties of y(1, 1) with the assumption
S, =S8y =S. This allowed the factorization of g(1, 1) as in Eq. (4.5.16). It is easy to
see that all the properties of y(1, 1) hold true also when S, # S,. In this case, Eq.
(4.5.15) can be rewritten as

a =0 + KI?)(1 + K) (S + SgKH)
S O Ry 3

=y(1, 1)(S) (4.5.24)

where y(1, 1) is exactly the same as in Eq. (4.5.17). The factor S in Eq. (4.5.16)

Note that U(1, 1) itself could be a free energy, hence temperature-dependent (see Appendix C). Here,
as in most of the book, we have suppressed the free-energy character of U(1, 1) to stress the emergence
of new free energy, here 84, which brings an additional dependence on T.
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Figure 4.12. Temperature dependence of (a) the direct correlation S, for positive and negative values
of U(1, 1), and (b) of y(1, 1) with K = exp(—100/T) and h = exp(-~100/7) with T in dimensionless units.

is now replaced by an average of §; and Sy, with weights (1 + Kh*»™! and
Kh*(1 + Kh?), respectively.”
‘We now briefly discuss the case of two different sites for which the PF is

E=(0p+0p) + Q141+ Qo)A + (141, + Crd)h

+ (019,41 + Crdndm)SN (4.5.25)

where we have employed the notation

9.~ exp(-BU, 1 A= exp(—-BU. u,)

(4.5.26)
qHa = exp(_BUHa)9 qu = exp(—BUHb)
The BI for this case is
_ (k,+k)C+2k c?
n= b akbgab > (4527)
1+ (k, + k,)C + k k,g,,C
where g, is defined by
Q(a, b)Q(0, 0)
=g(a, by ="
b 0(a, 0)0(0, b) (4.5.28)

*These may be interpreted as the mole fractions of L and H in a hypothetical doubly-occupied system,
where Sz = Sy = 1. This is a hypothetical system, since in a real system the mole fractions of L and H
are given by Eq. (4.5.9).
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If we denote

K= %, - (4.5.29)
o Ara Ly
and again assume that §; = S, = §, we can write y(a, b) in the form
_a+ hh K)1+K) B (I-h)1-h)K

Wa, b) (4.5.30)

TAAR K LARK) (LK +hK)

The important difference between this case and the previous one in Eq. (4.5.17)
is that the indirect cooperativity can be either positive or negative, depending on
whether the signs of (1 — k) and (1 — h,) are the same or differ. Thus, if 4, > 1 and
hy, < 1, binding on a will shift the equilibrium L = H toward H (the favored
conformation when the ligands bind to site a), but since &, < 1, this means that the
new conformational equilibrium will be less favorable for binding on site b. In this
case

P(b/a) < P(b) (4.5.31)
or, equivalently,
A(a, b)+A(0,0)—A(a,0)—-A0,b)>0
or
AA*(b/a) - AA*(b) >0 (4.5.32)

4.6. SPURIOUS COOPERATIVITY IN TWO IDENTICAL-SITE
SYSTEMS

In Section 3.5 we discussed the phenomenon of spurious cooperativity in
single-site systems. Since cooperativity, as defined in this book, is undefinable for
single-site systems, any apparent cooperative behavior must be due to the presence
of different and independent sites. In Section 4.4 we encounter the same phenome-
non in two-site systems with different sites. This was shown to be equivalent to the
system in Section 3.5.

In this section we start with two-site systems, where genuine (positive or
negative) cooperativity exists in each molecule. We explore the emergence of
additional spurious cooperativity due to “freezing-in” of an equilibrium between
two forms L == H." As we shall see below, in this case it is not always possible to
distinguish spurious from genuine cooperativity.

This is also equivalent to a mixture of two different binding systems. However, here we stress the case
of a mixture that is obtained from an equilibrated system. It is only in such a case that one might
misinterpret spurious cooperativity as genuine; see Section 4.8 for an experimental example.
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The model used here is essentially the same as that of Section 4.5. We define
the GPF of state L and H by

E,=0,+ Qg A+ 0, @2S N and Ey=0p+ Qugph+ OpdiSih>  (4.6.1)
The corresponding equilibrium concentrations of L and H are
X9=¢,/¢ and  X¢=E&,/& (4.6.2)

and the corresponding Bls of pure L and H are

Adlng, A0,
== == 4.6.
L=2 o and  Oy=7 oy (4.6.3)
The equilibrated and “frozen-in” Bls are defined as in Section 3.5 by
Aal
003 205 = X0, + X390, *64)
and
8'=x70, + X,0, (4.6.5)

where & =&, + > while X{ and X’I; are any arbitrarily chosen mole fractions of
L and H, with X/, + X/, = 1. On the other hand, X7 and X%/ are determined by the
molecular parameters of the system, as well as the temperature, pressure, etc. [see
Eq. (4.6.2)].

We shall discuss here a particular simple case where initially (i.e., at A = Q) we
have”

XPA=0)=X{(A=0)=1/2 (4.6.6)

With this assumption we “freeze-in” the conversion L <> H at A = 0, hence
X’; = X{, =1/2, and we follow the BI of the equilibrated and the “frozen-in” system.
We discuss the following three cases.

() No genuine cooperativity, i.e., S, = Sy = 1: The following three systems
are equivalent (in the sense of having the same BI); see Fig. 4.13.

(a) 2M independent double-site molecules, M of which are in state L and
M in state H. There is no genuine cooperativity within each molecule. The

*See footnote p. 65 in Section 3.5. It is possible that the two forms L and H will be very similar, i.e., Or
= On, hence Eq. (4.6.6), but the binding properties of L and H differ widely. The analytical study of
the case X1 # Xy is possible but quite involved. In Appendix F we discuss this aspect for a single-site
system.
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Figure 4.13. Schematic illustration of the three equivalent systems corresponding to Egs. (4.6.7),
(4.6.8), and (4.6.9): (a) double-site molecules of types H and L; (b) four-site molecules, two sites of
type H and two of type L; (c) four-site molecules. The sites are identical but correlated, as indicated by
the connecting dashed lines.

corresponding GPF is
E, =8N = [(1 +2q,A + gIAD(L + 2g,A + G ADM 4.6.7)

where &; and &, are defined in Eq. (4.6.1), with S; = S, = 1, and we ignore factors
such as Q;, Qy, and (M 1%, which do not affect the BL.

(b) M independent quadruple-site molecules, each molecule of which has
two sites of type H (with k) and two of type L (with k;). The corresponding GPF
is

B, =1+ Q2q, +2q)A + (4q,qy + &+ PN+ Qqiay + 2429 )N + A M
(4.6.8)

(¢) M independent quadruple-site molecules. All four sites are identical (with
the same k) but dependent, with pair, triplet, and quadruplet cooperativities. The
corresponding GPF is

B, = 1 +4gh + 64°S(2A* + 4¢°S(3N* + g*S(@N* (4.6.9)

The equivalence of a and b is obtained simply by expanding the product of &; and
&inEq. (4.6.7). The equivalence between (b) and (c) can be obtained by imposing
the conditions

4q = 2qL + 2qH 4.6.10)
64°S(2) = 4q,94+ q%l + q% 4.6.11)
44°S(3) = 2¢%qy + 2454, 4.6.12)
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The two BIs corresponding to (b) and (c) will become identical under the substi-
tutions (4.6.10)—(4.6.13). On solving for g and S(/), [ =1 2, 3, 4, we obtain

g= % 4.6.14)

s@)=1 —% (4.6.15)
S3)=1 —% (4.6.16)
sy=1- 4~ qL):;‘[Ij:"‘qj;HqL +47) “6.17)

All the cooperativities are seen to be negative, i.e., S() < 1,1=2,3, 4.

Incidentally, since the newly defined coefficients in Eq. (4.6.9) are products of
factors, there is more than one way to choose the new correlations. In the choice
made in Egs. (4.6.10)—(4.6.13), all sites are identical and all six pair correlations
are identical. Another possible choice is obtained by replacing condition (4.6.11)
by the requirement

g[45,2)+ 21 =4q,qy+ a4+ ¢ (4.6.18)
in which case
(qH - qL)2
S,2)=1-——"=_ (4.6.19)
4 gy + 9, )

Here, all sites have identical intrinsic constants but the pairs that originally
belonged to the same molecules are left uncorrelated. All the pair correlations are
here “assigned” to the newly formed four pairs of type LH.

In the above model our starting molecule had no genuine cooperativity, i.e.,
the coefficients of A% had no factors of the type S, and S,,. Figure 4.14 shows the
BIs 6,, 6, Of, and 0% of a system of double-site molecules having no genuine
cooperativity. It is clear that the curve ' shows an apparent negative cooperativity.
Since we have assumed no genuine cooperativity, this behavior must be due to
spurious cooperativity. Note that the extent of the spurious cooperativity may be
estimated by the distance between the two peaks of the slope curve, exactly as one
would estimate genuine cooperativity from Fig. 4.5.
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Figure 4.14. Binding isotherms and their derivatives for a system of double-site molecules with no
genuine cooperativity. The full lines correspond to pure H (on the lhs) and pure L (on the ths). The
equilibrated Bls, 6°7, are the dotted curves corresponding to the system described in Eq. (4.6.4). The
“frozen-in” BI are the dashed curves (with X9 = X2 = 1/2): (@) g, = 1, g5 = 100; (b) ¢ = 1, g5 = 1000;
(©) q; = 1, g5 = 10000. The larger the ratio g,/g,, the larger the spurious cooperativity (as can be
estimated from the distance between the two peaks of the slope curves on the lower panel).

(ii) A system with genuine positive cooperativity, i.e., S; > 1, Sy > 1. The
three systems considered here are similar to those described above, the only
difference being that S; and Sy in Eq. (4.6.1) are larger than unity.

As before, there are several ways of assigning new cooperativities in the
equivalent system (c). One way is to assign the same pairwise cooperativity to all
six pairs of sites, and the same triplet cooperativity to all four triplet sites. The
analogue of Eq. (4.6.9) would then be

E, = 1+4gA+64°S(2) +44°S(3) + g*S(@N* (4.6.20)
for which

2 2

S2)= 2 4941+ 9uSy ‘2* 451 (4.6.21)
3 (CIH +q L)

S3) = — L . 95+ 9u5n (4.6.22)

(g +qy (qL+qH)

164797

S(4) = 9L S, (4.6.23)

(qH +gq L)4
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Figure 4.15. Same as Fig. 4.14, but here each molecule has a genuine positive cooperativity, S; = Sy, =
S = 100. The notation and ail other parameters are as in Fig. 4.14. Note that because of the genuine
positive cooperativity, the slopes of the curves 8, 0y, and 8°¢ are sharper than in the corresponding
curves in Fig. 4.14 (no genuine cooperativity). As in Fig. 4.14, the negative spurious cooperativity is
larger, the larger q,/q; .

where §(2) is now a combination of the genuine cooperatives, the sign of which
depends on S; and Sg; S(3) has an average of the original cooperativities, times a
factor that is smaller than unity; and S(4) has the original correlations S; and S,
times a factor that is less than unity. Of course there are other possibilities of
assigning correlations.

In Fig. 4.15 we show curves similar to those in Fig. 4.14, but for a system of
molecules having genuine positive cooperativity. In this illustration X9 = X%, = 1/2,
§; =8,=100,and (a)q; =1, ¢, =100; (b) g, =1, g5z =1000; (c) g, = 1, g5 = 10,000.
Note that the spurious negative cooperativity is roughly the same as in Fig. 4.14.
The distance between the two peaks of the slope curves is similar to that in Fig.
4.14. As aresult of the genuine positive cooperativity, the slopes of both 6, and 0
are larger than those of Fig. 4.14. Thus we see that even though the system has
genuine positive cooperativity, and this could be very large, the system would
appear to have negative cooperativity.”

“In the molecular approach to cooperativity, we have distinguished between direct and indirect sources
of cooperativity. We shall also distinguish between pair, triplet, and higher-order cooperativities. All
of these do not necessarily have the same sign. On the other hand, when relying on the shape or form
of the BI to detect cooperativity, one can easily be misled to conclude that Bis of the form 6/ in Fig.
4.15 originate from negative cooperative systems, whereas in fact these systems, by construction, have
positive cooperativity. This embarrassing conclusion has led some authors to define macroscopic and
microscopic cooperativities. As we have pointed out in Section 3.5, it is quite awkward to refer to a
system of independent molecules as being (macroscopically or microscopically) cooperative. It
becomes both awkward and confusing to refer to systems which, by definition, are positively
cooperative as being (macroscopically) negatively cooperative.
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(iii) A system with genuine negative cooperativity, i.e., $; <1, 5, < 1: Perhaps
the potentially most misleading case is that where each molecule has a genuine
negative cooperativity, e.g., dicaboxylic acids; see Section 4.8. Here, the spurious
cooperativity is superimposed on the genuine negative cooperativity and, in gen-
eral, it would be difficult to distinguish between the two.

Figure 4.16 shows curves similar to those in Fig. 4.14 for a system of molecules
having genuine negative cooperativity. For this demonstration we chose §; =S, =
0.1 and the three values g, = 10%, 10% and 10°. Here, due to negative cooperativity,
the derivatives of both 9; and 6, show two peaks, the distances between them
corresponding to S; and S, respectively. In addition, the 8/ curve now has four
points of maximal slope. This is evident in the slope curves in Fig. 4.16. The
separation between the two pairs of closed maxima is a measure of the spurious
cooperativity. It depends on the ratio g,/g, and not on either S, or Sj. Note also
that from the form of the BI, Bf, we could not have suspected that we have a
quadruple-peaked derivative. The BI, &/, seems to be a typical BI of a system of
two sites with varying degrees of negative cooperativities.

The results of Fig. 4.16 are closest to calculations that we shall present in
Section 4.8. They demonstrate, in an idealized situation, our interpretation of the
source of the outstandingly large negative cooperativities of some alkylated suc-
cinic acid. Whenever we have a mixture of two components, each having genuine
negative cooperativity, the mixture as a whole has actually four binding constants.
However, if the two pairs of binding constants, say k;;, k,;, and k4, k, 5, are well
separated, as in Fig. 4.16d, then the BI (or equivalently the titration curve) of the
mixture might seem as if it has only two binding constants, the separation between
which is determined by the distance between the pairs of the maxima in the slope
curve rather than by the distance between the two maxima within each pair.

The actual determination of a correlation function from experimental data
depends on the method used to measure the binding constants. The most common
method for dicarboxylic acids is from the limiting behaviors at C — 0 (the high pH
limit) and at C — o (the low pH limit). These two limiting behaviors of the BI are
(see Section 2.2).

8(C) =k,C + O(C? (4.6.24)
and
11 1 ’
=l=-73 — 4.6.25
8(0)=1 % C+O[C) ( )

Here, k; and k, replace k; and k,,; in Section 2.2. These are the more common
notations for the first and second intrinsic binding constants. The latter limiting
behaviors enables one to determine the correlation function

g1, )= k2/k1 (4.6.26)
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Figure 4.16. Same not‘&‘ition as in Figs. 4.146and 4.15, but here each molecule has a genuine negative cooperativity with Sp=Sy=0.1: (@) gL =1, g =
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the long double-headed arrow is a measure of the spurious cooperativity (ga/gr, = 10 ).
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However, by using this method for a mixture of two components, such as the curve
6/ in Fig. 4.16, we would actually obtain

6(C) =~ (XPky; + Xoky ;)C + O(CH) =k, ,5C + O(C?) (4.6.27)

X Xu|(1 Y Y1 (1) aeas
G(C)zl—(k—22+-’€2—HJ(—é +0 E)=I_(%]E+O[EJ ( . )

where the effective binding constants are defined in the last two equations.
The effective correlation function is determined from the effective binding
constants by ky »/k; -, i.e.,

and

-1
x0 X
8= Xoky + Xk [;‘;LL_ + EHEJ (4.6.29)

This depends on the separation between the pairs of peaks in the slope curves rather
than on the two peaks pertaining to 6; and 0. We examine this dependence in a
simple case where the genuine cooperativity within each conformer is negative but
small, i.e.,

S;~Sy~1-¢ (¢>0) (4.6.30)
If we set h = qp/q, = k,,/k;;, then the effective correlation is given by

8™ h - he +0(e%) 4.6.31
T XY+ hXDBXY + X)) (Xp+ hX)NX] + hX) 4.631)

Thus, for any finite X) (and X}, = 1 - X?), g,is determined by the first term in Eq.
(4.6.31),ie.,

h o - XXG
8™ (X0 + XX+ X)) (X +hXO)(RXY + X?)

(4.6.32)

It is clear that the effective cooperativity as measured by the limiting slopes [Eqgs.
(4.6.27) and (4.6.28)] will always be negative, and will be larger (i.e., 8ef = 0) the
larger the separation between k, ; and &, (i.e., either £ — 0 or i — o). A particularly
simple case is when X? = X% = 1/2, in which case

(h—1)

=1—-a"1
T (4.6.33)
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In connection with the previous example, shown in Fig. 4.15, we commented
that it is both awkward and confusing to refer to that system as (macroscopically)
negatively cooperative. In the present examples, shown in Fig. 4.16, there is nothing
awkward in referring to these systems as negatively cooperative since negative
cooperativity has been built-in in the model. However, the extent of the negative
cooperativity cannot be estimated from the distance between the two pairs of peaks
in the slope curves. This distance could be very large, depending on & = g,/q;, but
not on the genuine negative cooperativity S. The latter may be estimated from the
distance between the two peaks belonging to the corresponding curves of each of
the conformers.

4.7. TWO SITES ON TWO SUBUNITS: TRANSMISSION OF
INFORMATION ACROSS THE BOUNDARY BETWEEN THE
SUBUNITS

We extend the model of Section 4.5 by one aspect. The adsorbent molecules
now consist of two identical subunits, each having one site. The subunit itself can
be in one of two conformations, L or H. Hence, altogether there are four possible
states for the entire empty adsorbent molecule: LL, LH, HL, and HH. Formally, this
model extends the model of Section 4.5 in allowing the four states instead of two.
In this respect all the results of the previous model apply also to this model, and in
some special cases (1] — 0, see below) the two models actually become identical.

There is an important virtue in studying this model in detail beyond the fact
that many real biological systems do consist of subunits, namely, we obtain an
understanding of the mechanism by which information on the occupancy state of
one site (i.e., on one subunit) is transmitted to the second site. We shall see in this
and subsequent sections that the latter intrigning mechanism is prevalent in bio-
chemical systems.

4.7.1. The Empty System

The system consists of two subunits, each of which can attain one of two states,
denoted by L and H, having energies E; and Ej,, respectively. In addition, we have
intersubunit interactions, which we denote by E;;, E, ; = E};;, and E, depending
on the state of the two subunits. Note that, in general, E;;, can differ from E,
(Fig. 4.17). However, for simplicity, we assume that £;;, = E,;. Denote

0, = exp(-BE,). Q= exp(-BE,p) @.1.1)

where subscripts o. and § can be either L or H.

Next Page
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Figure 4.17. Two subunits with symmetrical (lower panel) and unsymmetrical (upper panel)
interactions.

Let us first examine the equilibrium properties of this system in the absence of
ligands. The GPF of a single system is

E(0) = 020, + 20,040, 5+ P40 “7.2)

Note that this is actually the canonical partition function for a single empty system.
It is also the limit of the GPF of the system [Eq. (4.7.16)] obtained for A — 0.

The four states of the polymer are LL, LH, HL, and HH (see the first row of
Fig. 4.18) with corresponding probabilities, or mole fractions,

_ QIZJQLL _ _ QLQHQLH _ Q%IQHH 4.7
=T wTtmTTyg - FmtTy @7

In Eq. (4.7.3) the superscript zero indicates the empty system, i.e., the absence
of ligands. Note that XOLH is the probability of finding, say, the rhs subunits in the
H state and the lhs subunits in the L state. The mole fraction of the system such that
any one of its subunits is in the L state and the other in the H state is the sum of
X?, and X2, which in our case is simply 2X,,.

olalots
ofeRole
olsfors
38 &

Figure 4.18.  All sixteen configurations of a system with two subunits.
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We define the probability of finding a specific subunit (say the lhs) in state L,
independently of the state of the second subunit, by

2
X(L) =X, + X0, 07101, + 019401y

4.7.4
&0) @74
and, similarly,
2
X =X0, 4+ X0, = QHQHH;:((?)LQHQLH 475)

Clearly, if there are no interactions between the subunits, i.e., Eg= 0 for any o, B,
then

5 07 + 0,0y _ o
L+ 0 0+ 0y

= Xg’w (4.7.6)

. Oh+ 00y Oy
B0+ 0 0.+ 0y

The symbols Xg’“’ and X%“’ stand for the probability of finding a subunit in state
L or H in the absence of ligands (0) and in the absence of intersubunit interaction.
This may be obtained by separating the two subunits to infinite distance, hence the
superscript eo. Clearly, in this limit, the present model becomes identical with the
model treated in Section 3.2.

It follows from the definition (4.7.3) that in the limit of infinite separation
between the two subunits,

= X% @.7.7)

0.0
X0 5 %P xOcox0e 478
g0y e P @19

which is the expected result; that is, the probability of finding one subunit in state
o and the second in state 3 is simply the product of the two probabilities. We
conclude that E,3 = 0 for o, B =L, H is a sufficient condition for independence of
the subunits. This is not a necessary condition, however.

There is another important case where the two subunits become independent.
This occurs when the interaction energies are such that

E,= % (B, + Egg) 4.7.9)

or, equivalently, when

Q%H = QLLQHH 4.7.10)
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In this case the PF can be written as
§0)= 070, +20,04 V01, Oy + 03Cun
=0, Y07, + 04 V0 @11
From Eqgs. (4.7.3) and (4.7.4), we find for this case

_ (070, + 0,050, Oy
(0L Ny, + 0y Oyt

XpX;

_ 070, -y
(QNO,, + Oy M

and, similarly, for other combinations of indices we have
X,=XK, X=X, X=XX @71

Thus whenever the condition (4.7.9) or (4.7.10) is fulfilled, the probability of the
states of the two subunits is the product of the probabilities of the states of each
subunit. We see that the existence of interaction between the subunits does not
imply dependence of the states of the subunits. In other words, the condition Eg
= 0 is not a necessary condition for independence.

Consider now the reaction

(LL) + (HH) > 2(LH) (4.7.13)
For this reaction the equilibrium constant is

_ X (0040 Ofw
X%LX(;IH Q%QLLQ%JQHH QLLQHH

n = exp[-BRE , — E  — Egp)l  (4.7.14)

Thus, in the empty system the equilibrium constant 1 is determined only by the
interaction energies Ep Condition (4.7.9) is equivalent to the condition n = 1. We
shall see in Section 4.7.3 that the equilibrium constant 1 is also responsible for
transmitting information between the two ligands across the boundary between the
two subunits.

It is easy to show that if Eqs. (4.7.12) hold, i.e. if X‘&B is a product of Xg and
Xg as defined in Eqs. (4.7.4) and (4.7.5), then 1 = 1. This follows directly from the
definitions of Xgﬁ, and Xg and Xg Therefore 1 = 1 is a necessary and sufficient
condition for independence of the states of the two subunits. We shall see that this
statement holds true also for the ligands occupying the sites of the system.
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4.7.2. The Binding Isotherm

‘We next introduce ligands into the system. The binding energies to states L and
H are U, and Uy, respectively, and we assume also direct interaction energy U(1, 1)
between the ligands (for simplicity, this is independent of the states of the subunits).
We define

q, =exp(-BUp), qy=exp(-BUy), S=exp[-BU(1,1)] (4.7.15)

The grand PF for the system is now

&= 0(0; 0) +[Q(0; 1)+ Q(1; OIA + Q(1; 1)A?

=Y 0,005+ [Z 0uQp9:Qus + D, QaQBqBQaﬁ] A+ Y 0,05009,455W
B op op oB 4.7.16)

The sixteen terms in this equation correspond to the sixteen states of the system in
Fig. 4.18. Each sum in Eq. (4.7.16) corresponds to one row in Fig. 4.18. We use the
semicolon to separate the specifications of the left and right subunits. Note also that
we assume, for simplicity, that §; = S, = S.

Another way of writing the PF in Eq. (4.7.16) is

E= 00030l + (o + gph+ 4,gpSA] 4.7.17)
of

Here, each term with specific o and B, e.g., oo = L and B = L, corresponds to one
conformational state of the system, i.e., one column in Fig. 4.18. For instance,

& =020,,(1+2g A+ ¢2SA2) (4.7.18)

is the PF for the system in conformational state LL; clearly, this is the same as the
PF of a single-state system with two binding sites. The general form of the binding
isotherm is

A& _ 20,050up(9oM + 2955H) (4.7.19)
M 3

Note that even when S = 1, the isotherm does not reduce to the Langmuir form., If,
on the other hand, both S =1 and n = 1, then we find that the PF is

0=

_A
=2

(ST

2
E=Y 0,0 V0, Qs (1 + g AN + ggh) = [2 0, VO, (1+ qak)} (4.7.20)
of o

which is essentially the same PF as that of the model treated in Section 4.5 with
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§; = Sy = 1. We shall see in the following subsections that the important new
features of this model arise when 1) # 1.
As in Section 4.5, we define the intrinsic binding constant by
220 D)
=
0(0; 0)

X 4.7.21)

and the correlation function
235 1)0(0; 0)

1,)=
s D="00: 1o 0)

(4.7.22)

and rewrite the BI as
k,C +Kg(1, 1)C?

= 4.7.23
1+ 2k,C + Kg(1, 1)C* ( )

which is formally the same as in Section 4.3, but with k, replacing k and g(1, 1)
replacing S.

4.7.3. Correlation Function and Cooperativity

The correlation function was defined in Section 4.2 for any two events. In
particular, if the events are “‘site one is occupied” and “site two is occupied,” then
the (A-dependent) correlation function is

P o(1; DA%
T PP [QO; DA+ 0(1; DAY

Note that here P(1; 1) is the probability of finding the two sites occupied (inde-
pendently of the states of the subunits) and P(1) is the probability of finding a
specific site (say, the lhs in Fig. 4.18) occupied (independently of the state of the
subunits and of the occupational state of the second site); P(1) = P(1; _)=P(_; 1).

As in Sections 4.2 and 4.5, we need only the A — 0 limit of this correlation
function, which is the quantity defined in Eq. (4.7.22), to which we refer as the
correlation function between the two events. For these particular events we also say
that whenever there exists correlation [i.e., g(1, 1) # 1)], the two ligands cooperate;
hence there exists cooperativity between the ligands, or simply, the system is
cooperative.

We now focus on the indirect correlation. To do so, we can either factor S from
g(1, 1), or simply assume that .S = 1 and examine the remaining correlation, denoted
by y(1, 1). Using the notations (4.7.14) and (4.7.15), and K = Q,/Q, and
K’ = Quu/Q,;, we note that K and VK~ always appear together. Hence, we set

Oy NQ
K=Kk ==2 22
QL QLL

&1, 1) (4.7.24)

(4.7.25)
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and write the indirect correlation in the simplified form
(1+ 20K + K1 + 20kK + H*K?)
(1 + MK + kK + hK2)?

__@-DE-1K” (4.7.26)
(1 + 7K + kK + hK?)?

y1, =

The second form on the rhs of this equation is very convenient for examining the
condition under which indirect correlation exists. In Eq. (4.7.26) and in the
following section, we put ] = Vn}.

Equation (4.7.26) should be compared with Eq. (4.5.17) in Section 4.5; we note
that the former reduces to the latter when 1 = 0 and K% = K. In the model of Section
4.5 we found that “either # = 1 or K= 0" is a necessary and sufficient condition for
¥(1, 1) = 1. In the present model, we see from Eq. (4.7.26) that “either =1, or K = 0,
or | = 1” is a necessary and sufficient condition for y(1, 1) = 1.

As in the model of Section 4.5, if K = 0 (or K = o), the system is not responsive
to the binding process. Also, if # = 1, the ligand cannot induce conformational
changes in the system. Here, in addition to the requirement K # 0 and & # 1, we
need N #linorder tohaveindirectcorrelation. Moreover, thecorrelation y(1, 1)
in Section 4.5 is always positive [y(1, 1) 21]. Here,thecorrelation may beeither
positiveor negative,dependingon whether < 1 or > 1. In the next subsection
we shall see that this property is related to the way the conformational change
induced in one subunit is transmitted to the second subunit. Clearly, if all £, =0,
then there can be no communication between the two subunits, hence y(1, 1) = 1.
However, this result is also obtained under much weaker conditions, namely, 2E; ;, =
E,; + Egy, or, equivalently, n = 1. Thus, when E, ;, equals the average of E;; and
Eyy,ie,m =1, then y(1, 1) = 1. The reverse is also true, as can be seen from
Eq. (4.7.26).

To summarize, we see that in order to have indirect cooperativity, the following
conditions must be fulfilled (see the schematic illustration in Fig. 4.19):

(a) The ligand must have a preference for one of the conformational states,
i.e., it must be able to induce conformational change. The capacity to do so is
measured by 2. When & = 1, no conformational change can be induced.

(b) The subunit must be responsive. If K = 0 (or K = oo, but we have chosen
0 < K < 1), the conformational state will not respond to the binding process. The
system remains in its most stable form (which was chosen to be the L form). To be
responsive, the system must have a nonzero equilibrium constant, K.

(c) Whatever the change of conformation that has been induced in the subunit
on which the ligand is bound, there must be another conformational change induced
in the second subunit. The extent and direction of this change is measured by . If
1M < 1, the change induced in the second subunit will be in the same direction as in
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Figure 4.19. A schematic assignment of parameters h, K, and 1, where h is a property of both the
ligand and the subunit, X is a property of the conformations of the subunits, and 1} is determined by the
subunit-subunit interactions.

the first (see the next subsection), hence the approaching second ligand will find a
subunit, the state of which is the preferable state for binding, hence y(1, 1) > 1. The
reverse is true when 1 > 1, leading to y(1, 1) < 1, i.e., negative cooperativity. When
N = 1, there is no transmission of information across the boundaries, hence no
indirect cooperativity. This is a very general scheme of the conditions that must be
fulfilled to obtain indirect correlation. We shall repeatedly find these conditions in
all the models discussed in the next chapters.

The generalization to the case of two different sites (but the subunits are still
nearly the same, i.e., the same energies E;, E and E;;, E;,, E,) is quite
straightforward. The result is

@ - 1)(h, ~ 1)(h, - DK
[1+7(h, + DK + kK21 +Ti(h, + DK + K]

gla,b)y=1- 4.7.27)

which is the generalization of Eq. (4.7.26). Here, the sign of the cooperativity
depends on (W% — 1) as well as on the sign of the product (&, — 1)(h, — 1).

4.7.4. Induced Conformational Changes in the Two Subunits

In Section 3.4 we analyzed the conformational changes induced in a single
subunit (which was then the entire system) by a single ligand. In Section 4.5 we
studied the induced conformational changes in a single subunit (the entire system)
by two ligands. We found that the indirect correlation is intimately related to the
capacity of the ligands to induce conformational changes. We also found that the
ligand will always shift the equilibrium concentrations of L and H toward the state
for which the binding energy is stronger (more negative). This produces positive
cooperativity for two identical sites. The situation is more complex in the present
model. Here, there are two subunits, in each of which there could be an induced
conformational change. The conformational change induced on the subunit on
which the ligand binds is in the same direction as in previous models. However, the
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induced shift experienced by the first subunit induces another shift in the equilib-
rium concentrations of L and H of the second subunit. The latter can be either in
the same or in the opposite direction as in the first subunit. We shall now examine
these effects quantitatively.

Let us first examine the subunit on which the first ligand binds, say the left-hand
one. We denote by d(l) the change in the mole fraction of the L form, in the left-hand
subunit on which the first ligand is bound. From the PF of the system we find

d¥ =P(L; /1;0) - P(L; /0; 0)

_ 0191242:C10 _ 0r2:L0l1a 4.7.28)

Z(xBQaQ[}Qqﬁqa Zaﬁ QaQB Qal}

The quantity P(L; /1; 0) denotes the conditional probability of finding the left
subunit in state L, given that the left subunit is occupied and the right subunit is
empty. Therefore, d(l;) is the difference in the probabilities (or mole fractions) of
the left-hand subunit being in state L, before and after the binding on the left subunit
[the sums in Eq. (4.7.27) are over o = L, Hand B = L, H].

In terms of the notation of Section 4.7.3, this quantity can be written as

o (1-mWK@ + K1 +7K)

D = (4.7.29)
1+ 2K+ K[ +R[(1+ WK + kK7

We see that the sign of df,};) is determined only by (1 — k). It is positive when h < 1,
i.e., the ligands prefer to bind on L. Note that when 1 = 1 and K = K, this reduces
to the quantity d; in Section 3.4.

The second quantity of interest, denoted by dg), is the change in the mole
fraction of L in the second subunit (or the right-hand one) induced by binding on
the first subunit (the left-hand one). This quantity is defined by

d\}) = P(; L/1; 0) - P(; L/0; 0)

_ 9200w _ 91Zelolur (4.7.30)

ZaﬁQqQBQanq EqﬁQQQBQq[}

which may be simplified to

1- -7AK?
dp= (1R =) (4.7.31)
1+ 2K+ KH[1 +7(1 + WK + kK3

Here, in addition to (1 — &) the sign of d{} is determined also by (1 - 1%). If n = 1
then there is no transmission of 1nformat10n between the subunits, hence d{}’ =
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Whatever the conformational changes induced in the left-hand subunit (on which
the ligand is bound), the right-hand subunit does not respond.

When 1 < 1, then d{{’ has the same sign as that produced by (1 - k), e.g., 1f the
ligand increases the L form on the left subunit [d(l) >0inEq. (4.7.29)]and 1 - -1>0,
then also the right-hand side distribution (of L and H) is shifted in the same
direction. This results in positive cooperativity, as found in Section 4.7.3. The
opposite is true when 1 > 1, in which case a positive change on the left-hand subunit
(d}};) > () will induce a negative change on the right-hand subunit (dg) <0).

For completeness, we write also the changes produced by the second ligand.
These are

dP =P L/1;1) - P(; L/1;0)

(1 - K@ + hKY(1 + TAK)

= 4.7.32
(1 + 278K + BPKH[1 + (1 + K + hK?) ( )
and
dP=P(L; /1;1) - P(L; /1;0)
1 - h)(1 -7?hK?
1—md - (4.7.33)

=+ 2ThK + BPK )1 + (1 + kK + hK?]

The interpretation of d) and di?) is similar to df)) and d{p but refers to the second
ligand. A schematic 111ustrat10n of the relevance of these quantities to the two
subunits is shown in Fig. 4.20.

To summarize, when 1 =0, df}) and d{)’ are identical (as are also 42 and d).
In this case the extent of conformational change induced in one subunit is the same,
in both sign and magnitude, as in the second subunit. The two subunits act
concertedly, and this model reduces to the model of Section 4.5.

When 0 <1 < 1, the change d{} has the same sign as d)) but &)l > ld{), i.e.,
the induced change diminishes from the first to the second subumt "The extreme
case is when 1} = 1. Whatever the value of dg), the value of d“) becomes zero. There
is no transfer of information across the boundary [we have already seen that in this
case, y(1, 1) = 1]. When 1 <1 < o>, we find a reversal of signs from d{!’ to d’, and
in the limit 1} — oo the two become identical in magnitude but have opposite signs.

We have already discussed the physical reason for the effect of the parameters
h and K on the indirect correlation (Section 4.5) or, equivalently, on the induced
conformational changes. But we still need an intuitive explanation of the effect of
1. Why does 11 = 1 mean no “communication” between the sites? Why does 1 < 1
result in positive indirect cooperativity or, equivalently, induces conformational
change in the second subunit in the same direction as in the first subunit? And why
does M > 1 have the opposite effect?
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L L

Figure 4.20. (a) Adding the first ligand L to the left subunit causes conformational changes d{" and
df}). (b) Adding the second ligand to the right subunit causes conformational changes dg) and d?}).

The answer to these questions may be obtained by viewing the second subunit
as the adsorbent molecule and the first subunit as a “ligand” binding to the second
subunit. This “ligand” is affected by the real ligand L through the parameter 4. For
concreteness, suppose that 4 < 1, i.e., the real ligand always favors the L conformer,
hence when binding to the subunit, it shifts the equilibrium L == H in favor of L.

Suppose the first subunit, the “ligand,” approaches to “bind” to the second
subunit (Fig. 4.21). Its “binding energies” to L and H are

“Ug?’ = XE?)ELL + X(IS)EHL’ “l}OH” = XE‘O)EHL + X(l‘(l))EHH (4.7.34)
and the corresponding 4 parameter, denoted “ho,” is

“hO” - exp[_B(“l}(I)-l” — U(l),”)] (4.735)

llUTl

|IU‘;IH

: o
L+—H H

Figure 4.21. The “binding” of one subunit to a second. (a) An equilibrated subunit “binds” to a subunit
L. The corresponding “‘binding energy” is “Ug." (b) An equilibrated subunit “binds” to a subunit H. The
corresponding “binding energy” is “U‘;,.” A superimposed square and circle represent an equilibrated
mixture of L and H.
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The superscript “0” indicates that the first subunit is empty. We can write the
analogues of Egs. (4.7.34) and (4.7.35) for the first subunit being occupied by a
(true) ligand. When this is viewed as our new “ligand” (Fig. 4.22), we get the same
equations as (4.7.34) and (4.7.35) except for replacing the superscript “0” by “1”
(indicating that the first subunit is occupied). The ratio of “#!” and “h°%” denoted
“h,” is the effective h-parameter of the (true) ligand L with respect to the second
subunit. The ratio is

«p 1l

(13 Add h
h = 10 = exP[—B(X(L1 ) - Xio ))(ZELH —Ep - Egyl

=exp[(X{) - XP) Inn] (4.7.36)

Let us first consider the case n < 1. If h < 1, i.e., the (true) ligand favors L, then
XV - X9 > 0, hence “h” < 1. Similarly, when £ > 1, X" - X < 0, hence “A” > 1.
We see that in this case the ligand affects the second subunit in the same direction
as the first subunit. The second case is when 1} > 1. If & < 1, then X\ - X{¥ > 0,
hence “h” > 1. If h > 1, then X{" — X < 0, and “k” < 1. We see that in this case the
(true) ligand affects the second subunit in the opposite direction to the effect on the
first subunit.

As we have seen in the previous subsection, this reversal of the induced
conformational changes, when 1 > 1, is also responsible for the change in the sign
of the indirect cooperativity.

We shall see in the subsequent chapters that for systems with more than two
subunits, the case 1 > 1 leads to an oscillatory dependence of the correlation as a
function of the number of subunits.

1 'U]L"

Figure 4.22. The same as in Fig. 4.21, but now the equilibrated subunit is occupied. The corresponding
new “binding energies” are * U,{” and “U },.”
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4.7.5. Two Limiting Cases

1. The Concerted Model

The first limiting case was suggested originally by Monod, Wyman, and
Changeux (MWC) (Monod et al., 1965). This model requires that the two subunits
be either in the L or in the H state. The conformations of the two subunits change
in a concerted way. This is equivalent to the consideration of the first and fourth
columns in Fig. 4.18. Mathematically, we can obtain this limiting case by taking | =
0, which essentially means that the equilibrium concentrations of X, ,; (and X;; )
are negligible.

The PF of the system may be obtained from Eq. (4.7.17) by substituting
Qéﬁ = meQﬁBSaB- The result is

Euwe= Y, Qo1 + 29 M+ gAY =&y + &y (4.7.37)

This is essentially the same PF as that of the model treated in Section 4.5 with the
replacement of O, everywhere by Q%LQW. In essence, the MWC model is equivalent
to a two-state model with energies corresponding to 2E, + E;; and 2E; + E,;;,. The
fact that we have two subunits does not affect the formalism, except for the
redefinitions of the energy levels.

Originally, the MWC was applied for systems with negligible direct interac-
tions between the ligands (i.e., S = 1), in which case Eq. (4.7.37) reduces to

Erwe= 020, (1 + gAY + Q%01 + gAY (4.7.38)

If we choose the L energy level, 2E, + E;;, as our zero energy (or, equivalently,
defineanew PFby &' =&/ Q%QLL), we may rewrite Eq. (4.7.38) in the more familiar
form

Eiwe=(1+K,CF + K(1 + K, CY (4.739)

where K;C=q;A, K C=guh, and K is the equilibrium constant for conversion
between the two states, LL == HH:

K= Q%iQHH

= 4.7.40)
00, (

K is the same as K? in Eq. (4.7.25). From Eq. (4.7.26), we see that in the case
1 = 0 the indirect correlation function (which is the same as the total correlation
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functionif S=1) is

A-h’K

w1, =1+ s Kh)z—

(4.7.41)
which is essentially the same as Eq. (4.5.17) with the replacement of X by K. In
this case, as in the model of Section 4.5, we always have positive (indirect)
cooperativity. The molecular reason for this result is quite clear in view of the
analysis of the origin of the cooperativity as discussed in Section 4.5. Here, a
conformational change on one subunit is fully transmitted to the second subunit. In
other words, the two subunits respond in a concerted manner, as if they were a
single subunit, i.e., as in the model of Section 4.5.

2. The Sequential Model

The second extreme case, suggested by Koshland, Nemethy, and Filmer (KNF)
(Koshland et al., 1966), is also known as the sequential model. The mathematical
conditions required to obtain this limiting case are quite severe. First, it is assumed
that, in the absence of a ligand, one of the conformations is dominant, say the LL
form. In addition, it is assumed that a ligand binding to any subunit will change the
conformation of that subunit into the H form. These assumptions lead to the
consideration of only the four diagonal states of Fig. 4.18, for which the PF is

Exvr = Q1011 + 20,040,y + O QyuanSN (4.7.42)

The empty state is the LL state on the top left corner of Fig. 4.18. The binding
of aligand on any of the subunits will shift its conformation completely from L to
H without affecting the conformation of the second subunit. Binding of the two
ligands will shift the entire polymer to the state HH. Thus, in each binding process
there is a total change of conformation of one subunit; hence the term sequential
model.

The mathematical requirements necessary to obtain the KNF model from the
general one can be stated as follows. Let K° be the equilibrium constant for the
H & L conversion of each subunit when it is known to be empty. Likewise, let K
be the equilibrium constant when the subunit is known to be occupied. Both of
these equilibrium constants are functions of A, i.e.,

xo_PH.0) Oy

4.7.43
PL0) -0, F(A) ( )

and

Ko PE L) Ondn

4.7.44
PL L - Oy === F(S)\) ( )
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where P(H, 0;) is the probability of finding the left-hand subunits in state H and
being empty. Similar meanings apply to the other probabilities in Egs. (4.7.43) and
(4.7.44). The functions F(A) and F(SA) may be obtained from the PF, through the
relevant probabilities.

The mathematical requirement of the model is that K = Q,/Q;, — 0, i.e., Lis
infinitely more stable than H, but Kh = Q,,4,/0,q, — <, i.e., the occupied subunit
in state H is infinitely more stable than L. This means that we require a toral
conversion L — H, upon binding in a system which has infinite resistance (K — 0)
to conformational changes. This can be achieved only when 4 is such a strong
infinity that even after multiplication by K — 0 the product K# is still infinity.

4.8. BINDING OF PROTONS TO A TWO-SITE SYSTEM

4.8.1. Introduction, Notation, and Some Historical Perspectives

Perhaps the simplest two-site cooperative systems are small molecules having
two binding sites for protons, such as dicarboxylic acids and diamines. Despite
their molecular simplicity, most of these molecules do not conform with the
modelistic assumptions made in this chapter. Therefore, their theoretical treatment
is much more intricate. The main reasons for this are: (1) there is, in general, a
continuous range of macrostates; (2) the direct and indirect correlations are both
strong and intertwined, so that factorization of the correlation function is impossi-
ble. In addition, as with any real biochemical system, the solvent can have a major
effect on the binding properties of these molecules.

The literature on dissociation (or ionization) constants of these and related
compounds is immense. We present in this section only a few examples to illustrate
various aspects of cooperativity in these systems.

As a rule, we shall use only intrinsic binding (or association) constants. The
relevant experimental data are usually reported in terms of either the thermody-
namic dissociation or association constant. The general relation between intrinsic
and thermodynamic constants has been discussed in Section 2.3. It will be repeated
below for the special cases of this section.

We denote by k; the first intrinsic binding constant, and by k, the second
intrinsic binding constant. The latter is the same as k,;, i.e., the conditional binding
on the second site, given that the first site is occupied.” Figure 4.23 shows two
alternative, but equivalent, ways of describing the binding of protons to a dicar-
boxylic acid.

(a) The first view, referred to as the “macroscopic” view, recognizes three
species: the empty, the singly occupied, and the doubly occupied molecules. The

*One should be careful to distinguish k; and k> from k, and k; for systems with different binding sites.
Both k; and kp are for the first site. See Subsection 4.8.3.
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0D

00)=[0] — 1 — 5] —F2 S p21=0,))

ko=kqp

(1,0)

Figure 4.23. Two alternative ways of describing the binding of protons to a dicarboxylic acid. [0], [1],
and (2] denote the di-ion, singly and doubly occupied acid, respectively. (0, 1) and (1, 0) indicate a
molecule with a specific single site occupied. The macroscopic binding constants K, and K, are related
to the reactions of adding successively the first and second proton to the di-ion, respectively. The intrinsic
binding constants k;, and k, refer to the same processes but for a specific site, as if the two (identical)
binding sites were labelled, say the right and left one.

corresponding densities of the species are denoted by square brackets. The two
(“macroscopic”) equilibrium constants are

] __n
K=oy %= 8.1

where [H] is the proton density (in moles per unit of volume) in the solution.

(b) The second view, sometimes referred to as the “microscopic” view,
recognizes four species, denoted by (0, 0), (0, 1), (1, 0), and (1, 1). Here, we “label”
the two equivalent “sites,” say the right and left sites, and distinguish between
configurations (0, 1) and (1, 0). These configurations are in general indistinguish-
able (unless the molecules are localized, or if we consider two nonequivalent sites,
say in salicylic acid or, of course, in amino acids).

The “microscopic” equilibrium constants are now defined by

e o (010 _ 11,0
170, 0)(H1 ~ 10, OJ(H]

4.82)

and

ky= (1,11 _ [1,1]

T [0, 1)[H] ~ [1,0][H] (4.8.3)

Note that the terms “macroscopic” and “microscopic” constants do not imply that
these quantities measure macroscopic or microscopic quantities, respectively.
Here, in the “macroscopic” view we have simply grouped the two “microscopic”
species (0, 1) and (1, 0) into one species denoted by (1). Both of these constants
can be macroscopic or microscopic, depending on whether we study the binding
per molecule or per one mole of molecules.
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Clearly, since we have the relation
[11=1[0,1]1+11,0] (4.8.4)
the relations between the “macroscopic” and “microscopic” constants are

K,=2, and K,=k,/2 4.8.5)

The factor 2 in the first relation arises from having two “products” in the first
association process (Fig. 4.23). The factor 1/2 in the second arises from having two
“reactants” from which the doubly occupied acid is formed. (These factors are
sometimes referred to as “statistical”’; a better term would be combinatorial factors,
the general origin of which is discussed in Sections 2.2 and 2.3.) The binding
isotherm (or the equivalent titration curve) should not depend on the way we choose
to view our species. If we denote by C the proton density [H] in the solution
(assuming that we are in the regime of very dilute solutions), then the binding
isotherm is simply the ratio between the total bound protons and the total number
of adsorbent molecules, i.e.,

0, 11+01,01+2[1,1] _ K C+2KKC
TO.04[0, J+[LO+ 111 1+KC+KKC

2k, C + 2k k,C*

= (4.8.6)
1+ 2k,C + kk,C*

The distinction between K and k; becomes clearer when the two sites are not
equivalent (e.g., glycine), in which case 2k, in Eq. (4.8.6) is the sum of two different
intrinsic constants,” say the binding to the acidic group & , and to the basic group,
k,, such as

2k, =k, +K, 4.8.7)

From the experimental binding isotherm 7 = 7i(C), one can determine the two
“experimental” constants K, and K,. If the two sites are identical, then one can
convert from K, and K, into &, and k, via Eq. (4.8.5). This is not possible when the
two sites are not identical in which case one cannot obtain the intrinsic constants,
say k, and k;, solely from knowledge of K, and K, (see Subsection 4.8.3).

*Again, we note that when we refer to an intrinsic binding constant, we mean binding to a specific site.
The corresponding binding free energy (or any pertinent thermodynamic quantity) includes the
interaction of the proton with the particular site on which it binds as well as with the enrire molecule.
In some publications the term “intrinsic” refers to the interaction of the proton only with the particular
site on which it is bound. This is, in general, not a well-defined quantity, unless other conditions are
fulfilled. See also Appendix I.
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The thermodynamic dissociation constants are related to the association
constants by

K, = (KZ,diss)—l and K, = (Kl,diss)_l (4.8.8)

The pair correlation function for the two protons is given by

gu=8lL)=—7—=-=—== 4.8.9)
H kl kl Kl Kl,diss
The corresponding work defined by
Wi =W, 1)==kzTIng,, (4.8.10)

is the work associated with the process
O0,1H+1,00-(1,1)+(0,0 (4.8.11)

In this process we start from two singly occupied molecules, but at infinite
separation from each other (and hence no correlation between the protons), and
form one doubly occupied and one empty molecule. By taking two singly occupied
molecules at infinite separation, we secure the independence of the protons at the
same two sites as in the doubly occupied molecule, denoted (1, 1). The quantity
W, is computed from the pK values, usually reported in the literature, at T'=298.15
K (here K stands for degrees Kelvin),

W, =—k.T1 s k.T2.3031 s
=— n—— =— . 0Li05—
11 B Kl B 10 Kl
= 1.364(pK, — pK, — log,;4) (4.8.12)

where pK = —log K is the logarithm to base 10 of the constant K and 2.303 kT =
1.364 kcal/mol is the value for conversion to kcal/mol at 7= 298.15 K.

In the next subsections we shall present some specific experimental data. In all
cases known to us, W, is positive, indicating negative cooperativity. Most molecu-
lar interpretations of this cooperativity have focused on the electrostatic interaction
between the two protons. Formally, as shown below, one can always define a
microscopic dielectric constant to account for the deviation in the experimental
value of W, from the value computed on the basis of purely Coulombic interaction.
However, from the theoretical point of view, we can gain further insight into the
molecular contributions to W, by distinguishing between the following four
sources of cooperativity: (1) direct proton—proton interaction; (2) indirect proton—
proton correlation mediated by the solvent; (3) indirect correlation mediated by the
adsorbent molecule at a fixed conformation; (4) indirect correlation, modified by
the allowance of conformational changes in the adsorbent molecule.

Qualitatively, the four components of the correlation function can be visualized
according to the following four steps: First, we bring the two protons from infinite
separation to the final distance Ry, (where R, is assumed to be a fixed distance
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between the two protons on one of the conformational states of the adsorbent
molecule). The interaction energy is simply the Coulombic interaction e2/RHH,
where e is the charge of the proton. Next, we place the same two protons in a solvent.
The interaction is now modified by the dielectric constant of the solvent. If the
distance R, is large enough, one can use the macroscopic dielectric constant of
pure water, which at 25 °C is 78.5. However, for smaller distances, the dielectric
constant would depend on the distance Ry, (and, in general, also on the size and
type of the charges on the two interacting species). Next, having selected a fixed
conformation, we put the adsorbent molecule between the two protons. This will
modify the correlation between the two protons. Finally, a further modification will
be obtained by relaxing the requirement of a fixed conformation.

Perhaps the first attempt to interpret the proton—proton correlation, based on
electrostatic interactions, was made by Bjerrum (1923). If e is the proton charge
and Ry, the proton—proton distance in the diacid, then the interaction free energy
was assumed to be given by

2
Yu=pr_ (4.8.13)

where D is the macroscopic dielectric constant (78.5 for water). One can fit the
experimental values of W,; to an equation of the form (4.8.13) only for long
o,m-dicarboxylic acids where the protons are far apart, as illustrated in the next
subsection. For the shorter diacids, W/, is much larger than the value predicted with
the fixed dielectric constant D.

Clearly, if one takes a smaller value of D, one gets a higher value of W,,, for a
given distance Ryy. Kirkwood and Westheimer (1938), Westheimer and Kirkwood
(1938), and Westheimer and Shookhoff (1939) indeed argued that one should take
a much smaller dielectric constant, since the intervening medium between the two
protons more closely resembles a hydrocarbon liquid rather than water. In fact, for
any dicarboxylic acid one can define an effective dielectric constant Dy, to fit the
experimental value of W, by an equation of the form (4.8.13), with D being
dependent on the proton—proton distance, the type and size of the acid and the
solvent.

In 1959, Eberson (1959, 1992) found that a family of derivatives of succinic
acid shows a remarkably large negative cooperativity, i.e., g;; < < 1, which is
difficult to explain on the basis of electrostatic theories only. We shall discuss these
compounds in Subsection 4.8.6. At present, there is no satisfactory molecular
interpretation of these findings. One of the more popular ideas, originally suggested
by Jones and Soper (1936) and further elaborated upon by McDaniel and Brown
(1953), is that an intramolecular hydrogen bond would facilitate the first dissocia-
tion of the proton, ie., K, ;. becomes smaller (or K, becomes larger). Also, the
second proton will dissociate with more difficulty. The net effect would be a
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decrease in the correlation function g;;. McCoy (1967) has shown that the values
of g, correlate well with the O---O distances, for a series of acids with nearly fixed
O---O distance. The stronger the hydrogen bond, the smaller the correlation func-
tion, g, or the larger the value of W,,. There are other factors that can possibly
contribute to the correlation function, one being specific solvent effects, such as
formation of a hydrogen-bond bridge by solvent molecules. We shall mention this
possibility in Chapter 9.

4.8.2. Two Identical Sites: Dicarboxylic Acids and Diamines

Table 4.1 shows the values of kj, k, (= k), the correlation function g(1, 1),
and the corresponding free energy W(1, 1), for a series of o,m-dicarboxylic acids.
We first note that all the correlations g(1, 1) < 1, i.e., negative cooperativity. As
expected, the cooperativity is strongest for oxalic acid for which the proton—proton
distance is about 3 A; the value of g(1, 1) gradually increases toward 1 for the larger
molecules. For the largest dicarboxylic acids reported here—the azelaic acid,
where seven methylene groups separate the two carboxylic groups—we still find
substantial correlation between the two protons. The largest distance is about 10.6
A. Note that, in the limit of very large n, the second binding constant should
approach the value of k for the monocarboxylic acid, k = 7.2 x 10* (see Section
2.6); the value of k, for azelaic acid is 7.12 X 10,

In Fig. 4.24, we plot the experimental free energies W(1, 1) as a function of the
proton—proton distance R;,;. We also plot the theoretical curve for the Coulombic
interaction between the two protons, as modified by the macroscopic dielectric
constant of water D = 78.54. It is clear that the values of W(1, 1) for the larger
molecules follow closely the theoretical curve with a fixed value of D. Large

Table 4.1
First and Second Intrinsic Binding Constants (in liter/mol), Pair Correlations, and
Corresponding Work W(1, 1) (in kcal/mo}) for o,@-Dicarboxylic Acid COOH(CH,),COOH

at25°C”
Acid k k, g, 1) wQ, 1)
Oxalic acid (n = 0) 7.8 % 10% 3.39 x 10! 434 %1073 3.22
Malonic acid (n = 1) 2.46 % 10° 1.34x 10* 5.45x 1073 3.09
Succinic acid (n = 2) 1.50 x 10° 3.12 x 10* 2.08 x 107! 0.93
Glutaric acid (n = 3) 1.31 x 10° 4.41x10* 3.35x 107! 0.65
Adipic acid (n = 4) 1.29 x 10° 5.23 x 10* 4.05x 107! 0.53
Pimelic acid (n = 5) 133 x10° 6.10x 10% 4.60x 107! 0.46
Suberic acid (n = 6) 1.26 x 10° 6.51 x 10* 5.15x 107! 0.39
Azelaic acid (n = 7) 1.30 x 10° 7.12x10% 5.48 x 1071 0.36

“Based on data from Gane and Ingold (1931).
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Figure 4.24. Experimental values of W(1, 1), based on data from Gane and Ingold (1931) on
a,m-dicarboxylic acids. The proton—proton distances were calculated for the fully extended linear acids.
The full curve is W(1, 1) = e2/78.5RHH in kcal/mol.

deviations occur for the smaller molecule—which may be interpreted as due to a
much smaller effective dielectric constant.

Table 4.2 presents some values of k,, k, (= k), g(1, 1), and W(1, 1) for some
oaw-alkane diamines. Again, we see that as the proton—proton distance (in the
di-ionized molecule) increases, the value of g(1, 1) increases toward unity, but even
for the 1,8-octane diamine the correlation is still quite large (0.504). In contrast to
the case of dicarboxylic acid, the a,w-diamines cannot be fitted on a Coulombic
curve of the form (8.13) with the macroscopic dielectric constant of water. The best
one can do is to fit these data to a Coulombic curve with an effective dielectric
constant of D = 28. As in the case of dicarboxylic acids, we find here that for the

Table 4.2
First and Second Intrinsic Binding Constants (in liter/mol), Pair Correlations, and
Corresponding Work W(1, 1) (in keal/mol) for a,m-Alkane Diamines at 20 °C*

Diamine K ky gL, ) W1, 1)
1,2-Ethane diamine (n = 2) 6.15 x 10° 2.00 x 107 3.25x1073 334
1,3-Propane daimine (n = 3) 2.08 x 1010 8.73 x 108 4.19 %1072 1.85
1,4-Butane diamine (n = 4) 3.15x 1010 448 x 10° 1.42x 107! 1.14
1.5-Pentane diamine (n = 5) 5.61 x 1010 1.10 x 1010 1.96 x 107! 0.95
1.8-Octane diamine (1 = 8) 5.00 x 10'° 2.52x 1010 5.04%x 107! 0.40

“Based on data from p. 526 of Robinson and Stokes (1959).
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long-chain diamine the first binding constant is about 5 x 10, very close to the
limit of the k values of the normal mono-amines, which is about 4.4 x 10'°
(Section 2.6).

4.8.3. Two Different Sites: Amino Acids
The BI of a system with two different sites, @ and b, is
1 K,C+2K,K,C*
" 21+K,C+KK,C

1 K| ;;,C+2C

_! (4.8.14)
2 Ky 4is Ko iss + Ky s C + c

where, in the first form, we have used the thermodynamic (or macroscopic)
association constants (K;, K,) and, in the second form, we have used the thermo-
dynamic dissociation constants (K, ;. = K3, K, 4 = K1"). It is the latter quanti-
ties that are normally reported in the literature. The corresponding intrinsic binding
(or association) constants £, k,, kc, and k,; (see diagram in Fig. 4.25) are related to
the macroscopic constants by

K =Ky =k, +k, K=K 4 =k'+k! (4.8.15)

Note that k, and k, are the intrinsic binding constants on a and b, respectively; k,
and k, are the conditional intrinsic binding constants, i.e.,

k.=ky/p ka=k,/p 4.8.16)
COO‘
k/ CHz N(a/b
NH+
(I:OO- (lZOOH
s e,
NH, NH;
k C;:OOH k Ky,
ci
NH,

Figure 4.25. The intrinsic binding constants for an amino acid.
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The correlation function g, is given by

g, =2t lav % (4.8.17)

Clearly, from the experimental values of K| ;. and K, ;. one cannot obtain the
three independent intrinsic constants k, k,, and k (k;=k k_/k,).

The traditional approximation made to solve for the instrinsic constants is to
assume that the effect of the (unionized) carboxylic group on the dissociation of
the NHJ group is not much changed upon esterification of the carboxyl group.” If
we denote by k; , the binding (or association) constant to the NH, group of the
esterified amino acid, then the approximation

k. = kg, =Kges (4.8.18)

is made, where kg ;,  is the dissociation constant of the ester, normally reported in
the literature. Using this assumption, one can calculate k,, k,, and the correlation

function from the experimental quantities K, ;. K 4., and kg ;.

Jdiss’ Jdiss? iss

k= KE,diss k. = Kl,diss - kE,diss k =kl
a” * b~ H ¢~ "“Ediss
K 1 ,dissK 2,diss K 1 ,dis:KZ,diss

K Ldiss — kE,diss
K l,dissK 2,diss

Table 4.3 shows the values of k, k,, k_, and g(a, b) for some amino acids. Note that
the correlation is always negative. The variation in g(a, b) within the o-amino acids
is quite small. When the amino group is displaced away from the carboxylic group,
the correlation becomes systematically larger, i.e., weaker negative cooperativity.
This is similar to the trend we observed in the previous subsection.

gla, b)= (4.8.19)

4.84. Maleic, Fumaric, and Succinic Acids

Table 4.4 shows the values of the proton—proton correlation for the three
dicarboxylic acids: maleic, fumaric, and succinic acids (Fig. 4.26). All the values
of W(1, 1) are positive, i.e., negative cooperativity. Since the configuration of the
first two acids is nearly rigid, one can expect that the larger the proton—proton
distance, the weaker the cooperativity. Indeed, the ratio of W(1, 1) for the first two

*It has been found experimentally [see Edsall and Wyman (1958), p. 485] that the monoester of
dicarboxylic acid has a value of the dissociation constant nearly half of the K 4;55 value of the dibasic
acid. This is equivalent to saying that the binding constant kg to the monoester is nearly the same as
the second intrinsic binding constant for the dicarboxylic acid, i.e., kg = ky/1.
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acids is
W(maleic) {5.04 (for water at 25 °C) 4.8.20)

W(fumaric) |4.93 (for 50% aqueous ethanol at 20 °C)

Note that the ratio is almost the same for the two solvents. These ratios are, however,
far from the inverse ratio of the proton—proton distances, which is about

Ry (fumaric)
______H”( = (4.8.21)
Ry (maleic)
Thus, one cannot assume a relation of the form
w(, )= 4.8.22)

Ryn
for the two isomers, with the same dielectric constant. As we shall see below, the
ratio of the W(1, 1) values may be easily accounted for by assuming two different
dielectric constants.

The case of succinic acid cannot be discussed in terms of Coulombic interac-
tions alone. Here, conformational changes induced by the binding process can
contribute significantly to the correlation. Note also that g(1, 1) [or W(1, 1)] of
succinic acid is not an “average” of the correlations in maleic and fumaric acids.
This could be partially due to the configurational changes in the succinic acid,
induced by the binding process. We shall discuss below a simple two-state model
for succinic acid, and a continuous model in the next subsection.

Consider a simplified two-state model for succinic acid as depicted in Fig. 4.27.
In this model we choose the C,—C,, distance to be 1.54 A for a single bond and
1.34 A for a double bond. All the C-C-C bond angles are chosen to be of a
tetrahedral angle 6,= 109.47°. We replace the carboxylate group by a point negative
charge placed on the line extending the C_—C bond at a distance of 1.25 sin(n/3)
=0.625 A from the carboxylate carbon atom (1.25 A is the C-O distance in the
carboxylate group while the O—C-O angle is 120°). The protons, having a unit
positive charge, are placed at a distance of 7, = 0.7 A from the negative point charge.
Only two configurations are allowed for the dihedral angle ¢, ¢ = O for the cis and
¢ = xt for the trans.

COO~ COoO- H CO0O- H - COoO
AN / N / N /
C = C cC = C C —C
/TN TN AT
H H COO- H COO" H
Maleic Fumaric Sﬁccinic

Figure 4.26. The structural formulas for maleic, fumaric, and succinic acids.



Table 4.3
Values of &, k;, and k., g(a, b) and w(a, b) for Some Linear Amino Acids”®

Acid Formula kg, ky, k. gla, b) w(a, b)
Glycine NH,~-CH,COOH 1.95 x 104 5.25x10° 5.37 x 107 1.02 % 1072 271
a-Alanine CH; CH(NH,) COOH 2.04x 10* 5.25x10° 6.31x 107 1.20 x 1072 2.62
Leucine (CH3), CHCH, CH(NH,)COOH 2.24 x 10* 437 x10° 427 x 10 9.77 x 1073 274
B-Alanine NH,—(CH,),~COOH 457 x 104 1.55 x 1010 1.35x10° 8.71 x 1072 1.45
Y-Amino-n-butyric ~ NH,—~(CH,);-COOH 8.91 x 10* 2.69 x 1010 5.13 x 10° 191 x 107! 0.98
§-Amino-n-valeric ~ NH,~(CH,),—~COOH 7.76 x 10* 5.89 x 1010 1.41 x 1010 240 % 107! 0.85
e-Amino-n-caproic ~ NH;—~(CH,)s—~COOH 6.46 x 10* 5.62 x 1010 2.34 x 1010 4.17x 1071 0.52

“Based on data from p. 452 of Edsall and Wyman (1958).
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Table 4.4

Experimental Values of g(1, 1) and w(1, 1) (in kcal/mol) for Maleic, Fumaric, and Succinic Acid. Below Are Some Computed Values for the Model

Compounds Described in Section 4.8.4

In water at 25 °C” In 50% aqueous ethanol at 20 °C’
g1, 1) w(l, 1) g1, 1) w(l, 1)
Maleic 1.52x 10 5.21 1.0x 107 8.18
Fumaric 1.75%x 107! 1.034 6.05x 1072 1.66
Succinic 2.05% 107! 0.938 492 %1072 1.78
Computed values

“Maleic” D.=196 w=5225w"=0) D,=125 w=8.18 (w =0)
“Fumaric” D, =5.10 w=1.035w" =0) D.=3138 w=1.66(w =0)
“Succinic” D, =196 w=1.191 (w" =-3.6) D.=125 w=1.704 (W = -6.05)
R(Cy~Co) =134 A { D;=510 { Dy=318

“Succinic” D.=19.6 w=1208 (W' =-33) D.=125 w=1.721 (w" = -5.56)
R(Co—Cp)=154A { D =510 D;=318

“From Eberson (1992).
“From Eberson (1959).
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Cis H* Trans

Figure 4.27. A two-state model for succinic acid: Cis with ¢ = 0 and Trans with ¢ = .

For the analogues of maleic and fumaric acid, we choose the C,—C, distance
to be 1.34 A and fix the angle ¢ = 0 and ¢ = 7, respectively. If it is assumed that for
these molecules the proton—proton correlation is purely electrostatic, then we can write

2
W(“maleic”) = —% (4.8.23)
DR
and
W(“fumarid) ¢ (4.8.24)
umari =—— .0.
DR,

where ¢? = 332.833 kcal mol™! A; D, R, and Dy, R; are the dielectric constant
and proton—proton distance for the “maleic” (cis) and “fumaric” (trans) models,
respectively.

One can easily adjust the values of the dielectric constants D and D to obtain
the experimental values of W, as in Table 4.4. With a choice of D= 19.6 and D
= 51.0 for water, and D = 12.5 and D, = 31.8 for 50% water—ethanol, we obtain
the experimental values of W. We now compute the total correlation function for
the two-state model for succinic acid. Here the correlation cannot be computed as
an average correlation of the two configurations (see Section 4.5). The total
correlation of the equilibrated two-state model is

_ 9, HO(, 0)

0(1, 0)Q(0, 1)
_ (Sc+ SKRY1 +K)
- (1+ Kh)?

_ (L+ KK +K)
= (SXp+ SpX3) —~—(1 K - Sy, 1) (4.8.25)

g1, 1)
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where

k==L p=2T  4na XZ=—£Cq—%——2,
QC qc QCq26‘+QTqT

The quantity (S) is an average of the direct correlations S and S;in a hypothetical
system, where the mole fractions of the two configurations are X, and X7, respec-
tively (see Section 4.5). As such, (S) is bound by S and S, but y(1, 1) must be
larger than unity and is not bound by S and S;. In Table 4.4 we see that both the
experimental and calculated values of W(1, 1) are closer to the fumaric rather than
the maleic values. One could argue that since the ionized succinic acid would be
most of the time in the trans configuration, we should expect that the value of W
for the succinic acid be closer to the fumaric acid value. The fact that the W
(succinic) is indeed intermediate between W (maleic) and W (fumaric) is quite
accidental.” The value of W (succinic) is determined by both the negative correla-
tion (S} and the positive correlation y(1, 1).

The calculation of W (succinic) was carried out twice, for R(C, = C ) =1.3
Aand R(C,-C,) =154 A. If the correlation were determined by the electrostatic
interaction alone, we should have weakened the interaction upon increasing the
proton—proton distance. In Table 4.4, we see that by increasing the C — C, distance
(keeping all other parameters fixed) we actually increase the value of W. This is
clearly due to the relatively large effect of the indirect positive correlation in the
equilibrated system. Unfortunately, the relative contribution of the direct and
indirect correlations cannot be determined from the experimental data. The com-
puted values of W* = —kgT In y(1, 1) are shown in brackets in Table 4.4. It is seen
that a large negative contribution to W(1, 1) is due to the indirect cooperativity.

4.8.5. A Fully Rotating Electrostatic Model

We extend the model of Section 4.8.4 in two aspects. First, we allow a full
rotational degree of freedom about the C, — C_ bond. Second, we remove the
symmetry in the molecule. The C, - C, dlstance is still 1.54 A and all bond angles
are taken as tetrahedral. As in the model of Fig. 4.27, the carboxylate group is
replaced by a negative point charge at a distance of 2.16 A from the C, atom. * For
the amine group, we place a point with no charge at a distance of 1.3 A from the
C,, atom. Figure 4.28 shows the new model schematically. The analogues of the
following three molecules are considered: (1) the “succinic acid” with
e, = e, =—e, with e the proton charge; (2) the “B-alanine” with ¢, = ~e and ¢, = 0;
and (3) the “ethane diamine” with ¢, = ¢, = 0.

TThis is true for the 50% water aqueous solutions. For water, the value of W (succinic) is even smaller
than that of W (fumaric).
*Similar models were developed by Hill (1943, 1944).
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Figure 4.28. The skeleton model for succinic acid, B-alanine, and ethane diamine. The model is
essentially the same as that described in Fig. 4.27. Instead of a two-state model, we allow a continuous
range of variation, 0 < ¢ < 27, Also, ¢, and e, can be either negative or zero for a carboxylate or an
amine group, respectively.

Clearly, these models are quite far from any of the real molecules. We have
chosen to develop these simplified models for two reasons: first, to show how the
direct and indirect parts of the correlation are interwoven in such a way that there
is no way of factorizing these two parts; second, to prepare the basic building block
for the more elaborate model discussed in the next subsection.

The PFs of these molecules are constructed from the following elements:

The internal energy of the molecule is taken as the sum of three terms, all
depending on the angle ¢,

eaeb
Ey0)=U, V, — 8.
o@D =U )+ V () + DOR (@) (4.8.26)

where U, (¢) is a Lennard-Jones potential function between the two functional
groups: the carboxylate with a radius of 1.54 A and the amine with a radius of 1.36
A. The internal rotational potential V,0(®) is of the form

V(0 =—1+cos(30) (4.8.27)

giving preference to configurations with ¢ = ®/3 and —n/3, as in butane. This
function will be used only in the next subsection. Here, we simply put V, (¢) =0.
The last term is the charge—charge interaction, depending on the charge—charge
distance R ,(¢) and the varying dielectric constant of the form

D($)= % {DI1 + cos($)] + Dy[1 + cos(¢)]} (4.8.28)

where D and D are the two extreme values of D for the cis (¢ = 0) and trans (¢ =
1) configurations, respectively.



Two-Site Systems: Direct and Indirect Cooperativity 129

The binding energies of the proton with charge e, (= +e) to the two sites are

PN : L S : ol
U0)=C+ ot R, 0) (4.8.29)
and
U@)=C+ e—r”f—” + ;7”% (4.8.30)

where -C is a constant, which is the nonelectrostatic part of the proton-site
interaction; its value does not affect the correlation function. The second term on
the rhs of Eqs.(4.8.29) and (4.8.30) is the electrostatic interaction between the
proton and the charge on the sites to which it is bound, at distance r, = 0.7 A and
7,=0.1 A. The last term is the electrostatic interaction between the proton and the
charge on the second site at a distance of Ry, (¢) or R, (¢). Finally, the proton—
proton interaction is taken to be purely electrostatic,

2

H
D(®)Ryy(9)

with D(¢) the varying dielectric constant given in Eq. (4.8.28) and R;(¢) the
proton—proton distance.
The proton—proton correlation can be calculated from

_ 9@, b)00,0)

ud, 1)= 4.8.31)

y b —
8 D)= e, 000, b)
2n 2
[ expl-BE,(®)1dd [ expl-BE(®) - BU(L, 1) — BU, ) - BU,()ldb
=2 2n 0 2n
[ expl-BE(®) - BU,(6)1d0 [expl-BEy(6) - BU,(®)1d6
0 0

(4.8.32)

where all the integrals are over the entire range of the rotational angle, 0 < ¢ < 2.

With this description of the model we have adjusted the two dielectric constants
D, =55 and D = 78 to compute the correlation functions of the three model
compounds.

Table 4.5 shows the experimental values of g(a, b) for the three (real) mole-
cules. The major trend reflects both the change in the proton—proton distances
(hence the direct part of the correlation) and the indirect part of the correlation,
depending on the configurational changes induced in the molecule upon binding
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Table 4.5
Experimental and Computed Values of Proton—Proton Correlation in Succinic Acid,
B-Alanine, and Ethane Diamine and Their Model Analogues

Experimental Model calculation
Succinic acid 0.205 “, 0.201
B-Alanine 0.071 “0,~” 0.111
Ethane diamine 0.0032 “0,0” 0.082

of protons. Table 4.5 also presents the computed values for the three models. The
values of the “—,—” model for succinic acid was obtained by fitting the two
parameters D and D,. The value of the total correlation decreases from the “—,—”
to the “0,— to the “0,0” models, roughly similar to the trends in succinic acid,
B-alanine, and ethane diamine.

As we pointed out above, there are two main reasons for the differences in the
correlations in these molecules. To analyze the structural changes induced in the
molecule, we define the “cis” mole fraction as the mole fraction of molecules in

the range —1t/2 < ¢ < 1/2 and the “trans” isomer in the range 7t/2 < ¢ < 3/2n. With

these definitions we find for the “—,—” model the following mole fractions of the
different stages of occupation of the molecule,
X9=025 x9=x8=046, XxP=047 (4.8.33)

Thus, the empty molecule is mostly in the trans configuration. Binding one proton
to either @ or b sites (here identical) introduces a considerable change in the mole
fraction of the cis form. Binding the second proton causes only a minor change
inX..

For the “0,—” model, we have

XP=046, x9=046, XxY=067, X@=046 (4.8.34)

Here, binding to the “acidic” group does not change the distribution. However,
binding to the basic group () shifts the equilibrium in favor of the cis configuration.
Finally, for the “0,0” model we have

X9=025 x9=x®=025 XxP=0.14 (4.8.35)

Here, only when the two protons bind to the molecule do we observe a large shift
in favor of the trans configuration.

These configurational changes will affect the total pair correlation in the model
compounds. In addition, in the real molecules we have also a large effect due to
changes in proton—proton distances (as well as differences in solvent effects and
intramolecular hydrogen bonding).
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4.8.6. Spurious Cooperativity in Some Alkylated Succinic Acids

Table 4.6 shows some experimental data on o—0. dialkyl succinic acids. The
most remarkable finding is that some of these molecules have a very large negative
cooperativity, far beyond what could be explained by electrostatic theories. These
molecules exist in two isomers—the meso and racemic forms. The latter exists in
two optically active enantiomers that are mirror images of each other—only one
of these is shown in Fig. 4.29.

Table 4.6 shows that, while the correlation functions of the meso form change
within less than one order of magnitude when the alkyl group R increases
from methyl to tert-butyl, the corresponding values in the racemic series decrease
by four to six orders of magnitude for the same variations in the alkyl group.

As we have noted in previous subsections, at present it is not possible to
reproduce the experimental values of &, k,, and g(1, 1) for these compounds. The
main difficulty is to account for the solvent effects, which cannot be ignored in
these molecules. In spite of this limitation we shall see below that the phenomenon
of spurious cooperativity can explain the two major observations: first, the decrease
in g(1, 1) by five to six orders of magnitude upon increasing the alkyl substituent
in the racemic series, and second, that these changes occur only in the racemic and
not in the meso form.

The model used for the o—a” dialkyl succinic acid is essentially an extension
of the model used in the previous subsection. Here, instead of the two hydrogens
on the C-carbones we have one alkyl group R on each of the C_ carbones, as shown
in Fig. 4.30.

Table 4.6
Thermodynamic Dissociation Constants for Alkylated Succinic Acids in 50% Aqueous Ethanol
at20 C*
Compound PKY diss PK; giss O W1, 1)
Succinic 5.44 735 492 x 1072 1.78
Racemic o,0-dimethyl 5.04 8.17 297 %1073 345
Meso o,0-dimethyl 4.97 7.58 9.82x 1073 2.74
Racemic o,0/’-diethyl 476 9.22 139x107* 5.26
Meso o, -diethyl 5.37 7.43 3.48 x 1072 1.99
Racemic o, 0(-diisopropyl 3.66 1144 6.64 x 1078 9.79
Meso o0 -diisopropyl 5.98 8.10 3.03 %1072 2.07
Racemic o, o'-di-tert-butyl 3.58 13.12 1.15% 107 12.2
- Meso 0,0"-di-tert-butyl 6.43 8.29 5.52x 1072 1.72

“From Eberson (1959). Values of the racemic isomer are underlined.
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COOH COOH COOH

a b

Figure 4.29. The meso (a) and racemic (b) forms of o—0 dialkyl (R) succinic acid. The racemic form
exists in two optically active enantiomers; one is shown on the rhs, the other is the mirror image of this
form.

The essential simplification of the model is to replace the alkyl substituents,
from methy! to tert-butyl, by Lennard-Jones spheres of increasing diameters. In this
model we cannot calculate the exact values of k; and k, (in fact, these cannot be
calculated even if we had the true rotational potential; the main missing information
is the solvation Gibbs energies of the molecules involved). Nevertheless, we can
demonstrate with this simplified model the two major experimental findings
regarding the proton—proton correlation in these series of molecules, as shown in
Table 4.6.

The canonical PFs of the fully rotational model are

2n
0(0) = A,, [ expl-BE(6) - BAW(®)1do
0
2r

0(1) =24, | exp[-BE(®) - BU®) - BAK;($)Id0 L (4.836)
0

2r
02) = A, [ expl-BE(®) — B2U(0) - BU,(0) — BAI($)Id0
0
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CO0O- COO-

‘Ca‘

O

Figure 4.30. Molecular model for dialkyl succinic acid. The C~C,, distance is 1.54 A; the C-C-C
angles are tetrahedral, 6, = 109.47 °. The center of the negative charge was placed at a distance of
1.25/2 = 0.625 A from the carboxyl carbon atom, and the positive charge at a distance of 0.7 A from
the negative charge. The effective radii for the various alkyl groups were computed from the van der
Waals volumes given by Bondi (1968). These are: methyl, 1.75 A; ethyl, 1.78 A; isopropyl, 2.0 A;
tert-butyl, 2.2 A. These radii were used to construct the Lennard-Jones potentials between the various
groups [see Eq. (4.8.46)].

Racemic

where A is a factor that depends only on the properties of the pure solvent (internal
PF and N! for the pure solvent) and will be cancelled out when computing the
binding constants or the correlation function. The quantity E(¢) is essentially the
rotational potential energy of the empty molecule, i.e., the doubly ionized acid, as
given in Egs. (4.8.26); V, (0) in Eq. (4.8.26) is the rotational potential energy of
ethane (Eliel and Wilen, 1994) and is given by

V() =3 VI1 - cos(30)] (4.8.37)

with V =-2 kcal/mol giving preference to the gauche configuration for ethane. The
charge—charge Coulombic interaction between the two charges on the carboxylate
ions is

&

Eg(9) = DORO) (4.8.38)

where R(¢) is the charge—charge distance for each angle ¢ and D(¢) is an angular-
dependent dielectric constant of the form

D(6)=0.5{D 1 + cos(¢)] + D1 ~ cos($)]} (4.8.39)

when ¢ = 0 (the “cis” configuration for the two carboxylic groups), D(0)= D; and
when ¢ = & (the “trans” configuration for the two carboxylic groups), D() = D.
The two extreme values D and D, were fitted to obtain the values of &, and k, for
succinic acid; see below.
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The function U, (¢) in Eq. (4.8.26) is essentially a Lennard-Jones potential

oo 1S (T]

operating between the bulky groups, here the carboxylate and the alkyl group R;
€ was taken equal to 0.2945 kcal/mol, while the LJ parameter for methane ¢ was
set initially as the LJ parameter for methyl, to account for the methyl-methyl
interaction in the o—o” dimethyl succinic acid. Later, it is gradually increased to
simulate the change in the rotational potential (essentially the repulsive part) when
proceeding from methyl, to ethyl, isopropyl, and tert-butyl substituents.

The interaction energy U(¢) between the proton and the empty (di-ionized)
acid comprises three parts:

U) = Uy + Upp(®) + Ugy () 4.8.41)

where U, is the interaction of the proton with the site on which it binds, excluding
the electrostatic interaction of the proton with the negative charge on the second
site. The latter, Ug; (), is angle-dependent and is defined in Eq. (4.8.43) below. In
addition, we add an effective hydrogen-bonding contribution Uyg(¢), which takes
the value —6 kcal/mol whenever ¢ = £60° and zero elsewhere. This gives additional
stabilization to the gauche configurations. One can assign this additional stabiliza-
tion to either an intramolecular hydrogen-bonding of the monoprotonated acid, or
the specific hydrogen-bonded bridge by a water molecule (Ben-Naim, 1992).
Hence we have

—6 for50<¢<70
Uyg®)=7 -6 for-50=¢=>-70 (4.8.42)
0 elsewhere

and

2
—e
Ug (0)= DOR®) (4.8.43)

where R.(9) is the distance between the proton (+) and the negative charge (-) on
the second site. The quantity U,, is independent of the angle ¢ and could be absorbed
in the quantity A, and has no effect on the correlation function.

The quantity Ap7(¢) is the solvation Gibbs (or Helmholtz) energy for the
molecule with occupation number i (i = 0, 1, 2) and specific angle ¢. Although we
believe some specific solvent effects might contribute significantly to the correla-
tion function (see also Chapter 9), we did not include solvent effects in the present
calculations (apart from the dielectric constants D and Dy, as indicated above).
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Recall that A, includes the solvation Gibbs energy of the proton, which is not
known. Actually, 7»0 is not needed to calculate the correlation function g, ;. However,
to compute k, and k, one needs a value for A,. Therefore, A, together with D and
D, were fitted to obtain the values of k; and k,, hence of g,, of succinic acid. Once
7\.0, D, and Dy are fixed, we proceed to compute the relevant quantities for the
dialkylated succinic acid.

Finally, we note that in Q(2) we have the proton—proton interaction Uy, which
depends on ¢,

62

U = D o R ®)

(4.8.44)

where R, () is the proton—proton distance and D(9) is the varying dielectric
constant, as defined in Eq. (4.8.39).

With these specifications of the parameters we can compute &, and k, with the
aid of Eqs. (4.8.36) and the correlation function g, from

= 4.8.45
o) ( )

Using the model described above with dielectric constant D= 34.2 and D = 12,
and with A, = 3.62 x 10°, we can reproduce the experimental values of &, and k,
~ for succinic acid. These are shown in Table 4.7. Note that the dielectric constant
for the trans form is very close to the macroscopic dielectric constant of 50%
mixture of water and ethanol (Harned and Owen, 1958) (for which D = 49 at 25
°C; the experimental values of pK, and pK, reported in Table 4.6 are at 20 °C). As
expected, the fitted dielectric constant for the cis configuration is far smaller than
the macroscopic dielectric constant. Once we determined D ., D, and A, they were
kept fixed for the rest of the calculations. The only varying parameter is now the
diameter of the Lennard-Jones sphere that replaces the alkyl groups of varying size.
The van der Waals contribution to the rotational potential is computed for each ¢
as the sum

3 6
Upaw= 2, 3, U, fi, ) (4.8.46)

i=1 j=4

where U, is a Lennard-Jones (LJ) potential (4.8.40) computed for all nine pairs of
groups (i=1, 2, 3 onthe first C ,-carbon atom and j =4, 5, 6 on the second C -carbon
atom).

Figure 4.31 shows the total rotational potential for the meso (a) and racemic
(b) forms of o—o" “di-tert-butyl” succinic acid, where the tert-butyl is replaced by
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Table 4.7
Values of g1, = g(1, 1) and Wy, = W(1, 1) for Succinic Acid and Its Model Derivatives as Described in Section 4.8.6
Succinic acid c=38A c=40A o=42A
Exp Calc. Meso Racemic Meso Racemic Meso Racemic
ky 1.119 x 107 1.114 x 107 1.00 x 107 2.76 x 107 7.56 % 10° 1.44 x 108 6.73 x 100 9.23 x 108
k) 5.508 x 10° 5.511 x 10° 5.56 % 10° 6.38 x 10° 5.15x10° 6.75 x 10° 494 x10° 6.83 x 10°
gn 492x1072 4.95 %1073 5.56 x 1072 231x1072 6.81x 1072 4.67x1073 7.35% 1072 739 %107
Wy, 1.754 1.751 1.683 2.195 1.565 3.125 1.521 4.199

“The experimental values in the first column are from Eberson (1959).

y sndeq)
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a Lennard-Jones sphere of diameter 4.2 A. The essential difference between the
meso and racemic forms is the following. As we increase G, the van der Waals
repulsive part of the interactions between the bulky groups becomes so large as to
be insurmountable. In the meso form there exists only one such insurmountable
barrier, at ¢ = 0. This is due both to the electrostatic repulsion between the two
carboxylate groups and to the van der Waals repulsion between the two alkyl groups
which are eclipsed at ¢ = 0. Thus, although this barrier becomes insurmountable
for large o (or large alkyl groups in the real molecule), most of the rotational angles,
say between 20°, to 340°, are still accessible and will contribute to the partition
functions Q(0), Q(1), and Q(2). The situation differs dramatically for the racemic
form. Here, as we increase G, two, rather than one, insurmountable barriers develop:
one, at 120°, due to the van der Waals repulsion between the two alkyl groups, and
a second, at 240°, due to the pair of repulsions between the alkyl and carboxylate
groups. Clearly, once these two barriers become insurmountable, the molecule will
split into two conformational isomers, one including the range —120° to 120° and
the second including the range 120° to 240°. (The actual range will, of course, be
smaller, but in defining the range of the two isomers we can take the entire range
between the maxima. Those angles for which the potential is very high will have
very low probability and hence will not contribute to the integrals defining the
various binding constants.)

The values shown in Table 4.7 are those computed with the entire rotational
partition functions. Thus, no matter how high the barriers, as long as we integrate
over the entire range for ¢ between 0°-360°, we actually allow all possible
configurations (with appropriate Boltzmann weights according to the values of the
potential function). The main results of these computations are the following. First,
we note that the values of g,, are almost unchanged when we increase the diameter
o in the meso series. In fact, there is a slight increase in g, as we proceed from ¢ =
3.8 Ato 6 =4.2 A. This is similar to the general trend observed in the experimental
values reported in Table 4.6. Regarding the racemic series, we observe a gradual
decrease in g,, from 2.3 x 1072 to about 7.4 x 107 for ¢ = 4.2 A. With further
increments in © one finds that g;, reaches an almost limiting value of about 2.0 x
1075, Thus, while the correlation function remains nearly constant as we vary 6 for
the meso series, the corresponding values for the racemic series decrease by about
three orders of magnitude for the same change in 6. This is still quite different from
the experimental data, where we observe a decrease of almost six orders of
magnitude, starting with succinic acid and ending with the a~o di-tert-butyl
succinic acid. This discrepancy can be settled by recognizing the occurrence of
additional negative spurious cooperativity. The qualitative argument is the follow-
ing. In all the calculations shown in Table 4.7, the full partition functions of the
equilibrated systems has been used. In the meso series this procedure is justified,
since the entire rotational range of 360° is indeed accessible. This is true despite
the insurmountable barrier at ¢ = 0°. The fully equilibrated PF will automatically
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Figure4.31. The total rotational potential, in kcal/mol, as a function of the dihedral angle ¢ for (a) the meso form and (b) the racemic form, of ¢—¢” “di-tert-butyl”
succinic acid; the tert-butyl is replaced by a Lennard-Jones sphere of diameter 4.2 A.
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give negligible probability to the region around ¢ = 0°. This procedure is, however,
invalid for the racemic series. Again, if we use the fully equilibrated PF we allow
the entire rotational range. This means that as we perform a titration experiment,
we allow the whole range of rotations to respond to changes in pH (or A in our
formulation of the theory). For instance, when A — 0, the diacid is fully ionized.
The most probable configuration is the trans, ¢ = 180°. On the other hand, when A
is very large, the acid becomes fully protonated, lending a larger probability to the
cis—gauche configuration, say +60°. Thus, whatever the heights of the rotational
barriers, the computation of a binding isotherm or, equivalently, a titration curve
(see Appendix G) from the equilibrated PF allows the entire distribution of
rotational conformers to respond to A (or to the pH). This is not what happens in
practice. As the two barriers in the rotational potential become very high, there is
a moment when the molecules will “freeze-in” in one of the two isomers, say the
trans (¢ around 180°) and the cis—gauche (—60° < ¢ < 60°). Once this happens, the
conformational distribution responds differently to changing A. It now behaves as
a mixture of two isomers, and the correct PF from which we must calculate the
titration curve is one of the “frozen-in” PFs, as discussed in Section 4.6. The
corresponding binding isotherm now has the form

6/=X00, + X}8y, (4.8.47)

where L and H represent the trans and cis—gauche configurations. Note that when
we perform a titration experiment, each of the PFs of L and H allow the transition
between all states within the corresponding rotational ranges of L and H, but not
transition between the regions L and H.

The calculation of 0, and 0, uses the same integrals as in Egs. (4.8.36), but
only the range of integrations were limited to the regions corresponding to 8; and
0. For instance,

4r/3
0,(0) = 0,(0) = | [same integrand as in Eq. (4.8.36)]

2n/3
L (4.848)

2n/3
0(0) = Q40 = | [same integrand as in Eq. (4.8.36)]
—2n/3

and similar integrals for Q,(1), Q(1), Q,(2), and Q(2). (The subscripts T and C
correspond to trans and cis isomers.)

Table 4.8 shows the calculated values of k, . and k, . for the cis—gauche and
k7 and k, for the trans isomers, both belonging to the racemic form with ¢ = 3.8
and 6 = 4.4 A. It is clearly seen that both isomers have genuine negative coopera-
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Table 4.8
Values of g1, = g(1, 1) and Wy, = W(1, 1) for the cis—gauche and trans Isomers for the Model
Compound Described in Section 4.8.6, with Two Diameters of the Substituted Alkyl Groups:
c=38Aando=44A

Racemic 6 =3.8 A Racemic 6 = 4.4 A
cis—gauche trans cis—gauche trans
kic 343x10% &y 6.68x10° ke 370x10% kp  6.68x10°
kyc 203x101° Ky 4.93x10° ke 205x10° Ky 493x10°
guc  553x10%  gr  7.38x1072 guc  553x10% gy 7.38x1072
Wiie 4328 Wir 1.518 Wiic 4.37 Wir 1.518

tivity on the order of 6 x 107 for the cis—gauche and 7.38 x 1072 for the trans
isomers. Both values of g,, are, however, far larger than the experimental correla-
tions, on the order of 107/, as cited in Table 4.6.

It was noted at the end of Section 4.6 that when the separation between the two
sets of binding constants becomes large, we expect to observe spurious negative
cooperativity. This does not need to be related to either k,/k, - or k,;/k, 1, but will
be determined roughly by the separation between the average of k, - and k, . on the
one hand, and the average of k,; and k,; on the other (see Section 4.6). The
computed separation between the pKs is about 3 units on the pH scale for the
cis—gauche and about one unit for the trans forms. The separation between the two
pairs of binding constants is about 6—7 units on the pH scale or, equivalently, about
7.5-9 kcal/mol for W,,. This brings us very close to the experimental values
reported in Table 4.6 for the bulkier alkyl groups.

The actual values of g,, determined experimentally depend, of course, on the
method used to extract the effective &, and k, from the titration curve. Figure 4.32
shows the BI (transformed into —20 + 2 to conform with the titration curve, see
Appendix G) and its derivative, along with the corresponding titration curves for
the values of k, -, ky, k;» and k, with X = X9.= 1/2. It is clear that the BI has four
points at which the slope is maximal. Note that the experimental value of X% is
unknown. It depends on the PFs of the cis and trans forms, as well as on the
temperature and the pH of the solution in which the compounds are synthesized.
Therefore, it is impossible to reproduce the experimental titration curve of the
mixture of the two isomers without arbitrary assumptions. Nevertheless, from the
plots shown in Fig. 4.32, it is clear that the separation between the average of the
two peaks pertaining to the cis—gauche isomer and the average pertaining to the
trans isomer is much larger than the separation within each pair. This gives an
additional spurious negative cooperativity to the system, which agrees qualitatively
with the experimental values reported in Table 4.6.
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Figure 4.32. Binding isotherms (a) and titration curves (b), and the corresponding slopes of 6;, 8,
and Of, for values of the binding constants calculated for the racemic form with & values from Table 4.8
(here, L is the trans form and H the cis—gauche form). Note the four peaks in the slope curves,
corresponding to the four binding constants k,, k1, k; - and k, . The binding isotherms are plotted in
the form of —26 + 2 as a function of pH (see Appendix G).

4.8.7. Conclusion

If one looks at a binding isotherm or the equivalent titration curve which shows
a well-resolved pair of binding constants, one cannot tell whether the system
consists of a mixture of single-site molecules or a cooperative double-site molecule.
However, if we know in advance that the system consists of single-site molecules,
then observing a binding isotherm such as that in Fig. 4.6 will immediately tell us
that the system is a mixture, and k, and k, belong to different single-site molecules.
Thus, the occurrence of spurious cooperativity in single-site systems is unlikely to
deceive us into thinking that the system is genuinely cooperative.

This is not the case when we know that the molecules in our system have two
sites (e.g., succinic acid) and that there exists genuine negative cooperativity
(mainly due to electrostatic interactions). Here, observing a BI with two widely-
resolved binding constants might be deceptive. The computed correlation £,/k,
might be interpreted as a genuine cooperativity, although in fact it might be the
result of a combination of genuine and spurious cooperativity.

'We have shown in Section 4.8.6 that the dialkyl succinic acid in the racemic
form might exist as a mixture of two isomers, referred to as cis—gauche and trans.
If such a mixture actually exists, then the genuine cooperativities depend on
kyo/k,c and k,;/k,; for the two isomers, respectively. However, using standard
methods of extracting binding constants, say at the low and high percentage of
neutralization regions (Eberson, 1959), one actually measures effective binding
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constants &, and k,, which are averages of the form (see Section 4.6):

ky =k 5= X0k o+ Xk, (4.8.49)

The calculated correlation by k,/k; will be misleading. We have seen in Section 4.6
that the measured correlation would be determined not by the genuine cooperativi-
ties (ky/k; - and k,;/k, ;) but by the separation between the two pairs of binding
constants, (k,, k) and (k, 1, k,). We have also shown in Section 4.6 that the extent
of spurious cooperativity can, in principle, be very large. Therefore, applying
theories of (genuine) cooperativity, such as electrostatics, hydrogen-bonding, or
specific solvent effects, to explain spurious cooperativity must fail if we do not
recognize the presence of two or more components in the system.

In the case of dialkylated succinic acid, we have seen that, due to the occurrence
of two barriers in the rotational potential of the racemic form (and not of the meso
form) with the bulkier alkyl groups (and not the smaller ones), it is likely that the
system will “freeze-in” into a mixture of two components. This is exactly where
we observed very large negative cooperativity in the experimental data shown in
Table 4.6. One cannot avoid the conclusion that at least a substantial part of the
observed cooperativity is spurious.

Finally, we comment on the possibility of the occurrence of spurious coopera-
tivity in biochemical systems. It is well known that strong cooperative macromole-
cules play a decisive role in regulating many vital processes in biochemical
systems. It is also known that a large part of this cooperativity originates from the
capacity of the macromolecules (e.g., hemoglobin, Chapter 6, and allosteric en-
zymes, Chapter 8) to change their conformation in response to ligand binding (e.g.,
oxygen or a substrate). It therefore seems that the potential for the occurrence of
spurious cooperativity already exists in such systems. We can speculate that under
certain conditions, such as changes in temperature or pH, the system may switch
between equilibrated and “frozen-in” mixtures. Such switches can turn on and off
the cooperativity of the macromolecule. The net effect would be a regulation of the
regulatory mechanism itself.



Three-Site Systems: Nonadditivity and
Long-Range Correlations

5.1. INTRODUCTION

In this chapter we discuss three-site systems. We extend the three models treated in
Chapter 4: direct correlation, indirect correlation mediated through the adsorbent
molecule, and indirect correlation mediated by a chain of communicating subunits.
Here, we discuss separately two possible structures of the system, a linear and a
triangle arrangement of the sites (Fig. 5.1). Two fundamentally new features are
discussed in considerable detail: the nonadditivity of the triplet correlation and the
possibility of long-range correlations.

5.2. GENERAL FORMULATION OF THE PARTITION FUNCTION

We start by writing the GPF of a single system in various forms:

& =0(0)+ QDA + Q2N + QBN
=0(0,0,0)+[Q(a, 0,0)+ O, b, 0) + O(0, 0, )AL
+[Q(a, b,0) + Q(0, b, ¢) + Q(a, 0, O)IA* + Q(a, b, c)A?

=Q(0,0,0)+30,(1)+[Q(1,1,0)+ Q(0, 1, 1)+ Q(1, 0, HIAZ + O(1, 1, DA?

= Q(0,0, 0) +30,(1) + 3Q,(2)A% + Q(3)\? 5.2.D
In the first equality the GPF is written in the most general form (for the case m = 3).

Here, Q(J) is the (canonical) PF for a system with / ligands. The second form is used
whenever the sites are all different, here denoted by a, b, and c. Clearly, in this case

143
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Figure 5.1. (a) Three linearly arranged sites. When the sites are chemically identical and there is no
conformational change induced by ligands, the three sites are identical in a weak sense, i.e., there is
only one intrinsic binding constant but two pair correlations. (b) Three identical sites arranged in an
equilateral triangle. Due to symmetry of the system, there is only one binding constant and only one
pair correlation. The three sites are identical in a strict sense.

there are three different PFs for singly occupied systems, denoted by (a, 0, 0),
(0, b, 0), and (0, 0, ¢) and three different PFs for doubly occupied systems. The
third form is used when the three sites are identical in a weak sense. By
identical in a weak sense we mean that the canonical PF of the singly occupied
system is independent of the specific site on which the ligand is bound. Thus,
instead of writing the specific PFs, Q(1, 0, 0), Q(0, 1, 0), and Q(0, 0, 1), which
have the same value, denoted by Q,(1), we simply take three times this quantity.
The PFs for doubly occupied systems are assumed to be different for the
different specific arrangements. A simple example of a system with three
identical sites in the weak sense is a linear arrangement of three chemically
identical sites with direct correlation only; see Section 5.3. The only require-
ment here is that the intrinsic binding constant on the first site be the same for
any specific sites. Usually, this requires that the binding energy be the same for
each of the sites.”

We stress that chemically identical sites do not guarantee the identity of the
first binding constants. For example, benzene-1,2,3- or 1,2,4-tricarboxylic acid
(Section 5.9) will have, in general, two or three different intrinsic binding
constants, although the interaction of the proton with the carboxylate group
itself is almost the same. The difference in k; will arise because of the electro-
static inTteraction between the proton and the charges on the other carboxylate
groups.

*Note that we always assume that the ligand is very small relative to the adsorbent molecule. Otherwise,
even when the binding energy is the same for each site, the PFs for singly occupied molecules could
differ, e.g., the rotational PF of a molecule having a ligand bound to the center or to the edge will be
different. See also Section 5.10 and Appendix B.

"This is sometimes referred to as a perturbation effect. In this book we shall not use this term. In general,
we shall include in the binding free energy the interactions of the ligand at site j with the entire molecule.
See also Section 2.2 and Appendix I.
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The last form on the rhs of Eq. (5.2.1) is used whenever the three sites are
identical in a strict sense.” This is defined whenever the PF for any specific
arrangement of / ligands has the same value, denoted by Q.(/)). Hence, we simply
write 3Q (1) and 3Q(2) without specifying the specific arrangement of the ligands.

An example that conforms to this definition would be benzene-1,3,5-tricar-
boxylic acid (Section 5.9). Clearly, owing to the symmetry of the molecule there is
only one intrinsic binding constant k;, and only one intrinsic binding constant for
pairs k,, or, equivalently, only one pair correlation function gll.T

The binding constants and correlation functions are defined as in Chapter 4.
For instance,

_2@0.0 522
k“_Q(0,0,0)}\“ 622
_2@.b,0),, (5.2.3)

%~ 0(0,0,0) °

_ka _ 0(a,b,0)0(0,0,0) (5.2.4)
8ab =1k, ~ 0(a, 0, 0)0(0, b, 0)

_ ke O(a, b, 0)0(0,0,0)0
Bare =k .~ 0(a, 0,0)0(0, b, 0)Q(0, 0, ¢)

(5.2.5)

Specific examples will be discussed in subsequent sections.

5.3. DIRECT INTERACTION ONLY

This is an extension of the model discussed in Section 4.3. The assumption is
made that the binding of a ligand does not affect the state of the adsorbent molecule,
hence all correlations are due to direct ligand—ligand interaction. For ligand-ligand
interaction we usually assume pairwise additivity, i.e.,

Ua, b, c)=U(a, b,0)+ U0, b, c) + U(a, 0, ¢) (5.3.1)

“This is sometimes referred to as the “identical-symmetrical” case. Symmetry in itself is not enough to
distinguish between a weak and strict sense. (Both linear and triangle, and similarly square and
tetrahedral, models are symmetric.) Perhaps the requirement of the arrangement with highest symmetry
better characterizes the identity in the strict sense.

TNote, however, that k; depends on the interaction of the proton with the other two charges on the two
carboxylate groups. Hence, it is different from k1 of benzoic acid; see Section 5.9. Similarly, k11 depends
on the interaction with the third carboxylate group—hence it differs from k11 for 1,3-dibenzoic acid.
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where U(a, b, c) is the change in energy associated with the process of bringing the
three ligands to the same configuration as on sites a, b, and c, but in vacuum. A
similar meaning applies to U(a, b, 0) for two ligands at a and b. When the sites are
identical in the strict sense, we have

u{,1,1)=30(1,1) (5.3.2)

where U(1, 1, 1) and U(1, 1) are the triplet and pair interactions, respectively. For
the linear system of three sites, one usually assumes that, due to the short range of
the ligand—-ligand interaction, the interaction between ligands occupying nonneigh-
boring sites, say a and c, is negligible. Therefore we write

U(a, b, ¢) = U(a, b) + U(b, c) (5.3.3)
The BI for the general case with three different sites is
dln
6=34 Tﬁ

1 (kg kR )C+ 20k 4, S + koS + ik S, )C? + 3k Kk S 1 C°

T3 14k, + k, +k)C+ (kS + kS, +kkS,)CE+k kS, .C

__ kC+2K%5C*+1S°C? (53.4)

14 3kC+ 3K*SC* + I°S3C3

where, in the second form on the rhs of Eq. (5.3.4), weputk, =k, =k, =kand S, =
S, =S8, =85,8,. =5 This is the most common BI for three identical sites with
pairwise additive ligand-ligand interaction. Clearly, when S = 1 the BI reduces to
a simple Langmuir isotherm.

In the general case there are three different correlations in this system. Presum-
ing additivity [see Eq. (5.3.1)], we write

Sabc = SabSachc (535)

‘When the sites are identical in the strict sense,
Sab=Sac=Sbc=S’ SabC=S3 (53.6)

When the sites are identical and arranged linearly, so that long-range correlations
may be neglected,

Sy=8,,=S, 8,=1, 8, =5 (5.3.7)

In all these cases the triplet correlation is expressible in terms of the pair correlations
and the temperature dependence of the correlation is predictable, knowing the
ligand-ligand interactions. This is, in general, not the case for systems with indirect
correlations, discussed in the following sections.
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5.4. THREE STRICTLY IDENTICAL SITES: NONADDITIVITY OF
THE TRIPLET CORRELATION

We extend here the model of Section 4.5. The adsorbent molecule can be in
one of two conformations, L and H (Fig. 5.2). For simplicity, and in order to
highlight the new features of this model, we assume that the direct interactions are
additive [see Eq. (5.3.1)] and are also independent of the conformation of P (i.e.,
the ligand—ligand distances are invariant under conformational changes). Hence

Uua,1,1)=301,1) (5.4.1)
The coefficients Q(/) of the GPF in Eq. (5.2.1) are, in this case,

00)=Q, +Qy
0,(1)=0,9, + Qnay (5.4.2)
0,2)= (0,47 + Opai)S
03)=(Q,4; + Quai)S’

Note that Q (/) refers to I specific sites being occupied. The Bl is

1, 0dIn&
6=32 0

_ (014 Qg+ 20y g1 + Qua)SN + (Q1q1 + QS
(QL + QH) + 3(QLqL + QHqH)A' + 3(QL‘I% + QH‘IIZ-I)SXZ + (Qﬁli + QHq?i)S37»3

k,C + 2k;,C? + &y, C*
1+ 3k,C +3k,,C* +k,,,C°

5=

Figure 5.2. Two-state model for the adsorbent molecule. The three sites are identical in a strict sense,
and the ligand-ligand interaction is assumed to be pairwise additive and independent of the conforma-
tional state. Note that the sites differ for the two states L and H.

(54.3)



148 Chapter 5

where
014, + Oy
=== =R (X%, +X°
1 0,+0, ° (X149, + Xpapho
0,41 + 0ud;
(=IO gy | G
0,q; + Oud;
ki = LQZ " QI:IH 7‘3 = (X}q; + XOH‘I%)A(%

Note that these are the intrinsic binding constants, i.e., they pertain to specific one,
two, and three sites.
The pair correlation is defined, in general, as a ratio of the probabilities,”

P(1,1,)

— = 4.
P (5.4.5)

g, =
where P(1, 1, _) denotes the probability of finding two specific sites occupied while
the state of occupation of the third site is unspecified, i.e, it could be either empty
or occupied. Likewise, P(1, _, _) refers to the probability of finding one specific
site occupied and the other two unspecified. This correlation is, in general, depend-
ent on the ligand activity (see also Section 4.2), We shall only need the A — 0 limit
of this correlation, which is given by

_ o, 1, 0)0(0, 0, 0)
[O(1,0, 0))

&1, 1)

ky (K32 + X0
k% (X(L)‘IL + Xqu H)2

=y(1, 1)S (5.4.6)

where we have defined in Eq. (5.4.6) the indirect correlation y(1, 1). The triplet
correlation in our system is defined as

P, 1,1)

; (5.4.7)
[PQ, _, )

g1, 1,1)=

*There are other possibilities for defining pair correlations, such as g(1, 1/0) or g(1, 1/1), where the third
site is required to be empty or occupied, respectively. That defined in Eq. (5.4.5) leaves the occupation
state of the third site unspecified.
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and we need only the A — 0 limit of this correlation, which we also denote by
g1, 1, 1),

0(1, 1, 1)Q(0, 0,00 &

(1,1, )= _kin
’ [0, 0,0)° %
3 3
=(7X°.i2:_X'X;)_—H%SS=Y(L 1, s’ (5.4.8)
L1L H

where we have introduced the indirect part of the triplet correlation y(1, 1, 1).
In terms of the correlation functions we write the BI as
kC+2k2g(1, 1)C* + kig(1, 1, 1)C?

= (54.9)
1+ 3k,C +3Kg(1, DCt + kg1, 1, DC

There are several important properties of the indirect correlation that are distinctly
different from the direct correlation. First, the sign of the direct correlation depends
only on the pair interaction U(1, 1). Thus, S 2 1 whenever U(1, 1) S 0. On the other
hand, the indirect correlations, both y(1, 1) and y(1, 1, 1), are always positive (i.e.,
larger than unity). This can be immediately seen by expressing the indirect corre-
lations in terms of the parameters

K=0,/0, h=qy/q, (5.4.10)
2 2

y1, 1= LKA+ E) KB D) 5.4.11)
(1 +Khy? (1 +Khy?

1+ Kr’)(1 +K)? _ ., K- 1’QKh+K+h+2)

YL D= (a0 +Kh)y

(5.4.12)

Note that “either K =0 or 2= 1" is a necessary and sufficient condition for (1, 1) = 1,
as well as for y(1, 1, 1) = 1. It also follows that whenever y(1, 1) > 1, g(1,1,1)> 1
as well, and vice versa. As with the pair correlation function (see Section 4.5), the
indirect triplet correlation goes through a maximum as a function of K (Fig. 5.3).
The values of y(1, 1, 1) are unbounded, e.g., taking K = hland letting h — 0.

We have seen in Section 4.5 that the conditions for having indirect pair and
triplet correlations are the same as those for conformational changes induced by
the binding process. As in Sections 3.4 and 4.5, the change in the mole fraction of
the L form is the same also in this model, i.e.,

y__ K(-h

= 5.4.13
L a+Km(1+K) ¢ )
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Figure 5.3. The triplet indirect correlation y(1, 1, 1) as a function of X for various values of k, indicated
next to each curve.

The changes induced by the second and third ligands, denoted, by d (Lz) andd (L3), are
obtained by replacing K in Eq. (5.4.13) by Kk and Kh?, respectively. The reason is
that K, Kh, and KH? are the equilibrium constants for the reaction L = H on the
arrival of the first, second, and third ligand, respectively.

Second, perhaps the most important property of y(1, 1, 1) is that it is nonadditive
in the sense

y(1, 1, D #yd, 1) (5.4.14)

In fact, there is a relationship between y(1, 1, 1) and y(1, 1), but it is not even
approximately similar to the additivity of the kind in Eq. (5.3.6). For any given K,
we eliminate / from Eqgs. (5.4.11) and (5.4.12) to obtain the relationship

(L, H-1P4K-1)
VK

y1, 1L, 1H)=3y1,1)-2+ (5.4.15)

Figure 5.4 shows y(1, 1, 1) as a function of y(1, 1) for the exact relation in Eq.
(5.4.15) (with the minus sign and K = 10~%) and for the approximate case of
additivity y(1, 1)>. A particularly simple form is obtained for K = 1, i.e., Oy=0;
(which is the case of maximum responsiveness of the system). In this case we have

w1, 1, D=3y1,1)-2 (5.4.16)

Clearly, both Egs. (5.4.15) and (5.4.16) do not indicate any additivity of the kind
in Eq. (5.3.6).

Finally, the temperature dependence of S is determined by U. It increases
monotonically with T for U > 0, and decreases monotonically with 7 for U < 0. On
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3
YL P YL
6000
4000
2000 - y(1,1,1) = Eq. (5.4.15)

y(L1)

Figure 5.4. The triplet correlation as a function of the pair correlation for the approximate additive
case y(1, 1, 1)=y(1, 1)3 and for the exact case given by Eq. (5.4.15) (with the minus sign and K= 1073 ).

the other hand, y(1, 1, 1) may change sign as a function of 7. Both S3and y(1,1, 1)
must eventually tend to unity for T — oo. Figure 5.5 demonstrates the typical
temperature dependence of the triplet, direct and indirect correlations.

5.5. THREE DIFFERENT, LINEARLY ARRANGED SITES:
LONG-RANGE CORRELATIONS

The model treated in this section is essentially the same as in the previous
section, except that the sites are all different and are arranged linearly (Fig. 5.6). In
this particular model we distinguish between nearest-neighbor (nn) sites, such as a
and b, or b and c, and second-nearest-neighbor (sn) sites, here the sites a and c.

As in Section 5.3, we assume for simplicity that the distance between any two
nn sites is the same, independent of the conformational state of P. Also, we assume

Sf y (1,1,1)
1.3
3
2
-10
1
10
20 40 60 80 100 ) 50 100 150 200 250 300
a b

Figure 5.5. Temperature dependence of (a) the direct correlation 5% with three different values of
U(1, 1), as indicated, and (b) the indirect correlation, with Ey — E; = 100 and Uy, — U; = —100 and
kg=1.
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L H

Figure 5.6. Three different, linearly arranged sites on an adsorbent molecule having two conforma-
tions, L and H. The binding energies to the sites change upon conformational changes, i.e., h, # 1,
hy#1,h #1.

that the direct ligand—ligand interaction is of short range, so that
Sab ~ Sbc = S’ Sac = 1’ Sabc = SabSbc (551)

There are three pair correlations in this system, namely g(a, b), g(b, ¢), and g(a, c),
defined by

Q(a, b, 0)0(0, 0,0)
O(a, 0,0)0(0, b, 0)

and similar definitions for g(a, ¢) and g(b, c). We define the following constants,

gla, b)= y(a, b)S (5.5.2)

Oy 9hq Ahp dy.
k=2t pdwa o, dmo (5.5.3)
o g, b gy ¢ 4

where A, is defined as 4 in Section 5.3, but for each different site. We obtain the
following expressions for the indirect pair correlations,

oy LRI Ky~ DR~ ) 554
(L+Kh)(1+Kh) " (L+Kh)1+Khy)

Ky D -1 sss

Yo = K (1 + K ©:33)

ya,c)=1+ K, — Vi~ 1) (5.5.6)

(1+Kn_)(1 +Kh,)

Since each site has a different value of i, (0. = a, b, ¢), the sign of the different
correlations g(, B) depends on the product (2, — 1) (hﬁ — 1). This is the same as
in the two-site system, discussed at the end of Section 4.5. Perhaps the most
important aspect of these correlations is their independence of the ligand—ligand
distance. This is true for y(a, b) and y(b, c), as well as for y(a, c). In fact, when the
sites are identical in the weak sense, then i1, = h, = k= h. In this case all the indirect
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Figure 5.7. Same as Fig. 5.6, but site b is unchanged upon conformational changes, i.e.,h,# 1,h # 1
but i, = 1.

correlations become identical. The direct correlations [see Eq. (5.5.1)] are not
necessarily equal.

Since the extent of the indirect correlations depends on the parameters K and
h,, and not on the ligand-ligand distance the “long-range” correlation y(a, ¢) could
be even larger than the “short-range” correlations y(a, b) and y(b, c). As an extreme
example, consider the case when K = 1073, h,=h, = 103, but h, = 1. A schematic
illustration of this case in shown in Fig. 5.7. Clearly, since A, = 1, the binding of
ligands on site b cannot induce conformational changes in P, hence there is no
indirect correlation between site b and any other site. On the other hand, binding
on either site a or ¢ induces very large conformational changes. Therefore, in this
case

ya, b)=yb,c)=1, wa,c)~250 (5.5.7)

We conclude that the “long-range” correlation could be large even in the absence
of “short-range” correlations. Such a situation is usually impossible for the direct
correlation. This example, although extreme, should serve as a warning signal when
processing experimental data. Based on the normal behavior of the direct correla-
tion Eq. (5.5.1), one tends to expect similar behavior from the total correlation, and
hence assumes that g(a, b) # g(b, ¢) # 1, but g(a, c) = 1. If these assumptions are
used in the determination of the correlations from the experimental data, one could
miss the “long-range” correlation, simply because g(a, ¢) = 1 is introduced as an
input in processing the experimental data. A numerical example is shown in
Appendix H.

A second warning signal, which applies to any three (or more) site systems, is
the nonadditivity of the triplet correlations. Again, based on the normal behavior
of the direct correlations in Eq. (5.4.1), one expects similar behavior from the total
correlation, and writes

ga, b, ¢) ~ g(a, b)g(a, c)g(b, c) (5.5.8)
which reduces to

gla, b, c) ~ g(a, b)g(b, c) (5.5.9)
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in the linear model. Again, if one introduces this assumption as input in processing
experimental data, the results will obviously be biased and not reflect the true
correlations.

We next examine the triplet correlation in this system. This is defined, similarly
to Eq. (5.4.7), by

P(a, b, ¢)
P(a’ -— —)P(—’ b? —)P(—’ —* c)

g(a, b, c)= (5.5.10)

and in terms of parameters (5.5.3) we have for the (A — 0 limit) indirect triplet
correlation

(1 +Kh ph )1+ K)?
(1 + Kh)(1 + Kh,)(1 + Kh_)

¥a, b, c)= (5.5.11)

which is the generalization of Eq. (5.4.12) for the case of three different sites.
As shown in Section 5.4, y(a, b, c) is not factorized into a product of the form
(5.5.8) or (5.5.9). In fact, generalization of Eq. (5.4.15) yields

¥(a, b, c)=y(a, by + y(b, ¢) + ¥(a, c) — 2

L K= Dly@.b) = 1]1/2[v5/a[,<_c) — 1. 0=-11"2 g5

The minus sign is correct for 1 < K < 1. Thus, for any given K there exists a
relationship between the triplet correlation and all the pair correlations, and it is not
stmple like Eq. (5.5.8) or (5.5.9). For K = 1, this reduces to the simple relationship

y(a, b, ¢)=y(a, b) + y(b, ¢) + y(a, ¢) — 2 (5.5.13)

Note that when the sites become identical, i.e., a = b =c, hence h, = h, = h, =
h, then, if there is no direct correlation, the sites are identical in the strict sense, i.e.,
there is only one binding constant and one pair correlation. If, on the other hand,
there are also direct correlations, then the three sites become identical only in a
weak sense, i.e., there is only one binding constant, but two pair correlations g,,,
and g_,. It is also easy to generalize the result from Section 3.4 regarding the extent
of induced structural changes by the first, second, and third ligands, i.e.,

1) ___Kd-hn
4, K) = (1 +Kh)(1+K)
dP(h, K) = d(h, Kh) (5.5.14)

dP(h, K) = dP(h, Kh)
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where, in the expression for d{’(h,K), we simply substitute 4K for K in d\"". The
reason is the same as discussed in Sections 3.4 and 5.4, namely, that whenever the
Ith ligand approaches, it sees the system with an equilibrium constant of Kk, as
determined by the / — 1 bound ligands.

Finally, we note that the fact that we have four different correlations in this
system, some possibly of different signs, renders meaningless the characterization
of the “cooperativity” of the system by a single number (as is frequently done using
the Hill coefficient, see Section 4.3). We shall introduce in Section 5.8 a measure
of the average cooperativity in a system, a quantity that may vary widely, even in
its sign, as the binding process proceeds.

5.6. THREE LINEARLY ARRANGED SUBUNITS: CORRELATION
TRANSMITTED ACROSS THE BOUNDARIES BETWEEN THE
SUBUNITS

This is an extension of the model of Section 4.7. Instead of two subunits we
now have three linearly arranged subunits. Each subunit can attain two configura-
tions, L and H. Altogether we have eight configurations for the empty adsorbent
molecule P (Fig. 5.8). If the sites are different, we have altogether 64 different
configurations of the system with ligands.

We use here the same notation for Qa, o S €1C. The only new notation is

Og( for the quantity

= eXp(- BEG) (5.6.1)

where EZ’; is the interaction energy between two subunits a and b in conformational
states o and . The definitions of the binding constants and the various correlations
in terms of the canonical PF are the same as in Section 5.2, with appropriate
reinterpretations of the various terms:

000,0,0)=Y 0,0,0,00% (5.6.2)
opy

(8) (1)
ool

Figure 5.8. Three linearly arranged subunits, each subunit can attain either one of the conformations,
L or H. Altogether there are eight configurations for the empty adsorbent molecule.
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0(a,0,0)=Y 0,050,040, (5.63)
apy

and similarly for Q(0, b, 0) and Q(0, 0, ¢):

Qa, b,0)=Y 0,050,0508 5650 (5.6.4)
afy

and similarly for O(a, 0, ¢) and Q(0, b, ¢):

Qa, b, ©) =y 0,050,050 08 40, A %1cSave (5.6.5)
afy

We also introduce two new quantities, defined by

o = O o = G
“ O " OOt

We shall always assume that Q; ;, = Q;;; for any pair of subunits and that the direct
correlation can be factored from the total correlation. Also, to keep track of the
pathway of transmission of information, we shall use the notation 1 , and 1}, even
when the sites or subunits are identical. In such a case 1, and 1. will have equal
magnitude, but will still be referred to as the transmission coefficient between the
first and second or between the second and third subunits.

The general expressions for the indirect correlations are fairly complicated.
Nevertheless, we can find conditions under which there exist pair and triplet
correlations by factoring out the factors that determined the sign of the indirect
correlations. In terms of the parameters h,, h,, k., and 1, N, the pair correlations
may be written as

and (5.6.6)

Yoo = 1= My — 1)k, — 1), — 1P, (5.6.7)
Yy = 1 = M, — Dk, — Dk, - 1P, (5.6.8)
Yoo = 1+ (M= (M, — 1), ~ 1)k, — 1)P, (5.6.9)

where in each case we have three or four factors that determine the sign of the
cooperativity and a complicated positive quantity P; which is a combination of all
the molecular properties of the system. A particularly simple form of these equa-
tions is derived in Section 5.7.

The dependence on the parameters h, h,, and h, is essentially the same as in
the previous models. For instance, if either 2, = 1 or &, = 1, there will be no indirect



Three-Site Systems: Nonadditivity and Long-Range Correlations 157

correlation between a and b, i.e., y,, = 1. The new feature of this model is the effect
of the parameters 1 ab and 1, that appear in Egs. (5.6.7)—(5.6.9). We have seen in
Section 4.7 that Nog is a parameter which measures the extent of transmission of
information between the two sites o and . In contrast to the model of Section 5.5,
where K # 0, 1, # 1 and h, # 1 were sufficient conditions for having y,, # 1 [see
Eq. (5.5.4)]. Here, in addition to the condition K # 0, h, # 1, and h, # 1, we also
need 1, # 1 to obtain y_, # 1. This means that even when the ligand does induce
conformational changes when binding to site a (k, # 1) and to site b (h, # 1), the
emergence of indirect correlation between a and b depends on the transmission of
information across the boundary between the two subunits a and b. Whenn_, =1,
there is no transmission of information across this boundary. (As we have seen in
Section 4.7, 1, = 1 is equivalent to the independence of subunits a and b.) When
M, = 0 and n,. = 0, this model essentially reduces to the model of Section 5.5, i.e.,
there is total transmission of information across the boundaries. (As we have seen
in Section 4.7, when n,, — oo, there is also total transmission of information,
however of opposite sign. We shall not examine this case here.) In this section we
consider only the case 0 <1, < 1. In the next section, we present a simple model
where the positive constants denoted by P,, P,, and P in Eqgs. (5.6.7)~(5.6.9) can
be written explicitly. Similar considerations apply to y,.. The behavior of y,. (the
“long-range” correlation) is quite different. In order to have indirect correlation
between a and c one needs, in addition to K#0, s, # 1, and h,# 1, also the fulfillment
of the two conditions 1, # 1 andn,,, # 1. This means that in order to have correlation
between a and ¢, the information (on the occupancy state of the sites) must be
transmitted across both the boundaries of ab and of bc. If any one of 1, or 1, is
unity, the communication between a and ¢ becomes “short” and hence there is no
indirect correlation.

It is interesting to note that while in the model of Section 5.5 we found y,, =
Ype =V, Whenever b, =h, = h_=h, ie., the long-range correlation was the same as
the short-range correlation, here, even when h, = h, = h, = h, the long-range
correlation y,, differs from the short-range correlations y , and y, . It is clear from
Eq. (5.6.9) that when 1, < 1 and M, < 1, there exists a “distance” dependence of
¥, but, in contrast to the direct correlation S, that depends on the actual distance
between the ligands, here the indirect correlation depends on the “distance” only
in the sense of the number of boundaries between the subunits a and b. (This is true
also for any linear system of subunits; see also Sections 5.7 and 7.4.)

The triplet correlation in this system is quite complicated, even when §,_ is
assumed to be independent of the conformation of the subunits. Nevertheless, we
can make the following statements regarding the indirect triplet correlations:

1. There is no pairwise additivity neither in the sense g, . = £,,8,.8,. NOT in
the sense g, = £,,85» €ven when the direct correlation S, is strictly pairwise
additive.
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2. When one of h is unity, it makes two of the indirect pair correlations unity,
but the indirect triplet correlation becomes equal to the third pair correlation. For
example, when i, = 1, we have

VYo =Yoe =1 (5.6.10)
but

Yase = Voe (5.6.11)

This follows directly from the definition of y .

3. Whenever two of the hs are unity, there is neither pair nor triplet indirect
correlation.

4. When only one of 1y, or 1, is unity, the triplet indirect correlation may differ
from unity. Whenn_, =1, .= 1, wehave y,, . = 1.

5. Finally, as shown in the model in Section 5.5, it is easy to choose parameters
such that the “short-range” correlations are negligible but the “long-range” corre-
lation is large and, in addition, the triplet correlation is equal to the long-range
correlation.

For instance, with &, = 1, i.e., the binding to b does not discriminate between
L and H while h_ and h,_ are larger than unity, we have

Yab = Ype = 1 (5.6.12)

but y,. could be large and y ;. = y,,.

This example should serve again as a warning signal when processing experi-
mental data with a presumption regarding the negligibility of the “long-range”
correlation (see also Section 5.10).

We conclude this section by noting that when the subunits become identical,
and h, = h, = h_=handn_ =1, =1, the sites are, in general, not identical in either
the weak or the strict sense. This is in contrast to the model discussed at the end of
Section 5.5, where we found only one intrinsic constant. Here, in general, there are
two different intrinsic binding constants, denoted by £ and k® for binding on the
first (or third) site and on the second site, respectively. The general expression is
complicated, but for N = 1 we have the following simple expressions:

Q:NQ11 91+ QN Quny

kKD = 5.6.13
ONQ;y + OV Oy ¢ .

and

k(z) = QLQILqL + QHQHHqH
01011+ CnCun

(5.6.14)
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Note the appearance of @ in £, but Qe in k®. The reason is that a ligand
approaching the first (or third) subunit sees an equilibrium concentration, of L and
H, different from a ligand approaching the second subunit. These also differ from
the equilibrium concentrations of L and H for an isolated subunit, for which the
binding constant is

KO = 014; + Oy

5.6.15
0,40, ( )

5.7. A SIMPLE SOLVABLE MODEL

We present here a simple model where long-range and nonadditivity of the
correlations can be studied explicitly in terms of the ligand—ligand, and ligand-site
interactions. With this model we can clearly see the different behavior of the three
models discussed in previous sections and, by generalization, we shall see that the
same mechanism applies for correlations between particles in the liquid state.

The three variants of this model are described in Fig. 5.9. The ligands are simple
Lennard-Jones particles, at the center of which a point dipole of strength d is
embedded. The orientation of the ligand on the site is always the same, say upward,
as in Fig. 5.9. The adsorbent macromolecule consists of three subunits denoted by
a, b, and ¢, each of which has one binding site to which we also refer as a, b, and
¢. Near each site the macromolecule has a dipole of strength D, which can be
oriented either upward or downward. The orientation of the dipole D is determined

Figure 5.9. Three binding models for linearly arranged subunits: (a) direct interaction only (no
conformational changes); (b) two conformations L and H for the entire molecule; (c) two conformations
L and H for each subunit. The arrows indicate the direction of the dipoles embedded in the ligand and
in each subunit.
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by the state of the macromolecule, L or H. We assume that the orientation of D
affects the binding energy (because of its proximity to the ligand), but has a minor
effect on the total energy of the state of the macromolecule. We denote by R the
ligand-ligand distance at the adjacent site, and by r the distance between the dipoles
d and D. We now examine the different behavior of the three cases corresponding
to Sections 5.3, 5.5, and 5.6.

(a) The adsorbent molecule is rigid, and binding of a ligand does not induce
conformational changes: In this case, the correlation between the ligands is entirely
due to direct interactions. These are:

2
U(1,2)= U@, 3)= U, (R) + % (5.1.1)
d2
U(L3)= U @R + s (57.2)
174>
U1, 2.3)= U, (2R) + 2U, R + Lo (5.73)

If the long-range interaction U(1, 3) can be neglected compared with U(1, 2), the
(direct) triplet correlations can be written as

S(1,2,3) = S(1, 2)S(2, 3) 5.74)

and
S(1,3)=1 (5.7.5)

(b) The adsorbent molecule is in an equilibrium mixture of two states L and
H: Here, in contrast to the previous case, we have both direct and indirect correla-
tions. The direct correlations are the same as above. The indirect part depends now
on the binding energies, which are

dD

Uy=U,[(r)— 273— (5.7.6)
and
U =U [+ 2% (577

The LJ part of the binding energies is of no importance for the indirect correlation;
only the difference U}, — Uy enters into the correlation. Note the different orienta-
tions of the dipoles D in the two states L and H (Fig. 5.9b).
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If we again set
=—7%,  h=exp[- B(Uy - U,)] = exp(4BdD/r) (5.7.8)

then in terms of X and % we have

(1 +K)(1 + KK

"2 231352 = (5.19)
and
2 3
1,2, 3)=(—1l(’f)+(ﬁ—}(;’)’<”—’ (5.7.10)

Here, we see the fundamental differences between the direct and indirect correla-
tions. First, all three indirect pair correlations are equal and independent of the
distance R. They do depend on r (through k), but not on the ligand—ligand distance.

The triplet correlation can be shown to be always larger than unity. Here, we
show that it is not pairwise additive, not in the sense g(1, 2, 3) = g(1, 2)g(2, 3)
nor in the sense g(1, 2, 3) = g(1, 2)g(2, 3)g(1, 3). For this particular model we
have

¥(1,2,3) _ (1+Kh)1+KR)

v(1,2)92,3)  (1+Kh»)? (5.7.11)

and

¥(1,2,3) _(1+KhP(1 +KK)
y(1, 21, 39(2,3) (1 +K)(1+Kh?)?

(5.7.12)

Clearly, there is no hint that any of these relations are close to unity. Incidentally,
we note that for the case h, # h, # k. and K = 1, we have an exact relation of the
form

gabc=gab+gac+gbc_2 (5.7.13)

which is clearly very different from the “additivities” mentioned before.

(¢c) Three subunits, each of which can be in either of the two states L or H:
Perhaps the most interesting results are for the model of Section 5.6, shown
schematically on the rhs of Fig. 5.9.
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Here, we find a simple, explicit, and informative expression for all the indirect
correlations in the system. In our model we againseth, = h, = h_=h, =1, =N,
and K = 1, and find the explicit results

(x/—,,— D -1

_ 5.7.14
Yab @M, + D+ 1) 719
2
- _(%Tbc—l)(h—l)2 (57.15)
WA, + D+1)
2
) 14 (M = DO, ~ D - 1) (5.7.16)
ac (A, + DO+ D+ 17
_ _ _ _1\2
(3 =V = ¥y = VM N = 1) (5.7.17)

yabc=1+ 2
G, + DER,_+ DA +h)

The above correlations are for three identical subunits, i.e., N, =1, =M. However,
in Eqgs. (5.7.14)—(5.7.17) we have left the different subscripts on 1 so as to stress
the dependence of each correlation on the particular sequence of parameters 1.
Thus, when m, = 1, there is no transmission of information across the boundary
between g and b, hence the circuit connecting a and b becomes short and y_, = 1.
Likewise, when . = 1, we find that y, = 1. On the other hand, the communication
between a and ¢ depends on the transmission of information across the two
boundaries ab and bc, if either i, or n,, is unity, the circuit connecting a and ¢
becomes short, and y,. = 1. Note that the long-range correlation y,, differs from the
short-range correlations y,, and y,. The difference is not due to the distance
between the ligands, but to the number of boundaries across which the information
must be transmitted. In Eq. (5.7.16), we have two boundaries to cross, and for /1, =
h,=h,=hand 1, =", =1 we have

_q. O -1y
Yo ST+ P+ 1)

- (“/_ 1) (5.7.18)

W\ +1

For any /1 # 1, the long-range correlation is always positive (y,. = 1). It decreases
from 1 +yto 1 for 0 £m <1, and increases from 1 to 1 + 'y for 1 £m < oo. We see
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that there exists a “distance dependence” of y,_., which in this model depends on
the number of boundaries between the subunits that connect the sites @ and b. For
asystem of / + 1 subunits, there are / boundaries and the long-range correlation y,,
has the general form

(5.7.19)

/
Vn -1
Yoo =147 —\/'n_+1

The dependence of y,,, on the “distance” /, the number of intervening bounda-
ries, is different depending onn. When 0 <n <1, y,, 2 1, i.e., we always have
positive cooperativity, and y,,, decreases monotonically with / (Fig. 5.10a). Note
that as 1 — 0, y,,,, becomes infinitely long-range, i.e., y,,=1+7Y. Whenn > 1,
we see from Eq. (5.7.19) that y,, > 1 for even values of /, but y,, < 1 for odd
values of /. Figure 5.10b shows y,, as a function of / for two values of n > 1.
Clearly, because of the factor (-1)" in Eq. (5.7.19), y,,,, will oscillate above and
below unity according to whether / is even or odd, respectively. In the limit
n = 0, y,, Will be infinitely long-range, but now oscillating between 1 + y and
1 —ywhere Y= 1 is defined in Eq. (5.7.18). This behavior is reminiscent of the
behavior of the indirect correlation function y(R) in liquids. To see the connec-
tion between the two systems, replace the subunits by single molecules, allow
for distance-dependent “subunit—subunit” interaction [U(R) in the theory of
liquids], and allow many different sequences of “subunits” to transmit the
information; we then obtain the indirect correlation in liquids. Thus, the mecha-
nism of transmission of information between ligands is essentially the same as
that between any two particles in a condensed medium.

y y
1.03 1.2
1.1
1.02 -
0.9
1,01 0.8
0.7

6 8 10
a b

Figure 5.10. Dependence of the long-range correlation y,,, on /, the number of intervening boundaries,
for different values of 1, indicated next to each curve.



164 Chapter 5

5.8. A MEASURE OF THE AVERAGE CORRELATION IN A BINDING
SYSTEM

5.8.1. Introduction and Histerical Background

In two-site systems, there is only one correlation function which characterizes
the cooperativity of the system. In systems with more than two identical sites, for
which additivity of the higher-order correlations is valid, it is also true that the pair
correlation does characterize the cooperativity of the system. This is no longer valid
when we have different sites or nonadditivity effects. In these cases there exists no
single correlation that can be used to characterize the system, hence the need for a
quantity that measures the average correlation between ligands in a general binding
system. There have been several attempts to define such a quantity in the past.
Unfortunately, these are valid only for additive systems, as will be shown below.

The first attempt was made by Wyman (1964). He suggested extracting from
the Hill plot a quantity referred to as the “total” or “overall measure” of the “free
energy of interaction” between the ligands. What he actually obtained is the ratio
between the last and first binding constants which, for hemoglobin (Hb), is k,/k,
where k, is the first intrinsic binding constant and k, (in our notation, k,,,;,) is the
last (conditional) binding constant, i.e., binding to the fourth site given that the three
sites are already occupied.

The corresponding work, translated into our notation, is

i ELLLD

WY=—-RT I (k,/k,)=
n (ka/ler) e, 1, 1)

3 3
=—RT1n|:Q(1’ 1,1, 1)Q(0,0,0,0) ][ 0(1, 0, 0, 0)

Q(l, 0,0, 0)4 Q(l, 1, 1’ O)Q(O, 0,0, O)Z:I (5.8.1)

and is associated with the reaction written symbolically as

(1,0,0,00+(0,1,1,1) > (1,1,1,1)+ (0, 0,0, 0) (5.8.2)

i.e., formation of fully occupied Hb from singly and triply occupied molecules. The
symbols g(1, 1, 1, 1) and g(1, 1, 1) designate the quadruplet and triplet correlation
functions.

Saroff and Minton (1972) correctly pointed out that Wyman’s quantity, WY,
defined in Eq. (5.8.1), cannot serve as an average interaction free energy between
the ligands. It is easy to see that Wyman’s quantity is the difference in the work
associated with the following two processes, denoted P, and P,,

P
4(1,0,0,00——(1,1,1,1)+3(0,0,0,0) (5.8.3)
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and
P
3(1,0,0,0) —(1,1,1,0)+2(0, 0,0, 0) (5.8.4)

Minton and Sarof (1974) defined a new quantity, also referred to as the “average
Gibbs free energy of interaction,” by the integral

1
MS=4RT [ [In x - In x"1do (58.5)
0

where x is the ligand concentration in equilibrium with the real cooperative
system at fractional saturation 6, and x'” is the ligand concentration in equilibrium
with an ideal, or noncooperative, system at fractional saturation 8. As we shall see
below, the quantity MS, defined in Eq. (5.8.5), is essentially the work associated
with the process P, defined in Eq. (5.8.3), i.e., this is the work required to form the
Sully occupied molecule from four singly occupied molecules [see Eq. (5.8.21)]. In
terms of a correlation function, this work is —RT In g(1, 1, 1, 1), i.e., it measures
the quadruplet correlation function. Dividing by 4, one obtains an “average” free
energy of interaction, per ligand, in the fully occupied molecule. A related quantity
also suggested by Wyman is essentially only the first term in Eq. (5.8.5),

1
4RT [ In x7d0 =~ 4RTIn k, - RTIn g(1, 1,1, 1) (5.8.6)
0
which includes four times the binding work to the first site as well as the correlation
work.

We shall see in the next subsection that if all the cooperativities in the system
are pairwise additive, then either Wyman’s or Minton and Saroff’s definitions may
be used as a measure of the overall cooperativity in the system. When the system
is cooperative but nonadditive, then neither Wyman’s nor Minton and Saroff’s
quantities can serve as the average cooperativity in the system. Furthermore, the
average cooperativity in the system is, in general, dependent on ligand activity or
concentration.” A simple example will illustrate this point. Suppose we have three
sites arranged linearly, as in Fig. 5.11. Two ligands occupying neighboring sites
repel each other, but at next-neighbor sites they attract each other. In this system,
at relatively low ligand concentration, the system will manifest positive coopera-
tivity. This is so because the occupation of next-nearest neighbors will be more
likely than that of nearest neighbors. At very high ligand concentration, the third
ligand is forced to occupy the central site, despite the repulsive forces. At this end,
the system will manifest negative cooperativity. A quantitative numerical illustra-
tion of this behavior is shown in Subsection 5.8.3.

*Note that each correlation has been defined as the A — 0 limit and hence independent of A or C. Here
we show that the average correlation, constructed from the A — 0 limit of the correlations, is
concentration-dependent.
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Figure 5.11. Schematic illustration of a linear three-site binding system. The ligands attract each other
when bound at the sites a and ¢, but they repel each other when bound to adjacent sites a, b or b, c.

It is clear that neither Wyman’s nor Minton and Saroff’s measures “do justice”
to all types of cooperativities in the system, and certainly cannot account for
variation in cooperativity at different stages of the binding process. In the next
subsection we define a new measure of the average correlation in any binding
system, and show how to extract this quantity from experimental data.

5.8.2. Definition of the Average Correlation in Any Binding System

It is assumed that we have experimental data on the binding isotherm of a
system known to consist of m binding sites. We denote by 0,(C) the average number
of ligands bound to the whole system when the ligand concentration is C (the ligand
is assumed to be either in an ideal gas or in a dilute ideal solution, so that its absolute
activity A is proportional to its concentration, A = A,C).

We first determine the limiting slope of the BI, defined by

20
K, =1lim|—= (5.8.7)
c—0\0C

If the system is known to have m identical sites, either in a strict or in a weak sense,
then K, = mk, where k is the intrinsic binding constant. On the other hand, if we
know that the system has m different binding sites, each having a different intrinsic

binding constant k,,, then we must determine each of these from the limiting slope
of the corresponding individual BI, i.e.,

9
k,, = lim a—c‘* (5.8.8)
C-0

where 6, = X0, and K= Xk , the sum being over all m sites.



Three-Site Systems: Nonadditivity and Long-Range Correlations 167

We define the two auxiliary functions

KC)= j (8 ac’ (5.8.9)

and

[O=n]]1+k0 (5.8.10)

The first, I(C), can be determined from the experimental data for any finite value
of C. The second, I(C), may be interpreted as the same integral /(C), but computed
for a hypothetical system of independent sites. As we shall see below, this interpre-
tation is somewhat risky and should be avoided. The function I(C) is better viewed
as defined in Eq. (5.8.10), with the binding constants determined in Eq. (5.8.8).

In terms of the two functions /(C) and I(C) and the intrinsic binding constants
k,, we define the quantity

expl/(O)]-1-Zk C

g(0)= X0 —1—Z ) ,C (5.8.11)

We now show that for any finite value of C, the quantity g(C) is a proper average
of the correlations in the system. Note that Z(C) can be determined directly from
the experimental data. The units of the concentration C should be the same as those
of (ka)‘l; hence Ck, is a dimensionless quantity.

We first treat the most general case where all sites are different. The grand
partition function of a single adsorbent molecule is

£=0(0)+ QDA+ 0N (5.8.12)

=2

where Q(]) is the canonical PF of the molecule having exactly / (0 < < m) bound
ligands.

For each [, the PF Q(J) is a sum over () different specific terms Q(J), each of
which is the PF of the adsorbent molecule having exactly / ligands occupying !
specific sites. Hence the grand PF can be written as

&=0(0)+ Z QDA+ 2 > 0N (5.8.13)

=2 s()
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The total Bl is simply the average number of ligands in the system and is obtained from

Or=n;= ?»AE* 2Q(1)7L+ZIZQ(I)7J g (5814

=2 s

The subscript s stands for specific, while s(/) stands for a set of I specific indices,
say Iy, iy, . . ., i;, where i, indicates a specific site. The sum over s(J) is the sum over
('}) specific configurations for each specific /. The sum over a in Q0 (1)A is simply
over all the m sites. The statistical mechanical expression for k is

aea [ONQY)
k., =lim
0 0C ~ Q(0)
where Q (1) is the PF of the system singly occupied at the specific site . The

correlation function of order / for any specific configuration of the ligands s(/) is
defined by”

= 2% (5.8.15)

D)™
e =202 ;0 (5.8.16)

[Ie.»

where the ths of Eq. (5.8.16) is valid when g (/) may be factorized into direct and
indirect parts. With the definitions (5.8.15) and (5.8.16), we can rewrite the grand
PF of the systems in the form

&=0(0) 1+Zk C+22gs(l)nk c! (5.8.17)

=2 s()

The integral in Eq. (5.8.9) is immediate,

C0,C)
10 = ~ & 4C =Inl&(©)/QO)] (5.8.18)
0

hence the quantity g(C) defined in Eq. (5.8.11) is

g(0)=Y. Y P(l, O)g D) (5.8.19)

=2 s()

*Note that this is already the A — 0 limit of the l-order correlation function.
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where the probability distribution is defined, for any C, by

IT %'
P, C)= « (5.8.20)
I a+k,0-1-Zk,C

Since 1 SP(l, C)<1and ZIZ,_ES(,)PS(I, C) = 1for any C, the quantity g(C) is a proper
average over all the correlations in the system.

Two limiting cases should be noted when C = 0, P, (I, C) =1 for /=2 and P
(I, ©) =0 for I > 2. Hence the average quantity g(C) reduces to the average pair
correlations in the system. This is consistent with our expectation from Z(C), since
at this limit only the pair correlations are operative. On the other hand, for C — oo,
we have P(l, C) =1 for I =m and P(l, C) = 0 for 2 <! < m; at this limit only the
highest correlation g(m) is represented by g(C). This is essentially the MS measure
(provided the k_ are determined from Eq. (5.8.8), not chosen as the binding constant
for a single subunit; see below), i.e.,

MS = — RT'In g(m)=1lim [- RT In g(C)] (5.8.21)

Cooo

Clearly, except for the two limits (C — 0 and C — <), g(C) is determined by all
existing correlations in the systems.

Two special cases should also be noted. If all g(J) = 1, i.e., there are no
correlations of any order, then also g(C) =1 for any C. On the other hand, in the
case of a two-site system, m = 2, there exists only one correlation g_,(2); hence
2(C) = g,(2). For all other cases, the weights (5.8.20) given to each correlation are
proportional to the product of the corresponding binding constants. This is similar
to the weights given to any configuration in a hypothetical reference system of
independent sites but with the same binding constants. For instance, if k,kj > k.k,
then the occupation of the pair of sites i, j will be more probable than the pair 7, ¢
in this reference system, hence the weight given to the pair i, j will be larger than
to the pair r, . We stress, however, that the denominator in Eq. (5.8.11) is not the
PF of the reference system, since we have subtracted the two terms 1 + Zk,C. One
should also be careful in interpreting I1(1 + k,C) as the PF of a system where all
correlations have been “switched off.” If all the correlations were due to direct
interaction between the ligands, then it would be easy to visualize a real system for
which all the interactions are “switched off.” On the other hand, when the correla-
tions are indirect (as in the case of most biochemical systems), then it is not clear
what one must “switch off” to eliminate the correlations. Minton and Saroff
suggested using k,, the binding constant for a single isolated subunit. This is quite
risky: first, because not every binding system has well-defined subunits; second, &,
will in general depend on the equilibrium distribution of the states of the subunit.
On the other hand, k (or £, if the subunits are identical) depends on the equilibrium
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distribution of the states of the entire adsorbent molecule. Hence, in general, kg is
not related to k,, and using k; instead of the intrinsic binding constant might not
lead to a useful definition of an average correlation. (A simple example is given at
the end of Sections 5.6 and 6.3, where k) and ¥® are the two different k s, and K
is the equivalent of k;.)

For all the above reasons we have defined g(C) without reference to any
hypothetical, independent-site system. One simply extracts both I(C) and all k,
from the experimental data, and then constructs the quantity g(C). When the sites
are identical in a weak sense, i.e., all k, = k, some of the correlations for a given /
might differ. For example, four identical subunits arranged in a square will have
only one intrinsic binding constant &, but two different pair correlation functions.
For this particular example we have four nearest-neighbor pair correlations g, (2),
and two second-nearest-neighbor pair correlations g, (2). The average correlation
for this case is

_ 48, (C + 278, (C* + 46 3)C° + K (C*  (5822)
6K2C% +413C3 + k¢t

On the other hand, for a system of four identical sites in the strict sense, i.e., when
all k, = k and all the correlations of any given order are identical, such as the
arrangement of four identical subunits at the vertices of a perfect tetrahedron, we
have

8(0)

()= 6k2g(2)C?* + 4K5g(3)C3 + k*g(4)C* (5.8.23)
A T s A+ K
For the general case of m identical sites, in the strict sense we have
" i~
X510, |kCe)
=2\
¢(O)= (5.8.24)

m m
" (l klcl

We shall see in the next subsection that g(C) can change dramatically as a
function of concentration. However, if one insists on having a single measure of the
average cooperativity, a convenient choice for the general case could be C = 1
[measured in the same units of (ka)‘l]. A more convenient choice for the case of
identical sites (in either respect) is C = k7!, in which case Eq. (5.8.24) reduces to

m
m l I
ZC=k")= 2ha; )80 (5.8.25)
!

This is an average with an almost binomial distribution, (7). In the binomial
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distribution we count all 2" occupation configurations of the system of m sites. In
the denominator of Eq. (5.8.25), on the other hand, we count all the configurations
for which a correlation function is definable, i.e., we exclude the empty and singly
occupied configurations.

5.8.3. Some Numerical Illustrations

We present here two examples of the application of the measure g(C) for
three-site systems. In all the plots below we draw g(C) — 1 instead of g(C), as this
is more convenient for observing the sign of the average cooperativity.

Example 1. Three Identical Sites with Direct and Indirect Correlations

For this demonstration we use a binding system of three identical subunits
arranged in an equilateral triangle (i.e., the sites are identical in the strict sense).
The corresponding GPF is

€= 0(0) + 30,(DA + 30, (2)A* + Q(3)A3 (5.8.26)

Here, s again stands for specific. We use a simple two-state model for each subunit
(Section 5.6), with negative direct correlations S(2) = 0.1 and S(3) = 0.13. The
indirect part of the correlation is due to conformational changes induced by the
binding process. The molecular parameters chosen for this model are

(@ n=0.1, h =70, K=02, 0,1 = Oun
() n=02, A~=1000, K=0.02, Q;;=0uy

Figure 5.12 shows the BI and the quantities g(C) — 1 for this model. This illustration
shows that although the binding isotherms “seem” to belong to a negative coopera-
tive system, it is, in fact, meaningless in general to refer to the “cooperativity” of
the system where there exists more than one type of cooperativity. In Fig. 5.12a,
the curve starts with positive cooperativity, mainly due to the indirect part, i.e.,

S2)=0.1, ¥2)=1392, and g2)=82y(2)=139 (5.8.28)

(5.8.27)

but as the ligand concentration increases, the dominant contribution comes from
the direct correlation, i.e.,

8(3)=0.1°>, y(3)=519.7, and g(3)=53)y(3)=0.5197 (5.8.29)

Thus, the average cooperativity [g(C) — 1] changes from positive to negative.
The phenomenon is reversed in illustration (b) shown in Fig. 5.12b. Here, we
initially have

S@2)=01, y2)=179, and 8(2)=8(2)y(2)=0.79 (5.8.30)

i.e., the system starts initially with negative cooperativity. However, at high
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Figure 5.12. The BI and the average correlation, in the form g(C)~ 1 for (a) the model (a) with
parameters in Eq. (5.8.27) and (b) the model (b) with parameters in Eq. (5.8.27).

densities we find
S(3) = 0.13, y(3) = 1295, and 23)=S2)y(3)=1.295 (5.8.31)

and the average cooperativity is dominated by the positive indirect triplet corre-
lation.

Example 2. The Linear Three-Site Model of Fig. 5.11

We return to the example shown in Fig. 5.11. This illustration shows how
deceptive a measure of the average cooperativity could be such as the one suggested
by Minton and Saroff.

We choose a Lennard-Jones interaction between ligands of the form

6 12
U, (R)=100 [—[%J + (%) ] (5.8.32)

where ¢ and R are in dimensionless units, and where the distance between adjacent
sites is one unit and the distance between the first and third sites is two units. In this
model, the binding constants for the three sites are chosen to be unity. There are,
however, two different pair correlations. For the choice of 6 = 1, 1.3, and 1.4 (in
the same units of R), we find that initially the system shows positive cooperativity
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Figure 5.13. (a) Binding isotherms and (b) average correlations for the model shown in Fig. 5.11. The
curves correspond to the three values 6 = 1, 1.3, and 1.4 in Eq. (5.8.32).

(Fig. 5.13a). This is due to the fact that initially the attractive, next-nearest-neighbor
interaction dominates the behavior of the system. However, at very high ligand
activity a third ligand is forced to occupy the central site, producing an overall strong
negative correlation. In Fig. 5.13b, we see that at very high concentration the ¢
= 1.3 and 6 = 1.4 curves become negative. Clearly, if one uses the MS measure,
it will pick up only the negative limiting value of g(C) — 1, in spite of the fact
that the system is positively cooperative in the major part of the binding
process.

These two examples (and a few more in the following chapters) clearly
demonstrate that there is no single number that conveys the cooperativity of the
system. Sometimes, it is also meaningless to claim that a system is positively or
negatively cooperative. The introduction of a concentration-dependent measure of
the average correlation between ligands is useful because it “does justice” to all
types of correlations in the system. When the binding process begins at low ligand
concentration, the behavior of the binding isotherm is determined first by the
intrinsic binding constants, then by the pair correlations, and, as the concentration
increases, successively higher-order correlations come into play. Eventually, at
C — oo, all the sites will be occupied. At this end only the highest-order correlation
determines the behavior of the binding isotherm. It is only at this end that the MS
measure correctly represents the correlation in the system.

5.9. CORRELATIONS BETWEEN TWO AND THREE PROTONS
Table 5.1 presents some values for the intrinsic binding constants, and also pair

and triplet correlations for benzoic acid, benzene dicarboxylic acids, and benzene
tricarboxylic acids.



Table 5.1.

Intrinsic Binding Constants, Correlation Functions, and Corresponding Free Energies (in kcal/mol) for Various Carboxylic A cids”
Acid ky ky=kyy k3 =kyny g(l, 1), W(L, 1) g1, 1, 1), W(1,1,1) W
Benzoic acid 1.58 x 10* — — — — —
Benzene-1,2-dicarboxylic acid 1.28 x 10° 1.78 x 103 — 1.39x 1072, 2.534 — _
Benzene-1,3-dicarboxylic acid 1.99 x 10* 8.34x 10° — 4.19% 1071, 0.516 — _
Benzene-1,4-dicarboxylic acid 1.44 x 10* 6.93 x 10° — 4.81x1071,0.434 — _
Benzene-1,3,5-tricarboxylic acid ~ 1.67 x 10* 7.76 x 10° 3.95 % 10? 465x%1071,0.454 1.1 x1072,2.672 +131
Benzene-1,23-tricarboxylicacid {236 x10°]  [L12x10%  [1.57x10%]  [475x107%],[1.805]  [3.17x 107%, [4.773] [~0.64]
Benzene-1,2 4-tricarboxylic acid ~ [4.39 x 10*] [5.25 x 103 [672x10%1  [1.19x107'], [1.259] [1.825 x 1073}, [3.736] [~0.041]
cis—cis-Cyclohexane-1,3,5-triamine 8.37 x 10° 5.01x 108 238 x 107 5.99 x 1072, 1.668 1.704 x 104, 5.141 +0.136

“The experimental values are taken from Kortum, Vogel, and Andrussow (1961). Most of the measurements were carried out at an ionic strength of less than 0.04 mol/dm? and at 25

°C. Average quantities are included in square brackets.

pLL

§ wydey)
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The intrinsic binding constants were calculated from the experimental thermo-
dynamic constants (see Section 2.3) as follows:

For the monocarboxylic acid,

k =K, (59.1)

For the dicarboxylic acid,
ki =K2, ky=(k;)=2K, 59.2)

For the tricarboxylic acid,
k=K/3, |k=0()=K, k=) =3K (5.9.3)

The pair and triplet correlations and the corresponding free energies are

1,1 kiky Ko 1,1, 1)= 5.9.4
g(’)—vl—k_l, g(7’)— k:;, ()

and
W=—k;Tlng (5.9.5)

There are several points worth noting. First, the pair correlation in benzene-
1,2-dicarboxylic acid (phthalic acid) is strongly negative, probably due to the strong
repulsive electrostatic interaction between the two protons. The correlation be-
comes weaker as the proton—proton distance increases in the 1,3(meta)- and
1,4{para)-isomers. Second, the pair correlation in the benzene-1,3,5-tricarboxylic
acid has a value closer to g(1, 1) for the benzene-1,4-dicarboxylic acid, although
the proton—proton distances are the same as in the 1,3-dicarboxylic acid. This is
clearly due to the effect of the third carboxylic group on the pair correlation in the
tricarboxylic acid, indicating a significant nonadditivity. We can confirm this by
calculating the nonadditivity in W(1, 1, 1) which, for the benzene-1,3,5-tricar-
boxylic acid, is

SW=w(1,1,1)-3W(1,1)=2.672 -3 x0.454 = 1.31 kcal/mol ~ (5.9.6)

This is far from being negligible compared with the values of W(1, 1, 1) or W(1, 1).
The source of this nonadditivity is not entirely clear. Since there is no major
conformational change in the molecule, it has been attributed [e.g., by Saroff
(1987)] to resonance energy and to solvent effects.

Before speculating on the origin of the nonaddivity in the tricarboxylic acid,
we note that the pair correlation in the cyclohexane-triamine is much stronger than
the corresponding pair correlation in benzene-tricarboxylic acid—probably due to
the shorter distances between the protons in the former. Furthermore, the nonaddi-
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tivity in W(1, 1, 1) in this case is (see the last row in Table 5.1)

SW=W(,1,1)=3W(1, 1)=5.141 -3 x 1.668 = 0.136 kcal/mol  (5.9.7)

which is negligible compared with either W(1, 1) or W(1, 1, 1).

We recall that direct electrostatic interactions on their own are additive. In a
solvent the interaction between three point charges could be nonadditive, due to
correlation mediated through the solvent. However, we can rule out this effect in
order to explain 8W in the 1,3,5-tricarboxylic acid. The reason is that the nonaddi-
tivity of W(1, 1, 1) in the cyclohexane-1,3,5-triamine, in spite of the shorter
distances between the protons, is quite negligible. Therefore, we conclude that the
correlation between protons mediated through the solvent is not the reason for the
large nonadditivity effect in the tricarboxylic acid. The solvent can, however, affect
the pair and triplet correlations through solvation of the benzene ring. It is well
known that the charge distribution on the benzene ring changes upon protonation
of benzoic acid. This, in turn, could change the solvation free energy of the acid.
Thus, although there exists no major conformational change induced by the process
of protonation, the free-energy levels (due to solvation; see Chapter 9) do change
upon protonation. This can produce indirect correlations, which we already know
to be in general nonadditive.

These indirect correlations (discussed in more detail in Section 9.3) also
partially explain the relative larger negative cooperativities in the clyclohexane
triamine compared with the corresponding cooperativities in the benzene tricar-
boxylic acid. As noted earlier, the proton—proton distances in the triamine are
shorter than in the tricarboxylic acid, hence the direct cooperativities in the former
are expected to be larger (more negative) than the latter. In addition, if solvation of
the benzene ring also produces indirect cooperativities in the tricarboxylic acid (but
not in the triamine), this, as we know, produces positive cooperativity. Hence this
effect will tend to make the cooperativities in the tricarboxylic acid less negative,
as is observed for the 1,3,5-isomer.

In Table 5.1 we also included some data on benzene-1,2,3- and benzene-1,2,4-
tricarboxylic acid. Here, in contrast with the 1,3,5-isomer where all sites are
identical in a strict sense, the three sites are not identical, not even in a weak sense.
In the 1,2,3-isomer, there are two different binding constants and two different pair
correlations. In the 1,2,4-isomer, all the sites are different and we have three intrinsic
binding constants and three pair correlations. Therefore, the values reported in Table
5.1 [in square brackets] should be understood in an average sense (for details, see
Appendix J). Nevertheless, it is of interest that the pair correlations are roughly
correlated with the average distance between pairs of protons, being largest in the
1,3,5-isomer and shortest in the 1,2,3-isomer. Another, quite surprising, finding is
the small nonadditivity effect in the 1,2,3- and 1,2,4-isomers compared with the
large nonadditivity in the 1,3,5-isomer. This is probably due to a stronger solvation
effect in the symmetrical 1,3,5-isomer.
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5.10. BINDING OF PROTEINS TO DNA

5.10.1. Introduction

A central problem in molecular biology is the elucidation of the mechanism by
which regulatory proteins control gene expression. It is known that the cooperative
binding of repressor proteins to specific sites on the DNA, called the operator, is
the key to understanding the mechanism of turning on and off the transcription of
specific genes. The working model, developed mainly by Ptashne, has therefore
been justifiably referred to as “a generic switch” [Ptashne (1992), Hochschild and
Ptashne (1988), Johnson, Meyer, and Ptashne (1979)].

A quantitative model for gene regulation by A-phage repressor has been
developed by Ackers et al. [Ackers, Johnson, and Shea (1982); Senear, Brenowitz,
Shea, and Ackers (1986)). Their molecular model consists of three binding sites,
on which the repressor can bind, with different binding constants. By analyzing the
individual binding isotherms, obtained by footprinting titration, they found that
there is a strong positive cooperativity between adjacent sites. More recently, the
same experimental data were processed differently, arriving at different, sometimes
opposite, conclusions ([Saroff (1993)].

The BI for a system with three different binding sites is given in Eq. (5.3.4) in
terms of the intrinsic binding constants k,, k,, and k. and the various direct
correlations. The more general form for the total BI, per binding system, is

LG Gyt hy +RICH 2k + ey + k,)C?+ 3k, C3
IR TTw 4k, +k)CH (kythy +hICP+ k. CO

(5.10.1)

Clearly, with this BI one cannot resolve all the seven intrinsic binding constants

ky, ky, k., kg, koo Ky, and &, . These can be obtained, however, from the individual

BIs which, for this case, are

o KaCt i+ k,)C+k,, C?

a 2 (5.10.2)
2 3

. k,C + (k,, + kl,;c)C + Kk C (5.10.3)
2 3

o k.C + (k. + k,)C* + k ,.C (5.10.4)

¢ D

where D is the denominator in Eq. (5.10.1) and7=6,+ 6, +6.,.

It should be stressed that the above individual BIs must be measured under the
same conditions used for the total Bl. This is not an easy experimental task, since
one must follow the fractional saturation at a specific site, say a, while all other
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sites are free to bind ligands, as if we were measuring the total BI. These are different
from the conditional BI, where one follows the fractional saturation at one site,
given that other sites are constrained to be empty or occupied (see also Section 2.1).

The relevant individual Bls enable one to determine all the intrinsic binding
constants k, k,, k, k., k.., k,.,and k.

Having determined all the intrinsic constants from the experimental data, one
can calculate the corresponding correlations. The latter are of major importance in
understanding the cooperative behavior of binding systems in general, and bio-
chemical systems such as hemoglobin, regulatory enzymes, etc. in particular.
However, in order to understand the cooperative behavior of the system it is
indispensable to know the molecular content of the correlation functions without
which the experimental data might be erroneously processed and therefore misin-
terpreted. This information cannot be obtained from the phenomenological descrip-
tion of the BI in terms of the measurable intrinsic binding constants. Instead, one
must appeal to statistical mechanics to obtained the required information. The first
step in analyzing the molecular content of the correlation function is to acknow-
ledge the fact that the quantity W(a, b) = —k,T In g, is the free-energy change for
the process, which we write symbolically as

(a,0,0) +(0,5,0) > (a,5,0)+ (0,0, 0) (5.10.5)

i.e., we take two singly-occupied systems and form one empty and one doubly-
occupied system. Similarly, the quantity W(a, b, ¢) = —kzTIn g, . is the free energy
associated with the process

(@,0,0)+(0,5,0) + (0,0, ¢) = (a, b, ) + 2(0,0,0) (5.10.6)

As shown in Section 5.3, under very special circumstances, W(a, b) and W(q,
b, ¢) reduce to the corresponding interaction energies U(a, b) and U(a, b, c),
respectively. If this is the case, and when the sites g, b, and c are arranged linearly,
then one can approximately assume that

W(a, ¢)= U@ c)=0 and W(a, b, c)=~Ula b, c)=Ula b)+ Ub, c) (5.10.7)

i.e., one may neglect the long-range interaction and assume pairwise additivity for
the triplet interaction energy. Unfortunately, these two approximations do not apply,
in general, to the pair and triplet correlations. It is very common to refer to Was a
free energy of interaction, but treat it as if it were an interaction energy, hence
attributing the properties (5.10.7) to W(a, b) and W(q, b, c). In the next subsection
we explore several sources of long-range and nonadditivity of the cooperativity that
are peculiar to the repressor—operator binding system.
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5.10.2. Sources of Long-Range and Nonadditivity of the Correlation Functions

We briefly present here four different sources of long-range and nonadditivity
of the cooperative binding of the A repressor to the operator.

(a) Mass ratio effect. In most binding systems, ranging from simple dicar-
boxylic acids to hemoglobin, one can justifiably neglect the mass of the ligand
compared with the mass of the adsorbent molecule (Appendix B). This is not the
case for the A repressor. The binding of the first ligand on any site significantly
changes the total mass of the adsorbent molecule, and this in turn changes the
translational PF of the adsorbent molecule, hence the binding constants for the
second and third ligand will be affected. For classical particles with mass m , the
translational PF is

h
W (5.10.8)

where h and kg are the Planck and Boltzmann constants, respectively.

Therefore, in the absence of any other effect, the free energies W(a, b) and
W(a, b, c) associated with processes (5.10.5) and (5.10.6) due to translational effects
only are

q,=V/A}, A=

a, b,0)q.(0,0,0
W,(a,b)=W,(a,c)=W,(b,c)=—kTIn {q,,( i )]

q,(a, 0,0)q,(0, b, 0)

(5.10.9)

where x = my /my, is the ratio of the mass of the ligand L to that of the operator O.
Similarly, for the triplet cooperativity we have

a, b, ¢)q.(0, 0, 0)?
W (a, b, cy=—kgTIn |: 9y )4, ( ) ]

q,(a, 0,0)q,(0, b,0)q,(0,0, c)

3 1+3x
===k ,Thh|——
R n [(1 +x)3] (5.10.10)
From Egs. (5.10.9) and (5.10.10) it is clear that both the pair and triplet coopera-
tivities are negative, i.e., W 2 0 for any x.

Figure 5.14 shows W,(a, b), W,(a, b, c), and two different nonadditivities
defined by

8, =W(a, b, c) - W(a, b) - W(b, ¢) (5.10.11)
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Figure 5.14. The mass ratio effect on the pair and triplet cooperativities and deviations from additivity,
8, and 8,, defined in Egs. (5.10.11) and (5.10.12), as a function of mass ratio x = my /mg,.

and

_ gla, b, ¢)
8, =—kgTIn {_——g(a, b)+ g, c)] (5.10.12)

The first quantity, §,, is the deviation from additivity as expected from the interac-
tion energy [Eq. (5.10.7)]. The second quantity, 3, is the deviation from additivity
of the triplet correlation as used by Ackers et al. (1982, 1986) (see Eq. (5.10.23)
below]. We see that even when there are no ligand—ligand interactions in the system,
the mere fact that the mass ratio x is not negligibly small produced correlations that
are both long-range and significantly nonadditive. It is interesting to note that 3,,
the nonadditivity with respect to Acker’s assumption [i.e., that g(a, b, ¢) = g(a, b) + g(b,
©)], is nonzero even for x = 0, in which case 8, = —k,T In (1/2) = 410.6 cal/mol.
Both , and 9, increase with mass ratio x. Note also that since x is independent of
T, W,, is entirely due to the entropy effect.

(b) Moment of inertia effect. Again, we note that in most binding systems,
since the mass ratio x is small, one can neglect the effect of ligands on the mass
distribution in the adsorbent molecule, hence on its rotational PF. This is not so for
the binding of the A repressor. The exact effect is difficult to calculate (such a
calculation requires knowledge of the coordinates of each atom in the system).
However, to obtain a rough estimate of the order of magnitude of this effect, we
assume that the system is strictly one-dimensional and that the mass of the entire
operator is concentrated at three points roughly located at a distance d between the
centers of the binding units (Fig. 5.15). The addition of one ligand will change the
mass distribution in the adsorbent molecule, hence also its rotational PE. Assuming
that this is the only effect of the binding of the ligand and neglecting symmetry
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Figure 5.15. A simplified one-dimensional adsorbent molecule having three binding sites. The total
mass of the molecule my, is dlst.nbuted equally at three points a, b, and c. The mass at any site is m0
when it is unoccupied, and L Mo+ my, when occupied by a ligand of mass .

factors, we find

a, b, 0)q,,(0,0,0
W, (a,b)= W, (b,c)=—kzTIn 2 Mol )
qrot(a’ 0’ O)th(o, b» 0)
I(a, b, 0)I(0, 0, 0) (5.10.13)
=—k,Th|———22~1= L
s [I(a, 0, 0)/(0, b, 0)]
[4(1+3%)
Wrot(a’ C) == kBT ln _m:l
where [ is its moment of inertia. The triplet cooperativity is
a, b, ¢)q,,(0,0, 0
Wrot(a’ b,c)y=- kBT In qrot( )qmt( )
qrot(a’ 0’ O)th(o, b, O)q,o,(O, 0, C)
4(1+3x)
==kpI'ln [m)—z} =W_[a,c) (5.10.14)

Figure 5.16 shows W, (a, c) = W, (a, b, c) and 3, as a function of x. In this model,
since I(a, b, 0) = I(a, 0, 0), there is no correlatlon between nearest-neighbor sites,
but there is “long-range” correlation, and the triplet correlation is the same as the
long-range correlation. This is, of course, a result of the simplified model in which
we have concentrated all the mass of the molecule at three points: the center
of mass, and two equidistant points from the center of mass. Note again that
0, defined in Eq. (5.10.12) is nonzero even at x = 0 (8, = 410.5 cal/mol at x = 0),
but 8, = W(a, ¢). In this case the nonadditivity of the triplet correlation is not
negligible. Note also that all the quantities W, , are entirely due to the entropy effect,
e.g., —0W, (a, b, ¢)/0T is equal to TAS(a, b, ¢) where AS(a, b, c) is the entropy
change for the process (5.10.6).

(c) Effect of two (or more) configurations of the bound ligands. In  most
binding models it is assumed that the bound ligand is characterized by a single state.
In the case of the A repressor, there is evidence that the protein attains at least two
orientations when bound to the site. In general, if the ligand (L) has two configu-
rations or conformations on the site, there will be a contribution to the pair
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Figure 5.16. Effect of the moment of inertia on the pair and triplet cooperativities [here, W, (a, ¢) =
W,ofa, b, ¢c) and W, (a, b) = W, (b, c) = 0] and the deviation from additivity, d, as a function of the
mass ratio x = ny /mg,.

cooperativity of the form

% expl= BU, + U} + ULl
Z, exp[- BULIZ, exp[- BU}]

W on@, b) = = kgT In (5.10.15)

where U’ is the binding energy to site a of a ligand in state i, and U¥, is the
corresponding pair interaction energy. A simplified form of this contribution is
obtained when the binding energies are independent of the conformational state of
the ligand, in which case Eq. (5.10.15) reduces to

Wy on@, b)=—kgTIn [Y, exp(~ BUY,)] (5.10.16)
ij

A further simplification, relevant to the binding of a repressor to DNA, is that
interaction exists only between two specific orientations, like that denoted by RL

oo NN dex %lc§> &

LL RR LR RL

Figure 5.17. Four possible configurations of the ligands occupying two adjacent sites. Only one
configuration (RL) contributes to the interaction energy.
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in Fig. 5.17. The result in this case is

exp(- BURDH +3
Wi conf(@ BY= W, ., (b, ) =—kzTIn [_p(_BZL] (5.10.17)

and
Wi, conf(@ c)=0 (5.10.18)

It is noteworthy that Wy, {a, b) is not equal to UR (as is the case when the ligand
has only one configuration). The difference between the free energy of interaction
(W) and the energy of interaction (U) arises from counting all possible configura-
tions of the pair of ligands (Fig. 5.17), including those which do not contribute to
the interaction energy (denoted by LL, RR, and LR in Fig. 5.17).

The triplet cooperativity for the simplified case discussed above is

Wit b-€) ==y Tln[zzzexm—w -sw;c)}

J

—_ BTln |:6Xp(— BUaRbL)_FZXp(_ BU55)+2:| (51019)

Here, only four out of eight possible configurations (Fig. 5.18) contribute to the
interaction energy. In terms of the correlation functions, this is equivalent to

8Lconf(@ B, €)= 8100 D) + 81 (b, ©) = 1 (5.10.20)

Once again, we note that the triplet cooperativity is not simply related to the pair
interactions—as expected from the triplet interaction energy, Eq. (5.10.7). It is
neither a product of the pair correlation (as normally expected from nearest-neighbor
interactions), nor the sum of pair correlations g(a, b) and g(b, c) as assumed by
Ackers et al. (1982, 1986). Again, the difference between the free energy of

LLL LL

ﬁ@@@ﬁ%ﬁ%ﬁﬁ%ﬁ

R RR RRL RLR RLL

Figure 5.18. Eight possible configurations of ligands occupying three sites. Only four configurations
contribute to the interaction energy.
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interaction (i.e., the cooperativity) and the energy of interaction arises because one
must count in the former case also configurations which do not contribute to the
interaction energy. (These are the four configurations that do not include the
nearest-neighbor pair RL in Fig. 5.18.) It is worth noting that this effect can produce
negative triplet cooperativity in a system where there is one negative and one
positive pair cooperativity [e.g., g(a, b) = 0.5, g(b, ¢) = 1.2, and g(a, b, ¢) = 0.7].
This is not possible when one assumes additivity in the form g(a, b, ¢) = g(a, b) +
&b, c).

(d) Effect due to conformational changes induced in the adsorbent molecule. This
effect has been discussed at great length in Sections 5.4-5.7. We have seen that if
the ligand induces conformation changes in the adsorbent molecule, then long-
range correlations can occur (and sometimes, even stronger than the short-range
correlations), and the triplet correlations could be significantly nonadditive.

5.10.3. Processing the Experimental Data on Binding of the A Repressor to
the Operator

If we assume that the operator consists of three different binding sites, then the
total BI is given by Eq. (5.10.1). Clearly, all seven constants cannot be obtained
from this BI. However, these can be resolved from the three individual Bl equations,
(5.10.2)~(5.10.4).

Ackers et al. (1982, 1986) analyzed data on the binding of the A repressor to
the left and right operators obtained by footprinting titration. In order to obtain the
correlations in this system, they wrote the following relations between the (overall)
macroscopic binding constants K, (i = 1, 2, 3), defined in Section 2.3, and the
intrinsic binding constants k_, k;, and k_:

K =k, +k,+k, (5.10.21)
K, =k ko8 + kk + Kk 8y (5.10.22)
Ky =k kk (8 + &) (5.10.23)

In writing these equations, it is implicitly assumed that (1) there is no long-range
correlation, i.e., g,. = 1; and (2) the triplet correlation can be expressed as the sum
8a + 8 Although Ackers et al. provided some reasons why the interaction
energies should conform to these assumptions, these are not sufficient for the free
energies of interactions (see also the next subsection). Table 5.2 is almost a
reproduction of Table I from Senear et al. (1986). It is clear from the column headed
“Operator configuration” and footnote a to Table 5.2 that the symbol <> denotes



Table 5.2
Microscopic Configurations and Associated Free Energies for the A, Operator-Repressor System“‘b
Operator configuration Free-energy contributions
Species Site 1 Site 2 Site 3 Free-energy contribution Total free energy (our notation)
1 (6] (0] (o] Reference state AG, =0 —
2 R, 0 (e} AG, AG,, AG,
3 o R, (8] AG, AGg AG,,
4 o (¢] R, AG, AGy AG,
5 Ry «——R, O AG +AG, +AG, AGs AG, + AG,, + AG(a, b)
6 R, 0 R, AG| + AG; AGy AG, + AG,+ AG(q, ¢)
7 o} Ry«——R, AG, + AG3 + AGys AGg, AGy, + AG,+ AG(b, ¢)
8 Ry, <—>R, R, AG| + AG, + AG3 + AGy AGg
9 R, R, «—> R, AG| + AG; + AG3 + AGyy AGy AG, +AG,+AG,.+ AG(a, b, )

“Individual operator sites are denoted O if vacant, or R, if occupied by a repressor dimer. Pairwise interactions between adjacent occupied sites are denoted (©); AG,, and AG,, are
the free energies of cooperative interaction between adjacent occupied sites, defined as the difference between AG, for any species and the sum of the intrinsic free energies of binding
to occupied sites.

5The table, except for the last column, is the same as Table I from Senear et al. (1986). The numbers 1, 2, 3 correspond to sites a, b, and ¢. The underlines in footnote a are by the
present author.
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pairwise interactions between adjacent occupied sites. As noted earlier, assump-
tions (5.10.7) are good approximations for the interaction energies, but they are not
valid approximations for the corresponding free energies. Since AG,, is defined for
species 5 as the difference in free energies, AG 5 — AG, — AG;, one cannot use the
same quantity for species 8. A similar comment applies to AG,, defined for species
7 and used also for species 9. In the last column of Table 5.2 we have listed the free
energies as used in the calculations reported below. Thus, by processing the
experimental data according to Egs. (5.10.21)—(5.10.23) Ackers et al. reduced the
number of parameters from seven to five. [In earlier work (Ackers et al., 1982),
they also assumed that g, = g,., hence reducing the number of unknowns to four:
three intrinsic binding constants and only orne pair correlation.]

We have repeated the calculations of the intrinsic binding constants as well as
the correlation functions without making the assumptions in Egs. (5.10.21)—
(5.10.23). Instead, we write

K =k, +k,+k, (5.10.24)
Ky =k kg, + ok 8o + Kk 8y (5.10.25)
K, =k kK 2. (5.10.26)

Here, we make no assumptions regarding the values of either g,. or g .. The
resulting intrinsic binding constants and correlation functions are shown in Table
53"

We note that in spite of the large differences in the two sets of results reported
in Table 5.3, the binding isotherms computed with these three sets of results were
almost indistinguishable on the scale of Fig. 5.19. The most important differences
between the calculated correlations and those reported by Senear et al. are, first,
there is a large negative cooperativity between sites a and ¢, while Senear er al.
assumed from the outset that no long-range cooperativity exists, and second, the
triplet correlation is not additive, i.e., neither 8, nor 9, is zero, while Senear et al.
assumed from the outset that §, = 0.

More recently, Saroff (1993) has processed the same experimental data in a
different way. However, Saroff uses the same assumptions regarding g(a, ¢) and
g(a, b, ¢) as made in Egs. (5.10.21)—(5.10.23). In addition, Saroff introduces new
quantities, referred to as occupied—unoccupied and occupied—occupied interac-
tions, which, in my opinion, are neither well-defined nor necessary quantities. A
critical discussion of this approach has been given elsewhere.

*For details of the calculations, see Ben-Naim (1997, 1998).
See Ben-Naim (1998) as well as Appendix 1.
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Table 5.3
Values of the Intrinsic Binding Constants (in lit/mel), Correlation
Functions, and Corresponding Free Energies (in kcal/mol) for Binding of
the A Repressor to the Left Operator

Senear e? al. (1986)" Computedb
k, 1.945 x 1010 2.18 x 1010
kp, 1.051 x 10° 1.95 x 10°
k, 1.759 % 10° 5.66 % 10°
8ab 73.1 [-2.5] 46.53 [-2.23]
8ac 10[0] 9.03 x 1075 [5.42]
8he 73.1 [-2.5] 3.48 [-0.73]
Zabe 146.2 [-2.9] 40.32 [-2.15]

“Computations based on Eqs. (5.10.21)—(5.10.23) (Senear et al., 1986).
*Computations based on Egs. (5.10.24)—(5.10.26) (Ben-Naim, 1998).

Given the arguments in Section 5.10.2; and knowing that (1) the mass of the
repressor is not negligible compared with that of the DNA, (2) there are at least two
possible orientations of the repressor on the binding sites, and (3) the DNA is far
from being rigid; and that some conformational changes are likely to be induced
by the binding process [Kondelka et al. (1988), Kondelka and Carlson (1992), Steitz
(1990)], we conclude that indirect correlations (i.e., correlations not due to direct
ligand-ligand interaction) are likely to be important in this system, hence the
assumptions made in Eqgs. (5.10.21)—(5.10.23), and the results obtained by both
Ackers et al. and by Saroff are invalid. The main point of our criticism is that even
ifg,.=1and g, =g, + g, are approximately correct, this should be revealed as
an output of processing of the experimental data, not as an input, as done by Ackers
et al. and by Saroff.

5.10.4. Conclusions

There is a general tendency, especially in the biochemical literature, to intro-
duce a free energy quantity but, though admitting that this is a free energy, treat it
as if it were an energy quantity. This inevitably leads to misinterpretations of the
experimental data. In the case of binding phenomena, it seems to me that this
confusion arises from blurring the distinction between the phenomenological and
molecular theories.

The phenomenological approach developed mainly by Wyman, and used by
Ackers et al., starts by defining all the binding constants as equilibrium constants
for the binding process. Thus, k, is defined in terms of the standard free-energy
change for the process, written symbolically as

0,0,0)+L —(a,0,0), k,=exp(— BAGY) (5.10.27)
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Figure 5.19. Binding isotherms for the A repressor to the left operator. The points are experimental
data taken from Figure 1 of Senear er al. (1986). Full curves are the least-squares fit to Eqgs.
(5.10.2)—(5.10.4). The theoretical curves obtained by the parameters calculated by Senear et al. are
indistinguishable in this figure from the full curves.
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Similarly, the (conditional) binding constant to site a, given that site b is already
occupied, is defined in terms of the standard free-energy change for the process,

0,b5,0)+L — (a, b, 0), k,,, =exp(- BAG? ,) (5.10.28)

From Egs. (5.10.27) and (5.10.28), it follows that the quantity referred to as the
“interaction free energy” or “interaction constant” and denote by o, is given by

o, =k, /k, = exp(— PAG?,, + BAGD) (5.10.29)
which is simply related to the standard free energy of the process,
(a,0,0)+ (0, b,0) = (a, b,0) + (0, 0,0) (5.10.30)

Thus, all the intrinsic binding constants as well as the interaction parameters
are related to free energy changes for well-defined processes. With the pheno-
menological approach, one cannot proceed any further to interpret the quantities
k,, k4, or O, This is simply because the molecular content of these quantities, or
their corresponding free energies, do not reveal themselves to the phenomenologi-
cal theory. To do so, one must appeal to statistical mechanics in order to express
these quantities in terms of the molecular properties of the system, such as the mass,
moment of inertia, ligand—ligand, ligand—site interactions, etc. Of course, it is
legitimate to call o, defined in Eq. (5.10.29), “interaction free energy,” “interac-
tion energy,” or “interaction coefficient.” However, naming a quantity “interaction
energy” does not make it an interaction energy. Doing that could lead to absurd
consequences. We demonstrate this by the following example. Suppose we meas-
ured the quantities k, k,, k_, and k,, , and define the quantity

k bc
=@ 5.10.31
e kakbkc ( )

In the phenomenological approach there is no way of interpreting o, (to which
we have referred as the triplet correlation function). However, if one treats o, as
if it were an “interaction energy,” then the natural consequence would be to write,
for a linear arrangement of three sites,

Ol = Oy + 00y, (5.10.32)

i.e., neglecting the long-range “interaction energy” o, . This is effectively equiva-
lent to Ackers’ assumption, which is made explicitly in writing Eq. (5.10.23) while
not explicitly admitting it.

Another, more intelligent guess would be to assume that o, , _has a Boltzmann-
type dependence on U . In this case the natural approximation would be

Oy, = exp(= BU,,,) = exp(- BU,, — BU,,) = ot 00, (5.10.33)
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ie., o, is a product of the pair of “interaction parameters.” This is the most
common assumption made in the literature, especially in the case of hemoglobin.

But, what if
O, = Ala, b, ) exp(- BU, ) (5.10.34)

where A(a, b, ¢) depends on the sites a, b, and ¢ but not on the interaction energy
U,.? An example of such behavior is given in Sections 5.5 and 5.6. Here, even
when U, is strictly additive in the sense of (5.10.7), o, cannot be written either
as a sum or as a product of o, and o, . In general, o, depends on the interaction
energy in a more complicated manner than in Eq. (5.10.34), and there exists no
simple relationship between o, and o, and o,

Thus, assuming either Eq. (5.10.32) or (5.10.33) in the processing of experi-
mental data must lead to an erroneous conclusion regarding the various interaction
parameters.

On the other hand, if one adopts the molecular approach a great deal can be
learned about the dependence of the binding constants and free energies of inter-
action on the molecular properties of the system—as we have done in this and the
previous chapters.

It is true that under very special cases, such as the model discussed in Section
5.3, the interaction free energy parameter o, depends only on the ligand-ligand
interaction energy U(a, b). In this case it is a good approximation to neglect the
long-range interaction, i.e., U(a, ¢) = 0. Similarly, the triplet interaction free energy
in this particular case can be assumed to be pairwise additive, i.e.,

Wia, b, c) = Ula, b, ¢) = U(a, b) + U(b, ¢) (5.10.35)

We stress, however, that these two properties of the free energy of interaction are
valid only in very special cases. We have shown in Sections 5.4-5.7, that, in general,
the interaction free energies do not conform to this behavior; there could be
long-range correlations, i.e., o, [or g(a, c)], that differ from unity, and triplet
correlations that differ from the product g(a, b)g(b, ¢). [There is no known example
where the triplet correlation may be written as a sum of pair correlations g(a, b) +
g(b, c), as assumed by Ackers et al.]

The molecular approach, adopted throughout this book, starts from the statis-
tical mechanical formulation of the problem. The interaction free energies are
identified as correlation functions in the probability sense. As such, there is no
reason to assume that these correlations are either short-range or additive. The main
difference between direct and indirect correlations is that the former depend only
on the interactions between the ligands. The latter depend on the manner in which
ligands affect the partition function of the adsorbent molecule (and, in general, of
the solvent as well). The argument is essentially the same as that for the difference
between the intermolecular potential and the potential of the mean force in liquids.
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Therefore, when processing experimental data one must treat these correlations as
unknown parameters to be determined by fitting the data to theoretical curves. As
we have shown in Section 5.10.3, processing experimental data in this way produces
quite different results from those obtained by Ackers et al., as well as by Saroff,
where the results are biased by the assumptions concerning the correlations. In
Appendix H, we examine a simple model where all the parameters of the system
are known exactly. We process a synthetic set of “experimental data” with and
without the assumptions made by Ackers et al. The results obtained are quite
instructive.



Four-Site Systems: Hemoglobin

6.1. INTRODUCTION

The extension of the theoretical framework required to deal with systems having
four (or more) sites is straightforward. Formally, the extension involves the addition
of one more summation to the GPF of the system; see Eq. (6.2.1) below. Concep-
tually, the only new quantity that appears in the PF is the quadruplet correlation.
Like the triplet correlation it may, or may not, be pairwise additive, depending on
the specific origin of the correlation. As in the three-site system, where we have
compared the behavior of the linear and triangular arrangements, here we examine
three different arrangements: the linear, the square, and the tetrahedral (Fig. 6.1a).
We shall see that even when the subunits are identical (both chemically and
structurally), the four sites may be either different, identical in a weak sense, or
identical in a strict sense. The origin of these differences is discussed in Sections
6.3-6.5. We then examine the correlations in two experimental examples: the first
are correlations between protons in benzene-tetracarboxylic acid; the second, the
hemoglobin molecule—no doubt the most important and most studied cooperative
biomolecule.

6.2. THE GENERAL THEORETICAL FRAMEWORK
We start with the analogue of the model discussed in Sections 4.7 and 5.6. The

system consists of four identical subunits,” each having one binding site. Each
subunit can be in one of two conformational states, L or H, having different

*In the case of hemoglobin discussed in Section 6.8, the four subunits are not identical, but in this and
subsequent sections, we assume that the subunits are identical.

193
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Deoxyhemoglobin Oxyhemoglobin

Figure 6.1. (a) Three different arrangements of four identical subunits; linear, square, and tetrahedral.
Their corresponding PFs may be constructed from Table 6.1. (b) Schematic description of the distances
(in A) between the four subunits of hemoglobin, in two conformational states.

energies and different binding energies. The GPF for such a system is written as

4 4
E=Y QiN'=Y {Z Qams(i)] N 6.2.1)
=0 =0 |ofyd
Here, Q(i) is the canonical PF of a system having i bound ligands. Each of these
may be written as a sum over all possible conformations of the subunits. Since each
of the indices o, B, ¥, & can be either L or H, we have altogether sixteen terms in
the sum over these indices. The explicit form of each of the factors Qaw,(i) depends
on the specific arrangements of the subunits (i.e., linear, square, or tetrahedral) as
well as the specific i sites on which the i ligands are bound. Each of these factors
consists of a “common factor” depending only on the geometrical arrangement of
the subunits, and a “variable factor” depending on the specific sites that are
occupied. Table 6.1 presents the corresponding constituents of Q,s.5(7) for the three
models: the linear, square, and tetrahedral. To construct Q,,55(i) we multiply the



Table 6.1
The Constituents of the Coefficients Q(i) in the Partition Function (6.2.1)°

Variable factors

Arrangement Common factor Q*(O) Q*( 1) Q*(2) Q*(3) Q*(4)

Linear” 0030105030305 1 2,424 24,955+ 29,4, dud5t apdS  2409p0S 24,9595 u9pd05S°
Square 040p012:0050p121505c 1 4q, 49,965 + 2404y 49,452,5" 99p9055"
Tetrahedral  QuQpQy05QupQpy26%a0psCay 1 4q, 64,455 49,4p9,5° 959,55 °

9To construct the required Q(i) for any particular arrangements of the sites, multiply the common factor in the first column by the cotresponding variable factor Q"(i) in the appropriate

row and sum over ofyd.

bFor the linear arrangement o, B, ¥, and 8 are the states of the first, second, third, and fourth subunits, respectively.
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“common factor,” relevant to the subunits’ arrangement, by the “variable factor”
Q"(i) in the relevant row. Summation over all the indices @, B, v, 8 (= L, H) gives
the quantity Q(i) in Eq. (6.2.1).

Note that direct correlation factors S are included in Q*()) (i = 2) and are
assumed to be additive.

As an example, we construct Q(3) for the linear model. The common factor is
QaQﬁQstQaﬁQﬁyst [which has one Q,, (0. = L, H) for each subunit in state o, and
one Q5 for each subunit—subunit interaction]. This is multiplied by the variable
factor [2qquqYS'2 +24,9p955] and then summed over all the indices afyd. (Note
that in the linear arrangement, the order of the indices otf3yd corresponds to the
spatial order of the subunits. Hence, neglecting long-range direct interactions, we
have a factor S for the occupation of three consecutive sites, but only a factor S for
the occupation of the first, second, and fourth sites.) Thus,

003)=Y 0,050,0:00605,0,61240809,5 + 24,9551 622
ofyd

The four terms in square brackets correspond to the four configurations of placing
three ligands at the four sites. In two of these there is only one direct correlation S,
and in the other two there are two factors of direct correlation.

The form of the GPF as written in Eq. (6.2.1) applies to any system of four
(different or identical) subunits. However, the construction of Qaﬁys(i) from Table
6.1 is valid only when the subunits are identical. Henceforth, we shall always
assume that the subunits are identical. Nevertheless, the properties of the sites are
not necessarily identical, i.e., some of the intrinsic binding constants or correlations
might be different. We now consider various cases.

In the tetrahedral model, which possesses the highest symmetry, all the sites
are identical in the strict sense. This means that there is only one (first) intrinsic
binding constant, only one pair correlation, one triplet and one quadruplet correla-
tion.

In the square model, the sites are identical only in a weak sense. This means
that there is only one (first) intrinsic binding constant, but we have two different
pair correlations, which are denoted by g'? and g for the nearest and next-nearest
neighbors. Here we also have one triplet and one quadruplet correlation.

In the linear model, which possesses the lowest symmetry, we find two different
binding constants, denoted by k" and £ for binding to the first (or fourth) and
second (or third) subunits, respectively. (Clearly, k" = k® when there are only direct
correlations in the system; see Section 6.3.) We have four different pair correlations
denoted by g2, g3, ¢ and ¢g®, and two different triple correlations denoted
by g% and g%¥. Note that in Table 6.1 we assigned a direct correlation factor S
only for nearest-neighbor pairs and assumed that S is independent of the state of
the subunits.
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The explicit expressions for either the binding constants or the correlation
functions are, in general, quite complicated even when the subunits are identical.
We present here some selected expressions obtained for special cases. As before,
we use the reduced parameters

2
Ouy O

K=04y/0;, h=qy/q;, K= , M=
e e O 01Oy

(6.2.3)

6.3. THE LINEAR MODEL

Perhaps the simplest way of understanding the behavior of the linear model is
to examine the PF of the system when 1 = 1, but Q;; # Q. In this case the PF
factorizes into four factors: two factors correspond to the edge subunits, the first
and fourth; and two to the center subunits, the second and third. Thus,

E= §§dge  ter = [QH@HH + QL@LL + (QH\/—Q_HHqH + QL@—LLqL)qz

X [QHQHH + QLQLL + (QHQHHqH + QLQLLqL)C]2 (6'31)

Note the difference in the two factors in Eq. (6.3.1). Since the edge subunits
participate only in one subunit—subunit interaction but the center subunits are
flanked by two subunits, VO, appears in § 4, but Oy in § .-

The difference in behavior of the edge and center subunits is the reason for
having two different intrinsic binding constants, denoted by &V and k@, respec-
tively. Recall that the subunits themselves are identical, hence g, and g are the
same for each subunit, which is also the same for a separate subunit. It is the
different averages over g, and g, that make kY and k® different. The explicit
expressions for the general case are complicated. They are relatively simple for the
particular case i} = 1:

Q0 L@uq Lt QH\[Q_HH‘] H
oNQ,, + QH@HH °

and 6.3.2)
K = 0,019, + OyCrundn A
0011+ CuQuy

Note the different weights in forming the averages of ¢, and g, The binding

constant on a separated subunit (i.e., the isolated monomer) is obtained from Eq.
(6.3.2) by substituting Q,, = Qy, in which case

D =

X0 = Q9.+ Qudn A

0,70, 6.3.3)
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This, again, is the average of ¢, and ¢, and, in general, differs from k" and ¥?,
and cannot serve as an approximate binding constant for the four-subunit system.
Note that when Q,, = Qpy = Q5 and Q; = Qy, all three constants KO, kD, and k@
become identical and equal to (g; + g)Ay/2.

We next turn to the indirect pair correlations. As noted before, we expect to
have four different pair correlations that we denote by g2, g13, g%, and g@.
Clearly, the difference between these arises from the different “routes of commu-
nication” between the different pairs of sites. Again, the explicit expression for
these, in the general case, is very complicated. Nevertheless, for the particular case
K =1 and K’ = 1, we have the following relatively simple but still informative
expressions:

2
NN (n = 1)(gy - qL)2 . g oyidg (6.3.4)
(N + Digy+qp)
2 2
NOEp (¥ - 1)2(‘111 - qL)2 . g1y (6.3.5)
(N + Dgy+4qp)
3 2
Jio O = D@n=a) s 0 (63.6)
(M + 1)%gy+4qp)
2
NN (\/ﬁ— 1)(gn— ‘11)2 , g® =g (6.3.7)
(\ITT"' 1)(qH + qL)

Note that a factor S appears only for nearest-neighbor correlations. In all cases when
either g; = g or M = 1, there will be no indirect correlations (both pair and higher
order). The direct interactions contribute a factor S for g2 and g%, but S ~ 1 for
the cases g1 and g,

The signs of the indirect correlations are determined by the factor
(—1)’(\/;1- — 1), where [ is the number of boundaries between the communicating
subunits. Thus, for y'? we have only one boundary. The indirect cooperativity is
positive ('? > 1) when N < 1 and negative when 7 > 1.

For y'¥, we have two boundaries to cross in order to transmit information (on
occupation) between the first and third sites, hence ~1)*(Vm —1)is positive, i.e.,
this pair cooperativity is always positive. For ¥y, we have three boundaries to
cross, hence (—1)>(¥m — 1)? is positive or negative according to whethern < 1 orn >
1, respectively. Note, however, that the magnitude of y'# differs from y"'?. This
produces a “distance” dependence of the pair correlation that will be further
discussed in Chapter 8. Finally, ¥ is in general different from the other pair
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correlations, and is equal to y\!? for the particular choice K = 1 and K’ = 1, as
assumed in Eq. (6.3.7).

The triplet and quadruplet correlations are, in general, very complicated for the
general cases, and may be shown to have the general form

W=~ (M= Dgg-gpfP. =P (639
and
YB3 -1 (\/ﬁ— 1)(gy - qH)z P 139 = y(1234)g3 6.3.9)

where P and P are positive complicated expressions. Again, we find that eithern = 1
or h =1 is a necessary and sufficient condition for y = 1 (y being any indirect
correlation).

6.4. THE SQUARE MODEL

The square model is simpler than the linear model. Since all the sites are
identical, in a weak sense, we have only one (first) intrinsic binding constant defined
by

0(1,0,0,0)
= 6.4.1

0(0,0,0,0) b ¢ )
This has a particularly simple form forn =1 and Q;; # Oyy,

k= 0191191+ CuCQurdn
0101+ QuQun

X (6.4.2)

which is identical in form to kX® in Eq. (6.3.2). The reason is that in both cases the
binding subunit is flanked by two subunits. When Q,; = Oy, we have again the
binding constant for a single separated subunit, i.e.,

4O = QLZZ i gI;‘IH A (6.4.3)

which is the same as Eq. (6.3.3).

In the square model we have two different pair correlations: the nearest and
second-nearest neighbors. The corresponding direct correlations are S and S’. In
general, S’ is neglected compared with S. Neglecting altogether the direct ligand—
ligand correlation, we have for the indirect correlations, in the particular case K = 1
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and K’ =1,
M- 1)+ 1)gy— 9,
2)=1- (6.4.4)
A Ty
(- 1)2(411 - qL)2
2)=1+ (6.4.5)
Yol2) (1+6n+nA(gy+q,)
M- 1gy—q,’
3H=1- (6.4.6)
Y= T g, +
y@)=1-m-1)gy—gq,’P (6.4.7)

Note that the sign of the nearest-neighbor pair correlation depends on whether 1 >
1 or n < 1. This is similar to g1, in Eq. (6.3.4). On the other hand, the second-
nearest-neighbor pair correlation is always positive, as in g'%); see Eq. (6.3.5). The
reason for this difference is again due to having one intervening boundary in the
former case, but two boundaries in the latter. As before, eithern=1orgy=g;isa
necessary and sufficient condition for y = 1 (any order). We note also that even in
this particular case (K = 1, K’ = 1) there exists no additivity either of the form y(3) =
Y2920y, (2) o1 ¥(3) = ¥,,(2)y,,(2). A similar comment applies for y(4). P is
again a complicated positive expression.

6.5. THE TETRAHEDRAL MODEL

This is the model with the highest symmetry, hence there is only one (first)
intrinsic binding constant and one correlation of each order. As always, the intrinsic
binding constant is given by

_0(1,0,0,0) A

= 000.0.0.0) 0~ Xedr t Xudiho 6.5.1)

where X(z and X% are the mole fractions of the L and H states of a subunit,
connected to all the other subunits. This is

1+3MK2+1* KB +K)®

0 _
1+ 60K+ K* + 402K + K3)

L

65.2)

where K = K(K’)*/2 This is fairly complicated. The reason is that the L = H
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equilibrium in a single subunit is determined not only by K (as in the isolated
subunit), but by the interactions among all the other subunits. When K’ = 1 and
1 = 1, the intrinsic binding constant reduces to the simpler form

3/2 2
k= 0,0}1%a;, + 03y

(6.5.3)
007" + 0t

Compare with Eq. (6.4.2). The difference arises because here each subunit is in
contact with three subunits, while in the square model it is in contact with two
subunits. Compare also with Eq. (6.3.2). The direct correlations in this system are
simple: S, S3, and S°.

The indirect correlations for the particular case K = 1, K’ = 1 all have the
form

y=1-(Mm~1)gy-q, )P (6.5.4)

where P is always positive and differs for the various orders. Again, we stress that
the indirect correlations are not additive, even when the direct correlations are
additive.

Owing to the importance of the tetrahedral model for hemoglobin, we present
also the form of the correlation functions in the limit 1 — 0. Recall (Section 4.7)
that in this limit all the subunits change simultaneously from H to L. Thus, we have
a two-state adsorbing system. In this case the intrinsic binding constant is

‘e 010%,q, + 01 Q%an A, (6.5.5)
0707, + 04 Q%

as expected from a two-state system with “energy levels” 4E, + 6E,, and 4E, +
6E ;. The correlation functions for this case are

L Kn-17
=+ Ky
K= 12K + 20K + h+ 2
e3=1+% )((1+;K4)3 +h+2) | 656
@)= 1.4 K= DA+ 3K+ 3K02 + 20) + K+ 3K + 3]
T (1 + hK*

Thus, all cooperativities in this limit are positive, as expected from a two-state
binding system.
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6.6. THE AVERAGE COOPERATIVITY OF THE LINEAR, SQUARE,
AND TETRAHEDRAL MODELS: THE “DENSITY OF
INTERACTION” ARGUMENT

We compare here the average correlation in the three models of the four-site
system. In the case of direct interactions only, it is intuitively clear and easily proven
that the average correlation depends only on the sign of S(2) — 1 (assuming the
subunits are identical, that direct interactions are pairwise additive, and neglecting
long-range interactions). Hence, when S(2) > 1 (positive direct correlation), we
always have

2(0) 2340 23,(C) 6.6.)
and
0,(C)=64(C)=0,(C) 6.6.2)

where the subscripts 7, S, and L denote the tetrahedral, square, and linear models,
respectively. The reverse is true for S(2) < 1 (negative direct correlation). This is
demonstrated in Fig. 6.2. For S(2) > 1, the curves for L, S, and T show increasing
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Figure 6.2. Binding isotherms and the average correlation, Z(C) — 1 for the tetrahedral (T), square (S),
and linear (L) models. The sites are identical and all correlations are due to direct ligand-ligand pairwise
additive interactions. (a) Curves for positive cooperativity, S(2) = 10; (b) curves for negative coopera-
tivity, S(2) = 0.1. Note that in these systems the cooperativity increases in absolute magnitude from L
toStoT.
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cooperativity. This is clear from both the BIs and the average correlations, plotted
as g(C) — 1. The proof of inequalities (6.6.1) and (6.6.2) is easily obtained from the
definitions of g(C) and 6(C), i.e.,

g(0)-g(C)=1SQ2)-1]P,,  g(CO)-g,(O)=[SQ2)-1]P, (6.6.3)
and
0{C)-0,0)=[SQ2)—11P,,  64C)-6,(C)=[S2)-1]P, (6.6.4)

where P; are positive numbers. This result has been ascribed to the effect of the
“density of interaction” by T. L. Hill (1985). Clearly, the tetrahedral model has a
higher “density of interaction” than the square model, and the latter higher than the
linear model.

The “density of interaction” argument does not hold for the case of indirect
correlations. We recall that when there are indirect correlations we have three
different correlations and, in general, it is meaningless to refer to the correlation or
the cooperativity of the system. As we have seen in Section 5.8, the average
cooperativity is, in general, dependent on the ligand concentration and may even
change sign during the binding process.

In Fig. 6.3 we compare the square and tetrahedral models for four identical
subunits with parameters

h=001, K=1, Qun=4Q;,, 1Nn=001 6.6.5)

Judging from the shapes of the Bls, we should conclude that the square model is
more cooperative than the tetrahedral model. Indeed, all the cooperativities in this
system are larger for the square model. We have computed all the correlations for
these two models, using the parameters in (6.6.5). These yield: for the square model

g, 2D=153, g,2)=135  g(3)=698, g4 =37348 (6.6.6)

and for the tetrahedral model

g(2)=33, g(3)=221, g(4)=21058 (6.6.7)

The average correlation, plotted as g(C) — 1, shows that the square model starts
initially with a small positive value and increases monotonously to the very large
value of 37,348 at C — oo. On the other hand, the g(C) — 1 curve for the tetrahedral
model starts from a very small value and reaches the value of about 21,058 at very
high concentrations. Clearly, both of the BIs appear as positive cooperative, but
with much stronger cooperativity for the square model, in apparent defiance of the
“density of interaction” argument.
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Figure 6.3. The binding isotherm and the average correlation [as g(C) - 1} for the square and
tetrahedral models discussed in Section 6.6. No direct ligand-ligand interactions are assumed. The
parameters for the indirect correlations are 2 = 0.01, K = 1, @y = 40y, and | = 0.01. The lower two
figures show the behavior of g(C) — 1 in the region 0 < C < 1 and in the limit of large C. Note that in
this model, with these particular parameters, the average cooperativity in the square model is everywhere

stronger than in the tetrahedral

model.

6.7. BENZENE-TETRACARBOXYLIC ACIDS

Figure 6.4 shows the structures of benzene-1,2,3,4- and 1,2,4,5- and 1,2,3,5-
tetracarboxylic acids. The first is the analogue of the linear model discussed in
Section 6.3. Here, we expect two different intrinsic binding constants, KD (for the
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Figure 6.4. The various carboxylic acids referred to in Section 6.7. Three different isomers of benzene
tetracarboxylic acid are drawn in the first row. The penta- and hexacarboxylic acids are drawn in the
second row.

edge sites, 1 and 4) and k® (for the center sites, 2 and 3). The second conforms
neither to the square nor to the tetrahedral model. Here, the four sites are equivalent,
as in the square model, and although it has a lower symmetry than the square model
the sites are identical only in the weak sense. Therefore, we expect to have only one
intrinsic binding constant k. However, contrary to the square model where we have
only two pair correlations, g'® and g'¥ (see Section 6.4), here we have, in general,

three different pair correlations g(m 1% and g (the numbering is as in Fig. 6.4).

There is one triplet and one quadruplet correlation. The third isomer, 1,2,3,5-tetra-
carboxylic acid, will have three different intrinsic binding constants kD (at positions
1 and 3), k@ (at position 2), and k® (at position 5). There will be four different pair
correlations g2 = g@, g3 639 = U3 and ¢ and three different triplet
correlations g%, 139 and g2 = ¢33,

One cannot resolve all the correlation functions from the experimental (ther-
modynamic) data. However, by processing the data in the same way that we
processed the data as if they were strictly identical sites (see Section 5.9 and
Appendix J), we obtain quantities that should be understood only in an average
sense, as discussed in Appendix J. The results for benzene-tetracarboxylic acids are
reported in Table 6.2. We recall the value of k, = 1.58 x 10* for benzoic acid. We



Table 6.2
Intrinsic Binding Constants and Correlation Functions for Various Carboxylic Acids”

Benzene-1,2,3,4-
tetracarboxylic acid

Benzene-1,2,4,5-

tetracarboxylic acid

Benzene-1,2,3,5-

tetracarboxylic acid

Benzene-1,2,3,4,5-

pentacarboxylic acid

Benzene-1,2,3,4,5,6-

hexacarboxylic acid

ky 4.1x%10° 1.06 x 10° 1.63 x 10° 5.71 x 10° 1.51 x 108
ks 3.56 x 10* 2.08 x 10* 1.85 x 10 8.93 x 10 3.12x10°
ks 2.68 x 10° 1.12 x 103 4.84 x10° 9.26 % 10 5.54 x 10*
ky 4.54 % 10? 3.33x 10 9.52 x 10% 1.08 x 10° 2.72x 10°
ks — — — 3.12x 102 3.91 x 102
ke — — — — 1.5 % 10?
g1, 1) 8.7x 1072, [1.45] 1.96 x 1071, [0.96] 1.13 x 1071, [1.29] 1.56 x 1071, [1.1] 2.06 x 1071, [0.93]
g(1,1, 1) 5.68 x 1074, [4.42] 2.06 x 1073, [3.66] 336 x 1073, [3.37] 253 %1073, [3.54] 6.19 x 1073, [3.01]
g, L, 1L, 1) 6.30 x 1077, [8.46) 6.46 x 1075, [7.08] 1.96 % 1073, [6.42] 4.79 x 1078, (7.26] 1.11x 107, [6.76]

g1, 1,1, 1,1 —_
g(1,1,1,1,1, 1) —

2.62x 1079, [11.71]

2.86 x 1079, [11.65]
2.84 x 10713, [17.12]

“The experimental values are taken from Kortum, Vogel, and Andrussow (1961). Values in square brackets are —;T Ing (in kcal/mole) calculated at 25 °C. All the values are average

quantities in the sense discussed in Appendix J.

9207

9 3dey)
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have already seen in Section 5.9 (Table 5.1) that &, (except for 1,4-dicarboxylic
acid) becomes larger upon the addition of more carboxylate groups. The same is
true for the tetra-, penta-, and hexacarboxylic acids, as shown in the first row of
Table 6.2. The reason is probably the additional attraction exerted on the proton by
the neighboring carboxylate groups. Note that, on the average, k, is largest when
the groups are close together, i.e., in the 1,2,3,4-isomer, and smallest when the
groups are spread as far as possible, i.e., in the 1,2,4,5-isomer. The value of &,
increases for the penta- and further increases for the hexacarboxylic acid.

The (average) pair cooperativities are all negative; they are largest [i.e., smallest
g(1, 1) or largest W(1, 1)] for the 1,2,3,4-isomer and smallest for the 1,2,4,5-isomer
where, on average, the groups are spread as far as possible.

It is of interest that the nonadditivities of the triplet correlations are quite
different for the three isomers (see also Table 5.1). The nonadditivities, computed
as

d;=W(1,1, 1)-3W(, 1) (6.7.1)

are 0.067, 0.76, and —0.49 (in kcal/mol) for the 1,2,3,4-, 1,2,4,5-, and 1,2,3,5-
isomers, respectively. Thus, when the groups are close to each other the triplet
correlation is almost additive—indicating that the correlation is mainly due to direct
proton—proton interactions. This is similar to the behavior in the tricarboxylic acid
series reported in Table 5.1.

It is not clear how to estimate nonadditivities of the quadruplet correlations. Since
W(1, 1) is an average over all pairs, the simplest nonadditivity measure would be

o, =wW(1,1,1,1)-6W(1,1) (6.7.2)

These values are —0.22, 1.29, and -1.317 (all in kcal/mol) for the three isomers.
The trend is similar to that in the nonadditivity of the triplet cooperativities, i.e.,
smallest for the 1,2,3,4-isomers and quite large, with different signs, for the other
two isomers.

Finally, we note that the nonadditivity in the hexacarboxylic acid, computed as

d=W(1,1,1,1,1,1) - 15W(1, 1) = 3.1 kcal/mol (6.7.3)

is quite large relative to W(1, 1, 1, 1, 1, 1). This is similar to the most symmetric of
the tricarboxylic acids, i.e., the 1,3,5-isomer (Table 5.1).

6.8. HEMOGLOBIN—THE EFFICIENT CARRIER OF OXYGEN

6.8.1. Introduction and a Brief Historical Overview

Hemoglin (Hb) is no doubt the most extensively studied protein, in general,
and as an allosteric binding system, in particular. Although the details of its structure
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and function are well known, there are still some gaps in our understanding of the
precise molecular mechanism that makes this molecule such an efficient carrier of
oxygen from the lungs to the tissues.”

In this section we shall focus only on a few aspects of the function of this
remarkable molecule. A more detailed treatment may be found in Antonini et al.
(1971) and in Imai (1982).

The Hb molecule consists of four subunits: two o-subunits (each with 141
amino acid residues) and two 3-subunits (each with 146 amino acid residues).” The
distances between the subunits in the two conformations of the Hb are shown
schematically in Fig. 6.1b. The tetramer as a whole has a roughly spherical shape.
Since the four subunits are not identical, one cannot expect that the four binding
sites will be strictly identical. Nevertheless, in most of the theoretical treatments of
the binding properties of Hb, one assumes that the sites are nearly identical, hence
all of the intrinsic binding constants, as well as the correlation functions, must be
understood only in an average sense, as discussed in Appendix J.

Each of the subunits, o and  (as well as the closely related myoglobin
molecule), has a prosthetic heme group to which the oxygen molecule binds. There
are no covalent bonds between the subunits of Hb. The aggregate is maintained by
a combination of weak direct subunit—subunit interactions as well as by indirect
interactions mediated by the solvent.

Perhaps the earliest attempt to explain the sigmoidal shape of the BI of oxygen
to Hb was made by A. V. Hill (1910). Hill assumed that a solution of Hb contains
different aggregates of binding molecules. If n is the average size of the aggregate,
then the “average” binding reaction is written as

Hb + rO, - Hb(0O,), 6.8.1)
and the corresponding equilibrium constant K, is given by

_[Hb©Oy),] e
™ Hpj[o," 1-0

[0,]™ (6.8.2)

where  is the fractional saturation of Hb defined by

[Hb(O,),]

= [Hb + [H(0,), ] (6:8.3)

The square brackets indicate either concentration or, for oxygen, partial pressure.

*Such an elaborate transport mechanism is not necessary for small organisms, where oxygen can diffuse
between different parts of their bodies.

*The o~ and B-subunits are structurally and evolutionarily related to each other and to myoglobin (Mb),
the monomeric oxygen-binding protein in the muscles.
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If K}, is a constant in the sense of being independent of oxygen concentration
(or partial pressure), then one can transform Eq. (6.8.2) into

In

—e=-" In[O,] —-In K, 6.8.4)
A plot of the measurable quantity In{6/(1 — 8)} as a function of In[O,] should give
a straight line with slope n. Such a plot is called the Hill plot and is widely used in
reporting and interpreting experimental binding data.

The actual Hill plot for Hb is far from a linear line with constant slope. The
actual curve has a varying slope between one to three. Thermodynamically, Eq.
(6.8.2) implies that all » ligands bind simultaneously to Hb. There is no provision
in this model for intermediary occupancy states. Therefore, this model is thermo-
dynamically unacceptable. This is true a fortiori when n, obtained by fitting the
experimental data, turns out to be a nonintegral number."

Adair (1925) introduced the stepwise binding model which, for Hb, produces
the so-called Adair equation (see Section 2.3). This has the form

AP +24,P* + 34,P% + 4A P
T 4(L+AP+AP+AP+APY

(6.8.5)

where P is the partial pressure of oxygen and A, are known as the Adair constants.
The Adair equation is equivalent to the BI written in terms of the thermody-
namic binding constants K; (see Section 2.3), namely.
K,P +2K,K,P* + 3K, K,K,P* + K, K,K.K ,P*
41 +K,P+ K K,P* + K, K,K,P* + K, K,K;K P

(6.8.6)

where the relations between the A;’s and K;’s and the successive intrinsic binding
constants are

A, =K, (=4k), A, =K K, (=6kk;;)
Ay = K KK (= 4k ik ik ), Ay = K KKK, (= kkyykyik101)

(6.8.7)

Here, the equalities in parentheses are strictly valid whenever the sites are identical
in the strict sense. Otherwise, one should interpret these intrinsic binding constants
as average quantities, as discussed in Appendix J. Since Eq. (6.8.5) has the correct
functional form of 6(P), it is easy to obtain a good fit of the experimental data with
the four Adair constants A, i =1, 2, 3, 4.

Pauling (1935) attempted to rewrite the BI in terms of two parameters: an
intrinsic binding constant k and an interaction parameter o. The latter was assigned

*Regrettably, the slope of the Hill plot is still widely used as a “convenient measure of cooperativity.”
See also Sections 4.3 and 4.6.
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to each nearest-neighbor pair. Pauling considered two “configurations™ of the
hemes, the square and the tetrahedral, for which, in our notation, the BI is written,
respectively, as

kP + 2o+ DIPP? + 302K P3 + ok P*

= (6.8.8)
571+ 4kP + (4o + 2)K2P? + 402K°P? + ok P?

and
_ kP +30K°P?+30°K’P* + oK' P
T™ 1 + 4kP + 60I2P? + 40315P% + oSK*P*

Note that in the square model only nearest-neighbor pairs are assigned an
energy parameter o, while in the tetrahedral model each pair of ligands contributes
a factor o.. Both of these functions gave a good fit to experimental data with k =
0.033, and o, = 12 for the square model and o. = 122 = 5.2 for the tetrahedral model.

Although at that time the structure of Hb was unknown and the allosteric model,
based on the induced conformational changes, was not even suspected, Pauling was
obviously puzzled when he wrote “it is difficult to imagine a connection between
two hemes this far [referring to the tetrahedral arrangement] which would lead to
an interaction energy as large as 1000 cal/mol.” On the basis of this argument
Pauling rejected the tetrahedral model in favor of the square model.

Referring to —RT In o as “interaction energy,” it was only natural to assume
that each “connected pair” would contribute a factor o. This is equivalent to the
assumption of pairwise additivity of both the triplet and quadruplet correlation. In
our language, these assumptions are equivalent for the square model to

g2 =0, g, =1, gB®=0a} gdH=a' (68.10)
and for the tetrahedral model to
g2=a, gB)=0’, g@d=0of (6.8.11)

These (explicit or implicit) assumptions were made by many researchers
studying binding phenomena. We have seen in several places in this book (see
Chapter 5, in particular Section 5.10) that the assumption of pairwise additivity is
approximately valid only when the cooperativity originates from ligand-ligand
direct interaction. It is not a valid approximation when the ligands interact indi-
rectly. Pauling was clearly thinking in terms of (direct) interaction energies when
he assigned “interaction energy” parameter to each “connected pair.” Although he
did express his puzzlement over the apparent “long-range” interaction, he did not
suspect any possible source of indirect correlations.

A major development in our understanding of the mechanism of indirect
correlation has been advanced in two classical papers by Monod, Changeux, and
Jacob (1963) and Monod, Wyman, and Changeux (1965). In these papers the
principle of transmitting information between ligands by means of conformational

(6.8.9)
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changes induced in the adsorbent molecule was clearly and convincingly described.
This principle became known as the allosteric effect. It was first meant to describe
the behavior of regulatory enzymes (see Chapter 8), but was also applied to the
working mechanism of hemoglobin (originally referred to as the homotropic effect,
i.e., correlation between two or more identical ligands; the term “heterotropic
effect” was used for correlation between different ligands).

The Monod—Wyman—Changeux (MWC) model consists of the following three
elements: (1) The protein (or adsorbent molecule) is assumed to possess at least
two stereospecifically different binding sites. In regulatory enzymes one of these
sites is the active site, the other is the regulatory site. The term allosteric refers here
to the different locations of the two sites. (2) The protein can attain one of two
conformations. These were originally denoted by R (for relaxed) and T (for tense).
The transition between T and R was referred to as the allosteric transition. This is
the second meaning attributed to the term allosteric. (3) The binding of a ligand on
one site induces an allosteric transition in the protein. Since the allosteric change
involves the entire protein, it affects also the local conformation on the allosteric
site. Hence, a second ligand approaching the protein “will know” whether or not
the first site is occupied. In the case of Hb, the two or more ligands are the same
oxygen molecule. In the general case, the two allosteric sites are designed to accept
two different ligands. In the first case the two ligands are isosteric (i.e., having the
same structures) while the second case usually applies to a substrate and an effector
having different structures—hence the term allosteric refers here to the different
structures of the ligands. This is a third meaning applied to the term allosteric.

In this book we use the term allosteric only in its first meaning, i.e., for two
different locations of the sites. It should be noted that the third assumption, made
in the MWC model, was partially based upon a previous notion developed by
Koshland (1958)—the so-called induced-fit model. Both Koshland’s idea of the
induced fit and the MWC model of allosteric induced transition require that the
conformation of the protein responds to the binding process. The “purpose” of this
response is different in the two models, however. The induced-fit idea was sug-
gested to extend the old idea of the lock and key model proposed by Emil Fisher.
It focuses on the local change in the conformation of the protein in such a way as
to improve the fit or the binding affinity between the substrate and the protein. The
MWC theory focuses on both the local and global changes in the conformation of
the protein. The binding of a ligand on one site not only changes the local
conformation of the protein at the binding site, but also at the allosteric site. This
is the essence of the allosteric effect which we have referred to as the indirect
correlation, or indirect cooperativity. The induced conformational change on one
site is transmitted to all the other allosteric sites.

The MWC model is presently known as the concerted model, since the entire
protein changes its conformation concertedly. The induced-fit model was later
developed by Koshland, Nemethy, and Filmer (KNF) and is presently known as the
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sequential model. These two models were shown to be limiting cases of a more
general scheme by Eigen (1967). These two limiting cases were discussed for a
two-subunit molecule in Section 4.7. Since the sixties much structural, kinetic, and
thermodynamic data have been accumulated. The main idea of the allosteric
mechanism of cooperativity is now universally accepted.

In the next section we describe some experimental data on the binding of
oxygen to Hb. We shall focus on the efficiency of the loading and unloading of
oxygen at two not-too-different partial pressures.

6.8.2. A Sample of Experimental Data

Experimental data on binding oxygen to hemoglobin (Hb) are abundant. There
are different types of Hb (human, horse, sheep, etc.), and different conditions under
which the binding of different ligands are measured (such as temperature, pressure,
and solvent composition). Also, the concentration of Hb in solution could affect its
binding properties. Our theoretical treatment has been confined to that range of
concentrations at which there is neither dissociation nor association of the Hb
tetramer. We present here a very small sample of data illustrating the function of
Hb as an oxygen carrier. A comprehensive treatment of binding data of Hb can be
found in Imai’s monograph (1982).

The most important point to bear in mind when examining binding data of Hb
is that the Hb molecule does not operate in vacuum, nor in a pure one-component
solvent. The molecular composition of the environment of the Hb molecule can
have a decisive role in determining the efficiency of its function. In particular, the
utility function, as determined by the pressure difference under which Hb operates,
can change substantially when we vary the temperature, the pH, or the composition
of the solvent (see the next subsection).

Figure 6.5 shows the BI G(PO ) of human adult Hb at different temperatures.
[In this particular set of data, based on Imai and Yonetani (1975), the system was
held in a fixed buffer solution with no addition of DPG or IHP; see below.]

From the general shape of the curves one gets the impression that the “overall”
cooperativity of the Hb (under these specific conditions) decreases with increase
in temperature. This impression is correct in general. However, if we look more
closely at the various correlations in the system we see some temperature depend-
ence that does not conform to this “general” trend.

Table 6.3 shows the pair, triplet, and quadruplet correlations at six tempera-
tures.” It is quite clear that the correlations do not change monotonically with
temperature. For instance, the pair correlation initially increases with temperature
(which is indicative of the dominance of indirect correlation), then decreases up to
30 °C, and again increases. This is also. true for the corresponding free energies,

"These should be understood only as average quantities, in the sense discussed in Appendix J.
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Figure 6.5. The Bl 6(P ), of human adult Hb at different temperatures (pressure in torr and
temperature in °C). The temperatures are indicated next to each curve. Based on Table I from Imai and
Yonetani (1975).

defined by —kzT'In g, and shown in Table 6.4 and Fig. 6.6. It is clear that these free
energies do not change monotonically with temperature. Note that if all correlations
were due to direct interactions, then the quantities W should be equal to the
interaction energies U, and these are presumed to be temperature-independent.

Table 6.4 shows the free energies W corresponding to the correlation functions
of Table 6.3. We have also indicated, in square brackets, the nonadditivities (with
respect to pairs) defined by

S,=W(I,1,1)-3W(1,1), 8,=W(1,1,1,1)-6W(1,1) (68.12)

No general trend is observed in these nonadditivities. It is noteworthy, however,

Table 6.3
Correlation Functions for Human Adult Hb at Different
Temperatures’
t(°C) g1, 1) g(1,1,1) g(1,1,1,1)
10 3.98 23.10 127 x 104
15 542 23.24 1.18 x 10*
20 438 24.02 6.55x10°
25 4.20 22.95 6.61 x 10°
30 2.82 14.86 2.65x 10°
35 4.25 19.49 3.11 x 10?

“Based on data from Table I of Imai and Yonetani (1975).
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Table 6.4
Free Energies and Nonadditivities (in kcal/mol) of the Cooperativities for Binding
of Oxygen to Human Adult Hb at Different Temperatures”

wa, 1,1 w1,1, 1,1
t(°C) w1, 1 [63=W(, 1, D3W(QA, D] [8,=W(1, 1,1, 1)-6W(1, 1)]
10 —-0.782 -1.777 -5.347
[0.57] [-0.65]
15 -0.973 -1.812 -5.400
[1.11] [0.49]
20 —0.866 -1.863 -5.150
[0.73] [0.046]
25 —0.855 -1.867 -5.24
[0.70] [-0.11}
30 -0.629 -1.635 —4.78
[0.25] [-1.00]
35 —-0.891 -1.829 -4.95
[0.84] [0.39]

“Based on data from Table I in Imai and Yonetani (1975).

that , are relatively large [compared with W(1, 1, 1)], but §, are relatively small
[compared with W(1, 1, 1, 1)]. Note also the changes in sign. It is unclear to what
extent the latter quantities are significant or within experimental error.

Figure 6.7 shows the average correlation g(P,, ) as a function of oxygen partial
pressure. At the low-pressure limit (determined by the pair correlation only) there
is no clear-cut monotonic dependence on temperature. At the high-pressure limit
(as determined by the quadruplet correlations, see Section 5.8), we see that the
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Figure 6.6. Values of W(1, 1), W(1, 1, 1), and W(1, 1, 1, 1) (in kcal/mol) as a function of absolute
temperature for human adult Hb. Based on data from Table I in Imai and Yonetani (1975).
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Figure 6.7. Average correlation Z(P, ) as a function of the partial pressure of oxygen P, (in torrs),
for the same system as in Fig. 6.5. (a) Lzow-pressure limit; (b) high-pressure limit. The temperatures are
indicated next to each curve.

general trend (except for the two curves at 30 °C and 35 °C, which seems to be
almost identical within the experimental error) is a decrease in the average corre-
lation with temperature.

Before examining the effect of changing the composition of the solvent, it is
important to note that the utility function (see the next subsection and Appendix K)
as determined by the partial pressures of oxygen—about 100 torr in arterial blood
and 30 torr in veinous blood—is almost zero for the system described in Fig. 6.5.
In fact, the two pressures, 30 and 100 torr, do not even appear in this figure. it is
also clear from this figure that the more cooperative system does not necessarily
mean more efficient transport of oxygen. It is the utility function, as determined by
the two fixed pressures, that is the important quantity. For instance, if the oxygen
was to be transported between 4—10 torr, then it is the 30 °C curve which will have
the highest utility value.

Next, we examine the effect of changing the solution composition on the BI
and on the correlation functions.

Figure 6.8 shows three BIs of Hb [based on Table 6.2 from Imai (1982) for the
same buffer conditions at 25 °C] at three different pH values of 9.1, 7.4, and 6.5.
The overall appearance of these curves indicates that increasing the pH strengthens
the cooperativity of the system. On the other hand, judging from the utility point
of view, we see that the curve with the lowest pH has the highest utility value (which
is about 0.2; this is quite small compared with values of the same system with added
BPG and IHP, see below).

Figure 6.9 shows the average correlation §(P02) for Hb at 25 °C and at three
different pH values. At very low pressures g is 0.92 for pH = 6.5; it increases to
2.84 at pH = 7.4 and then slightly decreases to 2.68 at pH = 9.1. On the other hand,
at the high-pressure limit g has the lowest value of about 558 at pH=9.1; it increases
to 6,193 at pH = 7.4 and decreases again to 3,794 at pH = 6.5. Also the behavior of
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Figure 6.8. Binding isotherms for Hb at 25 °C at three different pH values (indicated next to each
curve). The utility value is the difference 8(100) — 6(30).
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Figure 6.9. Average correlation g(P, ) for Hb at three different pH values [at 25 °C based on Table
6.2 from Imai (1982)]. (a) Low-pressur%e limit; (b) high-pressure limit.
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Figure 6.10. Values of W(1, 1), W(1, 1, 1), and W(1, 1, 1, 1) (in kcal/mol) as a function of temperature,
for human adult Hb with added 2 mM of BPG. Based on data from Imai and Yonetani (1975).
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Table 6.5
Correlation Functions and Corresponding Free Energies (in kcal/mol at 25 °C)
for Three Different pH Values”

&1, 1) &(1,1, 1) g(1,1,1,1)
pH (W, nj w, 1, ] w1, 1,1, 1]

6.5 0.924 5.36 558.5
[0.047] [-1.00] [-3.77]
74 2.84 39.14 6193.9
[-0.622] [-2.18] [-5.20]

9.1 2.69 67.79 3794
[-0.59] [-2.51] [-4.91]

each of the correlations (Table 6.5) does not indicate a clear trend. We see that the
pair correlation first slightly increases, then becomes negative upon lowering the
pH. The triplet correlation decreases from 67.8 to 39.2 to 5.3. The quadruplet
correlation again first increases, and then decreases considerably upon lowering the
pH, i.e., increasing the concentration of protons in the solution.

We next turn to the effect of adding D-2,3-bisphosphoglycerate (BPG, pre-
viously known as DPG) and inositol hexaphosphate (IHP).

Figure 6.10 shows the free energies corresponding to the three correlations for
the system where 2 mM of BPG was added. Similarly, Fig. 6.11 shows the free
energies for the same system but with 2 mM of IHP added (instead of BPG). Figures
6.10 and 6.11 show immediately that replacing BPG by THP moves all the points
upward, i.e., the correlations become smaller and even become negative (the
corresponding free energies become positive). The physiological significance of
these changes is shown in Fig. 6.12, where we depict the BIs for the three systems
in the same range of partial pressures between 0 to 100 torr.

It is clearly seen that within each group of curves the overall cooperativity
became weaker as the temperature increases. This can be judged qualitatively from
the steepness of the Bls, as well as quantitatively from the average correlations
(shown on the lower panel of Fig. 6.12, in the range of 30-100 torr). The utility
function, computed for P, = 100 torr and P, = 30 torr, is nearly zero for the system
with no added solutes (besides the buffer solution). It is small for the system with
2 mM of BPG added and becomes relatively large for the system with 2 mM of IHP
added. (Note, however, that the utility values do not increase monotonically with
temperature; this is clear for the BI on the lhs of Fig. 6.12.) Thus, the change in
utility values upon addition of BPG and IHP is much more dramatic than the change
due to temperature.

Table 6.6 shows utility values for the three systems at the six temperatures. It
is clear that the highest value is obtained for the system with 2 mM of IHP at a
temperature between 25-30 °C.
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Figure 6.11. Same as Fig. 6.10, but with 2 mM of IHP instead of BPG.

6.8.3. Utility Function under Physiological Conditions

We have seen that there exists no simple correlation between the cooperativities
in the Hb system and the utility values, as determined by the two partial pressures
of 30 and 100 torr of oxygen at the loading and unloading ends. We have also seen
that the utility function changes dramatically with temperature, pH, or addition of
BPG and IHP. In all our considerations so far we have examined the change in the

40 50 60 70 8C 90 100 40 50 60 70 80 90100
P, P,
O2 ()2
a b c

Figure 6.12. BI (upper panel) and average correlation g(P) (lower panel), for human adult Hb at
temperatures of 10, 15, 20, 25, 30, 35 °C. The upper curves correspond to 10 °C and the lowest to 35
°C. All systems were in a fixed buffer solution [for details, see Imai and Yonetani (1975)]. (a) As in Fig.
6.5, no added BPG or IHP; (b) 2 mM of BPG added; (c) 2 mM of IHP added. The BIs were drawn in
the same range of 0-100 torr, but the average correlations are drawn between 30-100 torr. The two
vertical lines drawn at 30 and 100 torr are used to estimate the utility value for each system.
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Table 6.6
Utility Values for the Three Systems Described in Fig. 6.12,
Computed for P, = 100 torr and P; = 30 torr”

t(°0) None 2 mM BPG 2 mM IHP
10 0 0.00 0.2
15 0 0.01 03
20 0 0.02 0.5
25 0 0.06 0.6
30 0.01 0.12 0.6
35 0.02 0.24 0.4

“The values were approximately estimated from the curves in Fig. 6.12.

utility function, as measured in a single BI, i.e., we have drawn the BI and examined
the difference 6(P,) — 0(P,) (where P, and P, are the loading and unloading partial
pressures of oxygen). The situation is, of course, much more complicated in the
real-life system, where loading and unloading of oxygen occurs. Here, the environ-
ment at the loading terminal (the lungs) might be quite different from the environ-
ment at the unloading terminal (the tissues). This requires consideration of the BI
in a multiple space, i.e., 8 as a function of Po2 as well as a function of the
concentrations of various added solutes. We shall demonstrate this point by the
following two examples:

(a) BI as a function of partial pressure and pH: Consider the two-dimensional
function 6(P, Cyy), where P is the oxygen partial pressure and C, the concentration
H" in solution (pH = —log,,Cy). In the previous subsection we discussed the utility
function at each pH (i.e., at a fixed value of Cy). Suppose the two partial pressures
for loading and unloading of oxygen were P, = 10 torr and P, = 5 torr (which are
far from the real values; here, we use these values for demonstration purposes
only).

Figure 6.13a is the same as Fig. 6.8, but drawn in the range of 0-30 torr.
Measuring the utility value at P, = 10 and P, = 5 for each curve yields

U(pH=6.5)=0(P,= 10, pH=6.5) - 6(P, =5, pH=6.5)~0.1 |
U(pH="17.4)=6(P,=10,pH="7.4)— 6(P, =5, pH="7.4) ~ 0.4

U(pH=9.1)=0(P, = 10, pH=9.1) — 6(P, = 5, pH = 9.1) ~ 0.05

We see that between P, = 10 and P, = 5 the utility value is largest for pH = 7.4. At
the same pressure range, the average correlation is largest at pH = 9.1 (Fig. 6.13b).”

*This shows that the utility function is, in general, not a linear function of the cooperativity (see also
Appendix K).
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Figure 6.13. BI and average correlation for Hb at three different pH values. The data are the same as
in Fig. 6.8, but here the BI is drawn in the pressure range of 0-30 torr. The utility function is computed
for the arbitrarily selected pair of pressures P; = 5 and P, = 10 torr. The average correlations are drawn
only in this range of pressures.

In each of the differences computed in Eq. (6.8.13) the pH has been fixed (pH =
6.5,pH=7.4, and pH=9.1), i.e., we have computed the utility value for each single
BI (at a fixed pH).

In reality, the pH values are not the same at the loading and unloading terminals.
In fact, the pH at the tissue is lower (i.e., more acidic) than the pH at the lungs.
Thus, the utility function must be calculated not as differences of 6 for each fixed
pH as we have done in Egs. (6.8.13), but at two different pH values as in the real
loading and unloading locations. As an example (which is far from the real values
for both the pH values and partial pressures), suppose the pH is 9.1 at the loading
end but 6.5 at the unloading end. In this case, again using the two fictitious pressures
P,=10and P, =5, we would have loaded oxygen on the pH = 9.1-curve (point A
in Fig. 6.13a), but unloaded the oxygen on a different pH = 6.5-curve (point B in
Fig. 6.13a). The resulting utility function would be

U,=0(P,=10,pH=9.1)-0(P,=5,pH=65~09 (6314

which is dramatically larger than the biggest value calculated in Egs. (6.8.13). We
see that by switching from one BI curve to another, the utility function has become
almost unity, i.e., the oxygen is transmitted at about 90% efficiency.

(b) BI as a function of partial pressure and solute concentration: In the previous
example we used fictitious pressures P, and P, to demonstrate the increase in
efficiency of transporting oxygen between two pH values. In the second example
we use the more realistic pressure differences of P, =100 and P, = 30 torr, but fictitious
pairs of solute concentrations. Figure 6.14 shows the BIs for Hb at one temperature
t = 35 °C. One curve, denoted “none,” is the same as the corresponding curve in
Fig. 6.12a. The second, denoted IHP, is the same as the 35 °C curve of Fig. 6.12c.
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Figure 6.14. BIs as in Fig. 6.12, but at one temperature of 35 °C. One curve is for Hb with no IHP
added (indicated “none”); the second curve is for Hb with 2 mM IHP added.

The utility functions calculated for these two curves are

U, = 6(P, = 100, none) — 0(P, = 30, none) = 0.04
(6.8.15)
U,=6(P,= 100, IHP) - 6(P, = 30, I[HP) = 0.5

Clearly, at 35 °C the utility function is much larger for the system with 2 mM of
IHP added. Now, suppose the Hb loads oxygen in an environment containing a
negligible amount of IHP (point A in Fig. 6.14) but unloads the oxygen in a different
environment, containing 2 mM of IHP (point B). In this case, operating between
the real range of pressures, the actual utility value will be

U, = 6(P, = 100, none) — 6(P, = 30, IHP) = 0.82 (6.8.16)

Clearly, operating between two different environments considerably increases the
utility value for transporting oxygen.

'We have presented above two examples showing how the efficiency of trans-
porting oxygen between two given pressures could be improved by changing a
concentration of one solute (H* in the first and IHP in the second example). In a
real-life system, the environment at the loading and unloading points of oxygen
could differ with respect to several different solutes. The actual utility function
should be calculated from the multidimensional BI, 8(P, C,, C,, . . ., C,), where
C,, C,, ..., C, are the concentrations of the various solutes in the system. It is
possible that the precise “tuning” of the various solute concentrations was selected
by evolution to satisfy the specific needs of utility values of different living
organisms.
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7.1. THE MATRIX METHOD

In this section we introduce the matrix method to rewrite the GPF of a linear system
of m sites in a more convenient form. This is both an elegant and a powerful method
for studying such systems. We start by presenting the so-called Ising model for the
simplest system. We assume that each unit can be in one of two occupational states:
empty or occupied. Also, we assume only nearest-neighbor (nn) interactions.” Both
of these assumptions may be removed. In subsequent sections and in Chapter 8 we
shall discuss four and eight states for each subunit. We shall not discuss the
extension of the theory with respect to interactions beyond the nn. Such an extension
is used, for example, in the theory of helix-coil transition.

The system is an extension of the models treated in Sections 4.3 and 5.3. It
consists of m sites arranged in a linear sequence on the adsorbent molecule (Fig.
7.1a). The two states of each unit are “empty” and “occupied.” The canonical PF
of a single system having » ligands on the m sites (n < m) is

OT, m,n)= Y exp[-BE(s)] (7.1.1)
all s with
fixedm,n
Here, the vector s = (s, 5,, . . . , 5,,) specifies the configuration of the system, i.e.,

s;=0and s; = 1 stand for site i being empty and occupied, respectively. Clearly, the
total number of ligands is

n=¥s, (7.1.2)

=1
Each vector s specifies a configuration, or a specific distribution of the n ligands
*These include direct ligand—ligand and subunit—subunit interaction. The exclusion of long-range
interaction does not preclude the occurrence of long-range correlation.

223
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Figure 7.1. A system of m =7 identical subunits arranged linearly: (a) open chain; (b) closed to acycle.

on the m sites. There are altogether () different configurations, each of which has
a different energy, denoted by E(s), and given by

m-1 m
ES)=Y 55Uy + 9 sU=ny (U +nU (7.1.3)

i=1 i=1

where U is the binding energy, i.e., the interaction of the ligand with the system
when it is bound to site i*; U, is the direct interaction energy between two ligands
on neighboring sites.

Since 5;=0, 1, the total energy of the system consists of the total binding energy,
nU, and a total of n,;(s)U,, for the ligand-ligand interactions, where n,(s) is the
number of nearest-neighbor pairs of ligands for the specific configuration s.

The sum over s in Eq. (7.1.1) is over all the () possible configurations s. This
is a sum over all the states of the system with a given n. Some of the terms in Eq.
(7.1.1) might have the same energy. For instance, the configurations (s; = s, = 1,
s3=854=---=5,=0)and (s, =5,=0,5;=5,=1, 5=55="--- =5, = 0) have the
same energy, which is simply U,, + 2U. Therefore, one can change the order of
summation and sum over all energy levels to obtain

QT, m,n)= Y, QE) exp(-BE) exp(-Bnl) = Y, Qn,,) exp(—Pn;,U;,)

energy n,

levels (7. 1 .4)

Since the energy levels are determined by the number of nearest-neighbor pairs n,;,
the sum over all energy levels is the same as the sum over all possible values of n,;,
€(n,,) being the number of configurations (or states) having the same value of ; ;,
hence of the same energy. Note that n, in Eq. (7.1.4) is a variable and can take any
possible value for a fixed n and m; n;(s) in Eq. (7.1.3) is the value of n;, for a
specific configuration s. Thus, for the specific configurations = (1, 1, 1,0, 0) of a
system with m = 5 and n = 3 we have n,,(s) = 2 (two nearest neighbors,) but n,, in

*We stress again that U is the interaction energy of the ligand with the entire adsorbent molecule—not
only with the site itself; see aiso Appendix I. In this particular model U is independent of i. Also, the
intrinsic binding constant is independent of i, i.e., the system has m weakly identical sites. In Section
7.2 we deal with a system where U is again independent of i, but there are, in general, different intrinsic
binding constants.
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Eq. (7.1.4) runs over n;; =0, 1, 2 with Q(O) =1, Q(1) =6, and Q(2) = 3, the total
number of configurations being ZQ(n, ;) = (3) =10.

As in previous chapters, we now open the system with respect to the ligand.
This is equivalent to letting n vary, with O < n < m. The relevant GPF is now

m m
ET,mMN) =Y OT, mn\'=3 A" exp[-BE(s)] (7.1.5)
n=0 n=0 (MJ
where Q(T, m, n) is given in Eq. (7.1.1), but we stress the fact that this is a sum over
(7)) configurations. Once we sum over all possible , we extend the summation over
all possible 2™ configurations, which is simply obtained from the identity

2m=z(’:)=(1+1)m (7.1.6)

n=0

The passage to the open system allows us to rewrite the GPF of the system in
a condensed form, for any m. Thus, by summing over n in Eq. (7.1.5), we effectively
remove the restriction on a fixed n (m is still fixed) that we had in the sum (7.1.1).
The GPF can be rewritten in matrix form, as follows: We first write the sum (7.1.5)
as a single sum over all possible 2™ configurations, namely,

m—1

E=) Aiexp BZNMU” BZSU

all s with =1

Jixed m

= z A1 exp(—PBs,U — Bs,s,U; DN’ exp(—Bs,U — Bs,s3U; ) - - -
— z (M)l/251(7\.q)1/2319132(7\q)1/2”‘2(7kq)1/2525"253(7»q)1/2ss

.. (M)I/Z.vm_] Ssm_lsm(M)l/bm(M)l/km (717)

where in the first form on the rhs we sum over all possible configurations s with
fixed m (but not n). In the second form we write explicitly the beginning of a typical
term in this sum. In the third form we used the notations

g=exp(-BU), S=exp(-pUyy) (7.1.8)

to rewrite the same sum, but now we separate factors that “belong” to each
consecutive pair of units. Thus, except for the first, (M)l/ 25 and the last,
(Ag)'/%n, factors, each of the factors in Eq. (7.1.7) is assigned to the pair (i, i + 1)
of neighboring sites. This allows us torewrite the GPF in a very concise form, as follows:
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We define the matrix M by
1 (M)l /2
M= 7.1.9
[(M)‘” AgS 719
This consists of all possible factors that are contributed by a nn pair. Since there are
four possible states of a pair of units, we have the following assignments:
(5,=0,5,=0 M, =1
(5,=0,5,=1) & M, =(Aq)""?

(7.1.10)
(5,=1,5,=0) & M,; = (Ag)""?

(s,=1,5,= 1) M,, =\gS

It will be convenient, especially when the units can be in more than two states,
to introduce the two unit row vectors

(Ol=(1,0), (11=(0,1) (7.1.11)

and the corresponding column vectors

10) = ((I)J Iy = ((1)) (7.1.12)

With this notation the elements of the matrix M are identified as
M, =(0IMI0) =1
My, =M,, = (0IMI1) =(1IMI0) = (Ag)'/ (7.1.13)
M,, =(1IMI1) = AgS

This notation is more convenient, since in (silMIsj) the states of the pair i and j are
specified while the subscripts in M, specify the location of the element in the /th
row and kth column. The symbol (s/Mils,,,) is the factor contributed to the GPF by
the nn pair i and i + 1, being in states s; and s, |, respectively. This matrix element
is obtained by multiplying the matrix M by a row vector on the left and by a column
vector on the right. Since (s| and s, ;) are unit vectors, this multiplication
produces the element of the matrix that corresponds to the state of the nn pair i
and i + 1.

To avoid confusion, we stress that the symbols {al and la) denote any two-
dimensional row and column vector,” respectively. In particular, whenever we

*In quantum mechanics these are referred to as “bra” and “ket” vectors. Multiplying the two forms the
“bracket,” which is a scalar product of {al and la).
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specifically introduce the state of a single unit within this symbol, asin Eqs. (7.1.11)
and (7.1.12), we obtain a unit vector. In our case, we have only two unit vectors,
(0l and (1). The scalar product, denoted by (Ola}, is therefore the first component of
the vector la). Similarly, (1la) is its second component.

With the notation in Eq. (7.1.13), we rewrite the GPF in Eq. (7.1.7) as

E=Y (Ag)"/*s)Mis,Xs)Mis3) - - - {5, M5, Y(Ag) 2 (7-1.14)

The summations are over all the indices s;, each of which represents the state of the
ith unit. Thus, except for the first and last factors, this sum produces m — 1 matrix
multiplications; hence,

E=YY (A s, M is, MAg)'/>n (7.1.15)

51 Sm

If we define the vector

M =[1, A" (7.1.16)
we may rewrite £ in matrix notation as
Eo=(vIM™ ) (7.1.17)

The subscript O was added to refer to an “open” chain.

A particularly simple form of the GPF is obtained for a cyclic system, i.e., when
the end units (i = 1, i = m) are closed (Fig. 7.1b), in which case one more interaction
factor $** is introduced in the PE. Hence Eq. (7.1.15) is repalced by

Ec=Y X (s, M is, s, IMls,)

51 Sm

= Y (s, IMIs;) = Te(M™) (7.1.18)

5

where now the GPF of the cyclic system, &, is the trace of the matrix M™. This is
far easier to use than the open-system GPF in Eq. (7.1.17). We shall use & either
when our system is genuinely cyclic, as in Section 7.2, or for very long open-chain
systems. In the latter case, & is only an approximate PF for £,. However, in the
thermodynamic limit of m — oo, the addition of the factor $°-1 has a negligible
effect on the thermodynamic properties of the system.

The form of the GPF for the cyclic system is very convenient since as we shall
see below, all we have to do is find the eigenvalues of the 2 X 2 matrix M in order
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to express the PF in terms of the molecular parameters of the system. To proceed,
we need some theorems from matrix algebra, which we cite without proof.”
A matrix A is said to diagonalize matrix M if

AMA'=D (7.1.19)

where A1 is the inverse matrix of A and D is a diagonalized matrix; i.e., fora 2 x 2

matrix D has the form
d 0
= 7.1.20
ouft 3 10

Since our matrix M is symmetric and has real entries, there always exists an
orthogonal matrix A which diagonalizes M.

A matrix A that diagonalizes M will also diagonalize M™. Thus, for any m, we
can write

AM"AT=AMMM - -- A~ = AMA'TAMA'AM - - - AMA™!

a0
=D"= (7.1.21H)
P [0 d:"]

where the unit matrix I = AA~! has been added between each pair of consecutive
matrices M. The last form on the rhs of Eq. (7.1.21) highlights the substantial
simplification achieved by diagonalizing the matrix M. Instead of computing the
mth power of amatrix, all we need is the mth power of two numbers, the eigenvalues
of matrix M.

It is easy to verify that the trace of any product of matrices is invariant to cyclic
permutations of the matrices, for instance,

Tr(AB) = Tr(BA)
Tr(ABC) = Tr(CAB) = Tr(BCA)

(7.1.22)

This follows directly from the definition of the trace of any matrix A of order m X m,
m

TrA = Z A (7.1.23)

=1

i.e., TrA is simply the sum over all diagonal elements of A.
Applying this rule to Eq. (7.1.19), we have

Tr(AMA™) = Tr(A~'AM) = Tr(IM) = Tr(M) (7.1.24)
i.e., the trace of M is the same as the trace of AMA™!,

*For proof, the reader is referred to any elementary text in algebra.
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Returning to the GPF in Eq. (7.1.18) and using Eq. (7.1.21), we write
Ec=Tr(M)" = Tr(AM™A™) = Tr(D™) = ar+dy (7.1.25)

The eigenvalues are obtained by solving the characteristic equation (or the secular
equation)

M-dli=0 (7.1.26)

where I is the identity matrix and the determinant [M — dll is the characteristic
polynomial of the matrix M. Thus, calculation of the GPF reduces to calculation
of the two roots of a polynomial of second degree.

When applying the matrix method to very large values of m, it is only the largest
root of the characteristic equation that is significant for calculating the thermody-
namic properties of the system. For the particular matrix defined in Eq. (7.1.9), the
characteristic equation is

1-d 1/2
’(M)“2 g»};{?)—d =0 (7.1.27)
The two solutions for d are
dy, =111+ 2gS +VaAg + (1 - AgSY] (7.1.28)

This is an explicit expression for d, = d, and d, = d_ (d, < d,) in terms of the
molecular parameters. Raising these to the mth power yields the final expression
for the GPF in Eq. (7.1.25). In particular, for d, < d, we have

d " arge m
g=d3n[1+(d_lﬂ-’i->dg (7.129)
2
and
~ksT In& = —mkyTIn d, (7.1.30)

This shows that in the limit of large systems, the thermodynamics of the system is
determined by the largest root of the secular equation.” In particular, —kTIn &, as
seen in Eq. (7.1.30) is an extensive property, i.e., it is proportional to the number
of units.

*We have also dropped the subscript C to &. In the limit of very large m, the properties of the open and
closed systems become identical.
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We have developed above the specific case of a system with two states for each
unit. However, most of the formal results are valid for any number of states. We
simply reinterpret any sum over each s, to run over all possible states of the unit.
Let fbe the number of states, or the number of degrees of freedom for a single unit.
Then the general result in Eq. (7.1.18) is still valid, i.e.,

& = Tr(M™) (7.1.31)

where now M is an f X finstead of a 2 X 2 matrix. We shall discuss the cases f=4
and f= 8 in Sections 7.4 and 8.8, respectively. Clearly, in this case there are froots
to the matrix M, but the final result for the GPF is still

E=dr, (7.1.32)

where d,,,, is the largest root of M.

7.2. CORRELATION FUNCTIONS

From now on we use only the GPF for the cyclic system and drop the subscript
C. Since our system has m identical units, the sites will always be identical in the
weak sense. There is always one intrinsic constant for the first site but, in general,
we have more than one pair correlation, triplet correlation, etc. As in Section 7.1
we develop, for simplicity, the case of two states f = 2, but most of the results are
quite general.

The intrinsic binding constant for the particular model of Section 7.1 is
obtained from

Oy Ay 9lnE 791
o Tmity O e

Note that Q(1) is the canonical PF of the system having one ligand. Since there are
m identical singly-occupied systems, we have divided by m to obtain the intrinsic
binding constant £. Incidentally, for this particular model, also the open linear chain
has only one , equal to gA,,. This is not true for more complicated models, such as
that discussed in Sections 5.6, 6.3, and 7.4.

In order to obtain the correlation between any two (or more) events, we must
collect all the relevant terms in the PF and form the correlation between the events.
Here, as always in this book, we are interested in the cooperativity between the
ligands. This was defined as the correlation between two particular events, such as
“site i is occupied” and “site j is occupied.” For instance, the nearest-neighbor (nn)
correlation is defined by

P(s,=1,5,,=1)
P(s;= 1)P(s,,, = 1)

(7.2.2)

gGi+1)=
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In general, one can define other correlations, say between two unoccupied sites, or
one occupied and one unoccupied site, etc.” We shall not require these here. Also,
as always, we shall need only the A — 0 limit of the correlations, since only these
enter into the binding isotherm.

To obtain the singlet probability P(s; = 1), we recall that, in general, each term
in the GPF is proportional to the probability of finding the specific configuration
s. For instance, in a cyclic system of m = 3, the probability of finding the
configurations =(s; = 1,5, =0, 5, = 1) is

_ (1IMIOYOIMILY(1IMI1)
- 13

P(s) (7.2.3)

where & is the GPF of the cyclic system of three units.
To obtain P(s, = 1), we simply sum over all possible statesof i =2,3,...,m
while holding the state of unit i = 1 at s, = 1 (i.e., occupied). Thus, in general, we have

Pis,=1)= Y, Ps,=1,5,55,...,5,)

SyperesSipy

= Z P(s), 83 ..o sm)8sv1 (1.2.4)

Sl,Sz,...,Sm

where, in the second form on the rhs of Eq. (7.2.4), we have introduced the
Kronecker delta function defined by

5 = 1fors, =1 (725)
ss1 710 for s, # 1 -

and added also a summation over the index s;. We can repeat similar steps, as in
Section 7.1, to write this sum in terms of the matrix elements, namely,

P(s,=1) =é z (s,/Mlls, Xs,Mlis;) - - - (s,,,_ M5, )8 |
=é (s, IMIs )3, =—;;(IIM'"II) (7.2.6)

*For examples of such correlations in 1-D models, see Chapter 4 in Ben-Naim (1992).
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Recall that {1lis a unit vector defined in Eq. (7.1.11). Hence {1IM"I1) is the element
at position 2,2 of the matrix M™, i.e., the element (M"')z’z.

In order to simplify the form of Eq. (7.2.6), we need the eigenvectors of matrix
M. The eigenvector corresponding to the eigenvalue d; is defined by

Mlay) = dja;) 727

The eigenvectors are the rows or the column of an orthogonal matrix” A that
diagonalizes M". They fulfill the orthogonality condition

(ajay=3,; (7.2.8)
The following identity exists for the unit matrix I,
I=Y laXa/ (7.2.9)
i

Here, the sum is over all the states of one unit of the system.
With the help of the latter identity, Eq. (7.2.6) can be expressed in the form

LML) =1 3 (liaXaMla ) 1)
g 3 = A

P(s,=1)=
- é 3 (Ulapdr, (a1)
LJ

z (lla) "
% df

- % Y (lla? dr= (7.2.10)

In this equation we first insert the identity matrix I before and after M™, and then
apply m times the operation (7.2.7) to produce d]'” We next apply the orthogonality
condition (7.2.8), and the fact that all our vectors and matrices are real, hence
(lla,) ={a/1). Finally, we use the expression for the GPF obtained in Eq. (7.1.25).

Since we have already solved for d, in terms of the molecular parameters [see
Eq. (7.1.28)], we must solve for the components of the eigenvectors (1la;). These
may be obtained by solving the two linear equations (7.2.7):

M, {Ola,) + M, (1lla,)= d{Ola,)
(7.2.11)
M,, (Ola,) + M,, (lla,) = d(1la,)

and similar equations for {Ola,) and (1la,). Since we are interested in cooperativities,
we need only the components (1la;) corresponding to the state “1,” i.e., occupied.
Hence, we must solve only for (1la,) and (1la,). Doing so produces, not surprisingly,

"The existence of such an orthogonal matrix is guaranteed for a real and symmetric matrix M.
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the corresponding BI for a system of m (weakly) identical sites. This is so because
the probability of finding a specific site occupied is equal to 8 (see Section 2.1).
For a subsequent evaluation of the various correlations we shall use the form
(7.2.10). Note that in the limit m — o, only the largest root is important. Since d, <
d,, we have

lim P(s, = 1) =(lla,)* (7.2.12)

The singlet distribution in this limit is simply the second component of the second
eigenvector.

To obtain the nn-pair correlation we need the probability of the joint event (s; =1,
s,1=1)ie., bothsite i and i + 1 being occupied. This may be obtained by following
steps similar to those for P(s; = 1). Since our system is cyclic, the nn-pair
distribution is independent of index i, hence we write

P(s;=1,5,=1)= 2 P(s;=1,5,=1,84,5,...,5,)

> m
S350,

=Y Py, 8- 5 5,08, 18

S1,52s0-sSp

=% " (s, Misy XM isy)S, (3, |

Sl,Sz

M 1ImM™ ) (7.2.13)

gV =

By treating both (1IMI1) and (IIM™!{1) in the same manner as earlier in Eq.
(7.2.10), we obtain

15

P(s,=1,5,=1) =é[2 () d; 3’ (llay)* d;‘n_l]
j

= —é— )y (Ua)Xlla)? ddr! (7.2.14)
ij

Since d, > d, [see Eq. (7.1.28)], then for very large m, (d,/d,)" < < 1, so we obtain
for the nn-pair correlation

Pis;=1,5,=1 la,Y d
82 =8,2) = (s s;=1) (Ua,)* d,

it Sl et S AP U et ol 7.2.15
P(s;=1) * (lla,y* d, ( )
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The generalization for the pair correlation between two ligands, / — 1 units
apart, is straightforward:

Psy=1s=1)= P(sy, 5 ..., 5,8 18
S

(s; Ml Xs IM P15 NS 8
& 1 1A 1/%5,1% 53,1

=1 QMY MDY

J‘“‘

[Z (lla)* di! 2 (i, \2 d'”"“] (7.2.16)

J‘ﬂ|»—l

The correlation function for the two ligands at the first and Ith sites is
P(s,=1,5=1)
[P(s; = D)
> > UayXtay d'd (7517
i
3 Y (Ua)Xllay did;
iy

gu2)=

Again, for d; < d, and very large m we have

-1
la,)* (d
g”(z)=1+< 1>2 -1 (7.2.18)
(lla,y d,
This is the generalization of Eq. (7.2.15).

Using a similar procedure we can obtain correlations of any order. For example,
in order to obtain the 1, 2, 3 triplet probability, we write

P(s;=1,5,=1,55=1)=Y P(sp, 5,53, ..., 5,08 18 18
s

s1,178,1

Z (51 /Mlls, X5, Mlls X5, M™ 215, & 5,195,,105,1

asl’sz S3

AIMITY(1IMILY LIV 2T

AN | -

= é >3 Y (UayXliaY d{llay dp? (7.2.19)
i j &k
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and the corresponding triplet correlation is, in the limit m — oo,

P(s;=1,5,=1,85,=1)
8123% P(s,=1)

(7.2.20)

2
~ (Ua® d;  (llay)* (dy
=l+2 Tay & (i)’ (dj

Other correlations can be obtained similarly.

We now summarize some general results valid for any number of degrees of
freedom f. The general form is presented for the cyclic system with a fixed m, and
also for its m — oo limit.

We recall that the GPF is

f
g = TI‘(Mm) = 2 dm - dxx (7.2.21)

i
=1

where d, is the largest eigenvalue of the f X f matrix M. The singlet distribution is

{adMlor)
g

P(s;=0) =

f
z (atlay® d"
i=1

= —{ola, ) (7.2.22)

where s; = 0. means that the state of the unit numbered one is c.. Since the system
is cyclic and the subunits identical, it does not matter which specific unit we choose
to number as the first. lg,, ) is the eigenvector corresponding to the largest
eigenvalue, i.e.,

Ma,)=d,la,) (7.2.23)

Note that la;) is the ith eigenvector, but lo) is a unit vector corresponding to the o
state. We shall use Greek letters for a general unit vector. For a specific unit vector
we explicitly indicate the state, such as in Eqs. (7.1.11). In Section 7.4 we use the
notation IL1) for the state “occupied and conformation L,” and in Section 8.5 we
use [L, A, R) for “occupied by A and by R and conformation L.”
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The nn distribution is [see Egs. (7.2.13) and (7.2.14)]

{oMIBYXBIM™ lcx)
£

P(sl—(l, 2= B)

= 2 (oda;XBla,)d, 2 (ocla )(Bla )d'”_l

=1

z (oda,XBla;) ( J (oda,, XBla,,)

i=1

(ozlai)([3|a,-> di
=(oda,, Y Bla,,*| 1 + gfr m [d_]

= P(s; = &) P(s, = B)g,(s; = 0, 5,=B) (7.2.24)

where in the last form on the rhs of Eq. (7.2.24) we have written the pair
distribution as a product of the two singlet distributions and a correlation function.
The latter is defined, as usual, by

i P(s;=a,s,=p) (oda;XBla;)
g12(s1 o, s2 B) P(Sl - (X)P(Sz B) =1+ z <alamxxBlamx ( ] (7 2. 25)

Note that the sum over i # f means over all states except that indexed i = f, which
we choose to denote as the state having the largest eigenvalue.
For the 1, [ pair distribution [see Eq. (7.2.16)], we have

(oM B BIM™ " lor)
3

P(s;=a,5,=P)=

4\
—| 2 (ola)Bla) |- | [(cla,, XBla,,)  (7.2.26)

The corresponding correlation function is [see Eq. (7.2.17)]

gifs;=a,5=P)=

P(s, = 0., 5,= ;3) (olayBlay (d, "
P(s, = 0)P(s, = 2 (cla, XBla, )| d [ (7.2.27)
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By a straightforward generalization we can write the triplet and higher-order
correlations. For instance, the triplet correlation g, ,4(s; =0, s,=f,s5,=7) is
obtained from the corresponding triplet probability

(cIMIBYBIMIYIM™ 2l
€

- é [E <oda,~><BIa,->d,} [2 <wa,.><ma,.>d,.] {2 (odayyia) dZ"Z]
i j P

P@s,=a,5,=B,5,=7)=

d, d.
- 2(ala,.><[3|a,.)d—‘ z<ytaj)<ﬁlaj>7L (oda, Yva, )  (1.2.28)
i mx J mx

The last form on the rhs of Eq. (7.2.28) is for m — oo.
The triplet correlation is thus [compare with Eq. (7.2.20)]

P(s;=0,5,=B,5;,=7)
P(s; = 0)P(s, = B)P(s3 =)

g(S1=0!,,S2=B,s3=’Y)=

=1+[F(o, B)+ F(B, ] + F(o, BFB,v) (7.229)

where we have introduced the notation F defined by

= 0 (4 1230

{ela_ Xa

mx> mx>

We see that in order to calculate the thermodynamic properties of a long (m — <o)
one-dimensional system, all that is required is the largest eigenvalue of the corre-
sponding matrix. For the singlet distribution, we need the eigenvector that corre-
sponds to the largest eigenvalue. For the correlation functions we need, in general,
all the eigenvalues and the corresponding eigenvectors.

There is an important characteristic property of the distributions, hence of the
correlations in the infinite one-dimensional system, namely, that all the distributions
can be expressed in terms of the nn-pair distribution and the singlet distribution. As
an example we write the triplet distribution (7.2.28) as

{cAMIBXBIMIYXYIM™ *lar)
&

P(s;=d,s5,=PB,5,=7)=

m—yoo

—— (IMIBXBIMIYX0la,, XYla,, )2 (7.2.31)
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On the other hand,
P(s; =, 5,=B)P(s, =P, 53=7) _ (odMIBXBIMIYXBIM™lop(yiM™ 1)
P(s,=P) E(BIM™B)

— (aIMIBXBIMIYXela,, YXa, s, (7.2.32)
Hence we have the equality (in the limit m — o)
P(s;=0,5,=B) P(s,=B, s, =)
P(s;=B)
In terms of the corresponding correlations, Eq. (7.2.33) is transformed into
85 =0, 5, =P, 5 =) =gls; =00, 5,=B)g(s, =B, s3=v)  (7.2.34)

This is sometimes referred to as the “superposition approximation.” It is not,
however, the superposition approximation used in the theory of liquids, first
because Eq. (7.2.34) is exact (in the limit m — o), and second because the
superposition approximation [as introduced by Kirkwood (1935) and used exten-
sively in the theory of liquids] has the form

gls;=a,s,= B, §3= V=gls;=0a,s,= B)g(sz =B, 53=7)8(53=", 5, =)
(7.2.35)

P(s;=a,s5,=P,5,=7)= (7.2.33)

Using arguments similar to the above, we can easily see that the second
nearest-neighbor correlation may assume the form

P(s,=0,s;=7)
P(s; = 0)P(s3=7)

ZP(SI =0, 5y, 53 =7Y)

P(s; = 0)P(s; =7)

g, =0,5,=Y)=

Y (s, =0, 5,)P(5,)8(55 53 =7) (7.2.36)

$2

where the definition of the marginal distribution has been used in the second
equality. Here, summing over the index s,, the triplet distribution produces the pair
distribution. In the third equality we used the result (7.2.33).

We stress again that both results (7.2.34) and (7.2.36) are valid in the limit of
large m, strictly at m — oo, They are not valid for finite m, as we shall see again in the
next section. We also note that the correlations mentioned above are defined for any
events of the system and for any A. In our study of correlations that appear in binding
isotherms, we require only correlations between events of the form *site i is occupied,”
“site j is occupied,” etc., and we need only the A — 0 limits of these correlations.
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7.3. 1-D SYSTEM WITH DIRECT CORRELATIONS ONLY

The description of the two-state system, f=2, was introduced earlier in Sections
7.1 and 7.2. Here, we present some quite obvious results for systems with nn direct
interactions only. Since we discuss only a restricted group of events, we use a
simpler notation for the correlations. Thus, instead of g(s, = a, s, = ), we simply
use g,,(2) or g,,(2) to denote pair correlations (between the event “site i occupied”
and “site i + 1 occupied”). Also, we shall always refer to the A — 0 limit as the
correlation and omit specific notation for this limit.

For the pair correlations in the m — oo limit we have, as expected,

8um(2)=812(2)=S
g (2)=1for1>2

(7.3.1)

where S = exp(-BU,,). Clearly, the nn pair correlation is the direct correlation S
and there exists no long-range correlation beyond the nn.

For higher-order correlations, the particular correlation depends on m and on
whether the chain is open or closed. For instance, when m = 3

8123(3) = §? (open chain)
8123(3)= S? (closed chain)

(7.3.2)

but when m = 4
8123(3) = §? (either open or closed) (7.3.3)

All these can be read directly from the number of “bonds” between the ligands. The
situation is far more complicated when indirect correlations are operative, as we
shall see in the next section.

Figure 7.2 shows the BI for the open (a) and closed (b) systems, for g = 1 and
$=100,andm=4,7, 10.

We recall that for the open linear case m = 2, the value of A,,, for which
0A)=12is

_L
A= 5 (13.4)

This is true only when m = 2. As noted in Section 4.3, once we have m 2 3, the point
at which 6(A) = 1/2 depends, in a complicated manner, on all the correlations in the
system. It can be seen from Fig. 7.2a that the location of A, changes with m; for
instance, when m = 4, A, , = 0.03, and when m =5, A, = 0.023.
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Figure 7.2. BI and the corresponding slopes for m = 4, 7, 10 (denoted next to each curve). (a) open
and (b) closed systems. g = 1 and S = 100.

The behavior is quite different for the cyclic closed system. Here, as can be
seen from Fig. 7.2b, the location A, is common to any m and is

1
Mp= S (7.3.5)

which, for g = 1 and S = 100, is A,,, = 0.01. Note, however, that the location of
maximum slope, i.e., A,,,, for which

"W =0 (1.3.6)

is only in the neighborhood of A, = 0.01 and, as shown in Fig. 7.2b, A, , changes
with m. As mincreases, the slope at A, , increases, and for m ~ 50 it reaches a limiting
value, as can be seen in Fig. 7.3.

The different behavior of the open and closed system is due to the difference
in the pattern of correlations in the two systems; hence the average correlation
differs for the two systems with the same m.

Figure 7.4 shows g(C) for cyclic systems withm =3,4, 5,6 (g=1and § =100,
and A, = 1, hence k = 1). It is seen that in the C — 0 limit [where g(C) is determined
by the pair correlation only], the larger is m the smaller is g(C — 0). In Table 7.1
we list the pair correlations for a few m. Thus, for m = 3 we have only one pair
correlation S. For m = 4 we have four nn pair correlations, each contributing S, and
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A

Figure 7.3. The Bls as in Fig. 7.2b, but for m = 4, 6, 8, 10, 60. It is seen that the curves converge to a
limiting curve for m 2> 50.

two non-nn pair correlations, which in this approximation contribute unity to
2(C —0). In general, for the cyclic system of m sites there are m nn pair correlations.
Altogether there are m(m — 1)/2 pairs in the system. Hence the number of non-nn
pair correlations is m(m ~ 1)/2 — m = m(m — 3)/2.

For the open linear system the pattern of pair correlations is different. We have
again m(m — 1)/2 total number of pairs, but now only (m — 1) of these are nn pairs,
contributing S each, and the remaining (m - 1)(m — 2)/2 are non-nn pairs,
contributing unity to the average correlation g(C — 0); see Table 7.1.

In the C ~ oo limit, all the sites are bound; the average correlation g(C —> o)
is determined by the mth-order correlation function, which is ™ for the cyclic and
5™ for the open linear system. This is true within the pairwise additive approxi-
mation for direct interaction, and neglecting long-range correlations.

g m=3 g m=
120 = e e~ IO
----------- 26} 7~
100}----""""
af m=5_ _
80 . 37 -
6ol T T TTTTTTTTTT m= 20l 4
— - — o —— —— = - m=5 g - ee—e m=4 _ _
Wo oI ToII S )
16
20 ) m=3
i I 1 1 i
2 4 6 8 10 20 10 60 80 100
Cx10° c
a b

Figure 7.4. The average correlation g(c) for a cyclic system withm =3,4,5,6 (g =1 and S = 100):
(a) in the C — 0 limit, (b) in the C — oo limit.
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Table 7.1
Limiting Values of the Average Correlation g(C — 0) for Different Values of m, for the Closed
Cyclic and Open Linear Systems

Closed cyclic system” Open linear system®
m Nnn N”on‘ﬂn g(c d O) N’lll Nnon‘nﬂ g(c _) 0)
2 — — — 1 0 N
3 1 0 s 2 1 1425
3
2+4S8 343§
4
4 2 3 3 3 3
5+5§ 6+45
5 5 5 0 4 6 10
9465 10+5S
6 6 9 35 5 10 15
14+7S 15+ 6S
7 7 14 21 6 15 21
- - —D(m-2 _
v m MY mme3ees D= ne2)+28
2 m(m—1) 2 m
large m m m¥2 1 m m¥2 1

“N,,, is the number of nn pairs N, . is the number of non-nn pairs.

74. A SYSTEM OF m LINEARLY ARRANGED SUBUNITS

In previous chapters we developed in several places three “levels” of complex-
ity of a binding system: first, the direct-interaction model; second, the model with
indirect correlations arising from conformational changes in the entire adsorbent
molecule; and third, indirect correlations mediated through subunits.

In this section we omit the second “level” and extend the modetl of Section 7.1
to a system of m linearly arranged subunits each of which has a one-binding site.”
In order to focus on the origin of cooperativity in such a system, we assume that
the direct interaction between ligands is negligible. Hence any correlation between
ligands is necessarily indirect. This model is essentially the same as that discussed
in Sections 4.7, 5.6, and 6.3, but now the number of subunits m is not fixed.

The formalism is essentially the same as in Sections 7.1 and 7.2, but instead of
two states for each site (empty and occupied) we now have four states or four

*One can always obtain the intermediate model by letting 1 — 0. See, for example, Section 4.7.
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degrees of freedom ( f = 4), namely, empty H, empty L, occupied H, and occupied
L. The 4 x 4 matrix is

9% O V0 O VA ay Oy Qun OpVha, 0y Q)
On Ny Cf 019 Qi VA 9y CpQp NAa; Q1 Oy

A9y @y Qun Cur YA ey Qn Qg A9y Cy Cxn AQp Va9, 2y Q1
0 Vha 0y 0 Vhap 0,01, A0y Vaya 0y 0 Aqp @ Qpp

(74.1)
The corresponding vector {vl is now given by
M =10} 0%, (Mq0n)""% (Aq,0D") (7.42)
and we define the four unit vectors by [see Eq. (7.1.11)]
(e, =(HOI=(1,0,0,0), (el =(L0I=(0,1,0,0)
(e;l =(H11=(0,0, 1, 0), ey =(L11=(0,0,0, 1) (74.3)

Again, the configuration of the entire system is denoted by the m-dimensional
vector

S=(859 59, 53, ..., 5,,)

where each s; can be one of the states HO, LO, H1, or L1. The energy of each
configuration s now differs from Eq. (7.1.3). Here, we do not include ligand—-ligand
interactions, so for the open linear case we have

m
E)=) 8 yEy+d8, (B +8,U +8 yUy

L
=1

m—1

+ 38 B, yEun+ 8,8, (Ey+ @ 8 g+8,8 pEy (144)
i=1

where

8 y=98 pot Bsi,Hl andd ;=8 o+ 5s,. T (7.4.5)
Although Eq. (7.4.4) looks complicated, it is quite simple. We scan through all the
subunits: each subunit in state H contributes E;; and, if occupied, also Uy; each pair
of successive H, either empty or occupied, contributes E;,;, etc.
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Having written the energy, we can express the GPF of the system exactly as in
Section 7.1. Thus, for the open and closed systems we have

Eo =M™ Iy) (74.6)
and
E_,C =Tr(M™) (7.4.7)
For simplicity, we also introduce the notation
Oun Q12=1L
K=0.,/0,, h=gq.,/q;, K == = (7.4.8)
o=t HEL Q1 O

with Q, ;= @y, as before. We also set K = KK’ whenever the two constants appear
together. The quantity K™ may be interpreted as the equilibrium constant for the
conversion of m subunits arranged in a cycle from Lto H, i.e.,

mL=mH

K'=———=|———

[LL---L] 010,

This is true in the case of the closed system for which the number of subunits and
the number of subunit—subunit “bonds” are equal.
In terms of the constants #, K, and 1, the matrix M is written as

. [HH---H] [QHQHH]m (7.4.9)

K Vn V& Vi \xK kg
i Vg 1 ViNx¥nvg (7.4.10)
ViR VEeViVE kxR NE i
Vg helmVE x

where we have extracted the factor Q,Q;, and also changed variables so that x =
Mg, . By solving the secular equation

M-dll=0 (7.4.11)
where I is the 4 X 4 unit matrix, we obtain the four eigenvalues
d=d,=0
dy=2 (1 +x+K+hKx—\")

dy=3(1+x+K+hKc+V") (74.12)
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where

VT =V4m - DR +x)(1 + hx) + (1 + K + x + hKx)? (74.13)

Note that the largest eigenvalue is d4.*
The corresponding eigenvectors are, before normalization,

a;=(0,-\x,0,1)
= (Vhx, 0, 1,0)
, (A=V" 1 NRa-) 1 (7.4.14)
= TeE CVx B
i = A+Y 1 \/_(A+\/_)
Bx x B

where vV is given in Eq. (7.4.13) while A =K—-hKx—x-1and B=2(1 + hx)
VK1 . These should be normalized, i.e.,

a,=a;/Na; - a; (7.4.15)

before using the numerical calculations below.
If we expand the identity matrix in terms of its eigenvectors [see Eq. (7.2.9)],
then the GPFs can be expressed in the form

4 4
E.vo = z (vlai)z d;"_l and E—'C — 2 d:n (7.4.16)
i=1 =1
where d, is the ith eigenvalue of the matrix M. In the limit of a very long chain
(m — o) for which d,,,_ is the largest eigenvalue, we have

Eo— Ma, Y dr! and E—d, (7.4.17)

Thus, all one needs to compute the thermodynamic properties of the system,
including the BI, is d,,,. The factor (via,, )2 is independent of m and does not affect
the thermodynamics of the system in this limit.

For any finite m, it is more convenient to work with the closed cyclic systems.
We have seen that a linear open system of four identical subunits has two different
intrinsic binding constants (k{"), = K, K = k). Thus, in general, the sites are not
identical, neither in the weak nor in the strict sense. (Recall, however, that in the

*The reason for having only two nonzero eigenvalues is that there are only two states, L and H, that, in
this model, determine the energy of the system.
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model of Section 7.1 the sites were identical in the weak sense.) In contrast, for the
case of a closed cyclic system of m identical subunits the sites are all weakly
identical, i.e., all sites have the same (first) intrinsic binding constant given by

_oW) , Ay, 9 7.4.18
1m0 m 1% 9 (7419

These are, of course, different for different m. For instance, whenm=3 and m=4
we have

1+ kK> +n2K + hK + 20K?) 1+ 8K+ ()
k(m=3)= — — hpandk(m=4)=—— A,
1+K +nGBK+3K") 1+ K+n(-)
(7.4.19)
and, in general,
1+hK" +1(+)
kymy = K (7.4.20)
1+K +n(-)

where (-) is a complicated expression involving X, &, and 1.
Clearly, when 1 = 1 the sites become independent and we have, for any m,

1+hK
1+K

(7.4.21)

1

On the other hand, when 1} =0 all the subunits act concertedly, i.e., the whole system
changes between L and H states; the corresponding intrinsic binding constants
become

1+hK" (1.4.22)
k(m,m=0)= —m '
o 1+K

The calculation of the correlation functions is essentially the same as in Section
7.2, except for the additional complexity due to the existence of more states. Thus,
the singlet distribution, i.e., the probability of finding any specific single site
occupied, is”

P(site 1 occupied) = P(s; = L1 or s, = H1)

=Y P(sp,. .., sw@ 1148, ) (14.23)
s

"In probability notation, this would be written as P[(s; = L1) u (s1 = H1].
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Following similar steps, as in Section 7.2, we obtain

4
P(s,=L1 ors, = Hl) = % Y (Lllay? d* + (Hllay ™| (7.424)

=1

Note that the sum over i is over all four states of a single subunit. The unit vectors
(L1l and (H1I are constants. When m — oo, Eq. (7.4.24) reduce to

P(1)= P(s, = L1 ors, = H1) ={Llla,)* + {Hlla,)* = {e,la,y* + {ejla,)?  (7.4.25)

This represents the sum of the probabilities of finding any specific site, say i = 1,
occupied and in either an L or H conformational state, respectively. Again, we note
that P(1) is simply the BI per site. Note that the expression for P(1) in general (any
m) involves both the eigenvalues and eigenvectors, but in the m — oo limit only the
eigenvector la,) corresponding to the largest eigenvalue is needed.

By employing a similar procedure as in Section 7.2, we can compute all the
distribution functions and the corresponding correlation functions of this system.
As an example we derive here the expression for the 1, / pair distribution, and the
corresponding pair correlation. The procedure is the same as in Section 7.2, with
the additional complexity that we now have two occupied states rather than one as
in Section 7.2. [On the other hand, expressions (7.2.24) and (7.2.25) are more
general in the sense that they apply to any state o and . Here, we are interested in
specific states, i.e., states such as “site i is occupied,” for calculating cooperativi-
ties.] The probability of finding site 1 occupied and site [ occupied is*

P, (2)=P[(s;=L1 ors; =Hl) and(s;= L1 ors;= H1)]
= zs“ Plsys oo s 5,08, 11 +8; 18, 1y + 831 1

=é 3 (oM IBXBIMor)
ap

-y é [Z (alai)(ﬁlai)df‘l] [z (Blaj)((xlaj)d]'."'”l:l
ap i j

L1
mo e 2[;2 (oda)XBlay (j—n:x] (oda,, XBla,,) (7.4.26)

~

"In probability notation this would be written as P[((s; = L1) L (s1 = H1)) N ((si= L1) v (sy = H1))].
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This is the same as Eq. (7.2.26), except for the additional summation over o, B
which runs over the occupied states, i.e., L1 and H1. The sum over i is, in general,
over all fdegrees of freedom, but since in this particular model d, = d, = 0 the sum
over i reduces to i = 3, 4.

The 1, [ pair correlation in the m — co limit is

Ply,(2)
[P

Zop (ollay)BlasXala,)XPlay) (% JH (7.4.27)
4

g 1,1(2) =

Zop (cla,yX(Bla,y

which is the generalization of Eq. (7.2.27) (d, =d,,,, la,) =la,,)). Note that in
calculating the correlation functions, as required in the binding isotherm, we must
take the A — 0 limit of g, ,(2).

The general form of 81 /2) is quite complicated. We shall present some
numerical results of g, (2) as a function of parameters h, K, and 7. Here, it is
instructive to present the formal form of the pair correlations (in the limits m — o
and A — 0) for the case K = 1. The first few pair correlations are

_ _,_On-D(h-1

8 =8122)=1 (\/1T+1)[h+1j
o m=D*(h-1

g3(2)=1 +—( N (———h n 1j (7.4.28)

_ (\l— 1)3

and, in general,

(O =D (- 1)?
M+ D hr+1)

8, )=1+1" (7.4.29)
It is easy to see from Eq. (7.4.29) that “either A = 1 or y = 1” is a necessary and
sufficient condition for no correlations, of any order. The general necessary and
sufficient condition for no correlation is “K =0, or A= 1, or N = 1.” In the above
example we have written the correlations for the case K= 1. The case K = 0 may
be checked directly from the definition of the correlation function expressed in
terms of the canonical PE

We have already seen in Section 5.7 that the extent of the pair correlation
depends on the number of subunit—subunit boundaries across which information
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must be transformed. If we have, say, four different subunits, then the 1,4 pair
correlation will have the form (for 2 # 1 and K # 0)

3
g.=1+y[[ -V D (7.4.30)

=1
Thus, we have a factor of (1 — Vn ;41 ) for each boundary. If one of the 1y; ,, , is unity,
then the whole line of communication between sites 1 and 4 will become short and
814 (2) = 1. When the subunits are identical, we have the factor (1 — \/n_ ¥ and, in
general, for any / we have the factor (1 —\/ﬁ_ Y1, as in Eq. (7.4.29). The most
interesting aspect of the dependence on 1 is that it can also change the sign of the
cooperativity. We recall that for a system of identical subunits, K and  determine
only the size of the correlation but 1 determines also its sign. When 1 < 1, then
a- \/11_)"1 > 0 and the correlation is always positive, i.e., g, (2) > 1. On the other
hand, for n > 1 the factor (1 — ¥ ! changes sign, according to whether / is even
or odd. The reason, as we saw in Section 4.7, is that for each crossing of the
boundary the extent of conformational change induced by the ligand changes sign,
hence also the sign of correlation” is changed. We shall present below a numerical
demonstration of this effect.

The dependence of the higher-order correlations on A, K, and 1 is more
complicated. One example has already been examined in Section 5.5. We shall not
examine this aspect here.

We turn now to the finite open and closed chain and compare the pair
correlations obtained in the different systems. First, we note that in the m — o limit
all the sites become identical in the weak sense, i.e., there is only one intrinsic
binding constant, but different pair (and higher-order) correlations as shown in Eq.
(7.4.28). It should be noted, however, that owing to the translational invariance of
the infinite system there is only one nn pair correlation, only one second nn pair
correlation, etc. In other words, it does not matter where in the chain we choose the
pair of nn neighbors, or the second nn neighbors, etc. This translational invariance
is lost in the finite open system.

Figure 7.5 shows how the nn pair correlation g,,(2) changes with m. Starting
with m = 6 we see that g,,(2) almost reaches its “limiting” value at m = 10. The
exact limiting value for the parameters 4 = 0.01, K = 4, and 1 = 0.1 is 1.108.

In Fig. 7.6 we show diagrammatically the (m — o limit) pair correlations g,
forl=2,3,4,5, 6, starting with the value g, ,(2) = 1.108 for the nearest neighbors.
We see how the correlation quickly decays to unity at / ~ 6. The particular rate of
decay for the parameters chosen here is

81.42) = 1+1.73 exp(-1.39]) (7.431)

*As usual, changing the “sign” of the correlation means changing from smaller to larger than unity.
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2
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8 10 12 14 16 18 20
m

Figure 7.5. The dependence of g,,(2) on m for a system of m subunits with parameters h = 0.01,
K=4,andn=0.1.

In the diagram of Fig. 7.7 we show all possible pair correlations for the finite
open linear case with m = 6. The parameters are still the same: 4 = 0.01, K=4,and
1 =0.1. Note that there are three different nn pair correlations: g, , =85 ¢, 8,3 = 845>
and g, 4. There are two different second-nn pair correlations, g, 5 and g, 4 (only the
different ones are indicated in the diagram). There are two third-nn pair correlations,
8,4 and g, 5. There is one fourth-nn pair correlation g, 5 and one sixth-nn pair
correlation 816 It should also be noted that, as in the infinite chain (m — o) case,
the correlations decay with distance .

A similar diagram for the cyclic case of m = 6 is shown in Fig. 7.8. Here, owing
to the symmetry of the system, there is only one nn pair correlation, one second-nn
pair correlation, etc. Note, however, that the sites are still identical only in the weak
sense (i.e., there is one intrinsic binding constant k,). The values of the different

1 2 3 4 5 6 7 8 9
eee @ ® ® [ J [ J ® ® [ [ PPN
812 e
i3 /o
14 1.0067
Bi5 1.002 -
BLe 1.0004

Figure 7.6. A section of an infinite linear system of subunits. We selected an arbitrary unit, denoted 1,
and determined the pair correlations g, (2) for/=2,3, 4,5, 6. The parameters are the same as inFig.7.5.
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1 2 3 4 5 6
o ® [ ® [ J @
£=2 "
7.95 488 408 488 1795
| o —
£=3 { 4.06
3.53
/=4 { T 2.99
3.08
=5 |
2.63
£=6
2.28

Figure 7.7. All correlation functions for an open linear system with m = 6. The parameters are as in
Fig. 7.5. For g,5(2), all correlations are shown; for g, ,(2), I > 2, only representative correlations are
shown.

correlations in the cyclic case differ from the corresponding values in the open linear
case (compare with Fig. 7.6). The reason is twofold: First, although the parameters
h, K, and 1 used in the calculations are the same, the response of the system to
binding is different since the equilibrium constant for conformational changes is
different, mainly because there are six subunit—subunit interactions in the cyclic
case but only five in the open linear case. (Of course, for larger m these differences
will become smaller and smaller.) Second, and perhaps a more interesting effect, is
that there is only one path of transmitting information in the open linear case but
two in the cyclic case. For instance, the pair correlation g, , in the open linear case
depends on the subunit—subunit boundary between 1 and 2, more specifically on

Figure 7.8. 'The three different pair correlations g, ,(2), g, 5(2), and g; ,(2) for the cyclic system with
m = 6. The parameters are the same as in Fig. 7.5.
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the parameter 1;,. On the other hand, g, , in the cyclic system depends bothonm,,
and on the “indirect” route of boundaries 1, ¢, N 5, N5 4- N 3, a0d N3 ,. (In this model
all M values are equal, but we have added the subscript to indicate to which boundary
the relevant 1 pertains.) To clarify this effect, suppose that all the subunits are
different, hence also all m;;,, are different. In the open linear case, the pair
correlation, say g, 3, will be unity when either 1, , or 1, 5 is unity. The communi-
cation between 1,3 becomes short if only one of the boundaries 1,2 or 2,3 cannot
transmit information (in the sense of having 1 = 1). This is not so for g, 5 in the
cyclic system: if either 1, , or M, ; is unity, there is still communication along the
alternative route (from 1 = 6 — 5 — 4 — 3). Since all the correlations decay with
1, it is clear that as m becomes larger the “longer” route will contribute less and less
to the correlation and eventually, for m — oo, only one route, the “shorter” route,
will be effective.

Finally, we examine the “distance” dependence of the pair correlation
function. As we shall see below the distance dependence of g, (2) is not determined
by the real distance between the ligands (as is, indeed, the case for the direct
correlation discussed in Section 7.3), but only on the number I of subunit—
subunit boundaries.

We recall that the parameters K and 4 can change the magnitude of the
correlation but not its sign (i.e., whether g > 1 or g < 1; note, however, that for a
system of different subunits the values of A for the different sites can determine the
sign of the correlation). When M < 1, all the pair correlations g, (2) are larger than
unity and they decay to unity as / increases. Figure 7.9 shows the dependence of
g,/ 2)onlforn=0.1,n= V0.1, and 1 =0. Clearly, as 1 becomes smaller the range
of the pair correlation increases—eventually, for = 0, there is a total transmission

WOR X
1.8
e o
1.4
1.2
0.1
S 10 15 20 £

Figure 7.9. The dependence of the pair correlation function g, (2) on [ for three different values of 1.
(In these curves, K = 1 and & = 0.01.) Note the monotonic behavior whenn < 1.
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n=5 n=10 n=100
gl'{(f) 8, 4@ 8,02
1.2 1.5 1.5
1
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0.2

5 10 15 20 Z 5 10 15 ZOK 5 10 15 Z

a b ¢

Figure 7.10. The same as Fig. 7.9, but for (a) n = 5, (b) n = 10, and (c) i = 100. Note the oscillatory
behavior when 1 > 1. Compare with Fig. 7.9.

of information, i.e., all subunits act concertedly, namely, binding on site i = 1 affects
equally the probability of binding on any other i # 1.

Perhaps the most interesting long-range behavior of the pair correlation
& /2) is whenn > 1. For even /, i.e., an odd number of boundaries to cross, the
value of g, (2) is smaller than unity, namely, negative cooperativity. For odd values
of /, i.e., an even number of boundaries, the cooperativity is positive. Figure 7.10
shows how g, (2) oscillates between values above and below unity. These oscilla-
tions decay rapidly when 1 is small (but still 1} > 1); however, when 1 is very large
we observe a very long-range correlation, and ultimately for 11 — oo the range
becomes infinite.

The interpretation of this behavior is already contained in Section 4.7, where
we examined the relation between indirect correlations and structural changes
induced in the subunit. We have seen that for 1} < 1, the structural change induced
by the ligand is transmitted with the same sign, but with diminishing force each
time we cross a boundary. For instance, if d(Ll) is the conformational change induced
in the first subunit (on which the ligand binds), then the conformational change
induced in every other subunit in the system will have the same sign as d(Ll), but a
diminishing value as (1 - \/ﬁ— Y"1 In the case M > 1, it was seen in Section 4.7 that
each time we cross a boundary the induced conformational change is in a different
direction. Hence, also the cooperativity changes its sign each time we cross a
boundary between two subunits.



Regulatory Enzymes

8.1. INTRODUCTION AND HISTORICAL PERSPECTIVE

The history of regulatory enzymes has its roots in the history of enzymes in general.
The theoretical framework of how enzymes work was founded by Emil Fischer in
1894. Fischer discovered that some enzymes can distinguish between two closely
related substrates, such as two stereotsomeric sugars. On this basis he formulated
the “lock and key” model which hypothesizes that enzymes have specific sites that
can accommodate ligands which have a complementary structure. The lock and key
model is based on the existence of a geometrical fit between the substrate (the key)
and the binding site (the lock); see Fig. 8.1a. This model has undergone several
modifications and generalizations. The first modification follows from the recog-
nition that a geometrical fit does not necessarily imply the strongest affinity between
the enzyme and the ligand. The more important quantity is the binding free energy.
To achieve the largest (in absolute magnitude) binding free energy, one does not
need to have a geometrical fit. A complementary pattern of functional groups (such
as charged, hydrogen-bonding, and hydrophobic groups) can produce a strong
affinity between the ligand and the site even without a geometrical complementarity
(Fig. 8.1b). In fact, one can show that solvent effects can produce strong affinity
even when there is neither a geometrical nor a complementary pattern fit (Fig. 8.1c).
In this case, the possibility of the formation of hydrogen-bonded bridges by
solvent molecules is the main driving force for selecting the binding site (see
also Chapter 9).

The second generalization, developed mainly by Koshland, is based on the
recognition that enzymes (like any protein) have a multitude of conformations at
equilibrium. Since the ligand is likely to interact differently with the various
conformations, one can expect a shift in the distribution of conformations induced
by the binding process. This is the induced fit model. It states that the best fit (by
either geometrical or by a complementary pattern) does not necessarily exist before

255
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Figure 8.1. Lock and key model: (a) geometrical fit, (b) complementary pattern of functional groups,
(c) site preference due to the solvent effect. The ligand L. may better fit site A, but it binds preferentially
to site B due to the solvent effect.

the binding, but can be produced after the binding has modified the conformational
distribution. Figure 8.2 depicts a schematic process of the induced fit model.

The essential idea underlying the theory of regulatory enzymes, as developed
in two classical papers by Monod, Changeux, and Jacob (MCJ) (1963) and by
Monod, Wyman, and Changeux (MWC) (1965), is the same as the induced fit
model. However, the “purpose” of the induced fit is different in the two theories.
In the original theory, the induced fit is presumed to maximize the binding affinity
between the ligand and the site on which it binds. In the theory of regulatory
enzymes, the induced conformational change is presumed to change the affinity of
the site to the substrate as well as the affinity of a different (allosteric) site to a
different (regulatory) ligand.”

It was pointed out in Section 6.8 that the term “allosteric” as coined by MCJ
and MWC has been used with three different meanings. In Chapter 6 we discussed
the allosteric effect in hemoglobin (Hb). There, the two allosteric sites were
identical; this has been referred to as the homotropic effect. When the two sites bind
different ligands, the heterotropic effect, the induced fit by one ligand can either
enhance or diminish the binding affinity of the second ligand (see the example in
Section 4.5).

*The possibility that the induced fit model might also be used to explain the working mechanism of
regulatory enzymes was already mentioned by Koshland himself (1962).
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AV T

P P

Figure 8.2. Induced fit model. The ligand L approaching the site on P will cause a change in P so that
the fit between L and P improves.

Today, it is believed that many enzymes are regulated by the allosteric mecha-
nism. Figure 8.3 shows a schematic illustration of the change in the activity of an
enzyme with respect to a substrate A upon the addition of a different ligand R. The
term “activity” of the enzyme is essentially a kinetic property, e.g., the rate of
production of the product of the enzymatic reaction. We shall see in Section 8.2 that
one can grasp the essence of the regulatory mechanism by studying an equilibrium
system. For the illustration in Fig. 8.3 we assume that activity is simply the rate of
the reaction (either the rate of disappearance of the substrate A, or the rate of
appearance of the product p). Curve a in Fig. 8.3 shows that the activity of the
enzyme drops sharply near Cp = 0. The second curve, b, shows that initially the
activity of the enzyme changes slowly upon addition of R, but at some concentration
around Cp, the activity drops sharply, until at some higher concentration Cy +  the
enzyme becomes essentially inactive.

In the following sections we shall develop a few molecular models that
exhibit similar behavior regarding the drop in “activity” of the enzyme upon the
addition of a ligand R that differs from substrate A. The terms “activity” or
“inactivity” of the enzymes should not be understood as sharply defined. Rather,
we assume that the enzyme exists in at least two conformations denoted by H
and L. (In the biochemical literature these are denoted by R, for relaxed, and 7,
for tensed.) One conformation is more active than the other. Hence, at any
equilibrium state the “activity” of the enzyme is an average of the “activities”
of the two conformations. Any ligand (or, in general, any change in the
environment of the enzyme, see Chapter 9) that binds with different affinities
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ACTIVITY

_— INACTIVE

0 Ci-5 Cp Ci+d Cr

Figure 8.3. Schematic illustration of the change in the activity of an enzyme upon the addition of an
effector R. (a) The sharp drop in activity occurs near C = 0. (b) The activity is initially unchanged upon
addition of R, it drops sharply near a finite concentration, between C; —8and C; +38.

to the two conformations will change their relative amounts and hence affect also
the average “activity” of the enzyme."

8.2. THE CONNECTION BETWEEN THE KINETIC EQUATION AND
THE BINDING ISOTHERM

The basic kinetic scheme of an enzymatic reaction is
K &
E+A=—EA —E+p 8.2.1)

ky

where E, A, and p are the enzyme, the substrate and the product, respectively; EA
is the intermediary complex which, in our language, may be referred to as an
adsorbent molecule (E), having a bound ligand (A) at the (active) site denoted by

A. The various rate constants in Eq. (8.2.1) are primed to distinguish them from the
intrinsic binding constants.

TNowadays, it is a well-established fact that the effector R is not isosteric but allosteric to the substrate
A. Originally, this conclusion was based on the finding that the enzyme can be desensitized, i.e., one
can add substances that affect the regulatory site but not the activity of the enzyme with respect to the
substrate.
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In the steady-state approximation, the rate of formation of EA is equal to the
rate of its decomposition, hence we have the equality

K,CpC\y = K/Cyp + K,Cia (82.2)

If C; denotes the total enzyme concentration, then the fractional saturation at site
Ais

0. -CEa_ Cea (8.2.3)
AT Cr Cp+Cyy

If we set k, = k{/(k; + k), we can rewrite Eq. (8.2.3), using Eq. (8.2.2) in the form

kaCa Ca
AT 1+kCy K, +C,

(8.2.4)

where the first form on the rhs of Eq. (8.2.4) is the familiar Langmuir BI, with k,
the binding constant of A to site A, while the second form is the more conventional
form, where K,, = k! is the Michaelis-Menten constant.

The rate of formation of the product p is

c, ,
v=—P =k Cp, =KC,0, (8.2.5)

Since k;C,is independent of C,,, Eq. (8.2.5) shows that the rate of formation of the
product is simply proportional to 6,, i.e., the fractional saturation at the active site
A.Since 8, <1, or Cz, < C, the quantity k&5C, may be referred to as the maximal
rate and is denoted by v/,

Equation (8.2.5) establishes the connection between the rate of the enzymatic
reaction within the steady-state approximation, and the equilibrium binding iso-
therm.

Suppose now that the enzyme has another site, denoted by R, which is at a
different location from the active site. The site R binds a different ligand, denoted
by R, which will be referred to as an effector or a regulator. Clearly, the presence
of R may affect all the rate constants in Eq. (8.2.1), hence k,; however, the general
form of Eq. (8.2.5) will remain unchanged. Therefore, Eq. (8.2.5) is rewritten in
the form

kA(CR)CA

v=y, o RA 8.2.6
M T 4 £, (C)C (8:20)
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where we emphasize the dependence of k, on the concentration of the regulator,
Cg-

As an extreme example, suppose that R binds to the active site A itself. Hence,
any complex formed by E and R removes some of the enzymes from our consid-
eration in Eq. (8.2.1). The total enzyme concentration is now

Cr=Cg+Cpy + Gy 8.2.7)
so Eq. (8.2.3) is replaced by
o = Ea___ Cm (8.2.8)
AT Cr Cg+Cgy+ Cpg

The form of Eq. (8.2.5) is retained with the modified C; and 8, of Egs. (8.2.7) and
(8.2.8). If we substitute

CEA CER
TG M aa 629

in Eq. (8.2.8) then the rate of formation of the product is

, k,C , ky(Cp)C
V=k2CT$= 4 T#_é._ (8.2.10)
1+k,C, +kpCpq 1+k,(CR)Cy
where the explicit form of the effective R-dependent constant k, (Cy) is
ky(CR) =T 8.2.11
AR T T e @.2.11)

Clearly, when Cp — 0, k,(Cg) — k4 and we recover Eq. (8.2.4). In the subsequent
sections we shall examine a few other examples where the effective constant
depends on the concentration of the effector, or the regulator R. In this section
we have made a distinction between the notations for the sites, say A or R,
and for the corresponding names of the ligand, A or R. In the following sections
we shall maintain this distinction, except when the letter A or R appears as a
subscript.
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8.3. THE REGULATORY CURVE AND THE CORRESPONDING
UTILITY FUNCTION

In all the examples discussed in this and subsequent sections, we shall construct
a BI which depends on the two concentrations C, and C,, i.e., we shall examine
the function 6,(C,, Cg). Note that this is always the BI of the substrate A (as
indicated by the subscript A in 6,). This function depends on both C, and C,. We
shall always require that when C, — 0, 0 ), reduces to the BI of A, in the absence
of the effector R.

When R is present, we expect that the entire BI of A will change. The extent
of this change will depend on C,. We shall examine, in particular, the rate of change
of 0, as a function of Cp, along aline of fixed C,. The resulting curve will be referred
to as the regulatory curve. The choice of the fixed value of C,, although arbitrary,
is made as follows.

We first choose an arbitrary value of 0, near the saturation value 9, = 1, say
0, = 0.8. We may loosely say that whenever 0, > 0.8, the enzyme is “fully active.”
Similarly, when 0, falls below a certain value, say 0, = 0.2, we shall say that the
enzyme is “fully inactive.” Starting with the BI of A in the absence of R, i.e.,
0,(C,, Cx=0), and choosing the value 6, = 0.8 determines the concentration Cj;,
which is the solution of the equation

6 =0,(C,, Cr=0)=0.8 ®83.1)

We next keep C,, fixed and follow the variation in 8, as a function of C. This defines
a new function

Rg(Cg)=6,(C}, Cp) (8.3.2)

which we call the regulatory curve.

Figure 8.4 demonstrates the effect of adding an effector R on the Bl of A. When
Rg(Cg) > Rg(0)=8),, we say that R is an activator. In this case, addition of R
causes 6, to increase, hence the rate of production, Eq. (8.2.5), increases. When
Rg(Cp) < Rg(0), we say that R is an inhibitor, i.e., 0 ), increases, hence the rate of
production of p decreases. Both these effects are demonstrated in Fig. 8.4.

The special case of interest in regulatory enzymes is when the product p itself
is the effector, i.e., p itself binds to the regulatory, or the allosteric, site R. In this
case, Cy is identified with Cp and we have the differential equation

aC
v= —5}3 =1,,04(C,, Cp) (8.3.3)

The qualitative behavior of this equation is simple. First, suppose that p is an
activator. If, after the steady state has been established, Cp fluctuates upward, then
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8 10
* C

Ci A

Figure 8.4. Schematic illustration of the effect of adding an effector. Curve a (bold line) is the BI of

the enzyme in the absence of an effector. We choose the arbitrary value 6, = 0.8, corresponding to the

concentration Cy. We follow the variation in 0, along the vertical line at C},. The addition of an activator
R shifts the BI upward (thin lines). The addition of an inhibitor shifts the BIs downward (dashed lines).

0, will increase and the rate of production of p will increase, which again causes
an increase in 0,, followed by an increase in the rate, and so on. The opposite
behavior will occur when C, fluctuates downward.

The more interesting case is when p is an inhibitor. In this case, a different
behavior is expected. An upward fluctuation in C_ will cause a drop in the fractional
occupancy of the site A, i.e., 8, will decrease, hence the rate of production of p will
decrease. Similarly, adownward fluctuationin C » will increase 6 ., hence increasing
the rate of production. Thus, in both cases any fluctuation in C, will be restored by
this feedback mechanism. The net effect is that the level of concentration of p will
be kept nearly fixed. The actual magnitude of the variation in C, will depend on
how effective is the effector in changing 0,. We shall examine a few examples of
the regulatory curve Rg(Cy) in the following sections. The sharper the transition
between an active enzyme (say, 6, > 0.8) to an inactive enzyme (say, 0, < 0.2), the
more precise will be the regulation of the production of p, i.e., the narrower the
range of variations in C,,.

This qualitative description of the effect of an inhibitor on the BI of A, hence
the rate of production of p, leads us to define the utility function for the regulatory
enzyme. The idea is essentially the same as that introduced in connection with
hemoglobin (Section 6.8 and Appendix K).

In the case of hemoglobin, we started with a given pressure difference P, — P,
(at the loading and unloading terminals). The utility function was defined as the
efficiency of transporting oxygen between these two limiting pressures, i.e., 8(P,) —
O(P)). One could also ask the inverse question: Given two limits, loaded 6, and
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unloaded 0, of the adsorbent molecule, what is the minimal pressure difference
under which the transporting system can operate?

Similarly, in the regulatory enzyme one may define the utility function in two
equivalent ways. One can first fix the limits of activity of the enzyme, say 0, , =
0.8 and 6, ; = 0.2, for the active and inactive enzyme, and ask for the efficiency of
regulation. More precisely, given the difference 6,,—0,, what is the minimal
variation allowed for the concentration of the end product? Alternatively, suppose
we are required to keep the concentration of product p (which is the same as the
effector R) within given limits, say C — 8 < Cp < Cy + 8 (i.e., for fixed values of
C; and 8). The question is: what will be the maximal limits of variation in the
regulatory curve Rg(Cp) for a fixed interval about Cz? In the next few sections we
shall examine the relation between the efficiency of maintaining a sharp concen-
tration of a product and the form of the regulatory curve.

8.4. THE COMPETITIVE REGULATION

The simplest case of regulation is when A and R compete for the same site A
(Fig. 8.5). This case was discussed earlier in Section 2.5. The GPF of the system is

E=0(0)+ QAL + Q(R)A, (8.4.1)

and the binding isotherm for A is

_ odlng _ kACA

- = (8.4.2)
oA, 1+k,C,+kpCp

where k, = g, Ay, and kg = gpAge.

% %

Figure 8.5. Competitive binding of two ligands A and R on the same site A. The two ligands bind with
different affinities to the site A.
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We define C, by the equation

kaCy
gi=—A A __03 8.43)
4 14k, C

Solving Eq. (8.4.3) for C, = 4/k, and substituting in Eq. (8.4.2), we obtain the
regulator curve

4

Rg(CR)=0,(C}, Cp)= 5+—kRCR

(8.4.4)

Clearly, the regulator curve in this case is a hyperbola, which can be transformed
into a Langmuir-type curve by

0.8k, Cp

(8.4.5)
5+ kpCq

0.8 — Rg(Cp) =

Since kp 20, the regulatory function is a monotonically decreasing function of
Cp i.e., the effector acts as an inhibitor. Figure 8.6 shows a series of BI, 6,, for
different values of C, and the corresponding regulatory curve. Note the sharp initial
drop of Rg(Cy) at Cy = 0.

8.5. A SIMPLE ALLOSTERIC REGULATION
We consider here the case where the absorbent molecule (the enzyme) has one

active site A for binding the substrate A, and one regulator site R for the effector R
(Figure 8.7). We assume that the two sites A and R are far apart, so that direct

0,1 Rgo.s
0
0.8f ~ - oo 0.6
0.6
0.4
0.4
) 0.2
2 .
0.2 2,
~N
. 4
1z 3 4_ 55 1 2z 3 a4 s
G G Cr
a b

Figure 8.6. (a) Demonstration of the effect of a competitive effector R on the BI of A. The value of
C,, (corresponding to 6} = 0.8 on the Bl of A) is C, =4. (b) The regulatory curve Rg(Cy) is the function
QA(C:, Cp), i.e., the change in 8, along the vertical line at C;.
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A
A

Figure 8.7. Schematic illustration of an enzyme with a catalytic site for binding A and a regulatory

(allosteric) site for binding R.

interaction between the ligands A and R may be neglected. To obtain indirect
correlation, we assume the two-conformational model, as in Section 4.5. The GPF
of the system is

&= 000, 0)+ Q(4, 01, + Q(0, R + Q(A, A Ay (8.5.1)

where

00,00=0,+ 0, 0Q@A,0)=0,q;, + Crdya

8.5.2)
Q0O,R)= Ozt Coldur OA, R)= Q1 adir+ QHqHAqHR
Note that we did not include any direct correlation in Q(A, R). Defining
04,0 90, R) 94, R)O(0, 0) 8.5.3)
k,C, = Ay k,Cp= Mgy Vyp=— =
ATAT 00,00 AR 00,00 T AT 04, 0)0(0.R)
we can express the BI for the substrate A as
k,C, +k,kpy, oCiC
0,(C,. Cy) = ACA T KARRY ARV AR 8.5.4)
1+k,Cy + kgCpr + k kg, nCaCr
The regulatory curve is derived by again solving the equation
0,=0,(C,,00=038 8.5.5)
to obtain C},. The regulatory curve is then
41 + kpy, 2Cr)
Reg(Cp) = e L (8.5.6)

5+ 4kpCp + dkpy, fCr
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where

Ky = D= 1)
Yar= 14 T K1 + King) @37

Here K, h,, and h, are defined as usual [see Eq. (8.5.9) below]. We see that if (b, — 1)
and (h, — 1) have the same sign, y,, > 1, and we have positive cooperativity and
RgCy) 2 0.8 for any Cg [Rg(0) = 0.8]. In this case R is an activator for the site A,
and Rg(Cp) increases monotonically with Cp.

When (h, — 1) and (hg — 1) have different signs, y,, < 1, and we have negative
cooperativity between A and R. In this case R is an inhibitor to the site A. We have
defined the fully active enzyme whenever 8, > 0.8. Similarly, we may choose a
lower bound on 6,, say 0.2, to define the inactive enzyme. In order to have an
efficient regulation we require that as Cyincreases, Rg falls below ~0.2. The limiting
values of Rg are

Rg(Cx=0)=08, Rg(Cp=c=)=~ i AyR (8.5.8)
AR

Thus, in order to fall below the lower bound of 0.2, y,, must be at most 0.25. We
demonstrate in Fig. 8.8 the behavior of a system with y,, above and below this

a1 Xg=0 Rg.
: 0.8
a 0.6
0.4
0.2
0.5 1 1.5 2 2.5 3

XR
Rg .
0.8
b 0.6
0.4
0.2

0.5 1 1.5 2 2.5 3

XR

Figure 8.8. BIs and the regulatory curve for the model of Section 8.5. The parameters are (a) K= 1,
hy = 0.1, hy = 10 (small negative cooperativity); (b) K = 1, hy = 0.01, hg = 100 (large negative
cooperativity). Both of the regulatory curves are hyperbolic. They differ in the limiting value of Rg when
Cpr — = [Eq. (8.5.8)]: Rg(Cp — ) = 0.6 and Rg(Cy — =) = 0.13, respectively. In both (a) and (b) the
curves are drawn for X, =0,0.1, ..., 1.0.
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value. The curves are drawn as a function of the variables X, = ¢, ,A, =k;,C, and
Xz = g, ghg = k;zCg. Both 6(C,, C,) and Rg(Cy) are expressed in terms of the
molecular variables

= HA ZHR K=

h _9na h _9ur Oy
A R qir 0; 8.5.9)

qlA’

Figure 8.8 shows the corresponding regulatory curves for (a) K=1,h,=0.1,
hg=10 and (b) K = 1, h, = 0.01, Az = 100. In both cases y,, < 1, i.e., negative
cooperativity between A and R (in other words A favors the L form while R favors
the H form). In both cases the regulatory curves (8.5.6) are hyperbolic. (This is true
also when y, > 1, i.e., when there is positive cooperativity.) In case (a) the negative
cooperativity is relatively small, y, . = 0.33; the value of Rg drops from 0.8 to about
0.6. This can hardly be considered as an effective regulation. On the other hand, in
the second case (b) there is a strong negative cooperativity, y,, = 0.04, and the
limiting value of Rg is about 0.13, in which case the value of 6,(X}, X;) changes
from a fully active enzyme, 8, = 0.8, to a very inactive enzyme at 8, < 0.2. In both
cases the regulation is achieved near X, ~ 0, not at any arbitrarily chosen value of
Xp (or Cp). All the binding isotherms 8, are drawn for ten values of X =0, 0.1, 0.2,
..., 1. Inboth cases the main drop in 6, is at X ~ 0, but the rate at which 6, drops
is different in the two cases. Thus, in spite of the fact that the BI is cooperative
(either positive or negative), the regulatory curve is essentially an inverted Lang-
muir type, i.e., a hyperbolic curve. In order to obtain an inverted S-shaped regulator
curve, we need at least two regulatory sites. This is examined in the next section.

8.6. ONE ACTIVE AND TWO REGULATORY SITES

We extend the model of the previous section. Instead of one regulatory site
we now have two sites, say R, and R, which are identical and bind the effector R
(Fig. 8.9). We still have one active site A, hence in the absence of the effector the
binding isotherm 8,(C,, Cp = 0) is a simple Langmuir curve.

The GPF for this system is

E=0(0,0,0)+ Q(A, 0, 0)A, +20(0, R, 0)A, + Q(0, R, R)A%
+20(A, R, OA Ag + O(A, R, L AL (8.6.1)

The canonical PFs, Q, are expressed in terms of the molecular quantities in the
usual manner. For instance, Q(A, R, 0) is given by

QA R, 0)= 0914918+ Qedradnr (8.6.2)
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Figure 8.9. An enzyme with one catalytic site for A and two regulatory (allosteric) sites for R.

The intrinsic binding constants and the correlation functions are defined by

_Q(A,0,0) _Q(0,R,0)
AVAT Q(O, O, O)XA’ kRCR - Q(O, 0, O)}'R

_ QA R, 0)0(0,0,0) _ Q(0,R, R)Q(0, 0,0)

-  yep= 8.6.3
YAR=04,0,000(0.R,0) “®" " [0, R, O ©.63

_ O, R, R)Q(0, 0, 0)°
O(A, 0, 0)Q(0, R, 0)*

Here, we have three different correlations. In terms of these correlations the BI of
Ais
kyCp + 2kskpy 4k CsCr + kY4 rCaCh

0, = (8.6.4)
A1+ k,Cy + 2k Cr + K2 YprC3 + 2k ikigy s kC4Cr + kKoY arnCaCo
The corresponding regulatory curve is
Re(Coy= 4 + 8kpy zCr + 4k5y e Co 865)
Fo5+ 2UegCr + Kz yprCh + 8kgyagCr + 4k12€yARRC12?
the limiting values of which are
4y
Rg(C,=0)=0.8 and Rg(Cp=c0)= — "% _ (8.6.6)
Yrr T 4V arr
The limiting slope and the limiting curvature at Cy = 0 are
oR
Bl =032k - 1) (8.6.7)
aCy
C=0
and
9°Rg

=1.024 K3[0.3125 (¥4 gz~ Yrg) — Yar+ 0.75 y4p +0.25] (8.6.8)
CF0

ac
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Figure 8.10. The BIs and the regulatory curve for the model discussed in Section 8.6. Note the inverted
S-shaped regulatory curve.

Since the two regulatory sites are identical y,, must be larger than unity (see Section
4.5). Therefore, in order to have an inverted S-shaped regulatory curve, the curve
must start with a (negative) slope close to zero, hence y,, < 1, and a negative
curvature at Cp = 0, i.e., Y,z < < Vg Therefore, if we choose a binding system
with y,, <1 and such that 16y, . — yg. <0, we can guarantee that in the Cp — o
limit, Rg will fall below GA(C:;, Cp =) <0.2. Of course, in this model we cannot
choose y, , Ypr» and y,pp independently. The independent variables are h,, h, and
K. For a choice of K=107%, & , =001, and hy =2 X 10*, we obtain an initial slope
of about zero with negative cooperativity between A and R (y,, =0.98) and a very
strong positive cooperativity y. = 385 much larger than 16y, ., (V4zz = 4.8). The
corresponding BI and the regulatory curve are shown in Fig. 8.10. Note how the BI
drops initially (at X, ~ 0) slowly, then more rapidly, then again slowly. This is a
result of the inverted S-shaped regulatory curve. To obtain a sharper inverted
S-shaped regulatory curve, we shall need the cooperation of more regulatory sites.
This will be demonstrated in Sections 8.7 and 8.8.

8.7. ONE ACTIVE AND m REGULATORY SITES
The generalization of the model in Section 8.6 to three or more regulatory sites
is quite straightforward. We still assume a two-conformation enzyme (L, H) with

one active site and m identical (in the strict sense) regulator sites.
The GPF for such a system is

E=Y 04, DM+ 000, A
=0 =0

=0, (1 +q A ) + g e h)™ + Q1 + gd)(L + gehp)™  (8.7.1)
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where Q(0, i) and Q(A, i) are the canonical PFs for a system with i effector ligands
on (any) i sites (i < m), and the active site is empty or occupied by A, respectively.
The second form on the rhs of Eq. (8.7.1) follows from spelling out these PFs in
terms of Q’s and g’s. Note that we have not included any direct ligand-ligand
interaction. This is the reason for having the simple form of the GPF in its final
form. Thus, any cooperativity in this system is due entirely to the capacity of the
ligands to induce conformational changes in the enzyme.
Since we have only one active site, the BI for this site, at C, = 0, is the same
as in previous sections, i.e.,
0 kaCa 8.7.2)
4(Ca Cr=0) 1+k,C, @7

The regulatory curves are again obtained by solving for C3,

8,(C, Cx=0)=08 8.7.3)

. 4 AQyt0Op
Ch=7=—7"""" 8.74
Ak Oy + Qudrs ( )

and substituting C} in 0,(C,, Cg), to obtain the regulatory curve
Rg(CR) = eA(C;, CR) (8.7.5)

For computational purposes we use again the transformation of variables, as in
Section 8.5, to obtain the functions

eA XA’ XR)
X, (1 + X" + b, K(1 + hpXg)"
S AT+ X0+ X+ KA+ Xy h kv ik OO
and
Rg(Xy)

a 0.8(1 +K)[(1 + X)" + h,K(1 + hp X )"
qQ +XR)’"+hAK2(1 +hpXp)" +0.2K[(1 +Xp)™ (44 hy) + (1 + hgXp)" (4h,+ 1)]

8.7.7)
Figure 8.11 shows the binding isotherms for the same parameters as in Section 8.6,
namely,

K=10% =001, h,=2x10° (8.7.8)



Regulatory Enzymes 271

Figure 8.11. BIs for the model in Section 8.7, with parameters given in Eq. (8.7.8) and m = 6. The
values of X are between 0 to 0.001, at intervals of 0.0002.

0.4
m=6—""]
0.2

0.005 0.01 0.015 0.02
XR

Figure 8.12. Regulatory curves for the same parameters as in Fig. 8.11 but form =3, 4, 5, 6. The larger
m, the sharper the transition between the active and inactive enzyme. Note the shift of the transition
point to lower values of X.

As before, these parameters produced an inverted S-shaped regulatory curve, while
Y4r = 0.98 (for the first R) and y,, = 385 (for the first pair of Rs). However now,
due to the presence of m regulatory sites, we have higher-order correlations. For
instance, with m = 4, we find

842 =098, £.2x=48, Gurrr=75%X10% g pprz=14x10°
(8.7.9)
8rr =385, grrr=7-3%x10% gpppr=148x 10"
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Figure 8.13. The slopes of the regulatory curves for the same parameters as in Figs. 8.11 and 8.12, but
with m = 10, 20, 30.

We see that the correlations grow rapidly with m, leading to very sharp inverted
S-shaped regulatory curves.

In Fig. 8.11 the BIs, 0 ,» are drawn for m = 6. We note the initial slow decrease
in 0, upon addition of R, then a rapid decrease, and finally again a slowing down.
This is also shown in the behavior of Rg in Fig. 8.12, here drawn for the same
parameters but with m = 3, 4, 5, 6. As m increases, the transition becomes sharper
and sharper. The location at which the sharpest slope occurs moves leftward, i.c.,
decreasing X. Some plots of the slopes of Rg are shown in Fig. 8.13.

Finally, we note that the BI and the regulatory curves are plotted as a function
of X, and X, respectively. By transforming back into C, = X,/k,, and
Cr = Xy/k; , we can obtain a sharp transition at any required value of Cy.

8.8. A CYCLIC MODEL FOR ALLOSTERIC REGULATORY
ENZYMES

In this section we extend the models of Chapter 7, using the formalism of the
matrix method. This allows us to study the dependence of regulatory curves on the
number of subunits m. The model itself is a simple generalization of the model
treated in Section 7.4: instead of one site per subunit we now have two sites, one
for binding the substrate A and another, allosteric site, for binding the effector R
(Fig. 8.14)." The formalism presented in previous sections is the same, only the
number of degrees of freedom increases; we now have f= 8, i.e., each unit has eight
possible states. Thus, to characterize the state of a unit in the chain we need to know
its conformational state L or H, whether it is empty or occupied at the active site A,
and whether it is empty or occupied at the regulatory site R. The corresponding unit

*More details on this model will be found in Bohbot and Ben-Naim (1995).
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Figure 8.14. (a) A schematic multisubunit enzyme. Each subunit contains one catalytic (A) and one
regulatory (R) site. The subunits are arranged cyclically, i.e., the m + 1 subunit is the same as the first.
(b) A single subunit in the two conformational states L and H.

vectors are [see Eq. (7.4.3)]

(e;1=(L,0,01 = (1,0,0,0,0,0,0,0), {e,l=(H.,0,0l
(e = (LA, (e)=(LOR, ({es=(HAQ, (8.8.1)
(el =(HORI, {(e)=(LAR, (el=(HAR

where (e is the ith unit vector in an eight-dimensional vector space; only (e, is
shown explicitly. Thus, a typical element of the matrix M has one factor Q
(e, B =L, H) due to subunit—subunit interaction, a factor (Q, Q W2 correspond-
ing to the “energy levels” of the subunits in conformational states o, B, and a
factor of the type (li?\.jkkquwqwqﬂkqw) where 8=9,,+8; 2+, , + 8. The
general element of the matrix is

(o, i, j IMIB, k, ) = AAAAGL 0 dmdp)” * (Culp) *Qop  (8:8.2)

For example, a pair of sites in states { L, A, Ol and { H, 0, Rl will contribute the
matrix element

(L, A, OMIH, 0, Ry = (A, A, 4 dpp"* (0,00 "0y (8.8.3)

As in Section 7.4, we transform into variables K, h,, hy, and 1} and introduce
X, =gy A =k ,C, and Xp, = g php = k; zCp to rewrite the matrix M in the form
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Figure 8.15. BISs for the model of Section 8.8, with parameters given in Eq. (8.8.10), and m = 10. The
curves from left to right correspond to increasing values of X, =0, 5, 10, 15, . . ., 40. Note the transition
from the noncooperative BI for X, = 0 to a highly (positive and homotropic) cooperative curve for
Xp =40.

The secular, or characteristic, equation is now

M —dll =0 (8.8.5)

where I is the 8 X 8 unit matrix.
Equation (8.8.5) can be written in the simplified form

&>~ Fid~F,)=0 (8.8.6)
This equation has six roots which are zeros,” while the other two roots are given by
1
di=5 (F, i\/le +4F,) (8.8.7)
where

Fi=1+X, +Xp+X X, + K(1+h,X, )1+ hXp)
(8.8.8)

Fy=KM - D1 +X)(1 +Xp)(1 + 7, X, )(1 + hpXp)
Thus, for any finite m we can compute the GPF of the system by
&m) = Te(MP*) = d"™ + d™ (8.8.9)

For very large systems (m — o), it is sufficient to consider only the largest root d,.
In Fig. 8.15 we present some numerical results for this model with the
parameters

K

I
_
L

hy=10°,  he=107, n=0.1 (8.8.10)

*See footnote on p. 245.
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Rg

0
Xr

Figure 8.16. Regulatory curves for the same model as in Fig. 8.15 but with m = 5, 10, 15, 20. Note
that the larger is m, the sharper is the transition from an active to an inactive enzyme. The full line
corresponds to m = 100.

In contrast to the examples in Chapter 7, where in all cases the BI, 8,,, was for only
one active site, hence there were no A—A cooperativities. Here, we have m active
sites and m regulatory sites. Therefore, for the particular choice of parameters in
(8.8.10), we expect positive cooperativity between A and A as well as between R
and R, but negative cooperativity between A and R.

Figure 8.15 shows how the BI, 8,, changes from noncooperative for X, = 0 to
increasingly cooperative curves when X, is increased. The corresponding regula-
tory curve, Fig. 8.16, becomes sharper as we increase m. Ultimately, for m — o we
have a very sharply inverted S-shaped regulatory curve. Note, however, that even
for m — oo the regulatory curve is not a step function. This is because the
cooperativity is finite for the particular choice of parameters in (8.8.10). Figure 8.17
shows the slopes of the regulatory curves for the same parameters as in Fig. 8.16.

1
Rg
T2 X0 607 Be—— 106 120 XRr
-0.01 AN 1
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Figure 8.17. Slopes of the regulatory curves of Fig. 8.16 for m =5, 10, 15, 20,
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8.9. ASPARTATE TRANSCARBAMOYLASE (ATCase)

Aspartate transcarbamoylase (ATCase) from Escherichia coli is the most
studied and best known regulatory enzyme. Yates and Pardee (1956) were the first
to propose that the activity of ATCase is controlled by end product inhibition. This
feedback inhibition was later studied in more detail by Gerhart and Pardee (1961,
1962, 1963). The three-dimensional structure of ATCase was determined by Lip-
scombe and his coworkers [Wiley et al. (1971), Wiley and Lipscomb (1968), Warren
etal. (1973)].

Figure 8.18 shows a schematic spatial arrangement of the subunits in ATCase.
It consists of two catalytic trimers 2C;, separated by three regulatory dimers 3R,.
Altogether, the enzyme has six catalytic and six regulatory subunits: (C,),(R,);, or
simply C¢R,. The electronic micrographs, obtained by Richards and Williams
(1972), viewed along the threefold symmetry axis of the molecule, show an inner
solid equilateral triangle and a circumscribing larger triangle rotated by 60°. The
structure, shown schematically in Fig. 8.18, is very reminiscent of the Star of David.
It is also known [Kantrowitz and Lipscomb (1988, 1990)] that the conformational
changes involve both expansion of the ATCase along the threefold symmetry axis
as well as intramolecular rotations of the catalytic and regulatory subunits.

ATCase catalyzes the first step in the biosynthesis of cytidine triphosphate
(CTP). The sequence of reactions leading from the reactants, aspartate and car-
bamoyl phosphate, to CTP is shown in Fig. 8.19.

Figure 8.20 shows the inhibitory effect of CTP, as well as the activation of
ATCase by ATP. Based on measurements by Gerhart and Pardee (1962, 1963), the
reaction rate is here plotted as a function of the concentration of aspartate. It is clear

95 A
A

R

145 A

Figure 8.18. A schematic view of ATCase based on electron micrographs, viewed along the threefold
symmetry axis. The outer equilateral triangle has an edge of 145 A. The (almost) inscribed solid triangle
with edge 95 A is rotated by 60° relative to the large triangle.
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Figure 8.19. Sequence reactions from aspartic acid (AA) and carbamoyl phosphate (CP) to the end product, cytidine triphosphate (CTP). The first reaction is
catalyzed by ATCase. The intermediary compounds are N-carbamoyl aspartic acid (N-CAA), L-dihydroorotic acid (L-DHOA), orotic acid (OA), orotidine
5’-phosphate (O-5'-P), uridine 5--phosphate (U-5’-P), uridine diphosphate (UDP), and uridine triphosphate (UTP).
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Figure 8.20. Schematic illustration of the effect of ATP and CTP on the rate of reaction of ATCase as
a function of the concentration of aspartate (in mM). Redrawn with changes from Gerhart and Pardee
(1962, 1963).

that for any given concentration of aspartate the reaction rate decreases upon
addition of CTP, but increases upon addition of ATP.

Binding measurements of the bisubstrate analogue N-(phosphoacetyl)-L-
aspartate (PALA) in the presence and absence of ATP were reported by Newell, et
al., (1989). Figure 8.21 shows the binding isotherm of ATCase, a plot of 6 =
[PALA}, ..o/[ATCase] as a function of [PALA] . (at 23 °C and in a buffer
solution). ‘

It is evident that addition of CTP lowers the BI while addition of ATP elevates
the BI of the effector-free ATCase.

6.0 N N 2
ATP 2
SO o
3" % aor NONE
2o a0t — CTP
&
=
— 201
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0 1 A " l\v\‘ A 1 ] A
0 0.25 0.50 1.0 1.5 2.0

[PALA]g,, (LM)

Figure 8.21. Binding isotherms of PALA to ATCase in the presence of ATP and CTP. Redrawn with
changes from Newell et al. (1989).
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It is clear from both Figs. 8.20 and 8.21 that CTP acts as an inhibitor while ATP
acts as an activator. It is now established that both CTP and ATP bind to the
regulatory binding site, which differs from the catalytic sites.” The remarkable
similarity between the equilibrium Bls on the one hand and the kinetic data on the
other hand confirms the assertion made at the beginning of this chapter, that
allosteric effects can be studied in equilibrated systems.

*The fact that ATP and CTP bind to the same site follows from the observation that adding ATP to the
inhibited enzyme by CTP reduces or reverses the inhibition, presumably because ATP competes with
CTP for the same site. The fact that CTP binds to an allosteric site (i.e., it is not a competitive inhibitor)
follows from the so-called desensitization effect. Addition of mercurials [e.g., p-mercuribenzoate
(PMB)] reduces or eliminates the inhibition by CTP. However, it has no effect on the enzymatic activity
of ATCase, presumably because the mercurials affect the regulatory subunits but not the catalytic site.
As for the mechanism of cooperativity (both positive and negative), it is known that CTP does induce
changes in the quaternary structure of the enzyme.



Solvent Effects on Cooperativity

9.1. INTRODUCTION

All binding processes in real-life systems occur in some solvent. The solvent is, in
general, a mixture of many components, including water electrolytes and nonelec-
trolytes.” At present, it is impossible to account for all possible solvent effects, even
when the solvent is pure water. Yet, the solvent, whether a single or multi-component,
cannot be ignored. Any serious molecular theory of cooperativity must deal with
solvent effects. We shall see in this chapter that this is not an easy task even when
the solvent is inert, such as argon, or a simple hydrocarbon liquid.

In all the theoretical developments in the previous chapters we have assumed
that the systems operate in vacuum (except for the case of alkylated succinic acid,
Section 4.8). This assumption has enormously simplified the theory. Strictly
speaking, all we have learned so far about cooperativity applies only to vacuum
systems. One might justifiably wonder whether we have not wasted our time and
effort in studying systems that do not exist in reality. In fact, we shall soon see that
the introduction of the solvent does change the theory of cooperativity. But the
changes are such that the formal structure of the results obtained for the vacuum
system is preserved. Formally, if g8(1, 1) is the pair correlation function discussed

*Colombo ef al. (1992) examined the water effect on the cooperativity of hemoglobin. They found that
about 60 water molecules are involved in the transition between the oxy and the deoxy conformations
of hemoglobin. Unfortunately, this paper does not discuss the solvent effect on the free energies
involved in the cooperativity of hemoglobin.

DiCera’s treatment in his book (1996) begins by defining the system of a macromolecule with “N water
molecules (the solvent).” However, nowhere in the book does he mention any specific effect of water
as a solvent. On page 47 the author switches, without giving any reason, to an “inert” solvent. Reading
through the book reveals that not even an inert-solvent effect is discussed. Since in most of DiCera’s
book the phenomenological approach is used, and since the binding constants in this approach contain
implicitly any solvent effect: inert, water, or physiological fluids, the reader might wonder why the
author has chosen water, in the first place, and switched from water to an inert solvent in the second
place.

281
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in the previous sections, i.e., the vacuum case, then we have found that
g1, 1)=£(K, h,n) 9.1.1)

i.e., g8(1, 1) is a function of the parameters K, s, and 1. When a solvent is present,
the corresponding correlation g'(1, 1) will have the general form

g1, )=y f(K", h", ") 9.1.2)

where y_is a new source of cooperativity. This is the same contribution to g(1, 1)
that is found in the theory of liquids. It is a correlation transmitted through the
solvent molecules. When the solvent is absent, y, = 1. The second modification is
in the parameters K, 4, and 1] in Eq. (9.1.1). These will now include the solvation
Gibbs energies of all the molecules involved in the binding process. The general
procedure for modifying K, h,  into K", h*, n" is discussed in Section 9.2. Once
we have done that, we can use the same functional form fin Eq. (9.1.2) as in Eq.
(9.1.1). Thus, although solvation effects will significantly change the correlation
functions, the formal dependence on the fundamental parameters K, %, and 1 is
unchanged. In this sense, the theoretical results developed in the previous chapters
are preserved. We shall demonstrate this solvation effect on the vacuum theory for
aparticular model in Section 9.4. All the above comments about the pair correlation
can be extended to any higher-order correlation.

The most general approach to a theory of binding is to start with the grand
partition function of a multicomponent system, and then take the low-density limit
to obtain the partition function of a dilute system in a solvent. This approach was
carried out by T. L. Hill (1985). Since we are interested only in the dilute limit, i.e.,
when all the adsorbent molecules are independent, we can use a shortcut to obtain
the required modification from the vacuum to the solvent system. It will be seen in
Sections 9.2 and 9.3 that this is possible because each of the parameters K, s, and
1 is an equilibrium constant of a specific “reaction.” By transferring the entire
reaction from the vacuum into the solvent, one can immediately obtain the required
modifications of these parameters. The actual implementation of the formal result
is difficult. It requires knowledge of the distribution of functional groups on the
surface of the ligands and on the adsorbent molecules. We shall devote Sections 9.5
and 9.6 to examining some specific ingredients of the solvation to the ligand—ligand
correlations.

9.2. SOLVATION EFFECT ON THE EQUILIBRIUM CONSTANTS

The three fundamental parameters K, 4 and n that determine the indirect
cooperativity are essentially equilibrium constants, corresponding to three well-
defined processes. In this section we explore the modification that we are required
to make in these parameters when the same processes are carried out in a solvent.

1See, for example, Chapters 2 and 8 in Ben-Naim (1992).
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We begin with a general process leading from an initial (i) to a final (f) state
i->f 9.2.1)

where i and f represent all the reactants and all the products of the process,
respectively.

In an ideal gas (g) phase, the free-energy change associated with this process
is denoted by AG#(i — f). This free-energy change consists, in general, of three
parts: one depending on the internal energy states of all the particles involved in the
process, the second depending on the translational and rotational degrees of
freedom, and the third depending on the concentrations of all the species involved.
Since we are interested in the change in the free energy associated with the same
process when carried out in a solvent, and since the second and third parts are
presumed to be unchanged when the process is carried out in a solvent,” we can
assume, for simplicity, that the process in Eq. (9.2.1) is carried out while all the
particles involved in the process, in both the initial and final states, are at some fixed
positions, i.e., all the particles are devoid of translational degrees of freedom. This
assumption eliminates the second and third contributions to AG?, yet will have no
effect on the modification introduced by transferring the same process from the
ideal gas phase (g) into the liquid phase (I). We denote by AG'(i — f) the free-energy
change of the same process, (9.2.1), carried out in the liquid phase /. To obtain the
connection between AG® and AG', we follow the cyclic process indicated in Fig.
9.1, for which the free energy is zero,

AG'G — f) = AG; = AGS(i — f) + AG; =0 9.2.2)

Let us define the solvent effect on the reaction (9.2.1) by
6G(i > )= AGHi ->N-AG(i->f)= AG; - AG;‘ 9.2.3)

with AG; the solvation Gibbs energy of the molecule ¢, defined below. We see that
the solvent effect on the Gibbs energy change for any process i — fis determined
by the difference in the solvation Gibbs energies of the products and reactants. This
is a very general result. We shall now proceed with some specific examples of Eq.
(9.2.3) that are of interest in the binding systems.

(a) The simplest process is the conversion H = L between the two conforma-
tions of the empty adsorbent molecule. The process is written symbolically as

(L; 0,0) —— (#H; 0, 0) 9.2.4)

“In a classical system, the translational and rotational degrees of freedom are unchanged by the presence
of a solvent. The third contribution is unchanged because of the requirement that the same process be
carried out in the two phases; this includes the specification of all the concentrations of the species
involved in the process.
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Figure 9.1. A cyclic process for which the total free-energy change is zero [Eq. (9.2.2)].
for which the equilibrium constant in an ideal gas phase is

K=K¢= 2 = exp[-B(E, — E))] 9.2.5)
o
By applying the general cyclic process of Fig. 9.1 to this process, we obtain the
modified equilibrium constant

K* =K'= K exp[-B3G(D)] = K exp[-B(AG}, — AG))] (9.2.6)

where AG, is the solvation Gibbs energy of the species o = L, H (see Section 9.4
for a precise definition). We see that the parameter K defined in terms of energy
levels E; and E, is now modified by the solvent effect 8G(/), consisting of the
difference in the solvation Gibbs energies of H and L. We recall that E; and E, as
defined in Chapter 2, were presumed to be strictly energy levels. This was done to
stress the emergence of free-energy levels, when the same process (H = L) is
carried out in a solvent. In general, E; and Ej, are themselves free energies (see
Appendix B). In this case, the solvation Gibbs energies only shift from the original
values E; and E to the new free-energy levels E; + AG; and E,, + AGy, respec-
tively.

(b) The second process is the binding of a ligand L to an empty adsorbent
molecule, say in state L. The process is

(L:0,0)+ L——> (L 1,0) 92.7)

for which we have defined
q; =exp(-BU)) 9.2.8)

where U, is the binding energy of the ligand L to the L form of the empty system.
The modification of ¢;, when the same process is carried out in a solvent, is obtained
by applying the cyclic process of Fig. 9.1 to process (9.2.7),

q; = q; exp[-BSGD)] = q; exp[BAG;(1, 0) — AG;(0,0) - AG})]  (9:2.9)
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where AG;(0, 0) and AG;(1, 0) are the solvation Gibbs energies of the empty and
singly occupied system in the L form while AGj is the solvation Gibbs energy of
the ligand L. By writing a similar expression for gy, we obtain the modified form
of the parameter 4, i.e.,

podu (9.2.10)
q

and
B = h exp[-B(AG}(1, 0) + AG(0, 0) — AG;(1, 0) — AG(0, 0))]  (9-2.11)

We note again that U,, the binding energy of L on the L form, was presumed to be
an energy of binding. As noted above, this quantity is in general a binding free
energy. However, in Eq. (9.2.9) we observe how an energy is modified into a free
energy by the addition of the solvation Gibbs energies. Note also that while g, (or
gy) corresponds to the process (9.2.7) of binding, the parameter A (or k") corre-
sponds to a difference in such processes, namely,

(L; 0, 1)+ (H; 0, 0) —> (H; 0, 1) = (L; 0, 0) 92.12)

We should also note that if the two binding sites are identical, then g; as well
as gy are the same, whether the ligand binds to the first or to the second site.
Therefore, we have only one parameter / defined in Eq. (9.2.10). When a solvent
is present, g; and g, and hence also &, might be modified differently for the first
and for the second site. For the second site the process (9.2.7) is replaced by

L;1LO+L-> L LD (9.2.13)

for which g, is the same as in Eq. (9.2.8). However, the solvent modification for
the second site is

4;* = q; exp[-B(AG;(1, 1) - AG}(1, 0)— AG})] (9.2.19)

Now compare Egs. (9.2.14) and (9.2.9). A similar modification applies for g, hence
the modified parameter 4 is now
k%

pe =3 g, exp[-B(AGK(1, 1) + AG[(1, 0) — AG[(1, 1) — AGy(1,0))] (9:2.15)

K

L

The corresponding process is
L; 1, 1)+ (H; 1,0) -—W—>(H; 1,D)+(L; 1,0) (9.2.16)

which should be compared with (9.2.12).
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(c) The third parameter 1, which also determines the cooperativity, is related
to the process and written symbolically as

LL + HH _'—>V 2LH (9'2‘17)

The corresponding equilibrium constant is defined by

2
QLH

011 9Qun

Note again that in Eq. (9.2.18), E,,, E,;, and E;, are presumed to be energy
parameters. The modification of n for the process (9.2.17) carried out in a solvent
is

=exp[-BRE, — E;; ~ Eg] (9.2.18)

N* =1 exp[-B(2AG;,; — AG}, — AGj)] (9.2.19)

The specific processes discussed above are all special cases of the general process
(9.2.1). In all of these cases we have seen the explicit modification of the equilib-
rium constant of the corresponding process. As indicated in Eq. (9.2.3), the general
modification requires knowledge of the solvation Gibbs energies of all the compo-
nents involved in the process. For macromolecules such as proteins or nucleic acid,
none of these is known, however. Nevertheless, some specific solvation effects are
examined in Sections 9.4 and 9.5.

We conclude this section by presenting the general statistical mechanical
expression for the solvation Gibbs energy of any solute o,

AGy = —kT In (exp(—BB,)), (9.2.20)

where the symbol ( ), stands for an average over all the configurations of all the
molecules in the system, except the single o-molecule for which the solvation Gibbs
energy is calculated. In general, by “all the molecules” we also include any other
o-molecules present in the system. However, since we always deal with inde-
pendent adsorbing systems, we may neglect interactions between the a-molecules,
in which case by “all the molecules” we simply mean all the solvent molecules.
The solvent might have ¢ components, with composition N = {N|, N,, ..., N_},
where N, is the number of molecules of species i (excluding species ¢ as part of the
solvent, i.e., i # Ol).

There are several ways of carrying out the average over all configurations of
the solvent molecules. The most common one is a system at constant temperature
T, pressure P, and solvent composition N. The appropriate average is carried out in
the so-called T, P, N ensemble, i.e., for any function of the solvent configuration

*For more details, see Ben-Naim (1987, 1992).
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X, . .., Xy, we write
F=(f Ky X)) = aV ] ax, - dXyPy(V.XMAXY  9:221)

where XN is a shorthand notation for a specific configuration of all solvent
molecules XN = X,, . .., Xy, and X denotes the configuration (normally the six
coordinates of locations and orientation) of the single molecule i.

The probability density Py(V, XM is

exp(—-BPV - BUy)
[av|dX, - - dXyexp(-BPV - BUy)

Py(v, XN = (9.2.22)

where Uy, is the total interaction energy among all the solvent molecules. The
subscript “0” is used to stress that this is the probability density of solvent
configurations before introducing o into the system. This is also referred to as the
probability density of the pure solvent.

The specific average (9.2.20) is over the function exp(-B,,), where B, is the
so-called binding energy of o to the solvent (not to be confused with binding
energies, such as U; and Up). This is simply defined as the difference in the total
interaction energy of a system before and after introducing o at some fixed
configuration X . Thus,

B, = Uy, (X, XNy — UpyXM) 9.2.23)
which, for the pairwise additive interaction energy, reduces to
B,=Y, UX, X)) (9.2.24)
i

where U(X,, X)) is the interaction energy between o at X, and the ith solvent
molecule at X;. The summation in Eq. (9.2.24) is over all solvent molecules.

In Section 9.4 we shall decompose the solvation Gibbs energy of a macromole-
cule o into various components or ingredients, which will allow us to examine and,
in principle, estimate some specific contributions of the solvation to cooperativity.

9.3. SOLVENT EFFECT ON THE LIGAND-LIGAND PAIR
CORRELATION

In Section 4.2 we defined the (A — O limit) pair correlation by

o(1, (0, 0)
1, )=—F———— 9.3.1
g1, 1) [0 O)F 9.3.1)

where @ is the canonical PF of the adsorbent molecule having zero, one, ot two
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bound ligands, as specified in the brackets. Here, we assume for simplicity that the
two sites are identical. The pair correlation is related to the free-energy change for
the process, which is written symbolically as

2(1,0)= 0,00+, 1 9.3.2)

In the previous section the general rule was found for converting the free-energy
change of a process, carried out in vacuum, into a modified free-energy change for
the same process carried out in a solvent. We shall now apply this rule for the process
(9.3.2) to obtain the pair correlation for two ligands (hence the cooperativity) in a
two-site system. We shall specifically discuss the two models introduced in Sections
4.3 and 4.5. These examples are sufficient to illustrate all the modifications that are
brought about by the solvent on the cooperativity of any binding system.

The first model is that discussed in Section 4.3. This may be called the
one-macrostate approximation. In this model the adsorbent molecule has only one
state, and the binding process does not induce any conformational changes. Hence,
the ligand—ligand pair correlation is due only to the direct ligand-ligand interaction

g(1, 1) =exp[-BU(1, )] (9.3.3)

where U(1, 1) is the pair interaction energy between the two ligands as if they were
in vacuum (at the same distance and relative orientation as on the binding sites).
Here, as in Section 4.3, we assume that U(1, 1) is strictly an energy of interaction.
In general, the free energy of the process (9.3.2) can have an entropic contribution
even when the process is carried out in vacuum, for instance, if the two ligands
change their conformation when brought from infinite separation to the final
configuration on the two sites. Here, as in the previous section, we neglect any
entropic contribution to U(1, 1) of the process (9.3.2). We do this only to stress the
conversion from energy of interaction U(1, 1) into free interaction energy W(l, 1)
when we perform the same reaction (9.3.2) in a solvent. By using the same
arguments as in Section 9.2, we obtain (see Fig. 9.2)

W(1, 1)=U(1, 1) +AG*(1, 1) + AG*(0, 0) — 2AG*(1, 0) (9.34)
or, equivalently,

g1, 1) = g&(1, 1) exp{-B[AG*(1, 1) + AG*(0, 0) - 2AG*(1, 0)]}

1,1 X
=g4(1, I)W(W(l)—"'g)ozo) 9.3.5)
where we set
v = exp(—-BAG") (9.3.6)

for any species indicated in the parentheses.
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Figure 9.2. The process (9.3.2) carried out in an ideal gas (g) and in a liquid (/) phase. The relation
between W(1, 1) and U(1, 1) in Eq. (9.3.2) is obtained by transferring all solutes from g to /.

As before, the modified pair correlation has one factor which is the same as the
vacuum pair correlation, and a second contribution which has the same form as the
solute—solute pair correlation in a solvent. It is not identical, however, to the
solute—solute pair correlation in a solvent, due to the presence of the adsorbent
molecule. Therefore, this factor has been referred to as a conditional pair correla-
tion.” The exact statistical-mechanical expression for the conditional pair correla-
tion is quite complicated. We shall not discuss this aspect here. The reader can
understand the qualitative difference between the two factors on the rhs of Eq.
(9.3.5) from the following considerations.

The direct interaction energy U(1, 1) is defined as the difference in energy when
the two ligands are brought from infinity to the final configuration in vacuum. The
direct correlation defined by S = exp(—BU) is therefore the same whether or not the
adsorbent molecule is present. In other words U(1, 1), hence S, is unaffected by the
presence of the adsorbent molecule. It does not change also in the presence of a
solvent. However, in the presence of a solvent the pair correlation g(1, 1) depends
also on the solvation Gibbs energies of all the species involved in the process (9.3.2).
Since each of the quantities (i, ) in Eq. (9.3.5) is an average over all the
configurations of the solvent molecules [see Eq. (9.2.21)], and since this average
depends on the distribution of the solvent configurations (9.2.22), we should
expect these average quantities to be affected by the presence of the adsorbent
molecule. This is why we have called the solvent contribution to g in Eq. (9.3.5)
a conditional pair correlation, the condition being the presence of the adsorbent
molecule.

We conclude that in this simple model there are two contributions to the
ligand-ligand correlation, hence to the cooperativity: one due to direct ligand—
ligand interaction U(1, 1) and the other due to ligand—solvent interaction. The latter
part of the indirect correlation is transmitted by solvent molecules. The extent of
this correlation depends on the presence of the adsorbent molecule.

*See Chapter 8 in Ben-Naim (1992) and Ben-Naim (1972).
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Before we proceed to the next, more complicated, model we note that U(1, 1)
is usually short-range. For instance, two oxygen molecules at two sites of hemo-
globin are at a distance far larger than the range of U(1, 1). Hence, for most practical
cases U(1, 1) may be neglected.” Similarly, the indirect correlation mediated by the
solvent is also short-range [although somewhat larger than the range of U(1, 1)].
This may also be neglected when the distance between the two ligands is large, e.g.,
two oxygen molecules on hemoglobin. Figure 9.3 shows the typical distance
dependence of U(R) and W(R).

In the model discussed below we shall encounter another solvent effect that in
general could be significant even when the two ligands are far apart and for which
the above-mentioned solvent effect [Eq. (9.3.5)] is negligible.

The model is that discussed in Section 4.5, for which the ligand-ligand pair
correlation has the form

(0,1, D+ 2,0, DIQG,(0, 0) + 0x(0, 0)]

L= 9.3.7
sl [0(L.0)+ 0,(L.OF ©3D
In vacuum we had the explicit expression
g, 1) - Q5+ QSN0 + 0y
’ (QLqL + QHqH)2
2
_ g UK +K) 93.8)

1+ Khy?

The second form on the rhs of Eq. (9.3.8) is valid for the case §; =S, =S5.

The expression for the pair correlation in a solvent can be obtained by using
the same cyclic process as in Fig. 9.2. The free-energy change in vacuum is
(presuming, for simplicity, S; = §;, =)

(1, X0, 0)

AG% =—k,T'In 0L 0)]2

S(0147 + Qo) @ + Q)

=—kgT'In 5
(Or9,+ Crap)

(9.3.9)

Note that AG? is a free energy even in vacuum,
The corresponding free-energy change in the liquid phase is
=AG? +[AG*(1, 1) + AG¥(0, 0) — 2AG*(1, 0)] (9.3.10)

*, . . . .
This is not true for two protons on, say, succinic acid.
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UR)

Figure 9.3. Schematic comparison of the direct pair potential U(R) and the potential of average force
W(R), as a function of the ligand—ligand separation.

and the pair correlation in the liquid is

! 1, 1) = o8 1’ 1 W(l) 1)‘!’(07 O)
g1, 1)=g¥ )_——_—[W(I,O)]z

This is formally the same as Eq. (9.3.5). However, it should be stressed that here
£%(1, 1) is related to the free energy AG®, while in Eq. (9.3.5) it is related to the
ligand-ligand interaction energy U(1, 1). Also, the quantities y in Eq. (9.3.11) are
now averages of , and y, as discussed below. Equation (9.3.11) has a simple
interpretation. The ligand—ligand correlation g’ is factorized into two components:
the correlation in vacuum (which may also be factorized into direct and indirect
parts), and a solvent contribution part which contains the solvation Gibbs energies
of the adsorbent molecules in the various occupancy states [the square brackets in
Eq. 9.3.10)].

We now derive an alternative, but more useful, expression similar in form to
Eq. (9.3.8), by the following considerations. As noted above, each of the quantities
vy in Eq. (9.3.11) is an average of y, and y,,. The relations are

(9.3.11)

(0, 0) = exp[-BAG*(0, 0)] = X{¥ exp[-BAG}(0, 0)] + X5 exp[-BAG}(0, 0)]

= XOw,(0, 0) + XPw-(0, 0) (9.3.12)
and, similarly,

w(1, 0)= X[y (1, 0) + Xiwy(1, 0)
w(l, 1)=XPwy (1, 1)+ XPy(1, 1)

(9.3.13)
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where the various mole fractions are defined by

o 0149 QLq%
XO = o x- . x0-= 93.14)
L 0, +0y L 0191+ Oy t 0,47 + Oudyy

Relations (9.3.12) and (9.3.13) are intuitively clear” and can be easily obtained
using thermodynamic equilibrium conditions for L and H in the three states of
occupancy.

On combining Eq. (9.3.11) with Egs. (9.3.12), (9.3.13), and (9.3.14), we obtain
[0:97v,(1, 1) + Qug¥y(1, DIIQ (0, 0) + Oy (0, 0)]
[QLqL\VL(L 0)+ QHqH\I’H(L 0)]2
This should be compared with the first form on the rhs of Eq. (9.3.8). The last form

may also be written as
v, (1, Dy, (0, 0) [1+ KhAy,(1, 1)/w,(1, DI + Ky,(0, 0)/y,(0, 0)]
v, (1, O [1+ Khy(1, 0)/y,(1, O)F

g, n=s (9.3.15)

g, n=s

v, (1, Dy;(0,0) (1 + K*B*H*)(1 + K)
=S 2 *\2
[y, (1, 0)] (1+K'n")

(9.3.16)

where in the last form of Eq. (9.3.16) we have used the modified forms of K and A.
(Note that in the solvent, h” and h™* correspond to the first and second h parameters,
which were defined in Section 9.2.)

The pair correlation function is now seen to be in the form of Eq. (9.1.2). The
ligand-ligand pair correlation has three contributions: one due to the direct ligand—
ligand interaction (presumed to be the same for the L and H forms); a second due
to correlation transmitted by the solvent, namely, the conditional pair correlation
due to the solvent in the presence of the adsorbent molecule in the L form; and a
third contribution due to conformational changes induced in the adsorbent mole-
cule. Note that the latter term has the same formal structure as the corresponding
expression in vacuum [see Eq. (9.3.8)]. The difference between this contribution
and that in Eq. (9.3.8) arises from the presence of a solvent. The indirect correlation
in Eq. (9.3.8) depends on the difference in the energy levels of L and H (through
K), as well as on the difference in the binding energies to L and H (through #). In
the presence of the solvent, both K* and 4" depend on the corresponding free
energies. Thus, when a ligand binds to the adsorbent molecule it might change its
conformation. When K # 0, it is sufficient that % # 1 to obtain indirect correlation
in Eq. (9.3.8). In a solvent, the change in conformation may cause a change of
solvation of L and H. Therefore, even when h = 1 (i.e., the binding energies are
equal, U, = Up) we can obtain solvent-induced correlation due to solvation effects.

*For the derivation, see Section 3.3 in Ben-Naim (1987).
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Note, however, that this solvent effect is different from the solvent-mediated
correlation denoted by y; (1, 1) y;(0, 0)/y,(1, 1) in Eq. (9.3.16). The latter is in
general of relatively short range. For instance, in the case of two oxygen molecules
bound to hemoglobin this contribution may be neglected. On the other hand, the
solvent effects carried out through the third factor in Eq. (9.3.16) has the same range
as the indirect correlation in vacuum. Thus, two oxygen molecules at two distant
sites in hemoglobin could be strongly correlated if the solvation Gibbs energies of
the L and H forms are very different and, of course, if the binding of oxygen induces
conformational changes in hemoglobin. Thus, the first solvent-mediated effect is
due to solvation Gibbs energies of one conformation [L in Eq. (9.3.6)] in the
different occupancy states. The second solvent effect depends on the difference
between the solvation Gibbs energies of the two forms L and H in the various
occupancy states. The two effects are fundamentally different with respect to their
range. They are also fundamentally different with respect to their additivity. This
is similar to our discussion of nonadditivity in Chapter 5, but we shall not elaborate
on this aspect here.

94. DECOMPOSITION OF THE SOLVATION GIBBS ENERGY OF
MACROMOLECULES

Before we examine some specific solvation effects on cooperativity we must
first consider various aspects of the solvation Gibbs energy of a macromolecule o.
We present here one possible decomposition of AG}, which will be useful for our
purposes. Consider a globular protein o which, for simplicity, is assumed to be
compactly packed so that there are no solvent molecules within some spherical
region to which we refer as the hard core of the protein. The interaction energy
between ¢ and the ith solvent molecule (the solvent is presumed to be water, w) is
written as

Uy X X)= U (X, X)+ US (X, X)+ D Uk X) (941
k

where U™ is the hard-core interaction, i.e., the infinite repulsion exerted on a solvent
molecule whenever it penetrates the hard-core region of ¢. The second, Us , may be
referred to as the soft part of the solute—solvent interaction. We include here van
der Waals interactions between o and a water molecule. The last sum over k includes
all interactions that result from specific functional groups on the surface of ¢, such
as charged or hydrogen-bonding groups. The split of the solute—solvent pair
potential is, of course, not unique. There are infinite ways of dividing U_,, into a
sum of different terms.” We shall choose a particular simplified form of Eq. (9.4.1)
to illustrate the various possible solvent effects on cooperativity. It will be seen in

*For more details, see Chapter 8 in Ben-Naim (1992).
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the next two sections that the best, or most convenient, way of expressing the pair
potential U, depends on the specific system we wish to discuss. Here, it is assumed
that o is essentially a hard sphere, i.e., we neglect the soft part of the interaction US
(which, in principle, can always be added to the sum over the “functional groups”).
The functional groups will be of two types: either hydrophobic (H$O) groups, such
as methyl or ethyl, or hydrophilic (H$J) groups, such as carboxyl, hydroxyl, or
carbonyl. A schematic illustration of the solute—solvent pair potential is shown in
Fig. 9.4. With this description of the solute—solvent pair potential we proceed to
write the solvation Gibbs energy of the solute o as

AG,=AGH + > AG/H+ Y AGIKH + . .. (94.2)
i ik

This expanded form of AG,, may be derived exactly from the definition (9.2.20)
and from the specific form of the pair potential (9.4.1)." We shall not derive this
expression here. Instead, we present a qualitative description of the various terms
on the rhs of Eq. (9.4.2) that must sum to the total solvation Gibbs energy AG.,.

The solvation process, for which AG}, is its free-energy change, is defined as
the process of transferring a single o molecule (having a fixed conformational state)
from a fixed point in vacuum (or an ideal gas phase) into the liquid phase at some
fixed point. The same process is now carried out piecewise. We first cut off all the
functional groups. Theoretically, we imagine that we can turn off all the interactions
Uk, X,) between the functional groups on the surface of o and all solvent mole-
cules. We can now solvate all the parts of the molecule ¢ in steps. First, we solvate
the hard core. The resulting solvation Gibbs energy is AG:;H [the first terms on the
rhs of Eq. (9.4.2)].

Next, we solvate all the functional groups [equivalently, we turn on the
interactions U(k, X,) that were turned off in the first step]. One way to do this is to
solvate all the functional groups simultaneously. The resulting free-energy change
would be AG;F G/H and the total solvation Gibbs energy would have been written
as

AG, =AGE + AGFH (9.4.3)

Note that the first term is an average of the type (9.2.20) or (9.2.21), i.e., with a
probability density of the pure solvent. The second quantity is a conditional
average, i.e., we must use a conditional distribution instead of P(V, XY ). Since the
hard core has already been transferred into the solvent, the distribution of solvent

Note, however, that the terms in Eq. (9.4.2) do not correspond to the terms in the potential (9.4.1). Even
when (9.4.1) is exact, the Gibbs energy of solvation of the functional groups is not additive. For more
details, see Chapter 8 in Ben-Naim (1992).
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Figure 9.4. Schematic description of the solute—solvent pair potential. The double-arrowed line
indicates the hard (repulsive) interaction between o and a water molecule. The dashed lines indicate the
interaction between groups on the surface of o and a water molecule, the sum of which is the last term
on the rhs of Eq. (9.4.1).

configurations now differs from Py(V, X™), hence we obtain a conditional average
in AG:;F G/H_the condition being the presence of the hard core of .

Although Eq. (9.4.3) is an exact expression for the solvation Gibbs energy
(presuming the specific form of the pair potential function), it is not useful for
studying the specific effect of different functional groups. To obtain a more detailed
expansion of AG},, we must solvate each group separately. In doing so we must be
careful in the order of solvating the functional groups. For instance, in the example
depicted in Fig. 9.5, if we solvate group 1 first and then group 7, the corresponding
solvation Gibbs energies are AG:;1 H and AGY"®!, respectively. But since groups
1 and 7 are far apart the condition “1” in AG:Z/ H1 can be dropped. In this case the
order of solvating these two groups is of no importance. We say that groups 1 and
7 are independently solvated and write

AG;IJ/H: AGzl/H " AG:;WH (9.4.4)

This is not the case for groups 2 and 3, for which the order of solvation is important,
i.e., we obtain different conditional solvation Gibbs energies when we first solvate
2 and then 3, or first 3 and then 2. The corresponding solvation free energies are

AGZZ,3/H=AG;2/H+AG;3/H,2

=AGY "+ AGH? (9.4.5)

In this case we say that groups 2 and 3 are correlated, i.e., turning on the interaction
of, say, U(2, X)) will affect the distribution of solvent molecules around group 3.
Therefore, the condition “2” in AG;3 /H2 cannot be overlooked. In the expansion of
AGy in Eq. (9.4.2), we first solvate the hard core. Next, we solvate all the



296 Chapter 9

Figure 9.5. Schematic illustration of a distribution of functional groups on the surface of o. Groups 1
and 7 are independently solvated (there is no overlap between the solvation spheres, indicated by the
dashed curves). Groups 2 and 3 are pair-correlated. Groups 4, 5, and 6 are triply correlated.

independently solvated groups—the corresponding Gibbs-energy change is the
sum over i on the rhs of Eq. (9.4.2). Next, we solvate all the pairs of pair-correlated
groups—the resulting terms are of the form AG*/ /H_and so on for triply correlated
and higher-order correlations.

Clearly, for any specific order of turning on the interaction U(k, X,), we shall
obtain a different expansion on the rhs of Eq. (9.4.2). In the particular expansion
written on the rhs of Eq. (9.4.2) we have classified all the functional groups on the
surface of ¢ (i.e., those FGs that are exposed to the solvent) into different classes.
The first consists of all the FGs that are independently solvated. The second consists
of all pairs of correlated FGs, and so on. We shall see in the next two sections that
this particular form of expansion of AG,, is convenient for a qualitative analysis of
the types of solvent effect we may expect on cooperativity.

It should be noted that the first term on the rhs of Eq. (9.4.2) is fundamentally
different from all the other terms that constitute AG,,. This term depends only on
the sizes of solute o and of the solvent molecules. We shall further elaborate in the
next section on the meaning assigned to the size, or to the volume, of a molecule.
Here, we stress the fact that once we have determined or assigned a size to o and
to the solvent molecule, the value of AG;H is determined. On the other hand, all the
other terms on the rhs of Eq. (9.4.2) depend on the type of functional groups, their
distribution on the surface of ¢, and on the specific interaction with a solvent
molecule. We shall therefore discuss in the next section the volume effect which is
common to any solvent (having roughly the same size as, say, water molecules).
The solvation effects arising from the other terms on the rhs of Eq. (9.4.2) will be
examined in Section 9.6.
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Before proceeding to discuss the effect of the solvent on the ligand-ligand
correlation, we present here a simple probabilistic interpretation of AG;H. In the
canonical ensemble! the solvation Helmholtz energy is

exp(-BAAL) = [ - - [ Py(X™) exp(-PB,)aX" (9.4.6)

where PO(XN ) is the distribution density of solvent configurations in the absence of
o, B, is the total binding energy (see Section 9.2) of « to all solvent molecules, and
the integration is carried out over all possible configurations of the solvent
molecules.

For the particular quantity AA;” in Eq. (9.4.2), the function exp(-BB, ) is simply
a step function. It is zero whenever the centers of all solvent molecules are outside
the repulsive region produced by o, and unity when at least one center of a solvent
molecule penetrates into this region. We denote this excluded volume by Vgx and
write

exp(-BAAL) = [ - - [ Py(XY) exp(~BBH)aXY
=.[ - [ PyXM)dXY = Pr(VEX) (9.4.7)
i

Thus, the original integral over all configurations of solvent molecules reduces to
an integral of PO(XN ) in the restricted region V — Vgx_ (Note that here we use the
same symbol to denote a region and its volume.) Since PO(XN) is a probability
density, the last integral on the rhs of Eq. (9.4.7) is the probability of the event that
all centers of the solvent molecules be in V — Vgx. This is the same as the probability
of finding the region Vgx empty.

A particularly simple form of Pr(VEX) is obtained for the solvation Helmholtz
energy of & in a solvent consisting of N hard-sphere solvent particles of diameter
G in a volume V. If the density N/V is very small, so that one can neglect
solvent—solvent interactions, the probability density PO(RN) is simply V- and the
integral on the ths of Eq. (9.4.7) reduces to

v—vExY¥
——
vEx\" NVEX
=[1“_;) ~1-—=1-pVE (9.4.8)

TIn Section 9.2 we have defined the Gibbs energy of solvation AGy in the 7, P, N ensemble. In the 7T,
V, N (canonical) ensemble the appropriate quantity is AA%, the Helmholtz energy of solvation. It can
be shown that the two are equal for macroscopic systems, provided the volume Vin the T, V, N ensemble
is equal to the average volume of a system in the 7, P, N ensemble.
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U(R) » UHS

Figure 9.6. A schematic form of the pair potential U(R) for two real spherical molecules. The
hard-sphere potential U (R) corresponding to these molecules is the bold vertical line at R=G,,,.

The last term on the rhs of this equation is intuitively clear. The probability of
finding a specific solvent molecule in any region dR = dxdydz is simply dR/V. In
particular, the probability of finding a specific solvent molecule in VEX is VEX/ V.
The probability of finding it outside VEX is(1- VEX/ V). If all solvent molecules are
independent, the probability of ﬁndmg all solvent molecules outside VEX 18
a1- VEX/ V). For VEX/V << 1, this is approximately equal to 1 — pVEX Thus in
Eq. (9. 4 8), we have found a relation between the probability of finding the region
Vﬁx empty, and the actual volume of the region, also denoted by Vgx. This is, of
course, true only in the low-density limit.

9.5. EFFECT OF SIZE ON THE COOPERATIVITY

We discuss in this section a relatively simple solvent effect that depends only
on the “size” or “volume” of the particles involved. It will be seen below that since
this type of effect depends only on the sizes of the particles and not on any specific
interactions between the solutes and the solvent molecules, it may be referred to as
the nonspecific solvent effect.”

First, we need to elaborate on the concept of the “radius” or “diameter” of the
molecules involved in the binding process. Real molecules do not have well-defined
boundaries as do geometrical objects such as spheres or cubes. Nevertheless, one
can assign to each molecule an effective radius. This assignment depends on the
form of the intermolecular potential function between any pair of real particles.

" An inert solvent, such as argon or methane, would behave as a nonspecific solvent. In this section we
consider only the volume of the solvent molecules.
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Figure 9.7. (a) The excluded volume (dashed curve) of A with respect to B. (b) The excluded volume
of B with respect to A.

Consider first two simple spherical atoms, say argon atoms. The pair interaction
potential has the general form depicted in Fig. 9.6. Note that for R <G, , the potential
function becomes very steep, i.e., it is strongly repulsive. This means that a large
amount of energy must be used to push the two atoms to a distance shorter than
6,4, Thus, although it is possible for the two particles to be found at a distance
R <0,,, the probability of finding such an event is negligibly small (for systems at
normal temperatures and pressures). Therefore, we regard G,, as an effective
diameter of the argon atoms and 1tG3AA/ 6 as its effective volume. The idealization
of hypothetical particles having a precise volume are hard-sphere particles. These
are defined through their pair potential

UHS(R) _ {0 forR>0,,

(9.5.1)
o for R<o,,

Two hard spheres cannot be pushed to a distance R < 6, since this would require
infinite energy. Clearly, this is only approximately true for any real particles.

Once we have assigned a diameter to any spherical particle, we can define the
excluded volume of a particle A with respect to particle B. This is simply the
spherical region of radius (G, , + Gpp)/2 around the center of A. Clearly, this region
(Fig. 9.7a) is (effectively) excluded for the center of any B particle. Similarly, Fig.
9.7b shows the excluded volume of B with respect to any A particle.

1t should be noted that the excluded volume is a property of a pair of particles.
If a solute o is in a mixed solvent of type A and B, then there is a different excluded
volume of o, with respect to A and with respect to B.”

*For more details, see Chapter 5 in Ben-Naim (1992).
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In this section we restrict ourselves to solvent effects that are due to the first
term in the expansion of AG, in Eq. (9.4.2). This is equivalent to the assumption
that all the particles involved are hard particles, hence only their sizes affect the
solvation Gibbs energies. We shall also assume for simplicity that the solvent
molecules are hard spheres with diameter 6. All other molecules may have any other
geometrical shape.

‘We shall now examine the effect of size on the cooperativity. We use the model
of Section 4.5, for which we found the formal expression for the ligand—ligand pair
correlation g'(1, 1)in Eq. (9.3.16). The solvent effect enters this expression via three
factors, which we shall examine separately.

(i) Correlation transmitted through the solvent: The conditional ligand—
ligand correlation transmitted through the solvent has the form®

_ v Dy 0.0)

1,1
b D=5 T or

=exp{-BIAGA(1, 1) + AG}F(0, 0) - 2AGH(1, 001} (9.5.2)

Note that the rhs of Eq. (9.5.2) contains only the solvation Gibbs energies of the
hard part of the L form. In view of relation (9.4.7) we may rewrite y,(1, 1) as

PrVEXQ, 1)]PVEX0, 0)]

PrVEX(, e (9.5.3)

yL(l, D=

The various probabilities on the rhs of Eq. (9.5.3) depend on the shape of the
adsorbent molecule in each of the occupancy states. It is very difficult to compute
these probabilities for arbitrary shapes. It is, however, intuitively clear that the
whole term y, (1, 1) becomes nearly unity when the two ligands are small compared
with the size of the adsorbent molecule, and when the separation between the sites
is large compared with the diameter of the solvent molecules. The whole term
y;(1, 1) will be unity when the ligands are buried within the adsorbent molecule,
in which case there is no excluded volume change in the reaction

2(LO)—>(1,1)+(0,0) 9.5.4)

In the low-density limit region p — O the quantity y,(1, 1) reduces to [see Eq.
(9.4.8)]

y (1, 1) = 1 - p[VEX(1, 1) + VEX(0, 0) - 2VEX(1, 0)] (9.5.5)

Note that subscript L refers to state L, and superscript H refers to the hard part of the interaction.
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O @) R

(1,0) ©,1) (1,1) 0,0)

Figure 9.8. A schematic illustration of reaction (9.5.4). The two ligands occupying the two sites [in
the state (1,1)] are correlated when a solvent particle (hatched circle) interacts simultaneously with the
two ligands.

Clearly, the excluded volume change in reaction (9.5.4) will be noted only when a
solvent molecule can interact simultaneously with the two ligands occupying the
two sites’ (Fig. 9.8). This is exactly the same condition for the solvent-induced
correlation in the theory of liquids.

(ii) Solvent effect on K: We recall that K changes into K" in the presence of a
solvent [Eq. (9.3.16)]. For the particular case of hard particles, the solvent effect is

% =exp[-B(AG} - AG]™)]

_ Pr{VEX©, 0)]

=P VER0, 0] (9.5.6)

This is perhaps the most important excluded volume effect on the cooperativity.
It depends on the probability ratio of finding the excluded volumes of the L and H
forms empty. The larger the difference between the shape and size of the two forms,
the larger will be this ratio. In contrast to the previously discussed solvent effect (as
well as that discussed below), this effect does not depend on the relative sizes of
the ligands and the adsorbent molecules, nor on the ligand-ligand separation. It
could be large even when the ligands are well buried in the interior of the adsorbent
molecule. The low-density limit p — O of Eq. (9.5.6) is

Klg =1-pIVE0, 0)- V;X0, 0] ©5.7)
which depends on the difference in the actual excluded volumes of the H and L
forms (Fig. 9.9).

This is true only in the low-density limit (9.5.5). At higher solvent densities, correlation between the
ligands may occur at a somewhat larger range of distances.
#For more details, see Chapter S in Ben-Naim (1992).
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Figure9.9. The excluded volume (dashed lines) of the L and H forms with respect to a solvent molecule
(hatched circle).

(iii) Solvent effect on h: In Section 9.2 we have seen two possible modifica-
tions of h into A" and A"*, depending on whether we add the first or second ligand,
respectively. The excluded volume effect, say for the first ligand, is

*

% =exp {-BIAGH(1, 0) + AG;#(0, 0) — AG}H(1, 0) — AG;(0,0)]}  (9.5.8)
Note that subscripts L and H refer to the two forms of the adsorbent molecule, while
superscript H refers to the hard part of the interaction. Here, again, we do not expect
a large solvent effect when the size of the ligand is small compared with the
adsorbent molecule. There will be no effect when the ligand is buried in the interior
of the adsorbent molecule. The low-density limit (p — 0) is now
% =1-pIVE (1, 0) + VEX(0, 0) — VEX(1, 0) — VEX(0, 0)) 9.5.9)

Thus, the change in the excluded volume in reaction (9.2.12) or (9.2.16) is not
expected to be large, unless the binding of a ligand changes significantly the shape
and size of one form (L or H) relative to the other.

In conclusion, whenever the size of the ligand is very small compared with the
size of the adsorbent molecule (e.g., oxygen and hemoglobin), we do not expect a
significant solvent effect unless the excluded volumes of the L and H forms differ
significantly. The actual estimate of the solvent effect in this case requires calcula-
tion of the difference in the Gibbs energies of solvation of the hard-core part of the
H and L forms of the adsorbent molecule. This effect is independent of either the
size or the separation between the ligand molecules.

9.6. SOME SPECIFIC SOLVENT EFFECTS

Having dealt with the excluded volume effect arising from the first term,
AG;H, on the ths of Eq. (9.4.2), we now examine a few other solvent effects

associated with the remaining terms on the rhs of this equation. These are referred
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to as specific solvent effects, since they arise from the specific functional groups
(FG) distributed on the surface of o, as well as on the specific interactions (other
than repulsive) between these FGs and the solvent molecules.

Clearly, since these effects depend on the type and distribution of the FGs, there
is no general method of dealing with an arbitrary binding system. We shall therefore
treat one, relatively simple example. The extension to any other specific system
should become clear by generalization of the procedure performed in this example.

In the following model example, we assume that each species involved in the
binding process has a spherical shape and that the FGs on its surface are distributed
in such a way that each pair of FGs on the surface (i.e., exposed to the solvent) is
independently solvated. In other words, the conditional solvation Gibbs energy of
the ith FG (given the hard core H) is independent of the presence or absence of any
other FGs. Formally, this is equivalent to taking only the first sum over i in the
expansion on the rhs of Eq. (9.4.2).

As in the previous section, we shall discuss each of the three types of solvent
effects separately.

(i) Correlation transmitted through the solvent: Here, the important quantity
is the change in the solvation Gibbs energy of the L form in the process

21,00 > 0,00+ (1, 1) 9.6.1)

As in the case of the volume effect, when the two ligands are far apart the change
in the solvation Gibbs energy in reaction (9.6.1) will be negligibly small. It will be
zero when the ligands are buried in the interior of the adsorbent molecule. When
the ligands on the sites are close enough, there might be (conditional) correlations
transmitted through the solvent. In the most general case one must write the
conditional solvation Gibbs energy of each ligand before and after the process
(9.6.1). It can be shown that the largest contribution to this correlation occurs when
a solvent molecule interacts simultaneously with both ligands. We shall demon-
strate this effect for a very simple solvent—a single water molecule. For this case,
the solvation Gibbs energy of any species o is

AG, =~ksTn [ Py exp(-BB,)dX,, (9.6.2)

where PydX,, is the probability of finding the water molecule in any specific
configuration between X and X + dX,,. In this particular case

Py=—— (9.6.3)

and

B,=UX,X,)=U + UkX,) (9:6.4)
k
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The solvation Gibbs energy can be rewritten as

AG, =AGl + Y AGHH (9.6.5)
k
where
AGH = kT In | Py exp(-BUZ, )X, 5.6.6)
and
AG/H =—kyT In [ P(X,,/H)expl-BU(K, X, )ldX,, 9.6.7)

The quantity AG;H is the solvation Gibbs energy of the hard part of the interaction
and has been dealt with in the previous section. The second expression is the
conditional solvation Gibbs energy of the kth FG given that the hard part of the
interaction has already been solvated. The conditional probability density is

P(X,/H)= _exppUY (9.6.8)
[ exp(-BUMX,

where U™ is the hard part of the solute—solvent pair interaction. Note that since we
have assumed that all the FGs are independently solvated, the sum over k in Eq.
(9.6.4) is over the same groups as the sum over £ in Eq. (9.6.5).

For this particular solvent we can now combine the solvation Gibbs energies
for the process (9.6.1) to obtain

_ v (1L Dy (0,0) G/H 9.6.9
W0 Pt o

where y,’:' is the hard part of y, that we have discussed in the previous section;
y£¢/H s the conditional correlation due to all the FGs and has the general form

JFG/H = W, (FG/(1, 1)y, (FG/(0, 0))
Lo v,(FG/(0, D)

(9.6.10)

where each of the factors on the rhs depends on the conditional solvation Gibbs
energies of the species indicated as a condition [i.e., (1, 1), (0, 0), and (0, 1)]. This
is a complicated product of many terms, each of which depends on one FG.
Nevertheless, we expect that there will be many cancellations of factors in this
expression. In fact, it is easy to see that a FG, the solvation of which does not change
in reaction (9.6.1), will not contribute to this correlation. The only contribution to
yE¢/H arises from those FGs whose solvation has changed during the reaction
(9.6.1). Figure 9.10 shows one such reaction, where the ligand has two FGs denoted
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T -0

(1,0) ©,1) (1,1 0,0)

Figure 9.10. Reaction (9.6.1) for which the solvation of groups of type b is not changed in the process.
The solvation of type a is changed in this process.

by a and b. When the process (9.6.1) occurs, the two groups b (one on each ligand)
are well separated in both the initial and final state of the process. Therefore, these
groups will have the same factor in the numerator and denominator of Eq. (9.6.10).
On the other hand, the two groups a that are initially separated in the initial state
come close to each other in the final state. The contribution of these two groups to
the correlation (9.6.10) is

J P&, /(1, 1)) expi-BUa, w) ~ BU(a, w)ldXw
9.6.11)

yi(a a)= 3
{j P(X,/(1, 0))exp[—PU(a, w)]de}

Note here that the numerator is an average over a product of two functions
exp[-BU(a, w)] and exp[—PBU(a, w)], each of which belongs to a different ligand.
‘When the two ligands are far apart, this average will be factorized into a product of
two factors. If we further ignore the slight difference in the conditional densities
P(X,/(1,1))and P(X_/(1,0)), we find that the whole term becomes unity. However,
when these two FGs are close enough so that a solvent molecule can interact
simultaneously with them, the correlation y;(a, @) will not be unity. Figure 9.11
shows two possibilities for the FGs. In one the groups are HO, and in the other
they are Hol. It has been estimated that the correlation in the second case, referred
to as the Ho! interaction, is stronger than in the former case.”

In a real solvent there could be many possibilities for solvent molecules to
“bridge” the two functional groups. For the Ho!I interaction, the most favorable
situation would be when the distance between the oxygens on the Hd! groups is
about 4.5 A and the orientations of these groups are such that a water molecule can
form a hydrogen-bonded bridge connecting the two groups. It has been estimated
that the contribution to the solvation Gibbs energy for the process (9.6.1) is on the
order of —3 kcal/mol per pair of such FGs." The corresponding value of the
correlation function y;(1, 1) would be on the order of about exp(3.0/0.6) = exp(5)
~ 150. This value is for one pair of FGs at the most favorable distance and
orientation. In the most general case, one should account for the formation of pairs,

*For more details, see Chapters 7 and 8 in Ben-Naim (1992).
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CH, CH, OH OH
a b

Figure 9.11. Two possible correlations transmitted by a single water molecule (w). In a the correlation
is between two hydrophobic (H$O) groups, and in b between two hydrophilic (H¢I) groups.

triplets, and higher-order correlations between FGs on one ligand and FGs on the
second ligand.

(i) Solvent effect on K: In our simplified model where all FGs are inde-
pendent, both in the L and H forms of the adsorbent molecules, the (conditional)
solvation Gibbs energies of each FG will not change in the reaction L = H. In this
case, K~ will equal K. However, in the more general case, the change in conforma-
tion could either form or eliminate correlations between FGs on the surface of the
adsorbent molecule. In Fig. 9.12 we show that groups a and b as well as groups ¢
and d, which are far apart, hence uncorrelated in L, become correlated in H.
Furthermore, groups e, f, and g which are uncorrelated in L become triply correlated
in H. Clearly, the conversion L == H can produce or eliminate higher-order
correlations among the FGs. The specific solvent effect must be calculated for each
specific example in which the distribution of FGs exposed to the solvent is known.

(iii) Solvent effect on h: Here, the relevant reaction is either (9.2.12) (for the
first ligand) or (9.2.16) (for the second ligand). Again, the estimate of the precise

a b ¢ d ab c d
H
L
¢ /
€ g
e ¢ g
(L;0,0) (H;0,0)

Figure 9.12. Redistribution of functional groups on the surface of the adsorbent molecule in the
conversion L — H. Groups a and b, groups c and d, and groups e, f, and g are far apart, hence uncorrelated
in L but become correlated in H. Groups b and ¢ which are correlated in L become uncorrelated in H.
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P P
£ H £
3 OH
| |
H
L
(L;1,0) (H:0,0)

Figure 9.13. A ligand fits better the site on H, so that the H-form is stabilized in the absence of water.
In the presence of water, the possibility of formation of a HB bridge will stabilize the L-form.

solvent effect on 4 depends on knowledge of the distribution of all FGs in the various
species in the process (9.2.12) or (9.2.16). There is no way of giving a “general”
result that will be appropriate for any system. In Fig. 9.13, we show one example
where the ligand fits better the sites on H than L, so that # = g,/g, > 1. This means
that in the absence of a solvent the ligand will shift the equilibrium between the
two conformations, in favor of H. In the presence of water, the possibility of forming
a hydrogen-bonded bridge in L, but not in H, will make the difference in the
solvation Gibbs energy AGy(1,0)—AG/(1, 0) positive. If this effect is strong
enough, 2 > 1 (in absence of solvent) could be modified into K<l ie., giving
preference to the L-form (in the presence of solvent).
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A. PAIR AND TRIPLET CORRELATIONS BETWEEN EVENTS

We present here two examples where dependence or independence between two
events does not imply dependence or independence between three events, and vice
versa.

1. Pairwise Independence Does Not Imply Triplewise Independence

Consider a board of total area S being hit by a ball. The probability of hitting
a certain region is assumed to be proportional to its area. On this board we draw
three regions A, B, and C (Fig. A.1). If the area of the entire board is chosen as unity,
and the areas of A, B, and C are 1/10 of S, then we have

P(S)=1, P@A)=P(B)=P(C)=1 (A.1)

Figure A.1. The three areas A, B, and C and the corresponding intersection 7 for the first example
discussed in the text.

309
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In addition, we know that regions A, B, and C intersect, and that the area of the
intersection (region [) is given to be 1/100 of S. Hence, in this system

P(A-B)=P(B-C)=PA-C)= ﬁ = P(A)P(B) = P(A)P(C) = P(B)P(C) (A.2)

Thus, we have pairwise independence; e.g., the probability of hitting A and B is the
product of the probabilities P(A) and P(B), hence g(A, B)=g(A, C)=g(B, C)= 1.
However, in this system

P(A-B-C)=15 ¢P(A)P(B)P(C)— (A3)

The probability of hitting A, B, and C is not the product of the probabilities
P(A), P(B), and P(C), i.e., g(A,B,C)= 1.

2. Triplewise Independence Does Not Imply Pairwise Independence

In this example (Fig. A.2) the total area is again S. Also, the area of each region
A, B, and C is again 1/10 of S. But now the intersection / of the three regions has
an area 1/1000 of S. In this case we have

o5 = P(A - B- O)= P(A)P(B)P(C) (A4)

The probability of the event (A - B - C) is the product of the three probabilities
P(A), P(B), and P(C), i.e., g(A B, C) = 1. On the other hand

To0o 000 =P(A - B)# P(A)P(B)=— (A5)
and similarly for both P(A - C)and P(B - C). Hence, in thls system there is triplewise
independence, g(A, B, C) = 1, but not pairwise independence, g(A, B)=g(A, C) =
gB,C)#1.

Figure A.2. AsinFig. A.1, but for the second example.
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B. LOCALIZATION OF THE ADSORBENT MOLECULES AND ITS
EFFECT ON THE BINDING ISOTHERM

Consider a system of M two-site molecules (such as oxalic acid) and N solvent
molecules (such as water) in a volume V and at temperature T. The system is closed
with respect to the adsorbent molecules and to the solvent molecules, but open with
respect to the ligands L, maintained at a constant chemical potential [1.

Clearly, if we localize the adsorbent molecules, i.e., we assume that all of the
M adsorbent molecules are devoid of translational and rotational degrees of free-
dom, then we obtain a new system, the thermodynamics of which differ from that
of the original system.

For the sake of this appendix we assume that the adsorbent molecules are
independent, hence the GPF of our system can be written as

E(T, M, N, V,\) = EM/M! (B.1)

On the other hand, for the same system but with localized adsorbent molecules we
have

E(T,M,N, V,\)=E1 (B.2)
where
(T, p, M) = Q(0) + Q(LA + Q(2)A° (B.3)
and
ELT, p, )= Q0) + QDA+ Q2N (B.4)

Here, & and &, are the GPFs of a single free and localized adsorbent molecule,
respectively, p = N/V is the solvent density, and A = exp(Pw) is the absolute activity
of the ligand. Since E differs from E,, all the thermodynamics of the two systems
will, in general, be different. We are now interested in the conditions under which
the two systems have the same BI. Clearly, the M! in Eq. (B.1) that is absent in Eq.
(B.2) does not affect the BI of the system.

We now write each of the canonical PFs Q(i) as
00) = 0y0, (N0, ,{NQ . )Qs,1, (D) (B.5)

where in Q, we have collected all factors that do not depend on i. Here, @, (i) is the
translational PF, depending on { through the mass of the molecule,

v Rem(ksT

0, = < 14 -3 (B.6)
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where Q,(0) is the translational PF of the empty molecule. The rotational PF,
Q,,i), depends on i through the moment of inertia, which for the linear two-site
system is

812I(iYk,T

N = B.7)
Qrot(l) hzc(l) (

where I(i) is the moment of inertia and 6(i) is a symmetry factor. For our particular
example, say oxalic acid, 6(0) = 6(2) = 2 and 6(1) = 1. The bound ligands contrib-
ute the factors

0,/0=1, Q,(1)=q,exp(-pU),
(B.8)
0,42) = g5 exp[-B2U - BU(L, 1)]

where g, is the internal PF of a single ligand molecule. We assume that this does
not change upon binding. The quantity U is the binding energy for a single ligand.
Finally, the solvation factor is

Qi) = exp[-BAU* ()] (B.9)

where AP’(i) is the solvation Gibbs energy of an adsorbent molecule having i
ligands.

When the ligand is very small compared with the adsorbent molecule (say
oxygen and hemoglobin, or a proton and a dicarboxylic acid; an exception would
be proteins bound to DNA, see Section 5.10), we can write

0,()=0,0), Q,,)=Q,[000)/ci), Q,.i)=Q,0 B.10)
If we set
g=exp(-BU),  S=exp[-BU(1,1)], y=exp[-BAL'O0)], A=AC
then the GPF of a single free adsorbent molecule, Eq. (B.3), assumes the form
&= Q(0)(1 +2gA,C + g*SAAC?) (B.11)
Under the same assumptions, the GPF of a localized adsorbent molecule is
&, = Q0X1 +2gA,C + ¢*SA2C?) (B.12)

Since the factors Q(0) and @(0) do not affect the BI, the two PFs (B.11) and (B.12)
would lead to the same B, even though Q(0) differs from Q,(0). Note that the factor
2 in Eq. (B.11) originates from 6(0)/6(1), but in Eq. (B.12) it originates from the
distinguishability of the two sites (since the molecule is localized).
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Thus, whenever the ligand is very small compared with the adsorbent molecule,
one may neglect its effect on Q,, @,,,, and Q_ ., except for the symmetry factor
o(i). This leads to a BI which is the same as that of a localized system, where the
sites are distinguishable. When the ligand is not small, such as proteins binding to
DNA, then one cannot neglect its effect on the translational, rotational, or the

solvational factors in the PF of a single molecule.

C. TRANSITION FROM MICROSTATES TO MACROSTATES

The fundamental relation between the canonical PF and thermodynamics is

O = eXp(—A,,,) = X exp(-BE) .0

where § = (kBT)‘l, kg being the Boltzmann constant and T the absolute temperature;
A, is the Helmholtz energy and E; are the energy levels of the macroscopic system.,
The sum is over all states of the macroscopic system.

For systems consisting of M independent subsystems (such as adsorbent
molecules), we can write"

O =M (C.2)

where Q is the canonical PF of a single subsystem. The latter quantity Q is related
to the energy levels of a single subsystem by

Q=2 exp(-Pe) (C3)

where €, are the energy levels of a single subsystem, and the sum over i in Eq. (C.3)
is over all the states of the single subsystem. From now on we focus only on a single
subsystem which is the adsorbent molecule. We shall discuss a two-site adsorbent
molecule having two macrostates. The generalization to any number of sites and
any number of macrostates is quite straightforward.

We shall discuss separately the three occupancy states of the system. The empty
state introduces the concept of free-energy levels. The singly occupied state intro-
duces the concept of binding free energy, and the fully occupied state introduces
the concept of ligand-ligand free energy of interaction. In this book, all these three
concepts are reduced to: energy levels, binding energies, and ligand-ligand inter-
action energy.

*We ignore here factors such as M! that do not affect the BI. See also Appendix B.
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(a) The empty molecule: Suppose we group all the states of the adsorbent
molecules into two groups—referred to as L and H—and rewrite the sum in Eq.
(C3)as

Z exp(-Pe®) =Y exp(-Be) + Y exp(-BeM =0, +Qy  (C4)

iel ieH

where Q, and Q;, are defined on the right-hand side of Eq. (C.4); £ are the energy
levels of the empty molecule.

The division of all the states into two groups could, in principle, be arbitrary.
In practice, such a division is motivated by the existence of two isomers, such as
cis and trans, or helix and coil. We define two free-energy levels by

eXp(—BAL) =0y, exp(—BAH) = QH (C35)
and write the free energy of a single molecule, A as
Q =exp(-BA) = exp(-BA,) + exp(-PAy) (C.6)

When the molecule is in a solvent, each state of the molecule might possess a
different solvation free energy.

Consider again a single adsorbent molecule in a solvent, at some volume V and
temperature 7. In this case Eq. (C.4) is replaced by

00,0)=C, -+ [ Y expl-BE + B0, 0)] exp(-BUp)IX"dX, (C.7)

where C,, is a constant that includes all the internal PFs of the solvent molecules
and factors such as N! and (872)", which will cancel out when we take ratios of PFs
to form the binding constants or correlation functions. The quantity B,(0, 0) is the
total binding energy” of the empty adsorbent molecule with all solvent molecules
being at some specific configuration XY X X, ie.,

N
B(0,0)=3, U(X, Xp) (C8)

i=1

where U® is the pair interaction between the adsorbent molecule (P) and the
ith solvent molecule. The quantity U), is the total solvent—solvent interaction
energy at some specific configuration X" = X|...X,. The integration in (C.7) is
over all configurations of the solvent molecules and the adsorbent molecule.

*Not to be confused with the binding energy of a ligand to the adsorbent molecule.
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The PF of the pure solvent, i.e., all N solvent molecules at the same V and 7,
but in the absence of the adsorbent molecule, is

QW = CWJ e J. exp(_BUN)dXN (C'9)
Hence, the PF of an empty adsorbent molecule in a solvent can be written as

00,0)=0, [+ [ Y expl-Be - BB(0, 0)]P(X")dX"dXp  (C.10)

where PO(XN ) is the density distribution of solvent molecules in the absence of P
and given by

exp(-BUj) i
J- .- J exp(—ﬁUN)dXN

In the two-macrostate approximations, say cis and trans isomers, we assume
that B0, 0) can have only two values,

PyXN)=

B(0,0)= {BL(O, 0) forie L C.12)

B (0,0)forie H
in which case Q(0, 0) may be written as

00,0)=0,0, |-+ [ expl-BB,(0, 0)]P((X"dX"dX,
+0,0y [+ [ exp[-BB(0, 0)IP(X")dX"dX,

= QWQL‘Vg)) + QwQH\II(I-(I)) (C.13)

where
v =exp[-BAR(0, 0)], W =exp(-BAW;(0, 0)]

and A’ (0, 0) is the solvation Helmholtz energy of the empty molecule in the
macrostate O.

In the majority of this book, except for Chapter 9, we treat A; and A, defined
in Eq. (C.5) as if they were energy levels, although they are in general free-energy
levels. We do that to stress the emergence of free energies even when we start with
energies. For instance, the two terms in Eq. (C.13) correspond to the two free-energy
levels of an adsorbed molecule in a solvent. On the other hand, equations such as
(4.5.2) correspond to a system with two energy levels.

(b) The singly occupied molecule: For the two-site molecule, in the absence
of a solvent, the binding process is

0,0+L—(1,0) (C.14)
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The corresponding binding free energy is defined by

) exp(—Be,(l))
AAp=~ksTIn (C.15)
%, exp(—PeMZ, exp(-Pel)

For simplicity, we assume that the internal PF of the ligand does not change
upon binding, and that all the molecules involved in the process (C.14) are devoid
of translational degrees of freedom (localized molecules).

In the two-macrostate approximation we write

exp(-BA, - BU,) + exp(-BA, — BUp) (C.16)
exp(—BA,) + exp(-fA4p)

where A; and Ay are defined as in Eqgs. (C.5). The binding free energies to L and H
are defined similarly to (C.15), but the sums are over i € L or i € H, respectively.
As in (C.15), both U, and Uy, are, in general, free energies of binding. In (C.16) we
treat U, and Uy, as if they were binding energies.

We see from Eq. (C.16) that even when U, and U, are assumed to be energies,
the overall binding process (C.14) produces a binding free energy, i.e.,

AAp = —kgT In[X° exp(-BU,) + X% exp(-BU,))] (C.17)

AAy=—k,Tn

The PF of a singly occupied molecule is written as
0(1,0)= 0,9, + Oy (C.18)
where
q,=exp(-BUy),  gy=exp(-BUy)

If the system is inserted in a solvent, then Eq. (C.18) must be replaced by
0(1,0)= 0,04, V5" + QudnWiy) (C.19)

where YV and ) are related to the solvation free energies Ap;(1,0) and
Ap(1, 0), respectively.

(c) The doubly occupied molecule: Assuming, for simplicity, that the two
sites are identical and that the internal PF of the ligand does not change upon
binding, then the general expression for the ligand—ligand free energy of interaction
can be expressed as

. exp(—Be®)Z. exp(—Pe?
AAQL, 1) = —k,T In| 2 SREPEDE expfer) (C.20)

[Z; exp(-BeM))?
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In the two-macrostate approximation, we write each of the PFs in Eq. (C.20) as

Y exp(—Be®) = exp[-BA, — B2U, — BU,(1, 1)] +exp[-BA,— B2U, - BUL1, 1)]

= 014,51+ QudSu (C21)
2 exp(—Begl)) = QLqL + QHq H (C.22)

and
Y exp(-Be”) =0, + 0y (C.23)

Clearly, even when we assume that A, U,, and U1, 1) are true energies
(o= L, H), the quantity A(1, 1) defined in Eq. (C.20) is a free energy.

Applying similar arguments as before, we can write the PF of the doubly
occupied molecule in a solvent as

o1, 1)= 0, 2S, VP + QpaiSywd) (C29)

where

= expl-BAu;(1, 1)] and P = exp[-BApz(1, )]

D. FIRST-ORDER CORRECTION TO NONIDEALITY OF THE
LIGAND’S RESERVOIR

The general form of the Bl is derived from Eq. (2.1.2),

N=A\ alnE (D.l)
oA

where Nis the average number of bound ligands on all of the M adsorbent molecules
and A is the absolute activity of the ligand. In most theoretical treatments of the BI
two fundamental assumptions were made:

1. The system is very dilute with respect to the adsorbent molecules P, hence
the GPF of the macroscopic system may be written as

E=EM/Mm (D.2)

where  is the GPF of a single adsorbent molecule,

£=3 00N ®3)
=0
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2. Thereservoir from which the ligands are supplied is maintained at a constant
chemical potential i = k5T In A, and the ligand is very dilute, either in a gaseous
phase or in a solvent. In both cases the assumption is made that A = A,C, where
C is the concentration of the ligand in the reservoir and A, is independent of
C. With these two assumptions one derives the general form of the equation
0=0(C).

We now examine a first-order deviation from the form of the BI due to
nonideality of the reservoir.

First, consider the case of a reservoir consisting of a pure ligand at a chemical
potential i The general form of the chemical potential in this system is”

G
d/
1+CG ¢

n=kyTln CAjgy' - kBTfC (D.4)
0

where Ai and g; are the momentum and the internal PF of a single ligand molecule,
while G is defined by

G= r [g1 (R) — 1J4TR%dR (D.5)
0

where g;;(R) is the ligand—ligand pair correlation function in the reservoir.
Since we still assume that the adsorbent molecules are independent, hence Eq.
(D.2) is valid, the BI per molecule is

e dln§ PYNIOI(TY

= D.6
o m QA D-6)

One can define intrinsic binding constants in the same way as before, e.g., Eq.
(2.2.25), but now these constants will depend on the ligand concentration C. The
relation (D.4) gives an implicit dependence of the absolute activity A = exp(Bu) on
the ligand concentration C. However, since the analytical dependence of G on C'is
not known, one cannot write the explicit function A = A(C). This may be done to
first order in C. Note that when C — 0 the integral on the rhs of Eq. (D.4) is zero,
and we have the ideal gas limit of the chemical potential.” If we expand the integral
to first order in C, we obtain the first-order deviation with respect to an ideal gas,

*For more details, see Section 3.10 in Ben-Naim (1987) or Chapter 6 in Ben-Naim (1992). Here, we
discuss only nonionic ligands.

"Note that at C = 0, |1 = —eo. Here, we need only the limiting behavior when CG << 1. This is the ideal
gas limit.
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ie.,
A =exp(Bl) = Ajg;'C exp(-CG°)

= A}gi!CRC) = 1, CRO) D.7)
The BI per adsorbent molecule is thus

e ZIQDACRON
ZODACROY

where {C) = exp(—CGO), and G is related to the second-virial coefficient by”

0.8

G° =J: {expl-BUL(R)] — 1}4nR%dR = —2B(T) D.9)

Equation (D.8) gives an explicit form of the BI, i.e., 7 as a function C, for a nonideal
IEServoir.

The second case is when the reservoir is a solution of the ligand in a solvent,
say water. The form of the Bl is the same, except for a reinterpretation of the quantity
G° InEq. (D.7), G® is an integral over the pair correlation function of the ligands
in vacuum, i.e., Uj; (R) in Eq. (D.9) is the ligand-ligand pair potential. In the case
of a small deviation from an ideal-dilute solution, G° in Eq. (D.7) is replaced by

6= | [0 (R) - 114nR%R (D.10)
0

where now g%L(R) is the ligand-ligand pair correlation function in an infinite dilute
solution of L in a solvent.

‘When the adsorbent molecules are not independent, we can no longer use the
relation (D.2) for the GPF of the system. In this case, we must start from the GPF
of the macroscopic system from which we can derive the general form of the BI for
any concentration of the adsorbent molecule. The derivation is possible through the
McMillan—Mayer theory of solution, but it is long and tedious, even for first-order
deviations from an ideal solution. The reason is that, in the general case, the
first-order deviations would depend on many second-virial coefficients [the ana-
logue of the quantity B,(T) in Eq. (D.9)]. For each pair of occupancy states, say i
and j, there will be a pair potential Upp(R, i, ), and the corresponding second-virial
coefficient

BT, i,j)= j:{exp[—BU,,,,(R, i, )1 - 1}4nR%dR (D.11)

*See Chapters 5 and 6 in Ben-Naim (1992).
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Figure D.1. BIs defined by Eq. (D.8) with different values of G, as indicated next to each curve.

These quantities will affect the absolute activities of all the adsorbent molecules,
and hence also the general form of the BI.

In both cases the GPF formalism can, in principle, give the BI of a nonideal
system, with respect to either the adsorbent or the ligand molecules. This is not
possible if one uses the phenomenological approach as described in Section 2.3.

Figure D.1 shows the BI for a system with k; = 1, § = 1, with different values
of G [in Eq. (D.8)]. It is seen from the figure that when G > 0 the BI is below the
curve for G = 0, and when G < 0 the Bl is above the curve for G = 0. Clearly, if we
are unaware of the nonideality of the reservoir, we might misinterpret the deviation
from the Langmuir curves as due to cooperativities although the system, by
construction, is noncooperative.

E. RELATIVE SLOPES OF EQUILIBRATED AND “FROZEN-IN” Bls
IN A MULTIMACROSTATE SYSTEM

Consider a binding system with any number of sites and any number of
macrostates. The equilibrated and “frozen-in” Bls are

6=y X0, and 0= X/8, (E.1)
o

o

where the sum is over all macrostates o [a special case where o= L, H are Egs.
(3.5.6) and (3.5.7)1; X7 is the equilibrium mole fraction of the macrostate o, defined
by

X% = (E.2)

o

x| =
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First we show that if we start with an equilibrated system and “freeze-in” the
conversion between the species o, then, at that point, the slope of the curve 6°(A)
is larger than the slope of the curve 8/().),

9(6° — 8) E3
B Zea = +Z(X“1 Xf) (E3)

Clearly, since X! = X{; at the point we “froze-in” the equilibrium, the second term
on the rhs of Eq. (E.3) is zero. Since XX = 1, hence ZdX?! = 0, we can rewrite Eq.
(E.3), for any 0, as

eq __ X9
o6 -8) _ (E.4)
oA
On the other hand, from Eq. (E.2), we have
q
XY _ ea| 2105675 ——(e e E5)
oA b 87\,
Hence, the difference in the slopes of the two curves is
q (CME ZXe‘I
ai _¥ z ) >0 (E.6)

where, on the rhs of Eq. (E.6), we put 8 = 0?2, For a two-state case, discussed in
Section 3.5, o= L, H, Eq. (E.6) reduces to

08¢ 08/ _Xi'Xy

oL oA

20,-6,720 (E7)

Thus, if we “freeze-in” the equilibrium at any point along the binding process
and then continue the process of binding, the slope of the equilibrated curve will
always be steeper than that of the “frozen-in” curve.

Note that if we start with X{ = Xg and follow the two curves 69 and ¢, the
difference in the slopes may change sign. In this case,

067 98/ 08, 08, E8
—=_ 4 .8)
a6 eH) +(X" XO)( axJ (

and this does not have a permanent sign.
In the special case of single-site molecules 6°7 — 6/ is always positive, i.e.,
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0% is always above the curve ©/; indeed
_ XQXOH(‘IH —q)*N
(1 + g A1+ g (1 + g X0 + g, XI0)

This cannot be guaranteed for systems with more than one site.

Y >0 E9)

F. SPURIOUS COOPERATIVITY IN SINGLE-SITE SYSTEMS

There are several directions along which one can generalize the concept of
spurious cooperativity discussed in Section 3.5. (1) Instead of equal mole fractions
X0= Xg =1/2, one can start with any composition of the two components.
(2) Instead of two states L and H, one can have a system with three or more states.
(3) Instead of two occupancy states, empty and occupied by a single ligand, one
can allow two or more ligands on the same site or on the same adsorbent molecule.

We shall discuss here the first two generalizations.

1. The case of X?=2/3, X% =1/3: In Sections 3.5 and 4.4 we discussed the
case where the initial concentration of the two forms L and H are equal. We found
that such a mixture of two components L and H shows a Bl indistinguishable from
a two-site system with negative cooperativity. We note here that the system
discussed in Section 3.5 was obtained by “freezing-in” an equilibrium between two
states L = H. We have pointed out that such a system can have a large negative
spurious cooperativity {depending on the difference (g, — qH)z] in spite of the fact
that X} =X%=1/2 (see the footnote on p. 65 of Section 3.5). However, the
phenomenon of spurious cooperativity can occur in more general systems of any
mixture of two (or more) components, not necessarily derived from an equilibrated
system such as L — H.

We discuss first a simple generalization of the case discussed in Sections 3.5 .
and 4.4, and then proceed with the more general case. We shall continue to use the
notations L and H, but these refer now to any two different adsorbent molecules.

Consider a system of 3M molecules, 2M of which are L with a binding constant
k; and M of which are H with a binding constant k. The BI of such a system is (see
Section 2.5)

k< 2 kC
1+k,C 3 1+kC

1 (2 +ky)C + 3k kpyC?
T3 1+ (ky + k) C+ ke

1
9-3

(E.1)

This system is not equivalent to a double-site molecule (as discussed in Section
4.4). Instead, we show that the following three systems are equivalent, in the sense
of having the same BI (Fig. F.1).
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Figure F.1. Schematic illustration of the three equivalent systems a, b, and ¢ corresponding to Eqs.
(E2), (E.3), and (F.4). In a and b all the sites are independent. In ¢ the three sites on each molecule are
correlated by pair and triplet correlations.

(a) A system of 3M independent single-site molecules, 2M of which are of
type L with a binding constant k;, and M of which are of type H with a binding
constant k. The corresponding GPF is

- _ 1 +a ™A +q,M01M0y

= 2
a M)IM! ®2)

(b) A system of M independent triple-site molecules. The three sites are
different and independent: two sites with binding constant k; and one with binding
constant k. The corresponding GPF is

[+ Qg+ g+ Qqrgu+ N + qia M 1OY
= M!

(E3)

I

(c) A system of M independent triple-site molecules. The three sites are
identical but dependent, with the same intrinsic binding constant k (= gA,), pair
correlation S(2), and triplet correlation S(3). The corresponding GPF is

I+ 3gh+ 382N + gS3MMOM E
Z.= M .

The three systems are shown schematically in Fig. E1. Note again that the three
systems are different. However, they have the same BI (factors like 0" and M! do
not affect the BI). The equivalence between a and b is again trivial. Since in a we
have 3M independent sifes, it does not matter how we group them as long as they
are still independent, both within the groups and between the groups. The equiva-
lence between b and ¢ can be obtained by requiring that the two polynomials of
degree 3 in A [Egs. (F.3) and (F.4)] be identical, i.e., we require the equality of the
three coefficients:
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3¢=24,+ 49y 34°S2)=2q4y+4;, 95G)=diqy (E5)
By solving for ¢, $(2), and S(3) we obtain
_29,+4qy (E6)
3

3(q2 +2 - gy
S(2) = (qL quf) -1- (qL qH) ; FE7

(2qL+qH) (qu'l'qH)

274; - g, (8q;, +
S@3)= 4L =1- (9.~ 9)( qu an) ES8)

(24L+qH) (qu+qH)

with these transformations, the BIs derived from Egs. (F.3) and (F.4) are identical.

The most interesting finding is that both S(2) and S(3) in Eq. (F.4) are always
smaller than unity, i.e., the system ¢ has both pair and triplet negative cooperativity.
Again from F.7 and E.8 it follows that S(2) = S(3) = 1 if and only if g, = g,,. Clearly,
these negative cooperativities that are genuine in system c are only spurious in
system a.

Figure 3.5 shows some binding isotherms for the cases X2 = 1/2, X =2/3, and
Xg = 3/4, and for fixed values of g; = 1 and g;, = 1000. Note that the slope-curves
have only two maxima, corresponding to the maximum slope of 9, and 6,,. Judging
only from the location of the two peaks in Fig. 3.5b, we might conclude that there
is only pairwise cooperativity. However, fitting the experimental data to a triple-site
Bl will reveal also triplet correlation, which is genuine if the system is ¢ but spurious
if the system is a. Similarly, for the case X9 =3/4 and X}y = 1/4, we find S(2) < 1,
S(3) <1, and S(4) £ 1, i.e., negative pair, triplet, and quadruplet correlations.

2. The general case: Consider a system of M independent and single-site
molecules, M; = X; M of which are of type L and M, = X M of which are of type
H, with X; + X;;= 1, and X, = r/t where r and ¢ are integers (r < f).” Since we are
interested only in the BI of the system, it is convenient to replace this system with
a system of tM molecules (or, equivalently, ¢ independent systems each having M
molecules), rM of which are L and (1 — r)M are H. The GPF for the three systems
a, b, and ¢ are

[Q(1 + gAY T [QE7(1 + g )M

= = F9
G [(e = r)M]! )
M
g, Q(O)M t i gd A
I 2 2 j 9U9H (F.10)
=0 t+J—I

*Note that X; and Xy are, by definition, rational numbers, hence we can assume that r and ¢ are integers.
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M

Ee=—pr— o0 )M 1+tq7\.+2()q’$(l)k’ (E11)

=2

To prove our assertion that these three systems are equivalent (from the standpoint
of having the same BI), we ignore the factors Q and the factorials, and show the
identity of the polynomials in A only. {Physically, this corresponds to a system of
localized particles having no internal degrees of freedom, i.e., all Os are unity, and
no factorials in the denominators of expressions (F.9), (F.10), and (F.11).]

The equivalence of a and b is straightforward. By expanding the two factors in
the numerator of Eq. (F.9) and collecting coefficients of the same power of A, we
obtain Eq. (F.10). The equivalence of b and ¢ is obtained by requiring that the two
polynomials of degree ¢ be identical (hence leading to the same BI). This is achieved
by imposing the equalities

tg=rq; +(t—r)qy (F12)

U Is(h) = 2( ]( . ]ng{q (F.13)
=l ! l

where q is an average of g; and g, given by

(t-1)

=59 t—5—49y4

and, for =2,

We obtain the general expression for S(I) by expanding ¢’ and collecting coefficients
with the same powers of g,q,, (note that r < tand 2< [ < )

30} v
z (o)

When Egs. (F. 12) and (F.13) are substituted into Eq. (E11), the systems b and ¢
become equivalent.

It is next shown that all the cooperativities in system c are negative, i.e., for any
t, r, and [ we have S(/) < 1.

Extracting qi and setting h = q,,/q,, we rewrite Eq. (F.14) as

> PH (E.15)
{r/t+[(t - P/}

(E14)

S =
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It is easy to show that for any ¢ and r, S(2) has the form

(h=1Yr(t=r)
(t-r+h)t—-1)

Since t>r>1, we have SR)< 1 foranytand r [S2) =1 for A =1].

To prove that S(/) < 1 for any /, we first note that S(/)= 1 forh=1and any /, ¢,
r. This follows from the fact that P, is the hypergeometric distribution, hence
2P, = 1. Since S(J) is symmetric with respect to g, and g, it is sufficient to examine
the case gy > gq,, i.e., h > 1. (If g; > q, we may redefine & as g,/q, and proceed
with the same proof.)

It can easily be shown that S(/) has a maximum as a function of / at 4 = 1. This
follows from

S2)=1- (E.16)

S
on?

as()
oh

_—t=n(-1r
T Ar-1)

=0, (E17)

' h=1 h=1

since t > r 21 and / > 2. The second derivative at & = 1 is negative. It is also easily
shown, after some lengthy algebra [which requires taking the derivative of S(J) in
Eq. (F.14) with respect to A, and using well-known expressions for the mean and
variance of the hypergeometric distribution), that S(/, /) is a monotonically decreas-
ing function of 4 for h > 1, and a monotonically increasing function of A for
0 < h < 1. Hence S(I) has only a single maximum at 4 = 1. Figure F2 shows the
typical form of S(J), drawn for the case t=2,r=1,and [ = 2.

3. Mixture of three different single-site molecules: In the previous examples
we discussed two-state systems of L and H. These could be either a mixture of two
components, or a mixture obtained by “freezing-in” an equilibrium between two
states. We extend the discussion to three states, denoted by L, H, and 7, with
corresponding binding constants &, , k, and k.

~
5@ oaff
0.6 \“‘\“~
0.4 \‘\\\““
0.2 “-“N"-“"“““"-
ry 10 15 *

h

Figure F2. The form of the spurious pair correlation function S(2) as a function of & = g;,/q; for the
caset=2,r=1.
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Figure E3. The BIs 6, 6, and 0, the equilibrated and “frozen-in” BIs, for a system with qa=1,qy= 10° N
and g, = 10°.

Figure F.3 shows 6, 8, and 0, for such a system with parameters ¢, = 1,
gy =10%, and g, = 10°. The BI of the mixture is defined by

o/=1©0,+6,+0p (F.18)

We also show the “equilibrated” BI (although the system is not necessarily derived
from an equilibrium mixture at three states), defined by

0% = X790, + X3{6, + X790, (E19)
where X7 are obtained from the GPF of the system
§= QL+ QH+ QT+ (QLqL+QHqH+ quT)k (F.20)

Note that while 0, 6, and 6, (as well as 6%, if an equilibrium between the three
states exists) are simple Langmuir isotherms, the BI of the mixture 6/ is not.

It is easy to show that the following three systems are equivalent (in the sense
of having the same BI).

(a) A mixture of 3M single-site molecules, M of which are of type L, M of type
H, and M of type T. Ignoring factors like Q" and M!, the GPF is

By = 1+ g MM + g1 + g™ (F21)
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(b) M identical three-site molecules. The sites are different with g,, g, and
qp, but independent. The corresponding GPF is

B, =1+(q, + 4y + aPA+ (@9 + 097+ 49N + 4 9pah’ (E22)

(¢) M identical three-site molecules. The sites are identical with the same g,
but with pair and triplet cooperativities. The corresponding GPF is

E, =1 +3gA+ 325N + >S(3)° (F23)

As before, the equivalency of systems a and b is trivial. Systems b and ¢ can be
made equivalent by imposing the conditions

3g=q;+dy+qy 305D =yt 0 9r+ awap TSG)=q9xar  (F24)
By solving for g, S(2), and S(3), we obtain

1
q=§(qL+qH+qT)

3(quH+quT+qH‘IT) 1 5 2 2
S2)= =1->[gg—q9) + (@ —ap" +(qg—q7)]
(qL+qH+qT)2 2 H L L T H T
279,949 1 5
S@)y=———"""""3=1-2lgy—q)Tg9r+q,+qy)
(qL+qH+qT)3 2 H L T L H.
+(q;— g’ (Tay+ q, + ap) + @y~ a7 (Tq, + ay + ap)] (F25)

Thus, g is the arithmetic average of g; + g;; + g5, and both S(2) and S(3) are smaller
than unity, i.e., the spurious pair and triplet cooperativities are negative. Clearly,
when one pair of the gs are identical, this system reduces to the system discussed
earlier (in subsection 2). The system will show no spurious cooperativities if and

onlyifg, =gy =qr

G. THE RELATION BETWEEN THE BINDING ISOTHERM AND THE
TITRATION CURVE FOR TWO-SITE SYSTEMS

In Section 2.6 we derived a relation between the binding isotherm 6 = 6([H])
and the titration curve Ny = Ny([H]), where [H] is the proton concentration. This
relation, for the one-site system, is

Ny(h)=1-0(h)-h+K /h (G.1)
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where, for simplicity of notation, we used h = [H]."= Clearly, when 3 S pH < 11 the
curves Ng(h) and 1-—6(h) are nearly identical.” Figure 2.5 shows Ng(h) and
1 — O(h) for acetic acid, K, , = 10777 = 1.75 x 107, Measuring K, _ either on the
titration curve (at Ny = 1/2) or on the BI (at 6 = 1/2) would give nearly identical
results. For dicarboxylic acids, the titration curve is determined by the five
equations

K, =[H|[OH] =107
K, 4= HAIH/[HAL K, = [Al[H]/[HA]

Np=[Al+[HA] + [HA], 2[A]+[OH] + [HA] = [H] + [Np]

(G.2)

These should be compared with the four equations (2.6.4) in Section 2.6.
When N, is solved as a function of & = [H] (with N = 1), we obtain the titration
curve for dicarboxylic acid in terms of the dissociation constants:

Kvw(h2 +K ldissh + KldissK2diss) B h4 +K 1dissh2 -K 1dissh3 + KldissKMiss(z - h)h

NP(h)= :
(h +K ldissh + KldissK2diss)h
(G.3)
The corresponding Bl in terms of K , -and K, ;;  is
K, .+ 2h?
9(2)(h) - > Ldiss (G.4)
2(h" + Ky gigsh + K435 Kogigs)
The two functions are related by
NO(hy=2-20P(h)y~h+K, /h (G.5)

Again, the difference between Ng)(h) and 2 — 6@(h) is negligible for 3 S pH < 11.

Figure G.1 shows the titration curve Ng(h) and the BI [plotted as 2 — 26(h)],
with 2 = [H] for oo — o’-di-tert-butyl succinic acid in 50% ethanol-water solution.
Note that the locations of the two peaks of the derivatives of these curves are nearly
identical for the two curves.

*Not to be confused with k = g5/ gy defined in the rest of the book. We use A for the proton concentration
only in this appendix.

THowever, these are clearly not identical functions as referred to in some publications [e.g., Wyman and
Gill (1990)].
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Figure G.1. The titration curve (dashed line), and the binding isotherm (full line) (2 — 20) for o — o’
di-tert-butyl succinic acid (in 50% ethanol solution): pK,, =3.58, pK,;. = 13.12, and
K, =17 x10718, The lower curves are the derivatives of the upper curves.

H. FITTING SYNTHETIC DATA

We present here an example where “experimental” data are constructed from
exact binding curves for a three-site system, after which the experimental data are
used to calculate the parameters of the system by two different methods.

The exact binding data are obtained with the choice of parameters

k,=10, k,=1, k=107, g,=1, g, =10, g, =1, g, =10 (HI)

This system could in principle be an experimental one. Note that in this
particular case we chose g, . = g, i.e., there is only long-range correlation and no
short-range correlations.

We now choose 30 points in the range -3 <log,, C < 4. Ateach point we create
“experimental data” by defining

6P = @< + 0.05R (H.2)
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where GZ“""’ is the exact value of the theoretical binding curves with parameters
(H.1), and 67 are obtained by adding a random value between £0.05 (where
R is a pseudo-random number between zero and one, selected from a normal
distribution).

We now treat these synthetic “experimental data” as if they originated from an
experimental source. We first fit three individual binding curves to obtain the seven
parameters without any restrictions on the correlations. We obtain a very good fit
to the data with the parameters

k,=10.02, k=098, k=107,
(H.3)
£5,=0977, g,=1057 g, ,=0997, g, =9.111

Clearly, these are very close to the original parameters in (H.1).
We next fit three curves with the imposed relations, such as those made by
Senear et al. (1986) (see Section 5.10), namely,

8ac™= 1 and 8abc = 8ab ¥ 8bc H4)

so that only five parameters are to be determined. With these assumptions we obtain
a fit to the “experimental data” (with almost the same variance). The resulting
parameters are

k,=10.024, k,=1211, k. =0.0005 g,=0815 g, =150003 (HS5)

Clearly, these are quite different from the exact parameters in (H.1). The fitted

1 2 3 q
Log o€

Figure H.1. The BI for the model of Appendix H. The points are obtained from the exact BI by (H.2).
The solid lines are the computed BI determined by parameters (H.3) and (H.5).



332 Appendices

curves, however, are almost indistinguishable from the exact curves (Fig. H.1).
Thus, processing the data with the assumed relations (H.4) would lead us to
conclude that there is almost no correlation between a and b (i.e., g, ~ 1), and a
large positive cooperativity between b and ¢, and by assumption no cooperativity
between a and ¢, in sharp contrast to the exactly known properties of the system
which, by construction, has no nearest-neighbor correlation but only long-range
correlation. This example clearly demonstrates that the binding curves have enough
flexibility so that one can obtain a reasonable fit to the experimental data even when
unjustified assumptions [such as (H.4)] are introduced in the processing of the data.

I. A COMMENT ON THE NOMENCLATURE

There seems to be some confusion regarding adjectives appended to the various
binding constants, such as macroscopic, microscopic, intrinsic, perturbed, and
unperturbed. We use here a system of two different sites to clarify these concepts.

For a system of two sites a and b the individual binding isotherms (BI) are

k,C+k,C?
0 =
¢ 1+ (k,+k)C +k ,C*

(L)

and
k,C + k, C*

0, = 1.2
P+ (k, + K)C + Ky, CP .2

The total BI is 8,=0,+6,. Thus there are altogether three intrinsic binding
constants k , k,, and k ,,. We use the term intrinsic whenever the sites are specified.
Thus, k, is the intrinsic binding constant for the site a, while &, is the intrinsic
binding constant for the pair of sites  and b. When the sites are identical, then one
should take care to distinguish between the thermodynamic (sometimes referred to
as macroscopic) constant K, which is the binding constant to the firs site, and the
intrinsic (sometimes referred to as microscopic) binding constant K, /2, which
refers to a specific single site. In the case of two different sites, the thermodynamic
Jfirst constant, as measured from the total BI, is simply k, + k.

When one treats k, k;, and &k, as (phenomenological) equilibrium constants,
there is no way to analyze the “molecular content” of these quantities. Thus & is
related to the free energy of the process of binding a ligand to the site a. As such,
this free energy includes the interactions between the ligand L and all parts of the
adsorbent molecule, as well as with solvent molecules. In this approach one cannot
split k£, into two or more components.

The situation is entirely different when a molecular or a statistical mechanical
approach is adopted. In molecular terms the three intrinsic binding constants are
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defined by

O(a, 0) Q(0, b) 0(a,b) ,,
k=="—""—A, k= ok, == 1.3
“ 0, 0>x° 2700, O)K0 00, 0)}”" @3

where A, =A/C, A being the absolute activity of the ligand and C its molar
concentration in the reservoir. Clearly, each of these constants is related to the free
energy of a well-defined binding process.

In some cases one can factor k, in two or more factors. This can be done,
however, only when we use a molecular formulation of the binding constants, and
only in some particular cases. We present two such cases, discussed also by Hill
(1985).

1. Purely electrostatic interactions: Suppose we have a system with two
charges at sites a and b such that the interaction between the (charged) ligand L
and the adsorbent molecule is purely electrostatic and consists of two contributions
only (Fig. L.1),

U,= UL, a)+U,(L,b) (14)

where U, is the (total) interaction energy of L bound at a with the entire adsorbent
molecule, U (L, a) is the electrostatic interaction energy between L and the charge
at site a, and similarly U (L, b) is the electrostatic interaction energy between the
ligand L (bound on a) and the charge at b. In this case we may write

o _20.0,(L a)g, @, b)
‘ 00.0)

where k/(L, a) is the “intrinsic” binding constant to the site a when the charge on
site b is switched off; o includes the interaction of L with the other site b, The
constant k/(L, a) is sometimes referred to as the “intrinsic” (or unperturbed) binding
constant, and o is referred to as an interaction (or perturbation) parameter. We stress
that such a factorization is possible only when we express &, in terms of molecular
quantities. There is no way of applying such a factorization to k, when this is
determined experimentally. In fact, even in a molecular formulation such a factori-
zation is not always possible. For instance, when we have a fully rotating adsorbent

Ao = [g,(L, apglg, (L b) =k (L a)- o (L5)

=T =T
a b a b
U, = U, (L,a) + U, (L,b) Up = Uy (Lb) + U (La)

Figure.1. Binding of aligand @ to a two-site molecule. Only electrostatic interactions are considered.
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molecule, such as succinic acid, then

_[exel-B, @)+ EQde

1.6)
| expl-BE@®)1do

a

where U (0) is the ligand—adsorbent interaction energy when the internal rotational
angle is ¢, and E(¢) is the energy of the unbound adsorbent molecule at ¢. Clearly,
no such factorization as that in Eq. (1.5) is possible in this case. A similar treatment
may be given to U, as defined in Fig. I.1.

2. Two separable subunits: Suppose that a and b are two sites situated at two
different subunits A and B (Fig. [.2). One may define the “intrinsic” binding constant
to the isolated subunit A by

2
"7 0,0

The intrinsic binding constant to site A on the entire (dimer) adsorbent molecule is
now

Ao %))

_Q4.0), %L, |2@4.0) 2.0
47 000,0) 0,00) " | 0,@L) 00,0

= ¥, exp[-B(AG(D) — AG(A))] = K, exp[—B(AG’ — AG®)]
=k, exp(-BAAG] =k 0. (1.8)

where AAG is the difference between the binding free energy to site A on the dimer
AG(D) and the binding free energy to the isolated subunit A, AG(A). One may refer
to kj as an intrinsic binding constant (to the isolated subunit) and to o as a
perturbation factor. Again, we stress that such factorization is possible for this
particular example.

AG(D) L
P —
TAG° AG!

A G(A)

® ®-:r2®» 6

Figure I.2. Binding of a ligand L to a dimer (first row) and to a monomer A (second row). AG® and
AG’ are the association free energies for the two monomers, with and without a ligand, respectively.
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In general there is no obvious way of separating the adsorbent molecule into
two well-defined subunits, nor can one assume that all interactions between the
ligand and the adsorbent molecule consist of only two electrostatic interactions.
This is clearly the case for succinic acid or for DNA, where there is an infinite
number of ways to define an unperturbed intrinsic binding constant. Therefore, the
use of such factorization of k, should be abolished when a phenomenological
approach is adopted. On the other hand, when using a molecular approach one may
or may not use such factorization. In any case this is certainly not a necessity.

J.  AVERAGE BINDING CONSTANTS AND CORRELATION
FUNCTIONS

In Chapters 5 and 6 we encountered experimental systems with three and four
nonidentical sites. In many cases the individual intrinsic binding constants and the
correlations between ligands at specific sites is not known. The only information
available is the measurable thermodynamic binding constants. When we do not
know the values of the (different) individual binding constants, but we still calculate
the correlations as if the system consists of identical sites, we obtain average binding
constants and average correlations in the following sense.

For three different sites, denoted by a, b, and ¢, the relations between the
thermodynamic constants and intrinsic constants are

K =k, +k,+k (=3k)
Kle‘kaﬁk + Ky (= 3kyy) a.1
K\ KoKy = ke (= Ky
where the equality for the case of strictly identical sites appear in parentheses.

We now use the equalities in the parentheses of Eqgs. (J.1), but instead of &,
k,;, and k;,, we define the corresponding average quantities

k) =k, +k,+k,
k) =k +k, + k. J3.2)
<k111> - kabc

In terms of these average binding constants we define the average correlations, in
the same formal manner as we define correlations between specific sites:

(k11> 2
g1 = "y 3 X 3(8ut b T 8ucXie t 8bKYL)
J.
(&)= Fru) _ g Kikoks _ 278 X, 7
111 (k )3 K% ab c



336 Appendices
where the “mole fractions™ x; are defined by

U . (J.4)
"Xk k,+k,+k,

When the sites are identical in the weak sense, i.e., k, =k, =k, =k_, then x, = 1/3
for each i and Egs. (J.3) reduce to

<k1> = k1
(@11 =3 (8ap + 8ac + 850) 1.5
(8111 = 8ape

In this case there is, by definition, only one (first) intrinsic binding constant, hence
(k,) is the same as k;; but the three pair correlations can be different, hence (g,,) is
the arithmetic average of the three pair correlations.

For three strictly identical sites, Eqs. (J.3) reduce to

Kk =k, &10=811 €111 = 8ave J.6)

For a four-site system, such as hemoglobin, the sites are different. The analogue
of Egs. (J.1) is

K =k, +k,+k.+k,;(=4k)
K\K,=k, +k, +k,+k, +k,+k, (=06k,)
K\ KoKy = kope + Kopg & Kyea+ geq (= 4y11)
K\ KKKy = kgpea (& k)

da.n

where, again, the equalities for strictly identical sites appear in parentheses. As in
Eqgs. (J.2) we define the average quantities

Kk)y=k,+k,+k.+k,
6Ky} = Koy + Ko+ Ko+ Kipe Ky + Ky (1.8)
Aky11) = Kape + Kapa + Koca  Koea

<k1111> = Kopea
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If we introduce new mole fractions

k; k; (3.9)
X =
Xk k,+k+k +k,

then the average correlations can be expressed in the form

<k11> 8 K2 8
(g1 = ®? K3 (Barp + 8ackae + 8ad bt 8o e T 8ed X
<klll> K1K2K3
= = 16 =
(&111 (k1)3 Ki’

J.10)
= 1608 b XX1Xc + 8abd ¥a T 8bed ¥ Ko+ Bacd ¥ Xd)

<kllll> K1K2K3K4
(&)= =64 = 648 e X K5
1111 <k1>4 Kélt b d

where the rhs contains the true correlations for the specified sites.
When the sites are identical in the weak sense, then x; = 1/4 for each i and Eqgs.
(J.10) reduce to

1
<g11> =% (gab 8t 8uat 8t gcd)
1
(8111) =3 Bave + 8aba * 8bca + 8aca) (.11
81111 = 8abea = 81111

So in this case each average correlation is the arithmetic average of all the different
correlations of the same order. For strictly identical sites Eqs. (J.11) reduce to

=81 Gur=8&un & =8&un (J.12)

K. UTILITY FUNCTION IN A BINDING SYSTEM

We introduce here the general definition of the utility function for any binding
system.

The BI for any binding system can be written as 8 = 6(C; a), where C is the
ligand concentration and a is a set of parameters that could be molecular (such as
the mass or the dipole moment of the ligand) or macroscopic (such as the tempera-
ture or concentration of some solutes).
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Suppose we use the binding system as a means for transporting the ligand
between two stations; we load the system at some fixed ligand concentration C,
and unload it at a second concentration C,. For any given values of C, and C, we
define the utility function by the difference

U,=6(C,; a)—-6(Cy; a) K.D

Clearly, for a fixed set of parameters a, we have a single binding curve and the
utility function has a fixed value given by Eq. (K.1).

If, on the other hand, we can change one or more of the parameters, we can ask
for the value of that parameter for which U, is maximum, i.e., for which the system
will transport the ligand with maximum efficiency.

We consider the following two examples:

1. A one-site system: The Bl is

kC

0=
1+kC

(K.2)

We now view 0(C, k), where k is the varying parameter (which may be varied by
changing the mass of the ligand, the binding energy, or the temperature). We ask
for the maximum of U, for any fixed values of C, and C,, i.e., we solve

o, _ (K.3)
ok
for which we obtain
1
k= (K.4)
"ENCIG

Figure K.1 shows a family of BIs with k= 10/ (i = -2 to i = 2). Two vertical
lines are drawn at C; = 0.4 and C, = 0.6. These lines intersect each of the Bls at two
points. The maximum value of U, is obtained at k,,, = (0.4 X 0.6)1/2=2.04124,
ork,,, ~ 10°*!. In the figure the curve for i = 0.5 has the largest value of U, among
the curves drawn.

2. A two-site system: For a two-site system the Bl is

_ kC+RSC
1+ 2kC + k*SC?

Here, we have two parameters & and S. To simplify the examination of the
dependence on the cooperativity S, we change variables x = kC and rewrite Eq.
(K.5) as

(K.5)

X+ xS

“T+2x+25 &5
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Figure K.1. A family of BIs for a one-site system, with k = 10° where the values of i are indicated. The
two vertical lines at C, = 0.4 and C, = 0.6 are the two concentrations between which the ligand is
transported.

The utility function is now defined by

U,=0(x,, S)— 0(x,, S) (K.7)

Figure K.2 shows a family of BI with cooperativities S = 10’ where ~1 <
i £ 2. Itis evident that if we fix the interval Ax = 0.2 near the origin, i.e., between
x; = 0.001 and x, = 0.2, we find that the curve with the largest cooperativity will

6

1

0.4 0.6 0.8

a

FigureK.2. AsinFig.K.1, but for a two-site system withx=kCand S = 10°. (a) The two concentrations
C, and C, are chosen near the origin. (b) The two concentrations are as in Fig. K.1.
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also have the largest utility value (in Fig. K.2a this is § = 10%). This is not true if
the same interval is moved from the origin. In Fig. K.2b we have moved the
interval to between x; = 0.4 and x, = 0.6. In this particular interval the value of
S for which the utility function is maximal is S = 6.636. It is clear from Fig.
K.2b that the utility is not a monotonic function of S. In general, for any given
pair of concentrations x, and x,, the utility function (K.7) has a maximum value
as a function of S at

. ¥ +xN + x1x2(2\/_ -1 (K.8)
X1%5(% + X5 + X4X,)
where V = V(1 +x,)(1 +x,).

Clearly, S =1 so that we have a positive cooperativity for which the utility
function has a maximum value. On the other hand, when we choose x, = 0 then
U, becomes identical with 6(x,, S), and this is a monotonically increasing function
of $>1.

In the above two examples we have varied the parameters k and S and examined
the dependence of the utility function on these parameters. The utility function as
defined in Eq. (K.1) is the difference between 0 for two values of the concentration
on a single BI. One can conceivably define also utility functions between two or
more Bls. For instance, if at the loading terminal the temperature is T, and at the
unloading terminal it is T, then the utility function between C, and C, is

U,=6(C,, T,) - 6(C,, T)) (K.9)

where 6(C, T,) and 8(C, T,) are two different BIs. We examine an example of an
experimental system in Chapter 6 in connection with the loading and unloading of
oxygen on hemoglobin.



Abbreviations Used in the Text

BI
BP
BPG
CPF
FG
GPF
IHP

PF
rhs
HoO
Hol

Binding isotherm

Binding polynomial
D-2,3-bisphosphoglycerate
Canonical partition function
Functional group

Grand partition function
Inositol hexaposphate
Left-hand side

Partition function
Right-hand side
Hydrophobic

Hydrophilic

341



References

Ackers, G. K., Johnson, A. D., and Shea, M. A., 1982, Proc. Natl. Acad. Sci. U.S.A. 79:1129.

Adair, G. S., 1925, J. Biol. Chem. 63:529.

Antonini, E., and Brunori, M., 1971, Hemoglobin and Myoglobin in their Reactions with Ligands,
North-Holland, Amsterdam.

Ben-Naim, A., 1972, in Water and Aqueous Solutions, Chapter 11 (R. A. Horne, ed.), Wiley Interscience,
New York.

Ben-Naim, A., 1987, Solvation Thermodynamics, Plenum Press, New York.

Ben-Naim, A., 1992, Statistical Thermodynamics for Chemists and Biochemists, Plenum Press, New
York.

Ben-Naim, A., 1997, J. Chem. Phys. 107:10242.

Ben-Naim, A., 1998, J. Chem. Phys. 108:3630 and 6937.

Ben-Naim, A., and Mazo, R., 1993, J. Phys. Chem. 97:10829.

Bjerrum, N., 1923, Z. Phys. Chem. 106:219.

Bohbot, Y., and Ben-Naim, A., 1995, J. Phys. Chem. 99:14544.

Bondi, A., 1968, Physical Properties of Molecular Crystals, Ligands and Gases, Wiley, New York.

Bradsley, W. G., and Waight, R. D., 1978, J. Theor. Biol. 72:321.

Briggs, W. E., 1984, J. Theor. Biol. 108:77

Colombo, M. F, Rau, D. C., and Parsegian, A., 1992, Science 256:655.

DiCera, E., 1996, “Thermodynamic theory of site-specific binding processes,” in Biological Macro-
molecules, Cambridge University Press.

Eberson, L., 1959, Acta Chem. Scand. 13:211, 224.

Eberson, L., 1992, Chapter 6 in Carboxylic Acids and Esters (S. Patai, ed.), Wiley, New York.

Edsall, J. T., and Wyman, J., 1958, Biophysical Chemistry, Academic Press, New York.

Eigen, M., 1967, Kinetics of Reaction Control and Information Transfer in Enzymes and Nucleic Acids,
Proc. 5th Nobel Symp., Interscience, Wiley, New York.

Eliel, E. L., and Wilen, S. H., 1994, Stereochemistry of Organic Compounds, Wiley, New York.

Feller, W., 1957, Introduction to Probability Theory and Its Application, Vol. I, Wiley, New York.

Gane, R., and Ingold, C. K., 1931, J. Chem. Soc., 2153.

Gerhart, J. C., 1970, Current Topics in Cellular Regulation, Vol. 2, Academic Press, New York, p. 275.

Gerhart, J. C., and Pardee, A. B., 1961, Fed. Proc. 20:224.

Gerhart, J. C., and Pardee, A. B., 1962, J. Biol. Chem. 237:891.

Gerhart, J. C., and Pardee, A. B., 1963, Cold Spring Harbor Symposia on Quantum Biology 28:491.

Gerhart, J. C., and Schachman, H. K., 1965, Biochemistry 4:127.

Gerhart, J. C., and Schachman, H. K., 1968, Biochemistry 7:144.

343



344 References

Harned, H. S., and Owen, B. B., 1958, The Physical Chemistry of Electrolyte Solutions, Reinhard, New
York.

Hill, A. V, 1910, J. Physiol. (London) 40:iv.

Hill, T. L., 1943a, J. Chem. Phys. 11:545.

Hill, T. L., 1943b, J. Chem. Phys. 11:552.

Hill, T. L., 1944a, J. Chem. Phys. 12:56.

Hill, T. L., 1944b, J. Chem. Phys. 12:147.

Hill, T. L., 1960, An Introduction to Statistical Thermodynamics, Addison-Wesley, Reading, Mass.

Hill, T. L., 1985, Cooperativity Theory in Biochemistry, Steady State and Equilibrium Systems,
Springer-Verlag, New York.

Hochschild, A., and Ptashne, M., 1988, Nature 336:353.

Imai, K., 1982, Allosteric Effects in Haemoglobin, Cambridge University Press, London.

Imai, K., and Yonetani, T., 1975, J. Biol. Chem. 250:7093.

Johnson, A. D., Meyer, B. I, and Ptashne, M., 1979, Proc. Natl. Acad. Sci. U.S.A. 76:5061.

Jones, J., and Soper, F. G., 1936, J. Chem. Soc. 133.

Kantrowitz, E. R., and Lipscomb, W. N., 1988, Science 241:669.

Kantrowitz, E. R., and Lipscomb, W. N., 1990, Trends in Biochem. Sci. 15:53.

Kirkwood, J. G., 1935, J. Chem. Phys. 3:300.

Kirkwood, J. G., and Westheimer, F. H., 1938, J. Chem. Phys. 6:506.

Koblan, K. S., Bain, D. L., Beckett, D., Shea, M. A., and Ackers, G. K., 1992, Methods in Enzymology,
Academic Press, New York, p. 405.

Kortum, G., Vogel, W., and Andrussow, K., 1961, Dissociation Constants of Organic Acids in Aqueous
Solutions, Butterworths, London.

Koshland, D. E., 1958, Proc. Natl. Acad. Sci. Wash. 44:98.

Koshland, D. E., 1962, in: Horizons in Biochemistry, New York, Academic Press, p. 265.

Koshland, D. E., Nemethy, G., and Filmer, D., 1966, Biochemistry 5:365.

Kondelka, G. B., and Carlson, P, 1992, Nature 355:89.

Kondelka, G. B., Harbury, P., Harrison, S. C., Ptashne, M., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:4633.

Krause, K. L., Volz, K. W., and Lipscomb, W. N., 1985, Proc. Natl. Acad. Sci. U.S.A. 82:1643.

Langmuir, J., 1918, J. Am. Chem. Soc. 40:1361.

Levitzki, A., 1978, Quantitative Aspects of Allosteric Mechanisms, Springer-Verlag, New York.

McCoy, L. L., 1967, J. Am. Chem. Soc. 89:1673.

McDaniel, D. H., and Brown, H. C., 1953, Science 118:370.

Minton, A. P, and Saroff, H. A., 1974, Biophys. Chem. 2:296.

Monod, J., Changeux, J. P,, and Jacob, E, 1963, J. Mol. Biol. 6:306.

Monod, J., Wyman, J., and Changeux, J. P, 1965, J. Mol. Biol. 12:88.

Newell, O. J., Markby, D. W., and Schachman, H. K., 1989, J. Biol. Chem. 264:2476.

Papoulis, A., 1965, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York.

Pauling, L., 1935, “The oxygen equilibrium of hemoglobin and its structural interpretation,” Proc. Natl.
Acad. Sci. U.S.A. 21:186.

Perutz, M. F,, 1970, Nature 228:726.

Perutz, M. F,, 1990, Mechanisms of Cooperativity and Allosteric Regulation in Proteins, Cambridge
University Press, New York.

Ptashne, M., 1992, A Genetic Switch: Gene Control and Phage A, Cell Press and Blackwell, Scientific
Publ., Cambridge, Mass.

Richards, K. E., and Williams, R. C., 1972, Biochemistry 11:3393.

Robinson, R. A., and Stokes, R. H., 1959, Electrolyte Solutions, Butterworths, London.

Saroff, H. A., 1993, Biopolymers 33:1327.

Saroff, H. A., 1987, Arch .Biochem. Biophys. 256:110.

Saroff, H. A., and Minton, A. P., 1972, Science 175:1253.



References 345

Schachman, H. K., 1988, J. Biol. Chem. 263:18583.

Senear, D. F,, Brenowitz, M., Shea, M. A, and Ackers, G. K., 1986, Biochemistry 25:7344.

Steitz, T. A., 1990, Quart. Rev. Biophys. 23:205.

Warren, S. G., Edwards, B. F. P, Evans, D. R., Wiley, D. C., and Lipscomb, W. N, 1973, Proc. Natl.
Acad. Sci. US.A. 70:1117.

Westheimer, F, H., and Kirkwood, J. G., 1938, J. Chem. Phys. 6:513.

Westheimer, F. H., and Shookhoff, W. M., 1939, J. Am. Chem. Soc. 61:555.

Whitehead, E. P,, 1980, J. Theor. Biol. 86:45.

Whitehead, E. P, 1980, J. Theor. Biol. 87:153.

Wiley, D. C., and Lipscomb, W. N., 1968, Nature 218:1119.

Wiley, D. C., Evans, D. R, Warren, S. G., McMurray, C. H., Edwards, B. F. P, Franks, W. A., and
Lipscomb, W. N., 1971, Cold Spring Harbor Symp. Quant. Biol. 36:285.

Wyman, J., 1964, Adv. Protein Chem. 19:223.

Wyman, J., and Gill, S. J., 1990, Binding Linkage: Functional Chemistry of Biological Macromolecules,
University Science Book, Mill Valley, CA.

Yates, R. A., and Pardee, A. B., 1956, J. Biol. Chem. 221:757.



Index

Index terms

A

Absolute activity

Adair equation

Additivity of direct interaction
Allosteric regulation
Aspartate transcarbamoylase

Average correlation

B
Binding constants
average
for alkylated succinic acid
for benzen polycarboxylic acids
conditional
definition of
effective
of equilibrated and frozen-in system
intrinsic
nonintrinsic
for normal amines
for normal carboxylic acids
and probability

for protons in amino acids

11
209
145
264
277
164

335
131
174
31
29
99
62
29
34
47
44
30
121

Links

175

201

204
33

142

48
46

123

This page has been reformatted by Knovel to provide easier navigation. ‘

206

193

347



348
Index terms

Binding constants (Continued)

for protons in diamines

for proteins on DNA

of substituted acetic acid

thermodynamic

thermodynamic interpretation of

for two protons on dicarboxylic acids
Binding isotherm

definition of

for equilibrated system

for frozen-in system

general form

for hemoglobin

individual

Langmuir
for mixtures of adsorbing molecules
for mixtures of ligands
for normal amines
for normal carboxylic acids
and probabilities
for proteins and DNA
relation to the partition function
of system with conformational changes
in terms of thermodynamic constants
for three-site system
Binding of protons to a two-site system

Binding polynomial

120
184
49
34
31
114

25
62
62
25
212
26
177
28
40
41
47
43
27
177
26
56
35
146
114

vii

Links

119

26

30
188
39

104

147

37

This page has been reformatted by Knovel to provide easier navigation.

32



Index terms
C

Chemical potential
Competitive regulation
Concerted model
Conformational states

Cooperativity

in binding repressor to operator

and correlation

definition

direct

in hemoglobin

indirect

and interaction coefficient

positive and negative

solvent effects on

between two protons

in two-site systems
Correlations

in alkylated succinic acid

in o, ® alkane diamines

in o, o dicarboxylic acids

average

and conformational changes

and cooperativity

and Coulombing interaction

and density of interaction

direct

effective

between four protons

for fully rotating model

11
263
112

12

184
70
68
73

207
82
71
72

281

117
68

131
120
119
164

86
105
118
201

73

99
204
127

Links

211

105

201
105

120

145

This page has been reformatted by Knovel to provide easier navigation.

349

336
149



350
Index terms

Correlations (Continued)
general definition
in hemoglobin

indirect

nonadditivity of
in 1-D system

long range

nonadditivity

pair correlation

among protons

solvent effect on

temperature dependence
between three protons

in three-site systems
transmission across boundaries
triplet correlation

between two protons

D

Density of interaction
Dipole-dipole interaction

Direct cooperativity

E
Energy levels

23
213

82
149
147
230
151
174
153

309
175
287
151
173
148
155

117

201
14
73

12

Links

69

106

162
179
179

24

162

234
173

203

This page has been reformatted by Knovel to provide easier navigation.

107

163

280

309
174



Index terms
G

Grand partition function
construction of
for four-site system
linear model
for localized systems
for mixture of ligands
for non-ideal ligand
and probabilities
for regulation system
square model
for system with conformational changes
tetrahedral model
for three-site systems
for two types of sites

H

Hemoglobin
Adair equation for
A.V. Hill model
binding isotherms
cooperativities
experimental data
linear model
Pauling model
square model
tetrahedral model
utility function

Hill coefficient
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|

Identical sites
in strict sense
in weak sense
Independence between subunits
Induced conformational changes
and correlation
extent of, in single-site system
in three-site systems
in two-site systems
in two subunits
Interaction coefficient
Interaction energy
average dipole-dipole
dipole-dipole
direct interaction
pairwise additivity
subunit-subunit

Intrinsic binding constant

K

Koshland, Nemethy, and Filmer model

L

Langmuir isotherm
generalizations of

Linear systems
long-range correlation
matrix method

partition function of
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Index terms

Long-range correlation

M
Monod Wyman and Changeux model

N

Nonadditivity of correlation

Nonideality of the ligand

0]

Occupancy states

P

Partition function
construction of
for four-site system
fully rotating model
general form
relation with thermodynamics
for system with conformational changes
for three-site system
Probabilities
conditional
of disjoint events
of independent events
marginal
of molecular events

in system with conformational changes
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Index terms

R

Regulatory curve
Regulatory enzymes

aspartate transcarbamoylase

S

Sequential model
Solvation Gibbs energy
Solvent effects
Spurious cooperativity
in alkylated succinic acid
in single-site systems
in two-site systems
Stability condition
States of the system
conformational

occupancy

T
Thermodynamic binding constants
Titration curve

for carboxylic acid

relation to binding isotherm

U
Utility function
for hemoglobin

for regulatory enzymes
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