

Django 3 Web Development
Cookbook
Fourth Edition

Actionable solutions to common problems in Python web
development

Aidas Bendoraitis
Jake Kronika

BIRMINGHAM - MUMBAI

Django 3 Web Development Cookbook
Fourth Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Ravit Jain
Acquisition Editor: Joshua Nadar
Content Development Editor: Keagan Carneiro
Senior Editor: Hayden Edwards
Technical Editor: Suwarna Patil
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Nilesh Mohite

First published: October 2014
Second edition: January 2016
Third Edition: October 2018
Fourth Edition: March 2020

Production reference: 1230320

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83898-742-8

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Aidas Bendoraitis has been professionally building websites for the past 18 years. For the
last 14 years, he has been working at a design company, studio 38 pure communication, in
Berlin. Together with a small dedicated team, he has mostly used Django in the backend
and jQuery in the frontend to create cultural and touristic web platforms.

Among different side projects, he is bootstrapping a SaaS business with strategic prioritizer
1st things 1st.

Aidas Bendoraitis is active on Twitter and other social media under the username
DjangoTricks.

I want to thank my wife, Sofja, and son, Joris, and also other family members and friends
for their support while writing this book. I am grateful to my colleagues for sharing
knowledge and creating exciting projects together. Also, I want to thank the Django
community for great, friendly conferences, and meetups. Last but not least, I appreciate
Vilnius University, for planting the initial seeds of my career.

Jake Kronika, a software engineer with 25 years of experience. He has been working with
Python since 2005 and Django since 2007. Evolving in lockstep with the web development
industry, his skill set encompasses HTML, CSS, full-stack JavaScript, Python, Django, React,
Node.js, Ruby on Rails, and several other technologies.

Currently a software architect and development team lead, Jake collaborates with
designers, business stakeholders, and engineers around the globe to build robust
applications. In his spare time, he provides full-spectrum web services as a freelancer.

In addition to authoring this book, Jake has reviewed several other Packt titles – most
recently, Django 3 By Example, Third Edition by Antonio Melé.

I would not have accomplished nearly all that I have if it were not for the support and
encouragement of my family, friends, and professional connections. In particular, I would
like to thank my wife, Veronica, and my children, Mykaela and Kaden, whose love and
devotion continue to be an inspiration daily. Also, I want to recognize my childhood
friend, Andrew, without whom I may not have built my first website, thus discovering
software.

About the reviewers
Darian Schramm has over 14 years of experience working on the web with Python. Starting
as a systems administrator in the university CS department and continuing his work at
agencies in New York City, San Diego, CA, and beyond. Darian has used Python and other
technologies as a tool for web development, system administration tasks, statistics
gathering, and everything in between. His career path began with Zope, then on to Plone,
and then eventually, Flask, Django, and Pyramid.

Scott Sharkey is President of LANshark Consulting Group, LLC. in Troy, Ohio. He has a
master's degree in computer science from Ohio State University and has been working in
the industry since 1984, having founded LANshark in 1990. He specializes in remote work
using Django/Python for web application development. During his long career, he has
worked on projects as diverse as an in-car data collection system for IndyCar, TurboTax Pro
for Intuit, two dating sites, an Internet of Things data collection application, several medical
applications, and many other systems, along with publishing over 30 software packages
through LANshark.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started with Django 3.0 8
Introduction 8
Technical requirements 9
Working with a virtual environment 9

Getting ready 10
How to do it... 10
How it works... 11
See also 11

Creating a project file structure 11
Getting ready 12
How to do it... 12
How it works... 14
There's more... 15
See also 15

Handling project dependencies with pip 16
Getting ready 17
How to do it... 17
How it works... 18
There's more... 19
See also 19

Configuring settings for development, testing, staging, and
production environments 19

Getting ready 20
How to do it... 20
How it works... 21
See also 21

Defining relative paths in the settings 22
Getting ready 22
How to do it... 22
How it works... 23
See also 23

Handling sensitive settings 23
Getting ready 23
How to do it... 24
How it works... 24
There's more... 25
See also 26

Including external dependencies in your project 26

Table of Contents

[ii]

Getting ready 27
How to do it... 27
How it works... 28
See also 28

Setting up STATIC_URL dynamically 29
Getting ready 29
How to do it... 29
How it works... 30
There's more... 30
See also 32

Setting UTF-8 as the default encoding for the MySQL configuration 32
Getting ready 32
How to do it... 32
How it works... 33
There's more... 33
See also 33

Creating the Git ignore file 34
Getting ready 34
How to do it... 34
How it works... 35
See also 36

Deleting Python-compiled files 36
Getting ready 36
How to do it... 36
How it works... 36
There's more... 37
See also 37

Respecting the import order in Python files 37
Getting ready 37
How to do it... 37
How it works... 38
There's more... 38
See also 38

Creating an app configuration 38
Getting ready 39
How to do it... 39
How it works... 40
There's more... 41
See also 41

Defining overwritable app settings 41
Getting ready 41
How to do it... 42
How it works... 44
See also 44

Table of Contents

[iii]

Working with Docker containers for Django, Gunicorn, Nginx, and
PostgreSQL 44

Getting ready 45
How to do it... 45
How it works... 49
There's more... 52
See also 53

Chapter 2: Models and Database Structure 54
Introduction 54
Technical requirements 55
Using model mixins 55

Getting ready 55
How to do it... 55
How it works... 56
There's more... 56
See also 57

Creating a model mixin with URL-related methods 58
Getting ready 58
How to do it... 58
How it works... 60
There's more... 61
See also 61

Creating a model mixin to handle creation and modification dates 61
Getting ready 61
How to do it... 62
How it works... 62
See also 63

Creating a model mixin to take care of meta tags 63
Getting ready 63
How to do it... 64
How it works... 66
See also 66

Creating a model mixin to handle generic relations 67
Getting ready 67
How to do it... 68
How it works... 71
See also 71

Handling multilingual fields 71
Getting ready 72
How to do it... 72
How it works... 76
See also 78

Working with model translation tables 78
Getting ready 78

Table of Contents

[iv]

How to do it... 78
How it works... 82
See also 83

Avoiding circular dependencies 83
Getting ready 83
How to do it... 84
See also 85

Adding database constraints 86
Getting ready 86
How to do it... 86
How it works... 87
There's more... 87
See also 89

Using migrations 89
Getting ready 89
How to do it... 90
How it works... 91
There's more... 92
See also 92

Changing a foreign key to the many-to-many field 93
Getting ready 93
How to do it... 94
How it works... 97
There's more... 97
See also 98

Chapter 3: Forms and Views 99
Introduction 99
Technical requirements 100
Creating an app with CRUDL functions 100

Getting ready 100
How to do it... 103
How it works... 106
There's more... 107
See also 107

Saving the author of a model instance 107
Getting ready 108
How to do it... 108
How it works... 109
See also 109

Uploading images 109
Getting ready 110
How to do it... 110
How it works... 112
See also 113

Table of Contents

[v]

Creating a form layout with custom templates 114
Getting ready 114
How to do it... 116
How it works... 118
See also 120

Creating a form layout with django-crispy-forms 120
Getting ready 121
How to do it... 121
How it works... 124
There's more... 125
See also 125

Working with formsets 125
Getting ready 125
How to do it... 126
How it works... 133
There's more... 136
See also 136

Filtering object lists 136
Getting ready 137
How to do it... 138
How it works... 143
See also 143

Managing paginated lists 144
Getting ready 144
How to do it... 144
How it works... 147
See also 148

Composing class-based views 148
Getting ready 148
How to do it... 148
How it works... 150
There's more... 151
See also 151

Providing Open Graph and Twitter Card data 151
Getting ready 151
How to do it... 151
How it works... 154
See also 154

Providing schema.org vocabularies 155
Getting ready 155
How to do it... 155
How it works... 157
See also 157

Generating PDF documents 158
Getting ready 158

Table of Contents

[vi]

How to do it... 159
How it works... 162
See also 163

Implementing a multilingual search with Haystack and Whoosh 163
Getting ready 164
How to do it... 164
How it works... 169
See also 170

Implementing a multilingual search with Elasticsearch DSL 170
Getting ready 171
How to do it... 171
How it works... 178
See also 180

Chapter 4: Templates and JavaScript 181
Introduction 181
Technical requirements 182
Arranging the base.html template 182

Getting ready 182
How to do it... 183
 How it works... 185
See also 186

Using Django Sekizai 186
Getting ready 187
How to do it... 188
How it works... 189
See also 189

Exposing settings in JavaScript 189
Getting ready 189
How to do it... 190
How it works... 192
See also 193

Using HTML5 data attributes 193
Getting ready 193
How to do it... 196
How it works... 202
See also 205

Providing responsive images 205
Getting ready 205
How to do it... 205
How it works... 208
There's more... 211
See also 211

Implementing a continuous scrolling 211
Getting ready 211

Table of Contents

[vii]

How to do it... 212
How it works... 216
There's more... 219
See also 219

Opening object details in a modal dialog 219
Getting ready 220
How to do it... 220
How it works... 222
See also 224

Implementing the Like widget 224
Getting ready 225
How to do it... 226
How it works... 231
See also 232

Uploading images via Ajax 233
Getting ready 233
How to do it... 233
How it works... 242
There's more... 244
See also 245

Chapter 5: Custom Template Filters and Tags 246
Introduction 246
Technical requirements 247
Following conventions for your own template filters and tags 247
Creating a template filter to show how many days have passed
since a post was published 248

Getting ready 249
How to do it... 249
How it works... 250
There's more... 251
See also 251

Creating a template filter to extract the first media object 251
Getting ready 251
How to do it... 251
How it works... 252
There's more... 253
See also 253

Creating a template filter to humanize URLs 254
Getting ready 254
How to do it... 254
How it works... 255
See also 255

Creating a template tag to include a template, if it exists 255
Getting ready 256

Table of Contents

[viii]

How to do it... 256
How it works... 257
There's more... 259
See also 259

Creating a template tag to load a QuerySet in a template 260
Getting ready 260
How to do it... 261
How it works... 263
See also 265

Creating a template tag to parse content as a template 265
Getting ready 265
How to do it... 266
How it works... 267
See also 268

Creating template tags to modify request query parameters 268
Getting ready 269
How to do it... 269
How it works... 271
See also 273

Chapter 6: Model Administration 274
Introduction 274
Technical requirements 274
Customizing columns on the change list page 275

Getting ready 275
How to do it... 277
How it works... 279
See also 280

Creating sortable inlines 281
Getting ready 281
How to do it... 282
How it works... 283
See also 284

Creating admin actions 284
Getting ready 285
How to do it... 285
How it works... 287
See also 289

Developing change list filters 289
Getting ready 289
How to do it... 290
How it works... 291
See also 292

Changing the app label of a third-party app 292
Getting ready 293

Table of Contents

[ix]

How to do it... 293
How it works... 294
See also 294

Creating a custom accounts app 295
Getting ready 295
How to do it... 295
How it works... 299
See also 302

Getting user Gravatars 302
Getting ready 303
How to do it... 303
How it works... 309
There's more... 310
See also 310

Inserting a map into a change form 310
Getting ready 310
How to do it... 315
How it works... 323
See also 327

Chapter 7: Security and Performance 328
Introduction 328
Technical requirements 329
Making forms secure from Cross-Site Request Forgery (CSRF) 329

Getting ready 329
How to do it... 329
How it works... 331
There's more... 332
See also 333

Making requests secure with Content Security Policy (CSP) 333
Getting ready 333
How to do it... 334
How it works... 335
See also 337

Using django-admin-honeypot 338
Getting ready 338
How to do it... 338
How it works... 339
There's more... 340
See also 341

Implementing password validation 342
Getting ready 342
How to do it... 342
How it works... 344
There's more... 346

Table of Contents

[x]

See also 346
Downloading authorized files 346

Getting ready 346
How to do it... 346
How it works... 349
See also 350

Adding a dynamic watermark to images 350
Getting ready 350
How to do it... 350
How it works... 353
See also 354

Authenticating with Auth0 355
Getting ready 355
How to do it... 356
How it works... 361
See also 362

Caching the method return value 362
Getting ready 362
How to do it... 362
How it works... 363
There's more... 364
See also 365

Using Memcached to cache Django views 366
Getting ready 366
How to do it... 366
How it works... 367
See also 368

Using Redis to cache Django views 368
Getting ready 368
How to do it... 369
How it works... 370
There's more... 371
See also 371

Chapter 8: Hierarchical Structures 372
Introduction 372
Technical requirements 374
Creating hierarchical categories with django-mptt 375

Getting ready 375
How to do it... 376
How it works... 377
See also 379

Creating a category administration interface with django-mptt-
admin 380

Getting ready 380

Table of Contents

[xi]

How to do it... 381
How it works... 381
See also 384

Rendering categories in a template with django-mptt 385
Getting ready 385
How to do it... 385
How it works... 387
There's more... 388
See also 388

Using a single selection field to choose a category in forms with
django-mptt 388

Getting ready 389
How to do it... 389
How it works... 391
See also 392

Using a checkbox list to choose multiple categories in forms with
django-mptt 392

Getting ready 392
How to do it... 392
How it works... 397
See also 399

Creating hierarchical categories with django-treebeard 399
Getting ready 400
How to do it... 401
How it works... 402
There's more... 404
See also 404

Creating a basic category administration interface with django-
treebeard 404

Getting ready 405
How to do it... 405
How it works... 406
See also 409

Chapter 9: Importing and Exporting Data 410
Introduction 410
Technical requirements 410
Importing data from a local CSV file 411

Getting ready 411
How to do it... 413
How it works... 415
See also 417

Importing data from a local Excel file 417
Getting ready 418
How to do it... 418

Table of Contents

[xii]

How it works... 420
See also 421

Importing data from an external JSON file 422
Getting ready 422
How to do it... 424
How it works... 427
See also 428

Importing data from an external XML file 428
Getting ready 428
How to do it... 430
How it works... 432
There's more... 434
See also 434

Preparing paginated sitemaps for search engines 434
Getting ready 434
How to do it... 436
How it works... 437
There's more... 438
See also 439

Creating filterable RSS feeds 439
Getting ready 439
How to do it... 442
How it works... 444
See also 445

Using Django REST framework to create an API 445
Getting ready 446
How to do it... 446
How it works... 448
See also 452

Chapter 10: Bells and Whistles 453
Introduction 453
Technical requirements 454
Using the Django shell 454

Getting ready 454
How to do it... 455
How it works... 459
See also 459

Using database query expressions 460
Getting ready 460
How to do it... 462
How it works... 465
See also 466

Monkey patching the slugify() function for better
internationalization support 467

Table of Contents

[xiii]

Getting ready 467
How to do it... 467
How it works... 468
There's more... 468
See also 469

Toggling the Debug toolbar 469
Getting ready 470
How to do it... 470
How it works... 472
See also 474

Using ThreadLocalMiddleware 475
Getting ready 475
How to do it... 475
How it works... 476
See also 477

Using signals to notify administrators about new entries 478
Getting ready 478
How to do it... 478
How it works... 480
See also 481

Checking for missing settings 481
Getting ready 481
How to do it... 481
How it works... 483
See also 484

Chapter 11: Testing 485
Introduction 485
Technical requirements 486
Testing views with mock 486

Getting ready 486
How to do it... 487
How it works... 489
There's more... 490
See also 490

Testing the user interface with Selenium 490
Getting ready 490
How to do it... 491
How it works... 494
See also 496

Testing APIs created using Django REST framework 496
Getting ready 496
How to do it... 496
How it works... 501
See also 501

Table of Contents

[xiv]

Ensuring test coverage 501
Getting ready 502
How to do it... 502
How it works... 504
See also 504

Chapter 12: Deployment 505
Introduction 505
Technical requirements 506
Releasing a reusable Django app 506

Getting ready 506
How to do it... 507
How it works... 510
See also 510

Deploying on Apache with mod_wsgi for the staging environment 511
Getting ready 511
How to do it... 512
How it works... 520
See also 521

Deploying on Apache with mod_wsgi for the production
environment 522

Getting ready 522
How to do it... 523
How it works... 527
See also 528

Deploying on Nginx and Gunicorn for the staging environment 528
Getting ready 529
How to do it... 529
How it works... 538
See also 539

Deploying on Nginx and Gunicorn for the production environment 540
Getting ready 540
How to do it... 541
How it works... 544
See also 546

Chapter 13: Maintenance 547
Introduction 547
Technical requirements 547
Creating and restoring MySQL database backups 548

Getting ready 548
How to do it... 548
How it works... 551
See also 552

Creating and restoring PostgreSQL database backups 553

Table of Contents

[xv]

Getting ready 553
How to do it... 553
How it works... 556
See also 557

Setting up cron jobs for regular tasks 558
Getting ready 558
How to do it... 558
How it works... 560
There's more... 561
See also 561

Logging events for further introspection 561
Getting ready 562
How to do it... 562
How it works... 565
See also 566

Getting detailed error reporting via email 566
Getting ready 566
How to do it... 567
How it works... 568
There's more... 569
See also 569

Other Books You May Enjoy 570

Index 573

Preface
The Django framework was specifically engineered to help developers construct robust,
powerful web applications quickly and efficiently. It takes much of the tedious work and
repetition out of the process, solving questions such as project structure, database object-
relational mapping, templating, form validation, sessions, authentication, security, cookie
management, internationalization, basic administration, and an interface to access data
from scripts. Django is built upon the Python programming language, which itself enforces
clear and easy-to-read code. Besides the core framework, Django has been designed to
enable developers to create third-party modules that can be used in conjunction with your
own apps. Django has an established and vibrant community where you can find source
code, get help, and contribute.

Django 3 Web Development Cookbook, Fourth Edition, will guide you through every stage of
the web development process with the Django 3.0 framework. We start with the
configuration and structuring of the project. Then, you will learn how to define the
database structure with reusable components, and how to manage it throughout the
lifetime of your project. The book will move on to the forms and views used to enter and
list the data. We'll proceed with responsive templates and JavaScript to augment the user
experience. Then we will enhance Django's template system with custom filters and tags to
be more flexible for frontend development. After this, you will tailor the administration
interface in order to simplify the workflow of content editors. From there, we shift focus to
the stability and robustness of your project, helping to secure and optimize your apps.
Next, we examine how to efficiently store and manipulate hierarchical structures. Then we
will demonstrate that collecting data from different sources and providing your own data
to others in a range of formats is simpler than you might think. We will then introduce you
to some tricks for programming and debugging your Django project code. We will move on
with a few of the available options for testing your code. Just before the end of the book, we
will show you how to deploy your project to production. Lastly, we will complete the
development cycle by setting common maintenance practices.

In contrast to many other Django books, which are concerned only with the framework
itself, this book covers several important third-party modules that will equip you with the
tools necessary for complete web development. Additionally, we provide examples using
the Bootstrap frontend framework and the jQuery JavaScript library, both of which simplify
the creation of advanced and complex user interfaces.

Preface

[2]

Who this book is for
If you have experience with Django and are looking to enhance your skills, this book is for
you. We have designed the content for intermediate and professional Django developers
who are aiming to build robust projects that are multilingual, secure, responsive, and can
scale over time.

What this book covers
Chapter 1, Getting Started with Django 3.0, illustrates the fundamental setup and
configuration steps necessary for any Django project. We cover virtual environments,
Docker, and project settings across environments and databases.

Chapter 2, Models and Database Structure, explains how you can write reusable code for use
in the construction of your models. The first things to define with new apps are the data
models, which form the backbone of any project. You will learn how to save multilingual
data in the database. Also, you will learn how to manage database schema changes and
data manipulations using Django migrations.

Chapter 3, Forms and Views, shows ways to construct views and forms for data display and
editing. You will learn how to use microformats and other protocols to make your pages
more readable by machines for representations in search results and social networks. You
will also learn how to generate PDF documents and implement multilingual search.

Chapter 4, Templates and JavaScript, covers practical examples of using templates and
JavaScript together. We combine these facets like so: rendered templates present
information to the user, and JavaScript provides crucial enhancements in modern websites
for a rich user experience.

Chapter 5, Custom Template Filters and Tags, reviews how to create and use your own
template filters and tags. As you will see, the default Django template system can be
extended to meet template developers' needs.

Chapter 6, Model Administration, explores the default Django administration interface and
guides you through extending it with your own functionality.

Chapter 7, Security and Performance, delves into several ways, both inherent to and external
from Django, to secure and optimize your projects.

Preface

[3]

Chapter 8, Hierarchical Structures, examines tree-like structure creation and manipulation in
Django, and the benefits of incorporating the django-mptt or treebeard libraries into
such workflows. This chapter shows you how to use both for the display and
administration of hierarchies.

Chapter 9, Importing and Exporting Data, demonstrates the transfer of data to and from
different formats, as well as its provision between various sources. Within this chapter,
custom management commands are used for data imports, and we utilize sitemaps, RSS,
and REST APIs for data exports.

Chapter 10, Bells and Whistles, shows some additional snippets and tricks that are useful in
everyday web development and debugging.

Chapter 11, Testing, introduces different types of testing and provides a few characteristic
examples of how to test your project code.

Chapter 12, Deployment, deals with third-party app deployment to the Python Package
Index and Django project deployment to a dedicated server.

Chapter 13, Maintenance, explains how to create database backups, set cron jobs for regular
tasks, and log events for further inspection.

To get the most out of this book
To develop with Django 3.0 using the examples in these pages, you will need the following:

Python 3.6 or higher
The Pillow library for image manipulation
Either the MySQL database and the mysqlclient binding library, or the
PostgreSQL database with the psycopg2-binary binding library
Docker Desktop or Docker Toolbox for complete system virtualization, or a built-
in virtual environment to keep each project's Python modules separated
Git for version control

Software/hardware covered in the book OS recommendations
Python 3.6 or higher
Django 3.0.X
PostgreSQL 11.4 or higher/MySQL 5.6
or higher

Any recent Unix-based operating system, such as
macOS or Linux (although it is possible to develop
on Windows too)

Preface

[4]

All other specific requirements are mentioned separately in each recipe.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copy/pasting of code or incorrect
indentation.

For editing project files you can use any code editor, but we recommend PyCharm
(https://www.jetbrains. com/ pycharm/) or Visual Studio Code (https:/ /code.
visualstudio.com/).

I would be thrilled if, after successfully publishing your Django project, you would share
your results, learnings, and outcomes with me by email at aidas@bendoraitis.lt.

All code examples have been tested using Django 3. However, they
should work with future version releases as well.

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
mailto:aidas@bendoraitis.lt
http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com

Preface

[5]

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Django- 3-Web- Development- Cookbook- Fourth- Edition. In case there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "For this recipe to work, you will need to have the contenttypes app installed."

A block of code is set as follows:

requirements/dev.txt
-r _base.txt
coverage
django-debug-toolbar
selenium

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

class Idea(CreationModificationDateBase, MetaTagsBase, UrlBase):
 title = models.CharField(
 _("Title"),
 max_length=200,
)
 content = models.TextField(
 _("Content"),
)

Any command-line input or output is written as follows:

(env)$ pip install -r requirements/dev.txt

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"We can see here that the upload-related action buttons are also replaced with
a Remove button."

https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to increase your
knowledge of it.

Preface

[7]

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Getting Started with Django 3.0

In this chapter, we will cover the following topics:

Working with a virtual environment
Creating a project file structure
Handling project dependencies with pip
Configuring settings for development, testing, staging, and production
environments
Defining relative paths in the settings
Handling sensitive settings
Including external dependencies in your project
Setting up STATIC_URL dynamically
Setting UTF-8 as the default encoding for the MySQL configuration
Creating the Git ignore file
Deleting Python-compiled files
Respecting the import order in Python files
Creating an app configuration
Defining overwritable app settings
Working with Docker containers for Django, Gunicorn, Nginx, and PostgreSQL

Introduction
In this chapter, we will see a few valuable practices to follow when starting a new project
with Django 3.0 using Python 3. We have picked the most useful ways to deal with scalable
project layout, settings, and configurations, whether using virtualenv or Docker to manage
your project.

Getting Started with Django 3.0 Chapter 1

[9]

We are assuming that you are already familiar with the basics of Django, Git version
control, MySQL as well as PostgreSQL databases, and command-line usage. We also
assume that you are using a Unix-based operating system, such as macOS or Linux. It
makes more sense to develop with Django on Unix-based platforms as the Django websites
will most likely be published on a Linux server, meaning that you can establish routines
that work in the same way, whether you're developing or deploying. If you are locally
working with Django on Windows, the routines are similar; however, they are not always
the same.

Using Docker for your development environment, regardless of your local platform, can
improve the portability of your applications through deployment since the environment
within the Docker container can be matched precisely to that of your deployment server.
We should also mention that for the recipes in this chapter, we are assuming that you have
the appropriate version control system and database server already installed on your local
machine, whether you are developing with Docker or not.

Technical requirements
To work with the code of this book, you will need the latest stable version of Python, which
can be downloaded from https:/ /www. python. org/ downloads/ . At the time of writing, the
latest version is 3.8.X. You will also need a MySQL or PostgreSQL database. You can
download the MySQL database server from https:/ /dev. mysql. com/ downloads/ . The
PostgreSQL database server can be downloaded from https:/ /www. postgresql. org/
download/. Other requirements will be requested in specific recipes.

You can find all the code for this chapter at the ch01 directory of the GitHub repository
at https://github. com/ PacktPublishing/ Django- 3- Web- Development- Cookbook- Fourth-
Edition.

Working with a virtual environment
It is very likely that you will develop multiple Django projects on your computer. Some
modules, such as virtualenv, setuptools, wheel, or Ansible, can be installed once and then
shared for all projects. Other modules, such as Django, third-party Python libraries, and
Django apps, will need to be kept isolated from each other. The virtualenv tool is a utility
that separates all of the Python projects and keeps them in their own realms. In this recipe,
we will see how to use it.

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition

Getting Started with Django 3.0 Chapter 1

[10]

Getting ready
To manage Python packages, you will need pip. If you are using Python 3.4+, then it will be
included in your Python installation. If you are using another version of Python, you can
install pip by executing the installation instructions at http:/ /pip. readthedocs. org/en/
stable/installing/ . Let's upgrade the shared Python modules, pip, setuptools, and wheel:

$ sudo pip3 install --upgrade pip setuptools wheel

The virtual environment has been built into Python since version 3.3.

How to do it...
Once you have your prerequisites installed, create a directory where all your Django
projects will be stored—for example, projects under your home directory. Go through
the following steps after creating the directory:

Go to the newly created directory and create a virtual environment that uses the1.
shared system site packages:

$ cd ~/projects
$ mkdir myproject_website
$ cd myproject_website
$ python3 -m venv env

To use your newly created virtual environment, you need to execute the2.
activation script in your current shell. This can be done with the following
command:

$ source env/bin/activate

Depending on the shell you are using, the source command may not be3.
available. Another way to source a file is with the following command, which has
the same result (note the space between the dot and env):

$. env/bin/activate

You will see that the prompt of the command-line tool gets a prefix of the project4.
name, as follows:

(env)$

https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/

Getting Started with Django 3.0 Chapter 1

[11]

To get out of the virtual environment, type the following command:5.

(env)$ deactivate

How it works...
When you create a virtual environment, a few specific directories (bin, include, and lib)
are created in order to store a copy of the Python installation, and some shared Python
paths are defined. When the virtual environment is activated, whatever you install with
pip or easy_install will be put in and used by the site packages of the virtual
environment, and not the global site packages of your Python installation.

To install the latest Django 3.0.x in your virtual environment, type the following command:

(env)$ pip install "Django~=3.0.0"

See also
The Creating a project file structure recipe
The Working with Docker containers for Django, Gunicorn, Nginx, and PostgreSQL
recipe
The Deploying on Apache with mod_wsgi for the staging environment recipe in
Chapter 12, Deployment
The Deploying on Apache with mod_wsgi for the production environment recipe in
Chapter 12, Deployment
The Deploying on Nginx and Gunicorn for the staging environment recipe in Chapter
12, Deployment
The Deploying on Nginx and Gunicorn for the production environment recipe in
Chapter 12, Deployment

Creating a project file structure
A consistent file structure for your projects makes you well organized and more
productive. When you have the basic workflow defined, you can get stuck into the business
logic more quickly and create awesome projects.

Getting Started with Django 3.0 Chapter 1

[12]

Getting ready
If you haven't done it yet, create a ~/projects directory, where you will keep all your
Django projects (you can read about this in the Working with a virtual environment recipe).

Then, create a directory for your specific project—for example, myproject_website. Start
the virtual environment in an env directory there. Activate it and install Django there, as
described in the previous recipe. We would suggest adding a commands directory for local
shell scripts that are related to the project, a db_backups directory for database dumps,
a mockups directory for website design files, and, most importantly, an src directory for
your Django project.

How to do it...
Follow these steps to create a file structure for your project:

With the virtual environment activated, go to the src directory and start a new1.
Django project, as follows:

(env)$ django-admin.py startproject myproject

The executed command will create a directory called myproject, with project
files inside. This directory will contain a Python module, also called myproject.
For clarity and convenience, we will rename the top-level directory as django-
myproject. It is the directory that you will put under version control, and so it
will have a .git or similarly named subdirectory.

In the django-myproject directory, create a README.md file to describe your2.
project to the new developdjango-admin.py startproject myprojecters.
The django-myproject directory will also contain the following:3.

Your project's Python package, named myproject.
Your project's pip requirements with the Django framework and other
external dependencies (read about this in the Handling project dependencies
with pip recipe).
The project license in a LICENSE file. If your project is open source, you can
choose one of the most popular licenses from https:/ /choosealicense. com.

https://choosealicense.com
https://choosealicense.com
https://choosealicense.com
https://choosealicense.com
https://choosealicense.com
https://choosealicense.com
https://choosealicense.com

Getting Started with Django 3.0 Chapter 1

[13]

In your project's root, django-myproject, create the following:4.

A media directory for project uploads
A static directory for collected static files
A locale directory for project translations
An externals directory for external dependencies that are included in this
project when you can't use the pip requirements

The myproject directory should contain these directories and files:5.

The apps directory where you will put all your in-house Django apps for
the project. It is recommended that you have one app called core or
utils for the projects' shared functionality.
The settings directory for your project settings (read about this in the
Configuring settings for development, testing, staging, and production
environments recipe).
The site_static directory for project-specific static files.
The templates directory for the project's HTML templates.
The urls.py file for the project's URL configuration.
The wsgi.py file for the project's web server configuration.

In your site_static directory, create the site directory as a namespace for6.
site-specific static files. Then, we will divide the static files between the
categorized subdirectories within it. For instance, see the following:

scss for Sass files (optional)
css for the generated minified Cascading Style Sheets (CSS)
img for styling images, favicons, and logos
js for the project's JavaScriptdjango-admin.py startproject myproject
vendor for any third-party module combining all types of files, such as the
TinyMCE rich-text editor

Besides the site directory, the site_static directory might also contain7.
overwritten static directories of third-party apps—for example, it might
contain cms, which overwrites the static files from Django CMS. To generate the
CSS files from Sass and minify the JavaScript files, you can use the CodeKit
(https:/ / codekitapp. com/) or Prepros (https:/ /prepros. io/) applications with
a graphical user interface.

https://codekitapp.com/
https://codekitapp.com/
https://codekitapp.com/
https://codekitapp.com/
https://codekitapp.com/
https://codekitapp.com/
https://codekitapp.com/
https://codekitapp.com/
https://prepros.io/
https://prepros.io/
https://prepros.io/
https://prepros.io/
https://prepros.io/
https://prepros.io/
https://prepros.io/
https://prepros.io/

Getting Started with Django 3.0 Chapter 1

[14]

Put your templates that are separated by the apps in your templates directory.8.
If a template file represents a page (for example, change_item.html or
item_list.html), then put it directly in the app's template directory. If the
template is included in another template (for example, similar_items.html),
put it in the includes subdirectory. Also, your templates directory can contain a
directory called utils for globally reusable snippets, such as pagination and the
language chooser.

How it works...
The whole file structure for a complete project will look similar to the following:

myproject_website/
├── commands/
├── db_backups/
├── mockups/
├── src/
│ └── django-myproject/
│ ├── externals/
│ │ ├── apps/
│ │ │ └── README.md
│ │ └── libs/
│ │ └── README.md
│ ├── locale/
│ ├── media/
│ ├── myproject/
│ │ ├── apps/
│ │ │ ├── core/
│ │ │ │ ├── __init__.py
│ │ │ │ └── versioning.py
│ │ │ └── __init__.py
│ │ ├── settings/
│ │ │ ├── __init__.py
│ │ │ ├── _base.py
│ │ │ ├── dev.py
│ │ │ ├── production.py
│ │ │ ├── sample_secrets.json
│ │ │ ├── secrets.json
│ │ │ ├── staging.py
│ │ │ └── test.py
│ │ ├── site_static/
│ │ │ └── site/
│ │ │ django-admin.py startproject myproject ├── css/
│ │ │ │ └── style.css
│ │ │ ├── img/

Getting Started with Django 3.0 Chapter 1

[15]

│ │ │ │ ├── favicon-16x16.png
│ │ │ │ ├── favicon-32x32.png
│ │ │ │ └── favicon.ico
│ │ │ ├── js/
│ │ │ │ └── main.js
│ │ │ └── scss/
│ │ │ └── style.scss
│ │ ├── templates/
│ │ │ ├── base.html
│ │ │ └── index.html
│ │ ├── __init__.py
│ │ ├── urls.py
│ │ └── wsgi.py
│ ├── requirements/
│ │ ├── _base.txt
│ │ ├── dev.txt
│ │ ├── production.txt
│ │ ├── staging.txt
│ │ └── test.txt
│ ├── static/
│ ├── LICENSE
│ └── manage.py
└── env/

There's more...
To speed up the creation of a project in the way we just described, you can use the project's
boilerplate from https:/ /github. com/ archatas/ django- myproject. After downloading
the code, perform a global search and replace myproject with a meaningful name for your
project, and you should be good to go.

See also
The Handling project dependencies with pip recipe
The Including external dependencies in your project recipe
The Configuring settings for development, testing, staging, and production
environments recipe
The Deploying on Apache with mod_wsgi for the staging environment recipe in
Chapter 12, Deployment

https://github.com/archatas/django-myproject
https://github.com/archatas/django-myproject
https://github.com/archatas/django-myproject
https://github.com/archatas/django-myproject
https://github.com/archatas/django-myproject
https://github.com/archatas/django-myproject
https://github.com/archatas/django-myproject
https://github.com/archatas/django-myproject
https://github.com/archatas/django-myproject
https://github.com/archatas/django-myproject
https://github.com/archatas/django-myproject
https://github.com/archatas/django-myproject
https://github.com/archatas/django-myproject

Getting Started with Django 3.0 Chapter 1

[16]

The Deploying on Apache with mod_wsgi for the production environment recipe in
Chapter 12, Deployment
The Deploying on Nginx and Gunicorn for the staging environment recipe in Chapter
12, Deployment
The Deploying on Nginx and Gunicorn for the production environment recipe in
Chapter 12, Deployment

Handling project dependencies with pip
The most convenient tool to install and manage Python packages is pip. Rather than
installing the packages one by one, it is possible to define a list of packages that you want to
install as the contents of a text file. We can pass the text file into the pip tool, which will
then handle the installation of all packages in the list automatically. An added benefit to
this approach is that the package list can be stored in version control.

Generally speaking, it is ideal and often sufficient to have a single requirements file that
directly matches your production environment. You can change versions or add and
remove dependencies on a development machine and then manage them through version
control. This way, going from one set of dependencies (and associated code changes) to
another can be as simple as switching branches.

In some cases, environments differ enough that you will need to have at least two different
instances of your project:

The development environment, where you create new features
The public website environment, which is usually called the production
environment in a hosted server

There might be development environments for other developers, or special tools that are
needed during development but that are unnecessary in production. You might also have a
testing and staging environment in order to test the project locally and in a public website-
like setup.

For good maintainability, you should be able to install the required Python modules for
development, testing, staging, and production environments. Some of the modules will be
shared and some of them will be specific to a subset of the environments. In this recipe, we
will learn how to organize the project dependencies for multiple environments and manage
them with pip.

Getting Started with Django 3.0 Chapter 1

[17]

Getting ready
Before using this recipe, you need to have a Django project ready with pip installed and a
virtual environment activated. For more information on how to do this, read the Working
with a virtual environment recipe.

How to do it...
Execute the following steps one by one to prepare pip requirements for your virtual
environment Django project:

Let's go to the Django project that you have under version control and create a1.
requirements directory with the following text files:

_base.txt for shared modules
dev.txt for the development environment
test.txt for the testing environment
staging.txt for the staging environment
production.txt for production

Edit _base.txt and add the Python modules that are shared in all2.
environments, line by line:

requirements/_base.txt
Django~=3.0.4
djangorestframework
-e git://github.com/omab/python-social-
auth.git@6b1e301c79#egg=python-social-auth

If the requirements of a specific environment are the same as in _base.txt, add3.
the line including _base.txt in the requirements file of that environment, as
shown in the following example:

requirements/production.txt
-r _base.txt

Getting Started with Django 3.0 Chapter 1

[18]

If there are specific requirements for an environment, add them after the4.
_base.txt inclusion, as shown in the following code:

requirements/dev.txt
-r _base.txt
coverage
django-debug-toolbar
selenium

You can run the following command in a virtual environment in order to install5.
all of the required dependencies for the development environment (or an
analogous command for other environments), as follows:

(env)$ pip install -r requirements/dev.txt

How it works...
The preceding pip install command, whether it is executed explicitly in a virtual
environment or at the global level, downloads and installs all of your project dependencies
from requirements/_base.txt and requirements/dev.txt. As you can see, you can
specify a version of the module that you need for the Django framework and even directly
install it from a specific commit at the Git repository, as is done for python-social-auth
in our example.

When you have many dependencies in your project, it is good practice to stick to a narrow
range of release versions for Python module release versions. Then you can have greater
confidence that the project integrity will not be broken because of updates in your
dependencies, which might contain conflicts or backward incompatibility. This is
particularly important when deploying your project or handing it off to a new developer.

If you have already manually installed the project requirements with pip one by one, you
can generate the requirements/_base.txt file using the following command within
your virtual environment:

(env)$ pip freeze > requirements/_base.txt

Getting Started with Django 3.0 Chapter 1

[19]

There's more...
If you want to keep things simple and are sure that, for all environments, you will be using
the same dependencies, you can use just one file for your requirements named
requirements.txt, generated by definition, as shown in the following:

(env)$ pip freeze > requirements.txt

To install the modules in a new virtual environment, simply use the following command:

(env)$ pip install -r requirements.txt

If you need to install a Python library from another version control system, or on a local
path, then you can learn more about pip from the official documentation at https:/ /pip.
pypa.io/en/stable/ user_ guide/ .

Another approach to managing Python dependencies that is getting more and more
popular is Pipenv. You can get it and learn about it at https:/ /github. com/pypa/ pipenv.

See also
The Working with a virtual environment recipe
The Working with Docker containers for Django, Gunicorn, Nginx, and PostgreSQL
recipe
The Including external dependencies in your project recipe
The Configuring settings for development, testing, staging, and production
environments recipe

Configuring settings for development,
testing, staging, and production
environments
As noted earlier, you will be creating new features in the development environment, testing
them in the testing environment, and then putting the website onto a staging server to let
other people try the new features. Then, the website will be deployed to the production
server for public access. Each of these environments can have specific settings, and you will
learn how to organize them in this recipe.

https://pip.pypa.io/en/stable/user_guide/
https://pip.pypa.io/en/stable/user_guide/
https://pip.pypa.io/en/stable/user_guide/
https://pip.pypa.io/en/stable/user_guide/
https://pip.pypa.io/en/stable/user_guide/
https://pip.pypa.io/en/stable/user_guide/
https://pip.pypa.io/en/stable/user_guide/
https://pip.pypa.io/en/stable/user_guide/
https://pip.pypa.io/en/stable/user_guide/
https://pip.pypa.io/en/stable/user_guide/
https://pip.pypa.io/en/stable/user_guide/
https://pip.pypa.io/en/stable/user_guide/
https://pip.pypa.io/en/stable/user_guide/
https://pip.pypa.io/en/stable/user_guide/
https://pip.pypa.io/en/stable/user_guide/
https://pip.pypa.io/en/stable/user_guide/
https://pip.pypa.io/en/stable/user_guide/
https://github.com/pypa/pipenv
https://github.com/pypa/pipenv
https://github.com/pypa/pipenv
https://github.com/pypa/pipenv
https://github.com/pypa/pipenv
https://github.com/pypa/pipenv
https://github.com/pypa/pipenv
https://github.com/pypa/pipenv
https://github.com/pypa/pipenv
https://github.com/pypa/pipenv
https://github.com/pypa/pipenv

Getting Started with Django 3.0 Chapter 1

[20]

Getting ready
In a Django project, we'll create settings for each environment: development, testing,
staging, and production.

How to do it...
Follow these steps to configure the project settings:

In the myproject directory, create a settings Python module with the1.
following files:

__init__.py makes the settings directory a Python module.
_base.py for shared settings
dev.py for development settings
test.py for testing settings
staging.py for staging settings
production.py for production settings

Copy the contents of settings.py, which was automatically created when you2.
started a new Django project, to settings/_base.py. Then, delete
settings.py.
Change the BASE_DIR in the settings/_base.py to point one level up. It3.
should first look as follows:

BASE_DIR =
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

After changing it, it should look like the following:

BASE_DIR = os.path.dirname(
 os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)

If the settings of an environment are the same as the shared settings, then just4.
import everything from _base.py there, as follows:

myproject/settings/production.py
from ._base import *

Getting Started with Django 3.0 Chapter 1

[21]

Apply the settings that you want to attach or overwrite for your specific5.
environment in the other files—for example, the development environment
settings should go to dev.py, as shown in the following code snippet:

myproject/settings/dev.py
from ._base import *
EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"

Modify the manage.py and myproject/wsgi.py files to use one of the6.
environment settings by default by changing the following line:

os.environ.setdefault('DJANGO_SETTINGS_MODULE',
'myproject.settings')

 You should change this line to the following:7.

os.environ.setdefault('DJANGO_SETTINGS_MODULE',
'myproject.settings.production')

How it works...
By default, the Django management commands use the settings from
myproject/settings.py. Using the method that is defined in this recipe, we can keep all
of the required nonsensitive settings for all environments under version control in the
config directory. On the other hand, the settings.py file itself would be ignored by
version control and will only contain the settings that are necessary for the current
development, testing, staging, or production environments.

For each environment, it is recommended that you set the
DJANGO_SETTINGS_MODULE environment variable individually, either in
PyCharm settings, the env/bin/activate script, or in .bash_profile.

See also
The Working with Docker containers for Django, Gunicorn, Nginx, and
PostgreSQL recipe
The Handling sensitive settings recipe
The Defining relative paths in the settings recipe
The Creating a Git ignore file recipe

Getting Started with Django 3.0 Chapter 1

[22]

Defining relative paths in the settings
Django requires you to define different file paths in the settings, such as the root of your
media, the root of your static files, the path to templates, and the path to translation files.
For each developer of your project, the paths may differ as the virtual environment can be
set up anywhere and the user might be working on macOS, Linux, or Windows. Even when
your project is wrapped in a Docker container, it reduces the maintainability and
portability to define absolute paths. In any case, there is a way to define these paths
dynamically so that they are relative to your Django project directory.

Getting ready
Have a Django project started and open settings/_base.py.

How to do it...
Modify your path-related settings accordingly, instead of hardcoding the paths to your
local directories, as follows:

settings/_base.py
import os
BASE_DIR = os.path.dirname(
 os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
...
TEMPLATES = [{
 # ...
 DIRS: [
 os.path.join(BASE_DIR, 'myproject', 'templates'),
],
 # ...
}]
...
LOCALE_PATHS = [
 os.path.join(BASE_DIR, 'locale'),
]
...
STATICFILES_DIRS = [
 os.path.join(BASE_DIR, 'myproject', 'site_static'),
]
STATIC_ROOT = os.path.join(BASE_DIR, 'static')
MEDIA_ROOT = os.path.join(BASE_DIR, 'media')

Getting Started with Django 3.0 Chapter 1

[23]

How it works...
By default, Django settings include a BASE_DIR value, which is an absolute path to the
directory containing manage.py (usually one level higher than the settings.py file or
two levels higher than settings/_base.py). Then, we set all of the paths relative to
BASE_DIR using the os.path.join() function.

Based on the directory layout we set down in the Creating a project file structure recipe, we
would insert 'myproject' as an intermediary path segment for some of the previous
examples since the associated folders were created within this.

See also
The Creating a project file structure recipe
The Working with Docker containers for Django, Gunicorn, Nginx, and PostgreSQL
recipe
The Including external dependencies in your project recipe

Handling sensitive settings
When working when configuring a Django project, you will surely deal with some sensitive
information, such as passwords and API keys. It is not recommended that you put that
information under version control. There are two main ways to store that information: in
environment variables and in separate untracked files. In this recipe, we will explore both
cases.

Getting ready
Most of the settings for a project will be shared across all environments and saved in
version control. These can be defined directly within the settings files; however, there will
be some settings that are specific to the environment of the project instance or that are
sensitive and require additional security, such as database or email settings. We will expose
these using environment variables.

Getting Started with Django 3.0 Chapter 1

[24]

How to do it...
To read sensitive settings from the environment variables, perform these steps:

At the beginning of settings/_base.py, define the get_secret() function as1.
follows:

settings/_base.py
import os
from django.core.exceptions import ImproperlyConfigured

def get_secret(setting):
 """Get the secret variable or return explicit exception."""
 try:
 return os.environ[setting]
 except KeyError:
 error_msg = f'Set the {setting} environment variable'
 raise ImproperlyConfigured(error_msg)

Then, whenever you need to define a sensitive value, use the get_secret()2.
function, as shown in the following example:

SECRET_KEY = get_secret('DJANGO_SECRET_KEY')

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': get_secret('DATABASE_NAME'),
 'USER': get_secret('DATABASE_USER'),
 'PASSWORD': get_secret('DATABASE_PASSWORD'),
 'HOST': 'db',
 'PORT': '5432',
 }
}

How it works...
If you run a Django management command without the environment variable set, you will
see an error raised with a message, such as Set the DJANGO_SECRET_KEY environment
variable.

Getting Started with Django 3.0 Chapter 1

[25]

You can set the environment variables in the PyCharm configuration, remote server
configuration consoles, in the env/bin/activate script, .bash_profile, or directly in
the Terminal like this:

$ export DJANGO_SECRET_KEY="change-this-to-50-characters-long-random-
 string"
$ export DATABASE_NAME="myproject"
$ export DATABASE_USER="myproject"
$ export DATABASE_PASSWORD="change-this-to-database-password"

Note that you should use the get_secret() function for all passwords, API keys, and any
other sensitive information that you need in your Django project configuration.

There's more...
Instead of environment variables, you can also use text files with sensitive information that
won't be tracked under version control. They can be YAML, INI, CSV, or JSON files, placed
somewhere on the hard disk. For example, for a JSON file, you would have the
get_secret() function, like this:

settings/_base.py
import os
import json

with open(os.path.join(os.path.dirname(__file__), 'secrets.json'), 'r')
 as f:
 secrets = json.loads(f.read())

def get_secret(setting):
 """Get the secret variable or return explicit exception."""
 try:
 return secrets[setting]
 except KeyError:
 error_msg = f'Set the {setting} secret variable'
 raise ImproperlyConfigured(error_msg)

This reads a secrets.json file from the settings directory and expects it to have at least
the following structure:

{
 "DATABASE_NAME": "myproject",
 "DATABASE_USER": "myproject",

Getting Started with Django 3.0 Chapter 1

[26]

 "DATABASE_PASSWORD": "change-this-to-database-password",
 "DJANGO_SECRET_KEY": "change-this-to-50-characters-long-random-string"
}

Make sure that the secrets.json file is ignored from the version control, but for
convenience, you can create sample_secrets.json with empty values and put it under
version control:

{
 "DATABASE_NAME": "",
 "DATABASE_USER": "",
 "DATABASE_PASSWORD": "",
 "DJANGO_SECRET_KEY": "change-this-to-50-characters-long-random-string"
}

See also
The Creating a project file structure recipe
The Working with Docker containers for Django, Gunicorn, Nginx, and PostgreSQL
recipe

Including external dependencies in your
project
Sometimes, you can't install an external dependency with pip and have to include it
directly within your project, such as in the following cases:

When you have a patched third-party app where you yourself fixed a bug or
added a feature that did not get accepted by project owners
When you need to use private apps that are not accessible at the Python Package
Index (PyPI) or public version control repositories
When you need to use legacy versions of dependencies that are not available at
PyPI anymore

Including external dependencies in your project ensures that whenever a developer upgrades
the dependent modules, all of the other developers will receive the upgraded version in the
next update from the version control system.

Getting Started with Django 3.0 Chapter 1

[27]

Getting ready
You should start with a Django project under a virtual environment.

How to do it...
Execute the following steps one by one for a virtual environment project:

If you haven't done so already, create an externals directory under your1.
Django project directory, django-myproject.
Then, create the libs and apps directories under it. The libs directory is for the2.
Python modules that are required by your project—for example, Boto, Requests,
Twython, and Whoosh. The apps directory is for third-party Django apps—for
example, Django CMS, Django Haystack, and django-storages.
We highly recommend that you create README.md files in the libs and apps
directories, where you mention what each module is for, what the used version
or revision is, and where it is taken from.
The directory structure should look something similar to the following:3.

externals/
 ├── apps/
 │ ├── cms/
 │ ├── haystack/
 │ ├── storages/
 │ └── README.md
 └── libs/
 ├── boto/
 ├── requests/
 ├── twython/
 └── README.md

The next step is to put the external libraries and apps under the Python path so4.
that they are recognized as if they were installed. This can be done by adding the
following code in the settings:

settings/_base.py
import os
import sys
BASE_DIR = os.path.dirname(
 os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
EXTERNAL_BASE = os.path.join(BASE_DIR, "externals")
EXTERNAL_LIBS_PATH = os.path.join(EXTERNAL_BASE, "libs")

Getting Started with Django 3.0 Chapter 1

[28]

EXTERNAL_APPS_PATH = os.path.join(EXTERNAL_BASE, "apps")
sys.path = ["", EXTERNAL_LIBS_PATH, EXTERNAL_APPS_PATH] + sys.path

How it works...
A module is meant to be under the Python path if you can run Python and import that
module. One of the ways to put a module under the Python path is to modify
the sys.path variable before importing a module that is in an unusual location. The value
of sys.path, as specified by the settings file, is a list of directories starting with an empty
string for the current directory, followed by the directories in the project, and finally the
globally shared directories of the Python installation. You can see the value of sys.path in
the Python shell, as follows:

(env)$ python manage.py shell
>>> import sys
>>> sys.path

When trying to import a module, Python searches for the module in this list and returns the
first result that is found.

Therefore, we first define the BASE_DIR variable, which is the absolute path of django-
myproject or three levels higher than myproject/settings/_base.py. Then, we define
the EXTERNAL_LIBS_PATH and EXTERNAL_APPS_PATH variables, which are relative
to BASE_DIR. Lastly, we modify the sys.path property, adding new paths to the
beginning of the list. Note that we also add an empty string as the first path to search,
which means that the current directory of any module should always be checked first
before checking other Python paths.

This way of including external libraries doesn't work cross-platform with the Python
packages that have C language bindings—for example, lxml. For such dependencies, we
would recommend using the pip requirements that were introduced in the Handling project
dependencies with pip recipe.

See also
The Creating a project file structure recipe
The Working with Docker containers for Django, Gunicorn, Nginx, and
PostgreSQL recipe

Getting Started with Django 3.0 Chapter 1

[29]

The Handling project dependencies with pip recipe
The Defining relative paths in the settings recipe
The Using the Django shell recipe in Chapter 10, Bells and Whistles

Setting up STATIC_URL dynamically
If you set STATIC_URL to a static value, then each time you update a CSS file, a JavaScript
file, or an image, you and your website visitors will need to clear the browser cache in order
to see the changes. There is a trick to work around clearing the browser's cache. It is to have
the timestamp of the latest changes shown in STATIC_URL. Whenever the code is updated,
the visitor's browser will force the loading of all new static files.

In this recipe, we will see how to put a timestamp in STATIC_URL for Git users.

Getting ready
Make sure that your project is under Git version control and that you have BASE_DIR
defined in your settings, as shown in the Defining relative paths in the settings recipe.

How to do it...
The procedure to put the Git timestamp in the STATIC_URL setting consists of the following
two steps:

If you haven't done so yet, create the myproject.apps.core app in your1.
Django project. You should also create a versioning.py file there:

versioning.py
import subprocess
from datetime import datetime

def get_git_changeset_timestamp(absolute_path):
 repo_dir = absolute_path
 git_log = subprocess.Popen(
 "git log --pretty=format:%ct --quiet -1 HEAD",
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE,
 shell=True,
 cwd=repo_dir,

Getting Started with Django 3.0 Chapter 1

[30]

 universal_newlines=True,
)

 timestamp = git_log.communicate()[0]
 try:
 timestamp = datetime.utcfromtimestamp(int(timestamp))
 except ValueError:
 # Fallback to current timestamp
 return datetime.now().strftime('%Y%m%d%H%M%S')
 changeset_timestamp = timestamp.strftime('%Y%m%d%H%M%S')
 return changeset_timestamp

Import the newly created get_git_changeset_timestamp() function in the2.
settings and use it for the STATIC_URL path, as follows:

settings/_base.py
from myproject.apps.core.versioning import
get_git_changeset_timestamp
...
timestamp = get_git_changeset_timestamp(BASE_DIR)
STATIC_URL = f'/static/{timestamp}/'

How it works...
The get_git_changeset_timestamp() function takes the absolute_path directory as a
parameter and calls the git log shell command with the parameters to show the Unix
timestamp of the HEAD revision in the directory. We pass BASE_DIR to the function, as we
are sure that it is under version control. The timestamp is parsed, converted to a string
consisting of the year, month, day, hour, minutes, and seconds returned, and is then
included in the definition of the STATIC_URL.

There's more...
This method works only if each of your environments contains the full Git repository of the
project—in some cases, for example, when you use Heroku or Docker for
deployments—you don't have access to a Git repository and the git log command in the
remote servers. In order to have the STATIC_URL with a dynamic fragment, you have to
read the timestamp from a text file—for example, myproject/settings/last-
modified.txt—that should be updated with each commit.

Getting Started with Django 3.0 Chapter 1

[31]

In this case, your settings would contain the following lines:

settings/_base.py
with open(os.path.join(BASE_DIR, 'myproject', 'settings', 'last-
update.txt'), 'r') as f:
 timestamp = f.readline().strip()

STATIC_URL = f'/static/{timestamp}/'

You can make your Git repository update last-modified.txt with a pre-commit hook.
This is an executable bash script that should be called pre-commit and placed under
django-myproject/.git/hooks/:

django-myproject/.git/hooks/pre-commit
#!/usr/bin/env python
from subprocess import check_output, CalledProcessError
import os
from datetime import datetime

def root():
 ''' returns the absolute path of the repository root '''
 try:
 base = check_output(['git', 'rev-parse', '--show-toplevel'])
 except CalledProcessError:
 raise IOError('Current working directory is not a git repository')
 return base.decode('utf-8').strip()

def abspath(relpath):
 ''' returns the absolute path for a path given relative to the root of
 the git repository
 '''
 return os.path.join(root(), relpath)

def add_to_git(file_path):
 ''' adds a file to git '''
 try:
 base = check_output(['git', 'add', file_path])
 except CalledProcessError:
 raise IOError('Current working directory is not a git repository')
 return base.decode('utf-8').strip()

def main():
 file_path = abspath("myproject/settings/last-update.txt")

 with open(file_path, 'w') as f:
 f.write(datetime.now().strftime("%Y%m%d%H%M%S"))

Getting Started with Django 3.0 Chapter 1

[32]

 add_to_git(file_path)

if __name__ == '__main__':
 main()

This script will update last-modified.txt whenever you commit to the Git repository
and will add that file to the Git index.

See also
The Creating the Git ignore file recipe

Setting UTF-8 as the default encoding for
the MySQL configuration
MySQL describes itself as the most popular open source database. In this recipe, we will tell
you how to set UTF-8 as the default encoding for it. Note that if you don't set this encoding
in the database configuration, you might get into a situation where LATIN1 is used by
default with your UTF-8-encoded data. This will lead to database errors whenever symbols
such as € are used. This recipe will also save you from the difficulties of converting the
database data from LATIN1 to UTF-8, especially when you have some tables encoded in
LATIN1 and others in UTF-8.

Getting ready
Make sure that the MySQL database management system and the mysqlclient Python
module are installed and that you are using the MySQL engine in your project's settings.

How to do it...
Open the /etc/mysql/my.cnf MySQL configuration file in your favorite editor and
ensure that the following settings are set in the [client], [mysql], and [mysqld]
sections, as follows:

/etc/mysql/my.cnf
[client]
default-character-set = utf8

Getting Started with Django 3.0 Chapter 1

[33]

[mysql]
default-character-set = utf8

[mysqld]
collation-server = utf8_unicode_ci
init-connect = 'SET NAMES utf8'
character-set-server = utf8

If any of the sections don't exist, create them in the file. If the sections already exist, add
these settings to the existing configurations, and then restart MySQL in your command-line
tool, as follows:

$ /etc/init.d/mysql restart

How it works...
Now, whenever you create a new MySQL database, the databases and all of their tables will
be set in UTF-8 encoding by default. Don't forget to set this up on all computers on which
your project is developed or published.

There's more...
In PostgreSQL, the default server encoding is already UTF-8, but if you want to explicitly
create a PostgreSQL database with UTF-8 encoding, then you can do that with the
following command:

$ createdb --encoding=UTF8 --locale=en_US.UTF-8 --template=template0
myproject

See also
The Creating a project file structure recipe
The Working with Docker containers for Django, Gunicorn, Nginx, and PostgreSQL
recipe

Getting Started with Django 3.0 Chapter 1

[34]

Creating the Git ignore file
Git is the most popular distributed version control system, and you are probably already
using it for your Django project. Although you are tracking file changes for most of your
files, it's recommended that you keep some specific files and folders out of version control.
Usually, caches, compiled code, log files, and hidden system files should not be tracked in
the Git repository.

Getting ready
Make sure that your Django project is under Git version control.

How to do it...
Using your favorite text editor, create a .gitignore file at the root of your Django project
and put the following files and directories there:

.gitignore
Python template
Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

Installer logs
pip-log.txt
pip-delete-this-directory.txt

Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
.pytest_cache/

Translations
*.mo

Getting Started with Django 3.0 Chapter 1

[35]

*.pot

Django stuff:
*.log
db.sqlite3

Sphinx documentation
docs/_build/

IPython
profile_default/
ipython_config.py

Environments
env/

Media and Static directories
/media/
!/media/.gitkeep

/static/
!/static/.gitkeep

Secrets
secrets.json

How it works...
The .gitignore file specifies patterns that should intentionally be untracked by the  Git
version control system. The .gitignore file that we created in this recipe will ignore the
Python-compiled files, local settings, collected static files,  and media directory with the
uploaded files.

Note that we have exceptional syntax with exclamation marks for media and static files:

/media/
!/media/.gitkeep

This tells Git to ignore the /media/ directory but keep the /media/.gitkeep file tracked
under version control. As Git version control tracks files, but not directories, we
use .gitkeep to make sure that the media directory will be created in each environment,
but not tracked.

Getting Started with Django 3.0 Chapter 1

[36]

See also
The Creating a project file structure recipe
The Working with Docker containers for Django, Gunicorn, Nginx, and PostgreSQL
recipe

Deleting Python-compiled files
When you run your project for the first time, Python compiles all of your *.py code in
bytecode-compiled files, *.pyc, which are used later for execution. Normally, when you
change the *.py files, *.pyc is recompiled; however, sometimes when you switch
branches or move the directories, you need to clean up the compiled files manually.

Getting ready
Use your favorite editor and edit or create a .bash_profile file in your home directory.

How to do it...
Add this alias at the end of .bash_profile, as follows:1.

~/.bash_profile
alias delpyc='
find . -name "*.py[co]" -delete
find . -type d -name "__pycache__" -delete'

Now, to clean the Python-compiled files, go to your project directory and type2.
the following command on the command line:

(env)$ delpyc

How it works...
At first, we create a Unix alias that searches for the *.pyc and *.pyo files and
__pycache__ directories and deletes them in the current directory, as well as its children.
The .bash_profile file is executed when you start a new session in the command-line
tool.

Getting Started with Django 3.0 Chapter 1

[37]

There's more...
If you want to avoid creating Python-compiled files altogether, you can set an environment
variable, PYTHONDONTWRITEBYTECODE=1, in your .bash_profile,
env/bin/activate script, or PyCharm configuration.

See also
The Creating the Git ignore file recipe

Respecting the import order in Python files
When you create the Python modules, it is good practice to stay consistent with the
structure in the files. This makes it easier for both you and other developers to read the
code. This recipe will show you how to structure your imports.

Getting ready
Create a virtual environment and create a Django project in it.

How to do it...
Use the following structure for each Python file that you are creating. Categorize the
imports into sections, as follows:

System libraries
import os
import re
from datetime import datetime

Third-party libraries
import boto
from PIL import Image

Django modules
from django.db import models
from django.conf import settings

Django apps

Getting Started with Django 3.0 Chapter 1

[38]

from cms.models import Page

Current-app modules
from .models import NewsArticle
from . import app_settings

How it works...
We have five main categories for the imports, as follows:

System libraries for packages in the default installation of Python
Third-party libraries for the additional installed Python packages
Django modules for different modules from the Django framework
Django apps for third-party and local apps
Current-app modules for relative imports from the current app

There's more...
When coding in Python and Django, use the official style guide for Python code, PEP 8. You
can find it at https:/ /www. python. org/ dev/ peps/ pep- 0008/ .

See also
The Handling project dependencies with pip recipe
The Including external dependencies in your project recipe

Creating an app configuration
Django projects consist of multiple Python modules called applications (or, more
commonly, apps) that combine different modular functionalities. Each app can have
models, views, forms, URL configurations, management commands, migrations, signals,
tests, context processors, middlewares, and so on. The Django framework has an
application registry, where all apps and models are collected and later used for
configuration and introspection. Since Django 1.7, metainformation about apps can be
saved in the AppConfig instance for each app. Let's create a sample magazine app to take
a look at how to use the app configuration there.

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

Getting Started with Django 3.0 Chapter 1

[39]

Getting ready
You can create a Django app either by calling the startapp management command or by
creating the app module manually:

(env)$ cd myproject/apps/
(env)$ django-admin.py startapp magazine

With your magazine app created, add a NewsArticle model to models.py, create
administration for the model in admin.py, and put "myproject.apps.magazine" in
INSTALLED_APPS in the settings. If you are not yet familiar with these tasks, study the
official Django tutorial at https:/ /docs. djangoproject. com/ en/3. 0/intro/ tutorial01/ .

How to do it...
Follow these steps to create and use the app configuration:

Modify the apps.py file and insert the following content into it, as follows:1.

myproject/apps/magazine/apps.py
from django.apps import AppConfig
from django.utils.translation import gettext_lazy as _

class MagazineAppConfig(AppConfig):
 name = "myproject.apps.magazine"
 verbose_name = _("Magazine")

 def ready(self):
 from . import signals

Edit the __init__.py file in the magazine module to contain the following2.
content:

myproject/apps/magazine/__init__.py
default_app_config =
"myproject.apps.magazine.apps.MagazineAppConfig"

https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/2.2/intro/tutorial01/

Getting Started with Django 3.0 Chapter 1

[40]

Let's create a signals.py file and add some signal handlers there:3.

myproject/apps/magazine/signals.py
from django.db.models.signals import post_save, post_delete
from django.dispatch import receiver
from django.conf import settings

from .models import NewsArticle

@receiver(post_save, sender=NewsArticle)
def news_save_handler(sender, **kwargs):
 if settings.DEBUG:
 print(f"{kwargs['instance']} saved.")

@receiver(post_delete, sender=NewsArticle)
def news_delete_handler(sender, **kwargs):
 if settings.DEBUG:
 print(f"{kwargs['instance']} deleted.")

How it works...
When you run an HTTP server or invoke a management command, django.setup() is
called. It loads the settings, sets up logging, and prepares the app registry. This registry is
initialized in three steps. Django first imports the configurations for each item from
INSTALLED_APPS in the settings. These items can point to app names or configurations
directly—for example, "myproject.apps.magazine" or
"myproject.apps.magazine.apps.MagazineAppConfig".

Django then tries to import models.py from each app in INSTALLED_APPS and collect all
of the models.

Finally, Django runs the ready() method for each app configuration. This method presents
a good point in the development process to register signal handlers, if you have any. The
ready() method is optional.

In our example, the MagazineAppConfig class sets the configuration for the magazine
app. The name parameter defines the module of the current app. The verbose_name
parameter defines a human name that is used in the Django model administration, where
models are presented and grouped by apps. The ready() method imports and activates
the signal handlers that, when in DEBUG mode, print in the terminal that a NewsArticle
object was saved or deleted.

Getting Started with Django 3.0 Chapter 1

[41]

There's more...
After calling django.setup(), you can load the app configurations and models from the
registry as follows:

>>> from django.apps import apps as django_apps
>>> magazine_app_config = django_apps.get_app_config("magazine")
>>> magazine_app_config
<MagazineAppConfig: magazine>
>>> magazine_app_config.models_module
<module 'magazine.models' from
'/path/to/myproject/apps/magazine/models.py'>
>>> NewsArticle = django_apps.get_model("magazine", "NewsArticle")
>>> NewsArticle
<class 'magazine.models.NewsArticle'>

You can read more about app configuration in the official Django documentation at
https://docs.djangoproject. com/ en/ 2. 2/ref/ applications/ .

See also
The Working with a virtual environment recipe
The Working with Docker containers for Django, Gunicorn, Nginx, and PostgreSQL
recipe
The Defining overwritable app settings recipe
Chapter 6, Model Administration

Defining overwritable app settings
This recipe will show you how to define settings for your app that can then be overwritten
in your project's settings file. This is especially useful for reusable apps that you can
customize by adding a configuration.

Getting ready
Follow the steps in the Getting ready in the Creating app configuration recipe to create your
Django app.

https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/
https://docs.djangoproject.com/en/2.2/ref/applications/

Getting Started with Django 3.0 Chapter 1

[42]

How to do it...
Define your app settings using the getattr() pattern in models.py if you just1.
have one or two settings, or in the app_settings.py file if the settings are
extensive and you want to organize them better:

myproject/apps/magazine/app_settings.py
from django.conf import settings
from django.utils.translation import gettext_lazy as _

Example:
SETTING_1 = getattr(settings, "MAGAZINE_SETTING_1", "default
value")

MEANING_OF_LIFE = getattr(settings, "MAGAZINE_MEANING_OF_LIFE", 42)

ARTICLE_THEME_CHOICES = getattr(
 settings,
 "MAGAZINE_ARTICLE_THEME_CHOICES",
 [
 ('futurism', _("Futurism")),
 ('nostalgia', _("Nostalgia")),
 ('sustainability', _("Sustainability")),
 ('wonder', _("Wonder")),
]
)

models.py will contain the NewsArticle model, like this:2.

myproject/apps/magazine/models.py
from django.db import models
from django.utils.translation import gettext_lazy as _

class NewsArticle(models.Model):
 created_at = models.DateTimeField(_("Created at"),
 auto_now_add=True)
 title = models.CharField(_("Title"), max_length=255)
 body = models.TextField(_("Body"))
 theme = models.CharField(_("Theme"), max_length=20)

 class Meta:
 verbose_name = _("News Article")
 verbose_name_plural = _("News Articles")

 def __str__(self):
 return self.title

Getting Started with Django 3.0 Chapter 1

[43]

Next, in admin.py, we will import and use the settings from app_settings.py,3.
as follows:

myproject/apps/magazine/admin.py
from django import forms
from django.contrib import admin

from .models import NewsArticle

from .app_settings import ARTICLE_THEME_CHOICES

class NewsArticleModelForm(forms.ModelForm):
 theme = forms.ChoiceField(
 label=NewsArticle._meta.get_field("theme").verbose_name,
 choices=ARTICLE_THEME_CHOICES,
 required=not NewsArticle._meta.get_field("theme").blank,
)
 class Meta:
 fields = "__all__"

@admin.register(NewsArticle)
class NewsArticleAdmin(admin.ModelAdmin):
 form = NewsArticleModelForm

If you want to overwrite the ARTICLE_THEME_CHOICES settings for a given4.
project, you should add MAGAZINE_ARTICLE_THEME_CHOICES in the project
settings:

myproject/settings/_base.py
from django.utils.translation import gettext_lazy as _
...
MAGAZINE_ARTICLE_THEME_CHOICES = [
 ('futurism', _("Futurism")),
 ('nostalgia', _("Nostalgia")),
 ('sustainability', _("Sustainability")),
 ('wonder', _("Wonder")),
 ('positivity', _("Positivity")),
 ('solutions', _("Solutions")),
 ('science', _("Science")),
]

Getting Started with Django 3.0 Chapter 1

[44]

How it works...
The getattr(object, attribute_name[, default_value]) Python function tries to
get the attribute_name attribute from object and returns default_value if it is not
found. We try to read different settings from the Django project settings module or, if they
don't exist there, the default values are used.

Note that we could have defined the choices for the theme field in models.py, but
instead we created a custom ModelForm in administration and set the choices there. This
was done to avoid the creation of new database migrations whenever
the ARTICLE_THEME_CHOICES is changed.

See also
The Creating app configuration recipe
Chapter 6, Model Administration

Working with Docker containers for Django,
Gunicorn, Nginx, and PostgreSQL
Django projects depend not only on Python requirements, but also on many system
requirements, such as a web server, database, server cache, and mail server. When
developing a Django project, you need to ensure that all environments and all developers
will have all the same requirements installed. One way to keep those dependencies in sync
is to use Docker. With Docker, you can have different versions of the database, web, or
other servers required individually for each project.

Docker is a system for creating configured, customized virtual machines called containers.
It allows us to duplicate the setup of any production environment precisely. Docker
containers are created from so-called Docker images. Images consist of layers (or
instructions) on how to build the container. There can be an image for PostgreSQL, an
image for Redis, an image for Memcached, and a custom image for your Django project,
and all those images can be combined into accompanying containers with Docker
Compose.

In this recipe, we will use a project boilerplate to set up a Django project with a PostgreSQL
database, served by Nginx and Gunicorn, and manage all of them with Docker Compose.

Getting Started with Django 3.0 Chapter 1

[45]

Getting ready
First, you will need to install the Docker Engine, following the instructions at https:/ /www.
docker.com/get-started. This usually includes the Compose tool, which makes it possible
to manage systems that require multiple containers, ideal for a fully isolated Django project.
If it is needed separately, installation details for Compose are available at https:/ /docs.
docker.com/compose/ install/ .

How to do it...
Let's explore the Django and Docker boilerplate:

Download the code from https:/ / github. com/ archatas/ django_ docker to your1.
computer to the ~/projects/django_docker directory, for example.

If you choose another directory, for example, myproject_docker, then
you will have to do a global search and replace django_docker with
myproject_docker.

Open the docker-compose.yml file. There are three containers that need to be2.
created: nginx, gunicorn, and db. Don't worry if it looks complicated; we'll
describe it in detail later:

docker-compose.yml
version: "3.7"

services:
 nginx:
 image: nginx:latest
 ports:
 - "80:80"
 volumes:
 - ./config/nginx/conf.d:/etc/nginx/conf.d
 - static_volume:/home/myproject/static
 - media_volume:/home/myproject/media
 depends_on:
 - gunicorn

 gunicorn:
 build:
 context: .
 args:
 PIP_REQUIREMENTS: "${PIP_REQUIREMENTS}"

https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://github.com/archatas/django_docker
https://github.com/archatas/django_docker
https://github.com/archatas/django_docker
https://github.com/archatas/django_docker
https://github.com/archatas/django_docker
https://github.com/archatas/django_docker
https://github.com/archatas/django_docker
https://github.com/archatas/django_docker
https://github.com/archatas/django_docker
https://github.com/archatas/django_docker
https://github.com/archatas/django_docker
https://github.com/archatas/django_docker
https://github.com/archatas/django_docker

Getting Started with Django 3.0 Chapter 1

[46]

 command: bash -c "/home/myproject/env/bin/gunicorn --workers 3
 --bind 0.0.0.0:8000 myproject.wsgi:application"
 depends_on:
 - db
 volumes:
 - static_volume:/home/myproject/static
 - media_volume:/home/myproject/media
 expose:
 - "8000"
 environment:
 DJANGO_SETTINGS_MODULE: "${DJANGO_SETTINGS_MODULE}"
 DJANGO_SECRET_KEY: "${DJANGO_SECRET_KEY}"
 DATABASE_NAME: "${DATABASE_NAME}"
 DATABASE_USER: "${DATABASE_USER}"
 DATABASE_PASSWORD: "${DATABASE_PASSWORD}"
 EMAIL_HOST: "${EMAIL_HOST}"
 EMAIL_PORT: "${EMAIL_PORT}"
 EMAIL_HOST_USER: "${EMAIL_HOST_USER}"
 EMAIL_HOST_PASSWORD: "${EMAIL_HOST_PASSWORD}"

 db:
 image: postgres:latest
 restart: always
 environment:
 POSTGRES_DB: "${DATABASE_NAME}"
 POSTGRES_USER: "${DATABASE_USER}"
 POSTGRES_PASSWORD: "${DATABASE_PASSWORD}"
 ports:
 - 5432
 volumes:
 - postgres_data:/var/lib/postgresql/data/

volumes:
 postgres_data:
 static_volume:
 media_volume:

Open and read through the Dockerfile file. These are the layers (or3.
instructions) that are needed to create the gunicorn container:

Dockerfile
pull official base image
FROM python:3.8

accept arguments
ARG PIP_REQUIREMENTS=production.txt

Getting Started with Django 3.0 Chapter 1

[47]

set environment variables
ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1

install dependencies
RUN pip install --upgrade pip setuptools

create user for the Django project
RUN useradd -ms /bin/bash myproject

set current user
USER myproject

set work directory
WORKDIR /home/myproject

create and activate virtual environment
RUN python3 -m venv env

copy and install pip requirements
COPY --chown=myproject ./src/myproject/requirements
/home/myproject/requirements/
RUN ./env/bin/pip3 install -r
/home/myproject/requirements/${PIP_REQUIREMENTS}

copy Django project files
COPY --chown=myproject ./src/myproject /home/myproject/

Copy the build_dev_example.sh script to build_dev.sh and edit its content.4.
These are environment variables to pass to the docker-compose script:

build_dev.sh
#!/usr/bin/env bash
DJANGO_SETTINGS_MODULE=myproject.settings.dev \
DJANGO_SECRET_KEY="change-this-to-50-characters-long-
 random-string" \
DATABASE_NAME=myproject \
DATABASE_USER=myproject \
DATABASE_PASSWORD="change-this-too" \
PIP_REQUIREMENTS=dev.txt \
docker-compose up --detach --build

In a command-line tool, add execution permissions to build_dev.sh and run it5.
to build the containers:

$ chmod +x build_dev.sh
$./build_dev.sh

Getting Started with Django 3.0 Chapter 1

[48]

If you now go to http://0.0.0.0/en/, you should see a Hello, World! page6.
there.
When navigating to http://0.0.0.0/en/admin/, you should see the
following:

OperationalError at /en/admin/
 FATAL: role "myproject" does not exist

This means that you have to create the database user and the database in the
Docker container.

Let's SSH to the db container and create the database user, password, and the7.
database itself in the Docker container:

$ docker exec -it django_docker_db_1 bash
/# su - postgres
/$ createuser --createdb --password myproject
/$ createdb --username myproject myproject

When asked, enter the same password for the database as in
the build_dev.sh script.

Press [Ctrl + D] twice to log out of the PostgreSQL user and Docker container.

If you now go to http://0.0.0.0/en/admin/, you should see the following:

ProgrammingError at /en/admin/ relation "django_session" does not
exist LINE 1: ...ession_data", "django_session"."expire_date" FROM
"django_se...

This means that you have to run migrations to create the database schema.

SSH into the gunicorn container and run the necessary Django management8.
commands:

$ docker exec -it django_docker_gunicorn_1 bash
$ source env/bin/activate
(env)$ python manage.py migrate
(env)$ python manage.py collectstatic
(env)$ python manage.py createsuperuser

Answer all the questions that are asked by the management commands.

Getting Started with Django 3.0 Chapter 1

[49]

Press [Ctrl + D] twice to log out of the Docker container.

If you now navigate to http:/ /0. 0.0.0/ en/admin/ , you should see the Django
administration, where you can log in with the super user's credentials that you
have just created.

Create analogous scripts, build_test.sh, build_staging.sh, and9.
build_production.sh, where only the environment variables differ.

How it works...
The structure of the code in the boilerplate is similar to the one in a virtual environment.
The project source files are in the src directory. We have the git-hooks directory for the
pre-commit hook that is used to track the last modification date and the config directory
for the configurations of the services used in the containers:

django_docker
├── config/
│ └── nginx/
│ └── conf.d/
│ └── myproject.conf
├── git-hooks/
│ ├── install_hooks.sh
│ └── pre-commit
├── src/
│ └── myproject/
│ ├── locale/
│ ├── media/
│ ├── myproject/
│ │ ├── apps/
│ │ │ └── __init__.py
│ │ ├── settings/
│ │ │ ├── __init__.py
│ │ │ ├── _base.py
│ │ │ ├── dev.py
│ │ │ ├── last-update.txt
│ │ │ ├── production.py
│ │ │ ├── staging.py
│ │ │ └── test.py
│ │ ├── site_static/
│ │ │ └── site/
│ │ │ ├── css/
│ │ │ ├── img/
│ │ │ ├── js/
│ │ │ └── scss/

http://0.0.0.0/en/admin/
http://0.0.0.0/en/admin/
http://0.0.0.0/en/admin/
http://0.0.0.0/en/admin/
http://0.0.0.0/en/admin/
http://0.0.0.0/en/admin/
http://0.0.0.0/en/admin/
http://0.0.0.0/en/admin/
http://0.0.0.0/en/admin/
http://0.0.0.0/en/admin/
http://0.0.0.0/en/admin/
http://0.0.0.0/en/admin/
http://0.0.0.0/en/admin/
http://0.0.0.0/en/admin/
http://0.0.0.0/en/admin/
http://0.0.0.0/en/admin/

Getting Started with Django 3.0 Chapter 1

[50]

│ │ ├── templates/
│ │ │ ├── base.html
│ │ │ └── index.html
│ │ ├── __init__.py
│ │ ├── urls.py
│ │ └── wsgi.py
│ ├── requirements/
│ │ ├── _base.txt
│ │ ├── dev.txt
│ │ ├── production.txt
│ │ ├── staging.txt
│ │ └── test.txt
│ ├── static/
│ └── manage.py
├── Dockerfile
├── LICENSE
├── README.md
├── build_dev.sh
├── build_dev_example.sh
└── docker-compose.yml

The main Docker-related configurations are at docker-compose.yml and Dockerfile.
Docker Compose is a wrapper around Docker's command-line API. The build_dev.sh
script builds and runs the Django project under the Gunicorn WSGI HTTP server at port
8000, Nginx at port 80 (serving static and media files and proxying other requests to
Gunicorn), and the PostgreSQL database at port 5432.

In the docker-compose.yml file, the creation of three Docker containers is requested:

nginx for the Nginx web server
gunicorn for the Django project with the Gunicorn web server
db for the PostgreSQL database

The nginx and db containers will be created from the official images located at https:/ /
hub.docker.com. They have specific configuration parameters, such as the ports they are
running on, environment variables, dependencies on other containers, and volumes.

Docker volumes are specific directories that stay untouched when you rebuild the Docker
containers. Volumes need to be defined for the database data files, media, static, and the
like.

https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com

Getting Started with Django 3.0 Chapter 1

[51]

The gunicorn container will be built from the instructions at the Dockerfile, defined by
the build context in the docker-compose.yml file. Let's examine each layer (or instruction)
there:

The gunicorn container will be based on the python:3.7 image
It will take PIP_REQUIREMENTS as an argument from the docker-compose.yml
file
It will set environment variables for the container
It will install and upgrade pip, setuptools, and virtualenv
It will create a system user named myproject for the Django project
It will set myproject as the current user
It will set the home directory of the myproject user as the current working
directory
It will create a virtual environment there
It will copy pip requirements from the base computer to the Docker container
It will install the pip requirements for the current environment defined by
the PIP_REQUIREMENTS variable
It will copy the source of the entire Django project

The content of config/nginx/conf.d/myproject.conf will be saved
under /etc/nginx/conf.d/ in the nginx container. This is the configuration of the Nginx
web server telling it to listen to port 80 (the default HTTP port) and forward requests to the
Gunicorn server on port 8000, except for requests asking for static or media content:

#/etc/nginx/conf.d/myproject.conf
upstream myproject {
 server django_docker_gunicorn_1:8000;
}

server {
 listen 80;

 location / {
 proxy_pass http://myproject;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $host;
 proxy_redirect off;
 }

 rewrite "/static/\d+/(.*)" /static/$1 last;

 location /static/ {

Getting Started with Django 3.0 Chapter 1

[52]

 alias /home/myproject/static/;
 }

 location /media/ {
 alias /home/myproject/media/;
 }
}

You can learn more about Nginx and Gunicorn configurations in the Deploying on Nginx and
Gunicorn for the staging environment and Deploying on Nginx and Gunicorn for the production
environment recipes in Chapter 12, Deployment.

There's more...
You can destroy Docker containers with the docker-compose down command and rebuild
them with your build script:

$ docker-compose down
$./build_dev.sh

If something is not working as expected, you can inspect the logs with the docker-
compose logs command:

$ docker-compose logs nginx
$ docker-compose logs gunicorn
$ docker-compose logs db

To connect to any of the containers via SSH, you should use one of the following:

$ docker exec -it django_docker_gunicorn_1 bash
$ docker exec -it django_docker_nginx_1 bash
$ docker exec -it django_docker_db_1 bash

You can copy files and directories to and from volumes on Docker containers using the
docker cp command:

$ docker cp ~/avatar.png django_docker_gunicorn_1:/home/myproject/media/
$ docker cp django_docker_gunicorn_1:/home/myproject/media ~/Desktop/

If you want to get better a understanding of Docker and Docker Compose, check out the
official documentation at https:/ /docs. docker. com/ , and specifically https:/ /docs.
docker.com/compose/ .

https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/

Getting Started with Django 3.0 Chapter 1

[53]

See also
The Creating a project file structure recipe
The Deploying on Apache with mod_wsgi for the staging environment recipe
in Chapter 12, Deployment
The Deploying on Apache with mod_wsgi for the production environment recipe in
Chapter 12, Deployment
The Deploying on Nginx and Gunicorn for the staging environment recipe in Chapter
12, Deployment
The Deploying on Nginx and Gunicorn for the production environment recipe in
Chapter 12, Deployment

2
Models and Database Structure

In this chapter, we will cover the following topics:

Using model mixins
Creating a model mixin with URL-related methods
Creating a model mixin to handle creation and modification dates
Creating a model mixin to take care of meta tags
Creating a model mixin to handle generic relations
Handling multilingual fields
Working with model translation tables
Avoiding circular dependencies
Adding database constraints
Using migrations
Changing a foreign key to the many-to-many field

Introduction
When you start a new app, the first thing that you do is create the models that represent
your database structure. We are assuming that you have already created Django apps, or, at
the very least, have read and understood the official Django tutorial. In this chapter, you
will see a few interesting techniques that will make your database structure consistent
across the different apps in your project. Then, you will see how to handle the
internationalization of the data in your database. After that, you will learn how to avoid
circular dependencies in your models and how to set database constraints. At the end of the
chapter, you will see how to use migrations to change your database structure during the
process of development.

Models and Database Structure Chapter 2

[55]

Technical requirements
To work with the code in this book, you will need the latest stable version of Python, the
MySQL or PostgreSQL database, and a Django project with a virtual environment.

You can find all the code for this chapter in the ch02 directory in the GitHub repository
at: https://github. com/ PacktPublishing/ Django- 3- Web- Development- Cookbook- Fourth-
Edition.

Using model mixins
In object-oriented languages, such as Python, a mixin class can be viewed as an interface
with implemented features. When a model extends a mixin, it implements the interface and
includes all of its fields, attributes, properties, and methods. The mixins in Django models
can be used when you want to reuse the generic functionalities in different models multiple
times. The model mixins in Django are abstract base model classes. We will explore them in
the next few recipes.

Getting ready
First, you will need to create reusable mixins. A good place to keep your model mixins is in
a myproject.apps.core app. If you create a reusable app that you will share with others,
keep the model mixins in the reusable app itself, possibly in a base.py file.

How to do it...
Open the models.py file of any Django app that you want to use mixins with, and type the
following code:

myproject/apps/ideas/models.py
from django.db import models
from django.urls import reverse
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.models import (
 CreationModificationDateBase,
 MetaTagsBase,
 UrlBase,
)

https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition

Models and Database Structure Chapter 2

[56]

class Idea(CreationModificationDateBase, MetaTagsBase, UrlBase):
 title = models.CharField(
 _("Title"),
 max_length=200,
)
 content = models.TextField(
 _("Content"),
)
 # other fields…

 class Meta:
 verbose_name = _("Idea")
 verbose_name_plural = _("Ideas")

 def __str__(self):
 return self.title

 def get_url_path(self):
 return reverse("idea_details", kwargs={
 "idea_id": str(self.pk),
 })

How it works...
Django's model inheritance supports three types of inheritance: abstract base classes, multi-
table inheritance, and proxy models. Model mixins are abstract model classes, in that we
define them by using an abstract Meta class, with specified fields, properties, and methods.
When you create a model such as Idea, as shown in the preceding example, it inherits all of
the features from CreationModificationDateMixin, MetaTagsMixin, and UrlMixin.
All of the fields of these abstract classes are saved in the same database table as the fields of
the extending model. In the following recipes, you will learn how to define your model
mixins.

There's more...
In normal Python class inheritance, if there is more than one base class, and all of them
implement a specific method, and you call that method on the instance of a child class, only
the method from the first parent class will be called, as in the following example:

>>> class A(object):
... def test(self):
... print("A.test() called")
...

Models and Database Structure Chapter 2

[57]

>>> class B(object):
... def test(self):
... print("B.test() called")
...

>>> class C(object):
... def test(self):
... print("C.test() called")
...

>>> class D(A, B, C):
... def test(self):
... super().test()
... print("D.test() called")

>>> d = D()
>>> d.test()
A.test() called
D.test() called

This is the same for Django model base classes; however, there is one special exception.

The Django framework does some magic with metaclasses that calls
the save() and delete() methods from each of the base classes.

That means that you can confidently do pre-save, post-save, pre-delete, and post-delete
manipulations for specific fields defined specifically in the mixin by overwriting the
save() and delete() methods.

To learn more about the different types of model inheritance, refer to the official Django
documentation, available at https:/ / docs.djangoproject. com/ en/ 2.2/topics/ db/
models/#model-inheritance.

See also
The Creating a model mixin with URL-related methods recipe
The Creating a model mixin to handle creation and modification dates recipe
The Creating a model mixin to take care of meta tags recipe

https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/2.2/topics/db/models/#model-inheritance

Models and Database Structure Chapter 2

[58]

Creating a model mixin with URL-related
methods
For every model that has its own distinct detail page, it is good practice to define the
get_absolute_url() method. This method can be used in templates and also in the
Django admin site to preview the saved object. However, get_absolute_url() is
ambiguous, as it returns the URL path instead of the full URL.

In this recipe, we will look at how to create a model mixin that provides simplified support
for model-specific URLs. This mixin will enable you to do the following:

Allow you to define either the URL path or the full URL in your model
Generate the other URL automatically, based on the one that you defined
Define the get_absolute_url() method behind the scenes

Getting ready
If you haven't yet done so, create the myproject.apps.core app where you will store
your model mixins. Then, create a models.py file in the core package. Alternatively, if you
create a reusable app, put the mixins in a base.py file in that app.

How to do it...
Execute the following steps, one by one:

Add the following content to the models.py file of your core app:1.

myproject/apps/core/models.py
from urllib.parse import urlparse, urlunparse
from django.conf import settings
from django.db import models

class UrlBase(models.Model):
 """
 A replacement for get_absolute_url()
 Models extending this mixin should have either get_url or
 get_url_path implemented.
 """
 class Meta:
 abstract = True

Models and Database Structure Chapter 2

[59]

 def get_url(self):
 if hasattr(self.get_url_path, "dont_recurse"):
 raise NotImplementedError
 try:
 path = self.get_url_path()
 except NotImplementedError:
 raise
 return settings.WEBSITE_URL + path
 get_url.dont_recurse = True

 def get_url_path(self):
 if hasattr(self.get_url, "dont_recurse"):
 raise NotImplementedError
 try:
 url = self.get_url()
 except NotImplementedError:
 raise
 bits = urlparse(url)
 return urlunparse(("", "") + bits[2:])
 get_url_path.dont_recurse = True

 def get_absolute_url(self):
 return self.get_url()

Add the WEBSITE_URL setting without a trailing slash to the dev, test,2.
staging, and production settings. For example, for the development
environment this will be as follows:

myproject/settings/dev.py
from ._base import *

DEBUG = True
WEBSITE_URL = "http://127.0.0.1:8000" # without trailing slash

To use the mixin in your app, import the mixin from the core app, inherit the3.
mixin in your model class, and define the get_url_path() method, as follows:

myproject/apps/ideas/models.py
from django.db import models
from django.urls import reverse
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.models import UrlBase

class Idea(UrlBase):
 # fields, attributes, properties and methods…

 def get_url_path(self):

Models and Database Structure Chapter 2

[60]

 return reverse("idea_details", kwargs={
 "idea_id": str(self.pk),
 })

How it works...
The UrlBase class is an abstract model that has three methods, as follows:

get_url() retrieves the full URL of the object.
get_url_path() retrieves the absolute path of the object.
get_absolute_url() mimics the get_url_path() method.

The get_url() and get_url_path() methods are expected to be overwritten in the
extended model class, for example, Idea. You can define get_url(), and
get_url_path() will strip it to the path. Alternatively, you can define get_url_path(),
and get_url() will prepend the website URL to the beginning of the path.

The rule of thumb is to always overwrite the get_url_path() method.

In the templates, use get_url_path() when you need a link to an object on the same
website, as follows:

{{ idea.title }}

Use get_url() for links in external communication, such as in emails, RSS feeds, or APIs;
an example is as follows:

{{ idea.title }}

The default get_absolute_url() method will be used in the Django model
administration for the View on site functionality, and might also be used by some third-
party Django apps.

Models and Database Structure Chapter 2

[61]

There's more...
In general, don't use incremental primary keys in the URLs, because it is
not safe to expose them to the end user: the total amount of items would
be visible, and it would be too easy to navigate through different items by
just changing the URL path.

You can use the primary keys in the URLs for the detail pages only if they are Universal
Unique Identifiers (UUIDs) or generated random strings. Otherwise, create and use a slug
field, as follows:

class Idea(UrlBase):
 slug = models.SlugField(_("Slug for URLs"), max_length=50)

See also
The Using model mixins recipe
The Creating a model mixin to handle creation and modification dates recipe
The Creating a model mixin to take care of meta tags recipe
The Creating a model mixin to handle generic relations recipe
The Configuring settings for development, testing, staging, and production
environments recipe, in Chapter 1, Getting Started with Django 3.0

Creating a model mixin to handle creation
and modification dates
It is common to include timestamps in your models for the creation and modification of
your model instances. In this recipe, you will learn how to create a simple model mixin that
saves the creation and modification dates and times for your model. Using such a mixin
will ensure that all of the models use the same field names for the timestamps, and have the
same behaviors.

Getting ready
If you haven't yet done so, create the myproject.apps.core package to save your mixins.
Then, create the models.py file in the core package.

Models and Database Structure Chapter 2

[62]

How to do it...
Open the models.py file in your myprojects.apps.core package, and insert the
following content there:

myproject/apps/core/models.py
from django.db import models
from django.utils.translation import gettext_lazy as _

class CreationModificationDateBase(models.Model):
 """
 Abstract base class with a creation and modification date and time
 """

 created = models.DateTimeField(
 _("Creation Date and Time"),
 auto_now_add=True,
)

 modified = models.DateTimeField(
 _("Modification Date and Time"),
 auto_now=True,
)

 class Meta:
 abstract = True

How it works...
The CreationModificationDateMixin class is an abstract model, which means that
extending model classes will create all of the fields in the same database table—that is, there
will be no one-to-one relationships that make the table more complex to handle.

This mixin has two date-time fields, created and modified. With the auto_now_add and
auto_now attributes, the timestamps will be saved automatically when saving a model
instance. The fields will automatically get the editable=False attribute, and thus will be
hidden in administration forms. If USE_TZ is set to True in the settings (which is the default
and recommended), time-zone-aware timestamps will be used. Otherwise, time-zone-naive
timestamps will be used. Timezone-aware timestamps are saved in the Coordinated
Universal Time (UTC) time zone in the database and converted to the default time zone of
the project when reading or writing them. Time-zone-naive timestamps are saved in the
local time zone of the project in the database; they are not practical to use in general,
because they make time management between time zones more complicated.

Models and Database Structure Chapter 2

[63]

To make use of this mixin, we just have to import it and extend our model, as follows:

myproject/apps/ideas/models.py
from django.db import models

from myproject.apps.core.models import CreationModificationDateBase

class Idea(CreationModificationDateBase):
 # other fields, attributes, properties, and methods…

See also
The Using model mixins recipe
The Creating a model mixin to take care of meta tags recipe
The Creating a model mixin to handle generic relations recipe

Creating a model mixin to take care of meta
tags
When you optimize your site for search engines, you not only have to use semantic markup
for each page, but you also have to include appropriate meta tags. For maximum flexibility,
it helps to have a way to define content for common meta tags, specific to objects that have
their own detail pages on your website. In this recipe, we will look at how to create a model
mixin for the fields and methods related to the keyword, description, author, and copyright
meta tags.

Getting ready
As detailed in the previous recipes, make sure that you have the myproject.apps.core
package for your mixins. Also, create a directory structure,
templates/utils/includes/, under the package, and inside of that, create a meta.html
file to store the basic meta tag markup.

Models and Database Structure Chapter 2

[64]

How to do it...
Let's create our model mixin:

Make sure to add "myproject.apps.core" to INSTALLED_APPS in the settings,1.
because we want to take the templates directory into account for this module.
Add the following basic meta tag markup to meta_field.html:2.

{# templates/core/includes/meta_field.html #}
<meta name="{{ name }}" content="{{ content }}" />

Open the models.py file from the core package in your favorite editor, and add3.
the following content:

myproject/apps/core/models.py
from django.conf import settings
from django.db import models
from django.utils.translation import gettext_lazy as _
from django.utils.safestring import mark_safe
from django.template.loader import render_to_string

class MetaTagsBase(models.Model):
 """
 Abstract base class for generating meta tags
 """
 meta_keywords = models.CharField(
 _("Keywords"),
 max_length=255,
 blank=True,
 help_text=_("Separate keywords with commas."),
)
 meta_description = models.CharField(
 _("Description"),
 max_length=255,
 blank=True,
)
 meta_author = models.CharField(
 _("Author"),
 max_length=255,
 blank=True,
)
 meta_copyright = models.CharField(
 _("Copyright"),
 max_length=255,
 blank=True,
)

Models and Database Structure Chapter 2

[65]

 class Meta:
 abstract = True

 def get_meta_field(self, name, content):
 tag = ""
 if name and content:
 tag = render_to_string("core/includes/meta_field.html",
 {
 "name": name,
 "content": content,
 })
 return mark_safe(tag)

 def get_meta_keywords(self):
 return self.get_meta_field("keywords", self.meta_keywords)

 def get_meta_description(self):
 return self.get_meta_field("description",
 self.meta_description)

 def get_meta_author(self):
 return self.get_meta_field("author", self.meta_author)

 def get_meta_copyright(self):
 return self.get_meta_field("copyright",
 self.meta_copyright)

 def get_meta_tags(self):
 return mark_safe("\n".join((
 self.get_meta_keywords(),
 self.get_meta_description(),
 self.get_meta_author(),
 self.get_meta_copyright(),
)))

Models and Database Structure Chapter 2

[66]

How it works...
This mixin adds four fields to the model that extends from it: meta_keywords,
meta_description, meta_author, and meta_copyright. The corresponding get_*()
methods, used to render the associated meta tags, are also added. Each of these passes the
name and appropriate field content to the core get_meta_field() method, which uses
this input to return rendered markup based on the meta_field.html template. Finally, a
shortcut get_meta_tags() method is provided to generate the combined markup for all
of the available metadata at once.

If you use this mixin in a model, such as Idea, which is shown in the Using model mixins
recipe at the start of this chapter, you can put the following in the HEAD section of your
detail page template to render all of the meta tags at once, as follows:

{% block meta_tags %}
{{ block.super }}
{{ idea.get_meta_tags }}
{% endblock %}

Here, a meta_tags block has been defined in a parent template, and this snippet shows
how the child template redefines the block, including the content from the parent first as
block.super, and extending it with our additional tags from the idea object. You could
also render only a specific meta tag by using something like the following: {{
idea.get_meta_description }}.

As you may have noticed from the models.py code, the rendered meta tags are marked as
safe – that is, they are not escaped, and we don't need to use the safe template filter. Only
the values that come from the database are escaped, in order to guarantee that the final
HTML is well formed. The database data in meta_keywords and other fields will
automatically be escaped when we call render_to_string() for the meta_field.html
template, because that template does not specify {% autoescape off %} in its content.

See also
The Using model mixins recipe
The Creating a model mixin to handle creation and modification dates recipe
The Creating a model mixin to handle generic relations recipe
The Arranging the base.html template recipe in Chapter 4, Templates and JavaScript

Models and Database Structure Chapter 2

[67]

Creating a model mixin to handle generic
relations
Aside from normal database relationships, such as a foreign-key relationship or a many-to-
many relationship, Django has a mechanism to relate a model to an instance of any other
model. This concept is called generic relations. For each generic relation, we save the
content type of the related model as well as the ID of the instance of that model.

In this recipe, we will look at how to abstract the creation of generic relations in the model
mixins.

Getting ready
For this recipe to work, you will need to have the contenttypes app installed. It should be
in the INSTALLED_APPS list in the settings, by default, as shown in the following code:

myproject/settings/_base.py

INSTALLED_APPS = [
 # contributed
 "django.contrib.admin",
 "django.contrib.auth",
 "django.contrib.contenttypes",
 "django.contrib.sessions",
 "django.contrib.messages",
 "django.contrib.staticfiles",
 # third-party
 # ...
 # local
 "myproject.apps.core",
 "myproject.apps.categories",
 "myproject.apps.ideas",
]

Again, make sure that you have already created the myproject.apps.core app for your
model mixins.

Models and Database Structure Chapter 2

[68]

How to do it...
To create and use a mixin for generic relations follow these steps:

Open the models.py file in the core package in a text editor, and insert the1.
following content there:

myproject/apps/core/models.py
from django.db import models
from django.utils.translation import gettext_lazy as _
from django.contrib.contenttypes.models import ContentType
from django.contrib.contenttypes.fields import GenericForeignKey
from django.core.exceptions import FieldError

def object_relation_base_factory(
 prefix=None,
 prefix_verbose=None,
 add_related_name=False,
 limit_content_type_choices_to=None,
 is_required=False):
 """
 Returns a mixin class for generic foreign keys using
 "Content type - object ID" with dynamic field names.
 This function is just a class generator.

 Parameters:
 prefix: a prefix, which is added in front of
 the fields
 prefix_verbose: a verbose name of the prefix, used to
 generate a title for the field column
 of the content object in the Admin
 add_related_name: a boolean value indicating, that a
 related name for the generated content
 type foreign key should be added. This
 value should be true, if you use more
 than one ObjectRelationBase in your
 model.

 The model fields are created using this naming scheme:
 <<prefix>>_content_type
 <<prefix>>_object_id
 <<prefix>>_content_object
 """
 p = ""
 if prefix:
 p = f"{prefix}_"

Models and Database Structure Chapter 2

[69]

 prefix_verbose = prefix_verbose or _("Related object")
 limit_content_type_choices_to = limit_content_type_choices_to
 or {}

 content_type_field = f"{p}content_type"
 object_id_field = f"{p}object_id"
 content_object_field = f"{p}content_object"

 class TheClass(models.Model):
 class Meta:
 abstract = True

 if add_related_name:
 if not prefix:
 raise FieldError("if add_related_name is set to "
 "True, a prefix must be given")
 related_name = prefix
 else:
 related_name = None

 optional = not is_required

 ct_verbose_name = _(f"{prefix_verbose}'s type (model)")

 content_type = models.ForeignKey(
 ContentType,
 verbose_name=ct_verbose_name,
 related_name=related_name,
 blank=optional,
 null=optional,
 help_text=_("Please select the type (model) "
 "for the relation, you want to build."),
 limit_choices_to=limit_content_type_choices_to,
 on_delete=models.CASCADE)

 fk_verbose_name = prefix_verbose

 object_id = models.CharField(
 fk_verbose_name,
 blank=optional,
 null=False,
 help_text=_("Please enter the ID of the related object."),
 max_length=255,
 default="") # for migrations

 content_object = GenericForeignKey(
 ct_field=content_type_field,
 fk_field=object_id_field)

Models and Database Structure Chapter 2

[70]

 TheClass.add_to_class(content_type_field, content_type)
 TheClass.add_to_class(object_id_field, object_id)
 TheClass.add_to_class(content_object_field, content_object)

 return TheClass

The following code snippet is an example of how to use two generic relationships2.
in your app (put this code in ideas/models.py):

myproject/apps/ideas/models.py
from django.db import models
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.models import (
 object_relation_base_factory as generic_relation,
)

FavoriteObjectBase = generic_relation(
 is_required=True,
)

OwnerBase = generic_relation(
 prefix="owner",
 prefix_verbose=_("Owner"),
 is_required=True,
 add_related_name=True,
 limit_content_type_choices_to={
 "model__in": (
 "user",
 "group",
)
 }
)

class Like(FavoriteObjectBase, OwnerBase):
 class Meta:
 verbose_name = _("Like")
 verbose_name_plural = _("Likes")

 def __str__(self):
 return _("{owner} likes {object}").format(
 owner=self.owner_content_object,
 object=self.content_object
)

Models and Database Structure Chapter 2

[71]

How it works...
As you can see, this snippet is more complex than the previous ones.

The object_relation_base_factory function, which we have aliased to
generic_relation, for short, in our import, is not a mixin itself; it is a function that
generates a model mixin – that is, an abstract model class to extend from. The dynamically
created mixin adds the content_type and object_id fields and the content_object
generic foreign key that points to the related instance.

Why can't we just define a simple model mixin with these three attributes? A dynamically
generated abstract class allows us to have prefixes for each field name; therefore, we can
have more than one generic relation in the same model. For example, the Like model,
which was shown previously, will have the content_type, object_id, and
content_object fields for the favorite object, and owner_content_type,
owner_object_id, and owner_content_object for the one (user or group) that liked the
object.

The object_relation_base_factory function, which we have aliased
to generic_relation for short, adds the possibility to limit the content type choices by
the limit_content_type_choices_to parameter. The preceding example limits the
choices for owner_content_type to only the content types of the User and Group models.

See also
The Creating a model mixin with URL-related methods recipe
The Creating a model mixin to handle creation and modification dates recipe
The Creating a model mixin to take care of meta tags recipe
The Implementing the Like widget recipe in Chapter 4, Templates and JavaScript

Handling multilingual fields
Django uses the internationalization mechanism to translate verbose strings in the code and
templates. But it's up to the developer to decide how to implement the multilingual content
in the models. We'll show you a couple of ways for how to implement multilingual models
directly in your project. The first approach will be using language-specific fields in your
model.

Models and Database Structure Chapter 2

[72]

This approach has the following features:

It is straightforward to define multilingual fields in the model.
It is simple to use the multilingual fields in database queries.
You can use contributed administration to edit models with the multilingual
fields, without additional modifications.
If you need to, you can effortlessly show all of the translations of an object in the
same template.
After changing the amount of languages in the settings, you will need to create
and run migrations for all multilingual models.

Getting ready
Have you created the myproject.apps.core package used in the preceding recipes of this
chapter? You will now need a new model_fields.py file within the core app, for the
custom model fields.

How to do it...
Execute the following steps to define the multilingual character field and multilingual text
field:

Open the model_fields.py file, and create the base multilingual field, as1.
follows:

myproject/apps/core/model_fields.py
from django.conf import settings
from django.db import models
from django.utils.translation import get_language
from django.utils import translation

class MultilingualField(models.Field):
 SUPPORTED_FIELD_TYPES = [models.CharField, models.TextField]

 def __init__(self, verbose_name=None, **kwargs):
 self.localized_field_model = None
 for model in MultilingualField.SUPPORTED_FIELD_TYPES:
 if issubclass(self.__class__, model):
 self.localized_field_model = model
 self._blank = kwargs.get("blank", False)
 self._editable = kwargs.get("editable", True)
 super().__init__(verbose_name, **kwargs)

Models and Database Structure Chapter 2

[73]

 @staticmethod
 def localized_field_name(name, lang_code):
 lang_code_safe = lang_code.replace("-", "_")
 return f"{name}_{lang_code_safe}"

 def get_localized_field(self, lang_code, lang_name):
 _blank = (self._blank
 if lang_code == settings.LANGUAGE_CODE
 else True)
 localized_field = self.localized_field_model(
 f"{self.verbose_name} ({lang_name})",
 name=self.name,
 primary_key=self.primary_key,
 max_length=self.max_length,
 unique=self.unique,
 blank=_blank,
 null=False, # we ignore the null argument!
 db_index=self.db_index,
 default=self.default or "",
 editable=self._editable,
 serialize=self.serialize,
 choices=self.choices,
 help_text=self.help_text,
 db_column=None,
 db_tablespace=self.db_tablespace)
 return localized_field

 def contribute_to_class(self, cls, name,
 private_only=False,
 virtual_only=False):
 def translated_value(self):
 language = get_language()
 val = self.__dict__.get(
 MultilingualField.localized_field_name(
 name, language))
 if not val:
 val = self.__dict__.get(
 MultilingualField.localized_field_name(
 name, settings.LANGUAGE_CODE))
 return val

 # generate language-specific fields dynamically
 if not cls._meta.abstract:
 if self.localized_field_model:
 for lang_code, lang_name in settings.LANGUAGES:
 localized_field = self.get_localized_field(
 lang_code, lang_name)
 localized_field.contribute_to_class(

Models and Database Structure Chapter 2

[74]

 cls,
 MultilingualField.localized_field_name(
 name, lang_code))

 setattr(cls, name, property(translated_value))
 else:
 super().contribute_to_class(
 cls, name, private_only, virtual_only)

In the same file, subclass the base field for character and text field forms, as2.
follows:

class MultilingualCharField(models.CharField, MultilingualField):
 pass

class MultilingualTextField(models.TextField, MultilingualField):
 pass

Create an admin.py file in the core app, and add the following content:3.

myproject/apps/core/admin.py
from django.conf import settings

def get_multilingual_field_names(field_name):
 lang_code_underscored = settings.LANGUAGE_CODE.replace("-",
 "_")
 field_names = [f"{field_name}_{lang_code_underscored}"]
 for lang_code, lang_name in settings.LANGUAGES:
 if lang_code != settings.LANGUAGE_CODE:
 lang_code_underscored = lang_code.replace("-", "_")
 field_names.append(
 f"{field_name}_{lang_code_underscored}"
)
 return field_names

Now, we'll consider an example of how to use the multilingual fields in your app, as
follows:

First, set multiple languages in the settings for your project. Let's say, our website1.
will support all official languages of the European Union, with English being the
default language:

myproject/settings/_base.py
LANGUAGE_CODE = "en"

All official languages of European Union
LANGUAGES = [

Models and Database Structure Chapter 2

[75]

 ("bg", "Bulgarian"), ("hr", "Croatian"),
 ("cs", "Czech"), ("da", "Danish"),
 ("nl", "Dutch"), ("en", "English"),
 ("et", "Estonian"), ("fi", "Finnish"),
 ("fr", "French"), ("de", "German"),
 ("el", "Greek"), ("hu", "Hungarian"),
 ("ga", "Irish"), ("it", "Italian"),
 ("lv", "Latvian"), ("lt", "Lithuanian"),
 ("mt", "Maltese"), ("pl", "Polish"),
 ("pt", "Portuguese"), ("ro", "Romanian"),
 ("sk", "Slovak"), ("sl", "Slovene"),
 ("es", "Spanish"), ("sv", "Swedish"),
]

Then, open the models.py file from the myproject.apps.ideas app, and2.
create the multilingual fields for the Idea model, as follows:

myproject/apps/ideas/models.py
from django.db import models
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.model_fields import (
 MultilingualCharField,
 MultilingualTextField,
)

class Idea(models.Model):
 title = MultilingualCharField(
 _("Title"),
 max_length=200,
)
 content = MultilingualTextField(
 _("Content"),
)

 class Meta:
 verbose_name = _("Idea")
 verbose_name_plural = _("Ideas")

 def __str__(self):
 return self.title

Models and Database Structure Chapter 2

[76]

Create an admin.py file for the ideas app:3.

myproject/apps/ideas/admin.py
from django.contrib import admin
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.admin import get_multilingual_field_names

from .models import Idea

@admin.register(Idea)
class IdeaAdmin(admin.ModelAdmin):
 fieldsets = [
 (_("Title and Content"), {
 "fields": get_multilingual_field_names("title") +
 get_multilingual_field_names("content")
 }),
]

How it works...
The example of Idea will generate a model that is similar to the following:

class Idea(models.Model):
 title_bg = models.CharField(
 _("Title (Bulgarian)"),
 max_length=200,
)
 title_hr = models.CharField(
 _("Title (Croatian)"),
 max_length=200,
)
 # titles for other languages…
 title_sv = models.CharField(
 _("Title (Swedish)"),
 max_length=200,
)

 content_bg = MultilingualTextField(
 _("Content (Bulgarian)"),
)
 content_hr = MultilingualTextField(
 _("Content (Croatian)"),
)
 # content for other languages…
 content_sv = MultilingualTextField(

Models and Database Structure Chapter 2

[77]

 _("Content (Swedish)"),
)

 class Meta:
 verbose_name = _("Idea")
 verbose_name_plural = _("Ideas")

 def __str__(self):
 return self.title

If there were any language codes with a dash, like "de-ch" for Swiss German, the fields for
those languages would be replaced with underscores, like title_de_ch and
content_de_ch.

In addition to the generated language-specific fields, there will be two properties – title
and content – that will return the corresponding field in the currently active language.
These will fall back to the default language if no localized field content is available.

The MultilingualCharField and MultilingualTextField fields will juggle the model
fields dynamically, depending on your LANGUAGES setting. They will overwrite the
contribute_to_class() method that is used when the Django framework creates the
model classes. The multilingual fields dynamically add character or text fields for each
language of the project. You'll need to create a database migration to add the appropriate
fields in the database. Also, the properties are created to return the translated value of the
currently active language or the main language, by default.

In the administration, get_multilingual_field_names() will return a list of language-
specific field names, starting with one of the default languages and then proceeding with
the other languages from the LANGUAGES setting.

Here are a couple of examples of how you might use the multilingual fields in templates
and views.

If you have the following code in the template, it will show the text in the currently active
language, let's say Lithuanian, and will fall back to English if the translation doesn't exist:

<h1>{{ idea.title }}</h1>
<div>{{ idea.content|urlize|linebreaks }}</div>

If you want to have your QuerySet ordered by the translated titles, you can define it as
follows:

>>> lang_code = input("Enter language code: ")
>>> lang_code_underscored = lang_code.replace("-", "_")
>>> qs = Idea.objects.order_by(f"title_{lang_code_underscored}")

Models and Database Structure Chapter 2

[78]

See also
The Working with model translation tables recipe
The Using migrations recipe
Chapter 6, Model Administration

Working with model translation tables
The second approach to handling multilingual content in the database involves using
model translation tables for each multilingual model.

The features of this approach are as follows:

You can use contributed administration to edit translations as inlines.
After changing the amount of languages in the settings, no migrations or other
further actions are necessary.
You can effortlessly show the translation of the current language in the template,
but it would be more difficult to show several translations in specific languages
on the same page.
You have to know and use a specific pattern described in this recipe for creating
model translations.
It's not that simple to use this approach for database queries, but, as you will see,
it's still possible.

Getting ready
Once again, we will start with the myprojects.apps.core app.

How to do it...
Execute the following steps to prepare for multilingual models:

In the core app, create model_fields.py with the following content:1.

myproject/apps/core/model_fields.py
from django.conf import settings
from django.utils.translation import get_language
from django.utils import translation

Models and Database Structure Chapter 2

[79]

class TranslatedField(object):
 def __init__(self, field_name):
 self.field_name = field_name

 def __get__(self, instance, owner):
 lang_code = translation.get_language()
 if lang_code == settings.LANGUAGE_CODE:
 # The fields of the default language are in the main
 model
 return getattr(instance, self.field_name)
 else:
 # The fields of the other languages are in the
 translation
 # model, but falls back to the main model
 translations = instance.translations.filter(
 language=lang_code,
).first() or instance
 return getattr(translations, self.field_name)

Add the admin.py file to the core app with the following content:2.

myproject/apps/core/admin.py
from django import forms
from django.conf import settings
from django.utils.translation import gettext_lazy as _

class LanguageChoicesForm(forms.ModelForm):
 def __init__(self, *args, **kwargs):
 LANGUAGES_EXCEPT_THE_DEFAULT = [
 (lang_code, lang_name)
 for lang_code, lang_name in settings.LANGUAGES
 if lang_code != settings.LANGUAGE_CODE
]
 super().__init__(*args, **kwargs)
 self.fields["language"] = forms.ChoiceField(
 label=_("Language"),
 choices=LANGUAGES_EXCEPT_THE_DEFAULT,
 required=True,
)

Now let's implement the multilingual models:

First, set multiple languages in the settings for your project. Let's say, our website1.
will support all official languages of European Union with English being the
default language:

myproject/settings/_base.py
LANGUAGE_CODE = "en"

Models and Database Structure Chapter 2

[80]

All official languages of European Union
LANGUAGES = [
 ("bg", "Bulgarian"), ("hr", "Croatian"),
 ("cs", "Czech"), ("da", "Danish"),
 ("nl", "Dutch"), ("en", "English"),
 ("et", "Estonian"), ("fi", "Finnish"),
 ("fr", "French"), ("de", "German"),
 ("el", "Greek"), ("hu", "Hungarian"),
 ("ga", "Irish"), ("it", "Italian"),
 ("lv", "Latvian"), ("lt", "Lithuanian"),
 ("mt", "Maltese"), ("pl", "Polish"),
 ("pt", "Portuguese"), ("ro", "Romanian"),
 ("sk", "Slovak"), ("sl", "Slovene"),
 ("es", "Spanish"), ("sv", "Swedish"),
]

Then, let's create the Idea and IdeaTranslations models:2.

myproject/apps/ideas/models.py
from django.db import models
from django.conf import settings
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.model_fields import TranslatedField

class Idea(models.Model):
 title = models.CharField(
 _("Title"),
 max_length=200,
)
 content = models.TextField(
 _("Content"),
)
 translated_title = TranslatedField("title")
 translated_content = TranslatedField("content")

 class Meta:
 verbose_name = _("Idea")
 verbose_name_plural = _("Ideas")

 def __str__(self):
 return self.title

class IdeaTranslations(models.Model):
 idea = models.ForeignKey(
 Idea,

Models and Database Structure Chapter 2

[81]

 verbose_name=_("Idea"),
 on_delete=models.CASCADE,
 related_name="translations",
)
 language = models.CharField(_("Language"), max_length=7)

 title = models.CharField(
 _("Title"),
 max_length=200,
)
 content = models.TextField(
 _("Content"),
)

 class Meta:
 verbose_name = _("Idea Translations")
 verbose_name_plural = _("Idea Translations")
 ordering = ["language"]
 unique_together = [["idea", "language"]]

 def __str__(self):
 return self.title

Last, create the admin.py for the ideas app as follows:3.

myproject/apps/ideas/admin.py
from django.contrib import admin
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.admin import LanguageChoicesForm

from .models import Idea, IdeaTranslations

class IdeaTranslationsForm(LanguageChoicesForm):
 class Meta:
 model = IdeaTranslations
 fields = "__all__"

class IdeaTranslationsInline(admin.StackedInline):
 form = IdeaTranslationsForm
 model = IdeaTranslations
 extra = 0

@admin.register(Idea)
class IdeaAdmin(admin.ModelAdmin):

Models and Database Structure Chapter 2

[82]

 inlines = [IdeaTranslationsInline]

 fieldsets = [
 (_("Title and Content"), {
 "fields": ["title", "content"]
 }),
]

How it works...
We keep the language-specific fields of the default language in the Idea model itself. The
translations for each language are in the IdeaTranslations model, which will be listed in
the administration as an inline translation. IdeaTranslations don't have the language
choices at the model for a reason – we don't want to create migrations every time a new
language is added or some language is removed. Instead, the language choices are set in
the administration form, also making sure that the default language is skipped or not
available for selection in the list. The language choices are restricted using the
LanguageChoicesForm class.

To get a specific field in the current language, you would use the fields defined as
TranslatedField. In the template, that would look like the following:

<h1>{{ idea.translated_title }}</h1>
<div>{{ idea.translated_content|urlize|linebreaks }}</div>

To order items by a translated title in a specific language, you would use the annotate()
method as follows:

>>> from django.conf import settings
>>> from django.db import models
>>> lang_code = input("Enter language code: ")

>>> if lang_code == settings.LANGUAGE_CODE:
... qs = Idea.objects.annotate(
... title_translation=models.F("title"),
... content_translation=models.F("content"),
...)
... else:
... qs = Idea.objects.filter(
... translations__language=lang_code,
...).annotate(
... title_translation=models.F("translations__title"),
... content_translation=models.F("translations__content"),
...)

Models and Database Structure Chapter 2

[83]

>>> qs = qs.order_by("title_translation")

>>> for idea in qs:
... print(idea.title_translation)

In this example, we prompt for a language code in the Django shell. If the language is the
default one, we store the title and content as the title_translation and
the content_translation from the Idea model. If there is another language chosen, we
read the title and content as title_translation and content_translation from
the IdeaTranslations model with the chosen language.

Afterward, we can filter or order QuerySet by title_translation or
content_translation.

See also
The Handling multilingual fields recipe
Chapter 6, Model Administration

Avoiding circular dependencies
When developing Django models, it is very important to avoid circular dependencies
especially in the models.py files. Circular dependencies are imports in different Python
modules from each other. You should never cross-import from the different models.py
files, because that causes serious stability issues. Instead, if you have interdependencies,
you should use the actions described in this recipe.

Getting ready
Let's work with categories and ideas apps to illustrate how to deal with cross
dependencies.

Models and Database Structure Chapter 2

[84]

How to do it...
Follow these practices when working with models that use models from other apps:

For foreign keys and many-to-many relationships with models from other apps,1.
use the "<app_label>.<model>" declaration instead of importing the model. In
Django this works with ForeignKey, OneToOneField, and ManyToManyField,
for example:

myproject/apps/ideas/models.py
from django.db import models
from django.conf import settings
from django.utils.translation import gettext_lazy as _

class Idea(models.Model):
 author = models.ForeignKey(
 settings.AUTH_USER_MODEL,
 verbose_name=_("Author"),
 on_delete=models.SET_NULL,
 blank=True,
 null=True,
)
 category = models.ForeignKey(
 "categories.Category",
 verbose_name=_("Category"),
 blank=True,
 null=True,
 on_delete=models.SET_NULL,
)
 # other fields, attributes, properties and methods…

Here, settings.AUTH_USER_MODEL is a setting with a value such
as "auth.User":

If you need to access a model from another app in a method, import that model2.
inside the method instead of at the module level, for example, as follows:

myproject/apps/categories/models.py
from django.db import models
from django.utils.translation import gettext_lazy as _

class Category(models.Model):
 # fields, attributes, properties, and methods…

 def get_ideas_without_this_category(self):
 from myproject.apps.ideas.models import Idea
 return Idea.objects.exclude(category=self)

Models and Database Structure Chapter 2

[85]

If you use model inheritance, for example, for model mixins, keep the base3.
classes in a separate app and place them before other apps that would use them
in INSTALLED_APPS, as follows:

myproject/settings/_base.py

INSTALLED_APPS = [
 # contributed
 "django.contrib.admin",
 "django.contrib.auth",
 "django.contrib.contenttypes",
 "django.contrib.sessions",
 "django.contrib.messages",
 "django.contrib.staticfiles",
 # third-party
 # ...
 # local
 "myproject.apps.core",
 "myproject.apps.categories",
 "myproject.apps.ideas",
]

Here the ideas app will use the model mixins from the core app as follows:

myproject/apps/ideas/models.py
from django.db import models
from django.conf import settings
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.models import (
 CreationModificationDateBase,
 MetaTagsBase,
 UrlBase,
)

class Idea(CreationModificationDateBase, MetaTagsBase, UrlBase):
 # fields, attributes, properties, and methods…

See also
The Configuring settings for development, testing, staging, and production
environments recipe in Chapter 1, Getting Started with Django 3.0
The Respecting the import order in Python files recipe in Chapter 1, Getting Started
with Django 3.0

Models and Database Structure Chapter 2

[86]

The Using model mixins recipe
The Changing the foreign key to the many-to-many field recipe

Adding database constraints
For better database integrity, it's common to define database constraints, telling some fields
to be bound to fields of other database tables, making some fields unique or not null. For
advanced database constraints, such as making the fields unique with a condition or setting
specific conditions for the values of some fields, Django has special
classes: UniqueConstraint and CheckConstraint. In this recipe, you will see a practical
example of how to use them.

Getting ready
Let's start with the ideas app and the Idea model that will have at least title and
author fields.

How to do it...
Set the database constraints in the Meta class of the Idea model as follows:

myproject/apps/ideas/models.py
from django.db import models
from django.utils.translation import gettext_lazy as _

class Idea(models.Model):
 author = models.ForeignKey(
 settings.AUTH_USER_MODEL,
 verbose_name=_("Author"),
 on_delete=models.SET_NULL,
 blank=True,
 null=True,
 related_name="authored_ideas",
)
 title = models.CharField(
 _("Title"),
 max_length=200,
)

 class Meta:

Models and Database Structure Chapter 2

[87]

 verbose_name = _("Idea")
 verbose_name_plural = _("Ideas")
 constraints = [
 models.UniqueConstraint(
 fields=["title"],
 condition=~models.Q(author=None),
 name="unique_titles_for_each_author",
),
 models.CheckConstraint(
 check=models.Q(
 title__iregex=r"^\S.*\S$"
 # starts with non-whitespace,
 # ends with non-whitespace,
 # anything in the middle
),
 name="title_has_no_leading_and_trailing_whitespaces",
)
]

How it works...
We define two constraints in the database.

The first one, UniqueConstraint, tells the titles to be unique for each author. If the author
is not set, the titles can be repeated. To check if the author is set we use the negated
lookup: ~models.Q(author=None). Note that in Django, the ~ operator for lookups is
equivalent to the exclude() method of a QuerySet, so these QuerySets are equivalent:

ideas_with_authors = Idea.objects.exclude(author=None)
ideas_with_authors2 = Idea.objects.filter(~models.Q(author=None))

The second constraint, CheckConstraint, checks if the title doesn't start and end with a
whitespace. For that, we use a regular expression lookup.

There's more...
Database constraints don't affect form validation. They will just raise
django.db.utils.IntegrityError if any data doesn't pass its conditions when saving
entries to the database.

Models and Database Structure Chapter 2

[88]

If you want to have data validated at the forms, you have to implement the validation in
addition yourself, for example, in the clean() method of the model. That would look like
this for the Idea model:

myproject/apps/ideas/models.py
from django.db import models
from django.conf import settings
from django.core.exceptions import ValidationError
from django.utils.translation import gettext_lazy as _

class Idea(models.Model):
 author = models.ForeignKey(
 settings.AUTH_USER_MODEL,
 verbose_name=_("Author"),
 on_delete=models.SET_NULL,
 blank=True,
 null=True,
 related_name="authored_ideas2",
)
 title = models.CharField(
 _("Title"),
 max_length=200,
)

 # other fields and attributes…

 class Meta:
 verbose_name = _("Idea")
 verbose_name_plural = _("Ideas")
 constraints = [
 models.UniqueConstraint(
 fields=["title"],
 condition=~models.Q(author=None),
 name="unique_titles_for_each_author2",
),
 models.CheckConstraint(
 check=models.Q(
 title__iregex=r"^\S.*\S$"
 # starts with non-whitespace,
 # ends with non-whitespace,
 # anything in the middle
),
 name="title_has_no_leading_and_trailing_whitespaces2",
)
]

 def clean(self):

Models and Database Structure Chapter 2

[89]

 import re
 if self.author and Idea.objects.exclude(pk=self.pk).filter(
 author=self.author,
 title=self.title,
).exists():
 raise ValidationError(
 _("Each idea of the same user should have a unique title.")
)
 if not re.match(r"^\S.*\S$", self.title):
 raise ValidationError(
 _("The title cannot start or end with a whitespace.")
)

 # other properties and methods…

See also
Chapter 3, Forms and Views
The Using database query expressions recipe in Chapter 10, Bells and Whistles

Using migrations
In Agile software development, requirements for the project evolve and get updated from
time to time in the process of development. As development happens iteratively, you will
have to perform database schema changes along the way. With Django migrations, you
don't have to change the database tables and fields manually, as most of it is done
automatically, using the command-line interface.

Getting ready
Activate your virtual environment in the command-line tool, and change the active
directory to your project's directory.

Models and Database Structure Chapter 2

[90]

How to do it...
To create the database migrations, take a look at the following steps:

When you create models in your new categories or ideas app, you have to1.
create an initial migration that will create the database tables for your app. This
can be done by using the following command:

(env)$ python manage.py makemigrations ideas

The first time that you want to create all of the tables for your project, run the2.
following command:

(env)$ python manage.py migrate

Run this command when you want to execute the new migrations for all of your
apps.

If you want to execute the migrations for a specific app, run the following3.
command:

(env)$ python manage.py migrate ideas

If you make some changes in the database schema, you will have to create a4.
migration for that schema. For example, if we add a new subtitle field to the idea
model, we can create the migration by using the following command:

(env)$ python manage.py makemigrations --name=subtitle_added ideas

However, the --name=subtitle_added field can be skipped because in most
cases Django generates fairly self-explanatory default names.

Sometimes, you may have to add to or change data in the existing schema in5.
bulk, which can be done with a data migration, instead of a schema migration. To
create a data migration that modifies the data in the database table, we can use
the following command:

(env)$ python manage.py makemigrations --name=populate_subtitle \
> --empty ideas

The --empty parameter tells Django to create a skeleton data migration, which
you have to modify to perform the necessary data manipulation before applying
it. For data migrations, setting the name is recommended.

Models and Database Structure Chapter 2

[91]

To list all of the available applied and unapplied migrations, run the following6.
command:

(env)$ python manage.py showmigrations

The applied migrations will be listed with an [X] prefix. The unapplied ones will
be listed with a [] prefix.

To list all of the available migrations for a specific app, run the same command,7.
but pass the app name, as follows:

(env)$ python manage.py showmigrations ideas

How it works...
Django migrations are instruction files for the database migration mechanism. The
instruction files inform us about which database tables to create or remove, which fields to
add or remove, and which data to insert, update, or delete. Also they define which
migrations are dependent on which other migrations.

There are two types of migrations in Django. One is schema migration, and the other is data
migration. Schema migration should be created when you add new models, or add or
remove fields. Data migration should be used when you want to fill the database with some
values or massively delete values from the database. Data migrations should be created by
using a command in the command-line tool, and then coded in the migration file.

The migrations for each app are saved in their migrations directories. The first migration
will usually be called 0001_initial.py, and the other migrations in our example app will
be called 0002_subtitle_added.py and 0003_populate_subtitle.py. Each migration
gets a number prefix that is automatically incremented. For each migration that is executed,
there is an entry that is saved in the django_migrations database table.

It is possible to migrate back and forth by specifying the number of the migration to which
we want to migrate, as shown in the following command:

(env)$ python manage.py migrate ideas 0002

Models and Database Structure Chapter 2

[92]

To unmigrate all migrations of the app including the initial migration, run the following:

(env)$ python manage.py migrate ideas zero

Unmigrating requires each migration to have both a forward and a backward action.
Ideally, the backward action would undo exactly the changes made by the forward action.
However, in some cases such a change would be unrecoverable, such as when the forward
action has removed a column from the schema, because it will have destroyed data. In such
a case, the backward action might restore the schema, but the data would remain lost
forever, or else there might not be a backward action at all.

Do not commit your migrations to version control until you have tested
the forward and backward migration process and you are sure that they
will work well in other developments and public website environments.

There's more...
Learn more about writing database migrations in the official How To guide, found
at https://docs.djangoproject. com/ en/ 2.2/ howto/ writing- migrations/ .

See also
The Working with a virtual environment recipe in Chapter 1, Getting Started with
Django 3.0
The Working with Docker containers for Django, Gunicorn, Nginx, and PostgreSQL
recipe in Chapter 1, Getting Started with Django 3.0
The Handling project dependencies with pip receipe in Chapter 1, Getting Started
with Django 3.0
The Including external dependencies in your project recipe in Chapter 1, Getting
Started with Django 3.0
The Changing a foreign key to the many-to-many field recipe

https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/

Models and Database Structure Chapter 2

[93]

Changing a foreign key to the many-to-many
field
This recipe is a practical example of how to change a many-to-one relation to a many-to-
many relation, while preserving the already existing data. We will use both schema and
data migrations in this situation.

Getting ready
Let's suppose that you have the Idea model, with a foreign key pointing to the Category
model.

Let's define the Category model in the categories app, as follows:1.

myproject/apps/categories/models.py
from django.db import models
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.model_fields import MultilingualCharField

class Category(models.Model):
 title = MultilingualCharField(
 _("Title"),
 max_length=200,
)

 class Meta:
 verbose_name = _("Category")
 verbose_name_plural = _("Categories")

 def __str__(self):
 return self.title

Let's define the Idea model in the ideas app, as follows:2.

myproject/apps/ideas/models.py
from django.db import models
from django.conf import settings
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.model_fields import (
 MultilingualCharField,
 MultilingualTextField,

Models and Database Structure Chapter 2

[94]

)

class Idea(models.Model):
 title = MultilingualCharField(
 _("Title"),
 max_length=200,
)
 content = MultilingualTextField(
 _("Content"),
)
 category = models.ForeignKey(
 "categories.Category",
 verbose_name=_("Category"),
 blank=True,
 null=True,
 on_delete=models.SET_NULL,
 related_name="category_ideas",
)

 class Meta:
 verbose_name = _("Idea")
 verbose_name_plural = _("Ideas")

 def __str__(self):
 return self.title

Create and execute initial migrations by using the following commands:3.

(env)$ python manage.py makemigrations categories
(env)$ python manage.py makemigrations ideas
(env)$ python manage.py migrate

How to do it...
The following steps will show you how to switch from a foreign key relation to a many-to-
many relation, while preserving the already existing data:

Add a new many-to-many field, called categories, as follows:1.

myproject/apps/ideas/models.py
from django.db import models
from django.conf import settings
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.model_fields import (
 MultilingualCharField,

Models and Database Structure Chapter 2

[95]

 MultilingualTextField,
)

class Idea(models.Model):
 title = MultilingualCharField(
 _("Title"),
 max_length=200,
)
 content = MultilingualTextField(
 _("Content"),
)
 category = models.ForeignKey(
 "categories.Category",
 verbose_name=_("Category"),
 blank=True,
 null=True,
 on_delete=models.SET_NULL,
 related_name="category_ideas",
)
 categories = models.ManyToManyField(
 "categories.Category",
 verbose_name=_("Categories"),
 blank=True,
 related_name="ideas",
)

 class Meta:
 verbose_name = _("Idea")
 verbose_name_plural = _("Ideas")

 def __str__(self):
 return self.title

Create and run a schema migration, in order to add the new relationship to the2.
database, as shown in the following code snippet:

(env)$ python manage.py makemigrations ideas
(env)$ python manage.py migrate ideas

Create a data migration to copy the categories from the foreign key to the many-3.
to-many field, as follows:

(env)$ python manage.py makemigrations --empty \
> --name=copy_categories ideas

Models and Database Structure Chapter 2

[96]

Open the newly created migration file (0003_copy_categories.py), and4.
define the forward migration instructions, as shown in the following code
snippet:

myproject/apps/ideas/migrations/0003_copy_categories.py
from django.db import migrations

def copy_categories(apps, schema_editor):
 Idea = apps.get_model("ideas", "Idea")
 for idea in Idea.objects.all():
 if idea.category:
 idea.categories.add(idea.category)

class Migration(migrations.Migration):

 dependencies = [
 ('ideas', '0002_idea_categories'),
]

 operations = [
 migrations.RunPython(copy_categories),
]

Run the new data migration, as follows:5.

(env)$ python manage.py migrate ideas

Delete the foreign key category field in the models.py file, leaving only the6.
new categories many-to-many field, as follows:

myproject/apps/ideas/models.py
from django.db import models
from django.conf import settings
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.model_fields import (
 MultilingualCharField,
 MultilingualTextField,
)

class Idea(models.Model):
 title = MultilingualCharField(
 _("Title"),
 max_length=200,
)
 content = MultilingualTextField(

Models and Database Structure Chapter 2

[97]

 _("Content"),
)

 categories = models.ManyToManyField(
 "categories.Category",
 verbose_name=_("Categories"),
 blank=True,
 related_name="ideas",
)

 class Meta:
 verbose_name = _("Idea")
 verbose_name_plural = _("Ideas")

 def __str__(self):
 return self.title

Create and run a schema migration, in order to delete the Categories field from7.
the database table, as follows:

(env)$ python manage.py makemigrations ideas
(env)$ python manage.py migrate ideas

How it works...
At first, we add a new many-to-many field to the Idea model, and a migration is generated
to update the database accordingly. Then, we create a data migration that will copy the
existing relations from the foreign key category to the new many-to-many categories.
Lastly, we remove the foreign key field from the model, and update the database once
more.

There's more...
Our data migration currently includes only the forward action, copying the foreign
key category as the first related item in the new categories relationship. Although we did
not elaborate here, in a real-world scenario it would be best to include the reverse operation
as well. This could be accomplished by copying the first related item back to the category
foreign key. Unfortunately, any Idea object with multiple categories would lose extra data.

Models and Database Structure Chapter 2

[98]

See also
The Using migrations recipe
The Handling multilingual fields recipe
The Working with model translation tables recipe
The Avoiding circular dependencies recipe

3
Forms and Views

In this chapter, we will cover the following topics:

Creating an app with CRUDL functions
Saving the author of a model instance
Uploading images
Creating a form layout with custom templates
Creating a form layout with django-crispy-forms
Working with formsets
Filtering object lists
Managing paginated lists
Composing class-based views
Providing Open Graph and Twitter Card data
Providing schema.org vocabularies
Generating PDF documents
Implementing a multilingual search with Haystack and Whoosh
Implementing a multilingual search with Elasticsearch DSL

Introduction
While a database structure is defined in models, views provide the endpoints necessary to
show content to users or to let them enter new and updated data. In this chapter, we will
focus on views for managing forms, the list view, and views generating alternative outputs
to HTML. In the simplest examples, we will leave the creation of URL rules and templates
up to you.

Forms and Views Chapter 3

[100]

Technical requirements
To work with the code of this chapter, as before, you will need the latest stable version of
Python, MySQL, or a PostgreSQL database, and a Django project with a virtual
environment. Some recipes will require specific Python dependencies. In addition, for
generating PDF documents, you will need the cairo, pango, gdk-pixbuf, and libffi
libraries. For searches, you will need an Elasticsearch server. You will get more details
about them later in the corresponding recipes.

Most of the templates in this chapter will use the Bootstrap 4 CSS framework for a nicer
look and feel.

You can find all of the code for this chapter in the ch03 directory of the GitHub repository
at: https://github. com/ PacktPublishing/ Django- 3- Web- Development- Cookbook- Fourth-
Edition.

Creating an app with CRUDL functions
In computer science, the CRUDL acronym stands for Create, Read, Update, Delete, and
List functions. Many Django projects with interactive functionality will need you to
implement all of those functions to manage data on the website. In this recipe, we will see
how to create URLs and views for these basic functions.

Getting ready
Let's create a new app called ideas and put it in INSTALLED_APPS in the settings. Create
the following Idea model with an IdeaTranslations model for translations inside of that
app:

myproject/apps/idea/models.py
import uuid

from django.db import models
from django.urls import reverse
from django.conf import settings
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.model_fields import TranslatedField
from myproject.apps.core.models import (
 CreationModificationDateBase, UrlBase
)

https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition

Forms and Views Chapter 3

[101]

RATING_CHOICES = (
 (1, "★☆☆☆☆"),
 (2, "★★☆☆☆"),
 (3, "★★★☆☆"),
 (4, "★★★★☆"),
 (5, "★★★★★"),
)

class Idea(CreationModificationDateBase, UrlBase):
 uuid = models.UUIDField(
 primary_key=True, default=uuid.uuid4, editable=False
)
 author = models.ForeignKey(
 settings.AUTH_USER_MODEL,
 verbose_name=_("Author"),
 on_delete=models.SET_NULL,
 blank=True,
 null=True,
 related_name="authored_ideas",
)
 title = models.CharField(_("Title"), max_length=200)
 content = models.TextField(_("Content"))

 categories = models.ManyToManyField(
 "categories.Category",
 verbose_name=_("Categories"),
 related_name="category_ideas",
)
 rating = models.PositiveIntegerField(
 _("Rating"), choices=RATING_CHOICES, blank=True, null=True
)
 translated_title = TranslatedField("title")
 translated_content = TranslatedField("content")

 class Meta:
 verbose_name = _("Idea")
 verbose_name_plural = _("Ideas")

 def __str__(self):
 return self.title

 def get_url_path(self):
 return reverse("ideas:idea_detail", kwargs={"pk": self.pk})

class IdeaTranslations(models.Model):
 idea = models.ForeignKey(

Forms and Views Chapter 3

[102]

 Idea,
 verbose_name=_("Idea"),
 on_delete=models.CASCADE,
 related_name="translations",
)
 language = models.CharField(_("Language"), max_length=7)

 title = models.CharField(_("Title"), max_length=200)
 content = models.TextField(_("Content"))

 class Meta:
 verbose_name = _("Idea Translations")
 verbose_name_plural = _("Idea Translations")
 ordering = ["language"]
 unique_together = [["idea", "language"]]

 def __str__(self):
 return self.title

We are using several concepts here from the previous chapter: we inherit from model
mixins and utilize a model translation table. Read more about that in the Using model mixins
and the Working with model translation tables recipes. We are going to use the ideas app and
these models for all of the recipes in this chapter.

In addition, create an analogous categories app with the Category and
CategoryTranslations models:

myproject/apps/categories/models.py
from django.db import models
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.model_fields import TranslatedField

class Category(models.Model):
 title = models.CharField(_("Title"), max_length=200)

 translated_title = TranslatedField("title")

 class Meta:
 verbose_name = _("Category")
 verbose_name_plural = _("Categories")

 def __str__(self):
 return self.title

Forms and Views Chapter 3

[103]

class CategoryTranslations(models.Model):
 category = models.ForeignKey(
 Category,
 verbose_name=_("Category"),
 on_delete=models.CASCADE,
 related_name="translations",
)
 language = models.CharField(_("Language"), max_length=7)

 title = models.CharField(_("Title"), max_length=200)

 class Meta:
 verbose_name = _("Category Translations")
 verbose_name_plural = _("Category Translations")
 ordering = ["language"]
 unique_together = [["category", "language"]]

 def __str__(self):
 return self.title

How to do it...
The CRUDL functionality in Django consists of forms, views, and URL rules. Let's create
them:

Add a new forms.py file to the ideas app with the model form for adding and1.
changing the instances of your Idea model:

myprojects/apps/ideas/forms.py
from django import forms
from .models import Idea

class IdeaForm(forms.ModelForm):
 class Meta:
 model = Idea
 fields = "__all__"

Add a new views.py file to the ideas app with the views to manipulate the2.
Idea model:

myproject/apps/ideas/views.py
from django.contrib.auth.decorators import login_required
from django.shortcuts import render, redirect, get_object_or_404
from django.views.generic import ListView, DetailView

from .forms import IdeaForm

Forms and Views Chapter 3

[104]

from .models import Idea

class IdeaList(ListView):
 model = Idea

class IdeaDetail(DetailView):
 model = Idea
 context_object_name = "idea"

@login_required
def add_or_change_idea(request, pk=None):
 idea = None
 if pk:
 idea = get_object_or_404(Idea, pk=pk)

 if request.method == "POST":
 form = IdeaForm(
 data=request.POST,
 files=request.FILES,
 instance=idea
)

 if form.is_valid():
 idea = form.save()
 return redirect("ideas:idea_detail", pk=idea.pk)
 else:
 form = IdeaForm(instance=idea)

 context = {"idea": idea, "form": form}
 return render(request, "ideas/idea_form.html", context)

@login_required
def delete_idea(request, pk):
 idea = get_object_or_404(Idea, pk=pk)
 if request.method == "POST":
 idea.delete()
 return redirect("ideas:idea_list")
 context = {"idea": idea}
 return render(request, "ideas/idea_deleting_confirmation.html",
context)

Forms and Views Chapter 3

[105]

Create the urls.py file in the ideas app with the URL rules:3.

myproject/apps/ideas/urls.py
from django.urls import path

from .views import (
 IdeaList,
 IdeaDetail,
 add_or_change_idea,
 delete_idea,
)

urlpatterns = [
 path("", IdeaList.as_view(), name="idea_list"),
 path("add/", add_or_change_idea, name="add_idea"),
 path("<uuid:pk>/", IdeaDetail.as_view(), name="idea_detail"),
 path("<uuid:pk>/change/", add_or_change_idea,
 name="change_idea"),
 path("<uuid:pk>/delete/", delete_idea, name="delete_idea"),
]

Now, let's plug in these URL rules to the project's URL configuration. We will4.
also include the accounts' URL rules from the Django-contributed auth app, so
that our @login_required decorator works properly:

myproject/urls.py
from django.contrib import admin
from django.conf.urls.i18n import i18n_patterns
from django.urls import include, path
from django.conf import settings
from django.conf.urls.static import static
from django.shortcuts import redirect

urlpatterns = i18n_patterns(
 path("", lambda request: redirect("ideas:idea_list")),
 path("admin/", admin.site.urls),
 path("accounts/", include("django.contrib.auth.urls")),
 path("ideas/", include(("myproject.apps.ideas.urls", "ideas"),
 namespace="ideas")),
)
urlpatterns += static(settings.STATIC_URL,
document_root=settings.STATIC_ROOT)
urlpatterns += static("/media/", document_root=settings.MEDIA_ROOT)

Forms and Views Chapter 3

[106]

You should now be able to create the following templates:5.

registration/login.html with a form to log in
ideas/idea_list.html with a list of ideas
ideas/idea_detail.html with the details about an idea
ideas/idea_form.html with a form to add or change an idea
ideas/idea_deleting_confirmation.html with an empty form to
confirm idea deletion

In the templates, you can address the URLs of the ideas app via the namespace and path
names as follows:

{% load i18n %}
{% trans "Change this
idea" %}
{% trans "Add idea" %}

If you get stuck or want to save time, check the corresponding templates
in the code files for this book, which you can find at https:/ /github. com/
PacktPublishing/ Django- 3-Web- Development- Cookbook- Fourth-
Edition/ tree/ master/ ch03/myproject_ virtualenv/ src/django-
myproject/ myproject/ templates/ ideas.

How it works...
In this example, we are using a UUID field for the primary key of the Idea model. With
this ID, each idea has an un-guessable unique URL. Alternatively, you can use slug fields
for URLs, but then you have to make sure that each slug is populated and is unique
throughout the website.

It is not recommended to use the default incremental IDs for URLs, for
security reasons: users can figure out how many items you have in the
database and try to access the next or previous item, although they might
not have permission to do that.

In our example, we are using generic class-based views for the listing and reading ideas
and function-based views for creating, updating, and deleting them. The views that change
the records in the database require authenticated users with the @login_required
decorator. It would be also perfectly fine to use class-based views or function-based views
for all CRUDL functions.

https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/tree/master/ch03/myproject_virtualenv/src/django-myproject/myproject/templates/ideas

Forms and Views Chapter 3

[107]

After successfully adding or changing an idea, the user will be redirected to the detail view.
After deleting an idea, the user will be redirected to the list view.

There's more...
In addition, you can use the Django messages framework to display success messages at the
top of the page after each successful addition, change, or delete.

You can read about them in the official documentation at: https:/ /docs. djangoproject.
com/en/2.2/ref/contrib/ messages/ .

See also
The Using model mixins recipe in Chapter 2, Models and Database Structure
The Working with model translation tables recipe in Chapter 2, Models and Database
Structure
The Saving the author of a model instance recipe
The Arranging the base.html template recipe in Chapter 4, Templates and JavaScript

Saving the author of a model instance
The first argument of every Django view is the HttpRequest object, which by convention
is named request. It contains metadata about the request sent from a browser or other
client, including such items as the current language code, user data, cookies, and session.
By default, forms that are used by views accept the GET or POST data, files, initial data,
and other parameters; however, they do not inherently have access to the HttpRequest
object. In some cases, it is useful to additionally pass HttpRequest to the form, especially
when you want to filter out the choices of form fields based on other request data or handle
saving something such as the current user or IP in the form.

In this recipe, we will see an example of a form where, for added or changed ideas, the
current user is saved as an author.

https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/
https://docs.djangoproject.com/en/2.2/ref/contrib/messages/

Forms and Views Chapter 3

[108]

Getting ready
We will build upon the example in the previous recipe.

How to do it...
To complete this recipe, execute the following two steps:

Modify the IdeaForm model form as follows:1.

myprojects/apps/ideas/forms.py
from django import forms
from .models import Idea

class IdeaForm(forms.ModelForm):
 class Meta:
 model = Idea
 exclude = ["author"]

 def __init__(self, request, *args, **kwargs):
 self.request = request
 super().__init__(*args, **kwargs)

 def save(self, commit=True):
 instance = super().save(commit=False)
 instance.author = self.request.user
 if commit:
 instance.save()
 self.save_m2m()
 return instance

Modify the view to add or change the ideas:2.

myproject/apps/ideas/views.py
from django.contrib.auth.decorators import login_required
from django.shortcuts import render, redirect, get_object_or_404

from .forms import IdeaForm
from .models import Idea

@login_required
def add_or_change_idea(request, pk=None):
 idea = None
 if pk:
 idea = get_object_or_404(Idea, pk=pk)

Forms and Views Chapter 3

[109]

 if request.method == "POST":
 form = IdeaForm(request, data=request.POST,
 files=request.FILES, instance=idea)
 if form.is_valid():
 idea = form.save()
 return redirect("ideas:idea_detail", pk=idea.pk)
 else:
 form = IdeaForm(request, instance=idea)

 context = {"idea": idea, "form": form}
 return render(request, "ideas/idea_form.html", context)

How it works...
Let's take a look at the form. At first, we exclude the author field from the form because
we want to handle it programatically. We overwrite the __init__() method to accept
HttpRequest as the first parameter and store it in the form. The save() method of a
model form handles the saving of the model. The commit parameter tells the model form to
save the instance immediately or otherwise to create and populate the instance, but not
save it yet. In our case, we get the instance without saving it, then assign the author from
the current user. Finally, we save the instance if commit is True. We will call the
dynamically added save_m2m() method of the form to save many-to-many relations, for
example, categories.

In the view, we just pass the request variable to the form as the first parameter.

See also
The Creating an app with CRUDL functions recipe
The Uploading images recipe

Uploading images
In this recipe, we will take a look at the easiest way to handle image uploads. We will add a
picture field to the Idea model, and we will create image versions of different
dimensions for different purposes.

Forms and Views Chapter 3

[110]

Getting ready
For images with image versions, we will need the Pillow and django-imagekit libraries.
Let's install them with pip in your virtual environment (and include them in
requirements/_base.txt):

(env)$ pip install Pillow
(env)$ pip install django-imagekit==4.0.2

Then, add "imagekit" to INSTALLED_APPS in the settings.

How to do it...
Execute these steps to complete the recipe:

Modify the Idea model to add a picture field and image version specifications:1.

myproject/apps/ideas/models.py
import contextlib
import os

from imagekit.models import ImageSpecField
from pilkit.processors import ResizeToFill

from django.db import models
from django.utils.translation import gettext_lazy as _
from django.utils.timezone import now as timezone_now

from myproject.apps.core.models import
(CreationModificationDateBase, UrlBase)

def upload_to(instance, filename):
 now = timezone_now()
 base, extension = os.path.splitext(filename)
 extension = extension.lower()
 return f"ideas/{now:%Y/%m}/{instance.pk}{extension}"

class Idea(CreationModificationDateBase, UrlBase):
 # attributes and fields…
 picture = models.ImageField(
 _("Picture"), upload_to=upload_to
)
 picture_social = ImageSpecField(
 source="picture",

Forms and Views Chapter 3

[111]

 processors=[ResizeToFill(1024, 512)],
 format="JPEG",
 options={"quality": 100},
)
 picture_large = ImageSpecField(
 source="picture",
 processors=[ResizeToFill(800, 400)],
 format="PNG"
)
 picture_thumbnail = ImageSpecField(
 source="picture",
 processors=[ResizeToFill(728, 250)],
 format="PNG"
)
 # other fields, properties, and methods…

 def delete(self, *args, **kwargs):
 from django.core.files.storage import default_storage
 if self.picture:
 with contextlib.suppress(FileNotFoundError):
 default_storage.delete(
 self.picture_social.path
)
 default_storage.delete(
 self.picture_large.path
)
 default_storage.delete(
 self.picture_thumbnail.path
)
 self.picture.delete()
 super().delete(*args, **kwargs)

Create a model form, IdeaForm, for the Idea model in forms.py, just like we2.
did in the previous recipes.
In the view for adding or changing ideas, make sure to post request.FILES3.
beside request.POST to the form:

myproject/apps/ideas/views.py
from django.contrib.auth.decorators import login_required
from django.shortcuts import (render, redirect, get_object_or_404)
from django.conf import settings

from .forms import IdeaForm
from .models import Idea

@login_required

Forms and Views Chapter 3

[112]

def add_or_change_idea(request, pk=None):
 idea = None
 if pk:
 idea = get_object_or_404(Idea, pk=pk)
 if request.method == "POST":
 form = IdeaForm(
 request,
 data=request.POST,
 files=request.FILES,
 instance=idea,
)
 if form.is_valid():
 idea = form.save()
 return redirect("ideas:idea_detail", pk=idea.pk)
 else:
 form = IdeaForm(request, instance=idea)

 context = {"idea": idea, "form": form}
 return render(request, "ideas/idea_form.html", context)

In the template, make sure to have encoding type set to "multipart/form-4.
data", as follows:

<form action="{{ request.path }}" method="post"
enctype="multipart/form-data">{% csrf_token %}
{{ form.as_p }}
<button type="submit">{% trans "Save" %}</button>
</form>

If you are using django-crispy-form as described in the Creating a form
layout with django-crispy-forms recipe, the enctype attribute will be added
to the form automatically.

How it works...
Django model forms are created dynamically from models. They provide the specified
fields from the model so you don't need to redefine them manually in the form. In the
preceding example, we created a model form for the Idea model. When we save the form,
the form knows how to save each field in the database, as well as how to upload the files
and save them in the media directory.

Forms and Views Chapter 3

[113]

The upload_to() function in our example is used for saving the image to a specific
directory and defining its name such that it wouldn't clash with filenames for other model
instances. Each file will be saved under a path such as ideas/2020/01/0422c6fe-
b725-4576-8703-e2a9d9270986.jpg, which consists of the year and month of the
upload and the primary key of the Idea instance.

Some filesystems (such as FAT32 and NTFS) have a limited amount of
files available per directory; therefore, it is a good practice to divide them
into directories by upload date, alphabet, or other criteria.

We are creating three image versions using ImageSpecField from django-imagekit:

picture_social is used for social sharing.
picture_large is used for the detail view.
picture_thumbnail is used for the list view.

Image versions are not linked in the database but just saved in the default file storage under
a file path such as CACHE/images/ideas/2020/01/0422c6fe-b725-4576-8703-
e2a9d9270986/.

In the template, you can use the original or a specific image version, as follows:

At the end of the Idea model definition, we overwrite the delete() method to delete the
image versions and the picture from the disk just before deleting the instance of Idea itself.

See also
The Creating a form layout with django-crispy-forms recipe
The Arranging the base.html template recipe in Chapter 4, Templates and JavaScript
The Providing responsive images recipe in Chapter 4, Templates and JavaScript

Forms and Views Chapter 3

[114]

Creating a form layout with custom
templates
In earlier versions of Django, all form rendering was handled exclusively in Python code,
but since Django 1.11, template-based form widget rendering has been introduced. In this
recipe, we will examine how to use custom templates for form widgets. We are going to use
the Django administration form to illustrate how the custom widget templates can improve
the usability of the fields.

Getting ready
Let's create the default Django administration for the Idea model and its translations:

myproject/apps/ideas/admin.py
from django import forms
from django.contrib import admin
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.admin import LanguageChoicesForm

from .models import Idea, IdeaTranslations

class IdeaTranslationsForm(LanguageChoicesForm):
 class Meta:
 model = IdeaTranslations
 fields = "__all__"

class IdeaTranslationsInline(admin.StackedInline):
 form = IdeaTranslationsForm
 model = IdeaTranslations
 extra = 0

@admin.register(Idea)
class IdeaAdmin(admin.ModelAdmin):
 inlines = [IdeaTranslationsInline]

 fieldsets = [
 (_("Author and Category"), {"fields": ["author", "categories"]}),

Forms and Views Chapter 3

[115]

 (_("Title and Content"), {"fields": ["title", "content",
 "picture"]}),
 (_("Ratings"), {"fields": ["rating"]}),
]

If you access the administration form for the ideas, it will look like this:

Forms and Views Chapter 3

[116]

How to do it...
To complete the recipe, follow these steps:

Ensure that the template system will be able to find customized templates by1.
adding "django.forms" to INSTALLED_APPS, including the APP_DIRS flag as
True at the templates configuration, and using the "TemplatesSetting" form
renderer:

myproject/settings/_base.py
INSTALLED_APPS = [
 "django.contrib.admin",
 "django.contrib.auth",
 "django.contrib.contenttypes",
 "django.contrib.sessions",
 "django.contrib.messages",
 "django.contrib.staticfiles",
 "django.forms",
 # other apps…
]

TEMPLATES = [
 {
 "BACKEND":
 "django.template.backends.django.DjangoTemplates",
 "DIRS": [os.path.join(BASE_DIR, "myproject", "templates")],
 "APP_DIRS": True,
 "OPTIONS": {
 "context_processors": [
 "django.template.context_processors.debug",
 "django.template.context_processors.request",
 "django.contrib.auth.context_processors.auth",
 "django.contrib.messages.context_processors
 .messages",
 "django.template.context_processors.media",
 "django.template.context_processors.static",
 "myproject.apps.core.context_processors
 .website_url",
]
 },
 }
]

FORM_RENDERER = "django.forms.renderers.TemplatesSetting"

Forms and Views Chapter 3

[117]

Edit the admin.py file as follows:2.

myproject/apps/ideas/admin.py
from django import forms
from django.contrib import admin
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.admin import LanguageChoicesForm

from myproject.apps.categories.models import Category
from .models import Idea, IdeaTranslations

class IdeaTranslationsForm(LanguageChoicesForm):
 class Meta:
 model = IdeaTranslations
 fields = "__all__"

class IdeaTranslationsInline(admin.StackedInline):
 form = IdeaTranslationsForm
 model = IdeaTranslations
 extra = 0

class IdeaForm(forms.ModelForm):
 categories = forms.ModelMultipleChoiceField(
 label=_("Categories"),
 queryset=Category.objects.all(),
 widget=forms.CheckboxSelectMultiple(),
 required=True,
)

 class Meta:
 model = Idea
 fields = "__all__"

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.fields[
 "picture"
].widget.template_name = "core/widgets/image.html"

@admin.register(Idea)
class IdeaAdmin(admin.ModelAdmin):
 form = IdeaForm

Forms and Views Chapter 3

[118]

 inlines = [IdeaTranslationsInline]

 fieldsets = [
 (_("Author and Category"), {"fields": ["author",
 "categories"]}),
 (_("Title and Content"), {"fields": ["title", "content",
 "picture"]}),
 (_("Ratings"), {"fields": ["rating"]}),
]

Finally, create a template for your picture field:3.

{# core/widgets/image.html #}
{% load i18n %}

<div style="margin-left: 160px; padding-left: 10px;">
 {% if widget.is_initial %}

 <img src="{{ widget.value.url }}" width="624"
 height="auto" alt="" />

 {% if not widget.required %}

 {{ widget.clear_checkbox_label }}:
 <input type="checkbox" name="{{ widget.checkbox_name
 }}" id="{{ widget.checkbox_id }}">
 {% endif %}

 {{ widget.input_text }}:
 {% endif %}
 <input type="{{ widget.type }}" name="{{ widget.name }}"{%
 include "django/forms/widgets/attrs.html" %}>
</div>
<div class="help">
 {% trans "Available formats are JPG, GIF, and PNG." %}
 {% trans "Minimal size is 800 x 800 px." %}
</div>

How it works...
If you look at the administration form for ideas now, you will see something like this:

Forms and Views Chapter 3

[119]

Forms and Views Chapter 3

[120]

There are two changes here:

The category selection is now using a widget with multiple checkboxes.
The picture field is now rendered with a specific template, showing a preview of
the image and help text with preferred file types and dimensions.

What we did here, was we overwrote the model form for the idea and modified the widget
for the categories and the template for the picture field.

The default form renderer in Django is "django.forms.renderers.DjangoTemplates",
and it only searches for the templates in app directories. We changed it
to "django.forms.renderers.TemplatesSetting" to also have a look in the templates
under DIRS paths.

See also
The Working with model translation tables recipe in Chapter 2, Models and Database
Structure
The Uploading images recipe
The Creating a form layout with django-crispy-forms recipe

Creating a form layout with django-crispy-
forms
The django-crispy-forms Django app allows you to build, customize, and reuse forms
using one of the following CSS frameworks: Uni-Form, Bootstrap 3, Bootstrap 4, or
Foundation. The use of django-crispy-forms is somewhat analogous to fieldsets in the
Django contributed administration; however, it is more advanced and customizable. You
define form layout in the Python code and need not worry about how each field is
presented in HTML. Moreover, if you need to add specific HTML attributes or wrapping,
you can easily do that too. All of the markup used by django-crispy-forms is located in
templates that can be overwritten for specific needs.

In this recipe, we will create a nice layout for the frontend form to add or edit ideas using
the Bootstrap 4, popular frontend framework for developing responsive, mobile-first web
projects.

Forms and Views Chapter 3

[121]

Getting ready
We will start with the ideas app that we created in this chapter. Next, we'll execute the
following tasks one by one:

Make sure you have created a base.html template for your site. Learn more1.
about this in the Arranging the base.html template recipe in Chapter 4, Templates
and JavaScript.
Integrate the Bootstrap 4 frontend framework CSS and JS files2.
from https:/ /getbootstrap. com/ docs/ 4.3/ getting- started/ introduction/
 into the base.html template.
Install django-crispy-forms in your virtual environment with pip (and3.
include it in requirements/_base.txt):

(env)$ pip install django-crispy-forms

Make sure that "crispy_forms" is added to INSTALLED_APPS in the settings,4.
and then set "bootstrap4" as the template pack to be used in this project:

myproject/settings/_base.py
INSTALLED_APPS = (
 # ...
 "crispy_forms",
 "ideas",
)
...
CRISPY_TEMPLATE_PACK = "bootstrap4"

How to do it...
Follow these steps:

Let's modify the model form for the ideas:1.

myproject/apps/ideas/forms.py
from django import forms
from django.utils.translation import ugettext_lazy as _
from django.conf import settings
from django.db import models

from crispy_forms import bootstrap, helper, layout

from .models import Idea

https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/

Forms and Views Chapter 3

[122]

class IdeaForm(forms.ModelForm):
 class Meta:
 model = Idea
 exclude = ["author"]

 def __init__(self, request, *args, **kwargs):
 self.request = request
 super().__init__(*args, **kwargs)

 self.fields["categories"].widget =
 forms.CheckboxSelectMultiple()

 title_field = layout.Field(
 "title", css_class="input-block-level"
)
 content_field = layout.Field(
 "content", css_class="input-block-level", rows="3"
)
 main_fieldset = layout.Fieldset(
 _("Main data"), title_field, content_field
)

 picture_field = layout.Field(
 "picture", css_class="input-block-level"
)
 format_html = layout.HTML(
 """{% include "ideas/includes
 /picture_guidelines.html" %}"""
)

 picture_fieldset = layout.Fieldset(
 _("Picture"),
 picture_field,
 format_html,
 title=_("Image upload"),
 css_id="picture_fieldset",
)

 categories_field = layout.Field(
 "categories", css_class="input-block-level"
)
 categories_fieldset = layout.Fieldset(
 _("Categories"), categories_field,
 css_id="categories_fieldset"
)

 submit_button = layout.Submit("save", _("Save"))
 actions = bootstrap.FormActions(submit_button)

Forms and Views Chapter 3

[123]

 self.helper = helper.FormHelper()
 self.helper.form_action = self.request.path
 self.helper.form_method = "POST"
 self.helper.layout = layout.Layout(
 main_fieldset,
 picture_fieldset,
 categories_fieldset,
 actions,
)

 def save(self, commit=True):
 instance = super().save(commit=False)
 instance.author = self.request.user
 if commit:
 instance.save()
 self.save_m2m()
 return instance

Then, let's create the picture_guidelines.html template with the following2.
content:

{# ideas/includes/picture_guidelines.html #}
{% load i18n %}
<p class="form-text text-muted">
 {% trans "Available formats are JPG, GIF, and PNG." %}
 {% trans "Minimal size is 800 × 800 px." %}
</p>

Finally, let's update the template for the form of ideas:3.

{# ideas/idea_form.html #}
{% extends "base.html" %}
{% load i18n crispy_forms_tags static %}

{% block content %}
 {% trans "List of
 ideas" %}
 <h1>
 {% if idea %}
 {% blocktrans trimmed with
 title=idea.translated_title %}
 Change Idea "{{ title }}
 {% endblocktrans %}
 {% else %}
 {% trans "Add Idea" %}
 {% endif %}

Forms and Views Chapter 3

[124]

 </h1>
 {% crispy form %}
{% endblock %}

How it works...
In the model form for ideas, we create a form helper with a layout consisting of a main
fieldset, picture fieldset, categories fieldset, and submit button. Each fieldset consists of
fields. Any fieldset, field, or button can have additional parameters that become the
attributes of the field, for example, rows="3" or placeholder=_("Please enter a
title"). For HTML class and id attributes, there are specific parameters, css_class
and css_id.

The page with the idea form will look similar to the following:

Forms and Views Chapter 3

[125]

Just like in the previous recipe, we modify the widget for the categories field and add
additional help text for the picture field.

There's more...
For basic usage, the given example is more than necessary. However, if you need a specific
markup for the forms in your project, you can still overwrite and modify templates of the
django-crispy-forms app, as there is no markup hardcoded in the Python files, rather
all of the generated markup is rendered through templates. Just copy the templates from
the django-crispy-forms app to your project's template directory and change them as
required.

See also
The Creating an app with CRUDL functions recipe
The Creating a form layout with custom templates recipe
The Filtering object lists recipe
The Managing paginated lists recipe
The Composing class-based views recipe
The Arranging the base.html template recipe in Chapter 4, Templates and JavaScript

Working with formsets
Besides normal or model forms, Django has a concept of formsets. These are sets of forms of
the same type that allow us to create or change multiple instances at once. Django formsets
can be enriched with JavaScript, which allows us to add them to a page dynamically. That's
exactly what we will work on in this recipe. We will extend the form of ideas to allow
adding translations to different languages on the same page.

Getting ready
Let's continue working on IdeaForm from the previous recipe, Creating a form layout with
django-crispy-forms.

Forms and Views Chapter 3

[126]

How to do it...
Follow these steps:

Let's modify the form layout for IdeaForm:1.

myproject/apps/ideas/forms.py
from django import forms
from django.utils.translation import ugettext_lazy as _
from django.conf import settings
from django.db import models

from crispy_forms import bootstrap, helper, layout

from .models import Idea, IdeaTranslations

class IdeaForm(forms.ModelForm):
 class Meta:
 model = Idea
 exclude = ["author"]

 def __init__(self, request, *args, **kwargs):
 self.request = request
 super().__init__(*args, **kwargs)

 self.fields["categories"].widget =
 forms.CheckboxSelectMultiple()

 title_field = layout.Field(
 "title", css_class="input-block-level"
)
 content_field = layout.Field(
 "content", css_class="input-block-level", rows="3"
)
 main_fieldset = layout.Fieldset(
 _("Main data"), title_field, content_field
)

 picture_field = layout.Field(
 "picture", css_class="input-block-level"
)
 format_html = layout.HTML(
 """{% include "ideas/includes
 /picture_guidelines.html" %}"""
)

 picture_fieldset = layout.Fieldset(

Forms and Views Chapter 3

[127]

 _("Picture"),
 picture_field,
 format_html,
 title=_("Image upload"),
 css_id="picture_fieldset",
)

 categories_field = layout.Field(
 "categories", css_class="input-block-level"
)
 categories_fieldset = layout.Fieldset(
 _("Categories"), categories_field,
 css_id="categories_fieldset"
)

 inline_translations = layout.HTML(
 """{% include "ideas/forms/translations.html" %}"""
)

 submit_button = layout.Submit("save", _("Save"))
 actions = bootstrap.FormActions(submit_button)

 self.helper = helper.FormHelper()
 self.helper.form_action = self.request.path
 self.helper.form_method = "POST"
 self.helper.layout = layout.Layout(
 main_fieldset,
 inline_translations,
 picture_fieldset,
 categories_fieldset,
 actions,
)

 def save(self, commit=True):
 instance = super().save(commit=False)
 instance.author = self.request.user
 if commit:
 instance.save()
 self.save_m2m()
 return instance

Forms and Views Chapter 3

[128]

Then, let's add IdeaTranslationsForm at the end of the same file:2.

class IdeaTranslationsForm(forms.ModelForm):
 language = forms.ChoiceField(
 label=_("Language"),
 choices=settings.LANGUAGES_EXCEPT_THE_DEFAULT,
 required=True,
)

 class Meta:
 model = IdeaTranslations
 exclude = ["idea"]

 def __init__(self, request, *args, **kwargs):
 self.request = request
 super().__init__(*args, **kwargs)

 id_field = layout.Field("id")
 language_field = layout.Field(
 "language", css_class="input-block-level"
)
 title_field = layout.Field(
 "title", css_class="input-block-level"
)
 content_field = layout.Field(
 "content", css_class="input-block-level", rows="3"
)
 delete_field = layout.Field("DELETE")
 main_fieldset = layout.Fieldset(
 _("Main data"),
 id_field,
 language_field,
 title_field,
 content_field,
 delete_field,
)

 self.helper = helper.FormHelper()
 self.helper.form_tag = False
 self.helper.disable_csrf = True
 self.helper.layout = layout.Layout(main_fieldset)

Forms and Views Chapter 3

[129]

Modify the view to add or change ideas, as follows:3.

myproject/apps/ideas/views.py
from django.contrib.auth.decorators import login_required
from django.shortcuts import render, redirect, get_object_or_404
from django.forms import modelformset_factory
from django.conf import settings

from .forms import IdeaForm, IdeaTranslationsForm
from .models import Idea, IdeaTranslations

@login_required
def add_or_change_idea(request, pk=None):
 idea = None
 if pk:
 idea = get_object_or_404(Idea, pk=pk)
 IdeaTranslationsFormSet = modelformset_factory(
 IdeaTranslations, form=IdeaTranslationsForm,
 extra=0, can_delete=True
)
 if request.method == "POST":
 form = IdeaForm(request, data=request.POST,
 files=request.FILES, instance=idea)
 translations_formset = IdeaTranslationsFormSet(
 queryset=IdeaTranslations.objects.filter(idea=idea),
 data=request.POST,
 files=request.FILES,
 prefix="translations",
 form_kwargs={"request": request},
)
 if form.is_valid() and translations_formset.is_valid():
 idea = form.save()
 translations = translations_formset.save(
 commit=False
)
 for translation in translations:
 translation.idea = idea
 translation.save()
 translations_formset.save_m2m()
 for translation in
 translations_formset.deleted_objects:
 translation.delete()
 return redirect("ideas:idea_detail", pk=idea.pk)
 else:
 form = IdeaForm(request, instance=idea)
 translations_formset = IdeaTranslationsFormSet(
 queryset=IdeaTranslations.objects.filter(idea=idea),

Forms and Views Chapter 3

[130]

 prefix="translations",
 form_kwargs={"request": request},
)

 context = {
 "idea": idea,
 "form": form,
 "translations_formset": translations_formset
 }
 return render(request, "ideas/idea_form.html", context)

Then, let's edit the idea_form.html template and add a reference to4.
the inlines.js script file at the end:

{# ideas/idea_form.html #}
{% extends "base.html" %}
{% load i18n crispy_forms_tags static %}

{% block content %}
 {% trans "List of
 ideas" %}
 <h1>
 {% if idea %}
 {% blocktrans trimmed with
 title=idea.translated_title %}
 Change Idea "{{ title }}"
 {% endblocktrans %}
 {% else %}
 {% trans "Add Idea" %}
 {% endif %}
 </h1>
 {% crispy form %}
{% endblock %}

{% block js %}
 <script src="{% static 'site/js/inlines.js' %}"></script>
{% endblock %}

Forms and Views Chapter 3

[131]

Create the template for the translation formsets:5.

{# ideas/forms/translations.html #}
{% load i18n crispy_forms_tags %}
<section id="translations_section" class="formset my-3">
 {{ translations_formset.management_form }}
 <h3>{% trans "Translations" %}</h3>
 <div class="formset-forms">
 {% for formset_form in translations_formset %}
 <div class="formset-form">
 {% crispy formset_form %}
 </div>
 {% endfor %}
 </div>
 <button type="button" class="btn btn-primary btn-sm
 add-inline-form">{% trans "Add translations to another
 language" %}</button>
 <div class="empty-form d-none">
 {% crispy translations_formset.empty_form %}
 </div>
</section>

Last but not least, add the JavaScript to manipulate the formsets:6.

/* site/js/inlines.js */
window.WIDGET_INIT_REGISTER = window.WIDGET_INIT_REGISTER || [];

$(function () {
 function reinit_widgets($formset_form) {
 $(window.WIDGET_INIT_REGISTER).each(function (index, func)
 {
 func($formset_form);
 });
 }

 function set_index_for_fields($formset_form, index) {
 $formset_form.find(':input').each(function () {
 var $field = $(this);
 if ($field.attr("id")) {
 $field.attr(
 "id",
 $field.attr("id").replace(/-__prefix__-/,
 "-" + index + "-")
);
 }
 if ($field.attr("name")) {
 $field.attr(
 "name",

Forms and Views Chapter 3

[132]

 $field.attr("name").replace(
 /-__prefix__-/, "-" + index + "-"
)
);
 }
 });
 $formset_form.find('label').each(function () {
 var $field = $(this);
 if ($field.attr("for")) {
 $field.attr(
 "for",
 $field.attr("for").replace(
 /-__prefix__-/, "-" + index + "-"
)
);
 }
 });
 $formset_form.find('div').each(function () {
 var $field = $(this);
 if ($field.attr("id")) {
 $field.attr(
 "id",
 $field.attr("id").replace(
 /-__prefix__-/, "-" + index + "-"
)
);
 }
 });
 }

 function add_delete_button($formset_form) {
 $formset_form.find('input:checkbox[id$=DELETE]')
 .each(function () {
 var $checkbox = $(this);
 var $deleteLink = $(
 '<button class="delete btn btn-sm
 btn-danger mb-3">Remove</button>'
);
 $formset_form.append($deleteLink);
 $checkbox.closest('.form-group').hide();
 });

 }

 $('.add-inline-form').click(function (e) {
 e.preventDefault();
 var $formset = $(this).closest('.formset');
 var $total_forms = $formset.find('[id$="TOTAL_FORMS"]');

Forms and Views Chapter 3

[133]

 var $new_form = $formset.find('.empty-form')
 .clone(true).attr("id", null);
 $new_form.removeClass('empty-form d-none')
 .addClass('formset-form');
 set_index_for_fields($new_form,
 parseInt($total_forms.val(), 10));
 $formset.find('.formset-forms').append($new_form);
 add_delete_button($new_form);
 $total_forms.val(parseInt($total_forms.val(), 10) + 1);
 reinit_widgets($new_form);
 });
 $('.formset-form').each(function () {
 $formset_form = $(this);
 add_delete_button($formset_form);
 reinit_widgets($formset_form);
 });
 $(document).on('click', '.delete', function (e) {
 e.preventDefault();
 var $formset = $(this).closest('.formset-form');
 var $checkbox =
 $formset.find('input:checkbox[id$=DELETE]');
 $checkbox.attr("checked", "checked");
 $formset.hide();
 });
});

How it works...
You might know about formsets from the Django model administration. Formsets are used
there in the mechanism of inlines for child models having foreign keys to a parent model.

Forms and Views Chapter 3

[134]

In this recipe, we added formsets to the idea form using django-crispy-forms. The
result will look like this:

Forms and Views Chapter 3

[135]

As you can see, we can insert the formsets not necessarily at the end of the form, but
anywhere in between, where it makes sense. In our example, it makes sense to list out
translations just after translatable fields.

The form layout for the translations forms has the main fieldset just like the layout
of IdeaForm, but in addition, it has id and DELETE fields that are necessary for recognition
of each model instance and the possibility to remove them from the list. The DELETE field is
actually a checkbox that if checked, deletes the appropriate item from the database. Also,
the form helper for the translation has form_tag=False, which doesn't generate the
<form> tag, and disable_csrf=True, which doesn't include the CSRF token, because we
have already defined these in the parent form, IdeaForm.

In the view, if the request is sent by the POST method and both the form and the formset
are valid, then we save the form and create respective translation instances without saving
them at first. This is done by the commit=False attribute. For each translation instance, we
assign the idea and then save the translations to the database. Lastly, we check whether any
forms in the formset were marked for deletion and delete them from the database.

In the translations.html template, we render each form in the formset and then we add
an extra hidden empty form, which will be used by JavaScript to generate new forms of the
formset to be added dynamically.

Each formset form has prefixes for all fields. For example, the title field of the first
formset form will have an HTML field name, "translations-0-title", and the DELETE
field of the same formset form will have an HTML field name, "translations-0-
DELETE". The empty form has a word, "__prefix__", instead of the index, for example,
"translations-__prefix__-title". This is abstracted at the Django level, but
necessary to know for manipulating the formset forms with JavaScript.

The inlines.js JavaScript does a few things:

For each existing formset form, it initializes its JavaScript-powered widgets (you
could use tooltips, day or color pickers, maps, and so on) and creates a delete
button, which is shown instead of the DELETE checkbox.
When a delete button is clicked, it checks the DELETE checkbox and hides the
formset form from the user.
When the add button is clicked, it clones the empty form and replaces
"__prefix__" with the next available index, adds the new form to the list, and
initiates JavaScript-powered widgets.

Forms and Views Chapter 3

[136]

There's more...
The JavaScript uses an array, window.WIDGET_INIT_REGISTER, which contains functions
that should be called to initiate widgets with a given formset form. To register a new
function in another JavaScript file, you can do the following:

/* site/js/main.js */
function apply_tooltips($formset_form) {
 $formset_form.find('[data-toggle="tooltip"]').tooltip();
}

/* register widget initialization for a formset form */
window.WIDGET_INIT_REGISTER = window.WIDGET_INIT_REGISTER || [];
window.WIDGET_INIT_REGISTER.push(apply_tooltips);

This will apply tooltip functionality for all occurrences in the formset forms where the tags
in the markup have data-toggle="tooltip" and title attributes, as in this example:

<button data-toggle="tooltip" title="{% trans 'Remove this translation'
%}">{% trans "Remove" %}</button>

See also
The Creating a form layout with django-crispy-forms recipe
The Arranging the base.html template recipe in Chapter 4, Templates and JavaScript

Filtering object lists
In web development, besides views with forms, it is typical to have object-list views and
detail views. List views can simply list objects that are ordered, for example, alphabetically
or by creation date; however, that is not very user-friendly with huge amounts of data. For
the best accessibility and convenience, you should be able to filter the content by all
possible categories. In this recipe, we will see the pattern that is used to filter list views by
any number of categories.

Forms and Views Chapter 3

[137]

What we'll be creating is a list view of ideas that can be filtered by author, category, or
rating. It will look similar to the following with Bootstrap 4 applied to it:

Getting ready
For the filtering example, we will use the Idea model with relation to the author and
categories to filter by. It will also be possible to filter by ratings, which is
PositiveIntegerField with choices. Let's use the ideas app with the models that we
created in the previous recipes.

Forms and Views Chapter 3

[138]

How to do it...
To complete the recipe, follow these steps:

Create IdeaFilterForm with all of the possible categories to filter by:1.

myproject/apps/ideas/forms.py
from django import forms
from django.utils.translation import ugettext_lazy as _
from django.db import models
from django.contrib.auth import get_user_model

from myproject.apps.categories.models import Category

from .models import RATING_CHOICES

User = get_user_model()

class IdeaFilterForm(forms.Form):
 author = forms.ModelChoiceField(
 label=_("Author"),
 required=False,
 queryset=User.objects.annotate(
 idea_count=models.Count("authored_ideas")
).filter(idea_count__gt=0),
)
 category = forms.ModelChoiceField(
 label=_("Category"),
 required=False,
 queryset=Category.objects.annotate(
 idea_count=models.Count("category_ideas")
).filter(idea_count__gt=0),
)
 rating = forms.ChoiceField(
 label=_("Rating"), required=False, choices=RATING_CHOICES
)

Create the idea_list view to list filtered ideas:2.

myproject/apps/ideas/views.py
from django.shortcuts import render, redirect, get_object_or_404
from django.conf import settings

from .forms import IdeaFilterForm
from .models import Idea, RATING_CHOICES

Forms and Views Chapter 3

[139]

PAGE_SIZE = getattr(settings, "PAGE_SIZE", 24)

def idea_list(request):
 qs = Idea.objects.order_by("title")
 form = IdeaFilterForm(data=request.GET)

 facets = {
 "selected": {},
 "categories": {
 "authors": form.fields["author"].queryset,
 "categories": form.fields["category"].queryset,
 "ratings": RATING_CHOICES,
 },
 }

 if form.is_valid():
 filters = (
 # query parameter, filter parameter
 ("author", "author"),
 ("category", "categories"),
 ("rating", "rating"),
)
 qs = filter_facets(facets, qs, form, filters)

 context = {"form": form, "facets": facets, "object_list": qs}
 return render(request, "ideas/idea_list.html", context)

In the same file, add the helper function, filter_facets():3.

def filter_facets(facets, qs, form, filters):
 for query_param, filter_param in filters:
 value = form.cleaned_data[query_param]
 if value:
 selected_value = value
 if query_param == "rating":
 rating = int(value)
 selected_value = (rating,
 dict(RATING_CHOICES)[rating])
 facets["selected"][query_param] = selected_value
 filter_args = {filter_param: value}
 qs = qs.filter(**filter_args).distinct()
 return qs

If you haven't done so already, create a base.html template. You can do that4.
according to the example provided in the Arranging the base.html template recipe
in Chapter 4, Templates and JavaScript.

Forms and Views Chapter 3

[140]

Create the idea_list.html template with the following content:5.

{# ideas/idea_list.html #}
{% extends "base.html" %}
{% load i18n utility_tags %}

{% block sidebar %}
 {% include "ideas/includes/filters.html" %}
{% endblock %}

{% block main %}
 <h1>{% trans "Ideas" %}</h1>
 {% if object_list %}
 {% for idea in object_list %}

 <div class="card">
 <img src="{{ idea.picture_thumbnail.url }}"
 alt="" />
 <div class="card-body">
 <p class="card-text">{{ idea.translated_title
 }}</p>
 </div>
 </div>

 {% endfor %}
 {% else %}
 <p>{% trans "There are no ideas yet." %}</p>
 {% endif %}

 {% trans "Add idea" %}
{% endblock %}

Then, let's create the template for the filters. This template uses the {%6.
modify_query %} template tag, described in the Creating a template tag to modify
request query parameters recipe in Chapter 5, Custom Template Filters and Tags, to
generate URLs for the filters:

{# ideas/includes/filters.html #}
{% load i18n utility_tags %}
<div class="filters panel-group" id="accordion">
 {% with title=_('Author') selected=facets.selected.author %}
 <div class="panel panel-default my-3">
 {% include "misc/includes/filter_heading.html" with
 title=title %}
 <div id="collapse-{{ title|slugify }}"
 class="panel-collapse{% if not selected %}
 collapse{% endif %}">

Forms and Views Chapter 3

[141]

 <div class="panel-body"><div class="list-group">
 {% include "misc/includes/filter_all.html" with
 param="author" %}
 {% for cat in facets.categories.authors %}
 <a class="list-group-item
 {% if selected == cat %}
 active{% endif %}"
 href="{% modify_query "page"
 author=cat.pk %}">
 {{ cat }}
 {% endfor %}
 </div></div>
 </div>
 </div>
 {% endwith %}
 {% with title=_('Category') selected=facets.selected
 .category %}
 <div class="panel panel-default my-3">
 {% include "misc/includes/filter_heading.html" with
 title=title %}
 <div id="collapse-{{ title|slugify }}"
 class="panel-collapse{% if not selected %}
 collapse{% endif %}">
 <div class="panel-body"><div class="list-group">
 {% include "misc/includes/filter_all.html" with
 param="category" %}
 {% for cat in facets.categories.categories %}
 <a class="list-group-item
 {% if selected == cat %}
 active{% endif %}"
 href="{% modify_query "page"
 category=cat.pk %}">
 {{ cat }}
 {% endfor %}
 </div></div>
 </div>
 </div>
 {% endwith %}
 {% with title=_('Rating') selected=facets.selected.rating %}
 <div class="panel panel-default my-3">
 {% include "misc/includes/filter_heading.html" with
 title=title %}
 <div id="collapse-{{ title|slugify }}"
 class="panel-collapse{% if not selected %}
 collapse{% endif %}">
 <div class="panel-body"><div class="list-group">
 {% include "misc/includes/filter_all.html" with
 param="rating" %}

Forms and Views Chapter 3

[142]

 {% for r_val, r_display in
 facets.categories.ratings %}
 <a class="list-group-item
 {% if selected.0 == r_val %}
 active{% endif %}"
 href="{% modify_query "page"
 rating=r_val %}">
 {{ r_display }}
 {% endfor %}
 </div></div>
 </div>
 </div>
 {% endwith %}
</div>

Each of the categories will follow a common pattern in the filters sidebar, so we7.
can create and include templates with the common parts. First, we have the filter
heading, corresponding to misc/includes/filter_heading.html, as in the
following:

{# misc/includes/filter_heading.html #}
{% load i18n %}
<div class="panel-heading">
 <h6 class="panel-title">
 <a data-toggle="collapse" data-parent="#accordion"
 href="#collapse-{{ title|slugify }}">
 {% blocktrans trimmed %}
 Filter by {{ title }}
 {% endblocktrans %}

 </h6>
</div>

And then each filter will contain a link to reset filtering for that category,8.
represented by misc/includes/filter_all.html here. This template also
uses the {% modify_query %} template tag, described in the Creating a template
tag to modify request query parameters recipe in Chapter 5, Custom Template Filters
and Tags:

{# misc/includes/filter_all.html #}
{% load i18n utility_tags %}
<a class="list-group-item {% if not selected %}active{% endif %}"
 href="{% modify_query "page" param %}">
 {% trans "All" %}

Forms and Views Chapter 3

[143]

The idea list needs to be added to the URLs for the ideas app:9.

myproject/apps/ideas/urls.py
from django.urls import path

from .views import idea_list

urlpatterns = [
 path("", idea_list, name="idea_list"),
 # other paths…
]

How it works...
We are using the facets dictionary that is passed to the template context to know which
filters we have and which filters are selected. To look deeper, the facets dictionary
consists of two sections: the categories dictionary and the selected dictionary. The
categories dictionary contains QuerySets or choices of all filterable categories. The
selected dictionary contains the currently selected values for each category. In
IdeaFilterForm, we make sure that only those categories and authors are listed that have
at least one idea.

In the view, we check whether the query parameters are valid in the form and then filter
the QuerySet of objects based on the selected categories. Additionally, we set the selected
values to the facets dictionary, which will be passed to the template.

In the template, for each categorization from the facets dictionary, we list all of the
categories and mark the currently selected category as active. If nothing is selected for a
given category, we mark the default "All" link as the active one.

See also
The Managing paginated lists recipe
The Composing class-based views recipe
The Arranging the base.html template recipe in Chapter 4, Templates and JavaScript
The Creating a template tag to modify request query parameters recipe in Chapter 5,
Custom Template Filters and Tags

Forms and Views Chapter 3

[144]

Managing paginated lists
If you have dynamically changing lists of objects or their count is greater than 24 or so, you
will likely need pagination to provide a good user experience. Instead of the full QuerySet,
pagination provides a specific number of items in the dataset that corresponds to the
appropriate size for one page. We also display links to allow users to access the other pages
making up the complete set of data. Django has classes to manage paginated data, and we
will see how to use them in this recipe.

Getting ready
Let's start with the models, forms, and views of the ideas app from the Filtering object lists
recipe.

How to do it...
To add pagination to the list view of the ideas, follow these steps:

Import the necessary pagination classes from Django into the views.py file. We1.
will add pagination management to the idea_list view just after filtering. Also,
we will slightly modify the context dictionary by assigning page to the
object_list key:

myproject/apps/ideas/views.py
from django.shortcuts import render, redirect, get_object_or_404
from django.conf import settings
from django.core.paginator import (EmptyPage, PageNotAnInteger,
Paginator)

from .forms import IdeaFilterForm
from .models import Idea, RATING_CHOICES

PAGE_SIZE = getattr(settings, "PAGE_SIZE", 24)

def idea_list(request):
 qs = Idea.objects.order_by("title")
 form = IdeaFilterForm(data=request.GET)

 facets = {
 "selected": {},

Forms and Views Chapter 3

[145]

 "categories": {
 "authors": form.fields["author"].queryset,
 "categories": form.fields["category"].queryset,
 "ratings": RATING_CHOICES,
 },
 }

 if form.is_valid():
 filters = (
 # query parameter, filter parameter
 ("author", "author"),
 ("category", "categories"),
 ("rating", "rating"),
)
 qs = filter_facets(facets, qs, form, filters)

 paginator = Paginator(qs, PAGE_SIZE)
 page_number = request.GET.get("page")
 try:
 page = paginator.page(page_number)
 except PageNotAnInteger:
 # If page is not an integer, show first page.
 page = paginator.page(1)
 except EmptyPage:
 # If page is out of range, show last existing page.
 page = paginator.page(paginator.num_pages)

 context = {
 "form": form,
 "facets": facets,
 "object_list": page,
 }
 return render(request, "ideas/idea_list.html", context)

Modify the idea_list.html template as follows:2.

{# ideas/idea_list.html #}
{% extends "base.html" %}
{% load i18n utility_tags %}

{% block sidebar %}
 {% include "ideas/includes/filters.html" %}
{% endblock %}

{% block main %}
 <h1>{% trans "Ideas" %}</h1>
 {% if object_list %}
 {% for idea in object_list %}

Forms and Views Chapter 3

[146]

 <div class="card">
 <img src="{{ idea.picture_thumbnail.url }}"
 alt="" />
 <div class="card-body">
 <p class="card-text">{{ idea.translated_title
 }}</p>
 </div>
 </div>

 {% endfor %}
 {% include "misc/includes/pagination.html" %}
 {% else %}
 <p>{% trans "There are no ideas yet." %}</p>
 {% endif %}

 {% trans "Add idea" %}
{% endblock %}

Create the pagination widget template:3.

{# misc/includes/pagination.html #}
{% load i18n utility_tags %}
{% if object_list.has_other_pages %}
 <nav aria-label="{% trans 'Page navigation' %}">

 <ul class="pagination">
 {% if object_list.has_previous %}
 <li class="page-item"><a class="page-link" href="{%
 modify_query page=object_list.previous_page_number %}">
 {% trans "Previous" %}
 {% else %}
 <li class="page-item disabled"><span class="page-
 link">{% trans "Previous" %}
 {% endif %}

 {% for page_number in object_list.paginator
 .page_range %}
 {% if page_number == object_list.number %}
 <li class="page-item active">
 {{ page_number }}
 {% trans
 "(current)" %}

 {% else %}
 <li class="page-item">
 <a class="page-link" href="{% modify_query

Forms and Views Chapter 3

[147]

 page=page_number %}">
 {{ page_number }}

 {% endif %}
 {% endfor %}

 {% if object_list.has_next %}
 <li class="page-item"><a class="page-link" href="{%
 modify_query page=object_list.next_page_number %}">
 {% trans "Next" %}
 {% else %}
 <li class="page-item disabled"><span class="page-
 link">{% trans "Next" %}
 {% endif %}

 </nav>
{% endif %}

How it works...
When you look at the results in the browser, you will see the pagination controls, similar to
the follo wing:

How do we achieve this? When QuerySet is filtered out, we will create a paginator object
passing QuerySet and the maximal amount of items that we want to show per page, which
is 24 here. Then, we will read the current page number from the query parameter, page.
The next step is to retrieve the current page object from the paginator. If the page number is
not an integer, we get the first page. If the number exceeds the number of possible pages,
the last page is retrieved. The page object has methods and attributes necessary for the
pagination widget shown in the preceding screenshot. Also, the page object acts like
QuerySet so that we can iterate through it and get the items from the fraction of the page.

The snippet marked in the template creates a pagination widget with the markup for the
Bootstrap 4 frontend framework. We show the pagination controls only if there are more
pages than the current one. We have the links to the previous and next pages, and the list of
all page numbers in the widget. The current page number is marked as active. To generate
URLs for the links, we use the {% modify_query %} template tag, which will be described
later in the Creating a template tag to modify request query parameters recipe in Chapter 5,
Custom Template Filters and Tags.

Forms and Views Chapter 3

[148]

See also
The Filtering object lists recipe
The Composing class-based views recipe
The Creating a template tag to modify request query parameters recipe in Chapter 5,
Custom Template Filters and Tags

Composing class-based views
Django views are callables that take requests and return responses. In addition to function-
based views, Django provides an alternative way to define views as classes. This approach
is useful when you want to create reusable modular views or combine views of the generic
mixins. In this recipe, we will convert the previously shown function-based idea_list
view into a class-based IdeaListView view.

Getting ready
Create the models, form, and template similar to the previous recipes, Filtering object lists
and Managing paginated lists.

How to do it...
Follow these steps to execute the recipe:

Our class-based view, IdeaListView, will inherit the Django View class and1.
override the get() method:

myproject/apps/ideas/views.py
from django.shortcuts import render, redirect, get_object_or_404
from django.conf import settings
from django.core.paginator import (EmptyPage, PageNotAnInteger,
Paginator)
from django.views.generic import View

from .forms import IdeaFilterForm
from .models import Idea, RATING_CHOICES

PAGE_SIZE = getattr(settings, "PAGE_SIZE", 24)

Forms and Views Chapter 3

[149]

class IdeaListView(View):
 form_class = IdeaFilterForm
 template_name = "ideas/idea_list.html"

 def get(self, request, *args, **kwargs):
 form = self.form_class(data=request.GET)
 qs, facets = self.get_queryset_and_facets(form)
 page = self.get_page(request, qs)
 context = {"form": form, "facets": facets,
 "object_list": page}
 return render(request, self.template_name, context)

 def get_queryset_and_facets(self, form):
 qs = Idea.objects.order_by("title")
 facets = {
 "selected": {},
 "categories": {
 "authors": form.fields["author"].queryset,
 "categories": form.fields["category"].queryset,
 "ratings": RATING_CHOICES,
 },
 }
 if form.is_valid():
 filters = (
 # query parameter, filter parameter
 ("author", "author"),
 ("category", "categories"),
 ("rating", "rating"),
)
 qs = self.filter_facets(facets, qs, form, filters)
 return qs, facets

 @staticmethod
 def filter_facets(facets, qs, form, filters):
 for query_param, filter_param in filters:
 value = form.cleaned_data[query_param]
 if value:
 selected_value = value
 if query_param == "rating":
 rating = int(value)
 selected_value = (rating,
 dict(RATING_CHOICES)[rating])
 facets["selected"][query_param] = selected_value
 filter_args = {filter_param: value}
 qs = qs.filter(**filter_args).distinct()
 return qs

 def get_page(self, request, qs):

Forms and Views Chapter 3

[150]

 paginator = Paginator(qs, PAGE_SIZE)
 page_number = request.GET.get("page")
 try:
 page = paginator.page(page_number)
 except PageNotAnInteger:
 page = paginator.page(1)
 except EmptyPage:
 page = paginator.page(paginator.num_pages)
 return page

We will need to create a URL rule in the URL configuration using the class-based2.
view. You may have added a rule previously for the function-based idea_list
view, which would have been similar. To include a class-based view in the URL
rules, use the as_view() method as follows:

myproject/apps/ideas/urls.py
from django.urls import path

from .views import IdeaListView

urlpatterns = [
 path("", IdeaListView.as_view(), name="idea_list"),
 # other paths…
]

How it works...
The following are the things happening in the get() method, which is called for HTTP
GET requests:

First, we create the form object, passing the request.GET dictionary-like object
to it. The request.GET object contains all of the query variables that are passed
using the GET method.
Then, the form object is passed to the get_queryset_and_facets() method,
which returns the associated values via a tuple containing two elements:
QuerySet and the facets dictionary respectively.
The current request object and retrieved QuerySet are passed to the get_page()
method, which returns the current page object.
Lastly, we create a context dictionary and render the response.

If we needed to support it, we could also provide a post() method, which is called for
HTTP POST requests.

Forms and Views Chapter 3

[151]

There's more...
As you see, the get() and get_page() methods are largely generic, so we could create a
generic FilterableListView class with these methods in the core app. Then, in any app
that requires a filterable list, we could create a class-based view that extends
FilterableListView to handle such scenarios. This extending class would define only
the form_class and template_name attributes and the get_queryset_and_facets()
method. Such modularity and extensibility represent two of the key benefits of how class-
based views work.

See also
The Filtering object lists recipe
The Managing paginated lists recipe

Providing Open Graph and Twitter Card data
If you want the content of your website to be shared on social networks, you should at least
implement Open Graph and Twitter Card meta tags. These meta tags define how the web
page is represented in Facebook or Twitter feeds: what title and description will be shown,
what image will be set, and what the URL is about. In this recipe, we will prepare the
idea_detail.html template for social sharing.

Getting ready
Let's continue with the ideas app from previous recipes.

How to do it...
Follow these steps to complete the recipe:

Make sure to have the Idea model created with the picture field and picture1.
version specifications. See the Creating an app with CRUDL functions and
Uploading images recipes for more information.
Make sure to have a detail view ready for ideas. See the Creating an app with2.
CRUDL functions recipe for information on how to do that.

Forms and Views Chapter 3

[152]

Plug the detail view into the URL configuration. How to do that is described in3.
the Creating an app with CRUDL functions recipe.
In the settings of your specific environment, define WEBSITE_URL and4.
MEDIA_URL as full URLs of the media files, as in this example:

myproject/settings/dev.py
from ._base import *

DEBUG = True
WEBSITE_URL = "http://127.0.0.1:8000" # without trailing slash
MEDIA_URL = f"{WEBSITE_URL}/media/"

In the core app, create a context processor returning the WEBSITE_URL variable5.
from the settings:

myproject/apps/core/context_processors.py
from django.conf import settings

def website_url(request):
 return {
 "WEBSITE_URL": settings.WEBSITE_URL,
 }

Plug in the context processor in the settings:6.

myproject/settings/_base.py
TEMPLATES = [
 {
 "BACKEND":
 "django.template.backends.django.DjangoTemplates",
 "DIRS": [os.path.join(BASE_DIR, "myproject", "templates")],
 "APP_DIRS": True,
 "OPTIONS": {
 "context_processors": [
 "django.template.context_processors.debug",
 "django.template.context_processors.request",
 "django.contrib.auth.context_processors.auth",
 "django.contrib.messages.context_processors
 .messages",
 "django.template.context_processors.media",
 "django.template.context_processors.static",
 "myproject.apps.core.context_processors
 .website_url",
]
 },
 }
]

Forms and Views Chapter 3

[153]

Create the idea_detail.html template with the following content:7.

{# ideas/idea_detail.html #}
{% extends "base.html" %}
{% load i18n %}

{% block meta_tags %}
 <meta property="og:type" content="website" />
 <meta property="og:url" content="{{ WEBSITE_URL }}
 {{ request.path }}" />
 <meta property="og:title" content="{{ idea.translated_title }}"
 />
 {% if idea.picture_social %}
 <meta property="og:image" content=
 "{{ idea.picture_social.url }}" />
 <!-- Next tags are optional but recommended -->
 <meta property="og:image:width" content=
 "{{ idea.picture_social.width }}" />
 <meta property="og:image:height" content=
 "{{ idea.picture_social.height }}" />
 {% endif %}
 <meta property="og:description" content=
 "{{ idea.translated_content }}" />
 <meta property="og:site_name" content="MyProject" />
 <meta property="og:locale" content="{{ LANGUAGE_CODE }}" />

 <meta name="twitter:card" content="summary_large_image">
 <meta name="twitter:site" content="@DjangoTricks">
 <meta name="twitter:creator" content="@archatas">
 <meta name="twitter:url" content="{{ WEBSITE_URL }}
 {{ request.path }}">
 <meta name="twitter:title" content=
 "{{ idea.translated_title }}">
 <meta name="twitter:description" content=
 "{{ idea.translated_content }}">
 {% if idea.picture_social %}
 <meta name="twitter:image" content=
 "{{ idea.picture_social.url }}">
 {% endif %}
{% endblock %}

{% block content %}

 {% trans "List of ideas" %}
 <h1>
 {% blocktrans trimmed with title=idea.translated_title %}
 Idea "{{ title }}"

Forms and Views Chapter 3

[154]

 {% endblocktrans %}
 </h1>

 {{ idea.translated_content|linebreaks|urlize }}
 <p>
 {% for category in idea.categories.all %}

 {{ category.translated_title }}
 {% endfor %}
 </p>
 <a href="{% url 'ideas:change_idea' pk=idea.pk %}"
 class="btn btn-primary">{% trans "Change this idea" %}
 <a href="{% url 'ideas:delete_idea' pk=idea.pk %}"
 class="btn btn-danger">{% trans "Delete this idea" %}
{% endblock %}

How it works...
Open Graph tags are meta tags with special names starting with og: and Twitter card tags
are meta tags with special names starting with twitter:. These meta tags define the URL,
title, description, and image of the current page, site name, author, and locale. It is
important to provide full URLs there; the path alone would be not enough.

We use the picture_social image version which has the optimal dimensions for social
networks: 1024 × 512 px.

You can validate your Open Graph implementation at https:/ /developers. facebook.
com/tools/debug/ sharing/ .

Twitter Card implementation can be validated at https:/ / cards- dev. twitter. com/
validator.

See also
The Creating an app with CRUDL functions recipe
The Uploading images recipe
The Providing schema.org vocabularies recipe

https://developers.facebook.com/tools/debug/sharing/
https://developers.facebook.com/tools/debug/sharing/
https://developers.facebook.com/tools/debug/sharing/
https://developers.facebook.com/tools/debug/sharing/
https://developers.facebook.com/tools/debug/sharing/
https://developers.facebook.com/tools/debug/sharing/
https://developers.facebook.com/tools/debug/sharing/
https://developers.facebook.com/tools/debug/sharing/
https://developers.facebook.com/tools/debug/sharing/
https://developers.facebook.com/tools/debug/sharing/
https://developers.facebook.com/tools/debug/sharing/
https://developers.facebook.com/tools/debug/sharing/
https://developers.facebook.com/tools/debug/sharing/
https://developers.facebook.com/tools/debug/sharing/
https://developers.facebook.com/tools/debug/sharing/
https://cards-dev.twitter.com/validator
https://cards-dev.twitter.com/validator
https://cards-dev.twitter.com/validator
https://cards-dev.twitter.com/validator
https://cards-dev.twitter.com/validator
https://cards-dev.twitter.com/validator
https://cards-dev.twitter.com/validator
https://cards-dev.twitter.com/validator
https://cards-dev.twitter.com/validator
https://cards-dev.twitter.com/validator
https://cards-dev.twitter.com/validator
https://cards-dev.twitter.com/validator

Forms and Views Chapter 3

[155]

Providing schema.org vocabularies
It is important to have semantic markup for Search Engine Optimization (SEO). But to
improve search engine rankings even more, it is beneficial to provide structured data
according to schema.org vocabularies. Many applications from Google, Microsoft, Pinterest,
Yandex, and others use schema.org structures to create rich extensible experiences such as
special consistent-looking cards in the search results for events, movies, authors, and so on.

There are several encodings, including RDFa, Microdata, and JSON-LD, that can be used to
create schema.org vocabularies. In this recipe, we will prepare structured data for the Idea
model in JSON-LD format, which is preferred and recommended by Google.

Getting ready
Let's install the django-json-ld package into your project's virtual environment (and
include it in requirements/_base.txt):

(env)$ pip install django-json-ld==0.0.4

Put "django_json_ld" under INSTALLED_APPS in the settings:

myproject/settings/_base.py
INSTALLED_APPS = [
 # other apps…
 "django_json_ld",
]

How to do it...
Follow these steps to complete the recipe:

Add the structured_data property with the following content to the Idea1.
model:

myproject/apps/ideas/models.py
from django.db import models
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.models import (
CreationModificationDateBase, UrlBase)

class Idea(CreationModificationDateBase, UrlBase):

Forms and Views Chapter 3

[156]

 # attributes, fields, properties, and methods…

 @property
 def structured_data(self):
 from django.utils.translation import get_language

 lang_code = get_language()
 data = {
 "@type": "CreativeWork",
 "name": self.translated_title,
 "description": self.translated_content,
 "inLanguage": lang_code,
 }
 if self.author:
 data["author"] = {
 "@type": "Person",
 "name": self.author.get_full_name() or
 self.author.username,
 }
 if self.picture:
 data["image"] = self.picture_social.url
 return data

Modify the idea_detail.html template:2.

{# ideas/idea_detail.html #}
{% extends "base.html" %}
{% load i18n json_ld %}

{% block meta_tags %}
 {# Open Graph and Twitter Card meta tags here… #}

 {% render_json_ld idea.structured_data %}
{% endblock %}

{% block content %}

 {% trans "List of ideas" %}
 <h1>
 {% blocktrans trimmed with title=idea.translated_title %}
 Idea "{{ title }}"
 {% endblocktrans %}
 </h1>

 {{ idea.translated_content|linebreaks|urlize }}
 <p>
 {% for category in idea.categories.all %}

Forms and Views Chapter 3

[157]

 {{ category.translated_title }}
 {% endfor %}
 </p>
 <a href="{% url 'ideas:change_idea' pk=idea.pk %}"
 class="btn btn-primary">{% trans "Change this idea" %}
 <a href="{% url 'ideas:delete_idea' pk=idea.pk %}"
 class="btn btn-danger">{% trans "Delete this idea" %}
{% endblock %}

How it works...
The {% render_json_ld %} template tag will render the script tag similar to this:

<script type=application/ld+json>{"@type": "CreativeWork", "author":
{"@type": "Person", "name": "admin"}, "description": "Lots of African
countries have not enough water. Dig a water channel throughout Africa to
provide water to people who have no access to it.", "image":
"http://127.0.0.1:8000/media/CACHE/images/ideas/2019/09/b919eec5-c077-41f0-
afb4-35f221ab550c_bOFBDgv/9caa5e61fc832f65ff6382f3d482807a.jpg",
"inLanguage": "en", "name": "Dig a water channel throughout
Africa"}</script>

The structured_data property returns a nested dictionary according to the schema.org
vocabularies that are well understood by most popular search engines.

You can decide which vocabularies to apply to your models by checking the official
documentation at https:/ / schema. org/ docs/ schemas. html.

See also
The Creating a model mixin to take care of meta tags recipe in Chapter 2, Models and
Database Structure
The Creating an app with CRUDL functions recipe
The Uploading images recipe
The Providing Open Graph and Twitter Card data recipe

https://schema.org/docs/schemas.html
https://schema.org/docs/schemas.html
https://schema.org/docs/schemas.html
https://schema.org/docs/schemas.html
https://schema.org/docs/schemas.html
https://schema.org/docs/schemas.html
https://schema.org/docs/schemas.html
https://schema.org/docs/schemas.html
https://schema.org/docs/schemas.html
https://schema.org/docs/schemas.html
https://schema.org/docs/schemas.html
https://schema.org/docs/schemas.html
https://schema.org/docs/schemas.html

Forms and Views Chapter 3

[158]

Generating PDF documents
Django views allow you to create much more than just HTML pages. You can create files of
any type. For example, in the Exposing settings in JavaScript recipe in Chapter 4, Templates
and JavaScript, our view provides its output as a JavaScript file rather than HTML. You can
also create PDF documents for invoices, tickets, receipts, booking confirmations, and so on.
In this recipe, we will show you how to generate handouts to print for each idea from the
database. We are going to use the WeasyPrint library to make PDF documents out of
HTML templates.

Getting ready
WeasyPrint depends on several libraries that you need to install on your computer. On
macOS, you can install them with Homebrew using this command:

$ brew install python3 cairo pango gdk-pixbuf libffi

Then, you can install WeasyPrint itself in the virtual environment of your project.
Also, include it in requirements/_base.txt:

(env)$ pip install WeasyPrint==48

For other operating systems, check the installation instructions at https:/ / weasyprint.
readthedocs.io/en/ latest/ install. html.

Also, we'll be using django-qr-code to generate a QR code linking back to the website for
quick access. Let's also install it in the virtual environment (and include it in
requirements/_base.txt):

(env)$ pip install django-qr-code==1.0.0

Add "qr_code" to INSTALLED_APPS in the settings:

myproject/settings/_base.py
INSTALLED_APPS = [
 # Django apps…
 "qr_code",
]

https://weasyprint.readthedocs.io/en/latest/install.html
https://weasyprint.readthedocs.io/en/latest/install.html
https://weasyprint.readthedocs.io/en/latest/install.html
https://weasyprint.readthedocs.io/en/latest/install.html
https://weasyprint.readthedocs.io/en/latest/install.html
https://weasyprint.readthedocs.io/en/latest/install.html
https://weasyprint.readthedocs.io/en/latest/install.html
https://weasyprint.readthedocs.io/en/latest/install.html
https://weasyprint.readthedocs.io/en/latest/install.html
https://weasyprint.readthedocs.io/en/latest/install.html
https://weasyprint.readthedocs.io/en/latest/install.html
https://weasyprint.readthedocs.io/en/latest/install.html
https://weasyprint.readthedocs.io/en/latest/install.html
https://weasyprint.readthedocs.io/en/latest/install.html
https://weasyprint.readthedocs.io/en/latest/install.html
https://weasyprint.readthedocs.io/en/latest/install.html

Forms and Views Chapter 3

[159]

How to do it...
Follow these steps to complete the recipe:

Create the view that will generate the PDF document:1.

myproject/apps/ideas/views.py
from django.shortcuts import get_object_or_404
from .models import Idea

def idea_handout_pdf(request, pk):
 from django.template.loader import render_to_string
 from django.utils.timezone import now as timezone_now
 from django.utils.text import slugify
 from django.http import HttpResponse

 from weasyprint import HTML
 from weasyprint.fonts import FontConfiguration

 idea = get_object_or_404(Idea, pk=pk)
 context = {"idea": idea}
 html = render_to_string(
 "ideas/idea_handout_pdf.html", context
)

 response = HttpResponse(content_type="application/pdf")
 response[
 "Content-Disposition"
] = "inline; filename={date}-{name}-handout.pdf".format(
 date=timezone_now().strftime("%Y-%m-%d"),
 name=slugify(idea.translated_title),
)

 font_config = FontConfiguration()
 HTML(string=html).write_pdf(
 response, font_config=font_config
)

 return response

Plug this view into the URL configuration:2.

myproject/apps/ideas/urls.py
from django.urls import path

from .views import idea_handout_pdf

urlpatterns = [

Forms and Views Chapter 3

[160]

 # URL configurations…
 path(
 "<uuid:pk>/handout/",
 idea_handout_pdf,
 name="idea_handout",
),
]

Create a template for the PDF document:3.

{# ideas/idea_handout_pdf.html #}
{% extends "base_pdf.html" %}
{% load i18n qr_code %}

{% block content %}
 <h1 class="h3">{% trans "Handout" %}</h1>
 <h2 class="h1">{{ idea.translated_title }}</h2>
 <img src="{{ idea.picture_large.url }}" alt=""
 class="img-responsive w-100" />
 <div class="my-3">{{ idea.translated_content|linebreaks|
 urlize }}</div>
 <p>
 {% for category in idea.categories.all %}

 {{ category.translated_title }}
 {% endfor %}
 </p>
 <h4>{% trans "See more information online:" %}</h4>
 {% qr_from_text idea.get_url size=20 border=0 as svg_code %}
 <img alt="" src="data:image/svg+xml,
 {{ svg_code|urlencode }}" />
 <p class="mt-3 text-break">{{ idea.get_url }}</p>
{% endblock %}

Also, create the base_pdf.html template:4.

{# base_pdf.html #}
<!doctype html>
{% load i18n static %}
<html lang="en">
<head>
 <!-- Required meta tags -->
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,
 initial-scale=1, shrink-to-fit=no">

 <!-- Bootstrap CSS -->
 <link rel="stylesheet"

Forms and Views Chapter 3

[161]

 href="https://stackpath.bootstrapcdn.com
 /bootstrap/4.3.1/css/bootstrap.min.css"
 integrity="sha384-
 ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY
 /iJTQUOhcWr7x9JvoRxT2MZw1T" crossorigin="anonymous">

 <title>{% trans "Hello, World!" %}</title>

 <style>
 @page {
 size: "A4";
 margin: 2.5cm 1.5cm 3.5cm 1.5cm;
 }
 footer {
 position: fixed;
 bottom: -2.5cm;
 width: 100%;
 text-align: center;
 font-size: 10pt;
 }
 footer img {
 height: 1.5cm;
 }
 </style>

 {% block meta_tags %}{% endblock %}
</head>
<body>
 <main class="container">
 {% block content %}
 {% endblock %}
 </main>
 <footer>
 <img alt="" src="data:image/svg+xml,
 {# url-encoded SVG logo goes here #}" />

 {% trans "Printed from MyProject" %}
 </footer>
</body>
</html>

Forms and Views Chapter 3

[162]

How it works...
WeasyPrint generates ready-to-print, pixel-perfect documents. Our example of a handout
we could give out to an audience at presentations will look similar to this:

Forms and Views Chapter 3

[163]

The layout of the document is defined in markup and CSS. WeasyPrint has its own
rendering engine. Read more about supported features in the official documentation
at: https://weasyprint. readthedocs. io/ en/latest/ features. html.

You can use SVG images, which will be saved as vector graphics, not bitmaps, and
therefore will be crispier in the printout. Inline SVGs are not yet supported, but you can use
 tags with a data source or external URL there. In our example, we use SVG images
for the QR code and for the logo in the footer.

Let's get through the code of the view. We render the idea_handout_pdf.html template
with the selected idea as an html string. Then, we create an HttpResponse object of PDF
content type with the filename composed of the current date and slugified idea title. Then,
we create WeasyPrint's HTML object with HTML content and write it to the response as if
we would write to a file. In addition, we use the FontConfiguration object, which allows
us to attach and use web fonts from CSS configuration in the layout. Lastly, we return the
response object.

See also
The Creating an app with CRUDL functions recipe
The Uploading images recipe
The Exposing settings in JavaScript recipe in Chapter 4, Templates and JavaScript

Implementing a multilingual search with
Haystack and Whoosh
One of the main functionalities of content-driven websites is a full-text search. Haystack is a
modular search API that supports the Solr, Elasticsearch, Whoosh, and Xapian search
engines. For each model in your project that has to be findable in the search, you need to
define an index that will read out the textual information from the models and place it into
the backend. In this recipe, you will learn how to set up a search with Haystack and the
Python-based Whoosh search engine for a multilingual website.

https://weasyprint.readthedocs.io/en/latest/features.html
https://weasyprint.readthedocs.io/en/latest/features.html
https://weasyprint.readthedocs.io/en/latest/features.html
https://weasyprint.readthedocs.io/en/latest/features.html
https://weasyprint.readthedocs.io/en/latest/features.html
https://weasyprint.readthedocs.io/en/latest/features.html
https://weasyprint.readthedocs.io/en/latest/features.html
https://weasyprint.readthedocs.io/en/latest/features.html
https://weasyprint.readthedocs.io/en/latest/features.html
https://weasyprint.readthedocs.io/en/latest/features.html
https://weasyprint.readthedocs.io/en/latest/features.html
https://weasyprint.readthedocs.io/en/latest/features.html
https://weasyprint.readthedocs.io/en/latest/features.html
https://weasyprint.readthedocs.io/en/latest/features.html
https://weasyprint.readthedocs.io/en/latest/features.html
https://weasyprint.readthedocs.io/en/latest/features.html
https://weasyprint.readthedocs.io/en/latest/features.html

Forms and Views Chapter 3

[164]

Getting ready
We are going to use the previously defined categories and ideas apps.

Make sure you have installed django-haystack and Whoosh in your virtual
environment (and include them in requirements/_base.txt):

(env)$ pip install django-haystack==2.8.1
(env)$ pip install Whoosh==2.7.4

How to do it...
Let's set up a multilingual search with Haystack and Whoosh by executing the following
steps:

Create a search app that will contain MultilingualWhooshEngine and search1.
indexes for our ideas. The search engine will live in the
multilingual_whoosh_backend.py file:

myproject/apps/search/multilingual_whoosh_backend.py
from django.conf import settings
from django.utils import translation
from haystack.backends.whoosh_backend import (
 WhooshSearchBackend,
 WhooshSearchQuery,
 WhooshEngine,
)
from haystack import connections
from haystack.constants import DEFAULT_ALIAS

class MultilingualWhooshSearchBackend(WhooshSearchBackend):
 def update(self, index, iterable, commit=True,
 language_specific=False):
 if not language_specific and self.connection_alias ==
 "default":
 current_language = (translation.get_language() or
 settings.LANGUAGE_CODE)[
 :2
]
 for lang_code, lang_name in settings.LANGUAGES:
 lang_code_underscored = lang_code.replace("-", "_")
 using = f"default_{lang_code_underscored}"
 translation.activate(lang_code)
 backend = connections[using].get_backend()

Forms and Views Chapter 3

[165]

 backend.update(index, iterable, commit,
 language_specific=True)
 translation.activate(current_language)
 elif language_specific:
 super().update(index, iterable, commit)

class MultilingualWhooshSearchQuery(WhooshSearchQuery):
 def __init__(self, using=DEFAULT_ALIAS):
 lang_code_underscored =
 translation.get_language().replace("-", "_")
 using = f"default_{lang_code_underscored}"
 super().__init__(using=using)

class MultilingualWhooshEngine(WhooshEngine):
 backend = MultilingualWhooshSearchBackend
 query = MultilingualWhooshSearchQuery

Let's create the search indexes, as follows:2.

myproject/apps/search/search_indexes.py
from haystack import indexes

from myproject.apps.ideas.models import Idea

class IdeaIndex(indexes.SearchIndex, indexes.Indexable):
 text = indexes.CharField(document=True)

 def get_model(self):
 return Idea

 def index_queryset(self, using=None):
 """
 Used when the entire index for model is updated.
 """
 return self.get_model().objects.all()

 def prepare_text(self, idea):
 """
 Called for each language / backend
 """
 fields = [
 idea.translated_title, idea.translated_content
]
 fields += [
 category.translated_title

Forms and Views Chapter 3

[166]

 for category in idea.categories.all()
]
 return "\n".join(fields)

Configure the settings to use MultilingualWhooshEngine:3.

myproject/settings/_base.py
import os
BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(
 os.path.abspath(__file__)
)))

#…

INSTALLED_APPS = [
 # contributed
 # …
 # third-party
 # …
 "haystack",
 # local
 "myproject.apps.core",
 "myproject.apps.categories",
 "myproject.apps.ideas",
 "myproject.apps.search",
]

LANGUAGE_CODE = "en"

All official languages of European Union
LANGUAGES = [
 ("bg", "Bulgarian"),
 ("hr", "Croatian"),
 ("cs", "Czech"),
 ("da", "Danish"),
 ("nl", "Dutch"),
 ("en", "English"),
 ("et", "Estonian"),
 ("fi", "Finnish"),
 ("fr", "French"),
 ("de", "German"),
 ("el", "Greek"),
 ("hu", "Hungarian"),
 ("ga", "Irish"),
 ("it", "Italian"),
 ("lv", "Latvian"),
 ("lt", "Lithuanian"),
 ("mt", "Maltese"),

Forms and Views Chapter 3

[167]

 ("pl", "Polish"),
 ("pt", "Portuguese"),
 ("ro", "Romanian"),
 ("sk", "Slovak"),
 ("sl", "Slovene"),
 ("es", "Spanish"),
 ("sv", "Swedish"),
]

HAYSTACK_CONNECTIONS = {}
for lang_code, lang_name in LANGUAGES:
 lang_code_underscored = lang_code.replace("-", "_")
 HAYSTACK_CONNECTIONS[f"default_{lang_code_underscored}"] = {
 "ENGINE":
 "myproject.apps.search.multilingual_whoosh_backend
 .MultilingualWhooshEngine",
 "PATH": os.path.join(BASE_DIR, "tmp",
 f"whoosh_index_{lang_code_underscored}"),
 }
 lang_code_underscored = LANGUAGE_CODE.replace("-", "_")
 HAYSTACK_CONNECTIONS["default"] = HAYSTACK_CONNECTIONS[
 f"default_{lang_code_underscored}"
]

Add a path to the URL rules:4.

myproject/urls.py
from django.contrib import admin
from django.conf.urls.i18n import i18n_patterns
from django.urls import include, path
from django.conf import settings
from django.conf.urls.static import static
from django.shortcuts import redirect

urlpatterns = i18n_patterns(
 path("", lambda request: redirect("ideas:idea_list")),
 path("admin/", admin.site.urls),
 path("accounts/", include("django.contrib.auth.urls")),
 path("ideas/", include(("myproject.apps.ideas.urls", "ideas"),
 namespace="ideas")),
 path("search/", include("haystack.urls")),
)
urlpatterns += static(settings.STATIC_URL,
document_root=settings.STATIC_ROOT)
urlpatterns += static("/media/", document_root=settings.MEDIA_ROOT)

Forms and Views Chapter 3

[168]

We will need a template for the search form and search results, as given here:5.

{# search/search.html #}
{% extends "base.html" %}
{% load i18n %}

{% block sidebar %}
 <form method="get" action="{{ request.path }}">
 <div class="well clearfix">
 {{ form.as_p }}
 <p class="pull-right">
 <button type="submit" class="btn btn-primary">
 {% trans "Search" %}</button>
 </p>
 </div>
 </form>
{% endblock %}

{% block main %}
 {% if query %}
 <h1>{% trans "Search Results" %}</h1>

 {% for result in page.object_list %}
 {% with idea=result.object %}
 <a href="{{ idea.get_url_path }}"
 class="d-block my-3">
 <div class="card">
 <img src="{{ idea.picture_thumbnail.url }}"
 alt="" />
 <div class="card-body">
 <p class="card-text">
 {{ idea.translated_title }}</p>
 </div>
 </div>

 {% endwith %}
 {% empty %}
 <p>{% trans "No results found." %}</p>
 {% endfor %}

 {% include "misc/includes/pagination.html" with
 object_list=page %}
 {% endif %}
{% endblock %}

Forms and Views Chapter 3

[169]

Add a pagination template at misc/includes/pagination.html just like in6.
the Managing paginated lists recipe.
Call the rebuild_index management command to index the database data and7.
prepare the full-text search to be used:

(env)$ python manage.py rebuild_index --noinput

How it works...
MultilingualWhooshEngine specifies two custom properties:

backend points to MultilingualWhooshSearchBackend, which ensures that
the items will be indexed for each language given in the LANGUAGES setting and
put under the associated Haystack index location defined in
HAYSTACK_CONNECTIONS.
query references MultilingualWhooshSearchQuery, whose responsibility is
to ensure that, when searching for keywords, the Haystack connection specific to
the current language will be used.

Each index has a text field, where full text from a specific language of a model will be
stored. The model for the index is determined by the get_model() method, the
index_queryset() method defines what QuerySet to index, and the content to search
within is defined as a newline-separated string in the prepare_text() method.

For the template, we have incorporated a few elements of Bootstrap 4 using the out-of-the-
box rendering capabilities for forms. This might be enhanced using an approach such as
explained in the Creating a form layout with django-crispy-forms recipe from earlier in this
chapter.

Forms and Views Chapter 3

[170]

The final search page will have the form in the sidebar and the search results in the main
columns and will look similar to the following:

The easiest way to update the search index regularly is to call the rebuild_index
management command, perhaps by a cron job every night. To learn about it, check the
Setting up cron jobs for regular tasks recipe in Chapter 13, Maintenance.

See also
The Creating a form layout with django-crispy-forms recipe
The Managing paginated lists recipe
The Setting up cron jobs for regular tasks recipe in Chapter 13, Maintenance

Implementing a multilingual search with
Elasticsearch DSL
Haystack with Whoosh is a good stable search mechanism that requires just some Python
modules, but for better performance, we recommend using Elasticsearch. In this recipe,
we'll show you how to use it for a multilingual search.

Forms and Views Chapter 3

[171]

Getting ready
To start with, let's install the Elasticsearch server. On macOS, you can do that with
Homebrew:

$ brew install elasticsearch

At the time of writing, the latest stable version of Elasticsearch on Homebrew is 6.8.2.

Install django-elasticsearch-dsl in your virtual environment (and include it in
requirements/_base.txt):

(env)$ pip install django-elasticsearch-dsl==6.4.1

Note that it is important to install a matching django-elasticsearch-
dsl version. Otherwise, you will get errors when trying to connect to the
Elasticsearch server or building an index. You can see a version
compatibility table at https:/ /github. com/ sabricot/ django-
elasticsearch- dsl.

How to do it...
Let's set up a multilingual search with Elasticsearch DSL by executing the following steps:

Modify the settings file and add "django_elasticsearch_dsl" to1.
INSTALLED_APPS and set the ELASTICSEARCH_DSL setting as follows:

myproject/settings/_base.py

INSTALLED_APPS = [
 # other apps…
 "django_elasticsearch_dsl",
]

ELASTICSEARCH_DSL={
 'default': {
 'hosts': 'localhost:9200'
 },
}

https://github.com/sabricot/django-elasticsearch-dsl
https://github.com/sabricot/django-elasticsearch-dsl
https://github.com/sabricot/django-elasticsearch-dsl
https://github.com/sabricot/django-elasticsearch-dsl
https://github.com/sabricot/django-elasticsearch-dsl
https://github.com/sabricot/django-elasticsearch-dsl
https://github.com/sabricot/django-elasticsearch-dsl
https://github.com/sabricot/django-elasticsearch-dsl
https://github.com/sabricot/django-elasticsearch-dsl
https://github.com/sabricot/django-elasticsearch-dsl
https://github.com/sabricot/django-elasticsearch-dsl
https://github.com/sabricot/django-elasticsearch-dsl
https://github.com/sabricot/django-elasticsearch-dsl
https://github.com/sabricot/django-elasticsearch-dsl

Forms and Views Chapter 3

[172]

In the ideas app, create a documents.py file with IdeaDocument for the idea2.
search index, as follows:

myproject/apps/ideas/documents.py
from django.conf import settings
from django.utils.translation import get_language, activate
from django.db import models

from django_elasticsearch_dsl import fields
from django_elasticsearch_dsl.documents import (
 Document,
 model_field_class_to_field_class,
)
from django_elasticsearch_dsl.registries import registry

from myproject.apps.categories.models import Category
from .models import Idea

def _get_url_path(instance, language):
 current_language = get_language()
 activate(language)
 url_path = instance.get_url_path()
 activate(current_language)
 return url_path

@registry.register_document
class IdeaDocument(Document):
 author = fields.NestedField(
 properties={
 "first_name": fields.StringField(),
 "last_name": fields.StringField(),
 "username": fields.StringField(),
 "pk": fields.IntegerField(),
 },
 include_in_root=True,
)
 title_bg = fields.StringField()
 title_hr = fields.StringField()
 # other title_* fields for each language in the LANGUAGES
 setting…
 content_bg = fields.StringField()
 content_hr = fields.StringField()
 # other content_* fields for each language in the LANGUAGES
 setting…

 picture_thumbnail_url = fields.StringField()

Forms and Views Chapter 3

[173]

 categories = fields.NestedField(
 properties=dict(
 pk=fields.IntegerField(),
 title_bg=fields.StringField(),
 title_hr=fields.StringField(),
 # other title_* definitions for each language in the
 LANGUAGES setting…
),
 include_in_root=True,
)

 url_path_bg = fields.StringField()
 url_path_hr = fields.StringField()
 # other url_path_* fields for each language in the LANGUAGES
 setting…

 class Index:
 name = "ideas"
 settings = {"number_of_shards": 1, "number_of_replicas": 0}

 class Django:
 model = Idea
 # The fields of the model you want to be indexed in
 Elasticsearch
 fields = ["uuid", "rating"]
 related_models = [Category]

 def get_instances_from_related(self, related_instance):
 if isinstance(related_instance, Category):
 category = related_instance
 return category.category_ideas.all()

Add prepare_* methods to IdeaDocument to prepare data for the index: 3.

 def prepare(self, instance):
 lang_code_underscored = settings.LANGUAGE_CODE.replace
 ("-", "_")
 setattr(instance, f"title_{lang_code_underscored}",
 instance.title)
 setattr(instance, f"content_{lang_code_underscored}",
 instance.content)
 setattr(
 instance,
 f"url_path_{lang_code_underscored}",
 _get_url_path(instance=instance,
 language=settings.LANGUAGE_CODE),
)
 for lang_code, lang_name in

Forms and Views Chapter 3

[174]

 settings.LANGUAGES_EXCEPT_THE_DEFAULT:
 lang_code_underscored = lang_code.replace("-", "_")
 setattr(instance, f"title_{lang_code_underscored}",
 "")
 setattr(instance, f"content_{lang_code_underscored}",
 "")
 translations = instance.translations.filter(language=
 lang_code).first()
 if translations:
 setattr(instance, f"title_{lang_code_underscored}",
 translations.title)
 setattr(
 instance, f"content_{lang_code_underscored}",
 translations.content
)
 setattr(
 instance,
 f"url_path_{lang_code_underscored}",
 _get_url_path(instance=instance,
 language=lang_code),
)
 data = super().prepare(instance=instance)
 return data

 def prepare_picture_thumbnail_url(self, instance):
 if not instance.picture:
 return ""
 return instance.picture_thumbnail.url

 def prepare_author(self, instance):
 author = instance.author
 if not author:
 return []
 author_dict = {
 "pk": author.pk,
 "first_name": author.first_name,
 "last_name": author.last_name,
 "username": author.username,
 }
 return [author_dict]

 def prepare_categories(self, instance):
 categories = []
 for category in instance.categories.all():
 category_dict = {"pk": category.pk}
 lang_code_underscored =
 settings.LANGUAGE_CODE.replace("-", "_")
 category_dict[f"title_{lang_code_underscored}"] =

Forms and Views Chapter 3

[175]

 category.title
 for lang_code, lang_name in
 settings.LANGUAGES_EXCEPT_THE_DEFAULT:
 lang_code_underscored = lang_code.replace("-", "_")
 category_dict[f"title_{lang_code_underscored}"] =
 ""
 translations =
 category.translations.filter(language=
 lang_code).first()
 if translations:
 category_dict[f"title_{lang_code_underscored}"]
 = translations.title
 categories.append(category_dict)
 return categories

Add some properties and methods to IdeaDocument to return translated content4.
from the indexed documents:

 @property
 def translated_title(self):
 lang_code_underscored = get_language().replace("-", "_")
 return getattr(self, f"title_{lang_code_underscored}", "")

 @property
 def translated_content(self):
 lang_code_underscored = get_language().replace("-", "_")
 return getattr(self, f"content_{lang_code_underscored}",
 "")

 def get_url_path(self):
 lang_code_underscored = get_language().replace("-", "_")
 return getattr(self, f"url_path_{lang_code_underscored}",
 "")

 def get_categories(self):
 lang_code_underscored = get_language().replace("-", "_")
 return [
 dict(
 translated_title=category_dict[f"title_{lang_
 code_underscored}"],
 **category_dict,
)
 for category_dict in self.categories
]

Forms and Views Chapter 3

[176]

One more thing to do in the documents.py file is to monkey-patch the5.
UUIDField mappings because, by default, it is not yet supported by Django
Elasticsearch DSL. To do that, insert this line just after the imports section:

model_field_class_to_field_class[models.UUIDField] =
fields.TextField

Create IdeaSearchForm under forms.py in your ideas app:6.

myproject/apps/ideas/forms.py
from django import forms
from django.utils.translation import ugettext_lazy as _

from crispy_forms import helper, layout

class IdeaSearchForm(forms.Form):
 q = forms.CharField(label=_("Search for"), required=False)

 def __init__(self, request, *args, **kwargs):
 self.request = request
 super().__init__(*args, **kwargs)

 self.helper = helper.FormHelper()
 self.helper.form_action = self.request.path
 self.helper.form_method = "GET"
 self.helper.layout = layout.Layout(
 layout.Field("q", css_class="input-block-level"),
 layout.Submit("search", _("Search")),
)

Add the view for searching with Elasticsearch:7.

myproject/apps/ideas/views.py
from django.shortcuts import render
from django.conf import settings
from django.core.paginator import EmptyPage, PageNotAnInteger,
Paginator
from django.utils.functional import LazyObject

from .forms import IdeaSearchForm

PAGE_SIZE = getattr(settings, "PAGE_SIZE", 24)

class SearchResults(LazyObject):
 def __init__(self, search_object):

Forms and Views Chapter 3

[177]

 self._wrapped = search_object

 def __len__(self):
 return self._wrapped.count()

 def __getitem__(self, index):
 search_results = self._wrapped[index]
 if isinstance(index, slice):
 search_results = list(search_results)
 return search_results

def search_with_elasticsearch(request):
 from .documents import IdeaDocument
 from elasticsearch_dsl.query import Q

 form = IdeaSearchForm(request, data=request.GET)

 search = IdeaDocument.search()

 if form.is_valid():
 value = form.cleaned_data["q"]
 lang_code_underscored = request.LANGUAGE_CODE.replace("-",
 "_")
 search = search.query(
 Q("match_phrase", **{f"title_{
 lang_code_underscored}":
 value})
 | Q("match_phrase", **{f"content_{
 lang_code_underscored}": value})
 | Q(
 "nested",
 path="categories",
 query=Q(
 "match_phrase",
 **{f"categories__title_{
 lang_code_underscored}": value},
),
)
)
 search_results = SearchResults(search)

 paginator = Paginator(search_results, PAGE_SIZE)
 page_number = request.GET.get("page")
 try:
 page = paginator.page(page_number)
 except PageNotAnInteger:
 # If page is not an integer, show first page.

Forms and Views Chapter 3

[178]

 page = paginator.page(1)
 except EmptyPage:
 # If page is out of range, show last existing page.
 page = paginator.page(paginator.num_pages)

 context = {"form": form, "object_list": page}
 return render(request, "ideas/idea_search.html", context)

Create an idea_search.html template for the search form and search results:8.

{# ideas/idea_search.html #}
{% extends "base.html" %}
{% load i18n crispy_forms_tags %}

{% block sidebar %}
 {% crispy form %}
{% endblock %}

{% block main %}
 <h1>{% trans "Search Results" %}</h1>
 {% if object_list %}
 {% for idea in object_list %}

 <div class="card">
 <img src="{{ idea.picture_thumbnail_url }}"
 alt="" />
 <div class="card-body">
 <p class="card-text">{{ idea.translated_title
 }}</p>
 </div>
 </div>

 {% endfor %}
 {% include "misc/includes/pagination.html" %}
 {% else %}
 <p>{% trans "No ideas found." %}</p>
 {% endif %}
{% endblock %}

Add a pagination template at misc/includes/pagination.html just like in9.
the Managing paginated lists recipe.
Call the search_index --rebuild management command to index the10.
database data and prepare the full-text search to be used:

(env)$ python manage.py search_index --rebuild

Forms and Views Chapter 3

[179]

How it works...
Django Elasticsearch DSL documents are similar to model forms. There you define which
fields of the model to save to the index that later will be used for the search queries. In our
IdeaDocument example, we are saving the UUID, rating, author, categories, titles,
contents, and URL paths in all languages and a picture thumbnail URL. The Index class
defines the settings of the Elasticsearch index for this document. The Django class defines
where to populate the index fields from. There is the related_models setting that tells
after which model changes to also update this index. In our case, it is a Category
model. Note that with django-elasticsearch-dsl, the indexes will be updated
automatically whenever the models are saved. That is done using signals.

The get_instances_from_related() method tells how to retrieve the Idea model
instances when a Category instance is changed.

The prepare() and prepare_*() methods of IdeaDocument tell where to take the data
from and how to save the data for specific fields. For example, we are reading the data for
title_lt from the title field of the IdeaTranslations model where the language
field equals "lt".

The last properties and methods of the IdeaDocument are there to use for retrieval of
information from the index in the currently active language.

Then, we have a view with the search form. There is a query field in the form called q.
When it is submitted, we are searching for the queried word in the title, content, or
category's title field of the current language. Then, we wrap the search results with a lazily
evaluated SearchResults class, so that we could use it with the default Django paginator.

Forms and Views Chapter 3

[180]

The template of the view will have the search form in the sidebar and the search results in
the main column, and it will look something like this:

See also
The Creating an app with CRUDL functions recipe
The Implementing a multilingual search with Haystack and Whoosh recipe
The Creating a form layout with django-crispy-forms recipe
The Managing paginated lists recipe

4
Templates and JavaScript

In this chapter, we will cover the following topics:

Arranging the base.html template
Using Django Sekizai
Exposing settings in JavaScript
Using HTML5 data attributes
Providing responsive images(env)$ python manage.py migrate ideas zero
Implementing a continuous scrolling
Opening object details in a modal dialog
Implementing the Like widget
Uploading images via Ajax

Introduction
Static websites are useful for static content, such as traditional documentation, online
books, and tutorials; however, today, most interactive web apps and platforms must have
dynamic components if they want to stand out and give visitors the best user experience. In
this chapter, you will learn how to use JavaScript and CSS together with Django templates.
We will use the Bootstrap 4 frontend framework for responsive layouts and the jQuery
JavaScript framework for productive scripting.

Templates and JavaScript Chapter 4

[182]

Technical requirements
As before, to work with the code of this chapter, you will need the latest stable version of
Python, MySQL, or PostgreSQL database and a Django project with a virtual
environment. Some recipes will require specific Python dependencies. Some of them will
require additional JavaScript libraries. You will see the requirements of each recipe later in
the chapter.

You can find all the code for this chapter at the ch04 directory of the GitHub repository
at https://github. com/ PacktPublishing/ Django- 3- Web- Development- Cookbook- Fourth-
Edition.

Arranging the base.html template
When you start working on templates, one of the first things to do is create the base.html
boilerplate, which will be extended by most of the page templates in your project. In this
recipe, we will demonstrate how to create such a template for multilingual HTML5
websites, with responsiveness in mind.

Responsive websites are those that provide the same base content to all
devices, styled appropriately to the viewport, whether the visitor uses
desktop browsers, tablets, or phones. This differs from adaptive websites,
where the server attempts to determine the device type based on the user
agent, then provides entirely different content, markup, and even
functionality depending on how that user agent is categorized.

Getting ready
Create the templates directory in your project and set the template directories in the
settings to include it, as shown here:

myproject/settings/_base.py
TEMPLATES = [
 {
 "BACKEND": "django.template.backends.django.DjangoTemplates",
 "DIRS": [os.path.join(BASE_DIR, "myproject", "templates")],
 "APP_DIRS": True,
 "OPTIONS": {
 "context_processors": [

https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition

Templates and JavaScript Chapter 4

[183]

 "django.template.context_processors.debug",
 "django.template.context_processors.request",
 "django.contrib.auth.context_processors.auth",
 "django.contrib.messages.context_processors.messages",
 "django.template.context_processors.media",
 "django.template.context_processors.static",
]
 },
 }
]

How to do it...
Go through the following steps:

In the root directory of your templates, create a base.html file with the1.
following content:

{# base.html #}
<!doctype html>
{% load i18n static %}
<html lang="en">
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-
 scale=1, shrink-to-fit=no" />
 <title>{% block head_title %}{% endblock %}</title>
 {% include "misc/includes/favicons.html" %}
 {% block meta_tags %}{% endblock %}

 <link rel="stylesheet"
 href="https://stackpath.bootstrapcdn.com/bootstrap
 /4.3.1/css/bootstrap.min.css"
 integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784
 /j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
 crossorigin="anonymous" />
 <link rel="stylesheet"
 href="{% static 'site/css/style.css' %}"
 crossorigin="anonymous" />

 {% block css %}{% endblock %}
 {% block extra_head %}{% endblock %}
</head>
<body>
 {% include "misc/includes/header.html" %}
 <div class="container my-5">

Templates and JavaScript Chapter 4

[184]

 {% block content %}
 <div class="row">
 <div class="col-lg-4">{% block sidebar %}
 {% endblock %}</div>
 <div class="col-lg-8">{% block main %}
 {% endblock %}</div>
 </div>
 {% endblock %}
 </div>
 {% include "misc/includes/footer.html" %}
 <script src="https://code.jquery.com/jquery-3.4.1.min.js"
 crossorigin="anonymous"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js
 /1.14.7/umd/popper.min.js"
 integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj
 9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"
 crossorigin="anonymous"></script>
 <script src="https://stackpath.bootstrapcdn.com/bootstrap
 /4.3.1/js/bootstrap.min.js"
 integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6Vrj
 IEaFf/nJGzIxFDsf4x0xIM+B07jRM"
 crossorigin="anonymous"></script>
 {% block js %}{% endblock %}
 {% block extra_body %}{% endblock %}
</body>
</html>

Under misc/includes, create a template including all the versions of the2.
favicon:

{# misc/includes/favicon.html #}
{% load static %}
<link rel="icon" type="image/png" href="{% static
'site/img/favicon-32x32.png' %}" sizes="32x32"/>
<link rel="icon" type="image/png" href="{% static
'site/img/favicon-16x16.png' %}" sizes="16x16"/>

A favicon is a small image that we usually see in the browser tabs, tiles of
recently visited websites, and shortcuts on the desktop. You can use one
of the online generators to generate different versions of the favicon from
a logo for different use cases, browsers, and platforms. Our favorite
favicon generators are https:/ /favicomatic. com/ and https:/ /
realfavicongenerator. net/.

https://favicomatic.com/
https://favicomatic.com/
https://favicomatic.com/
https://favicomatic.com/
https://favicomatic.com/
https://favicomatic.com/
https://favicomatic.com/
https://favicomatic.com/
https://realfavicongenerator.net/
https://realfavicongenerator.net/
https://realfavicongenerator.net/
https://realfavicongenerator.net/
https://realfavicongenerator.net/
https://realfavicongenerator.net/
https://realfavicongenerator.net/

Templates and JavaScript Chapter 4

[185]

Create the templates misc/includes/header.html3.
and misc/includes/footer.html with your website's header and footer. For
now, you can just create empty files there.

 How it works...
The base template contains the <head> and <body> sections of the HTML document, with
all the details that are reused on each page of the website. Depending on the web design
requirements, you can have additional base templates for different layouts. For example,
we can add the base_simple.html file, which has the same HTML <head> section and a
very minimalistic <body> section, and this can be used for the login screen, password reset,
or other simple pages. You can have separate base templates for other layouts as well, such
as single-column, two-column, and three-column layouts, where each extends base.html
and overwrites the blocks as needed.

Let's look into the details of the base.html template that we defined earlier. Here are the
details for the <head> section:

We define UTF-8 as the default encoding to support multilingual content.
Then, we have the viewport definition that will scale the website in the browser
to use the full width. This is necessary for small-screen devices that will get
specific screen layouts created with the Bootstrap frontend framework.
Of course, there's a customizable website title that is used in the browser tabs and
search results of search engines.
Then we have a block for meta tags, that can be used for search engine
optimization (SEO), Open Graph, and Twitter Cards.
Then we include favicons of different formats and sizes.
We include the default Bootstrap and custom website styles. We load the
Bootstrap CSS, as we want to have responsive layouts, and this will also
normalize the basic styling for all elements for consistency across browsers.
And lastly, we have extensible blocks for meta tags, style sheets, and whatever
else might be necessary for the <head> section.

Here are the details for the <body> section:

Firstly, we include the header of the website. That's where you can put your
logo, website title, and main navigation.
Then, we have the main container containing a content block placeholder, which
is to be filled by extending the templates.

Templates and JavaScript Chapter 4

[186]

Inside the container, there is the content block, which contains the sidebar and
main blocks. In child templates, when we need a layout with a sidebar. We will
overwrite the sidebar and main blocks, but, when we need the full-width
content, we will overwrite the content block.
Then, we include the footer of the website. That's where you can have copyright
information and links to important meta pages, such as privacy policy, terms of
use, contact form, and others.
We then load the jQuery and Bootstrap scripts. Extensible JavaScript blocks are
included here at the end of the <body> following the best practices for page-load
performance, much like those for the style sheets included in the <head>.
Lastly, we have blocks for additional JavaScript and extra HTML, such as HTML
templates for JavaScript or hidden modal dialogs, which we will explore later in
this chapter.

The base template that we created is, by no means, a static unchangeable template. You can
modify the markup structure, or add the elements you need to it—for example, a template
block for body attributes, a snippet for Google Analytics code, common JavaScript files, the
Apple touch icon for iPhone bookmarks, Open Graph meta tags, Twitter Card tags,
schema.org attributes, and so on. You may also want to define other blocks, depending on
the requirements of your project, and maybe even wrap the whole content of the body so
that you can overwrite it in a child template.

See also
The Using Django Sekizai recipe
The Exposing settings in JavaScript recipe

Using Django Sekizai
In Django templates, normally you would use template inheritance to overwrite blocks
from parent templates to include styles or scripts to the HTML document. This means that
every main template of each view should be aware of all content that is inside; however,
sometimes it is much more convenient to let the included templates decide what styles and
scripts to load. It is possible to do this with Django Sekizai, which we will use in this recipe.

Templates and JavaScript Chapter 4

[187]

Getting ready
Before we begin with the recipe, follow these steps to get ready:

Install django-classy-tags and django-sekizai to your virtual1.
environment (and add them to the requirements/_base.txt):

(env)$ pip install -e
git+https://github.com/divio/django-classy-tags.git@4c94d0354eca160
0ad2ead9c3c151ad57af398a4#egg=django-classy-tags
(env)$ pip install django-sekizai==1.0.0

Then add sekizai to the installed apps in the settings:2.

myproject/settings/_base.py
INSTALLED_APPS = [
 # …
 "sekizai",
 # …
]

Next, add the sekizai context processor to the template configuration in the3.
settings:

myproject/settings/_base.py
TEMPLATES = [
 {
 "BACKEND":
 "django.template.backends.django.DjangoTemplates",
 "DIRS": [os.path.join(BASE_DIR, "myproject", "templates")],
 "APP_DIRS": True,
 "OPTIONS": {
 "context_processors": [
 "django.template.context_processors.debug",
 "django.template.context_processors.request",
 "django.contrib.auth.context_processors.auth",
 "django.contrib.messages.context_processors
 .messages",
 "django.template.context_processors.media",
 "django.template.context_processors.static",
 "sekizai.context_processors.sekizai",
]
 },
 }
]

Templates and JavaScript Chapter 4

[188]

How to do it...
Go through the following steps to complete the recipe:

At the beginning of the base.html template, load the sekizai_tags library:1.

{# base.html #}
<!doctype html>
{% load i18n static sekizai_tags %}

In the same file, at the end of the <head> section, add the template tag {%2.
render_block "css" %} as follows:

 {% block css %}{% endblock %}
 {% render_block "css" %}
 {% block extra_head %}{% endblock %}
</head>

Then, at the end of the <body> section, add the template tag {% render_block3.
"js" %} as follows:

 {% block js %}{% endblock %}
 {% render_block "js" %}
 {% block extra_body %}{% endblock %}
</body>

Now, in any included template, when you want to add some styling or4.
JavaScript, use the {% addtoblock %} template tags as follows:

{% load static sekizai_tags %}

<div>Sample widget</div>

{% addtoblock "css" %}
<link rel="stylesheet" href="{% static 'site/css/sample-widget.css'
 %}"/>
{% endaddtoblock %}

{% addtoblock "js" %}
<script src="{% static 'site/js/sample-widget.js' %}"></script>
{% endaddtoblock %}

Templates and JavaScript Chapter 4

[189]

How it works...
Django Sekizai works with the templates included by the {% include %} template tag,
custom template tags that are rendered with templates, or templates for form widgets.
The {% addtoblock %} template tags define the Sekizai block that we want to add
HTML content to.

When you add something to a Sekizai block, django-sekizai takes care of including it
there only once. This means that you can have multiple included widgets of the same type,
but their CSS and JavaScript will only be loaded and executed once.

See also
The Implementing the Like widget recipe
The Uploading images via Ajax recipe

Exposing settings in JavaScript
Django projects have their configuration set in the settings files, such as
myproject/settings/dev.py for the development environment; we described this in
the Configuring settings for development, testing, staging, and production environments recipe
in Chapter 1, Getting Started with Django 3.0. Some of these configuration values may also
be useful for functionality in the browser, and so they will also need to be set in JavaScript.
We want a single location to define our project settings, so, in this recipe, we will see how
we can pass some configuration values from the Django server to the browser.

Getting ready
Make sure that you have the request context processor included in the
TEMPLATES['OPTIONS']['context_processors'] setting, as follows:

myproject/settings/_base.py
TEMPLATES = [
 {
 "BACKEND": "django.template.backends.django.DjangoTemplates",
 "DIRS": [os.path.join(BASE_DIR, "myproject", "templates")],
 "APP_DIRS": True,
 "OPTIONS": {
 "context_processors": [

Templates and JavaScript Chapter 4

[190]

 "django.template.context_processors.debug",
 "django.template.context_processors.request",
 "django.contrib.auth.context_processors.auth",
 "django.contrib.messages.context_processors.messages",
 "django.template.context_processors.media",
 "django.template.context_processors.static",
 "sekizai.context_processors.sekizai",
]
 },
 }
]

You should also create the core app, if you haven't done so already, and place it under
INSTALLED_APPS in the settings:

INSTALLED_APPS = [
 # …
 "myproject.apps.core",
 # …
]

How to do it...
Follow these steps to create and include the JavaScript settings:

In the views.py of your core app, create a js_settings() view that returns a1.
response of the JavaScript content type, as shown in the following code:

myproject/apps/core/views.py
import json
from django.http import HttpResponse
from django.template import Template, Context
from django.views.decorators.cache import cache_page
from django.conf import settings

JS_SETTINGS_TEMPLATE = """
window.settings = JSON.parse('{{ json_data|escapejs }}');
"""

@cache_page(60 * 15)
def js_settings(request):
 data = {
 "MEDIA_URL": settings.MEDIA_URL,
 "STATIC_URL": settings.STATIC_URL,
 "DEBUG": settings.DEBUG,
 "LANGUAGES": settings.LANGUAGES,

Templates and JavaScript Chapter 4

[191]

 "DEFAULT_LANGUAGE_CODE": settings.LANGUAGE_CODE,
 "CURRENT_LANGUAGE_CODE": request.LANGUAGE_CODE,
 }
 json_data = json.dumps(data)
 template = Template(JS_SETTINGS_TEMPLATE)
 context = Context({"json_data": json_data})
 response = HttpResponse(
 content=template.render(context),
 content_type="application/javascript; charset=UTF-8",
)
 return response

Plug in this view into the URL configuration:2.

myproject/urls.py
from django.conf.urls.i18n import i18n_patterns
from django.urls import include, path
from django.conf import settings
from django.conf.urls.static import static

from myproject.apps.core import views as core_views

urlpatterns = i18n_patterns(
 # other URL configuration rules…
 path("js-settings/", core_views.js_settings,
 name="js_settings"),
)

urlpatterns += static(settings.STATIC_URL,
document_root=settings.STATIC_ROOT)
urlpatterns += static("/media/", document_root=settings.MEDIA_ROOT)

Load the JavaScript-based view in the frontend by adding it at the end of the3.
base.html template:

{# base.html #}

 {# … #}

 <script src="{% url 'js_settings' %}"></script>
 {% block js %}{% endblock %}
 {% render_block "js" %}
 {% block extra_body %}{% endblock %}
</body>
</html>

Templates and JavaScript Chapter 4

[192]

Now we can access the specified settings in any JavaScript file as follows:4.

if (window.settings.DEBUG) {
 console.warn('The website is running in DEBUG mode!');
}

How it works...
In the js_settings view, we built a dictionary of settings that we want to pass to the
browser, converted the dictionary to JSON, and rendered a template for a JavaScript file
that parses the JSON and assigns the result to the window.settings variable. By
converting a dictionary to a JSON string and parsing it in the JavaScript file, we can be sure
that we won't have any problems with trailing commas after the last element—that's
allowed in Python, but invalid in JavaScript.

The rendered JavaScript file will look like this:

http://127.0.0.1:8000/en/js-settings/
window.settings = JSON.parse('{\u0022MEDIA_URL\u0022:
\u0022http://127.0.0.1:8000/media/\u0022, \u0022STATIC_URL\u0022:
\u0022/static/20191001004640/\u0022, \u0022DEBUG\u0022: true,
\u0022LANGUAGES\u0022: [[\u0022bg\u0022, \u0022Bulgarian\u0022],
[\u0022hr\u0022, \u0022Croatian\u0022], [\u0022cs\u0022,
\u0022Czech\u0022], [\u0022da\u0022, \u0022Danish\u0022], [\u0022nl\u0022,
\u0022Dutch\u0022], [\u0022en\u0022, \u0022English\u0022], [\u0022et\u0022,
\u0022Estonian\u0022], [\u0022fi\u0022, \u0022Finnish\u0022],
[\u0022fr\u0022, \u0022French\u0022], [\u0022de\u0022, \u0022German\u0022],
[\u0022el\u0022, \u0022Greek\u0022], [\u0022hu\u0022,
\u0022Hungarian\u0022], [\u0022ga\u0022, \u0022Irish\u0022],
[\u0022it\u0022, \u0022Italian\u0022], [\u0022lv\u0022,
\u0022Latvian\u0022], [\u0022lt\u0022, \u0022Lithuanian\u0022],
[\u0022mt\u0022, \u0022Maltese\u0022], [\u0022pl\u0022,
\u0022Polish\u0022], [\u0022pt\u0022, \u0022Portuguese\u0022],
[\u0022ro\u0022, \u0022Romanian\u0022], [\u0022sk\u0022,
\u0022Slovak\u0022], [\u0022sl\u0022, \u0022Slovene\u0022],
[\u0022es\u0022, \u0022Spanish\u0022], [\u0022sv\u0022,
\u0022Swedish\u0022]], \u0022DEFAULT_LANGUAGE_CODE\u0022: \u0022en\u0022,
\u0022CURRENT_LANGUAGE_CODE\u0022: \u0022en\u0022}');

Templates and JavaScript Chapter 4

[193]

See also
The Configuring settings for development, testing, staging, and production
environments recipe in Chapter 1, Getting Started with Django 3.0
The Arranging the base.html template recipe
The Using HTML5 data attributes recipe

Using HTML5 data attributes
HTML5 introduces data-* attributes for passing data about a specific HTML element from
the webserver to JavaScript and CSS. In this recipe, we will see a way to attach data
efficiently from Django to custom HTML5 data attributes and then describe how to read the
data from JavaScript with a practical example: we will render a Google Map with a marker
at a specified geographical position; when we click on the marker, we will display the
address in an information window.

Getting ready
To get ready, follow these steps:

Use a PostgreSQL database with a PostGIS extension for this and the following1.
chapters. To see how to install the PostGIS extension, look at the official
documentation at https:/ / docs.djangoproject. com/ en/ 2.2/ref/ contrib/ gis/
install/ postgis/ .
Make sure that you use the postgis database backend for the Django project:2.

myproject/settings/_base.py
DATABASES = {
 "default": {
 "ENGINE": "django.contrib.gis.db.backends.postgis",
 "NAME": get_secret("DATABASE_NAME"),
 "USER": get_secret("DATABASE_USER"),
 "PASSWORD": get_secret("DATABASE_PASSWORD"),
 "HOST": "localhost",
 "PORT": "5432",
 }
}

https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/
https://docs.djangoproject.com/en/2.2/ref/contrib/gis/install/postgis/

Templates and JavaScript Chapter 4

[194]

Create a locations app with a Location model. It will contain a UUID3.
primary key, character fields for the name, street address, city, country, and
postal code, a PostGIS-related Geoposition field, and the Description text
field:

myproject/apps/locations/models.py
import uuid
from collections import namedtuple
from django.contrib.gis.db import models
from django.urls import reverse
from django.conf import settings
from django.utils.translation import gettext_lazy as _
from myproject.apps.core.models import (
 CreationModificationDateBase, UrlBase
)

COUNTRY_CHOICES = getattr(settings, "COUNTRY_CHOICES", [])

Geoposition = namedtuple("Geoposition", ["longitude", "latitude"])

class Location(CreationModificationDateBase, UrlBase):
 uuid = models.UUIDField(primary_key=True, default=None,
 editable=False)
 name = models.CharField(_("Name"), max_length=200)
 description = models.TextField(_("Description"))
 street_address = models.CharField(_("Street address"),
 max_length=255, blank=True)
 street_address2 = models.CharField(
 _("Street address (2nd line)"), max_length=255, blank=True
)
 postal_code = models.CharField(_("Postal code"),
 max_length=255, blank=True)
 city = models.CharField(_("City"), max_length=255,
 blank=True)
 country = models.CharField(
 _("Country"), choices=COUNTRY_CHOICES, max_length=255,
 blank=True
)
 geoposition = models.PointField(blank=True, null=True)

 class Meta:
 verbose_name = _("Location")
 verbose_name_plural = _("Locations")

 def __str__(self):
 return self.name

Templates and JavaScript Chapter 4

[195]

 def get_url_path(self):
 return reverse("locations:location_detail", kwargs={"pk":
 self.pk})

Overwrite the save() method to generate a unique UUID field value when4.
creating a location:

 def save(self, *args, **kwargs):
 if self.pk is None:
 self.pk = uuid.uuid4()
 super().save(*args, **kwargs)

Create methods to get the full address of the location in one string:5.

 def get_field_value(self, field_name):
 if isinstance(field_name, str):
 value = getattr(self, field_name)
 if callable(value):
 value = value()
 return value
 elif isinstance(field_name, (list, tuple)):
 field_names = field_name
 values = []
 for field_name in field_names:
 value = self.get_field_value(field_name)
 if value:
 values.append(value)
 return " ".join(values)
 return ""

 def get_full_address(self):
 field_names = [
 "name",
 "street_address",
 "street_address",
 ("postal_code", "city"),
 "get_country_display",
]
 full_address = []
 for field_name in field_names:
 value = self.get_field_value(field_name)
 if value:
 full_address.append(value)
 return ", ".join(full_address)

Templates and JavaScript Chapter 4

[196]

Create functions to get or set the geoposition by latitude and longitude—in6.
the database, geoposition is saved as a Point field. We can use these functions
in the Django shell, forms, management commands, data migrations, and
elsewhere:

 def get_geoposition(self):
 if not self.geoposition:
 return None
 return Geoposition(
 self.geoposition.coords[0], self.geoposition.coords[1]
)

 def set_geoposition(self, longitude, latitude):
 from django.contrib.gis.geos import Point
 self.geoposition = Point(longitude, latitude, srid=4326)

Remember to make and run migrations for the app after updating the model.7.
Create a model administration to add and change locations. Instead of the8.
standard ModelAdmin, we will be using OSMGeoAdmin from the gis app. It will
render a map to set geoposition using OpenStreetMap, which can be found at
https:// www. openstreetmap. org:

myproject/apps/locations/admin.py
from django.contrib.gis import admin
from .models import Location

@admin.register(Location)
class LocationAdmin(admin.OSMGeoAdmin):
 pass

Add some locations in the administration for further usage.9.

We will use and evolve this locations app in further recipes too.

How to do it...
Go through the following steps:

Register for the Google Maps API key. You can learn how and where to do this at1.
the Google developers' documentation at https:/ / developers. google. com/
maps/documentation/ javascript/ get- api- key.

https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.openstreetmap.org
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key

Templates and JavaScript Chapter 4

[197]

Add the Google Maps API key to the secrets and then read it out in the settings:2.

myproject/settings/_base.py
…
GOOGLE_MAPS_API_KEY = get_secret("GOOGLE_MAPS_API_KEY")

At the core app, create a context processor to expose GOOGLE_MAPS_API_KEY to3.
the templates:

myproject/apps/core/context_processors.py
from django.conf import settings

def google_maps(request):
 return {
 "GOOGLE_MAPS_API_KEY": settings.GOOGLE_MAPS_API_KEY,
 }

Refer to this context processor in the template settings:4.

myproject/settings/_base.py
TEMPLATES = [
 {
 "BACKEND":
 "django.template.backends.django.DjangoTemplates",
 "DIRS": [os.path.join(BASE_DIR, "myproject", "templates")],
 "APP_DIRS": True,
 "OPTIONS": {
 "context_processors": [
 "django.template.context_processors.debug",
 "django.template.context_processors.request",
 "django.contrib.auth.context_processors.auth",
 "django.contrib.messages.context_processors
 .messages",
 "django.template.context_processors.media",
 "django.template.context_processors.static",
 "sekizai.context_processors.sekizai",
 "myproject.apps.core.context_processors
 .google_maps",
]
 },
 }
]

Create the list and detail views for the locations:5.

myproject/apps/locations/views.py
from django.views.generic import ListView, DetailView
from .models import Location

Templates and JavaScript Chapter 4

[198]

class LocationList(ListView):
 model = Location
 paginate_by = 10

class LocationDetail(DetailView):
 model = Location
 context_object_name = "location"

Create the URL configuration for the locations app:6.

myproject/apps/locations/urls.py
from django.urls import path
from .views import LocationList, LocationDetail

urlpatterns = [
 path("", LocationList.as_view(), name="location_list"),
 path("<uuid:pk>/", LocationDetail.as_view(),
 name="location_detail"),
]

Include the URLs of the locations in the project's URL configuration:7.

myproject/urls.py
from django.contrib import admin
from django.conf.urls.i18n import i18n_patterns
from django.urls import include, path
from django.conf import settings
from django.conf.urls.static import static
from django.shortcuts import redirect

from myproject.apps.core import views as core_views

urlpatterns = i18n_patterns(
 path("", lambda request: redirect("locations:location_list")),
 path("admin/", admin.site.urls),
 path("accounts/", include("django.contrib.auth.urls")),
 path("locations/", include(("myproject.apps.locations.urls",
 "locations"), namespace="locations")),
 path("js-settings/", core_views.js_settings,
 name="js_settings"),
)
urlpatterns += static(settings.STATIC_URL,
document_root=settings.STATIC_ROOT)
urlpatterns += static("/media/", document_root=settings.MEDIA_ROOT)

Templates and JavaScript Chapter 4

[199]

It is time to create the template for the location list and location detail views. The8.
location list will be as simple as possible for now; we only need it to be able to
browse the locations and get to the location detail views.

{# locations/location_list.html #}
{% extends "base.html" %}
{% load i18n %}

{% block content %}
 <h1>{% trans "Interesting Locations" %}</h1>
 {% if object_list %}

 {% for location in object_list %}

 {{ location.name }}

 {% endfor %}

 {% else %}
 <p>{% trans "There are no locations yet." %}</p>
 {% endif %}
{% endblock %}

Next, let's create a template for the location details by extending the base.html9.
and overwriting the content block:

{# locations/location_detail.html #}
{% extends "base.html" %}
{% load i18n static %}

{% block content %}
 {% trans
 "Interesting Locations" %}
 <h1 class="map-title">{{ location.name }}</h1>
 <div class="my-3">
 {{ location.description|linebreaks|urlize }}
 </div>
 {% with geoposition=location.get_geoposition %}
 <div id="map" class="mb-3"
 data-latitude="{{ geoposition.latitude|stringformat:"f" }}"
 data-longitude="{{ geoposition.longitude|stringformat:"f" }}"
 data-address="{{ location.get_full_address }}"></div>
 {% endwith %}
{% endblock %}

Templates and JavaScript Chapter 4

[200]

Also in the same template, overwrite the js block:10.

{% block js %}
 <script src="{% static 'site/js/location_detail.js' %}"></script>
 <script async defer src="https://maps-api-
 ssl.google.com/maps/api/js?key={{ GOOGLE_MAPS_API_KEY
}}&callback=Location.init"></script>
{% endblock %}

As well as the templates, we need the JavaScript file that will read out the11.
HTML5 data attributes and use them to render a map with a marker on it:

/* site_static/site/js/location_detail.js */
(function(window) {
 "use strict";

 function Location() {
 this.case = document.getElementById("map");
 if (this.case) {
 this.getCoordinates();
 this.getAddress();
 this.getMap();
 this.getMarker();
 this.getInfoWindow();
 }
 }

 Location.prototype.getCoordinates = function() {
 this.coords = {
 lat: parseFloat(this.case.getAttribute("data-
 latitude")),
 lng: parseFloat(this.case.getAttribute("data-
 longitude"))
 };
 };

 Location.prototype.getAddress = function() {
 this.address = this.case.getAttribute("data-address");
 };

 Location.prototype.getMap = function() {
 this.map = new google.maps.Map(this.case, {
 zoom: 15,
 center: this.coords
 });
 };

 Location.prototype.getMarker = function() {

Templates and JavaScript Chapter 4

[201]

 this.marker = new google.maps.Marker({
 position: this.coords,
 map: this.map
 });
 };

 Location.prototype.getInfoWindow = function() {
 var self = this;
 var wrap = this.case.parentNode;
 var title = wrap.querySelector(".map-title").textContent;

 this.infoWindow = new google.maps.InfoWindow({
 content: "<h3>"+title+"</h3><p>"+this.address+"</p>"
 });

 this.marker.addListener("click", function() {
 self.infoWindow.open(self.map, self.marker);
 });
 };

 var instance;
 Location.init = function() {
 // called by Google Maps service automatically once loaded
 // but is designed so that Location is a singleton
 if (!instance) {
 instance = new Location();
 }
 };

 // expose in the global namespace
 window.Location = Location;
}(window));

For the map to be displayed nicely, we need to set some CSS, as shown in the12.
following code:

/* site_static/site/css/style.css */
#map {
 box-sizing: padding-box;
 height: 0;
 padding-bottom: calc(9 / 16 * 100%); /* 16:9 aspect ratio */
 width: 100%;
}
@media screen and (max-width: 480px) {
 #map {
 display: none; /* hide on mobile devices (esp. portrait) */
 }
}

Templates and JavaScript Chapter 4

[202]

How it works...
If you run a local development server and browse to the detail view for a location, you will
navigate to a page with a map and a marker. When you click on the marker, a popup will
open with address information. This will look as follows:

Templates and JavaScript Chapter 4

[203]

Since scrolling in maps on mobile devices can be problematic because of scroll-within-scroll
issues, we have opted to hide the map on small screens (less than or equal to 480 px width)
so that when we resize the screen down, the map eventually becomes invisible, as in the
following:

Let's take a look at the code. In the first few steps, we added the Google Maps API key and
exposed it to all the templates. Then we created views to browse locations and plugged
them into the URL configuration. Then we created the list and detail templates.

The template_name default for a DetailView comes from the lowercase
version of the model's name, plus detail; hence; our template was
named location_detail.html. If we wanted to use a different
template, we could specify a template_name property for the view. In
the same way, the template_name default for a ListView comes from
the lowercase version of the model's name, plus list, so it is
named location_list.html.

Templates and JavaScript Chapter 4

[204]

In the detail template, we had the location title and description followed by a <div>
element with the id="map", as well as the data-latitude, data-longitude, and data-
address custom attributes. These made up the content block elements. Two <script>
tags were added to the js block that came at the end of the <body>—one being the
location_detail.js described next and the other being the Google Maps API script, to
which we have passed our Maps API key and the name of the callback to invoke when the
API loads.

In the JavaScript file, we created a Location class using a prototype function. This function
has a static init() method, which was given as the callback to the Google Maps API.
When init() is called, the constructor is invoked to create a new singleton Location
instance. In the constructor function, a series of steps are taken to set up the map and its
features:

First, the map case (container) is found by its ID. Only if that element is found,1.
do we continue.
Next, we find the geographic coordinates using the data-latitude and data-2.
longitude attributes, storing them in a dictionary as the location's coords. This
object is in the form understood by the Google Maps API and will be used later.
The data-address is read next and stored directly as the address property of3.
the location.
From here, we start building things out, beginning with the map. To ensure that4.
the location will be visible, we set the center using the coords pulled from data
attributes earlier.
A marker makes the location obvious on the map, positioned using the same5.
coords.
Finally, we build up an information window, which is a type of pop-up bubble6.
that can be displayed directly on the map using the API. In addition to the
address that we retrieved earlier, we look for the location title based on the
.map-title class that it was given in the template. This is added as an <h1>
heading to the window, followed by the address as a <p> paragraph. To allow
the window to be displayed, we add a click event listener to the marker that will
open the window.

Templates and JavaScript Chapter 4

[205]

See also
The Exposing settings in JavaScript recipe
The Arranging the base.html template recipe
The Providing responsive images recipe
The Opening object details in a modal dialog recipe
The Inserting a map into a change form recipe in Chapter 6, Model Administration

Providing responsive images
As responsive websites became the norm, many performance issues have arisen when it
comes to providing identical content to both mobile devices and desktop computers. One
very easy way to reduce the load time of a responsive site on small devices is to provide
smaller images. This is where the srcset and sizes attributes, key components of
responsive images, come into play.

Getting ready
Let's start with the locations app that was used in the previous recipe.

How to do it...
Go through the following steps to add the responsive images:

First of all, let's install django-imagekit into your virtual environment and add1.
it to the requirements/_base.txt. We'll be using it to resize original images to
specific sizes:

(env)$ pip install django-imagekit==4.0.2

Put the "imagekit" into the INSTALLED_APPS in the settings:2.

myproject/settings/_base.py
INSTALLED_APPS = [
 # …
 "imagekit",
 # …
]

Templates and JavaScript Chapter 4

[206]

In the beginning of the models.py file, let's import some libraries that are used3.
for image versions and define a function responsible for the directory and the
filenames of picture files:

myproject/apps/locations/models.py
import contextlib
import os
…
from imagekit.models import ImageSpecField
from pilkit.processors import ResizeToFill
…

def upload_to(instance, filename):
 now = timezone_now()
 base, extension = os.path.splitext(filename)
 extension = extension.lower()
 return f"locations/{now:%Y/%m}/{instance.pk}{extension}"

Now let's add a picture field to the Location model in the same file together4.
with image version definitions:

class Location(CreationModificationDateBase, UrlBase):
 # …
 picture = models.ImageField(_("Picture"), upload_to=upload_to)
 picture_desktop = ImageSpecField(
 source="picture",
 processors=[ResizeToFill(1200, 600)],
 format="JPEG",
 options={"quality": 100},
)
 picture_tablet = ImageSpecField(
 source="picture", processors=[ResizeToFill(768, 384)],
 format="PNG"
)
 picture_mobile = ImageSpecField(
 source="picture", processors=[ResizeToFill(640, 320)],
 format="PNG"
)

Then, overwrite the delete() method for the Location model to delete the5.
generated versions when the model instance is deleted:

def delete(self, *args, **kwargs):
 from django.core.files.storage import default_storage

 if self.picture:
 with contextlib.suppress(FileNotFoundError):

Templates and JavaScript Chapter 4

[207]

 default_storage.delete(self.picture_desktop.path)
 default_storage.delete(self.picture_tablet.path)
 default_storage.delete(self.picture_mobile.path)
 self.picture.delete()

 super().delete(*args, **kwargs)

Make and run migrations to add the new picture field to the database schema.6.
Update the location detail template to include the image:7.

{# locations/location_detail.html #}
{% extends "base.html" %}
{% load i18n static %}

{% block content %}
 {% trans
 "Interesting Locations" %}
 <h1 class="map-title">{{ location.name }}</h1>
 {% if location.picture %}
 <picture class="img-fluid">
 <source
 media="(max-width: 480px)"
 srcset="{{ location.picture_mobile.url }}" />
 <source
 media="(max-width: 768px)"
 srcset="{{ location.picture_tablet.url }}" />
 <img
 src="{{ location.picture_desktop.url }}"
 alt="{{ location.name }}"
 class="img-fluid"
 />
 </picture>
 {% endif %}
 {# … #}
{% endblock %}

{% block js %}
 {# … #}
{% endblock %}

Finally, add some images for locations in the administration.8.

Templates and JavaScript Chapter 4

[208]

How it works...
Responsive images are powerful and, at their base, are concerned with providing different
images based on media rules that indicate the features of the displays upon which each
image will be shown. The first thing we did here was to add the django-imagekit app,
which makes it possible to generate the different images that are needed on the fly.

Obviously, we also will need the original image source, so in our Location model, we
added an image field called picture. In the upload_to() function, we built the upload
path and filename out of the current year and month, the UUID of the location, and the
same file extension as the uploaded file. We also defined the image version specifications
there as follows:

picture_desktop will have the dimensions of 1,200 x 600 and will be used for
the desktop layout
picture_tablet will have the dimensions of 768 x 384 and will be used for
tablet
picture_mobile will have the dimensions of 640 x 320 and will be used for
smartphones

In the delete() method of the location, we check whether the picture field has any value
and then try to delete it and its image versions before deleting the location itself. We use
the contextlib.suppress(FileNotFoundError) to silently ignore any errors if a file
was not found on the disk.

The most interesting work happens in the template. When a location picture exists, we
construct our <picture> element. On the surface, this is basically a container. In fact, it
could have nothing inside of it besides the default tag that appears at the end in our
template, though that would not be very useful. In addition to the default image, we
generate thumbnails for other widths—480 px and 768 px—and these are then used to build
additional <source> elements. Each <source> element has the media rule with the
conditions under which to select an image from the srcset attribute value. In our case, we
only provide one image for each <source>. The location detail page will now include the
image above the map and should look something like this:

Templates and JavaScript Chapter 4

[209]

When the browser loads this markup, it follows a series of steps to determine which image
to load:

The media rules for each <source> are inspected in turn, checking to see
whether any one of them matches the current viewport
When a rule matches, the srcset is read and the appropriate image URL is
loaded and displayed
If no rules match, then the src of the final, default image is loaded

Templates and JavaScript Chapter 4

[210]

As a result, smaller images will be loaded on smaller viewports. For example, here we
can see that the smallest image was loaded for a viewport only 375 px wide:

For browsers that cannot understand the <picture> and <source> tags at all, the default
image can still be loaded, as it is nothing more than a normal tag.

Templates and JavaScript Chapter 4

[211]

There's more...
You can use responsive images not only to provide targeted image sizes, but also to
differentiate pixel density, and to provide images that are curated explicitly for the design
at any given viewport size. This is known as art direction. If you are interested in learning
more, the Mozilla Developer Network (MDN) has a thorough article on the topic,
available at https:/ / developer. mozilla. org/en- US/docs/ Learn/ HTML/ Multimedia_ and_
embedding/Responsive_ images.

See also
The Arranging the base.html template recipe
The Using HTML5 data attributes recipe
The Opening object details in a modal dialog recipe
The Inserting a map into a change form recipe in Chapter 6, Model Administration

Implementing a continuous scrolling
Social websites often have a feature called continuous scrolling, which is also known as
infinite scrolling, as an alternative to pagination. Rather than having links to see additional
sets of items separately, there are long lists of items, and, as you scroll down the page, new
items are loaded and attached to the bottom automatically. In this recipe, we will see how
to achieve such an effect with Django and the jScroll jQuery plugin.

You can download the jScroll script and also find extensive
documentation about the plugin from https:/ /jscroll. com/ .

Getting ready
We'll be reusing the locations app that we created in the previous recipes.

https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://jscroll.com/
https://jscroll.com/
https://jscroll.com/
https://jscroll.com/
https://jscroll.com/
https://jscroll.com/
https://jscroll.com/
https://jscroll.com/

Templates and JavaScript Chapter 4

[212]

To have some more interesting data to show in the list view, let's add the ratings field to
the Location model as follows:

myproject/apps/locations/models.py
…
RATING_CHOICES = ((1, "★☆☆☆☆"), (2, "★★☆☆☆"), (3, "★★★☆☆"), (4,
"★★★★☆"), (5, "★★★★★"))

class Location(CreationModificationDateBase, UrlBase):
 # …
 rating = models.PositiveIntegerField(
 _("Rating"), choices=RATING_CHOICES, blank=True, null=True
)

 # …
 def get_rating_percentage(self):
 return self.rating * 20 if self.rating is not None else None

The get_rating_percentage() method will be necessary to return the rating as a
percentage for the representation.

Don't forget to make and run migrations and then add some ratings for locations in the
administration.

How to do it...
Go through the following steps to create a continuously scrolling page:

First, add enough locations in the administration. As you can see from the Using1.
HTML5 data attributes recipe, we will be paginating the LocationList view by
10 items per page, so we will need at least 11 locations to see whether the
continuous scroll works as expected.
Modify the template for the location list view as follows:2.

{# locations/location_list.html #}
{% extends "base.html" %}
{% load i18n static utility_tags %}

{% block content %}
 <div class="row">
 <div class="col-lg-8">
 <h1>{% trans "Interesting Locations" %}</h1>
 {% if object_list %}
 <div class="item-list">
 {% for location in object_list %}

Templates and JavaScript Chapter 4

[213]

 <a href="{{ location.get_url_path }}"
 class="item d-block my-3">
 <div class="card">
 <div class="card-body">
 <div class="float-right">
 <div class="rating" aria-
 label="{% blocktrans with
 stars=location.rating %}
 {{ stars }} of 5 stars
 {% endblocktrans %}">
 <span style="width:{{
 location.get_rating
 _percentage }}%">
 </div>
 </div>
 <p class="card-text">{{
 location.name }}

 <small>{{ location.city }},
 {{location.get_country
 _display }}</small>
 </p>
 </div>
 </div>

 {% endfor %}
 {% if page_obj.has_next %}
 <div class="text-center">
 <div class="loading-indicator"></div>
 </div>
 <p class="pagination">
 <a class="next-page"
 href="{% modify_query
 page=page_obj.next_page_number %}">
 {% trans "More..." %}
 </p>
 {% endif %}
 </div>
 {% else %}
 <p>{% trans "There are no locations yet." %}</p>
 {% endif %}
 </div>
 <div class="col-lg-4">
 {% include "locations/includes/navigation.html" %}
 </div>
 </div>
{% endblock %}

Templates and JavaScript Chapter 4

[214]

In the same template, overwrite the css and js blocks with the following3.
markup:

{% block css %}
 <link rel="stylesheet" type="text/css"
 href="{% static 'site/css/rating.css' %}">
{% endblock %}

{% block js %}
 <script src="https://cdnjs.cloudflare.com/ajax
 /libs/jscroll/2.3.9/jquery.jscroll.min.js"></script>
 <script src="{% static 'site/js/list.js' %}"></script>
{% endblock %}

As a final step with this template, overwrite the extra_body block with the4.
JavaScript template for the loading indicator:

{% block extra_body %}
 <script type="text/template" class="loader">
 <div class="text-center">
 <div class="loading-indicator"></div>
 </div>
 </script>
{% endblock %}

Create the page's navigation at locations/includes/navigation.html. For5.
now, you can just create an empty file there.
The next step is to add JavaScript with the initialization of the continuous scroll6.
widget:

/* site_static/site/js/list.js */
jQuery(function ($) {
 var $list = $('.item-list');
 var $loader = $('script[type="text/template"].loader');
 $list.jscroll({
 loadingHtml: $loader.html(),
 padding: 100,
 pagingSelector: '.pagination',
 nextSelector: 'a.next-page:last',
 contentSelector: '.item,.pagination'
 });
});

Templates and JavaScript Chapter 4

[215]

Finally, we'll add some CSS so that ratings can be displayed using user-friendly7.
stars instead of just numbers:

/* site_static/site/css/rating.css */
.rating {
 color: #c90;
 display: block;
 position: relative;
 margin: 0;
 padding: 0;
 white-space: nowrap;
}

.rating span {
 color: #fc0;
 display: block;
 position: absolute;
 overflow: hidden;
 top: 0;
 left: 0;
 bottom: 0;
 white-space: nowrap;
}

.rating span:before,

.rating span:after {
 display: block;
 position: absolute;
 overflow: hidden;
 left: 0;
 top: 0;
 bottom: 0;
}

.rating:before {
 content: "☆☆☆☆☆";
}

.rating span:after {
 content: "★★★★★";
}

Templates and JavaScript Chapter 4

[216]

In the main file for the main website style, add a style for the loading indicator:8.

/* site_static/site/css/style.css */
/* … */
.loading-indicator {
 display: inline-block;
 width: 45px;
 height: 45px;
}
.loading-indicator:after {
 content: "";
 display: block;
 width: 40px;
 height: 40px;
 border-radius: 50%;
 border: 5px solid rgba(0,0,0,.25);
 border-color: rgba(0,0,0,.25) transparent rgba(0,0,0,.25)
 transparent;
 animation: dual-ring 1.2s linear infinite;
}
@keyframes dual-ring {
 0% {
 transform: rotate(0deg);
 }
 100% {
 transform: rotate(360deg);
 }
}

How it works...
When you open the location list view in a browser, the predefined number of items set to
paginate_by in the view (that is, 10) is shown on the page. As you scroll down, an
additional page's worth of items and the next pagination link are loaded automatically and
appended to the item container. The pagination link uses the {% modify_query %}
custom template tag from the Creating a template tag to modify request query parameters recipe
in Chapter 5, Custom Template Filters and Tags to generate an adjusted URL based on the
current one, but pointing to the correct next page number. If you have a slower connection
speed, then when you scroll to the bottom of the page, you will see a page like the
following until the items of the next page are loaded and attached to the list:

Templates and JavaScript Chapter 4

[217]

Scrolling down further, the second, third, and later pages of the items are loaded and
attached at the bottom. This continues until there are no more pages left to load, which is
signified by the lack of any further loaded pagination links in the final group.

Templates and JavaScript Chapter 4

[218]

We use the Cloudflare CDN URL to load the jScroll plugin here, but, if you opt to
download a copy locally as a static file, then use a {% static %} lookup to add the script
to the template.

Upon the initial page load, the element with the item-list CSS class, which contains the
items and pagination links, will become a jScroll object through the code in the list.js. In
fact, this implementation is generic enough that it could be used to enable continuous
scrolling for any list display following a similar markup structure.

The following options are given to define its features:

loadingHtml: This sets the markup that jScroll will inject at the end of the list
while loading a new page of items. In our case, it is an animated loading
indicator, and it is drawn from the HTML contained in a <script
type="text/template" /> tag directly in the markup. By giving this type
attribute, the browser will not try to execute it as it would a normal JavaScript,
and the content inside remains invisible to the user.
padding: When the scroll position of the page is within this distance of the end
of the scrolling area, a new page should be loaded. Here, we've set it at 100
pixels.
pagingSelector: A CSS selector that indicates which HTML elements in
the object_list are pagination links. These will be hidden in browsers where
the jScroll plugin activates so that the continuous scroll can take over the loading
of additional pages, but users in other browsers will still be able to navigate by
clicking on the pagination normally.
nextSelector: This CSS selector finds the HTML element(s) from which to read
the URL of the next page.
contentSelector: Another CSS selector. This specifies which HTML elements
should be extracted from the Ajax-loaded content and added to the container.

The rating.css inserts Unicode star characters and overlaps the outlines with filled-in
versions to create the rating effect. Using a width equivalent to the rating value's
percentage of the maximum (5, in this case), the filled-in stars cover the right amount of
space on top of the hollow ones, allowing for decimal ratings. In the markup, there is
an aria-label attribute with the rating information for people using screen readers.

Finally, the CSS in the style.css file uses CSS animations to create a rotating loading
indicator.

Templates and JavaScript Chapter 4

[219]

There's more...
We have a placeholder for navigation in the sidebar. Note that, with continuous scrolling,
all the secondary navigation that you have after the list of items, should be positioned in
the sidebar, rather than in the footer, because the visitor might never reach the end of the
page.

See also
The Filtering object lists recipe in Chapter 3, Forms and Views
The Managing paginated lists recipe in Chapter 3, Forms and Views
The Composing class-based views recipe in Chapter 3, Forms and Views
The Exposing settings in JavaScript recipe
The Creating a template tag to modify request query parameters recipe in Chapter 5,
Customizing Template Filters and Tags

Opening object details in a modal dialog
In this recipe, we will create a list of links to the locations, which, when clicked, open a
Bootstrap modal dialog with some information about the location and
the Learn more… link, leading to the location detail page:

Templates and JavaScript Chapter 4

[220]

The content for the dialog will be loaded by Ajax. For visitors without JavaScript, the detail
page will open immediately, without this intermediate step.

Getting ready
Let's start with the locations app that we created in the previous recipes.

Make sure that you have views, URL configuration, and templates for location listings and
location details, just like we defined previously.

How to do it...
Execute these steps one by one to add the modal dialog as an intermediate step between the
list view and the detail view:

First, in the URL configuration of the locations app, add a rule for the response1.
of the modal dialog:

myproject/apps/locations/urls.py
from django.urls import path
from .views import LocationList, LocationDetail

urlpatterns = [
 path("", LocationList.as_view(), name="location_list"),
 path("add/", add_or_change_location, name="add_location"),
 path("<uuid:pk>/", LocationDetail.as_view(),
 name="location_detail"),
 path(
 "<uuid:pk>/modal/",
 LocationDetail.as_view(template_name=
 "locations/location_detail_modal.html"),
 name="location_detail_modal",
),
]

Create a template for the modal dialog:2.

{# locations/location_detail_modal.html #}
{% load i18n %}
<p class="text-center">
 {% if location.picture %}
 <picture class="img-fluid">
 <source media="(max-width: 480px)"
 srcset="{{ location.picture_mobile.url }}"/>

Templates and JavaScript Chapter 4

[221]

 <source media="(max-width: 768px)"
 srcset="{{ location.picture_tablet.url }}"/>
 <img src="{{ location.picture_desktop.url }}"
 alt="{{ location.name }}"
 class="img-fluid"
 />
 </picture>
 {% endif %}
</p>
<div class="modal-footer text-right">
 <a href="{% url "locations:location_detail" pk=location.pk %}"
 class="btn btn-primary pull-right">
 {% trans "Learn more…" %}

</div>

In the template for the location list, update the links to the location details by3.
adding custom data attributes:

{# locations/location_list.html #}
{# … #}
<a href="{{ location.get_url_path }}"
 data-modal-title="{{ location.get_full_address }}"
 data-modal-url="{% url 'locations:location_detail_modal'
 pk=location.pk %}"
 class="item d-block my-3">
 {# … #}

{# … #}

In the same file, overwrite the extra_body content with the markup for the4.
modal dialog:

{% block extra_body %}
 {# … #}
 <div id="modal" class="modal fade" tabindex="-1" role="dialog"
 aria-hidden="true" aria-labelledby="modal_title">
 <div class="modal-dialog modal-dialog-centered"
 role="document">
 <div class="modal-content">
 <div class="modal-header">
 <h4 id="modal_title"
 class="modal-title"></h4>
 <button type="button" class="close"
 data-dismiss="modal"
 aria-label="{% trans 'Close' %}">
 ×
 </button>

Templates and JavaScript Chapter 4

[222]

 </div>
 <div class="modal-body"></div>
 </div>
 </div>
 </div>
{% endblock %}

Finally, modify the list.js file by adding a script to handle the opening and5.
closing of the modal dialog:

/* site_static/js/list.js */
/* … */
jQuery(function ($) {
 var $list = $('.item-list');
 var $modal = $('#modal');
 $modal.on('click', '.close', function (event) {
 $modal.modal('hide');
 // do something when dialog is closed…
 });
 $list.on('click', 'a.item', function (event) {
 var $link = $(this);
 var url = $link.data('modal-url');
 var title = $link.data('modal-title');
 if (url && title) {
 event.preventDefault();
 $('.modal-title', $modal).text(title);
 $('.modal-body', $modal).load(url, function () {
 $modal.on('shown.bs.modal', function () {
 // do something when dialog is shown…
 }).modal('show');
 });
 }
 });
});

How it works...
If we go to the location's list view in a browser and click on one of the locations, we will see
a modal dialog similar to the following:

Templates and JavaScript Chapter 4

[223]

Let's examine how this all came together. The URL path
named location_detail_modal points to the same location detail view, but uses a
different template. The mentioned template just has a responsive image and a modal dialog
footer with the link Learn more… leading to the normal detail page of the location. In the
list view, we changed the link of a list item to include data-modal-title and data-
modal-url attributes that will later be referred to by JavaScript. The first attribute
stipulates that the full address should be used as the title. The second attribute stipulates
the location from which the HTML for the body of the modal dialog should be taken. At the
end of the list view, we have the markup for the Bootstrap 4 modal dialog. The dialog
contains a header with the Close button and title, plus a content area for the main details.
JavaScript should have been added via the js block.

In the JavaScript file, we used the jQuery framework to take advantage of shorter syntax
and unified cross-browser functionality. When the page is loaded, we assign an event
handler on('click') for the .item-list element. When any a.item is clicked, that
event is delegated to this handler, which reads and stores the custom data attributes as the
url and title. When these are extracted successfully, we prevent the original click action
(navigation to the full detail page) and then set up the modal for display. We set the new
title for the hidden dialog box and load the modal dialog's content to the .modal-body
element over Ajax. Finally, the modal is shown to the visitor using the Bootstrap 4 modal()
jQuery plugin.

Templates and JavaScript Chapter 4

[224]

If the JavaScript file were unable to process the URL of the modal dialog from the custom
attribute, or, even worse, if the JavaScript in list.js failed to load or execute entirely,
clicking on the location link would take the user to the detail page as usual. We have
implemented our modal as a progressive enhancement so that the user experience is right,
even in the face of failure.

See also
The Using HTML5 data attributes recipe
The Providing responsive images recipe
The Implementing a continuous scroll recipe
The Implementing the Like widget recipe

Implementing the Like widget
Websites in general, and most commonly those with a social component, often have
integrated Facebook, Twitter, and Google+ widgets to like and share content. In this recipe,
we will guide you through the building of a similar Django functionality that will save
information in your database whenever a user likes something. You will be able to create
specific views based on the things that people liked on your website. We will similarly
create a Like widget with a two-state button and badge showing the number of total likes.

The following screenshot shows the inactive state, where you can click on a button to
activate it:

The following screenshot shows the active state, where you can click on a button to
deactivate it:

Changes in the state of the widget will be handled by Ajax calls.

Templates and JavaScript Chapter 4

[225]

Getting ready
First, create a likes app and add it to your INSTALLED_APPS. Then, set up a Like model,
which has a foreign-key relation to the user who is liking something and a generic
relationship to any object in the database. We will use object_relation_base_factory,
which we defined in the Creating a model mixin to handle generic relations recipe in Chapter 2,
Models and Database Structure. If you don't want to use the mixin, you can also define a
generic relation in the following model yourself:

myproject/apps/likes/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.conf import settings

from myproject.apps.core.models import (
 CreationModificationDateBase,
 object_relation_base_factory,
)

LikeableObject = object_relation_base_factory(is_required=True)

class Like(CreationModificationDateBase, LikeableObject):
 class Meta:
 verbose_name = _("Like")
 verbose_name_plural = _("Likes")
 ordering = ("-created",)

 user = models.ForeignKey(settings.AUTH_USER_MODEL,
 on_delete=models.CASCADE)

 def __str__(self):
 return _("{user} likes {obj}").format(user=self.user,
 obj=self.content_object)

Also make sure that the request context processor is set in the settings. We also
need authentication middleware in the settings for the currently logged-in user to be
attached to the request:

myproject/settings/_base.py
…
MIDDLEWARE = [
 # …
 "django.contrib.auth.middleware.AuthenticationMiddleware",
 # …
]

Templates and JavaScript Chapter 4

[226]

TEMPLATES = [
 {
 # …
 "OPTIONS": {
 "context_processors": [
 "django.template.context_processors.request",
 # …
]
 },
 }
]

Remember to create and run a migration to set up the database accordingly for the new
Like model.

How to do it...
Execute the following steps one by one:

In the likes app, create a templatetags directory with an empty1.
__init__.py file to make it a Python module. Then, add the likes_tags.py
file, where we'll define the {% like_widget %} template tag as follows:

myproject/apps/likes/templatetags/likes_tags.py
from django import template
from django.contrib.contenttypes.models import ContentType
from django.template.loader import render_to_string

from ..models import Like

register = template.Library()

TAGS

class ObjectLikeWidget(template.Node):
 def __init__(self, var):
 self.var = var

 def render(self, context):
 liked_object = self.var.resolve(context)
 ct = ContentType.objects.get_for_model(liked_object)
 user = context["request"].user

 if not user.is_authenticated:

Templates and JavaScript Chapter 4

[227]

 return ""

 context.push(object=liked_object, content_type_id=ct.pk)
 output = render_to_string("likes/includes/widget.html",
 context.flatten())
 context.pop()
 return output

@register.tag
def like_widget(parser, token):
 try:
 tag_name, for_str, var_name = token.split_contents()
 except ValueError:
 tag_name = "%r" % token.contents.split()[0]
 raise template.TemplateSyntaxError(
 f"{tag_name} tag requires a following syntax: "
 f"{{% {tag_name} for <object> %}}"
)
 var = template.Variable(var_name)
 return ObjectLikeWidget(var)

We'll also add filters in the same file to get the Like status for a user and the total2.
number of Likes for a specified object:

myproject/apps/likes/templatetags/likes_tags.py
…
FILTERS

@register.filter
def liked_by(obj, user):
 ct = ContentType.objects.get_for_model(obj)
 liked = Like.objects.filter(user=user, content_type=ct,
object_id=obj.pk)
 return liked.count() > 0

@register.filter
def liked_count(obj):
 ct = ContentType.objects.get_for_model(obj)
 likes = Like.objects.filter(content_type=ct, object_id=obj.pk)
 return likes.count()

Templates and JavaScript Chapter 4

[228]

In the URL rules, we need a rule for a view that will handle the liking and3.
unliking using Ajax:

myproject/apps/likes/urls.py
from django.urls import path
from .views import json_set_like

urlpatterns = [
 path("<int:content_type_id>/<str:object_id>/",
 json_set_like,
 name="json_set_like")
]

Make sure that you map the URLs to the project as well:4.

myproject/urls.py
from django.conf.urls.i18n import i18n_patterns
from django.urls import include, path

urlpatterns = i18n_patterns(
 # …
 path("likes/", include(("myproject.apps.likes.urls", "likes"),
 namespace="likes")),
)

Then we need to define the view, as shown in the following code:5.

myproject/apps/likes/views.py
from django.contrib.contenttypes.models import ContentType
from django.http import JsonResponse
from django.views.decorators.cache import never_cache
from django.views.decorators.csrf import csrf_exempt

from .models import Like
from .templatetags.likes_tags import liked_count

@never_cache
@csrf_exempt
def json_set_like(request, content_type_id, object_id):
 """
 Sets the object as a favorite for the current user
 """
 result = {
 "success": False,
 }
 if request.user.is_authenticated and request.method == "POST":
 content_type = ContentType.objects.get(id=content_type_id)

Templates and JavaScript Chapter 4

[229]

 obj = content_type.get_object_for_this_type(pk=object_id)

 like, is_created = Like.objects.get_or_create(
 content_type=ContentType.objects.get_for_model(obj),
 object_id=obj.pk,
 user=request.user)
 if not is_created:
 like.delete()

 result = {
 "success": True,
 "action": "add" if is_created else "remove",
 "count": liked_count(obj),
 }

 return JsonResponse(result)

In the template for the list or detail view of any object, we can add the template6.
tag for the widget. Let's add the widget to the location detail that we created in
the previous recipes, as follows:

{# locations/location_detail.html #}
{% extends "base.html" %}
{% load i18n static likes_tags %}

{% block content %}
 {% trans
 "Interesting Locations" %}
 <div class="float-right">
 {% if request.user.is_authenticated %}
 {% like_widget for location %}
 {% endif %}
 </div>
 <h1 class="map-title">{{ location.name }}</h1>
 {# … #}
{% endblock %}

Then, we need a template for the widget, as shown in the following code:7.

{# likes/includes/widget.html #}
{% load i18n static likes_tags sekizai_tags %}
<p class="like-widget">
 <button type="button"
 class="like-button btn btn-primary{% if object|
 liked_by:request.user %} active{% endif %}"
 data-href="{% url "likes:json_set_like"
 content_type_id=content_type_id

Templates and JavaScript Chapter 4

[230]

 object_id=object.pk %}"
 data-remove-label="{% trans "Like" %}"
 data-add-label="{% trans "Unlike" %}">
 {% if object|liked_by:request.user %}
 {% trans "Unlike" %}
 {% else %}
 {% trans "Like" %}
 {% endif %}
 </button>

 {{ object|liked_count }}
</p>
{% addtoblock "js" %}
<script src="{% static 'likes/js/widget.js' %}"></script>
{% endaddtoblock %}

Finally, we create JavaScript to handle the liking and unliking action in the8.
browser, as follows:

/* myproject/apps/likes/static/likes/js/widget.js */
(function($) {
 $(document).on("click", ".like-button", function() {
 var $button = $(this);
 var $widget = $button.closest(".like-widget");
 var $badge = $widget.find(".like-badge");

 $.post($button.data("href"), function(data) {
 if (data.success) {
 var action = data.action; // "add" or "remove"
 var label = $button.data(action + "-label");

 $button[action + "Class"]("active");
 $button.html(label);

 $badge.html(data.count);
 }
 }, "json");
 });
}(jQuery));

Templates and JavaScript Chapter 4

[231]

How it works...
You can now use the {% like_widget for object %} template tag for any object in
your website. It generates a widget that will show the Like state based on whether and how
the current logged-in user has responded to the object.

The Like button has three custom HTML5 data attributes:

data-href supplies a unique, object-specific URL to change the current state of
the widget
data-add-text is the translated text to be displayed when the Like association
has been added (Unlike)
data-remove-text is similarly the translated text for when the Like association
has been removed (Like)

Using django-sekizai, we add the <script src="{% static
'likes/js/widget.js' %}"></script> to the page. Note that, if there were more than
one Like widget on the page, we would just include the JavaScript once. And, if there were
no Like widgets on the page, then the JavaScript wasn't included on the page at all.

In the JavaScript file, Like buttons are recognized by the like-button CSS class. An event
listener, attached to the document, watches for click events from any such button found in
the page, and then posts an Ajax call to the URL specified by the data-href attribute.

The specified view json_set_like accepts two parameters: the content type ID and the
primary key of the liked object. The view checks whether a Like exists for the specified
object, and if it does, the view removes it; otherwise, the Like object is added. As a result,
the view returns a JSON response with the success status, the action that was taken for
the Like object (add or remove), and the total count of Likes for the object across all users.
Depending on the action that is returned, JavaScript will show an appropriate state for the
button.

Templates and JavaScript Chapter 4

[232]

You can debug the Ajax responses in the browser's developer tools, generally in the
Network tab. If any server errors occur while you are developing, and you have DEBUG
turned on in your settings, you will see the error traceback in the preview of the response;
otherwise, you will see the returned JSON, as shown in the following screenshot:

See also
The Using Django Sekizai recipe
The Opening object details in a modal dialog recipe
The Implementing a continuous scroll recipe
The Uploading images by Ajax recipe
The Creating a model mixin to handle generic relations recipe in Chapter 2, Models
and Database Structure
Chapter 5, Customizing Template Filters and Tags

Templates and JavaScript Chapter 4

[233]

Uploading images via Ajax
With the default file input fields, it quickly becomes obvious that there is a lot we could do
to improve the user experience:

First, only the path to the selected file is displayed within the field, whereas
people want to see what they have chosen right after selecting the file.
Second, the file input itself is generally too narrow to show much of the path
selected and reads from the left end. As a result, the filename is rarely visible
within the field.
Finally, if the form has validation errors, nobody wants to select the files again;
the file should still be selected in the form with validation errors.

In this recipe, we will see how the file uploads could be improved.

Getting ready
Let's start with the locations app that we created in the previous recipes.

Our own JavaScript file will rely upon an external library–jQuery File Upload. You can
download and extract the files from https:/ /github. com/ blueimp/ jQuery- File- Upload/
tree/v10.2.0 and place them in site_static/site/vendor/jQuery-File-
Upload-10.2.0. This utility also requires the jquery.ui.widget.js in turn, which is
made available in a vendor/ subdirectory alongside the other files. With that, we're ready
to begin.

How to do it...
Let's define the form for the locations so that it can support Ajax uploads using the
following steps:

Let's create a model form for the locations with the nonrequired picture field, a1.
hidden picture_path field, and latitude and longitude fields for
geoposition:

myproject/apps/locations/forms.py
import os
from django import forms
from django.urls import reverse
from django.utils.translation import ugettext_lazy as _
from django.core.files.storage import default_storage

https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0
https://github.com/blueimp/jQuery-File-Upload/tree/v10.2.0

Templates and JavaScript Chapter 4

[234]

from crispy_forms import bootstrap, helper, layout
from .models import Location

class LocationForm(forms.ModelForm):
 picture = forms.ImageField(
 label=_("Picture"), max_length=255,
 widget=forms.FileInput(), required=False
)
 picture_path = forms.CharField(
 max_length=255, widget=forms.HiddenInput(), required=False
)
 latitude = forms.FloatField(
 label=_("Latitude"),
 help_text=_("Latitude (Lat.) is the angle between any point
 and the equator (north pole is at 90; south pole is at
 -90)."),
 required=False,
)
 longitude = forms.FloatField(
 label=_("Longitude"),
 help_text=_("Longitude (Long.) is the angle east or west
 of an arbitrary point on Earth from Greenwich (UK),
 which is the international zero-longitude point
 (longitude=0 degrees). The anti-meridian of Greenwich is
 both 180 (direction to east) and -180 (direction to
 west)."),
 required=False,
)
 class Meta:
 model = Location
 exclude = ["geoposition", "rating"]

In the __init__() method of this form, we will read out the geoposition from2.
the model instance, and then define the django-crispy-forms layout for the
form:

def __init__(self, request, *args, **kwargs):
 self.request = request
 super().__init__(*args, **kwargs)
 geoposition = self.instance.get_geoposition()
 if geoposition:
 self.fields["latitude"].initial = geoposition.latitude
 self.fields["longitude"].initial = geoposition.longitude

 name_field = layout.Field("name", css_class="input-block-
 level")
 description_field = layout.Field(
 "description", css_class="input-block-level", rows="3"

Templates and JavaScript Chapter 4

[235]

)
 main_fieldset = layout.Fieldset(_("Main data"), name_field,
 description_field)

 picture_field = layout.Field(
 "picture",
 data_url=reverse("upload_file"),
 template="core/includes/file_upload_field.html",
)
 picture_path_field = layout.Field("picture_path")

 picture_fieldset = layout.Fieldset(
 _("Picture"),
 picture_field,
 picture_path_field,
 title=_("Picture upload"),
 css_id="picture_fieldset",
)

 street_address_field = layout.Field(
 "street_address", css_class="input-block-level"
)
 street_address2_field = layout.Field(
 "street_address2", css_class="input-block-level"
)
 postal_code_field = layout.Field("postal_code",
 css_class="input-block-level")
 city_field = layout.Field("city", css_class="input-block-
 level")
 country_field = layout.Field("country", css_class="input-
 block-level")
 latitude_field = layout.Field("latitude", css_class="input-
 block-level")
 longitude_field = layout.Field("longitude", css_class="input-
 block-level")
 address_fieldset = layout.Fieldset(
 _("Address"),
 street_address_field,
 street_address2_field,
 postal_code_field,
 city_field,
 country_field,
 latitude_field,
 longitude_field,
)

 submit_button = layout.Submit("save", _("Save"))
 actions = bootstrap.FormActions(layout.Div(submit_button,

Templates and JavaScript Chapter 4

[236]

 css_class="col"))

 self.helper = helper.FormHelper()
 self.helper.form_action = self.request.path
 self.helper.form_method = "POST"
 self.helper.attrs = {"noValidate": "noValidate"}
 self.helper.layout = layout.Layout(main_fieldset,
 picture_fieldset, address_fieldset, actions)

Then we need to add the validation for the picture and picture_path fields to3.
the same form:

def clean(self):
 cleaned_data = super().clean()
 picture_path = cleaned_data["picture_path"]
 if not self.instance.pk and not self.files.get("picture")
 and not picture_path:
 raise forms.ValidationError(_("Please choose an image."))

Lastly, we add the saving method to this form, which will take care of the saving4.
of the image and geoposition:

def save(self, commit=True):
 instance = super().save(commit=False)
 picture_path = self.cleaned_data["picture_path"]
 if picture_path:
 temporary_image_path = os.path.join("temporary-uploads",
 picture_path)
 file_obj = default_storage.open(temporary_image_path)
 instance.picture.save(picture_path, file_obj, save=False)
 default_storage.delete(temporary_image_path)
 latitude = self.cleaned_data["latitude"]
 longitude = self.cleaned_data["longitude"]
 if latitude is not None and longitude is not None:
 instance.set_geoposition(longitude=longitude,
 latitude=latitude)
 if commit:
 instance.save()
 self.save_m2m()
 return instance

Templates and JavaScript Chapter 4

[237]

In addition to the previously defined views in the locations app, we'll add an5.
add_or_change_location view, as shown in the following code:

myproject/apps/locations/views.py
from django.contrib.auth.decorators import login_required
from django.shortcuts import render, redirect, get_object_or_404

from .forms import LocationForm
from .models import Location

…

@login_required
def add_or_change_location(request, pk=None):
 location = None
 if pk:
 location = get_object_or_404(Location, pk=pk)
 if request.method == "POST":
 form = LocationForm(request, data=request.POST,
 files=request.FILES, instance=location)
 if form.is_valid():
 location = form.save()
 return redirect("locations:location_detail",
 pk=location.pk)
 else:
 form = LocationForm(request, instance=location)

 context = {"location": location, "form": form}
 return render(request, "locations/location_form.html", context)

Let's add this view to the URL configuration:6.

myproject/apps/locations/urls.py
from django.urls import path
from .views import add_or_change_location

urlpatterns = [
 # …
 path("<uuid:pk>/change/", add_or_change_location,
 name="add_or_change_location"),
]

In the views of the core app, we will add a generic upload_file function to7.
upload pictures that can be reused by other apps with a picture field:

myproject/apps/core/views.py
import os
from django.core.files.base import ContentFile

Templates and JavaScript Chapter 4

[238]

from django.core.files.storage import default_storage
from django.http import JsonResponse
from django.core.exceptions import SuspiciousOperation
from django.urls import reverse
from django.views.decorators.csrf import csrf_protect
from django.utils.translation import gettext_lazy as _
from django.conf import settings
…

@csrf_protect
def upload_file(request):
 status_code = 400
 data = {"files": [], "error": _("Bad request")}
 if request.method == "POST" and request.is_ajax() and "picture"
 in request.FILES:
 file_types = [f"image/{x}" for x in ["gif", "jpg", "jpeg",
 "png"]]
 file = request.FILES.get("picture")
 if file.content_type not in file_types:
 status_code = 405
 data["error"] = _("Invalid file format")
 else:
 upload_to = os.path.join("temporary-uploads",
 file.name)
 name = default_storage.save(upload_to,
 ContentFile(file.read()))
 file = default_storage.open(name)
 status_code = 200
 del data["error"]
 absolute_uploads_dir = os.path.join(
 settings.MEDIA_ROOT, "temporary-uploads"
)
 file.filename = os.path.basename(file.name)
 data["files"].append(
 {
 "name": file.filename,
 "size": file.size,
 "deleteType": "DELETE",
 "deleteUrl": (
 reverse("delete_file") +
 f"?filename={file.filename}"
),
 "path": file.name[len(absolute_uploads_dir)
 + 1 :],
 }
)

 return JsonResponse(data, status=status_code)

Templates and JavaScript Chapter 4

[239]

We set the URL rules for the new upload view as follows:8.

myproject/urls.py
from django.urls import path
from myproject.apps.core import views as core_views

…

urlpatterns += [
 path(
 "upload-file/",
 core_views.upload_file,
 name="upload_file",
),
]

Now let's create a template for the location form as follows:9.

{# locations/location_form.html #}
{% extends "base.html" %}
{% load i18n crispy_forms_tags %}

{% block content %}
 <div class="row">
 <div class="col-lg-8">
 {% trans
 "Interesting Locations" %}
 <h1>
 {% if location %}
 {% blocktrans trimmed with name=
 location.name %}
 Change Location "{{ name }}"
 {% endblocktrans %}
 {% else %}
 {% trans "Add Location" %}
 {% endif %}
 </h1>
 {% crispy form %}
 </div>
 </div>
{% endblock %}

Templates and JavaScript Chapter 4

[240]

We need a couple more templates. Create a custom template for the file upload10.
field that will include the necessary CSS and JavaScript:

{# core/includes/file_upload_field.html #}
{% load i18n crispy_forms_field static sekizai_tags %}

{% include "core/includes/picture_preview.html" %}
<{% if tag %}{{ tag }}{% else %}div{% endif %} id="div_{{
field.auto_id }}"
class="form-group{% if 'form-horizontal' in form_class %} row{%
endif %}{% if wrapper_class %} {{ wrapper_class }}{% endif %}{% if
field.css_classes %} {{ field.css_classes }}{% endif %}">
 {% if field.label and form_show_labels %}
 <label for="{{ field.id_for_label }}"
 class="col-form-label {{ label_class }}{% if field
 .field.required %} requiredField{% endif %}">
 {{ field.label|safe }}{% if field.field.required %}*{% endif %}
 </label>
 {% endif %}

 <div class="{{ field_class }}">

 {% trans "Upload File..." %}
 {% crispy_field field %}

 {% include 'bootstrap4/layout/help_text_and_errors.html' %}
 <p class="form-text text-muted">
 {% trans "Available formats are JPG, GIF, and PNG." %}
 {% trans "Minimal size is 800 × 800 px." %}
 </p>
 </div>
</{% if tag %}{{ tag }}{% else %}div{% endif %}>

{% addtoblock "css" %}
<link rel="stylesheet" href="{% static 'site/vendor/jQuery-File-
Upload-10.2.0/css/jquery.fileupload-ui.css' %}"/>
<link rel="stylesheet" href="{% static 'site/vendor/jQuery-File-
Upload-10.2.0/css/jquery.fileupload.css' %}"/>
{% endaddtoblock %}

{% addtoblock "js" %}
<script src="{% static 'site/vendor/jQuery-File-
Upload-10.2.0/js/vendor/jquery.ui.widget.js' %}"></script>
<script src="{% static 'site/vendor/jQuery-File-
Upload-10.2.0/js/jquery.iframe-transport.js' %}"></script>
<script src="{% static 'site/vendor/jQuery-File-
Upload-10.2.0/js/jquery.fileupload.js' %}"></script>

Templates and JavaScript Chapter 4

[241]

<script src="{% static 'site/js/picture_upload.js' %}"></script>
{% endaddtoblock %}

Next, let's create a template for the picture preview:11.

{# core/includes/picture_preview.html #}
<div id="picture_preview">
 {% if form.instance.picture %}
 <img src="{{ form.instance.picture.url }}" alt=""
 class="img-fluid"/>
 {% endif %}
</div>
<div id="progress" class="progress" style="visibility: hidden">
 <div class="progress-bar progress-bar-striped
 progress-bar-animated"
 role="progressbar"
 aria-valuenow="0"
 aria-valuemin="0"
 aria-valuemax="100"
 style="width: 0%"></div>
</div>

Finally, let's add the JavaScript that will handle picture uploads and previews:12.

/* site_static/site/js/picture_upload.js */
$(function() {
 $("#id_picture_path").each(function() {
 $picture_path = $(this);
 if ($picture_path.val()) {
 $("#picture_preview").html(
 '<img src="' +
 window.settings.MEDIA_URL +
 "temporary-uploads/" +
 $picture_path.val() +
 '" alt="" class="img-fluid" />'
);
 }
 });
 $("#id_picture").fileupload({
 dataType: "json",
 add: function(e, data) {
 $("#progress").css("visibility", "visible");
 data.submit();
 },
 progressall: function(e, data) {
 var progress = parseInt((data.loaded / data.total) * 100,
 10);
 $("#progress .progress-bar")

Templates and JavaScript Chapter 4

[242]

 .attr("aria-valuenow", progress)
 .css("width", progress + "%");
 },
 done: function(e, data) {
 $.each(data.result.files, function(index, file) {
 $("#picture_preview").html(
 '<img src="' +
 window.settings.MEDIA_URL +
 "temporary-uploads/" +
 file.name +
 '" alt="" class="img-fluid" />'
);
 $("#id_picture_path").val(file.name);
 });
 $("#progress").css("visibility", "hidden");
 }
 });
});

How it works...
If the JavaScript fails to execute, then the form remains completely usable, but when the
JavaScript runs properly, we get an enhanced form with the file field replaced by a simple
button, as shown here:

When an image is selected by clicking on the Upload File… button, the result in the
browser will look similar to the following screenshot:

Templates and JavaScript Chapter 4

[243]

Clicking on the Upload File… the button triggers a file dialog that asks you to select a file,
and, upon selection, it immediately starts the Ajax upload process. Then we see a preview
of the image that has been attached. The preview picture is uploaded to a temporary
directory and its filename is saved at the picture_path hidden field. When you submit
the form, the form either saves the picture from this temporary location or from the
picture field. The picture field will have a value if the form was submitted without
JavaScript or if it failed to load the JavaScript. If there are any validation errors for the other
fields after the page reload, then the preview image loaded is based on the picture_path.

Let's run through the steps to dig deeper into the process and see how it works.

Templates and JavaScript Chapter 4

[244]

In our model form for the Location model, we made the picture field nonrequired,
although it is required at the model level. In addition, we added the picture_path field
there, and then we expect either of those fields to be submitted to the form. In the crispy-
forms layout, we defined a custom template for the picture
field, file_upload_field.html. There, we set a preview image, upload progress bar,
and custom help text with the allowed file formats and minimal dimensions. In the same
template, we also attached the CSS and JavaScript files from the jQuery File Upload library
and a custom script, picture_upload.js. The CSS files rendered the file upload field as a
nice button. The JavaScript files are responsible for the Ajax-based file upload.

The picture_upload.js sent the selected file to the upload_file view. This view
checked whether the file is of an image type and then tries to save it under the temporary-
uploads/ directory under the project's MEDIA_ROOT. The view returned a JSON with the
details about a successful or unsuccessful file upload.

After a picture has been selected and uploaded and the form submitted, the save()
method of LocationForm will be called. If the picture_path field value exists, a file will
be taken from the temporary directory and copied to the picture field of the Location
model. Then the picture at the temporary directory gets deleted and the Location instance
is saved.

There's more...
We exclude the geoposition field from the model form and instead render the latitude
and longitude fields for the geoposition data. The default geoposition's PointField is
rendered as a Leaflet.js map with no possibilities to customize it. With the two
latitude and longitude fields, we are flexible and can make use of the Google Maps
API, Bing Maps API, or Leaflet.js to show them in a map, enter manually, or geocode
them from the filled-in location address.

For convenience, we use two helper methods, get_geoposition() and
set_geoposition(), which we defined earlier in the Using HTML5 data attributes recipe.

Templates and JavaScript Chapter 4

[245]

See also
The Using HTML5 data attributes recipe
The Uploading images recipe in Chapter 3, Forms and Views
The Opening object details in a modal dialog recipe
The Implementing a continuous scroll recipe
The Implementing the Like widget recipe
The Making forms secure from cross-site request forgery (CSRF) recipe in Chapter 7,
Security and Performance

5
Custom Template Filters and

Tags
In this chapter, we will cover the following recipes:

Following conventions for your own template filters and tags
Creating a template filter to show how many days have passed since a post was
published
Creating a template filter to extract the first media object
Creating a template filter to humanize URLs
Creating a template tag to include a template, if it exists
Creating a template tag to load a QuerySet in a template
Creating a template tag to parse content as a template
Creating template tags to modify request query parameters

Introduction
Django has an extensive template system with features such as template inheritance, filters
to change the representation of values, and tags for presentational logic. Moreover, Django
allows you to add your own template filters and tags to your apps. Custom filters or tags
should be located in a template-tag library file under the templatetags Python package in
your app. Your template-tag library can then be loaded in any template with the {% load
%} template tag. In this chapter, we will create several useful filters and tags that will give
more control to template editors.

Custom Template Filters and Tags Chapter 5

[247]

Technical requirements
For working with the code of this chapter, you will need the latest stable version of Python
3, the MySQL or PostgreSQL database, and a Django project with a virtual environment.

You can find all the code for this chapter at the ch05 directory of the GitHub
repository: https:/ /github. com/ PacktPublishing/ Django- 3-Web- Development- Cookbook-
Fourth-Edition.

Following conventions for your own
template filters and tags
Custom template filters and tags can be confusing and inconsistent if you don't have
guidelines to follow. It is essential to have both handy and flexible template filters and tags
that should serve template editors as much as possible. In this recipe, we will take a look at
some conventions that you should use when enhancing the functionality of the Django
template system:

Don't create or use custom template filters or tags when the logic for the page fits1.
better in the view, context processors, or model methods. When your content is
context-specific, such as a list of objects or an object-detail view, load the object in
the view. If you need to show some content on nearly every page, create a
context processor. Use custom methods of the model instead of template filters
when you need to get some properties of an object that are not related to the
context of the template.
Name the template-tag library with the _tags suffix. When your template-tag2.
library is named differently than your app, you can avoid ambiguous package-
importing problems.
In the newly created library, separate the filters from the tags—for example,3.
using comments, as shown in the following code:

myproject/apps/core/templatetags/utility_tags.py
from django import template  

register = template.Library()

""" TAGS """

Your tags go here…

https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition

Custom Template Filters and Tags Chapter 5

[248]

""" FILTERS """

Your filters go here…

When creating advanced custom template tags, make sure that their syntax is4.
easy to remember by including the following constructs that can follow the
tag name:

for [app_name.model_name]: Include this construct to use a specific
model.
using [template_name]: Include this construct to use a template for the
output of the template tag.
limit [count]: Include this construct to limit the results to a specific
number.
as [context_variable]: Include this construct to store the results in a
context variable that can be reused multiple times.

Try to avoid multiple values that are defined positionally in the template tags,5.
unless they are self-explanatory. Otherwise, this will likely confuse template
developers.
Make as many resolvable arguments as possible. Strings without quotes should6.
be treated as context variables that need to be resolved, or as short words that
remind you of the structure of the template-tag components.

Creating a template filter to show how many
days have passed since a post was
published
When talking about creation or modification dates, it is convenient to read a more human-
readable time difference—for example, the blog entry was posted 3 days ago, the news
article was published today, and the user last logged in yesterday. In this recipe, we will
create a template filter named date_since, which converts dates to humanized time
differences based on days, weeks, months, or years.

Custom Template Filters and Tags Chapter 5

[249]

Getting ready
Create the core app, and put it under INSTALLED_APPS in the settings, if you haven't done
so already. Then, create a templatetags Python package in this app (Python packages are
directories with an empty __init__.py file).

How to do it...
Create a utility_tags.py file with the following content:

myproject/apps/core/templatetags/utility_tags.py
from datetime import datetime
from django import template
from django.utils import timezone
from django.utils.translation import ugettext_lazy as _

register = template.Library()

""" FILTERS """

DAYS_PER_YEAR = 365
DAYS_PER_MONTH = 30
DAYS_PER_WEEK = 7

@register.filter(is_safe=True)
def date_since(specific_date):
 """
 Returns a human-friendly difference between today and past_date
 (adapted from https://www.djangosnippets.org/snippets/116/)
 """
 today = timezone.now().date()
 if isinstance(specific_date, datetime):
 specific_date = specific_date.date()
 diff = today - specific_date
 diff_years = int(diff.days / DAYS_PER_YEAR)
 diff_months = int(diff.days / DAYS_PER_MONTH)
 diff_weeks = int(diff.days / DAYS_PER_WEEK)
 diff_map = [
 ("year", "years", diff_years,),
 ("month", "months", diff_months,),
 ("week", "weeks", diff_weeks,),
 ("day", "days", diff.days,),
]

Custom Template Filters and Tags Chapter 5

[250]

 for parts in diff_map:
 (interval, intervals, count,) = parts
 if count > 1:
 return _(f"{count} {intervals} ago")
 elif count == 1:
 return _("yesterday") \
 if interval == "day" \
 else _(f"last {interval}")
 if diff.days == 0:
 return _("today")
 else:
 # Date is in the future; return formatted date.
 return f"{specific_date:%B %d, %Y}"

How it works...
This filter used in a template, as shown in the following code, will render something similar
to yesterday, last week, or 5 months ago:

{% load utility_tags %}
{{ object.published|date_since }}

You can apply this filter to values of the date and datetime types.

Each template-tag library has a register of template.Library type where filters and tags
are collected. Django filters are functions registered by the @register.filter decorator.
In this case, we pass the is_safe=True parameter to indicate that our filter will not
introduce any unsafe HTML markup.

By default, the filter in the template system will be named the same as the function or
another callable object. If you want, you can set a different name for the filter by passing the
name to the decorator, as follows:

@register.filter(name="humanized_date_since", is_safe=True)
def date_since(value):
 # …

The filter itself is fairly self-explanatory. At first, the current date is read. If the given value
of the filter is of the datetime type, its date is extracted. Then, the difference between
today and the extracted value is calculated based on the DAYS_PER_YEAR,
DAYS_PER_MONTH, DAYS_PER_WEEK, or days intervals. Depending on the count, different
string results are returned, falling back to displaying a formatted date if the value is in the
future.

Custom Template Filters and Tags Chapter 5

[251]

There's more...
If required, we could cover other stretches of time too, as in 20 minutes ago, 5 hours ago, or
even 1 decade ago. To do so, we would add more intervals to the existing diff_map set,
and to show the difference in time, we would need to operate on datetime values instead
of date values.

See also
The Creating a template filter to extract the first media object recipe
The Creating a template filter to humanize URLs recipe

Creating a template filter to extract the first
media object
Imagine that you are developing a blog overview page, and, for each post, you want to
show images, music, or videos on that page, taken from the content. In such a case, you
need to extract the <figure>, , <object>, <embed>, <video>, <audio>, and
<iframe> tags from the HTML content of the post, as stored on a field of the post model. In
this recipe, we will see how to perform this using regular expressions in the first_media
filter.

Getting ready
We will start with the core app that should be set in INSTALLED_APPS in the settings and
should contain the templatetags package in this app.

How to do it...
In the utility_tags.py file, add the following content:

myproject/apps/core/templatetags/utility_tags.py
import re
from django import template
from django.utils.safestring import mark_safe

Custom Template Filters and Tags Chapter 5

[252]

register = template.Library()

""" FILTERS """

MEDIA_CLOSED_TAGS = "|".join([
 "figure", "object", "video", "audio", "iframe"])
MEDIA_SINGLE_TAGS = "|".join(["img", "embed"])
MEDIA_TAGS_REGEX = re.compile(
 r"<(?P<tag>" + MEDIA_CLOSED_TAGS + ")[\S\s]+?</(?P=tag)>|" +
 r"<(" + MEDIA_SINGLE_TAGS + ")[^>]+>",
 re.MULTILINE)

@register.filter
def first_media(content):
 """
 Returns the chunk of media-related markup from the html content
 """
 tag_match = MEDIA_TAGS_REGEX.search(content)
 media_tag = ""
 if tag_match:
 media_tag = tag_match.group()
 return mark_safe(media_tag)

How it works...
If the HTML content in the database is valid, and you put the following code in the
template, it will retrieve the media tags from the content field of the object; otherwise, an
empty string will be returned if no media is found:

{% load utility_tags %}
{{ object.content|first_media }}

Regular expressions are a powerful feature to search or replace patterns of text. At first, we
define lists of all the supported media tag names, splitting them into groups for those that
have both opening and closing tags (MEDIA_CLOSED_TAGS), and those that are self-closed
(MEDIA_SINGLE_TAGS). From these lists, we generate the compiled regular expression as
MEDIA_TAGS_REGEX. In this case, we search for all the possible media tags, allowing them
to occur across multiple lines.

Custom Template Filters and Tags Chapter 5

[253]

Let's see how this regular expression works, as follows:

Alternating patterns are separated by the pipe (|) symbol.
There are two groups within the patterns—first of all, those with both opening
and closing normal tags (<figure>, <object>, <video>, <audio>, <iframe>,
and <picture>), and then one final pattern for what are called self-closing
or void tags (and <embed>).
For the possibly multiline normal tags, we will use the [\S\s]+? pattern that
matches any symbol at least once; however, we do this as few times as possible
until we find the string that goes after it.
Therefore, <figure[\S\s]+?</figure> searches for the start of the <figure>
tag and everything after it, until it finds the closing </figure> tag.
Similarly, with the [^>]+ pattern for self-closing tags, we search for any symbol
except the right-angle bracket (possibly better known as a greater-than
symbol—that is to say, >) at least once and as many times as possible, until we
encounter such a bracket indicating the closure of the tag.

The re.MULTILINE flag ensures that matches can be found, even if they span multiple lines
in the content. Then, in the filter, we perform a search using this regular-expression pattern.
By default, in Django, the result of any filter will show the <, >, and & symbols escaped as
the <, >, and & entities, respectively. In this case, however, we use the
mark_safe() function to indicate that the result is safe and HTML-ready, so that any
content will be rendered without escaping. Because the originating content is user input,
we do this instead of passing is_safe=True when registering the filter, as we need to
explicitly certify that the markup is safe.

There's more...
If you are interested in regular expressions, you can learn more about them in the official
Python documentation at https:/ / docs. python. org/ 3/library/ re. html.

See also
The Creating a template filter to show how many days have passed since a post was
published recipe
The Creating a template filter to humanize URLs recipe

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

Custom Template Filters and Tags Chapter 5

[254]

Creating a template filter to humanize URLs
Web users commonly recognize URLs without the protocol (http://) or trailing slash (/),
and, similarly, they will enter URLs in this fashion in address fields. In this recipe, we will
create a humanize_url filter that is used to present URLs to the user in a shorter format,
truncating very long addresses, similar to what Twitter does with the links in tweets.

Getting ready
Similar to the previous recipes, we will start with the core app that should be set in
INSTALLED_APPS in the settings, which contains the templatetags package in the app.

How to do it...
In the FILTERS section of the utility_tags.py template library in the core app, let's add
the humanize_url filter and register it, as shown in the following code:

myproject/apps/core/templatetags/utility_tags.py
import re
from django import template

register = template.Library()

""" FILTERS """

@register.filter
def humanize_url(url, letter_count=40):
 """
 Returns a shortened human-readable URL
 """
 letter_count = int(letter_count)
 re_start = re.compile(r"^https?://")
 re_end = re.compile(r"/$")
 url = re_end.sub("", re_start.sub("", url))
 if len(url) > letter_count:
 url = f"{url[:letter_count - 1]}…"
 return url

Custom Template Filters and Tags Chapter 5

[255]

How it works...
We can use the humanize_url filter in any template, as follows:

{% load utility_tags %}

 {{ object.website|humanize_url }}

 {{ object.website|humanize_url:30 }}

The filter uses regular expressions to remove the leading protocol and trailing slash,
shortens the URL to the given amount of letters (40, by default), and adds an ellipsis to the
end after truncating it if the full URL doesn't fit the specified letter count. For example, for
the https://docs.djangoproject.com/en/3.0/howto/custom-template-
tags/ URL, the 40-character humanized version would be
docs.djangoproject.com/en/3.0/howto/cus….

See also
The Creating a template filter to show how many days have passed since a post was
published recipe
The Creating a template filter to extract the first media object recipe
The Creating a template tag to include a template, if it exists recipe

Creating a template tag to include a
template, if it exists
Django provides the {% include %} template tag that allows one template to render and
include another template. However, this template tag raises an error if you try to include a
template that doesn't exist in the filesystem. In this recipe, we will create a {%
try_to_include %} template tag that includes another template, if it exists, and fails
silently by rendering as an empty string otherwise.

Custom Template Filters and Tags Chapter 5

[256]

Getting ready
We will start again with the core app that is installed and ready for custom template tags.

How to do it...
Perform the following steps to create the {% try_to_include %} template tag:

First, let's create the function parsing the template-tag arguments, as follows:1.

myproject/apps/core/templatetags/utility_tags.py
from django import template
from django.template.loader import get_template

register = template.Library()

""" TAGS """

@register.tag
def try_to_include(parser, token):
 """
 Usage: {% try_to_include "some_template.html" %}

 This will fail silently if the template doesn't exist.
 If it does exist, it will be rendered with the current context.
 """
 try:
 tag_name, template_name = token.split_contents()
 except ValueError:
 tag_name = token.contents.split()[0]
 raise template.TemplateSyntaxError(
 f"{tag_name} tag requires a single argument")
 return IncludeNode(template_name)

Then, we need a custom IncludeNode class in the same file, extending from the2.
base template.Node. Let's insert it just before the try_to_include() function,
as follows:

class IncludeNode(template.Node):
 def __init__(self, template_name):
 self.template_name = template.Variable(template_name)

 def render(self, context):
 try:
 # Loading the template and rendering it

Custom Template Filters and Tags Chapter 5

[257]

 included_template = self.template_name.resolve(context)
 if isinstance(included_template, str):
 included_template = get_template(included_template)
 rendered_template = included_template.render(
 context.flatten()
)
 except (template.TemplateDoesNotExist,
 template.VariableDoesNotExist,
 AttributeError):
 rendered_template = ""
 return rendered_template

@register.tag
def try_to_include(parser, token):
 # …

How it works...
Advanced custom template tags consist of two things:

A function that parses the arguments of the template tag
The Node class that is responsible for the logic of the template tag as well as the
output

The {% try_to_include %} template tag expects one argument— that is,
template_name. Therefore, in the try_to_include() function, we try to assign the split
contents of the token only to the tag_name variable (which is try_to_include) and the
template_name variable. If this doesn't work, a TemplateSyntaxError is raised. The
function returns the IncludeNode object, which gets the template_name field and stores
it in a template Variable object for later use.

In the render() method of IncludeNode, we resolve the template_name variable. If a
context variable was passed to the template tag, its value will be used here for
template_name. If a quoted string was passed to the template tag, then the content within
the quotes will be used for included_template, whereas a string corresponding to a
context variable will be resolved into its string equivalent for the same.

Custom Template Filters and Tags Chapter 5

[258]

Lastly, we will try to load the template, using the resolved included_template string,
and render it with the current template context. If that doesn't work, an empty string is
returned.

There are at least two situations where we could use this template tag:

When including a template whose path is defined in a model, as follows:

{% load utility_tags %}
{% try_to_include object.template_path %}

When including a template whose path is defined with the {% with %} template
tag somewhere high in the template context variable's scope. This is especially
useful when you need to create custom layouts for plugins in the placeholder of a
template in Django CMS:

{# templates/cms/start_page.html #}
{% load cms_tags %}
{% with editorial_content_template_path=
"cms/plugins/editorial_content/start_page.html" %}
 {% placeholder "main_content" %}
{% endwith %}

Later, the placeholder can be filled with the editorial_content plugins, and
the editorial_content_template_path context variable is then read and the template
can be safely included, if available:

{# templates/cms/plugins/editorial_content.html #}
{% load utility_tags %}
{% if editorial_content_template_path %}
 {% try_to_include editorial_content_template_path %}
{% else %}
 <div>
 <!-- Some default presentation of
 editorial content plugin -->
 </div>
{% endif %}

Custom Template Filters and Tags Chapter 5

[259]

There's more...
You can use the {% try_to_include %} tag in any combination with the default {%
include %} tag to include the templates that extend other templates. This is beneficial for
large-scale web platforms, where you have different kinds of lists in which complex items
share the same structure as widgets but have a different source of data.

For example, in the artist list template, you can include the artist_item template, as
follows:

{% load utility_tags %}
{% for object in object_list %}
 {% try_to_include "artists/includes/artist_item.html" %}
{% endfor %}

This template will extend from the item base, as follows:

{# templates/artists/includes/artist_item.html #}
{% extends "utils/includes/item_base.html" %}
{% block item_title %}
 {{ object.first_name }} {{ object.last_name }}
{% endblock %}

The item base defines the markup for any item and also includes a Like widget, as follows:

{# templates/utils/includes/item_base.html #}
{% load likes_tags %}
<h3>{% block item_title %}{% endblock %}</h3>
{% if request.user.is_authenticated %}
 {% like_widget for object %}
{% endif %}

See also
The Implementing the Like widget recipe in Chapter 4, Templates and JavaScript
The Creating a template tag to load a QuerySet in a template recipe
The Creating a template tag to parse content as a template recipe
The Creating template tags to modify request query parameters recipe

Custom Template Filters and Tags Chapter 5

[260]

Creating a template tag to load a QuerySet
in a template
Generally, the content that should be shown on a web page will be defined in the context
by views. If the content is to be shown on every page, it is logical to create a context
processor to make it available globally. Another situation is when you need to show
additional content, such as the latest news or a random quote, on some pages—for example,
the starting page or the details page of an object. In this case, you can load the necessary
content with a custom {% load_objects %} template tag, which we will implement in
this recipe.

Getting ready
Once again, we will start with the core app, which should be installed and ready for
custom template tags.

In addition, to illustrate the concept, let's create a news app with an Article model, as
follows:

myproject/apps/news/models.py
from django.db import models
from django.urls import reverse
from django.utils.translation import ugettext_lazy as _

from myproject.apps.core.models import CreationModificationDateBase,
UrlBase

class ArticleManager(models.Manager):
 def random_published(self):
 return self.filter(
 publishing_status=self.model.PUBLISHING_STATUS_PUBLISHED,
).order_by("?")

class Article(CreationModificationDateBase, UrlBase):
 PUBLISHING_STATUS_DRAFT, PUBLISHING_STATUS_PUBLISHED = "d", "p"
 PUBLISHING_STATUS_CHOICES = (
 (PUBLISHING_STATUS_DRAFT, _("Draft")),
 (PUBLISHING_STATUS_PUBLISHED, _("Published")),
)
 title = models.CharField(_("Title"), max_length=200)
 slug = models.SlugField(_("Slug"), max_length=200)

Custom Template Filters and Tags Chapter 5

[261]

 content = models.TextField(_("Content"))
 publishing_status = models.CharField(
 _("Publishing status"),
 max_length=1,
 choices=PUBLISHING_STATUS_CHOICES,
 default=PUBLISHING_STATUS_DRAFT,
)

 custom_manager = ArticleManager()

 class Meta:
 verbose_name = _("Article")
 verbose_name_plural = _("Articles")

 def __str__(self):
 return self.title

 def get_url_path(self):
 return reverse("news:article_detail", kwargs={"slug": self.slug})

There, the interesting part is the custom_manager for the Article model. The manager
can be used to list out random published articles.

Using the examples of the previous chapter, you can complete the app with URL
configurations, views, templates, and administration setup. Then, add some articles to the
database using the administration form.

How to do it...
An advanced custom template tag consists of a function that parses the arguments that are
passed to the tag, and the Node class that renders the output of the tag or modifies the
template context. Perform the following steps to create the {% load_objects %} template
tag:

First, let's create the function that handles the parsing of the template-tag1.
arguments, as follows:

myproject/apps/core/templatetags/utility_tags.py
from django import template
from django.apps import apps

register = template.Library()

""" TAGS """

Custom Template Filters and Tags Chapter 5

[262]

@register.tag
def load_objects(parser, token):
 """
 Gets a queryset of objects of the model specified by app and
 model names

 Usage:
 {% load_objects [<manager>.]<method>
 from <app_name>.<model_name>
 [limit <amount>]
 as <var_name> %}

 Examples:
 {% load_objects latest_published from people.Person
 limit 3 as people %}
 {% load_objects site_objects.all from news.Article
 as articles %}
 {% load_objects site_objects.all from news.Article
 limit 3 as articles %}
 """
 limit_count = None
 try:
 (tag_name, manager_method,
 str_from, app_model,
 str_limit, limit_count,
 str_as, var_name) = token.split_contents()
 except ValueError:
 try:
 (tag_name, manager_method,
 str_from, app_model,
 str_as, var_name) = token.split_contents()
 except ValueError:
 tag_name = token.contents.split()[0]
 raise template.TemplateSyntaxError(
 f"{tag_name} tag requires the following syntax: "
 f"{{% {tag_name} [<manager>.]<method> from "
 "<app_name>.<model_name> [limit <amount>] "
 "as <var_name> %}")
 try:
 app_name, model_name = app_model.split(".")
 except ValueError:
 raise template.TemplateSyntaxError(
 "load_objects tag requires application name "
 "and model name, separated by a dot")
 model = apps.get_model(app_name, model_name)
 return ObjectsNode(
 model, manager_method, limit_count, var_name
)

Custom Template Filters and Tags Chapter 5

[263]

Then, we will create the custom ObjectsNode class in the same file, extending2.
from the template.Node base. Let's insert it just before the load_objects()
function, as shown in the following code:

class ObjectsNode(template.Node):
 def __init__(self, model, manager_method, limit, var_name):
 self.model = model
 self.manager_method = manager_method
 self.limit = template.Variable(limit) if limit else None
 self.var_name = var_name

 def render(self, context):
 if "." in self.manager_method:
 manager, method = self.manager_method.split(".")
 else:
 manager = "_default_manager"
 method = self.manager_method

 model_manager = getattr(self.model, manager)
 fallback_method = self.model._default_manager.none
 qs = getattr(model_manager, method, fallback_method)()
 limit = None
 if self.limit:
 try:
 limit = self.limit.resolve(context)
 except template.VariableDoesNotExist:
 limit = None
 context[self.var_name] = qs[:limit] if limit else qs
 return ""

@register.tag
def load_objects(parser, token):
 # …

How it works...
The {% load_objects %} template tag loads a QuerySet defined by the method of the
manager from a specified app and model, limits the result to the specified count, and saves
the result to the given context variable.

Custom Template Filters and Tags Chapter 5

[264]

The following code is a simple example of how to use the template tag that we have just
created. It will load all news articles in any template, using the following snippet:

{% load utility_tags %}
{% load_objects all from news.Article as all_articles %}

 {% for article in all_articles %}

 {{ article.title }}
 {% endfor %}

This is using the all() method of the default objects manager of the Article model,
and it will sort the articles by the ordering attribute defined in the Meta class of the
model.

Next is an example that uses a custom manager with a custom method to query the objects
from the database. A manager is an interface that provides the database query operations to
models.

Each model has at least one manager called objects, by default. For our Article model,
we added an extra manager called custom_manager with a
method, random_published(). Here is how we can use it with our {% load_objects
%} template tag to load one random published article:

{% load utility_tags %}
{% load_objects custom_manager.random_published from news.Article limit 1
as random_published_articles %}

 {% for article in random_published_articles %}

 {{ article.title }}
 {% endfor %}

Let's look at the code of the {% load_objects %} template tag. In the parsing function,
there are two allowed forms for the tag—with or without a limit. The string is parsed, and
if the format is recognized, the components of the template tag are passed to
the ObjectsNode class.

Custom Template Filters and Tags Chapter 5

[265]

In the render() method of the Node class, we check the manager's name and its method's
name. If no manager is specified, _default_manager will be used. This is an automatic
property of any model injected by Django and points to the first available
models.Manager() instance. In most cases, _default_manager will be the objects
manager. After that, we will call the method of the manager and fall back to an empty
QuerySet if the method doesn't exist. If a limit is defined, we resolve the value of it and
limit the QuerySet accordingly. Lastly, we will store the resulting QuerySet in the context
variable, as given by var_name.

See also
The Creating a model mixin with URL-related methods recipe in Chapter 2, Models
and Database Structure
The Creating a model mixin to handle creation and modification dates recipe in
Chapter 2, Models and Database Structure
The Creating a template tag to include a template, if it exists recipe
The Creating a template tag to parse content as a template recipe
The Creating template tags to modify request query parameters recipe

Creating a template tag to parse content as
a template
In this recipe, we will create the {% parse %} template tag that will allow you to put
template snippets in the database. This is valuable when you want to provide different
content for authenticated and unauthenticated users, when you want to include a
personalized salutation, or when you don't want to hardcode the media paths in the
database.

Getting ready
As usual, we will start with the core app that should be installed and ready for custom
template tags.

Custom Template Filters and Tags Chapter 5

[266]

How to do it...
An advanced custom template tag consists of a function that parses the arguments that are
passed to the tag, and a Node class that renders the output of the tag or modifies the
template context. Perform the following steps to create the {% parse %} template tag:

First, let's create the function parsing the arguments of the template tag, as1.
follows:

myproject/apps/core/templatetags/utility_tags.py
from django import template

register = template.Library()

""" TAGS """

@register.tag
def parse(parser, token):
 """
 Parses a value as a template and prints or saves to a variable

 Usage:
 {% parse <template_value> [as <variable>] %}

 Examples:
 {% parse object.description %}
 {% parse header as header %}
 {% parse "{{ MEDIA_URL }}js/" as js_url %}
 """
 bits = token.split_contents()
 tag_name = bits.pop(0)
 try:
 template_value = bits.pop(0)
 var_name = None
 if len(bits) >= 2:
 str_as, var_name = bits[:2]
 except ValueError:
 raise template.TemplateSyntaxError(
 f"{tag_name} tag requires the following syntax: "
 f"{{% {tag_name} <template_value> [as <variable>] %}}")
 return ParseNode(template_value, var_name)

Custom Template Filters and Tags Chapter 5

[267]

Then, we will create the custom ParseNode class in the same file, extending from2.
the base template.Node, as shown in the following code (place it just before the
parse() function):

class ParseNode(template.Node):
 def __init__(self, template_value, var_name):
 self.template_value = template.Variable(template_value)
 self.var_name = var_name

 def render(self, context):
 template_value = self.template_value.resolve(context)
 t = template.Template(template_value)
 context_vars = {}
 for d in list(context):
 for var, val in d.items():
 context_vars[var] = val
 req_context = template.RequestContext(
 context["request"], context_vars
)
 result = t.render(req_context)
 if self.var_name:
 context[self.var_name] = result
 result = ""
 return result

@register.tag
def parse(parser, token):
 # …

How it works...
The {% parse %} template tag allows you to parse a value as a template and render it
immediately or store it in a context variable.

If we have an object with a description field, which can contain template variables or logic,
we can parse and render it using the following code:

{% load utility_tags %}
{% parse object.description %}

Custom Template Filters and Tags Chapter 5

[268]

It is also possible to define a value to parse using a quoted string, as shown in the following
code:

{% load static utility_tags %}
{% get_static_prefix as STATIC_URL %}
{% parse "{{ STATIC_URL }}site/img/" as image_directory %}

Let's take a look at the code of the {% parse %} template tag. The parsing function checks
the arguments of the template tag bit by bit. At first, we expect the parse name and the
template value. If there are still more bits in the token, we expect the combination of an
optional as word followed by the context variable name. The template value and the
optional variable name are passed to the ParseNode class.

The render() method of that class first resolves the value of the template variable and
creates a template object out of it. The context_vars are copied and a request context is
generated, which the template renders. If the variable name is defined, the result is stored
in it and an empty string is rendered; otherwise, the rendered template is shown
immediately.

See also
The Creating a template tag to include a template, if it exists recipe
The Creating a template tag to load a QuerySet in a template recipe
The Creating template tags to modify request query parameters recipe

Creating template tags to modify request
query parameters
Django has a convenient and flexible system to create canonical and clean URLs just by
adding regular-expression rules to the URL configuration files. However, there is a lack of
built-in techniques to manage query parameters. Views such as search or filterable object
lists need to accept query parameters to drill down through the filtered results using
another parameter or to go to another page. In this recipe, we will create {%
modify_query %}, {% add_to_query %}, and {% remove_from_query %} template
tags, which let you add, change, or remove the parameters of the current query.

Custom Template Filters and Tags Chapter 5

[269]

Getting ready
Once again, we start with the core app that should be set in
INSTALLED_APPS which contains the templatetags package.

Also, make sure that you have the request context processor added to the
context_processors list in the TEMPLATES settings under OPTIONS, as follows:

myproject/settings/_base.py
TEMPLATES = [
 {
 "BACKEND": "django.template.backends.django.DjangoTemplates",
 "DIRS": [os.path.join(BASE_DIR, "myproject", "templates")],
 "APP_DIRS": True,
 "OPTIONS": {
 "context_processors": [
 "django.template.context_processors.debug",
 "django.template.context_processors.request",
 "django.contrib.auth.context_processors.auth",
 "django.contrib.messages.context_processors.messages",
 "django.template.context_processors.media",
 "django.template.context_processors.static",
 "myproject.apps.core.context_processors.website_url",
]
 },
 }
]

How to do it...
For these template tags, we will be using the @simple_tag decorator that parses the
components and requires you to just define the rendering function, as follows:

First, let's add a helper method for putting together the query strings that each of1.
our tags will output:

myproject/apps/core/templatetags/utility_tags.py
from urllib.parse import urlencode

from django import template
from django.utils.encoding import force_str
from django.utils.safestring import mark_safe

register = template.Library()

Custom Template Filters and Tags Chapter 5

[270]

""" TAGS """

def construct_query_string(context, query_params):
 # empty values will be removed
 query_string = context["request"].path
 if len(query_params):
 encoded_params = urlencode([
 (key, force_str(value))
 for (key, value) in query_params if value
]).replace("&", "&")
 query_string += f"?{encoded_params}"
 return mark_safe(query_string)

Then, we will create the {% modify_query %} template tag:2.

@register.simple_tag(takes_context=True)
def modify_query(context, *params_to_remove, **params_to_change):
 """Renders a link with modified current query parameters"""
 query_params = []
 for key, value_list in context["request"].GET.lists():
 if not key in params_to_remove:
 # don't add key-value pairs for params_to_remove
 if key in params_to_change:
 # update values for keys in params_to_change
 query_params.append((key, params_to_change[key]))
 params_to_change.pop(key)
 else:
 # leave existing parameters as they were
 # if not mentioned in the params_to_change
 for value in value_list:
 query_params.append((key, value))
 # attach new params
 for key, value in params_to_change.items():
 query_params.append((key, value))
 return construct_query_string(context, query_params)

Next, let's create the {% add_to_query %} template tag:3.

@register.simple_tag(takes_context=True)
def add_to_query(context, *params_to_remove, **params_to_add):
 """Renders a link with modified current query parameters"""
 query_params = []
 # go through current query params..
 for key, value_list in context["request"].GET.lists():
 if key not in params_to_remove:
 # don't add key-value pairs which already
 # exist in the query
 if (key in params_to_add

Custom Template Filters and Tags Chapter 5

[271]

 and params_to_add[key] in value_list):
 params_to_add.pop(key)
 for value in value_list:
 query_params.append((key, value))
 # add the rest key-value pairs
 for key, value in params_to_add.items():
 query_params.append((key, value))
 return construct_query_string(context, query_params)

Lastly, let's create the {% remove_from_query %} template tag:4.

@register.simple_tag(takes_context=True)
def remove_from_query(context, *args, **kwargs):
 """Renders a link with modified current query parameters"""
 query_params = []
 # go through current query params..
 for key, value_list in context["request"].GET.lists():
 # skip keys mentioned in the args
 if key not in args:
 for value in value_list:
 # skip key-value pairs mentioned in kwargs
 if not (key in kwargs and
 str(value) == str(kwargs[key])):
 query_params.append((key, value))
 return construct_query_string(context, query_params)

How it works...
All three created template tags behave similarly. At first, they read the current query
parameters from the request.GET dictionary-like QueryDict object to a new list of (key,
value) query_params tuples. Then, the values are updated depending on the positional
arguments and keyword arguments. Lastly, the new query string is formed via the helper
method defined first. In this process, all spaces and special characters are URL-encoded,
and the ampersands connecting the query parameters are escaped. This new query string is
returned to the template.

To read more about the QueryDict objects, refer to the official Django
documentation
at https:/ / docs. djangoproject. com/en/ 3.0/ ref/ request- response/
#querydict- objects.

https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/3.0/ref/request-response/#querydict-objects

Custom Template Filters and Tags Chapter 5

[272]

Let's take a look at an example of how the {% modify_query %} template tag can be used.
Positional arguments in the template tag define which query parameters are to be removed,
and the keyword arguments define which query parameters are to be updated in the
current query. If the current URL is
http://127.0.0.1:8000/artists/?category=fine-art&page=5, we can use the
following template tag to render a link that goes to the next page:

{% load utility_tags %}
6

The following snippet is the output rendered using the preceding template tag:

6

We can also use the following example to render a link that resets pagination and goes to
another category, sculpture, as follows:

{% load utility_tags %}

 Sculpture

So, the output rendered using the preceding template tag would be as shown in this
snippet:

 Sculpture

With the {% add_to_query %} template tag, you can add, step by step, the parameters
with the same name. For example, if the current URL is
http://127.0.0.1:8000/artists/?category=fine-art, you can add another
category, Sculpture, with the help of the following snippet:

{% load utility_tags %}

 + Sculpture

This will be rendered in the template, as shown in the following snippet:

 + Sculpture

Custom Template Filters and Tags Chapter 5

[273]

Lastly, with the help of the {% remove_from_query %} template tag, you can
remove, step by step, the parameters with the same name. For example, if the current URL
is http://127.0.0.1:8000/artists/?category=fine-art&category=sculpture,
you can remove the Sculpture category, with the help of the following snippet:

{% load utility_tags %}

 - Sculpture

This will be rendered in the template as follows:

 - Sculpture

See also
The Filtering object lists recipe in Chapter 3, Forms and Views
The Creating a template tag to include a template, if it exists recipe
The Creating a template tag to load a QuerySet in a template recipe
The Creating a template tag to parse content as a template recipe

6
Model Administration

In this chapter, we will cover the following topics:

Customizing columns on the change list page
Creating sortable inlines
Creating admin actions
Developing change list filters
Changing the app label of a third-party app
Creating a custom accounts app
Getting user Gravatars
Inserting a map into a change form

Introduction
The Django framework comes with a built-in administration system for your data models.
With very little effort, you can set up filterable, searchable, and sortable lists in order to
browse your models, and you can configure forms to add and manage data. In this chapter,
we will go through the advanced techniques we can use to customize administration by
developing some practical cases.

Technical requirements
To work with the code in this chapter, you will need the latest stable version of Python, a
MySQL or PostgreSQL database, and a Django project with a virtual environment.

You can find all the code for this chapter in the chapter 06 directory of this book's
GitHub repository: https:/ / github. com/ PacktPublishing/ Django- 3-Web- Development-
Cookbook-Fourth- Edition

https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition

Model Administration Chapter 6

[275]

Customizing columns on the change list
page
The change list views in the default Django administration system provide an overview of
all of the instances of the specific models. By default, the list_display model admin
attribute controls the fields that are shown in different columns. Additionally, you can
implement custom admin methods that will return the data from relations or display
custom HTML. In this recipe, we will create a special function, for use with the
list_display attribute, that shows an image in one of the columns of the list view. As a
bonus, we will make one field directly editable in the list view by adding the
list_editable setting.

Getting ready
For this recipe, we will need the Pillow and django-imagekit libraries. Let's install them
in the virtual environment using the following commands:

(env)$ pip install Pillow
(env)$ pip install django-imagekit

Make sure that django.contrib.admin and imagekit are in INSTALLED_APPS in the
settings:

myproject/settings/_base.py
INSTALLED_APPS = [
 # …
 "django.contrib.admin",
 "imagekit",
]

Then, hook up the admin site in the URL configuration, as follows:

myproject/urls.py
from django.contrib import admin
from django.conf.urls.i18n import i18n_patterns
from django.urls import include, path

urlpatterns = i18n_patterns(
 # …
 path("admin/", admin.site.urls),
)

Model Administration Chapter 6

[276]

Next, create a new products app and put it under INSTALLED_APPS. This app will contain
the Product and ProductPhoto models. Here, one product might have multiple photos.
For this example, we will also be using UrlMixin, which was defined in the Creating a
model mixin with URL-related methods recipe in Chapter 2, Models and Database Structure.

Let's create the Product and ProductPhoto models in the models.py file as follows:

myproject/apps/products/models.py
import os

from django.urls import reverse, NoReverseMatch
from django.db import models
from django.utils.timezone import now as timezone_now
from django.utils.translation import ugettext_lazy as _

from ordered_model.models import OrderedModel

from myproject.apps.core.models import UrlBase

def product_photo_upload_to(instance, filename):
 now = timezone_now()
 slug = instance.product.slug
 base, ext = os.path.splitext(filename)
 return f"products/{slug}/{now:%Y%m%d%H%M%S}{ext.lower()}"

class Product(UrlBase):
 title = models.CharField(_("title"), max_length=200)
 slug = models.SlugField(_("slug"), max_length=200)
 description = models.TextField(_("description"), blank=True)
 price = models.DecimalField(
 _("price (EUR)"), max_digits=8, decimal_places=2,
 blank=True, null=True
)

 class Meta:
 verbose_name = _("Product")
 verbose_name_plural = _("Products")

 def get_url_path(self):
 try:
 return reverse("product_detail", kwargs={"slug": self.slug})
 except NoReverseMatch:
 return ""

 def __str__(self):

Model Administration Chapter 6

[277]

 return self.title

class ProductPhoto(models.Model):
 product = models.ForeignKey(Product, on_delete=models.CASCADE)
 photo = models.ImageField(_("photo"),
 upload_to=product_photo_upload_to)

 class Meta:
 verbose_name = _("Photo")
 verbose_name_plural = _("Photos")

 def __str__(self):
 return self.photo.name

How to do it...
In this recipe, we will create a simple administration for the Product model that will have
instances of the ProductPhoto model attached to the product as inlines.

In the list_display property, we will include the first_photo() method of the model
admin, which will be used to show the first photo from the many-to-one relationship. So,
let's begin:

Let's create an admin.py file that contains the following content:1.

myproject/apps/products/admin.py
from django.contrib import admin
from django.template.loader import render_to_string
from django.utils.html import mark_safe
from django.utils.translation import ugettext_lazy as _

from .models import Product, ProductPhoto

class ProductPhotoInline(admin.StackedInline):
 model = ProductPhoto
 extra = 0
 fields = ["photo"]

Model Administration Chapter 6

[278]

Then, in the same file, let's add the administration for the product:2.

@admin.register(Product)
class ProductAdmin(admin.ModelAdmin):
 list_display = ["first_photo", "title", "has_description",
 "price"]
 list_display_links = ["first_photo", "title"]
 list_editable = ["price"]

 fieldsets = ((_("Product"), {"fields": ("title", "slug",
 "description", "price")}),)
 prepopulated_fields = {"slug": ("title",)}
 inlines = [ProductPhotoInline]

def first_photo(self, obj):
 project_photos = obj.productphoto_set.all()[:1]
 if project_photos.count() > 0:
 photo_preview = render_to_string(
 "admin/products/includes/photo-preview.html",
 {"photo": project_photos[0], "product": obj},
)
 return mark_safe(photo_preview)
 return ""

 first_photo.short_description = _("Preview")

def has_description(self, obj):
return bool(obj.description)

 has_description.short_description = _("Has description?")
 has_description.admin_order_field = "description"
 has_description.boolean = True

Now, let's create the template that will be used to generate the photo-preview,3.
as follows:

{# admin/products/includes/photo-preview.html #}
{% load imagekit %}
{% thumbnail "120x120" photo.photo -- alt=
 "{{ product.title }} preview" %}

Model Administration Chapter 6

[279]

How it works...
If you add a few products with photos and then look at the product administration list in
the browser, it will look similar to the following screenshot:

Model Administration Chapter 6

[280]

The list_display property is usually used to define the fields so that they're displayed in
the administration list view; for example, TITLE and PRICE are fields of the Product
model. Besides the normal field names, though, the list_display property also accepts
the following:

A function, or another callable
The name of an attribute of the model admin class
The name of an attribute of the model

When using callables in list_display, each one will get the model instance passed as the
first argument. Therefore, in our example, we have defined the get_photo() method in
the model admin class, which receives the Product instance as obj. The method tries to get
the first ProductPhoto object from the many-to-one relationship, and, if it exists, it returns
HTML generated from the include template with the tag. By setting
list_display_links, we make both the photo and the title linked to the admin change
form for the Product model.

You can set several attributes for the callables that you use in list_display:

The short_description attribute of the callable defines the TITLE shown at
the top of the column.
By default, the values that are returned by callables are not sortable
in administration, but the admin_order_field attribute can be set to define
which database field we should sort that generated column by. Optionally, you
can prefix the field with a hyphen to indicate a reversed sort order.
By setting boolean = True, you can show icons for the True or False values.

Finally, the PRICE field can be made editable if we include it in the list_editable
setting. Since there are now editable fields, a Save button will appear at the bottom so that
we can save the whole list of products.

See also
The Creating a model mixin with URL-related methods recipe in Chapter 2, Models
and Database Structure
The Creating admin actions recipe
The Developing change list filters recipe

Model Administration Chapter 6

[281]

Creating sortable inlines
You will want to sort most of the models in your database by creation date, happening
date, or alphabetically. But sometimes, the user has to be able to show items in a custom
sorting order. This applies to categories, image galleries, curated lists, and similar cases. In
this recipe, we will show you how to use django-ordered-model to allow custom sorting
in administration.

Getting ready
In this recipe, we will build upon the products app that we defined in the previous recipe.
Follow these steps to get started:

Let's install django-ordered-model in our virtual environment:1.

(env)$ pip install django-ordered-model

Add ordered_model to INSTALLED_APPS in the settings.2.
Then, modify the ProductPhoto model from the previously defined products3.
app, as follows:

myproject/apps/products/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _

from ordered_model.models import OrderedModel

…

class ProductPhoto(OrderedModel):
 product = models.ForeignKey(Product, on_delete=models.CASCADE)
 photo = models.ImageField(_("photo"),
 upload_to=product_photo_upload_to)

order_with_respect_to = "product"

 class Meta(OrderedModel.Meta):
 verbose_name = _("Photo")
 verbose_name_plural = _("Photos")

def __str__(self):
return self.photo.name

Model Administration Chapter 6

[282]

The OrderedModel class introduces an order field. Make and run migrations to add the
new order field for ProductPhoto to the database.

How to do it...
To set up sortable product photos, we'll need to modify the model administration for the
products app. Let's get started:

Modify ProductPhotoInline in the admin file, as follows:1.

myproject/apps/products/admin.py
from django.contrib import admin
from django.template.loader import render_to_string
from django.utils.html import mark_safe
from django.utils.translation import ugettext_lazy as _
from ordered_model.admin import OrderedTabularInline,
OrderedInlineModelAdminMixin

from .models import Product, ProductPhoto

class ProductPhotoInline(OrderedTabularInline):
 model = ProductPhoto
 extra = 0
 fields = ("photo_preview", "photo", "order",
 "move_up_down_links")
 readonly_fields = ("photo_preview", "order",
 "move_up_down_links")
 ordering = ("order",)

 def get_photo_preview(self, obj):
 photo_preview = render_to_string(
 "admin/products/includes/photo-preview.html",
 {"photo": obj, "product": obj.product},
)
 return mark_safe(photo_preview)

 get_photo_preview.short_description = _("Preview")

Then, modify ProductAdmin as follows:2.

@admin.register(Product)
class ProductAdmin(OrderedInlineModelAdminMixin, admin.ModelAdmin):
 # …

Model Administration Chapter 6

[283]

How it works...
If you open the Change Product form, you will see something like this:

Model Administration Chapter 6

[284]

In the model, we set the order_with_respect_to attribute to ensure that ordering will be
separate for each product instead of just ordering the whole list of product photos in
general.

In Django administration, product photos can be edited by following the product details
itself as tabular inlines. In the first column, we have a photo preview. We are generating it
using the same photo-preview.html template that we used in the previous recipe. In the
second column, there is a field for changing the photo. Then, there is a column for the
ORDER field, followed by a column with arrow buttons so that we can reorder the photos
manually next to it. The arrow buttons are coming from the move_up_down_links
method. Finally, there is a column with a checkbox so that we can delete the inline.

The readonly_fields attribute tells Django that some fields or methods will be for
reading only. If you want to use another method to display something in the change form,
you have to put those methods in the readonly_fields list. In our
case, get_photo_preview and move_up_down_links are such methods.

move_up_down_links is defined in OrderedTabularInline, which we are extending
instead of admin.StackedInline or admin.TabularInline. This renders the arrow
buttons so that they switch places in the product photos.

See also
The Customizing columns on the change list page recipe
The Creating admin actions recipe
The Developing change list filters recipe

Creating admin actions
The Django administration system provides actions that we can execute for selected items
in the list. One action is provided, by default, and it is used to delete selected instances. In
this recipe, we will create an additional action for the list of the Product model, which will
allow the administrators to export selected products to Excel spreadsheets.

Model Administration Chapter 6

[285]

Getting ready
We will start with the products app that we created in the previous recipes. Make sure
that you have the openpyxl module installed in your virtual environment in order to
create an Excel spreadsheet, as follows:

(env)$ pip install openpyxl

How to do it...
Admin actions are functions that take three arguments, as follows:

The current ModelAdmin value
The current HttpRequest value
The QuerySet value, which contains the selected items

Perform the following steps to create a custom admin action to export a spreadsheet:

Create a ColumnConfig class for spreadsheet column configuration in the1.
admin.py file of the products app, as follows:

myproject/apps/products/admin.py
from openpyxl import Workbook
from openpyxl.styles import Alignment, NamedStyle, builtins
from openpyxl.styles.numbers import FORMAT_NUMBER
from openpyxl.writer.excel import save_virtual_workbook

from django.http.response import HttpResponse
from django.utils.translation import ugettext_lazy as _
from ordered_model.admin import OrderedTabularInline,
OrderedInlineModelAdminMixin

other imports…

class ColumnConfig:
 def __init__(
 self,
 heading,
 width=None,
 heading_style="Headline 1",
 style="Normal Wrapped",
 number_format=None,
):
 self.heading = heading

Model Administration Chapter 6

[286]

 self.width = width
 self.heading_style = heading_style
 self.style = style
 self.number_format = number_format

Then, in the same file, create the export_xlsx() function:2.

def export_xlsx(modeladmin, request, queryset):
 wb = Workbook()
 ws = wb.active
 ws.title = "Products"

 number_alignment = Alignment(horizontal="right")
 wb.add_named_style(
 NamedStyle(
 "Identifier", alignment=number_alignment,
 number_format=FORMAT_NUMBER
)
)
 wb.add_named_style(
 NamedStyle("Normal Wrapped",
 alignment=Alignment(wrap_text=True))
)

 column_config = {
 "A": ColumnConfig("ID", width=10, style="Identifier"),
 "B": ColumnConfig("Title", width=30),
 "C": ColumnConfig("Description", width=60),
 "D": ColumnConfig("Price", width=15, style="Currency",
 number_format="#,##0.00 €"),
 "E": ColumnConfig("Preview", width=100, style="Hyperlink"),
 }

 # Set up column widths, header values and styles
 for col, conf in column_config.items():
 ws.column_dimensions[col].width = conf.width

 column = ws[f"{col}1"]
 column.value = conf.heading
 column.style = conf.heading_style

 # Add products
 for obj in queryset.order_by("pk"):
 project_photos = obj.productphoto_set.all()[:1]
 url = ""
 if project_photos:
 url = project_photos[0].photo.url

Model Administration Chapter 6

[287]

 data = [obj.pk, obj.title, obj.description, obj.price, url]
 ws.append(data)

 row = ws.max_row
 for row_cells in ws.iter_cols(min_row=row, max_row=row):
 for cell in row_cells:
 conf = column_config[cell.column_letter]
 cell.style = conf.style
 if conf.number_format:
 cell.number_format = conf.number_format

 mimetype = "application/vnd.openxmlformats-
 officedocument.spreadsheetml.sheet"
 charset = "utf-8"
 response = HttpResponse(
 content=save_virtual_workbook(wb),
 content_type=f"{mimetype}; charset={charset}",
 charset=charset,
)
 response["Content-Disposition"] = "attachment;
 filename=products.xlsx"
 return response

export_xlsx.short_description = _("Export XLSX")

Then, add the actions setting to ProductAdmin, as follows:3.

@admin.register(Product)
class ProductAdmin(OrderedInlineModelAdminMixin, admin.ModelAdmin):
 # …
 actions = [export_xlsx]
 # …

How it works...
If you take a look at the product administration list page in the browser, you will see a new
action called Export XLSX, along with the default Delete selected Products action, as
shown in the following screenshot:

Model Administration Chapter 6

[288]

We use the openpyxl Python module to create an OpenOffice XML file that's compatible
with Excel and other spreadsheet software.

First, a workbook is created, and the active worksheet is selected, for which we set the title
to Products. Because there are common styles that we will want to use throughout the
worksheet, these are set up as named styles so that they can be applied by name to each
cell, as appropriate. These styles, the column headings, and the column widths are stored as
Config objects, and a column_config dictionary maps column letter keys to the objects.
This is then iterated over to set up the headers and column widths.

We use the append() method of the sheet to add the content for each of the selected
products in QuerySet, ordered by ID, including the URL of the first photo for the product
for when photos are available. The product data is then individually styled by iterating
over each of the cells in the just-added row, once again referring to column_config to
apply styles consistently.

Model Administration Chapter 6

[289]

By default, admin actions do something with QuerySet and redirect the administrator back
to the change list page. However, for more complex actions, HttpResponse can be
returned. The export_xlsx() function saves a virtual copy of the workbook
to HttpResponse, with the content type and character set appropriate to the Office Open
XML (OOXML) spreadsheet. Using the Content-Disposition header, we set the
response so that it can be downloaded as a products.xlsx file. The resulting sheet can be
opened in Open Office and will look similar to the following:

See also
The Customizing columns on the change list page recipe
The Developing change list filters recipe
Chapter 9, Importing and Exporting Data

Developing change list filters
If you want administrators to be able to filter the change list by date, relation, or field
choices, you have to use the list_filter property of the admin model. Additionally,
there is the possibility of having custom-tailored filters. In this recipe, we will add a filter
that allows us to select products by the number of photos attached to them.

Getting ready
Let's start with the products app that we created in the previous recipes.

Model Administration Chapter 6

[290]

How to do it...
Execute the following steps:

In the admin.py file, create a PhotoFilter class that extends1.
from SimpleListFilter, as follows:

myproject/apps/products/admin.py
from django.contrib import admin
from django.db import models
from django.utils.translation import ugettext_lazy as _

other imports…

ZERO = "zero"
ONE = "one"
MANY = "many"

class PhotoFilter(admin.SimpleListFilter):
 # Human-readable title which will be displayed in the
 # right admin sidebar just above the filter options.
 title = _("photos")

 # Parameter for the filter that will be used in the
 # URL query.
 parameter_name = "photos"

 def lookups(self, request, model_admin):
 """
 Returns a list of tuples, akin to the values given for
 model field choices. The first element in each tuple is the
 coded value for the option that will appear in the URL
 query. The second element is the human-readable name for
 the option that will appear in the right sidebar.
 """
 return (
 (ZERO, _("Has no photos")),
 (ONE, _("Has one photo")),
 (MANY, _("Has more than one photo")),
)

 def queryset(self, request, queryset):
 """
 Returns the filtered queryset based on the value
 provided in the query string and retrievable via
 `self.value()`.

Model Administration Chapter 6

[291]

 """
 qs = queryset.annotate(num_photos=
 models.Count("productphoto"))

 if self.value() == ZERO:
 qs = qs.filter(num_photos=0)
 elif self.value() == ONE:
 qs = qs.filter(num_photos=1)
 elif self.value() == MANY:
 qs = qs.filter(num_photos__gte=2)
 return qs

Then, add a list filter to ProductAdmin, as shown in the following code:2.

@admin.register(Product)
class ProductAdmin(OrderedInlineModelAdminMixin, admin.ModelAdmin):
 # …
 list_filter = [PhotoFilter]
 # …

How it works...
The list filter, based on the custom field that we just created, will be shown in the sidebar of
the product list, as follows:

Model Administration Chapter 6

[292]

The PhotoFilter class has a translatable title and query parameter name as properties. It
also has two methods, as follows:

The lookups() method, which defines the choices of the filter
The queryset() method, which defines how to filter QuerySet objects when a
specific value is selected

In the lookups() method, we define three choices, as follows:

There are no photos
There is one photo
There is more than one photo attached

In the queryset() method, we use the annotate() method of QuerySet to select the
count of photos for each product. This count is then filtered according to the selected
choice.

To learn more about aggregation functions, such as annotate(), refer to the official
Django documentation at https:/ /docs. djangoproject. com/ en/ 3.0/ topics/ db/
aggregation/.

See also
The Customizing columns on the change list page recipe
The Creating admin actions recipe
The Creating a custom accounts app recipe

Changing the app label of a third-party app
The Django framework has a lot of third-party apps that you can use in your project. You
can browse and compare most of them at https:/ /djangopackages. org/ . In this recipe, we
will show you how to rename the label of the python-social-auth app in administration.
Analogically, you will be able to change the label of any Django third-party app.

https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://docs.djangoproject.com/en/3.0/topics/db/aggregation/
https://djangopackages.org/
https://djangopackages.org/
https://djangopackages.org/
https://djangopackages.org/
https://djangopackages.org/
https://djangopackages.org/
https://djangopackages.org/
https://djangopackages.org/

Model Administration Chapter 6

[293]

Getting ready
Follow the instructions at https:/ /python- social- auth. readthedocs. io/ en/ latest/
configuration/django. html to install Python Social Auth into your project. Python Social
Auth allows your users to log in with social network accounts or their Open ID. Once
you've done this, the index page of the administration will look like this:

How to do it...
To begin, change the PYTHON SOCIAL AUTH label to something more user-friendly,
such as SOCIAL AUTHENTICATION. Now, follow these steps:

Create an app called accounts. In the apps.py file there, add the following1.
content:

myproject/apps/accounts/apps.py
from django.apps import AppConfig
from django.utils.translation import ugettext_lazy as _

class AccountsConfig(AppConfig):
 name = "myproject.apps.accounts"
 verbose_name = _("Accounts")

 def ready(self):
 pass

class SocialDjangoConfig(AppConfig):
 name = "social_django"
 verbose_name = _("Social Authentication")

https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html

Model Administration Chapter 6

[294]

One of the steps of setting up Python Social Auth involved2.
adding the "social_django" app to INSTALLED_APPS. Now, replace the app
there with "myproject.apps.accounts.apps.SocialDjangoConfig":

myproject/settings/_base.py
…
INSTALLED_APPS = [
 # …
 #"social_django",
 "myproject.apps.accounts.apps.SocialDjangoConfig",
 # …
]

How it works...
If you check the index page of administration, you will see something like this:

The INSTALLED_APPS setting accepts either the path to an app or the path to app
configuration. Instead of the default app path, we can pass an app configuration. There, we
change the verbose name of the app and can even apply some signal handlers or do some
other initial setup for the app.

See also
The Creating a custom accounts app recipe
The Getting user Gravatars recipe

Model Administration Chapter 6

[295]

Creating a custom accounts app
Django comes with a contributed django.contrib.auth app that's used for
authentication. It allows users to log in with their username and password to be able to use
administration features, for example. This app has been designed so that you can extend it
with your own functionality. In this recipe, we will create a custom user and role models
and will set administration for them. Instead of a username and password, you will be able
to log in by email and password.

Getting ready
Create an accounts app and put this app under INSTALLED_APPS, in the settings:

myproject/apps/_base.py
INSTALLED_APPS = [
 # …
 "myproject.apps.accounts",
]

How to do it...
Follow these steps to overwrite the user and group models:

Create models.py in the accounts app with the following content:1.

myproject/apps/accounts/models.py
import uuid

from django.contrib.auth.base_user import BaseUserManager
from django.db import models
from django.contrib.auth.models import AbstractUser, Group
from django.utils.translation import ugettext_lazy as _

class Role(Group):
 class Meta:
 proxy = True
 verbose_name = _("Role")
 verbose_name_plural = _("Roles")

 def __str__(self):
 return self.name

Model Administration Chapter 6

[296]

class UserManager(BaseUserManager):
 def create_user(self, username="", email="", password="",
 **extra_fields):
 if not email:
 raise ValueError("Enter an email address")
 email = self.normalize_email(email)
 user = self.model(username=username, email=email,
 **extra_fields)
 user.set_password(password)
 user.save(using=self._db)
 return user

 def create_superuser(self, username="", email="", password=""):
 user = self.create_user(email=email, password=password,
 username=username)
 user.is_superuser = True
 user.is_staff = True
 user.save(using=self._db)
 return user

class User(AbstractUser):
 uuid = models.UUIDField(primary_key=True, default=None,
 editable=False)
 # change username to non-editable non-required field
 username = models.CharField(
 _("username"), max_length=150, editable=False, blank=True
)
 # change email to unique and required field
 email = models.EmailField(_("email address"), unique=True)

 USERNAME_FIELD = "email"
 REQUIRED_FIELDS = []

 objects = UserManager()

 def save(self, *args, **kwargs):
 if self.pk is None:
 self.pk = uuid.uuid4()
 super().save(*args, **kwargs)

Model Administration Chapter 6

[297]

Create the admin.py file in the accounts app with the administration2.
configuration for the User model:

myproject/apps/accounts/admin.py
from django.contrib import admin
from django.contrib.auth.admin import UserAdmin, Group, GroupAdmin
from django.urls import reverse
from django.contrib.contenttypes.models import ContentType
from django.http import HttpResponse
from django.shortcuts import get_object_or_404, redirect
from django.utils.encoding import force_bytes
from django.utils.safestring import mark_safe
from django.utils.translation import ugettext_lazy as _
from django.contrib.auth.forms import UserCreationForm

from .helpers import download_avatar
from .models import User, Role

class MyUserCreationForm(UserCreationForm):
 def save(self, commit=True):
 user = super().save(commit=False)
 user.username = user.email
 user.set_password(self.cleaned_data["password1"])
 if commit:
 user.save()
 return user

@admin.register(User)
class MyUserAdmin(UserAdmin):
 save_on_top = True
 list_display = [
 "get_full_name",
 "is_active",
 "is_staff",
 "is_superuser",
]
 list_display_links = [
 "get_full_name",
]
 search_fields = ["email", "first_name", "last_name", "id",
 "username"]
 ordering = ["-is_superuser", "-is_staff", "last_name",
 "first_name"]

 fieldsets = [
 (None, {"fields": ("email", "password")}),

Model Administration Chapter 6

[298]

 (_("Personal info"), {"fields": ("first_name",
 "last_name")}),
 (
 _("Permissions"),
 {
 "fields": (
 "is_active",
 "is_staff",
 "is_superuser",
 "groups",
 "user_permissions",
)
 },
),
 (_("Important dates"), {"fields": ("last_login",
 "date_joined")}),
]
 add_fieldsets = (
 (None, {"classes": ("wide",), "fields": ("email",
 "password1", "password2")}),
)
 add_form = MyUserCreationForm

 def get_full_name(self, obj):
 return obj.get_full_name()

 get_full_name.short_description = _("Full name")

In the same file, add configuration for the Role model:3.

admin.site.unregister(Group)

@admin.register(Role)
class MyRoleAdmin(GroupAdmin):
 list_display = ("__str__", "display_users")
 save_on_top = True

 def display_users(self, obj):
 links = []
 for user in obj.user_set.all():
 ct = ContentType.objects.get_for_model(user)
 url = reverse(
 "admin:{}_{}_change".format(ct.app_label,
 ct.model), args=(user.pk,)
)
 links.append(
 """{}""".format(
 url,

Model Administration Chapter 6

[299]

 user.get_full_name() or user.username,
)
)
 return mark_safe(u"
".join(links))

 display_users.short_description = _("Users")

How it works...
The default user administration list looks similar to the following screenshot:

Model Administration Chapter 6

[300]

The default group administration list looks similar to the following screenshot:

In this recipe, we created two models:

The Role model, which is a proxy for the Group model from
the django.contrib.auth app. The Role model was created to rename the
verbose name of Group to Role.
The User model, which extends the same abstract AbstractUser class as the
User model from django.contrib.auth. The User model was created to
replace the primary key with UUIDField and to allow us to log in via email and
password instead of username and password.

The admin classes, MyUserAdmin and MyRoleAdmin, extend the contributed UserAdmin
and GroupAdmin classes and overwrite some of the properties. Then, we unregistered the
existing administration classes for the User and Group models and registered the new,
modified ones.

Model Administration Chapter 6

[301]

The following screenshot shows what the user administration looks like:

The modified user administration settings show more fields than the default settings in the
list view, additional filters and ordering options, and Submit buttons at the top of the
editing form.

In the change list of the new group administration settings, we will display those users who
have been assigned to specific groups. In the browser, this will look similar to the following
screenshot:

Model Administration Chapter 6

[302]

See also
The Customizing columns on the change list page recipe
The Inserting a map into a change form recipe

Getting user Gravatars
Now that we've started using a custom User model for authentication, we can enhance it
even more by adding more useful fields. In this recipe, we will add an avatar field and the
ability to download a user's avatar from the Gravatar service (https:/ / en.gravatar. com/
). The users of this service can upload avatars and assign them to their emails. By doing
this, different comment systems and social platforms will be able to show those avatars
from Gravatar based on the hashes of the user's emails.

https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/
https://en.gravatar.com/

Model Administration Chapter 6

[303]

Getting ready
Let's continue with the accounts app that we created in the previous recipes.

How to do it...
Follow these steps to enhance the User model in the accounts app:

Add the avatar field and django-imagekit thumbnail specification to the1.
User model:

myproject/apps/accounts/models.py
import os

from imagekit.models import ImageSpecField
from pilkit.processors import ResizeToFill
from django.utils import timezone

…

def upload_to(instance, filename):
 now = timezone.now()
 filename_base, filename_ext = os.path.splitext(filename)
 return "users/{user_id}/{filename}{ext}".format(
 user_id=instance.pk,
 filename=now.strftime("%Y%m%d%H%M%S"),
 ext=filename_ext.lower(),
)

class User(AbstractUser):
 # …

 avatar = models.ImageField(_("Avatar"), upload_to=upload_to,
 blank=True)
 avatar_thumbnail = ImageSpecField(
 source="avatar",
 processors=[ResizeToFill(60, 60)],
 format="JPEG",
 options={"quality": 100},
)

 # …

Model Administration Chapter 6

[304]

Add some methods in order to download and show a Gravatar to the2.
MyUserAdmin class:

myprojects/apps/accounts/admin.py
from django.contrib import admin
from django.contrib.auth.admin import UserAdmin, Group, GroupAdmin
from django.urls import reverse
from django.contrib.contenttypes.models import ContentType
from django.http import HttpResponse
from django.shortcuts import get_object_or_404
from django.utils.encoding import force_bytes
from django.utils.safestring import mark_safe
from django.utils.translation import ugettext_lazy as _
from django.contrib.auth.forms import UserCreationForm

from .helpers import download_avatar
from .models import User, Role

class MyUserCreationForm(UserCreationForm):
 def save(self, commit=True):
 user = super().save(commit=False)
 user.username = user.email
 user.set_password(self.cleaned_data["password1"])
 if commit:
 user.save()
 return user

@admin.register(User)
class MyUserAdmin(UserAdmin):
 save_on_top = True
 list_display = [
 "get_avatar",
 "get_full_name",
 "download_gravatar",
 "is_active",
 "is_staff",
 "is_superuser",
]
 list_display_links = [
 "get_avatar",
 "get_full_name",
]
 search_fields = ["email", "first_name", "last_name", "id",
 "username"]
 ordering = ["-is_superuser", "-is_staff", "last_name",
 "first_name"]

Model Administration Chapter 6

[305]

 fieldsets = [
 (None, {"fields": ("email", "password")}),
 (_("Personal info"), {"fields": ("first_name",
 "last_name")}),
 (
 _("Permissions"),
 {
 "fields": (
 "is_active",
 "is_staff",
 "is_superuser",
 "groups",
 "user_permissions",
)
 },
),
 (_("Avatar"), {"fields": ("avatar",)}),
 (_("Important dates"), {"fields": ("last_login",
 "date_joined")}),
]
 add_fieldsets = (
 (None, {"classes": ("wide",), "fields": ("email",
 "password1", "password2")}),
)
 add_form = MyUserCreationForm

 def get_full_name(self, obj):
 return obj.get_full_name()

 get_full_name.short_description = _("Full name")

 def get_avatar(self, obj):
 from django.template.loader import render_to_string
 html = render_to_string("admin/accounts
 /includes/avatar.html", context={
 "obj": obj
 })
 return mark_safe(html)

 get_avatar.short_description = _("Avatar")

 def download_gravatar(self, obj):
 from django.template.loader import render_to_string
 info = self.model._meta.app_label,
 self.model._meta.model_name
 gravatar_url = reverse("admin:%s_%s_download_gravatar" %
 info, args=[obj.pk])
 html = render_to_string("admin/accounts

Model Administration Chapter 6

[306]

 /includes/download_gravatar.html", context={
 "url": gravatar_url
 })
 return mark_safe(html)

 download_gravatar.short_description = _("Gravatar")

 def get_urls(self):
 from functools import update_wrapper
 from django.conf.urls import url

 def wrap(view):
 def wrapper(*args, **kwargs):
 return self.admin_site.admin_view(view)(*args,
 **kwargs)

 wrapper.model_admin = self
 return update_wrapper(wrapper, view)

 info = self.model._meta.app_label,
 self.model._meta.model_name

 urlpatterns = [
 url(
 r"^(.+)/download-gravatar/$",
 wrap(self.download_gravatar_view),
 name="%s_%s_download_gravatar" % info,
)
] + super().get_urls()

 return urlpatterns

 def download_gravatar_view(self, request, object_id):
 if request.method != "POST":
 return HttpResponse(
 "{} method not allowed.".format(request.method),
 status=405
)
 from .models import User

 user = get_object_or_404(User, pk=object_id)
 import hashlib

 m = hashlib.md5()
 m.update(force_bytes(user.email))
 md5_hash = m.hexdigest()
 # d=404 ensures that 404 error is raised if gravatar is not
 # found instead of returning default placeholder

Model Administration Chapter 6

[307]

 url = "https://www.gravatar.com/avatar
 /{md5_hash}?s=800&d=404".format(
 md5_hash=md5_hash
)
 download_avatar(object_id, url)
 return HttpResponse("Gravatar downloaded.", status=200)

Add a helpers.py file to the accounts app with the following content:3.

myproject/apps/accounts/helpers.py

def download_avatar(user_id, image_url):
 import tempfile
 import requests
 from django.contrib.auth import get_user_model
 from django.core.files import File

 response = requests.get(image_url, allow_redirects=True,
 stream=True)
 user = get_user_model().objects.get(pk=user_id)

 if user.avatar: # delete the old avatar
 user.avatar.delete()

 if response.status_code != requests.codes.ok:
 user.save()
 return

 file_name = image_url.split("/")[-1]

 image_file = tempfile.NamedTemporaryFile()

 # Read the streamed image in sections
 for block in response.iter_content(1024 * 8):
 # If no more file then stop
 if not block:
 break
 # Write image block to temporary file
 image_file.write(block)

 user.avatar.save(file_name, File(image_file))
 user.save()

Model Administration Chapter 6

[308]

Create a template for the avatar in the administration file:4.

{# admin/accounts/includes/avatar.html #}
{% if obj.avatar %}
 <img src="{{ obj.avatar_thumbnail.url }}" alt=""
 width="30" height="30" />
{% endif %}

Create a template for the button to download Gravatar:5.

{# admin/accounts/includes/download_gravatar.html #}
{% load i18n %}
<button type="button" data-url="{{ url }}" class="button
js_download_gravatar download-gravatar">
 {% trans "Get Gravatar" %}
</button>

Finally, create a template for user change list administration with the JavaScript6.
to handle mouse clicks on the Get Gravatar buttons:

{# admin/accounts/user/change_list.html #}
{% extends "admin/change_list.html" %}
{% load static %}

{% block footer %}
{{ block.super }}
<style nonce="{{ request.csp_nonce }}">
.button.download-gravatar {
 padding: 2px 10px;
}
</style>
<script nonce="{{ request.csp_nonce }}">
django.jQuery(function($) {
 $('.js_download_gravatar').on('click', function(e) {
 e.preventDefault();
 $.ajax({
 url: $(this).data('url'),
 cache: 'false',
 dataType: 'json',
 type: 'POST',
 data: {},
 beforeSend: function(xhr) {
 xhr.setRequestHeader('X-CSRFToken',
 '{{ csrf_token }}');
 }
 }).then(function(data) {
 console.log('Gravatar downloaded.');

Model Administration Chapter 6

[309]

 document.location.reload(true);
 }, function(data) {
 console.log('There were problems downloading the
 Gravatar.');
 document.location.reload(true);
 });
 })
})

</script>
{% endblock %}

How it works...
If you look at the user change list administration now, you will see something like this:

Model Administration Chapter 6

[310]

The columns start with the user's AVATAR, then FULL NAME, and then a button to get
the Gravatar. When a user clicks on the Get Gravatar button, a JavaScript onclick event
handler makes a POST request to download_gravatar_view. This view creates a URL for
the user's Gravatar, which is dependent on the MD5 hash of the user's email, and then calls
a helper function to download an image for the user and link it to the avatar field.

There's more...
Gravatar images are quite small and relatively quick to download. If you were
downloading bigger images from a different service, you could use Celery or Huey task
queues to retrieve the images in the background. You can learn about Celery at https:/ /
docs.celeryproject. org/ en/ latest/ django/ first- steps- with- django. html, and about
Huey at https:// huey. readthedocs. io/ en/0. 4.9/ django. html.

See also
The Changing the app label of a third-party app recipe
The Creating a custom accounts app recipe

Inserting a map into a change form
Google Maps offers a JavaScript API that we can use to insert maps into our websites. In
this recipe, we will create a locations app with the Location model and extend the
template of the change form in order to add a map where an administrator can find and
mark the geographical coordinates of a location.

Getting ready
Register for a Google Maps API key and expose it to the templates, just like we did in
the Using HTML5 data attributes recipe in Chapter 4, Templates and JavaScript. Note that for
this recipe, in the Google Cloud Platform console, you will need to activate Maps
JavaScript API and Geocoding API. For those APIs to function, you also need to set billing
data.

https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html
https://huey.readthedocs.io/en/0.4.9/django.html

Model Administration Chapter 6

[311]

We will continue by creating a locations app:

Put the app under INSTALLED_APPS in the settings:1.

myproject/settings/_base.py
INSTALLED_APPS = [
 # …
 "myproject.apps.locations",
]

Create a Location model there with a name, description, address, geographical2.
coordinates, and picture, as follows:

myproject/apps/locations/models.py
import os
import uuid
from collections import namedtuple

from django.contrib.gis.db import models
from django.urls import reverse
from django.conf import settings
from django.utils.translation import gettext_lazy as _
from django.utils.timezone import now as timezone_now

from myproject.apps.core.models import
CreationModificationDateBase, UrlBase

COUNTRY_CHOICES = getattr(settings, "COUNTRY_CHOICES", [])

Geoposition = namedtuple("Geoposition", ["longitude", "latitude"])

def upload_to(instance, filename):
 now = timezone_now()
 base, extension = os.path.splitext(filename)
 extension = extension.lower()
 return f"locations/{now:%Y/%m}/{instance.pk}{extension}"

class Location(CreationModificationDateBase, UrlBase):
 uuid = models.UUIDField(primary_key=True, default=None,
 editable=False)
 name = models.CharField(_("Name"), max_length=200)
 description = models.TextField(_("Description"))
 street_address = models.CharField(_("Street address"),
 max_length=255, blank=True)
 street_address2 = models.CharField(
 _("Street address (2nd line)"), max_length=255, blank=True

Model Administration Chapter 6

[312]

)
 postal_code = models.CharField(_("Postal code"),
 max_length=255, blank=True)
 city = models.CharField(_("City"), max_length=255, blank=True)
 country = models.CharField(
 _("Country"), choices=COUNTRY_CHOICES, max_length=255,
 blank=True
)
 geoposition = models.PointField(blank=True, null=True)
 picture = models.ImageField(_("Picture"), upload_to=upload_to)

 class Meta:
 verbose_name = _("Location")
 verbose_name_plural = _("Locations")

 def __str__(self):
 return self.name

 def get_url_path(self):
 return reverse("locations:location_detail",
 kwargs={"pk": self.pk})

 def save(self, *args, **kwargs):
 if self.pk is None:
 self.pk = uuid.uuid4()
 super().save(*args, **kwargs)

 def delete(self, *args, **kwargs):
 if self.picture:
 self.picture.delete()
 super().delete(*args, **kwargs)

 def get_geoposition(self):
 if not self.geoposition:
 return None
 return Geoposition(self.geoposition.coords[0],
 self.geoposition.coords[1])

 def set_geoposition(self, longitude, latitude):
 from django.contrib.gis.geos import Point
 self.geoposition = Point(longitude, latitude, srid=4326)

Model Administration Chapter 6

[313]

Next, we'll need to install the PostGIS extension for our PostgreSQL database.3.
The easiest way to do that is to run the dbshell management command and
execute the following command:

> CREATE EXTENSION postgis;

Now, create the default administration for the model with a geoposition (we will 4.
change this in the How to do it... section):

myproject/apps/locations/admin.py
from django.contrib.gis import admin
from .models import Location

@admin.register(Location)
class LocationAdmin(admin.OSMGeoAdmin):
 pass

The default Django administration for geographical Point fields from the contributed gis
module uses the Leaflet.js JavaScript mapping library. The tiles are obtained from Open
Street Maps and the administration will look like this:

Model Administration Chapter 6

[314]

Model Administration Chapter 6

[315]

Note that in the default setup, you can't enter the longitude and latitude manually and
there is no possibility to geocode the geoposition from the address information. We will
implement that in this recipe.

How to do it...
The administration of the Location model will be combined from multiple files. Perform
the following steps to create it:

Let's create the administration configuration for the Location model. Note that1.
we are also creating a custom model form to create separate latitude
and longitude fields:

myproject/apps/locations/admin.py
from django.contrib import admin
from django import forms
from django.conf import settings
from django.template.loader import render_to_string
from django.utils.translation import ugettext_lazy as _

from .models import Location

LATITUDE_DEFINITION = _(
 "Latitude (Lat.) is the angle between any point and the "
 "equator (north pole is at 90°; south pole is at -90°)."
)

LONGITUDE_DEFINITION = _(
 "Longitude (Long.) is the angle east or west of a point "
 "on Earth at Greenwich (UK), which is the international "
 "zero-longitude point (longitude = 0°). The anti-meridian "
 "of Greenwich (the opposite side of the planet) is both "
 "180° (to the east) and -180° (to the west)."
)

class LocationModelForm(forms.ModelForm):
 latitude = forms.FloatField(
 label=_("Latitude"), required=False,
help_text=LATITUDE_DEFINITION
)
 longitude = forms.FloatField(
 label=_("Longitude"), required=False,
help_text=LONGITUDE_DEFINITION
)

Model Administration Chapter 6

[316]

 class Meta:
 model = Location
 exclude = ["geoposition"]

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 if self.instance:
 geoposition = self.instance.get_geoposition()
 if geoposition:
 self.fields["latitude"].initial =
 geoposition.latitude
 self.fields["longitude"].initial =
 geoposition.longitude

 def save(self, commit=True):
 cleaned_data = self.cleaned_data
 instance = super().save(commit=False)
 instance.set_geoposition(
 longitude=cleaned_data["longitude"],
 latitude=cleaned_data["latitude"],
)
 if commit:
 instance.save()
 self.save_m2m()
 return instance

@admin.register(Location)
class LocationAdmin(admin.ModelAdmin):
 form = LocationModelForm
 save_on_top = True
 list_display = ("name", "street_address", "description")
 search_fields = ("name", "street_address", "description")

 def get_fieldsets(self, request, obj=None):
 map_html = render_to_string(
 "admin/locations/includes/map.html",
 {"MAPS_API_KEY": settings.GOOGLE_MAPS_API_KEY},
)
 fieldsets = [
 (_("Main Data"), {"fields": ("name", "description")}),
 (
 _("Address"),
 {
 "fields": (
 "street_address",
 "street_address2",
 "postal_code",

Model Administration Chapter 6

[317]

 "city",
 "country",
 "latitude",
 "longitude",
)
 },
),
 (_("Map"), {"description": map_html, "fields": []}),
 (_("Image"), {"fields": ("picture",)}),
]
 return fieldsets

To create a custom change form template, add a new change_form.html file,2.
under admin/locations/location/, to your templates directory. This
template will extend from the default admin/change_form.html template, and
will overwrite the extrastyle and field_sets blocks, as follows:

{# admin/locations/location/change_form.html #}
{% extends "admin/change_form.html" %}
{% load i18n static admin_modify admin_urls %}

{% block extrastyle %}
 {{ block.super }}
 <link rel="stylesheet" type="text/css"
 href="{% static 'site/css/location_map.css' %}" />
{% endblock %}

{% block field_sets %}
 {% for fieldset in adminform %}
 {% include "admin/includes/fieldset.html" %}
 {% endfor %}
 <script src="{% static 'site/js/location_change_form.js'
 %}"></script>
{% endblock %}

Then, we have to create the template for the map that will be inserted into the3.
Map fieldset, as follows:

{# admin/locations/includes/map.html #}
{% load i18n %}
<div class="form-row map js_map">
 <div class="canvas">
 <!-- THE GMAPS WILL BE INSERTED HERE DYNAMICALLY -->
 </div>
 <ul class="locations js_locations">
 <div class="btn-group">
 <button type="button"

Model Administration Chapter 6

[318]

 class="btn btn-default locate-address
 js_locate_address">
 {% trans "Locate address" %}
 </button>
 <button type="button"
 class="btn btn-default remove-geo js_remove_geo">
 {% trans "Remove from map" %}
 </button>
 </div>
</div>
<script src="https://maps-api-ssl.google.com/maps/api/js?key={{
MAPS_API_KEY }}"></script>

Of course, the map won't be styled by default. Therefore, we will have to add4.
some CSS, as shown in the following code:

/* site_static/site/css/location_map.css */
.map {
 box-sizing: border-box;
 width: 98%;
}
.map .canvas,
.map ul.locations,
.map .btn-group {
 margin: 1rem 0;
}
.map .canvas {
 border: 1px solid #000;
 box-sizing: padding-box;
 height: 0;
 padding-bottom: calc(9 / 16 * 100%); /* 16:9 aspect ratio */
 width: 100%;
}
.map .canvas:before {
 color: #eee;
 color: rgba(0, 0, 0, 0.1);
 content: "map";
 display: block;
 font-size: 5rem;
 line-height: 5rem;
 margin-top: -25%;
 padding-top: calc(50% - 2.5rem);
 text-align: center;
}
.map ul.locations {
 padding: 0;
}
.map ul.locations li {

Model Administration Chapter 6

[319]

 border-bottom: 1px solid #ccc;
 list-style: none;
}
.map ul.locations li:first-child {
 border-top: 1px solid #ccc;
}
.map .btn-group .btn.remove-geo {
 float: right;
}

Next, let's create a location_change_form.js JavaScript file. We don't want to5.
pollute the environment with global variables. Therefore, we will start with a
closure in order to make a private scope for variables and functions.
We will be using jQuery in this file (as jQuery comes with the contributed
administration system and makes this easy and cross-browser), as follows:

/* site_static/site/js/location_change_form.js */
(function ($, undefined) {
 var gettext = window.gettext || function (val) {
 return val;
 };
 var $map, $foundLocations, $lat, $lng, $street, $street2,
 $city, $country, $postalCode, gMap, gMarker;
 // …this is where all the further JavaScript functions go…
}(django.jQuery));

We will create JavaScript functions and add them to6.
location_change_form.js one by one. The getAddress4search() function
will collect the address string from the address fields that will be used later for
geocoding, as follows:

function getAddress4search() {
 var sStreetAddress2 = $street2.val();
 if (sStreetAddress2) {
 sStreetAddress2 = " " + sStreetAddress2;
 }

 return [
 $street.val() + sStreetAddress2,
 $city.val(),
 $country.val(),
 $postalCode.val()
].join(", ");
}

Model Administration Chapter 6

[320]

The updateMarker() function will take the latitude and longitude7.
arguments and draw or move a marker on the map. It will also make the marker
draggable, as follows:

function updateMarker(lat, lng) {
 var point = new google.maps.LatLng(lat, lng);

 if (!gMarker) {
 gMarker = new google.maps.Marker({
 position: point,
 map: gMap
 });
 }

 gMarker.setPosition(point);
 gMap.panTo(point, 15);
 gMarker.setDraggable(true);

 google.maps.event.addListener(gMarker, "dragend",
 function() {
 var point = gMarker.getPosition();
 updateLatitudeAndLongitude(point.lat(), point.lng());
 }
);
}

The updateLatitudeAndLongitude() function, as referenced in the preceding8.
dragend event listener, takes the latitude and longitude arguments and
updates the values for the fields with the id_latitude and id_longitude IDs,
as follows:

function updateLatitudeAndLongitude(lat, lng) {
 var precision = 1000000;
 $lat.val(Math.round(lat * precision) / precision);
 $lng.val(Math.round(lng * precision) / precision);
}

The autocompleteAddress() function gets the results from Google Maps9.
geocoding and lists them under the map in order to select the correct result. If
there is only one result, it updates the geographical position and address fields,
as follows:

function autocompleteAddress(results) {
 var $item = $('');
 var $link = $('');

 $foundLocations.html("");

Model Administration Chapter 6

[321]

 results = results || [];

 if (results.length) {
 results.forEach(function (result, i) {
 $link.clone()
 .html(result.formatted_address)
 .click(function (event) {
 event.preventDefault();
 updateAddressFields(result
 .address_components);

 var point = result.geometry.location;
 updateLatitudeAndLongitude(
 point.lat(), point.lng());
 updateMarker(point.lat(), point.lng());
 $foundLocations.hide();
 })
 .appendTo($item.clone()
 .appendTo($foundLocations));
 });
 $link.clone()
 .html(gettext("None of the above"))
 .click(function(event) {
 event.preventDefault();
 $foundLocations.hide();
 })
 .appendTo($item.clone().appendTo($foundLocations));
 $foundLocations.show();
 } else {
 $foundLocations.hide();
 }
}

The updateAddressFields() function takes a nested dictionary, with the10.
address components as an argument, and fills in all of the address fields, as
follows:

function updateAddressFields(addressComponents) {
 var streetName, streetNumber;
 var typeActions = {
 "locality": function(obj) {
 $city.val(obj.long_name);
 },
 "street_number": function(obj) {
 streetNumber = obj.long_name;
 },
 "route": function(obj) {
 streetName = obj.long_name;

Model Administration Chapter 6

[322]

 },
 "postal_code": function(obj) {
 $postalCode.val(obj.long_name);
 },
 "country": function(obj) {
 $country.val(obj.short_name);
 }
 };

 addressComponents.forEach(function(component) {
 var action = typeActions[component.types[0]];
 if (typeof action === "function") {
 action(component);
 }
 });

 if (streetName) {
 var streetAddress = streetName;
 if (streetNumber) {
 streetAddress += " " + streetNumber;
 }
 $street.val(streetAddress);
 }
}

Finally, we have the initialization function, which is called when the page is11.
loaded. It attaches the onclick event handlers to the buttons, creates a Google
Map, and, initially, marks the geoposition that is defined in the latitude and
longitude fields, as follows:

$(function(){
 $map = $(".map");

 $foundLocations = $map.find("ul.js_locations").hide();
 $lat = $("#id_latitude");
 $lng = $("#id_longitude");
 $street = $("#id_street_address");
 $street2 = $("#id_street_address2");
 $city = $("#id_city");
 $country = $("#id_country");
 $postalCode = $("#id_postal_code");

 $map.find("button.js_locate_address")
 .click(function(event) {
 var geocoder = new google.maps.Geocoder();
 geocoder.geocode(
 {address: getAddress4search()},

Model Administration Chapter 6

[323]

 function (results, status) {
 if (status === google.maps.GeocoderStatus.OK) {
 autocompleteAddress(results);
 } else {
 autocompleteAddress(false);
 }
 }
);
 });

 $map.find("button.js_remove_geo")
 .click(function() {
 $lat.val("");
 $lng.val("");
 gMarker.setMap(null);
 gMarker = null;
 });

 gMap = new google.maps.Map($map.find(".canvas").get(0), {
 scrollwheel: false,
 zoom: 16,
 center: new google.maps.LatLng(51.511214, -0.119824),
 disableDoubleClickZoom: true
 });

 google.maps.event.addListener(gMap, "dblclick", function(event)
 {
 var lat = event.latLng.lat();
 var lng = event.latLng.lng();
 updateLatitudeAndLongitude(lat, lng);
 updateMarker(lat, lng);
 });

 if ($lat.val() && $lng.val()) {
 updateMarker($lat.val(), $lng.val());
 }
});

How it works...
If you look at the Change Location form in the browser, you will see a Map shown in a
fieldset, followed by the fieldset containing the address fields, as shown in the following
screenshot:

Model Administration Chapter 6

[324]

Model Administration Chapter 6

[325]

Under the map, there are two buttons: Locate address and Remove from map.

When you click on the Locate address button, the geocoding is called in order to search for
the geographical coordinates of the entered address. The result of performing geocoding is
one or more addresses listed in a nested dictionary format. We'll represent the addresses as
a list of clickable links, as follows:

To view the structure of the nested dictionary in the console of the developer tools, put the
following line at the beginning of the autocompleteAddress() function:

console.log(JSON.stringify(results, null, 4));

When you click on one of the selections, the marker appears on the map showing the exact
geoposition of the location. The Latitude and Longitude fields will be filled in like so:

Model Administration Chapter 6

[326]

Then, the administrator can move the marker on the map by dragging and dropping it.
Also, double-clicking anywhere on the map will update the geographical coordinates and
the marker position.

Model Administration Chapter 6

[327]

Finally, if the Remove from map button is clicked, the geographical coordinates are cleaned
and the marker is removed.

Administration uses a custom LocationModelForm that excludes the geoposition field,
adds the Latitude and Longitude fields, and handles saving and loading their values.

See also
Chapter 4, Templates and JavaScript

7
Security and Performance

In this chapter, we will cover the following recipes:

Making forms secure from Cross-Site Request Forgery (CSRF)
Making requests secure with Content Security Policy (CSP)
Using django-admin-honeypot
Implementing password validation
Downloading authorized files
Adding a dynamic watermark to images
Authenticating with Auth0
Caching the method return value
Using Memcached to cache Django views
Using Redis to cache Django views

Introduction
Software will never last if it inappropriately exposes sensitive information, makes the user
suffer through interminable wait times, or requires extensive amounts of hardware. It is our
responsibility as developers to make sure that applications are secure and performant. In
this chapter, we will examine just some of the many ways we can keep our users (and
yourself) safe while operating within Django applications. Then, we'll cover a few options
for caching that can reduce processing and get data to users at a lower expense in terms of
money and time.

Security and Performance Chapter 7

[329]

Technical requirements
To work with the code in this chapter, you will need the latest stable version of Python, a
MySQL or PostgreSQL database, and a Django project with a virtual environment.

You can find all the code for this chapter in the ch07 directory of this book's GitHub
repository at: https:/ /github. com/ PacktPublishing/ Django- 3-Web- Development-
Cookbook-Fourth- Edition.

Making forms secure from Cross-Site
Request Forgery (CSRF)
Without the proper precautions, malicious sites could potentially invoke requests against
your website, which would result in undesired changes being made to your server. For
example, they could affect a user's authentication or alter content without the user's
consent. Django comes bundled with a system for preventing CSRF attacks such as these,
and we'll review that in this recipe.

Getting ready
Start with the ideas app that we created in the Creating an app with CRUDL functions recipe
in Chapter 3, Forms and Views.

How to do it...
To enable CSRF prevention in Django, follow these steps:

Make sure that CsrfViewMiddleware is included in your project settings, as1.
shown here:

myproject/settings/_base.py
MIDDLEWARE = [
 "django.middleware.security.SecurityMiddleware",
 "django.contrib.sessions.middleware.SessionMiddleware",
 "django.middleware.common.CommonMiddleware",
 "django.middleware.csrf.CsrfViewMiddleware",
 "django.contrib.auth.middleware.AuthenticationMiddleware",
 "django.contrib.messages.middleware.MessageMiddleware",
 "django.middleware.clickjacking.XFrameOptionsMiddleware",

https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition

Security and Performance Chapter 7

[330]

 "django.middleware.locale.LocaleMiddleware",
]

Make sure the form view is rendered using the request context. For example, in2.
the existing ideas app, we have this:

myproject/apps/ideas/views.py
from django.contrib.auth.decorators import login_required
from django.shortcuts import render

@login_required
def add_or_change_idea(request, pk=None):
 # …
 return render(request, "ideas/idea_form.html", context)

In the template for the form, make sure it uses the POST method and includes the3.
{% csrf_token %} tag:

{# ideas/idea_form.html #}
{% extends "base.html" %}
{% load i18n crispy_forms_tags static %}

{% block content %}
 <h1>
 {% if idea %}
 {% blocktrans trimmed with title=idea
 .translated_title %}
 Change Idea "{{ title }}"
 {% endblocktrans %}
 {% else %}
 {% trans "Add Idea" %}
 {% endif %}
 </h1>
 <form action="{{ request.path }}" method="post">
 {% csrf_token %}
 {{ form.as_p }}
 <p>
 <button type="submit">{% trans "Save" %}</button>
 </p>
 </form>
{% endblock %}

Security and Performance Chapter 7

[331]

If you use django-crispy-forms for the form layout, the CSRF token will be 4.
included by default:

{# ideas/idea_form.html #}
{% extends "base.html" %}
{% load i18n crispy_forms_tags static %}

{% block content %}
 <h1>
 {% if idea %}
 {% blocktrans trimmed with title=idea
 .translated_title %}
 Change Idea "{{ title }}"
 {% endblocktrans %}
 {% else %}
 {% trans "Add Idea" %}
 {% endif %}
 </h1>
 {% crispy form %}
{% endblock %}

How it works...
Django uses a hidden field approach to prevent CSRF attacks. A token is generated on the
server, based on a combination of request-specific and randomized information. Through
CsrfViewMiddleware, this token is automatically made available via the request context.
While it is not recommended to disable this middleware, it is possible to mark individual
views to get the same behavior by applying the @csrf_protect decorator:

from django.views.decorators.csrf import csrf_protect

@csrf_protect
def my_protected_form_view():
 # …

Similarly, we can exclude individual views from CSRF checks, even when the middleware
is enabled, by using the @csrf_exempt decorator:

from django.views.decorators.csrf import csrf_exempt

@csrf_exempt
def my_unsecured_form_view():
 # …

Security and Performance Chapter 7

[332]

The built-in {% csrf_token %} tag generates the hidden input field that provides the
token, as shown in the following example:

<input type="hidden" name="csrfmiddlewaretoken"
value="29sQH3UhogpseHH60eEaTq0xKen9TvbKe5lpT9xs30cR01dy5QVAtATWmAHvUZFk">

It is considered invalid to include the token for forms that submit requests using the GET,
HEAD, OPTIONS, or TRACE methods, as any requests using those methods should not cause
side effects in the first place. In most cases, web forms that require CSRF protection will be
POST forms.

When a protected form using an unsafe method is submitted without the required token,
Django's built-in form validation will recognize this and reject the request outright. Only
those submissions containing a token with a valid value will be allowed to proceed. As a
result, external sites will be unable to make changes to your server since they won't be able
to know and include the currently valid token value.

There's more...
In many cases, it is desirable to enhance a form so that it can be submitted over Ajax. These
also need to be protected using CSRF tokens, and while it is possible to inject the token as
extra data in each request, using such an approach requires developers to remember to do
so for each and every POST request. The alternative of using a CSRF token header exists and
it makes things more efficient.

First, the token value needs to be retrieved, and how we do this depends on the value of the
CSRF_USE_SESSIONS setting. When it is True, the token is stored in the session rather than
a cookie, so we must use the {% csrf_token %} tag to include it in the DOM. Then, we
can read that element to retrieve the data in JavaScript:

var input = document.querySelector('[name="csrfmiddlewaretoken"]');
var csrfToken = input && input.value;

When the CSRF_USE_SESSIONS setting is in the default False state, the preferred source of
the token value is the csrftoken cookie. While it is possible to roll your own cookie
manipulation methods, there are many utilities available that simplify this process. For
example, we can extract the token easily by name using the js-cookie API, available at
https://github.com/ js- cookie/ js- cookie, as shown here:

var csrfToken = Cookies.get('crsftoken');

https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie

Security and Performance Chapter 7

[333]

Once the token has been extracted, it needs to be set as the CSRF token header value for
XmlHttpRequest. Although this might be done separately for each request, doing so has
the same drawbacks as adding the data to the request parameters for each request. Instead,
we might use jQuery and its ability to attach data to all requests automatically before they
are sent, like so:

var CSRF_SAFE_METHODS = ['GET', 'HEAD', 'OPTIONS', 'TRACE'];
$.ajaxSetup({
 beforeSend: function(xhr, settings) {
 if (CSRF_SAFE_METHODS.indexOf(settings.type) < 0
 && !this.crossDomain) {
 xhr.setRequestHeader("X-CSRFToken", csrfToken);
 }
 }
});

See also
The Creating an app with CRUDL functions recipe in Chapter 3, Forms and Views
The Implementing password validation recipe
The Downloading authorized files recipe
The Authenticating with Auth0 recipe

Making requests secure with Content
Security Policy (CSP)
Dynamic multi-user websites usually allow users to add all kinds of data from a wide
variety of media types: images, videos, audios, HTML, JavaScript snippets, and so on. This
opens up the potential of users adding malicious code to the website that could steal
cookies or other personal information, call unwanted Ajax requests in the background, or
do other harm. Modern browsers support an extra layer of security that whitelists the
sources of your media resources. It is called CSP and in this recipe, we will show you how
to use it within a Django website.

Getting ready
Let's start with an existing Django project; for example, the one containing the ideas app
from Chapter 3, Forms and Views.

Security and Performance Chapter 7

[334]

How to do it...
To protect your project with CSP, follow these steps:

Install django-csp into your virtual environment:1.

(env)$ pip install django-csp==3.6

In the settings, add CSPMiddleware:2.

myproject/settings/_base.py
MIDDLEWARE = [
 "django.middleware.security.SecurityMiddleware",
 "django.contrib.sessions.middleware.SessionMiddleware",
 "django.middleware.common.CommonMiddleware",
 "django.middleware.csrf.CsrfViewMiddleware",
 "django.contrib.auth.middleware.AuthenticationMiddleware",
 "django.contrib.messages.middleware.MessageMiddleware",
 "django.middleware.clickjacking.XFrameOptionsMiddleware",
 "django.middleware.locale.LocaleMiddleware",
 "csp.middleware.CSPMiddleware",
]

In the same settings file, add the django-csp settings for whitelisting the3.
sources of included media that you trust, for example, the CDN for jQuery and
Bootstrap (you'll find a detailed explanation of this in the How it works... section):

myproject/settings/_base.py
CSP_DEFAULT_SRC = [
 "'self'",
 "https://stackpath.bootstrapcdn.com/",
]
CSP_SCRIPT_SRC = [
 "'self'",
 "https://stackpath.bootstrapcdn.com/",
 "https://code.jquery.com/",
 "https://cdnjs.cloudflare.com/",
]
CSP_IMG_SRC = ["*", "data:"]
CSP_FRAME_SRC = ["*"]

Security and Performance Chapter 7

[335]

If you have any inline scripts or styles anywhere in the templates, whitelist them4.
using a cryptographic nonce, as follows:

<script nonce="{{ request.csp_nonce }}">
 window.settings = {
 STATIC_URL: '{{ STATIC_URL }}',
 MEDIA_URL: '{{ MEDIA_URL }}',
 }
</script>

How it works...
CSP directives can be added to the meta tags in the head section or the response headers:

The meta tag syntax looks like this:

<meta http-equiv="Content-Security-Policy" content="img-src *
data:; default-src 'self' https://stackpath.bootstrapcdn.com/
'nonce-WWNu7EYqfTcVVZDs'; frame-src *; script-src 'self'
https://stackpath.bootstrapcdn.com/ https://code.jquery.com/
https://cdnjs.cloudflare.com/">

Our chosen django-csp module uses response headers to create the list sources
that you want to be loaded into the website. You can check the headers in the
Network section of the browser's inspector, as follows:

Content-Security-Policy: img-src * data:; default-src 'self'
https://stackpath.bootstrapcdn.com/ 'nonce-WWNu7EYqfTcVVZDs';
frame-src *; script-src 'self' https://stackpath.bootstrapcdn.com/
https://code.jquery.com/ https://cdnjs.cloudflare.com/

CSP allows you to define resource types and allowed sources next to each other. The main
directives that you can use are as follows:

default-src is used as a fallback for all unset sources and is controlled in the
Django settings by CSP_DEFAULT_SRC.
script-src is used for <script> tags and is controlled in the Django settings
by CSP_DEFAULT_SRC.
style-src is used for the <style> and <link rel="stylesheet"> tags and
CSS @import statements, and is controlled by the CSP_STYLE_SRC setting.
img-src is used for the tags and is controlled by the CSP_IMG_SRC
setting.

Security and Performance Chapter 7

[336]

frame-src is used for the <frame> and <iframe> tags and is controlled by
the CSP_FRAME_SRC setting.
media-src is used for the <audio> , <video>, and <track> tags and is
controlled by the CSP_MEDIA_SRC setting.
font-src is used for the web fonts and is controlled by the CSP_FONT_SRC
setting.
connect-src is used for the resources loaded by JavaScript and is controlled by
the CSP_CONNECT_SRC setting.

A full list of resource types and analogical settings can be found
at https:/ / developer. mozilla. org/ en- US/docs/ Web/ HTTP/ Headers/
Content- Security- Policy and https:/ /django- csp. readthedocs. io/
en/latest/ configuration. html, respectively.

The values for each directive can be one or more from the following list (the single quotes
matter):

*: Allow all sources
'none': Disallow all sources
'self': Allow sources from the same domain
A protocol; for instance, https: or data:
A domain; for instance, example.com or *.example.com
A website URL, for instance, https://example.com
'unsafe-inline': Allow inline <script> or <style> tags
'unsafe-eval': Allow script execution with the eval() function
'nonce-<b64-value>': Allow specific tags by cryptographic nonces
'sha256-...': Allow resources by their source hashes

There is no general bulletproof way to configure django-csp. It's always a process of trial
and error. However, here are our guidelines:

Start by adding the CSP for an existing working project. Premature restrictions1.
will only make it more difficult to develop the website.
Check all the scripts, styles, fonts, and other static files that have been hardcoded2.
into the templates and whitelist them.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://django-csp.readthedocs.io/en/latest/configuration.html
https://django-csp.readthedocs.io/en/latest/configuration.html
https://django-csp.readthedocs.io/en/latest/configuration.html
https://django-csp.readthedocs.io/en/latest/configuration.html
https://django-csp.readthedocs.io/en/latest/configuration.html
https://django-csp.readthedocs.io/en/latest/configuration.html
https://django-csp.readthedocs.io/en/latest/configuration.html
https://django-csp.readthedocs.io/en/latest/configuration.html
https://django-csp.readthedocs.io/en/latest/configuration.html
https://django-csp.readthedocs.io/en/latest/configuration.html
https://django-csp.readthedocs.io/en/latest/configuration.html
https://django-csp.readthedocs.io/en/latest/configuration.html
https://django-csp.readthedocs.io/en/latest/configuration.html
https://django-csp.readthedocs.io/en/latest/configuration.html
https://django-csp.readthedocs.io/en/latest/configuration.html
https://django-csp.readthedocs.io/en/latest/configuration.html
https://django-csp.readthedocs.io/en/latest/configuration.html
https://django-csp.readthedocs.io/en/latest/configuration.html

Security and Performance Chapter 7

[337]

Allow all sources for images, media, and frames if you allow media to be3.
embedded into blog posts or other dynamic content, as follows:

myproject/settings/_base.py
CSP_IMG_SRC = ["*"]
CSP_MEDIA_SRC = ["*"]
CSP_FRAME_SRC = ["*"]

If you use inline scripts or styles, add nonce="{{ request.csp_nonce }}" to4.
them.
Avoid 'unsafe-inline' and 'unsafe-eval' CSP values unless the only way5.
to enter HTML into the website is by hardcoding it in the templates.
Browse through the website and search for any content that is not loading6.
correctly. If you see a message like the following in the developer console, it
means that the content was restricted by CSP:

Refused to execute inline script because it violates the following Content
Security Policy directive: "script-src 'self' https://stackpath.bootstrapcdn.com/
https://code.jquery.com/ https://cdnjs.cloudflare.com/". Either the 'unsafe-
inline' keyword, a hash ('sha256-
P1v4zceJ/oPr/yp20lBqDnqynDQhHf76lljlXUxt7NI='), or a nonce ('nonce-...') is
required to enable inline execution.

Errors like these usually occur because some third-party tools such as django-
cms, Django Debug Toolbar, and Google Analytics are trying to include a
resource through JavaScript. You can whitelist those resources with source
hashes like the one we saw in the error message:
'sha256-P1v4zceJ/oPr/yp20lBqDnqynDQhHf76lljlXUxt7NI='.
If you develop modern Progressive Web Apps (PWAs), consider checking the7.
directives for the manifest and web workers controlled by
the CSP_MANIFEST_SRC and CSP_WORKER_SRC settings.

See also
The Making forms secure from Cross Site Request Forgery (CSRF) recipe

Security and Performance Chapter 7

[338]

Using django-admin-honeypot
If you keep the default administration path for your Django website, you make it possible
for hackers to perform brute-force attacks and try to log in with different passwords from
their lists. There is an app called django-admin-honeypot that allows you to fake the login
screen and detect those brute-force attacks. In this recipe, we'll learn how to use it.

Getting ready
We can start with any Django project that we want to secure. For example, you can extend
the project from the previous recipe.

How to do it...
Follow these steps to set up django-admin-honeypot:

Install the module in your virtual environment:1.

(env)$ pip install django-admin-honeypot==1.1.0

Add "admin_honeypot" to INSTALLED_APPS in your settings:2.

myproject/settings/_base.py
INSTALLED_APPS = (
 # …
 "admin_honeypot",
)

Modify the URL rules:3.

myproject/urls.py
from django.contrib import admin
from django.conf.urls.i18n import i18n_patterns
from django.urls import include, path

urlpatterns = i18n_patterns(
 # …
 path("admin/", include("admin_honeypot.urls",
 namespace="admin_honeypot")),
 path("management/", admin.site.urls),
)

Security and Performance Chapter 7

[339]

How it works...
If you go to the default administration URL, http://127.0.0.1:8000/en/admin/, you
will see the login screen, but whatever you enter will be described as an invalid password:

The real site's administration is now under http://127.0.0.1:8000/en/management/,
where you can see the tracked logins from the honeypot.

Security and Performance Chapter 7

[340]

There's more...
At the time of writing, django-admin-honeypot is not perfectly functioning with Django 3.0
– the administration interface escapes the HTML where it should render it safely. Until
django-admin-honeypot is updated and a new release is available, we can fix it by making
some changes, as follows:

Create an app called admin_honeypot_fix with the admin.py file that contains1.
the following code:

myproject/apps/admin_honeypot_fix/admin.py
from django.contrib import admin

from admin_honeypot.admin import LoginAttemptAdmin
from admin_honeypot.models import LoginAttempt
from django.utils.safestring import mark_safe
from django.utils.translation import gettext_lazy as _

admin.site.unregister(LoginAttempt)

@admin.register(LoginAttempt)
class FixedLoginAttemptAdmin(LoginAttemptAdmin):
 def get_session_key(self, instance):
 return mark_safe('<a href="?session_key=
 %(key)s">%(key)s' % {'key': instance.session_key})
 get_session_key.short_description = _('Session')

 def get_ip_address(self, instance):
 return mark_safe('%(ip)s'
 % {'ip': instance.ip_address})
 get_ip_address.short_description = _('IP Address')

 def get_path(self, instance):
 return mark_safe('%(path)s'
 % {'path': instance.path})
 get_path.short_description = _('URL')

In the same app, create an apps.py file with the new app configuration:2.

myproject/apps/admin_honeypot_fix/apps.py
from django.apps import AppConfig
from django.utils.translation import gettext_lazy as _

class AdminHoneypotConfig(AppConfig):
 name = "admin_honeypot"
 verbose_name = _("Admin Honeypot")

Security and Performance Chapter 7

[341]

 def ready(self):
 from .admin import FixedLoginAttemptAdmin

Replace "admin_honeypot" with the new app configuration3.
in INSTALLED_APPS in the settings:

myproject/settings/_base.py
INSTALLED_APPS = [
 # …
 #"admin_honeypot",
 "myproject.apps.admin_honeypot_fix.apps.AdminHoneypotConfig",
]

The login attempts at the honeypot will now look like this:

See also
The Implementing password validation recipe
The Authenticating with Auth0 recipe

Security and Performance Chapter 7

[342]

Implementing password validation
Among the items at the top of the list of software security failures is the choice of insecure
passwords by users. In this recipe, we will learn how to enforce minimum password
requirements through both built-in and custom password validators so that users are
guided toward setting up more secure authentication.

Getting ready
Open the project's settings file and locate the AUTH_PASSWORD_VALIDATORS setting. Also,
create a new auth_extra app containing a password_validation.py file.

How to do it...
Follow these steps to set up stronger password validation for your project:

Let's customize the settings for the validators that are included with Django by1.
adding some options:

myproject/settings/_base.py
AUTH_PASSWORD_VALIDATORS = [
 {
 "NAME": "django.contrib.auth.password_validation."
 "UserAttributeSimilarityValidator",
 "OPTIONS": {"max_similarity": 0.5},
 },
 {
 "NAME": "django.contrib.auth.password_validation."
 "MinimumLengthValidator",
 "OPTIONS": {"min_length": 12},
 },
 {"NAME": "django.contrib.auth.password_validation."
 "CommonPasswordValidator"},
 {"NAME": "django.contrib.auth.password_validation."
 "NumericPasswordValidator"},
]

Add the MaximumLengthValidator class to the password_validation.py file2.
in the new auth_extra app, as follows:

myproject/apps/auth_extra/password_validation.py
from django.core.exceptions import ValidationError
from django.utils.translation import gettext as _

Security and Performance Chapter 7

[343]

class MaximumLengthValidator:
 def __init__(self, max_length=24):
 self.max_length = max_length

 def validate(self, password, user=None):
 if len(password) > self.max_length:
 raise ValidationError(
 self.get_help_text(pronoun="this"),
 code="password_too_long",
 params={'max_length': self.max_length},
)

 def get_help_text(self, pronoun="your"):
 return _(f"{pronoun.capitalize()} password must contain "
 f"no more than {self.max_length} characters")

In the same file, create the SpecialCharacterInclusionValidator class:3.

class SpecialCharacterInclusionValidator:
 DEFAULT_SPECIAL_CHARACTERS = ('$', '%', ':', '#', '!')

 def __init__(self, special_chars=DEFAULT_SPECIAL_CHARACTERS):
 self.special_chars = special_chars

 def validate(self, password, user=None):
 has_specials_chars = False
 for char in self.special_chars:
 if char in password:
 has_specials_chars = True
 break
 if not has_specials_chars:
 raise ValidationError(
 self.get_help_text(pronoun="this"),
 code="password_missing_special_chars"
)

 def get_help_text(self, pronoun="your"):
 return _(f"{pronoun.capitalize()} password must contain at"
 " least one of the following special characters: "
 f"{', '.join(self.special_chars)}")

Then, add the new validators to the settings:4.

myproject/settings/_base.py
from myproject.apps.auth_extra.password_validation import (
 SpecialCharacterInclusionValidator,
)

Security and Performance Chapter 7

[344]

AUTH_PASSWORD_VALIDATORS = [
 {
 "NAME": "django.contrib.auth.password_validation."
 "UserAttributeSimilarityValidator",
 "OPTIONS": {"max_similarity": 0.5},
 },
 {
 "NAME": "django.contrib.auth.password_validation."
 "MinimumLengthValidator",
 "OPTIONS": {"min_length": 12},
 },
 {"NAME": "django.contrib.auth.password_validation."
 "CommonPasswordValidator"},
 {"NAME": "django.contrib.auth.password_validation."
 "NumericPasswordValidator"},
 {
 "NAME": "myproject.apps.auth_extra.password_validation."
 "MaximumLengthValidator",
 "OPTIONS": {"max_length": 32},
 },
 {
 "NAME": "myproject.apps.auth_extra.password_validation."
 "SpecialCharacterInclusionValidator",
 "OPTIONS": {
 "special_chars": ("{", "}", "^", "&")
 + SpecialCharacterInclusionValidator
 .DEFAULT_SPECIAL_CHARACTERS
 },
 },
]

How it works...
Django contains a set of default password validators:

UserAttributeSimilarityValidator ensures that any password that's
chosen is not too similar to certain attributes of the user. By default, the similarity
ratio is set to 0.7 and the attributes that are checked are the username, first and
last name, and email address. If any of these attributes contains multiple words,
each word is checked independently.

Security and Performance Chapter 7

[345]

MinimumLengthValidator checks that the password that's entered is at least
the minimum number of characters in length. By default, passwords must be
eight or more characters long.
CommonPasswordValidator refers to a file containing a list of passwords that
are often used, and hence are insecure. The list Django uses by default contains
1,000 such passwords.
NumericPasswordValidator verifies that the password that's entered is not
made up entirely of numbers.

When you use the startproject management command to create a new project, these are
added with their default options as the initial set of validators. In this recipe, we've shown
how these options can be adjusted for our project needs, increasing the minimum length of
passwords to 12 characters.

For UserAttributeSimilarityValidator, we have also reduced max_similarity to
0.5, which means that passwords must differ more greatly from user attributes than the
default.

Looking at password_validation.py, we have defined two new validators:

MaximumLengthValidator is very similar to the built-in one for minimum
length, ensuring that the password is no longer than the default of 24 characters
SpecialCharacterInclusionValidator checks that one or more special
characters – defined as the $, %, :, #, and ! symbols by default – are found within
the given password

Each validator class has two required methods:

The validate() method performs the actual checks against the password
argument. Optionally, a second user argument will be passed when a user has
been authenticated.
We must also provide a get_help_text() method, which returns a string
describing the validation requirements for the user.

Finally, we add the new validators to the settings in order to override the defaults to allow
up to a 32-character maximum length for the password, and to be able to add the symbols
{, }, ^, and & to the default special character list.

Security and Performance Chapter 7

[346]

There's more...
The validators that are provided in AUTH_PASSWORD_VALIDATORS are executed
automatically for the createsuperuser and changepassword management commands,
as well as the built-in forms that are used to change or reset passwords. There will be times
where you will want to use the same validation for custom password management code,
though. Django provides functions for that level of integration and you can check the
details in the contributed Django auth app in the
django.contrib.auth.password_validation module.

See also
The Downloading authorized files recipe
The Authenticating with Auth0 recipe

Downloading authorized files
Sometimes, you may only need to allow specific people to download intellectual property
from your website. For example, music, videos, literature, or other artistic works should
only be accessible to paid members. In this recipe, you will learn how to restrict image
downloads only to authenticated users using the contributed Django auth app.

Getting ready
Let's start with the ideas app that we created in Chapter 3, Forms and Views.

How to do it...
Execute these steps one by one:

Create the view that will require authentication to download a file, as follows:1.

myproject/apps/ideas/views.py
import os

from django.contrib.auth.decorators import login_required
from django.http import FileResponse, HttpResponseNotFound
from django.shortcuts import get_object_or_404

Security and Performance Chapter 7

[347]

from django.utils.text import slugify

from .models import Idea

@login_required
def download_idea_picture(request, pk):
 idea = get_object_or_404(Idea, pk=pk)
 if idea.picture:
 filename, extension =
 os.path.splitext(idea.picture.file.name)
 extension = extension[1:] # remove the dot
 response = FileResponse(
 idea.picture.file, content_type=f"image/{extension}"
)
 slug = slugify(idea.title)[:100]
 response["Content-Disposition"] = (
 "attachment; filename="
 f"{slug}.{extension}"
)
 else:
 response = HttpResponseNotFound(
 content="Picture unavailable"
)
 return response

Add the download view to the URL configuration:2.

myproject/apps/ideas/urls.py
from django.urls import path

from .views import download_idea_picture

urlpatterns = [
 # …
 path(
 "<uuid:pk>/download-picture/",
 download_idea_picture,
 name="download_idea_picture",
),
]

Security and Performance Chapter 7

[348]

Set up the login view in our project URL configuration:3.

myproject/urls.py
from django.conf.urls.i18n import i18n_patterns
from django.urls import include, path

urlpatterns = i18n_patterns(
 # …
 path("accounts/", include("django.contrib.auth.urls")),
 path("ideas/", include(("myproject.apps.ideas.urls", "ideas"),
 namespace="ideas")),
)

Create a template for the login form, as shown in the following code:4.

{# registration/login.html #}
{% extends "base.html" %}
{% load i18n %}

{% block content %}
 <h1>{% trans "Login" %}</h1>
 <form action="{{ request.path }}" method="POST">
 {% csrf_token %}
 {{ form.as_p }}
 <button type="submit" class="btn btn-primary">{% trans
 "Log in" %}</button>
 </form>
{% endblock %}

In the template of idea details, add a link to the download:5.

{# ideas/idea_detail.html #}
{% extends "base.html" %}
{% load i18n %}

{% block content %}
…
 <a href="{% url 'ideas:download_idea_picture' pk=idea.pk %}"
 class="btn btn-primary">{% trans "Download picture" %}
{% endblock %}

Security and Performance Chapter 7

[349]

You should restrict users from bypassing Django and downloading restricted files directly.
To do so, on an Apache web server, you can put a .htaccess file in the media/ideas
directory by using the following content if you are running Apache 2.4:

media/ideas/.htaccess
Require all denied

When using django-imagekit, as shown in the examples throughout
this book, the generated image versions will be stored and served from
the media/CACHE directory, so our .htaccess configuration won't affect
it.

How it works...
The download_idea_picture view streams the original uploaded picture from a specific
idea. The Content-Disposition header that is set to attachment makes the file
downloadable instead of being immediately shown in the browser. The filename for the file
is also set in this header, and will be something similar to gamified-donation-
platform.jpg. If the picture for an idea is unavailable, a 404 page will be shown with a
very simple message: Picture unavailable.

The @login_required decorator will redirect the visitor to the login page if they try to
access the downloadable file without being logged in. The login screen will look like this by
default:

Security and Performance Chapter 7

[350]

See also
The Uploading images recipe from Chapter 3, Forms and Views
The Creating a form layout with custom templates recipe from Chapter 3, Forms and
Views
The Creating a form layout with django-crispy-forms recipe from Chapter 3, Forms
and Views
The Arranging the base.html template recipe from Chapter 4, Templates and
JavaScript
The Implementing password validation recipe
The Adding a dynamic watermark to images recipe

Adding a dynamic watermark to images
Sometimes, it is desirable to allow users to see images, but keep them from being
redistributed due to intellectual property and artistic rights. In this recipe, we will learn
how to apply a watermark to images that are displayed on your site.

Getting ready
Let's start with the core and ideas apps that we created in the Creating an app with CRUDL
functions recipe in Chapter 3, Forms and Views.

How to do it...
Follow these steps to apply a watermark to the displayed idea images:

If you haven't done so already, install django-imagekit into your virtual1.
environment:

(env)$ pip install django-imagekit==4.0.2

Security and Performance Chapter 7

[351]

Put "imagekit" into INSTALLED_APPS in the settings:2.

myproject/settings/_base.py
INSTALLED_APPS = [
 # …
 "imagekit",
]

In the core app, create a file called processors.py with a WatermarkOverlay3.
class, as follows:

myproject/apps/core/processors.py
from pilkit.lib import Image

class WatermarkOverlay(object):
 def __init__(self, watermark_image):
 self.watermark_image = watermark_image

 def process(self, img):
 original = img.convert('RGBA')
 overlay = Image.open(self.watermark_image)
 img = Image.alpha_composite(original,
 overlay).convert('RGB')
 return img

In the Idea model, add the watermarked_picture_large specification next to4.
the picture field, as follows:

myproject/apps/ideas/models.py
import os

from imagekit.models import ImageSpecField
from pilkit.processors import ResizeToFill

from django.db import models
from django.conf import settings
from django.utils.translation import gettext_lazy as _
from django.utils.timezone import now as timezone_now

from myproject.apps.core.models import
CreationModificationDateBase, UrlBase
from myproject.apps.core.processors import WatermarkOverlay

def upload_to(instance, filename):
 now = timezone_now()
 base, extension = os.path.splitext(filename)
 extension = extension.lower()
 return f"ideas/{now:%Y/%m}/{instance.pk}{extension}"

Security and Performance Chapter 7

[352]

class Idea(CreationModificationDateBase, UrlBase):
 # …
 picture = models.ImageField(
 _("Picture"), upload_to=upload_to
)
 watermarked_picture_large = ImageSpecField(
 source="picture",
 processors=[
 ResizeToFill(800, 400),
 WatermarkOverlay(
 watermark_image=os.path.join(settings.STATIC_ROOT,
 'site', 'img', 'watermark.png'),
)
],
 format="PNG"
)

Using a graphical program of your choice, create a semi-transparent PNG image5.
with white text or a logo on a transparent background. Make it 800 x 400 px in
size. Save the image as site_static/site/img/watermark.png. Here's what
it might look like:

Security and Performance Chapter 7

[353]

Run the collectstatic management command afterward:6.

(env)$ export DJANGO_SETTINGS_MODULE=myproject.settings.dev
(env)$ python manage.py collectstatic

Edit the idea detail template and add the watermarked image there, as follows:7.

{# ideas/idea_detail.html #}
{% extends "base.html" %}
{% load i18n %}

{% block content %}
 {% trans "List of ideas"
 %}
 <h1>
 {% blocktrans trimmed with title=idea.translated_title %}
 Idea "{{ title }}"
 {% endblocktrans %}
 </h1>

 {{ idea.translated_content|linebreaks|urlize }}
 <p>
 {% for category in idea.categories.all %}

 {{ category.translated_title }}
 {% endfor %}
 </p>
 <a href="{% url 'ideas:download_idea_picture' pk=idea.pk %}"
 class="btn btn-primary">{% trans "Download picture" %}
{% endblock %}

How it works...
If we navigate to the idea detail page, we should see the large image masked by our
watermark, similar to this:

Security and Performance Chapter 7

[354]

Let's examine how this was done. In the detail template, the src attribute for the tag
uses the idea's image specification, that is, watermarked_picture_large, to create a
modified image that is then saved under the media/CACHE/ directory and served from
there.

The django-imagekit specifications use processors to modify images. Two processors are
used there:

ResizeToFill resizes the image to 800 × 400 px
Our custom processor, WatermarkOverlay, applies the semi-transparent
overlay to it

django-imagekit processors must have a process() method that takes the image from
the previous processors and returns a new modified image. In our case, we compose the
result from the original and the semi-transparent overlay.

See also
The Downloading authorized files recipe

Security and Performance Chapter 7

[355]

Authenticating with Auth0
As the number of services people interact with daily increases, so does the number of
usernames and passwords that they need to remember. Beyond just that, each additional
place where user information is stored is another place that it could be stolen from, in the
event of a security breach. To help mitigate this, services such as Auth0 allow you to
centralize authentication services on a single, secure platform.

In addition to its support for username and password credentials, Auth0 has the ability to
authenticate users via social platforms such as Google, Facebook, or Twitter. You could use
passwordless login via single-time codes sent by SMS or email, and there is even enterprise-
level support for different services. In this recipe, you'll learn how to connect an Auth0
application to Django and how to integrate it to handle user authentication.

Getting ready
If you haven't done so yet, create an Auth0 application at https:/ /auth0. com/ and
configure it by following the instructions there. Two social connections are provided in the
free plan, so we will activate Google and Twitter to log in with them. You can also try other
services. Note that some of them require you to register an app and get API keys and
secrets.

Next, we need to install python-social-auth and some other dependencies in the
project. Include these dependencies in your pip requirements:

requirements/_base.txt
social-auth-app-django~=3.1
python-jose~=3.0
python-dotenv~=0.9

social-auth-app-django is a Django-specific package of the python-
social-auth project that allows you to authenticate to your website
using one of many social connections.

Install those dependencies with pip into your virtual environment.

https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/

Security and Performance Chapter 7

[356]

How to do it...
To connect Auth0 to your Django project, follow these steps:

Add the social authentication app to INSTALLED_APPS in the settings file, like so:1.

myproject/settings/_base.py
INSTALLED_APPS = [
 # …
 "social_django",
]

Now, add the Auth0 settings required by the social_django app, which will be2.
similar to the following:

myproject/settings/_base.py
SOCIAL_AUTH_AUTH0_DOMAIN = get_secret("AUTH0_DOMAIN")
SOCIAL_AUTH_AUTH0_KEY = get_secret("AUTH0_KEY")
SOCIAL_AUTH_AUTH0_SECRET = get_secret("AUTH0_SECRET")
SOCIAL_AUTH_AUTH0_SCOPE = ["openid", "profile", "email"]
SOCIAL_AUTH_TRAILING_SLASH = False

Make sure that you define AUTH0_DOMAIN, AUTH0_KEY, and AUTH0_SECRET in
your secrets or environment variables. The values for those variables can be
found in the settings of your Auth0 app that you created in Step 1 of this
recipe's Getting ready section.

We need to create a backend for the Auth0 connection, as shown in the following3.
example:

myproject/apps/external_auth/backends.py
from urllib import request
from jose import jwt
from social_core.backends.oauth import BaseOAuth2

class Auth0(BaseOAuth2):
 """Auth0 OAuth authentication backend"""

 name = "auth0"
 SCOPE_SEPARATOR = " "
 ACCESS_TOKEN_METHOD = "POST"
 REDIRECT_STATE = False
 EXTRA_DATA = [("picture", "picture"), ("email", "email")]

 def authorization_url(self):
 return "https://" + self.setting("DOMAIN") + "/authorize"

Security and Performance Chapter 7

[357]

 def access_token_url(self):
 return "https://" + self.setting("DOMAIN") + "/oauth/token"

 def get_user_id(self, details, response):
 """Return current user id."""
 return details["user_id"]

 def get_user_details(self, response):
 # Obtain JWT and the keys to validate the signature
 id_token = response.get("id_token")
 jwks = request.urlopen(
 "https://" + self.setting("DOMAIN") + "/.well-
 known/jwks.json"
)
 issuer = "https://" + self.setting("DOMAIN") + "/"
 audience = self.setting("KEY") # CLIENT_ID
 payload = jwt.decode(
 id_token,
 jwks.read(),
 algorithms=["RS256"],
 audience=audience,
 issuer=issuer,
)
 first_name, last_name = (payload.get("name") or
 " ").split(" ", 1)
 return {
 "username": payload.get("nickname") or "",
 "first_name": first_name,
 "last_name": last_name,
 "picture": payload.get("picture") or "",
 "user_id": payload.get("sub") or "",
 "email": payload.get("email") or "",
 }

Add the new backend to your AUTHENTICATION_BACKENDS setting, as shown in4.
the following code:

myproject/settings/_base.py
AUTHENTICATION_BACKENDS = {
 "myproject.apps.external_auth.backends.Auth0",
 "django.contrib.auth.backends.ModelBackend",
}

Security and Performance Chapter 7

[358]

We want the social authentication user to be accessible from any template.5.
Therefore, we'll create a context processor for it:

myproject/apps/external_auth/context_processors.py
def auth0(request):
 data = {}
 if request.user.is_authenticated:
 auth0_user = request.user.social_auth.filter(
 provider="auth0",
).first()
 data = {
 "auth0_user": auth0_user,
 }
 return data

Next, we need to register it in the settings:6.

myproject/settings/_base.py
TEMPLATES = [
 {
 "BACKEND":
 "django.template.backends.django.DjangoTemplates",
 "DIRS": [os.path.join(BASE_DIR, "myproject", "templates")],
 "APP_DIRS": True,
 "OPTIONS": {
 "context_processors": [
 "django.template.context_processors.debug",
 "django.template.context_processors.request",
 "django.contrib.auth.context_processors.auth",
 "django.contrib.messages.context_processors
 .messages",
 "django.template.context_processors.media",
 "django.template.context_processors.static",
 "myproject.apps.core.context_processors
 .website_url",
 "myproject.apps.external_auth
 .context_processors.auth0",
]
 },
 }
]

Now, let's create views for the index page, dashboard, and logout:7.

myproject/apps/external_auth/views.py
from urllib.parse import urlencode

from django.shortcuts import render, redirect

Security and Performance Chapter 7

[359]

from django.contrib.auth.decorators import login_required
from django.contrib.auth import logout as log_out
from django.conf import settings

def index(request):
 user = request.user
 if user.is_authenticated:
 return redirect(dashboard)
 else:
 return render(request, "index.html")

@login_required
def dashboard(request):
 return render(request, "dashboard.html")

def logout(request):
 log_out(request)
 return_to = urlencode({"returnTo":
 request.build_absolute_uri("/")})
 logout_url = "https://%s/v2/logout?client_id=%s&%s" % (
 settings.SOCIAL_AUTH_AUTH0_DOMAIN,
 settings.SOCIAL_AUTH_AUTH0_KEY,
 return_to,
)
 return redirect(logout_url)

Create the index template, as follows:8.

{# index.html #}
{% extends "base.html" %}
{% load i18n utility_tags %}

{% block content %}
<div class="login-box auth0-box before">
 <h3>{% trans "Please log in for the best user experience"
%}</h3>
 <a class="btn btn-primary btn-lg" href="{% url "social:begin"
 backend="auth0" %}">{% trans "Log in" %}
</div>
{% endblock %}

Security and Performance Chapter 7

[360]

Create a dashboard template accordingly:9.

{# dashboard.html #}
{% extends "base.html" %}
{% load i18n %}

{% block content %}
 <div class="logged-in-box auth0-box logged-in">
 <img alt="{% trans 'Avatar' %}" src="{{
 auth0_user.extra_data.picture }}"
 width="50" height="50" />
 <h2>{% blocktrans with name=request.user
 .first_name %}Welcome, {{ name }}
 {% endblocktrans %}!</h2>

 <a class="btn btn-primary btn-logout" href="{% url
 "auth0_logout" %}">{% trans "Log out" %}
 </div>
{% endblock %}

Update the URL rules:10.

myproject/urls.py
from django.conf.urls.i18n import i18n_patterns
from django.urls import path, include

from myproject.apps.external_auth import views as
external_auth_views

urlpatterns = i18n_patterns(
 path("", external_auth_views.index, name="index"),
 path("dashboard/", external_auth_views.dashboard,
 name="dashboard"),
 path("logout/", external_auth_views.logout,
 name="auth0_logout"),
 path("", include("social_django.urls")),
 # …
)

Finally, add the login URL settings:11.

LOGIN_URL = "/login/auth0"
LOGIN_REDIRECT_URL = "dashboard"

Security and Performance Chapter 7

[361]

How it works...
If you point a browser to the index page of your project, you will see a link inviting you to
log in. When you click on it, you will be redirected to the Auth0 authentication system,
whose screen will look similar to the following:

This much is enabled out of the box by python-social-auth, an Auth0 backend, by
configuring its associated SOCIAL_AUTH_* settings.

Once a successful login has been completed, the Auth0 backend receives the data from the
response and processes it. The associated data is attached to the user object associated with
the request. In the dashboard view, which is reached as a result of authentication
proceeding to LOGIN_REDIRECT_URL, user details are extracted and added to the template
context. dashboard.html is then rendered. The result may look as follows:

Security and Performance Chapter 7

[362]

The logout button presented on the dashboard will proceed to log the user back out when
pressed.

See also
The Implementing password validation recipe
The Downloading authorized files recipe

Caching the method return value
If you call a model method with heavy calculations or database queries multiple times in
the request-response cycle, the performance of the view might become very slow. In this
recipe, you will learn about a pattern that you can use to cache the return value of a method
for later repetitive use. Note that we are not using the Django cache framework here, only
what Python provides us by default.

Getting ready
Choose an app with a model that has a time-consuming method that will be used
repetitively in the same request-response cycle.

How to do it...
Perform the following steps:

This is a pattern that you can use to cache a method return value of a model for1.
repetitive use in views, forms, or templates, as follows:

class SomeModel(models.Model):
 def some_expensive_function(self):
 if not hasattr(self, "_expensive_value_cached"):
 # do some heavy calculations...
 # ... and save the result to result variable
 self._expensive_value_cached = result
 return self._expensive_value_cached

Security and Performance Chapter 7

[363]

For example, let's create a get_thumbnail_url() method for the ViralVideo2.
model. You will explore this in more detail later in the Using database query
expressions recipe in Chapter 10, Bells and Whistles:

myproject/apps/viral_videos/models.py
import re
from django.db import models
from django.utils.translation import ugettext_lazy as _

from myproject.apps.core.models import
CreationModificationDateBase, UrlBase

class ViralVideo(CreationModificationDateBase, UrlBase):
 embed_code = models.TextField(
 _("YouTube embed code"),
 blank=True)

 # …

 def get_thumbnail_url(self):
 if not hasattr(self, "_thumbnail_url_cached"):
 self._thumbnail_url_cached = ""
 url_pattern = re.compile(
 r'src="https://www.youtube.com/embed/([^"]+)"'
)
 match = url_pattern.search(self.embed_code)
 if match:
 video_id = match.groups()[0]
 self._thumbnail_url_cached = (
 f"https://img.youtube.com/vi/{video_id}/0.jpg"
)
 return self._thumbnail_url_cached

How it works...
In this generic example, the method checks whether the _expensive_value_cached
attribute exists for the model instance. If it doesn't exist, time-consuming calculations are
performed and the result is assigned to this new attribute. At the end of the method, the
cached value is returned. Of course, if you have several weighty methods, you will need to
use different attribute names to save each calculated value.

Security and Performance Chapter 7

[364]

You can now use something such as {{ object.some_expensive_function }} in the
header and footer of a template, and the time-consuming calculations will be done just
once.

In a template, you can also use the function in both the {% if %} condition and the output
of the value, as follows:

{% if object.some_expensive_function %}

 {{ object.some_expensive_function }}

{% endif %}

In the other example, we checked the thumbnail of a YouTube video by parsing the URL of
the video's embed code, getting its ID, and then composing the URL of the thumbnail
image. By doing this, you can use it in a template, as follows:

{% if video.get_thumbnail_url %}
 <figure>
 <img src="{{ video.get_thumbnail_url }}"
 alt="{{ video.title }}"
 />
 <figcaption>{{ video.title }}</figcaption>
 </figure>
{% endif %}

There's more...
The approach we have just described only works if the method is called without arguments
so that the result will always be the same. But what if the input varies? Since Python 3.2,
there is a decorator we can use to provide basic Least Recently Used (LRU) caching of
method calls based on a hash of the arguments (at least those that are hashable).

For example, let's look at a contrived and trivial example with a function that takes in two
values and returns the result of some expensive logic:

def busy_bee(a, b):
 # expensive logic
 return result

Security and Performance Chapter 7

[365]

If we had such a function and wanted to provide a cache to store the results of some
commonly used input variations, we could do so easily with the @lru_cache decorator
from the functools package, as follows:

from functools import lru_cache

@lru_cache(maxsize=100, typed=True)
def busy_bee(a, b):
 # expensive logic
 return result

Now, we have provided a caching mechanism that will store up to 100 results under the
keys that we hashed from the input. The typed option was added in Python 3.3 and, by
specifying True, we have made it so that a call that has a=1 and b=2 will be stored
separately from one with a=1.0 and b=2.0. Depending on how the logic operates and
what the return value is, such variation may or may not be appropriate.

You can learn more about the @lru_cache decorator in the functools
documentation at https:/ /docs. python. org/ 3/library/ functools.
html#functools. lru_ cache.

We could also use this decorator for the examples earlier in this recipe to simplify the code,
as follows:

myproject/apps/viral_videos/models.py
from functools import lru_cache
…

class ViralVideo(CreationModificationDateMixin, UrlMixin):
 # …
 @lru_cache
 def get_thumbnail_url(self):
 # …

See also
Chapter 4, Templates and JavaScript
The Using Memcached to cache Django views recipe
The Using Redis to cache Django views recipe

https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache

Security and Performance Chapter 7

[366]

Using Memcached to cache Django views
Django allows us to speed up the request-response cycle by caching the most expensive
parts, such as database queries or template rendering. The fastest and most reliable caching
natively supported by Django is the memory-based cache server Memcached. In this
recipe, you will learn how to use Memcached to cache a view for the viral_videos app.
We'll explore this further in the Using database query expressions recipe in Chapter 10, Bells
and Whistles.

Getting ready
There are several things we need to do in order to prepare caching for our Django project:

Let's install the memcached service. For example, the simplest way to do that on1.
macOS is to use Homebrew:

$ brew install memcached

Then, you can start, stop, or restart the Memcached service with these2.
commands:

$ brew services start memcached
$ brew services stop memcached
$ brew services restart memcached

On other operating systems, you can install Memcached using apt-get,
yum, or other default package management utilities. Another option is to
compile it from the source, as mentioned at https:/ /memcached. org/
downloads.

Install Memcached Python bindings in your virtual environment, as follows:3.

(env)$ pip install python-memcached==1.59

How to do it...
To integrate caching for your specific views, perform the following steps:

Set CACHES in the project settings, as follows:1.

myproject/settings/_base.py
CACHES = {

https://memcached.org/downloads
https://memcached.org/downloads
https://memcached.org/downloads
https://memcached.org/downloads
https://memcached.org/downloads
https://memcached.org/downloads
https://memcached.org/downloads
https://memcached.org/downloads

Security and Performance Chapter 7

[367]

 "memcached": {
 "BACKEND":
 "django.core.cache.backends.memcached.MemcachedCache",
 "LOCATION": get_secret("CACHE_LOCATION"),
 "TIMEOUT": 60, # 1 minute
 "KEY_PREFIX": "myproject",
 },
}
CACHES["default"] = CACHES["memcached"]

Make sure that you have CACHE_LOCATION set to "localhost:11211" in your2.
secrets or environment variables.
Modify the views of the viral_videos app, as follows:3.

myproject/apps/viral_videos/views.py
from django.shortcuts import render
from django.views.decorators.cache import cache_page
from django.views.decorators.vary import vary_on_cookie

@vary_on_cookie
@cache_page(60)
def viral_video_detail(request, pk):
 # …
 return render(
 request,
 "viral_videos/viral_video_detail.html",
 {'video': video}
)

If you follow the Redis setup in the next recipe, you'll see that there is no
change whatsoever in the views.py file. This shows us that we can
change the underlying caching mechanism at will without ever needing to
modify the code that uses it.

How it works...
As you will see later in the Using database query expressions recipe in Chapter 10, Bells and
Whistles, the detail view of the viral video shows the number of impressions by
authenticated and anonymous users. If you access a viral video (such as at
http://127.0.0.1:8000/en/videos/1/) and refresh the page a few times with caching
enabled, you will notice that the number of impressions changes only once a minute. This is
because each response is cached for 60 seconds for every user. We set caching for the view
using the @cache_page decorator.

Security and Performance Chapter 7

[368]

Memcached is a key-value store and it uses the full URL by default to generate the key for
each cached page. When two visitors access the same page simultaneously, the first visitor's
request would receive the page generated by the Python code, and the second one would
get the same HTML code but from the Memcached server.

In our example, to ensure that each visitor gets treated separately, even if they access the
same URL, we are using the @vary_on_cookie decorator. This decorator checks the
uniqueness of the Cookie header in the HTTP request.

You can learn more about Django's cache framework from the official
documentation at https:/ /docs. djangoproject. com/ en/ 3.0/ topics/
cache/ . Similarly, you can find out more about Memcached at https:/ /
memcached. org/ .

See also
The Caching the method return value recipe
The Using Redis to cache Django views recipe
The Using database query expressions recipe in Chapter 10, Bells and Whistles

Using Redis to cache Django views
Although Memcached is well established in the market as a caching mechanism, and well
supported by Django, Redis is an alternate system that provides all the functionality of
Memcached and more. Here, we'll revisit the process from the Using Memcached to cache
Django views recipe and learn how to do the same using Redis instead.

Getting ready
There are several things we need to do in order to prepare caching for our Django project:

Let's install the Redis service. For example, the simplest way to do that on macOS1.
is to use Homebrew:

$ brew install redis

https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://memcached.org/
https://memcached.org/
https://memcached.org/
https://memcached.org/
https://memcached.org/
https://memcached.org/
https://memcached.org/

Security and Performance Chapter 7

[369]

Then, you can start, stop, or restart the Redis service with these commands:2.

$ brew services start redis
$ brew services stop redis
$ brew services restart redis

On other operating systems, you can install Redis using apt-get, yum, or
other default package management utilities. Another option is to compile
it from the source, as mentioned at https:/ /redis. io/ download.

Install the Redis cache backend for Django and its dependencies in your virtual3.
environment, as follows:

(env)$ pip install redis==3.3.11
(env)$ pip install hiredis==1.0.1
(env)$ pip install django-redis-cache==2.1.0

How to do it...
To integrate caching for your specific views, perform the following steps:

Set CACHES in the project settings, as follows:1.

myproject/settings/_base.py
CACHES = {
 "redis": {
 "BACKEND": "redis_cache.RedisCache",
 "LOCATION": [get_secret("CACHE_LOCATION")],
 "TIMEOUT": 60, # 1 minute
 "KEY_PREFIX": "myproject",
 },
}
CACHES["default"] = CACHES["redis"]

Make sure that you have CACHE_LOCATION set to "localhost:6379" in your2.
secrets or environment variables.
Modify the views of the viral_videos app, as follows:3.

myproject/apps/viral_videos/views.py
from django.shortcuts import render
from django.views.decorators.cache import cache_page
from django.views.decorators.vary import vary_on_cookie

@vary_on_cookie

https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download

Security and Performance Chapter 7

[370]

@cache_page(60)
def viral_video_detail(request, pk):
 # …
 return render(
 request,
 "viral_videos/viral_video_detail.html",
 {'video': video}
)

If you followed the Memcached setup from the previous recipe, you will
see that there is no change whatsoever in the views.py here. This shows
you that we can change the underlying caching mechanism at will
without ever needing to modify the code that uses it.

How it works...
Just like with Memcached, we set caching for the view using the @cache_page decorator.
So, each response is cached for 60 seconds for every user. A viral video detail view (such as
the one at http://127.0.0.1:8000/en/videos/1/) shows the number of impressions
by authenticated and anonymous users. With caching enabled, if you refresh the page a few
times, you will notice that the number of impressions changes only once a minute.

Just like Memcached, Redis is a key-value store, and when used for caching, it generates the
key for each cached page based on the full URL. When two visitors access the same page
simultaneously, the first visitor's request would receive the page generated by the Python
code, and the second one would get the same HTML code but from the Redis server.

In our example, to ensure that each visitor gets treated separately, even if they access the
same URL, we are using the @vary_on_cookie decorator. This decorator checks the
uniqueness of the Cookie header in the HTTP request.

You can learn more about Django's cache framework from the official
documentation at https:/ /docs. djangoproject. com/ en/ 3.0/ topics/
cache/ . Similarly, you can find out more about Memcached at https:/ /
redis. io/ .

https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://docs.djangoproject.com/en/3.0/topics/cache/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/

Security and Performance Chapter 7

[371]

There's more...
While Redis is able to handle caching in the same manner as Memcached, there is a
multitude of additional options for the caching algorithm built right into the system. In
addition to caching, Redis can also be used as a database or message store. It supports a
variety of data structures, transactions, pub/sub, and automatic failover, among other
things.

Through the django-redis-cache backend, Redis can also be configured as the session
backend with almost no effort, like so:

myproject/settings/_base.py
SESSION_ENGINE = "django.contrib.sessions.backends.cache"
SESSION_CACHE_ALIAS = "default"

See also
The Caching the method return value recipe
The Using Memcached to cache Django views recipe
The Using database query expressions recipe in Chapter 10, Bells and Whistles

8
Hierarchical Structures

In this chapter, we will cover the following topics:

Creating hierarchical categories with django-mptt
Creating a category administration interface with django-mptt-admin
Rendering categories in a template with django-mptt
Using a single selection field to choose a category in forms with django-mptt
Using a checkbox list to choose multiple categories in forms with django-mptt
Creating hierarchical categories with django-treebeard
Creating a basic category administration interface with django-treebeard

Introduction
Whether you build your own forum, threaded comments, or categorization system, there
will be a moment when you need to save hierarchical structures in a database. Although
the tables of relational databases (such as MySQL and PostgreSQL) are flat, there is a fast
and effective way to store hierarchical structures. It is called Modified Preorder Tree
Traversal (MPTT). MPTT allows you to read tree structures without recursive calls to the
database.

Firstly, let's get familiar with the terminology of tree structures. A tree data structure is a
nested collection of nodes, starting at the root node and with references to child nodes.
There are restrictions: for instance, no node should reference back to create a loop and no
reference should be duplicated. The following are some other terms to remember:

A parent is any node that has references to child nodes.
Descendants are nodes that can be reached by recursively traversing from a
parent to its children. Therefore, a node's descendants will be its child, the child's
children, and so on.

Hierarchical Structures Chapter 8

[373]

Ancestors are nodes that can be reached by recursively traversing from a child to
its parent. Therefore, a node's ancestors will be its parent, the parent's parent,
and so on up to the root.
Siblings are nodes with the same parent.
A leaf is a node without children.

Now, I'll explain how MPTT works. Imagine laying out your tree horizontally with the root
node at the top. Each node in the tree has left and right values. Imagine them as small left
and right handles on the left- and right-hand sides of the node. Then, you walk (traverse)
around the tree counterclockwise, starting from the root node, and mark each left or right
value that you find with a number: 1, 2, 3, and so on. It will look similar to the following
diagram:

Hierarchical Structures Chapter 8

[374]

In the database table of this hierarchical structure, you have a title, left value, and right
value for each node.

Now, if you want to get the subtree of the B node with 2 as the left value and 11 as the right
value, you will have to select all of the nodes that have a left value between 2 and 11. They
are C, D, E, and F.

To get all of the ancestors of the D node with 5 as the left value and 10 as the right value,
you have to select all of the nodes that have a left value that is less than 5 and a right value
that is more than 10. These would be B and A.

To get the number of the descendants for a node, you can use the following formula:

descendants = (right - left - 1) / 2

Therefore, the number of descendants for the B node can be calculated as shown in the
following formula:

(11 - 2 - 1) / 2 = 4

If we want to attach the E node to the C node, we will have to update the left and right
values only for the nodes of their first common ancestor, the B node. Then, the C node will
still have 3 as the left value; the E node will get 4 as the left value and 5 as the right value;
the right value of the C node will become 6; the left value of the D node will become 7; the
left value of the F node will stay at 8; the others will also remain the same.

Similarly, there are other tree-related operations with nodes in MPTT. It might be too
complicated to manage all of this by yourself for every hierarchical structure in your
project. Luckily, there is a Django app called django-mptt that has a long history of
handling these algorithms and provides a straightforward API to handle the tree structures.
Another app, django-treebeard, has also been tried and tested and gained additional
traction as a powerful alternative when it replaced MPTT in django CMS 3.1. In this
chapter, you will learn how to use these helper apps.

Technical requirements
You will need the latest stable version of Python 3, MySQL, or PostgreSQL and a Django
project with a virtual environment.

Hierarchical Structures Chapter 8

[375]

You can find all of the code for this chapter at the ch08 directory of the GitHub repository,
at: https://github. com/ PacktPublishing/ Django- 3- Web- Development- Cookbook- Fourth-
Edition.

Creating hierarchical categories with
django-mptt
To illustrate how to deal with MPTT, we will build on top of the ideas app from Chapter
3, Forms and Views. In our changes, we will replace the categories with a
hierarchical Category model and update the Idea model to have a many-to-many
relationship with the categories. Alternatively, you can create the app from fresh, using
only the content shown here, to implement a very basic version of the Idea model from
scratch.

Getting ready
To get started, perform the following steps:

Install django-mptt in your virtual environment using the following command:1.

(env)$ pip install django-mptt==0.10.0

Create the categories and ideas apps if you have not done so already. Add2.
those apps as well as mptt to INSTALLED_APPS in the settings, as follows:

myproject/settings/_base.py
INSTALLED_APPS = [
 # …
 "mptt",
 # …
 "myproject.apps.categories",
 "myproject.apps.ideas",
]

https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition

Hierarchical Structures Chapter 8

[376]

How to do it...
We will create a hierarchical Category model and tie it to the Idea model, which will have
a many-to-many relationship with the categories, as follows:

Open the models.py file in the categories app and add a Category model1.
that extends mptt.models.MPTTModel and
CreationModificationDateBase, defined in Chapter 2, Models and Database
Structure. In addition to the fields coming from the mixins, the Category model
will need to have a parent field of the TreeForeignKey type and a title field:

myproject/apps/ideas/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _
from mptt.models import MPTTModel
from mptt.fields import TreeForeignKey

from myproject.apps.core.models import CreationModificationDateBase

class Category(MPTTModel, CreationModificationDateBase):
 parent = TreeForeignKey(
 "self", on_delete=models.CASCADE,
 blank=True, null=True, related_name="children"
)
 title = models.CharField(_("Title"), max_length=200)

 class Meta:
 ordering = ["tree_id", "lft"]
 verbose_name = _("Category")
 verbose_name_plural = _("Categories")

 class MPTTMeta:
 order_insertion_by = ["title"]

 def __str__(self):
 return self.title

Hierarchical Structures Chapter 8

[377]

Update the Idea model to include the categories field of2.
the TreeManyToManyField type:

myproject/apps/ideas/models.py
from django.utils.translation import gettext_lazy as _

from mptt.fields import TreeManyToManyField

from myproject.apps.core.models import
CreationModificationDateBase, UrlBase

class Idea(CreationModificationDateBase, UrlBase):
 # …
 categories = TreeManyToManyField(
 "categories.Category",
 verbose_name=_("Categories"),
 related_name="category_ideas",
)

Update your database by making migrations and running them:3.

(env)$ python manage.py makemigrations
(env)$ python manage.py migrate

How it works...
The MPTTModel mixin will add the tree_id, lft, rght, and level fields to the Category
model:

The tree_id field is used as you can have multiple trees in the database table. In
fact, each root category is saved in a separate tree.
The lft and rght fields store the left and right values used in the MPTT
algorithms.
The level field stores the node's depth in the tree. The root node will be level 0.

Hierarchical Structures Chapter 8

[378]

Through the order_insertion_by meta option specific to MPTT, we ensure that when
new categories are added, they stay in alphabetical order by title.

Besides new fields, the MPTTModel mixin adds methods to navigate through the tree
structure similar to how you navigate through DOM elements using JavaScript. These
methods are as follows:

If you want to access the ancestors of a category, use the following code. Here,
the ascending parameter defines from which direction to read the nodes (the
default is False), and the include_self parameter defines whether to include
the category itself in QuerySet (the default is False):

ancestor_categories = category.get_ancestors(
 ascending=False,
 include_self=False,
)

To just get the root category, use the following code:

root = category.get_root()

If you want to get the direct children of a category, use the following code:

children = category.get_children()

To get all of the descendants of a category, use the following code. Here, the
include_self parameter again defines whether or not to include the category
itself in QuerySet:

descendants = category.get_descendants(include_self=False)

If you want to get the descendant count without querying the database, use the
following code:

descendants_count = category.get_descendant_count()

To get all siblings, call the following method:

siblings = category.get_siblings(include_self=False)

Hierarchical Structures Chapter 8

[379]

Root categories are considered siblings of other root categories.

To just get the previous and next siblings, call the following methods:

previous_sibling = category.get_previous_sibling()
next_sibling = category.get_next_sibling()

Also, there are methods to check whether the category is root, child, or leaf, as
follows:

category.is_root_node()
category.is_child_node()
category.is_leaf_node()

All of these methods can be used either in views, templates, or management commands. If
you want to manipulate the tree structure, you can also use the insert_at() and
move_to() methods. In this case, you can read about them and the tree manager methods
at https://django- mptt. readthedocs. io/en/ stable/ models. html.

In the preceding models, we used TreeForeignKey and TreeManyToManyField. These
are similar to ForeignKey and ManyToManyField, except that they show the choices
indented in hierarchies in the administration interface.

Also, note that in the Meta class of the Category model, we order the categories by
tree_id and then by the lft value to show the categories naturally in the tree structure.

See also
The Creating a model mixin to handle creation and modification dates recipe in
Chapter 2, Models and Database Structure
The Creating a category administration interface with django-mptt-admin recipe

https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html
https://django-mptt.readthedocs.io/en/stable/models.html

Hierarchical Structures Chapter 8

[380]

Creating a category administration interface
with django-mptt-admin
The django-mptt app comes with a simple model administration mixin that allows you to
create a tree structure and list it with indentation. To reorder trees, you need to either create
this functionality yourself or use a third-party solution. One app that can help you to create
a draggable administration interface for hierarchical models is django-mptt-admin. Let's
take a look at it in this recipe.

Getting ready
First, set up the categories app as described in the previous, Creating hierarchical categories
with django-mptt recipe. Then, we need to install the django-mptt-admin app by
performing the following steps:

Install the app in your virtual environment using the following command:1.

(env)$ pip install django-mptt-admin==0.7.2

Put it in INSTALLED_APPS in the settings, as follows:2.

myproject/settings/_base.py
INSTALLED_APPS = [
 # …
 "mptt",
 "django_mptt_admin",
]

Make sure that the static files for django-mptt-admin are available to your3.
project:

(env)$ python manage.py collectstatic

Hierarchical Structures Chapter 8

[381]

How to do it...
Create an admin.py file in which we will define the administration interface for the
Category model. It will extend DjangoMpttAdmin instead of admin.ModelAdmin, as
follows:

myproject/apps/categories/admin.py
from django.contrib import admin
from django_mptt_admin.admin import DjangoMpttAdmin

from .models import Category

@admin.register(Category)
class CategoryAdmin(DjangoMpttAdmin):
 list_display = ["title", "created", "modified"]
 list_filter = ["created"]

How it works...
The administration interface for the categories will have two modes: tree view and grid
view. Your tree view will look similar to the following screenshot:

Hierarchical Structures Chapter 8

[382]

Hierarchical Structures Chapter 8

[383]

The tree view uses the jqTree jQuery library for node manipulation. You can expand and
collapse categories for a better overview. To reorder them or change the dependencies, you
can drag and drop the titles in this list view. During reordering, the User Interface
(UI) looks similar to the following screenshot:

Note that any usual list-related settings, such as list_display or list_filter, will be
ignored in the tree view. Also, any ordering driven by the order_insertion_by meta
property will be overridden by manual sorting.

If you want to filter categories, sort them by a specific field, or apply admin actions, you can
switch to the grid view, which shows the default category change list, as in the following
screenshot:

Hierarchical Structures Chapter 8

[384]

See also
The Creating hierarchical categories with django-mptt recipe
The Creating a category administration interface with django-treebeard recipe

Hierarchical Structures Chapter 8

[385]

Rendering categories in a template with
django-mptt
Once you have created categories in your app, you need to display them hierarchically in a
template. The easiest way to do this with MPTT trees, as described in the Creating
hierarchical categories with django-mptt recipe, is to use the {% recursetree %} template
tag from the django-mptt app. We will show you how to do that in this recipe.

Getting ready
Make sure you have the categories and ideas apps. There, your Idea model should
have many-to-many relation to the Category model, as per the Creating hierarchical
categories with django-mptt recipe. Enter some categories in the database.

How to do it...
Pass QuerySet of your hierarchical categories to the template and then use the {%
recursetree %} template tag as follows:

Create a view that loads all of the categories and passes them to a template:1.

myproject/apps/categories/views.py
from django.views.generic import ListView

from .models import Category

class IdeaCategoryList(ListView):
 model = Category
 template_name = "categories/category_list.html"
 context_object_name = "categories"

Hierarchical Structures Chapter 8

[386]

Create a template with the following content to output the hierarchy of2.
categories:

{# categories/category_list.html #}
{% extends "base.html" %}
{% load mptt_tags %}

{% block content %}
 <ul class="root">
 {% recursetree categories %}

 {{ node.title }}
 {% if not node.is_leaf_node %}
 <ul class="children">
 {{ children }}

 {% endif %}

 {% endrecursetree %}

{% endblock %}

Create a URL rule to show the view:3.

myproject/urls.py
from django.conf.urls.i18n import i18n_patterns
from django.urls import path

from myproject.apps.categories import views as categories_views

urlpatterns = i18n_patterns(
 # …
 path(
 "idea-categories/",
 categories_views.IdeaCategoryList.as_view(),
 name="idea_categories",
),
)

Hierarchical Structures Chapter 8

[387]

How it works...
The template will be rendered as nested lists, as shown in the following screenshot:

The {% recursetree %} block template tag takes QuerySet of the categories and renders
the list using the template content nested within the tag. There are two special variables
used here:

The node variable is an instance of the Category model whose fields or methods
can be used to add specific CSS classes or HTML5 data-* attributes for
JavaScript, such as {{ node.get_descendent_count }}, {{ node.level
}}, or {{ node.is_root }}.
Secondly, we have a children variable that defines where the rendered child
nodes of the current category will be placed.

Hierarchical Structures Chapter 8

[388]

There's more...
If your hierarchical structure is very complex, with more than 20 levels, it is recommended
to use the {% full_tree_for_model %} and {% drilldown_tree_for_node %}
iterative tags or the non-recursive tree_info template filter.

For more information on how to do this, refer to the official
documentation at https:/ /django- mptt. readthedocs. io/ en/ latest/
templates. html#iterative- tags.

See also
The Using HTML5 data attributes recipe in Chapter 4, Templates and JavaScript
The Creating hierarchical categories with django-mptt recipe
The Creating hierarchical categories with django-treebeard recipe
The Using a single selection field to choose a category in forms with django-mptt recipe

Using a single selection field to choose a
category in forms with django-mptt
What happens if you want to show category selection in a form? How will the hierarchy be
presented? In django-mptt, there is a special TreeNodeChoiceField form field that you
can use to show the hierarchical structures in a selected field. Let's take a look at how to do
this.

https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags

Hierarchical Structures Chapter 8

[389]

Getting ready
We will start with the categories and ideas apps that we defined in the previous
recipes. For this recipe, we will also need django-crispy-forms. Have a look at how to
install it in the Creating a form layout with django-crispy-forms recipe in Chapter 3, Forms and
Views.

How to do it...
Let's enhance the filter form for ideas that we created in the Filtering object lists recipe in
Chapter 3, Forms and Views, by adding a field for filtering by category:

In the forms.py file of the ideas app, create a form with a category field as1.
follows:

myproject/apps/ideas/forms.py
from django import forms
from django.utils.safestring import mark_safe
from django.utils.translation import ugettext_lazy as _
from django.contrib.auth import get_user_model

from crispy_forms import bootstrap, helper, layout
from mptt.forms import TreeNodeChoiceField

from myproject.apps.categories.models import Category

from .models import Idea, RATING_CHOICES

User = get_user_model()

class IdeaFilterForm(forms.Form):
 author = forms.ModelChoiceField(
 label=_("Author"),
 required=False,
 queryset=User.objects.all(),
)
 category = TreeNodeChoiceField(
 label=_("Category"),
 required=False,
 queryset=Category.objects.all(),
 level_indicator=mark_safe(" ")
)
 rating = forms.ChoiceField(
 label=_("Rating"), required=False, choices=RATING_CHOICES

Hierarchical Structures Chapter 8

[390]

)
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 author_field = layout.Field("author")
 category_field = layout.Field("category")
 rating_field = layout.Field("rating")
 submit_button = layout.Submit("filter", _("Filter"))
 actions = bootstrap.FormActions(submit_button)

 main_fieldset = layout.Fieldset(
 _("Filter"),
 author_field,
 category_field,
 rating_field,
 actions,
)

 self.helper = helper.FormHelper()
 self.helper.form_method = "GET"
 self.helper.layout = layout.Layout(main_fieldset)

We should already have created IdeaListView, an associated URL rule, and the2.
idea_list.html template to show this form. Make sure to render the filter form
in the template using the {% crispy %} template tag, as follows:

{# ideas/idea_list.html #}
{% extends "base.html" %}
{% load i18n utility_tags crispy_forms_tags %}

{% block sidebar %}
 {% crispy form %}
{% endblock %}

{% block main %}
 {# … #}
{% endblock %}

Hierarchical Structures Chapter 8

[391]

How it works...
The category selection drop-down menu will look similar to the following:

TreeNodeChoiceField acts like ModelChoiceField; however, it shows hierarchical
choices as indented. By default, TreeNodeChoiceField represents each deeper level
prefixed by three dashes, ---. In our example, we have changed the level indicator to be
four non-breaking spaces (the HTML entities) by passing the level_indicator
parameter to the field. To ensure that the non-breaking spaces aren't escaped, we use the
mark_safe() function.

Hierarchical Structures Chapter 8

[392]

See also
The Rendering categories in a template with django-mptt recipe
The Using a checkbox list to choose multiple categories in forms with django-mptt recipe

Using a checkbox list to choose multiple
categories in forms with django-mptt
When one or more categories need to be selected at once in a form, you can use the
TreeNodeMultipleChoiceField multiple selection field that is provided by django-
mptt. However, multiple selection fields (for example, <select multiple>) are not very
user-friendly from an interface point of view, as the user needs to scroll and hold control or
command keys while clicking to make multiple choices. Especially when there is a fairly
large number of items to choose from, and the user wants to select several at once, or the
user has accessibility handicaps, such as poor motor control, this can lead to a really awful
user experience. A much better approach is to provide a checkbox list from which the user
can choose categories. In this recipe, we will create a field that allows you to show the
hierarchical tree structure as indented checkboxes in the form.

Getting ready
We will start with the categories and ideas apps that we defined in the previous recipes
and the core app, which you should have in your project.

How to do it...
To render an indented list of categories with checkboxes, we will create and use a new
MultipleChoiceTreeField form field and create an HTML template for this field.

Hierarchical Structures Chapter 8

[393]

The specific template will be passed to the crispy_forms layout in the form. To do this,
perform the following steps:

In the core app, add a form_fields.py file and create a1.
MultipleChoiceTreeField form field that extends
ModelMultipleChoiceField, as follows:

myproject/apps/core/form_fields.py
from django import forms

class MultipleChoiceTreeField(forms.ModelMultipleChoiceField):
 widget = forms.CheckboxSelectMultiple

 def label_from_instance(self, obj):
 return obj

Use the new field with the categories to choose from in a new form for idea2.
creation. Also, in the form layout, pass a custom template to the categories
field, as shown in the following:

myproject/apps/ideas/forms.py
from django import forms
from django.utils.translation import ugettext_lazy as _
from django.contrib.auth import get_user_model

from crispy_forms import bootstrap, helper, layout

from myproject.apps.categories.models import Category
from myproject.apps.core.form_fields import MultipleChoiceTreeField

from .models import Idea, RATING_CHOICES

User = get_user_model()

class IdeaForm(forms.ModelForm):
 categories = MultipleChoiceTreeField(
 label=_("Categories"),
 required=False,
 queryset=Category.objects.all(),
)

 class Meta:
 model = Idea
 exclude = ["author"]

 def __init__(self, request, *args, **kwargs):

Hierarchical Structures Chapter 8

[394]

 self.request = request
 super().__init__(*args, **kwargs)

 title_field = layout.Field("title")
 content_field = layout.Field("content", rows="3")
 main_fieldset = layout.Fieldset(_("Main data"),
 title_field, content_field)

 picture_field = layout.Field("picture")
 format_html = layout.HTML(
 """{% include "ideas/includes/picture_guidelines.html"
 %}"""
)

 picture_fieldset = layout.Fieldset(
 _("Picture"),
 picture_field,
 format_html,
 title=_("Image upload"),
 css_id="picture_fieldset",
)

 categories_field = layout.Field(
 "categories",
 template="core/includes
 /checkboxselectmultiple_tree.html"
)
 categories_fieldset = layout.Fieldset(
 _("Categories"), categories_field,
 css_id="categories_fieldset"
)

 submit_button = layout.Submit("save", _("Save"))
 actions = bootstrap.FormActions(submit_button,
 css_class="my-4")

 self.helper = helper.FormHelper()
 self.helper.form_action = self.request.path
 self.helper.form_method = "POST"
 self.helper.layout = layout.Layout(
 main_fieldset,
 picture_fieldset,
 categories_fieldset,
 actions,
)

 def save(self, commit=True):
 instance = super().save(commit=False)

Hierarchical Structures Chapter 8

[395]

 instance.author = self.request.user
 if commit:
 instance.save()
 self.save_m2m()
 return instance

Create a template for a Bootstrap-style checkbox list based on the crispy forms3.
template, bootstrap4/layout/checkboxselectmultiple.html, as shown in
the following:

{# core/include/checkboxselectmultiple_tree.html #}
{% load crispy_forms_filters l10n %}

<div class="{% if field_class %} {{ field_class }}{% endif %}"{% if
flat_attrs %} {{ flat_attrs|safe }}{% endif %}>

 {% for choice_value, choice_instance in field.field.choices %}
 <div class="{%if use_custom_control%}custom-control custom-
 checkbox{% if inline_class %} custom-control-inline{% endif
 %}{% else %}form-check{% if inline_class %} form-check-
 inline{% endif %}{% endif %}">
 <input type="checkbox" class="{%if use_custom_control%}
 custom-control-input{% else %}form-check-input
 {% endif %}{% if field.errors %} is-invalid{% endif %}"
 {% if choice_value in field.value or choice_
 value|stringformat:"s" in field.value or
 choice_value|stringformat:"s" == field.value
 |default_if_none:""|stringformat:"s" %} checked=
 "checked"{% endif %} name="{{ field.html_name }}"
 id="id_{{ field.html_name }}_{{ forloop.counter }}"
 value="{{ choice_value|unlocalize }}" {{ field.field
 .widget.attrs|flatatt }}>
 <label class="{%if use_custom_control%}custom-control-
 label{% else %}form-check-label{% endif %} level-{{
 choice_instance.level }}" for="id_{{ field.html_name
 }}_{{ forloop.counter }}">
 {{ choice_instance|unlocalize }}
 </label>
 {% if field.errors and forloop.last and not inline_class %}
 {% include 'bootstrap4/layout/field_errors_block.html'
 %}
 {% endif %}
 </div>
 {% endfor %}
 {% if field.errors and inline_class %}
 <div class="w-100 {%if use_custom_control%}custom-control
 custom-checkbox{% if inline_class %} custom-control-inline
 {% endif %}{% else %}form-check{% if inline_class %} form-

Hierarchical Structures Chapter 8

[396]

 check-inline{% endif %}{% endif %}">
 <input type="checkbox" class="custom-control-input {% if
 field.errors %}is-invalid{%endif%}">
 {% include 'bootstrap4/layout/field_errors_block.html' %}
 </div>
 {% endif %}

 {% include 'bootstrap4/layout/help_text.html' %}
</div>

Create a new view for adding an idea, using the form we just created:4.

myproject/apps/ideas/views.py
from django.contrib.auth.decorators import login_required
from django.shortcuts import render, redirect, get_object_or_404

from .forms import IdeaForm
from .models import Idea

@login_required
def add_or_change_idea(request, pk=None):
 idea = None
 if pk:
 idea = get_object_or_404(Idea, pk=pk)
 if request.method == "POST":
 form = IdeaForm(request, data=request.POST,
 files=request.FILES, instance=idea)
 if form.is_valid():
 idea = form.save()
 return redirect("ideas:idea_detail", pk=idea.pk)
 else:
 form = IdeaForm(request, instance=idea)

 context = {"idea": idea, "form": form}
 return render(request, "ideas/idea_form.html", context)

Add the associated template to show the form with the {% crispy %} template5.
tag, whose usage you can learn more about in the Creating a form layout with
django-crispy-forms recipe in Chapter 3, Forms and Views:

{# ideas/idea_form.html #}
{% extends "base.html" %}
{% load i18n crispy_forms_tags static %}

{% block content %}
 {% trans "List of ideas"
%}

Hierarchical Structures Chapter 8

[397]

 <h1>
 {% if idea %}
 {% blocktrans trimmed with title=idea.translated_title
 %}
 Change Idea "{{ title }}"
 {% endblocktrans %}
 {% else %}
 {% trans "Add Idea" %}
 {% endif %}
 </h1>
 {% crispy form %}
{% endblock %}

We also need a URL rule pointing to the new view, as follows:6.

myproject/apps/ideas/urls.py
from django.urls import path

from .views import add_or_change_idea

urlpatterns = [
 # …
 path("add/", add_or_change_idea, name="add_idea"),
 path("<uuid:pk>/change/", add_or_change_idea,
 name="change_idea"),
]

Add rules to your CSS file to indent the labels using the classes generated in the 7.
checkbox tree field template, such as .level-0, .level-1, and .level-2, by
setting the margin-left parameter. Make sure that you have a reasonable
amount of these CSS classes for the expected maximum depth of trees in your
context, as follows:

/* myproject/site_static/site/css/style.css */
.level-0 {margin-left: 0;}
.level-1 {margin-left: 20px;}
.level-2 {margin-left: 40px;}

How it works...
As a result, we get the following form:

Hierarchical Structures Chapter 8

[398]

Hierarchical Structures Chapter 8

[399]

Contrary to the default behavior of Django, which hardcodes field generation in Python
code, the django-crispy-forms app uses templates to render the fields. You can browse
them under crispy_forms/templates/bootstrap4 and copy some of them to an
analogous path in your project's template directory to overwrite them when necessary.

In our idea creation and editing form, we pass a custom template for the categories field
that will add the .level-* CSS classes to the <label> tag, wrapping the checkboxes. One
problem with the normal CheckboxSelectMultiple widget is that when rendered, it only
uses choice values and choice texts, whereas we need other properties of the category, such
as the depth level. To solve this, we also created a custom MultipleChoiceTreeField
form field, which extends ModelMultipleChoiceField and overrides the
label_from_instance() method to return the category instance itself, instead of its
Unicode representation. The template for the field looks complicated; however, it is mostly
a refactored multiple checkbox field template
(crispy_forms/templates/bootstrap4/layout/checkboxselectmultiple.html),
with all of the necessary Bootstrap markup. We mainly just made a slight modification to
add the .level-* CSS classes.

See also
The Creating a form layout with django-crispy-forms recipe in Chapter 3, Forms and
Views
The Rendering categories in a template with django-mptt recipe
The Using a single selection field to choose a category in forms recipe

Creating hierarchical categories with
django-treebeard
There are several algorithms for tree structures, each with its own benefits. An app called
django-treebeard, an alternative to django-mptt that is used by django CMS, provides
support for three tree forms:

Adjacency List trees are simple structures, where each node has a parent
attribute. Although read operations are fast, this comes at the cost of slow writes.

Hierarchical Structures Chapter 8

[400]

Nested Sets trees and MPTT trees are the same; they structure nodes as sets
nested beneath the parent. This structure also provides very fast read access at
the cost of more expensive writing and deletion, particularly when writes require
some particular ordering.
Materialized Path trees are built with each node in the tree having an associated
path attribute, which is a string indicating the full path from the root to the
node—much like a URL path indicates where to find a particular page on a
website. This is the most efficient approach supported.

As a demonstration of the support it has for all of these algorithms, we will use django-
treebeard and its consistent API. We will extend the categories app from Chapter 3,
Forms and Views. In our changes, we will enhance the Category model with support for
hierarchy via one of the supported tree algorithms.

Getting ready
To get started, perform the following steps:

Install django-treebeard in your virtual environment using the following1.
command:

(env)$ pip install django-treebeard==4.3

Create the categories and ideas apps if you have not done so already. Add2.
the categories app as well as treebeard to INSTALLED_APPS in the settings,
as follows:

myproject/settings/_base.py
INSTALLED_APPS = [
 # …
 "treebeard",
 # …
 "myproject.apps.categories",
 "myproject.apps.ideas",
]

Hierarchical Structures Chapter 8

[401]

How to do it...
We will enhance the Category model using the Materialized Path algorithm, as follows:

Open the models.py file and update the Category model to extend1.
treebeard.mp_tree.MP_Node instead of the standard Django model. It should
also inherit from CreationModificationDateMixin, which we defined in
Chapter 2, Models and Database Structure. In addition to the fields coming from
the mixins, the Category model will need to have a title field:

myproject/apps/categories/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _
from treebeard.mp_tree import MP_Node

from myproject.apps.core.models import CreationModificationDateBase

class Category(MP_Node, CreationModificationDateBase):
 title = models.CharField(_("Title"), max_length=200)

 class Meta:
 verbose_name = _("Category")
 verbose_name_plural = _("Categories")

 def __str__(self):
 return self.title

This will require an update to the database, so next, we'll need to migrate the2.
categories app:

(env)$ python manage.py makemigrations
(env)$ python manage.py migrate

With the use of abstract model inheritance, treebeard tree nodes can be related to3.
other models using standard relationships. As such, the Idea model can
continue to have a simple ManyToManyField relation to Category:

myproject/apps/ideas/models.py
from django.db import models
from django.utils.translation import gettext_lazy as _

from myproject.apps.core.models import
CreationModificationDateBase, UrlBase

Hierarchical Structures Chapter 8

[402]

class Idea(CreationModificationDateBase, UrlBase):
 # …
 categories = models.ManyToManyField(
 "categories.Category",
 verbose_name=_("Categories"),
 related_name="category_ideas",
)

How it works...
The MP_Node abstract model provides the path, depth, and numchild fields, as well as
the steplen, alphabet, and node_order_by attributes, to the Category model as
necessary for constructing the tree:

The depth and numchild fields provide metadata about a node's location and
descendants.
The path field is indexed, enabling database queries against it using LIKE to be
very fast.
The path field is made up of fixed-length encoded segments, where the size of
each segment is determined by the steplen attribute value (which defaults to 4),
and the encoding uses characters found in the given alphabet attribute value
(defaults to Latin alphanumeric characters).

The path, depth, and numchild fields should be treated as read-only. Also, steplen,
alphabet, and node_order_by values should never be changed after saving the first
object to a tree; otherwise, the data will be corrupted.

Besides new fields and attributes, the MP_Node abstract class adds methods for navigation
through the tree structure. Some important examples of these methods are listed here:

If you want to get the ancestors of a category, which are returned as QuerySet of
ancestors from the root to the parent of the current node, use the following code:

ancestor_categories = category.get_ancestors()

To just get the root category, which is identified by having a depth of 1, use the
following code:

root = category.get_root()

Hierarchical Structures Chapter 8

[403]

If you want to get the direct children of a category, use the following code:

children = category.get_children()

To get all descendants of a category, returned as QuerySet of all children and
their children, and so on, but not including the current node itself, use the
following code:

descendants = category.get_descendants()

If you want to get just the descendant count, use the following code:

descendants_count = category.get_descendant_count()

To get all siblings, including the reference node, call the following method:

siblings = category.get_siblings()

Root categories are considered to be siblings of other root categories.

To just get the previous and next siblings, call the following methods, where
get_prev_sibling() will return None for the leftmost sibling, as will
get_next_sibling() for the rightmost one:

previous_sibling = category.get_prev_sibling()
next_sibling = category.get_next_sibling()

Also, there are methods to check whether the category is root, leaf, or related
to another node:

category.is_root()
category.is_leaf()
category.is_child_of(another_category)
category.is_descendant_of(another_category)
category.is_sibling_of(another_category)

Hierarchical Structures Chapter 8

[404]

There's more...
This recipe only scratched the surface of the power of django-treebeard and its
Materialized Path trees. There are many other methods available for the navigation as well
as the construction of trees. In addition, the API for Materialized Path trees is largely
identical to those for Nested Sets trees and Adjacency List trees, which are available simply
by implementing your model with the NS_Node or AL_Node abstract classes, respectively,
instead of using MP_Node.

Read the django-treebeard API documentation for a complete listing of
the available properties and methods for each of the tree implementations
at https:/ / django- treebeard. readthedocs. io/en/ latest/ api. html.

See also
Chapter 3, Forms and Views
The Creating hierarchical categories with django-mptt recipe
The Creating a category administration interface with django-treebeard recipe

Creating a basic category administration
interface with django-treebeard
The django-treebeard app provides its own TreeAdmin, extending from the standard
ModelAdmin. This allows you to view tree nodes hierarchically in the administration
interface, with interface features dependent upon the tree algorithm used. Let's take a look
at this in this recipe.

https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html

Hierarchical Structures Chapter 8

[405]

Getting ready
First, set up the categories app and django-treebeard as described in the Creating
hierarchical categories with django-treebeard recipe earlier in this chapter. Also, make sure that
the static files for django-treebeard are available to your project:

(env)$ python manage.py collectstatic

How to do it...
Create an administration interface for the Category model from the categories app that
extends treebeard.admin.TreeAdmin instead of admin.ModelAdmin and uses a custom
form factory, as follows:

myproject/apps/categories/admin.py
from django.contrib import admin
from treebeard.admin import TreeAdmin
from treebeard.forms import movenodeform_factory

from .models import Category

@admin.register(Category)
class CategoryAdmin(TreeAdmin):
 form = movenodeform_factory(Category)
 list_display = ["title", "created", "modified"]
 list_filter = ["created"]

Hierarchical Structures Chapter 8

[406]

How it works...
The administration interface for the categories will have one of two modes, dependent
upon the tree implementation used. For Materialized Path and Nested Sets trees, an
advanced UI is provided, as seen here:

Hierarchical Structures Chapter 8

[407]

This advanced view allows you to expand and collapse categories for a better overview. To
reorder them or change the dependencies, you can drag and drop the titles. During
reordering, the user interface looks similar to the following screenshot:

If you apply filtering or sorting of categories by a specific field, the advanced functionality
is disabled, but the more attractive look and feel of the advanced interface remains. We can
see this intermediate view here, where only categories created in the Past 7 days are shown:

Hierarchical Structures Chapter 8

[408]

However, if your tree uses the Adjacency List algorithm, a basic UI is provided with less
aesthetic presentation and none of the toggling or reordering functionality given in the
advanced UI.

More details about django-treebeard administration, including a
screenshot of the basic interface, can be found in the documentation
at: https:/ / django- treebeard. readthedocs. io/en/ latest/ admin. html.

https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html

Hierarchical Structures Chapter 8

[409]

See also
The Creating hierarchical categories with django-mptt recipe
The Creating hierarchical categories with django-treebeard recipe
The Creating a category administration interface with django-mptt-admin recipe

9
Importing and Exporting Data

In this chapter, we will cover the following topics:

Importing data from a local CSV file
Importing data from a local Excel file
Importing data from an external JSON file
Importing data from an external XML file
Preparing paginated sitemaps for search engines
Creating filterable RSS feeds
Using the Django REST framework to create an API

Introduction
Once in a while, your data needs to be transported from a local format to the database,
imported from external resources, or provided to third parties. In this chapter, we will take
a look at some practical examples of how to write management commands and APIs to do
this.

Technical requirements
For working with the code of this chapter, you will need the latest stable version of Python,
MySQL, or PostgreSQL database and a Django project with a virtual environment. Also,
make sure to install Django, Pillow, and database bindings into your virtual environment.

You can find all of the code for this chapter in the ch09 directory of the GitHub repository:
https://github.com/ PacktPublishing/ Django- 3-Web- Development- Cookbook- Fourth-
Edition.

https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition

Importing and Exporting Data Chapter 9

[411]

Importing data from a local CSV file
The Comma-Separated Values (CSV) format is probably the simplest way to store tabular
data in a text file. In this recipe, we will create a management command that imports data
from a CSV file to a Django database. We will need a CSV list of songs. You can easily
create such a file with Excel, Calc, or another spreadsheet application.

Getting ready
Let's create a music app that we'll be using throughout this chapter:

Create the music app itself and put it under INSTALLED_APPS in the settings:1.

myproject/settings/_base.py
INSTALLED_APPS = [
 # …
 "myproject.apps.core",
 "myproject.apps.music",
]

The Song model there should contain the uuid, artist, title, url, and image2.
fields. We'll also extend CreationModificationDateBase to add creation and
modification timestamps, as well as UrlBase to add methods to work with the
model's detail URLs:

myproject/apps/music/models.py
import os
import uuid
from django.urls import reverse
from django.utils.translation import ugettext_lazy as _
from django.db import models
from django.utils.text import slugify
from myproject.apps.core.models import
CreationModificationDateBase, UrlBase

def upload_to(instance, filename):
 filename_base, filename_ext = os.path.splitext(filename)
 artist = slugify(instance.artist)
 title = slugify(instance.title)
 return f"music/{artist}--{title}{filename_ext.lower()}"

class Song(CreationModificationDateBase, UrlBase):
 uuid = models.UUIDField(primary_key=True, default=None,
 editable=False)
 artist = models.CharField(_("Artist"), max_length=250)

Importing and Exporting Data Chapter 9

[412]

 title = models.CharField(_("Title"), max_length=250)
 url = models.URLField(_("URL"), blank=True)
 image = models.ImageField(_("Image"), upload_to=upload_to,
 blank=True, null=True)

 class Meta:
 verbose_name = _("Song")
 verbose_name_plural = _("Songs")
 unique_together = ["artist", "title"]

 def __str__(self):
 return f"{self.artist} - {self.title}"

 def get_url_path(self):
 return reverse("music:song_detail", kwargs={"pk": self.pk})

 def save(self, *args, **kwargs):
 if self.pk is None:
 self.pk = uuid.uuid4()
 super().save(*args, **kwargs)

Make and run migrations with the following commands:3.

(env)$ python manage.py makemigrations
(env)$ python manage.py migrate

Then, let's add a simple administration for the Song model:4.

myproject/apps/music/admin.py
from django.contrib import admin
from .models import Song

@admin.register(Song)
class SongAdmin(admin.ModelAdmin):
 list_display = ["title", "artist", "url"]
 list_filter = ["artist"]
 search_fields = ["title", "artist"]

Importing and Exporting Data Chapter 9

[413]

Also, we need a form for validating and creating Song models in the import5.
scripts. It's the most straightforward model form, as follows:

myproject/apps/music/forms.py
from django import forms
from django.utils.translation import ugettext_lazy as _
from .models import Song

class SongForm(forms.ModelForm):
 class Meta:
 model = Song
 fields = "__all__"

How to do it...
Follow these steps to create and use a management command that imports songs from a
local CSV file:

Create a CSV file with the column names, artist, title, and url, in the first1.
row. Add some song data to it in the next rows matching the columns. For
example, it could be a data/music.csv file with content like this:

artist,title,url
Capital Cities,Safe And
Sound,https://open.spotify.com/track/40Fs0YrUGuwLNQSaHGVfqT?si=2OUa
wusIT-evyZKonT5GgQ
Milky Chance,Stolen
Dance,https://open.spotify.com/track/3miMZ2IlJiaeSWo1DohXlN?si=g-xM
M4m9S_yScOm02C2MLQ
Lana Del Rey,Video Games -
Remastered,https://open.spotify.com/track/5UOo694cVvjcPFqLFiNWGU?si
=maZ7JCJ7Rb6WzESLXg1Gdw
Men I
Trust,Tailwhip,https://open.spotify.com/track/2DoO0sn4SbUrz7Uay9ACT
M?si=SC_MixNKSnuxNvQMf3yBBg

In the music app, create a management directory and then a commands directory2.
in the new management directory. Put empty __init__.py files in both new
directories to make them Python packages.

Importing and Exporting Data Chapter 9

[414]

Add an import_music_from_csv.py file there with the following content:3.

myproject/apps/music/management/commands/import_music_from_csv.py
from django.core.management.base import BaseCommand

class Command(BaseCommand):
 help = (
 "Imports music from a local CSV file. "
 "Expects columns: artist, title, url"
)
 SILENT, NORMAL, VERBOSE, VERY_VERBOSE = 0, 1, 2, 3

 def add_arguments(self, parser):
 # Positional arguments
 parser.add_argument("file_path", nargs=1, type=str)

 def handle(self, *args, **options):
 self.verbosity = options.get("verbosity", self.NORMAL)
 self.file_path = options["file_path"][0]
 self.prepare()
 self.main()
 self.finalize()

Then, in the same file for the Command class, create a prepare() method:4.

 def prepare(self):
 self.imported_counter = 0
 self.skipped_counter = 0

Then, we should create the main() method:5.

 def main(self):
 import csv
 from ...forms import SongForm

 if self.verbosity >= self.NORMAL:
 self.stdout.write("=== Importing music ===")

 with open(self.file_path, mode="r") as f:
 reader = csv.DictReader(f)
 for index, row_dict in enumerate(reader):
 form = SongForm(data=row_dict)
 if form.is_valid():
 song = form.save()
 if self.verbosity >= self.NORMAL:
 self.stdout.write(f" - {song}\n")
 self.imported_counter += 1
 else:

Importing and Exporting Data Chapter 9

[415]

 if self.verbosity >= self.NORMAL:
 self.stderr.write(
 f"Errors importing song "
 f"{row_dict['artist']} -
 {row_dict['title']}:\n"
)
 self.stderr.write(f"{form.errors.as_json()}\n")
 self.skipped_counter += 1

We'll finish the class with the finalize() method:6.

 def finalize(self)
 if self.verbosity >= self.NORMAL:
 self.stdout.write(f"-------------------------\n")
 self.stdout.write(f"Songs imported:
 {self.imported_counter}\n")
 self.stdout.write(f"Songs skipped:
 {self.skipped_counter}\n\n")

To run the import, call the following in the command line:7.

(env)$ python manage.py import_music_from_csv data/music.csv

How it works...
Django management commands are scripts with Command classes deriving from
BaseCommand and overwriting the add_arguments() and handle() methods. The help
attribute defines the help text for the management command. It can be seen when you type
the following in the command line:

(env)$ python manage.py help import_music_from_csv

Django management commands use the built-in argparse module to parse the passed
arguments. The add_arguments() method defines what positional or named arguments
should be passed to the management command. In our case, we will add a positional
file_path argument of the Unicode type. By having the nargs variable set to the 1
attribute, we allow only one value.

To learn about the other arguments that you can define and how to do
this, refer to the official argparse documentation at https:/ /docs.
python. org/ 3/ library/ argparse. html#adding- arguments.

https://docs.python.org/3/library/argparse.html#adding-arguments
https://docs.python.org/3/library/argparse.html#adding-arguments
https://docs.python.org/3/library/argparse.html#adding-arguments
https://docs.python.org/3/library/argparse.html#adding-arguments
https://docs.python.org/3/library/argparse.html#adding-arguments
https://docs.python.org/3/library/argparse.html#adding-arguments
https://docs.python.org/3/library/argparse.html#adding-arguments
https://docs.python.org/3/library/argparse.html#adding-arguments
https://docs.python.org/3/library/argparse.html#adding-arguments
https://docs.python.org/3/library/argparse.html#adding-arguments
https://docs.python.org/3/library/argparse.html#adding-arguments
https://docs.python.org/3/library/argparse.html#adding-arguments
https://docs.python.org/3/library/argparse.html#adding-arguments
https://docs.python.org/3/library/argparse.html#adding-arguments
https://docs.python.org/3/library/argparse.html#adding-arguments
https://docs.python.org/3/library/argparse.html#adding-arguments
https://docs.python.org/3/library/argparse.html#adding-arguments
https://docs.python.org/3/library/argparse.html#adding-arguments

Importing and Exporting Data Chapter 9

[416]

At the beginning of the handle() method, the verbosity argument is checked. Verbosity
defines how much Terminal output the command should provide from 0, not giving any
logging, to 3, providing extensive logging. You can pass this named argument to the
command as follows:

(env)$ python manage.py import_music_from_csv data/music.csv --verbosity=0

We also expect the filename as the first positional argument. options["file_path"]
returns a list of the values with the length defined in nargs. In our case, nargs equals one;
therefore, options["file_path"] will be equal to a list of one element.

It's a good practice to split the logics of your management command into multiple smaller
methods, for example, like we use in this script with prepare(), main(), and
finalize():

The prepare() method sets import counters to zero. It could also be used for
any other setup that is necessary for the script.
In the main() method, we execute the main logic of the management command.
At first, we open the given file for reading and pass its pointer to
csv.DictReader. The first line in the file is assumed to contain headings for
each of the columns. DictReader uses them as keys for the dictionaries for each
row. When we iterate through the rows, we pass the dictionaries to the model
form and try to validate it. If validation passes, a song is saved and
imported_counter is incremented. If validation fails, because of too long
values, missing required values, wrong types, or other validation
errors, skipped_counter is incremented. If verbosity is equal or greater than
NORMAL (which is number 1), each imported or skipped song is also printed out
together with possible validation errors.

The finalize() method prints out how many songs were imported and how
many were skipped because of validation errors.

If you want to debug the errors of a management command while developing it, pass the -
-traceback parameter to it. When an error occurs, you will see the full stack trace of the
problem.

Importing and Exporting Data Chapter 9

[417]

Assuming we invoked the command twice with --verbosity=1 or higher, the output we
could expect might be as follows:

As you can see, when a song is being imported a second time, it doesn't pass the
unique_together constraint and therefore is skipped.

See also
The Importing data from a local Excel file recipe
The Importing data from an external JSON file recipe
The Importing data from an external XML file recipe

Importing data from a local Excel file
Another popular format for storing tabular data is an Excel spreadsheet. In this recipe, we
will import songs from a file of this format.

Importing and Exporting Data Chapter 9

[418]

Getting ready
Let's start with the music app that we created in the previous recipe. To read Excel files,
you will need to install the openpyxl package, as follows:

(env)$ pip install openpyxl==3.0.2

How to do it...
Follow these steps to create and use a management command that imports songs from a
local XLSX file:

Create an XLSX file with the column names Artist, Title, and URL in the first1.
row. Add some song data to it in the next rows matching the columns. You can
do this in a spreadsheet application, by saving the CSV file from the previous
recipe as an XLSX file, data/music.xlsx. Here is an example:

If you haven't done so, in the music app, create a management directory and2.
then a commands subdirectory beneath it. Add empty __init__.py files in both
of the new directories to make them Python packages.
Add an import_music_from_xlsx.py file with the following content:3.

myproject/apps/music/management/commands
/import_music_from_xlsx.py
from django.core.management.base import BaseCommand

class Command(BaseCommand):

Importing and Exporting Data Chapter 9

[419]

 help = (
 "Imports music from a local XLSX file. "
 "Expects columns: Artist, Title, URL"
)
 SILENT, NORMAL, VERBOSE, VERY_VERBOSE = 0, 1, 2, 3

 def add_arguments(self, parser):
 # Positional arguments
 parser.add_argument("file_path",
 nargs=1,
 type=str)

 def handle(self, *args, **options):
 self.verbosity = options.get("verbosity", self.NORMAL)
 self.file_path = options["file_path"][0]
 self.prepare()
 self.main()
 self.finalize()

Then, in the same file for the Command class, create a prepare() method:4.

 def prepare(self):
 self.imported_counter = 0
 self.skipped_counter = 0

Then, create the main() method there:5.

 def main(self):
 from openpyxl import load_workbook
 from ...forms import SongForm

 wb = load_workbook(filename=self.file_path)
 ws = wb.worksheets[0]

 if self.verbosity >= self.NORMAL:
 self.stdout.write("=== Importing music ===")

 columns = ["artist", "title", "url"]
 rows = ws.iter_rows(min_row=2) # skip the column captions
 for index, row in enumerate(rows, start=1):
 row_values = [cell.value for cell in row]
 row_dict = dict(zip(columns, row_values))
 form = SongForm(data=row_dict)
 if form.is_valid():
 song = form.save()
 if self.verbosity >= self.NORMAL:
 self.stdout.write(f" - {song}\n")
 self.imported_counter += 1

Importing and Exporting Data Chapter 9

[420]

 else:
 if self.verbosity >= self.NORMAL:
 self.stderr.write(
 f"Errors importing song "
 f"{row_dict['artist']} -
 {row_dict['title']}:\n"
)
 self.stderr.write(f"{form.errors.as_json()}\n")
 self.skipped_counter += 1

And we'll finish the class with the finalize() method:6.

 def finalize(self):
 if self.verbosity >= self.NORMAL:
 self.stdout.write(f"-------------------------\n")
 self.stdout.write(f"Songs imported:
 {self.imported_counter}\n")
 self.stdout.write(f"Songs skipped:
 {self.skipped_counter}\n\n")

To run the import, call the following in the command line:7.

(env)$ python manage.py import_music_from_xlsx data/music.xlsx

How it works...
The principle of importing from an XLSX file is the same as with CSV. We open the file,
read it row by row, form data dictionaries, validate them via a model form, and create the
Song objects from the provided data.

Again, we are using the prepare(), main(), and finalize() methods to split the logic
into more atomic parts.

Here is a detailed explanation of the main() method as it is probably the only different part
of the management command:

Excel files are workbooks containing sheets as different tabs.
We are using the openpyxl library to open a file passed as a positional argument
to the command. Then, we read the first sheet from the workbook.
The first row contains the column captions. We skip it.
Afterward, we will read the rows one by one as lists of values, use the zip()
function to create dictionaries, pass them to a model form, validate, and create
the Song objects from them.

Importing and Exporting Data Chapter 9

[421]

If there are any validation errors and verbosity is greater than or equal
to NORMAL, then we output the validation errors.
Once again, the management command will print out the imported songs to the
console, unless you set --verbosity=0.

If we run the command twice with --verbosity=1 or higher, the output would be as
follows:

You can learn more about how to work with Excel files at http:/ /www.
python- excel. org/ .

See also
The Importing data from a local CSV file recipe
The Importing data from an external JSON file recipe
The Importing data from an external XML file recipe

http://www.python-excel.org/
http://www.python-excel.org/
http://www.python-excel.org/
http://www.python-excel.org/
http://www.python-excel.org/
http://www.python-excel.org/
http://www.python-excel.org/
http://www.python-excel.org/
http://www.python-excel.org/
http://www.python-excel.org/
http://www.python-excel.org/

Importing and Exporting Data Chapter 9

[422]

Importing data from an external JSON file
The Last.fm music website has an API under the https:/ /ws. audioscrobbler. com/
domain that you can use to read the albums, artists, tracks, events, and more. The API
allows you to either use the JSON or XML format. In this recipe, we will import the top
tracks tagged indie using the JSON format.

Getting ready
Follow these steps to import data in the JSON format from Last.fm:

Let's start with the music app that we created in the Importing data from a local1.
CSV file recipe.
To use Last.fm, you need to register and get an API key. The API key can be2.
created at https:/ /www. last. fm/api/ account/ create.
The API key has to be set in the settings as LAST_FM_API_KEY. We recommend3.
providing it from the secrets file or an environment variable and drawing that
into your settings, as shown here:

myproject/settings/_base.py
LAST_FM_API_KEY = get_secret("LAST_FM_API_KEY")

Also, install the requests library in your virtual environment using the4.
following command:

(env)$ pip install requests==2.22.0

Let's check the structure of the JSON endpoint for the top indie tracks5.
(https://ws.audioscrobbler.com/2.0/?method=tag.gettoptracks&tag
=indie&api_key=YOUR_API_KEY&format=json), which should look
something like this:

{
 "tracks": {
 "track": [
 {
 "name": "Mr. Brightside",
 "duration": "224",
 "mbid": "37d516ab-d61f-4bcb-9316-7a0b3eb845a8",
 "url": "https://www.last.fm/music
 /The+Killers/_/Mr.+Brightside",
 "streamable": {
 "#text": "0",

http://last.fm
https://ws.audioscrobbler.com/
https://ws.audioscrobbler.com/
https://ws.audioscrobbler.com/
https://ws.audioscrobbler.com/
https://ws.audioscrobbler.com/
https://ws.audioscrobbler.com/
https://ws.audioscrobbler.com/
https://ws.audioscrobbler.com/
https://ws.audioscrobbler.com/
https://ws.audioscrobbler.com/
http://last.fm
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create

Importing and Exporting Data Chapter 9

[423]

 "fulltrack": "0"
 },
 "artist": {
 "name": "The Killers",
 "mbid": "95e1ead9-4d31-4808-a7ac-32c3614c116b",
 "url": "https://www.last.fm/music/The+Killers"
 },
 "image": [
 {
 "#text":
 "https://lastfm.freetls.fastly.net/i/u/34s
 /2a96cbd8b46e442fc41c2b86b821562f.png",
 "size": "small"
 },
 {
 "#text":
 "https://lastfm.freetls.fastly.net/i/u/64s
 /2a96cbd8b46e442fc41c2b86b821562f.png",
 "size": "medium"
 },
 {
 "#text":
 "https://lastfm.freetls.fastly.net/i/u/174s
 /2a96cbd8b46e442fc41c2b86b821562f.png",
 "size": "large"
 },
 {
 "#text":
 "https://lastfm.freetls.fastly.net/i/u/300x300
 /2a96cbd8b46e442fc41c2b86b821562f.png",
 "size": "extralarge"
 }
],
 "@attr": {
 "rank": "1"
 }
 },
 ...
],
 "@attr": {
 "tag": "indie",
 "page": "1",
 "perPage": "50",
 "totalPages": "4475",
 "total": "223728"
 }
 }
}

Importing and Exporting Data Chapter 9

[424]

We want to read the track name, artist, URL, and medium-sized images. In addition, we
are interested in how many pages there exist in total, which is provided as meta
information at the end of the JSON file.

How to do it...
Follow these steps to create a Song model and a management command, which imports the
top tracks from Last.fm to the database in JSON format:

If you haven't done so, in the music app, create a management directory, and1.
then a commands subdirectory beneath it. Add empty __init__.py files in both
of the new directories to make them Python packages.
Add an import_music_from_lastfm_json.py file with the following content:2.

myproject/apps/music/management/commands
/import_music_from_lastfm_json.py
from django.core.management.base import BaseCommand

class Command(BaseCommand):
 help = "Imports top songs from last.fm as JSON."
 SILENT, NORMAL, VERBOSE, VERY_VERBOSE = 0, 1, 2, 3
 API_URL = "https://ws.audioscrobbler.com/2.0/"

 def add_arguments(self, parser):
 # Named (optional) arguments
 parser.add_argument("--max_pages", type=int, default=0)

 def handle(self, *args, **options):
 self.verbosity = options.get("verbosity", self.NORMAL)
 self.max_pages = options["max_pages"]
 self.prepare()
 self.main()
 self.finalize()

Then, in the same file for the Command class, create a prepare() method:3.

 def prepare(self):
 from django.conf import settings

 self.imported_counter = 0
 self.skipped_counter = 0
 self.params = {
 "method": "tag.gettoptracks",
 "tag": "indie",
 "api_key": settings.LAST_FM_API_KEY,

http://last.fm

Importing and Exporting Data Chapter 9

[425]

 "format": "json",
 "page": 1,
 }

Then, create the main() method there:4.

 def main(self):
 import requests

 response = requests.get(self.API_URL, params=self.params)
 if response.status_code != requests.codes.ok:
 self.stderr.write(f"Error connecting to
 {response.url}")
 return
 response_dict = response.json()
 pages = int(
 response_dict.get("tracks", {})
 .get("@attr", {}).get("totalPages", 1)
)

 if self.max_pages > 0:
 pages = min(pages, self.max_pages)

 if self.verbosity >= self.NORMAL:
 self.stdout.write(f"=== Importing {pages} page(s)
 of tracks ===")

 self.save_page(response_dict)

 for page_number in range(2, pages + 1):
 self.params["page"] = page_number
 response = requests.get(self.API_URL,
 params=self.params)
 if response.status_code != requests.codes.ok:
 self.stderr.write(f"Error connecting to
 {response.url}")
 return
 response_dict = response.json()
 self.save_page(response_dict)

Each page from the paginated feed will be saved by the save_page() method5.
that we should create, as follows:

 def save_page(self, data):
 import os
 import requests
 from io import BytesIO
 from django.core.files import File

Importing and Exporting Data Chapter 9

[426]

 from ...forms import SongForm

 for track_dict in data.get("tracks", {}).get("track"):
 if not track_dict:
 continue

 song_dict = {
 "artist": track_dict.get("artist", {}).get("name", ""),
 "title": track_dict.get("name", ""),
 "url": track_dict.get("url", ""),
 }
 form = SongForm(data=song_dict)
 if form.is_valid():
 song = form.save()

 image_dict = track_dict.get("image", None)
 if image_dict:
 image_url = image_dict[1]["#text"]
 image_response = requests.get(image_url)
 song.image.save(
 os.path.basename(image_url),
 File(BytesIO(image_response.content)),
)

 if self.verbosity >= self.NORMAL:
 self.stdout.write(f" - {song}\n")
 self.imported_counter += 1
 else:
 if self.verbosity >= self.NORMAL:
 self.stderr.write(
 f"Errors importing song "
 f"{song_dict['artist']} -
 {song_dict['title']}:\n"
)
 self.stderr.write(f"{form.errors.as_json()}\n")
 self.skipped_counter += 1

And we'll finish the class with the finalize() method:6.

 def finalize(self):
 if self.verbosity >= self.NORMAL:
 self.stdout.write(f"-------------------------\n")
 self.stdout.write(f"Songs imported:
 {self.imported_counter}\n")
 self.stdout.write(f"Songs skipped:
 {self.skipped_counter}\n\n")

Importing and Exporting Data Chapter 9

[427]

To run the import, call the following in the command line:7.

(env)$ python manage.py import_music_from_lastfm_json --max_pages=3

How it works...
As mentioned before, the arguments for scripts can be positional if they just list a sequence
of strings, or named if they start with a -- and a variable name. The named --max_pages
argument limits the imported data to three pages. Just skip it, or explicitly pass 0 (zero) if
you want to download all of the available top tracks.

Beware that there are around 4,500 pages as detailed in the totalPages value, and this
will take a long time and a lot of processing.

The structure of our script is similar to the previous import scripts:

The prepare() method is for the setup
The main() method handles the requests and processes the responses
The save_page() method saves songs from a single pagination page
The finalize() method prints out the import statistics

In the main() method, we use requests.get() to read the data from Last.fm, passing
the params query parameters. The response object has a built-in method called json(),
which converts a JSON string into a parsed dictionary object. From the first request, we
learn about the total number of pages and then read each of them and call the
save_page() method to parse information and save the songs.

In the save_page() method, we read the values from the tracks and build a dictionary
necessary for the model form. We validate the form. If the data is valid, the Song object is
created.

One interesting part of the import is downloading and saving the image. Here, we also use
requests.get() to retrieve the image data and then we pass it to File through BytesIO,
which is accordingly used in the image.save() method. The first parameter of
image.save() is a filename that will be overwritten anyway by the value from the
upload_to function and is necessary only for the file extension.

If the command is invoked with a --verbosity=1 or higher, we will see detailed
information about the import just like in the previous recipes.

http://last.fm

Importing and Exporting Data Chapter 9

[428]

You can learn more about how to work with Last.fm at https:/ /www.
last. fm/ api/ .

See also
The Importing data from a local CSV file recipe
The Importing data from a local Excel file recipe
The Importing data from an external XML file recipe

Importing data from an external XML file
Just as we showed what could be done with JSON in the preceding recipe, the Last.fm file
also allows you to take data from its services in XML format. In this recipe, we will show
you how to do this.

Getting ready
Follow these steps to import data in the XML format from Last.fm:

Let's start with the music app that we created in the Importing data from a local1.
CSV file recipe.
To use Last.fm, you need to register and get an API key. The API key can be2.
created at https:/ /www. last. fm/api/ account/ create.
The API key has to be set in the settings as LAST_FM_API_KEY. We recommend3.
providing it from the secrets file or an environment variable and drawing that
into your settings, as shown here:

myproject/settings/_base.py
LAST_FM_API_KEY = get_secret("LAST_FM_API_KEY")

Also, install the requests and defusedxml libraries in your virtual4.
environment using the following commands:

(env)$ pip install requests==2.22.0
(env)$ pip install defusedxml==0.6.0

http://last.fm
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
http://last.fm
http://last.fm
http://last.fm
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create
https://www.last.fm/api/account/create

Importing and Exporting Data Chapter 9

[429]

Let's check the structure of the JSON endpoint for the top indie tracks5.
(https://ws.audioscrobbler.com/2.0/?method=tag.gettoptracks&tag
=indie&api_key=YOUR_API_KEY&format=xml), which should look something
like this:

<?xml version="1.0" encoding="UTF-8" ?>
<lfm status="ok">
 <tracks tag="indie" page="1" perPage="50"
 totalPages="4475" total="223728">
 <track rank="1">
 <name>Mr. Brightside</name>
 <duration>224</duration>
 <mbid>37d516ab-d61f-4bcb-9316-7a0b3eb845a8</mbid>
 <url>https://www.last.fm/music
 /The+Killers/_/Mr.+Brightside</url>
 <streamable fulltrack="0">0</streamable>
 <artist>
 <name>The Killers</name>
 <mbid>95e1ead9-4d31-4808-a7ac-32c3614c116b</mbid>
 <url>https://www.last.fm/music/The+Killers</url>
 </artist>
 <image size="small">https://lastfm.freetls.fastly.net/i
 /u/34s/2a96cbd8b46e442fc41c2b86b821562f.png</image>
 <image size="medium">
 https://lastfm.freetls.fastly.net/i
 /u/64s/2a96cbd8b46e442fc41c2b86b821562f.png</image>
 <image size="large">https://lastfm.freetls.fastly.net/i
 /u/174s/2a96cbd8b46e442fc41c2b86b821562f.png</image>
 <image size="extralarge">
 https://lastfm.freetls.fastly.net/i/u/300x300
 /2a96cbd8b46e442fc41c2b86b821562f.png
 </image>
 </track>
 ...
 </tracks>
</lfm>

Importing and Exporting Data Chapter 9

[430]

How to do it...
Follow these steps to create a Song model and a management command, which imports the
top tracks from Last.fm to the database in XML format:

If you haven't done so, in the music app, create a management directory and1.
then a commands subdirectory beneath it. Add empty __init__.py files in both
of the new directories to make them Python packages.
Add an import_music_from_lastfm_xml.py file with the following content:2.

myproject/apps/music/management/commands
/import_music_from_lastfm_xml.py
from django.core.management.base import BaseCommand

class Command(BaseCommand):
 help = "Imports top songs from last.fm as XML."
 SILENT, NORMAL, VERBOSE, VERY_VERBOSE = 0, 1, 2, 3
 API_URL = "https://ws.audioscrobbler.com/2.0/"

 def add_arguments(self, parser):
 # Named (optional) arguments
 parser.add_argument("--max_pages", type=int, default=0)

 def handle(self, *args, **options):
 self.verbosity = options.get("verbosity", self.NORMAL)
 self.max_pages = options["max_pages"]
 self.prepare()
 self.main()
 self.finalize()

Then, in the same file for the Command class, create a prepare() method:3.

 def prepare(self):
 from django.conf import settings

 self.imported_counter = 0
 self.skipped_counter = 0
 self.params = {
 "method": "tag.gettoptracks",
 "tag": "indie",
 "api_key": settings.LAST_FM_API_KEY,
 "format": "xml",
 "page": 1,
 }

http://last.fm

Importing and Exporting Data Chapter 9

[431]

Then, create the main() method there:4.

 def main(self):
 import requests
 from defusedxml import ElementTree

 response = requests.get(self.API_URL, params=self.params)
 if response.status_code != requests.codes.ok:
 self.stderr.write(f"Error connecting to {response.url}")
 return
 root = ElementTree.fromstring(response.content)

 pages = int(root.find("tracks").attrib.get("totalPages", 1))
 if self.max_pages > 0:
 pages = min(pages, self.max_pages)

 if self.verbosity >= self.NORMAL:
 self.stdout.write(f"=== Importing {pages} page(s)
 of songs ===")

 self.save_page(root)

 for page_number in range(2, pages + 1):
 self.params["page"] = page_number
 response = requests.get(self.API_URL, params=self.params)
 if response.status_code != requests.codes.ok:
 self.stderr.write(f"Error connecting to {response.url}")
 return
 root = ElementTree.fromstring(response.content)
 self.save_page(root)

Each page from the paginated feed will be saved by the save_page() method 5.
that we should create, as follows:

 def save_page(self, root):
 import os
 import requests
 from io import BytesIO
 from django.core.files import File
 from ...forms import SongForm

 for track_node in root.findall("tracks/track"):
 if not track_node:
 continue

 song_dict = {
 "artist": track_node.find("artist/name").text,
 "title": track_node.find("name").text,

Importing and Exporting Data Chapter 9

[432]

 "url": track_node.find("url").text,
 }
 form = SongForm(data=song_dict)
 if form.is_valid():
 song = form.save()

 image_node = track_node.find("image[@size='medium']")
 if image_node is not None:
 image_url = image_node.text
 image_response = requests.get(image_url)
 song.image.save(
 os.path.basename(image_url),
 File(BytesIO(image_response.content)),
)

 if self.verbosity >= self.NORMAL:
 self.stdout.write(f" - {song}\n")
 self.imported_counter += 1
 else:
 if self.verbosity >= self.NORMAL:
 self.stderr.write(
 f"Errors importing song "
 f"{song_dict['artist']} - {song_dict['title']}:\n"
)
 self.stderr.write(f"{form.errors.as_json()}\n")
 self.skipped_counter += 1

We'll finish the class with the finalize() method:6.

 def finalize(self):
 if self.verbosity >= self.NORMAL:
 self.stdout.write(f"-------------------------\n")
 self.stdout.write(f"Songs imported: {self.imported_counter}\n")
 self.stdout.write(f"Songs skipped: {self.skipped_counter}\n\n")

To run the import, call the following in the command line:7.

(env)$ python manage.py import_music_from_lastfm_xml --max_pages=3

How it works...
The process is analogous to the JSON approach. Using the requests.get() method, we
read the data from Last.fm, passing the query parameters as params. The XML content of
the response is passed to the ElementTree parser from the defusedxml module, and the
root node is returned.

http://last.fm

Importing and Exporting Data Chapter 9

[433]

The defusedxml module is a safer replacement for the xml module. It
prevents XML bombs—a vulnerability allowing the attacker to use a few
hundred bytes of XML data to occupy Gigabytes of memory.

The ElementTree nodes have the find() and findall() methods, where you can pass
XPath queries to filter out specific subnodes.

The following is a table of the available XPath syntax supported by ElementTree:

XPath syntax component Meaning
tag This selects all of the child elements with the given tag.
* This selects all of the child elements.
. This selects the current node.

// This selects all of the subelements on all of the levels beneath the current
element.

.. This selects the parent element.
[@attrib] This selects all of the elements that have the given attribute.
[@attrib='value'] This selects all of the elements for which the given attribute has the given value.

[tag] This selects all of the elements that have a child named tag. Only immediate
children are supported.

[position]

This selects all of the elements that are located at the given position. The
position can either be an integer (1 is the first position), the last() expression
(for the last position), or a position relative to the last position (for example,
last()-1).

Therefore, in the main() method, using
root.find("tracks").attrib.get("totalPages", 1), we read the total amount of
pages, defaulting to one if the data is missing somehow. We will save the first page and
then go through the other pages one by one and save them too.

In the save_page() method, root.findall("tracks/track") returns an iterator
through the <track> nodes under the <tracks> node. With
track_node.find("image[@size='medium']"), we get the medium-sized image.
Again, Song creation happens through the model form which is used to validate the
incoming data.

If we call the command with --verbosity=1 or higher, we will see detailed information
about the imported songs just like in the previous recipes.

Importing and Exporting Data Chapter 9

[434]

There's more...
You can learn more from the following links:

Read about how to work with Last.fm at https:/ /www. last. fm/api/ .
Read about XPath at https:/ /en. wikipedia. org/wiki/ XPath.
The full documentation of ElementTree can be found at
https://docs.python.org/3/library/xml.etree.elementtree.html.

See also
The Importing data from a local CSV file recipe
The Importing data from a local Excel file recipe
The Importing data from an external JSON file recipe

Preparing paginated sitemaps for search
engines
Sitemaps protocol tells search engines about all different pages on your website. Usually,
it's a single sitemap.xml file that informs what can be indexed and how often. If you have
lots of different pages on your website, you can also split and paginate the XML file to
render each list of resources faster.

In this recipe, we will show you how to create a paginated sitemap to use in your Django
website.

Getting ready
For this and further recipes, we need to extend the music app and add list and detail views
there:

Create the views.py file with the following content:1.

myproject/apps/music/views.py
from django.views.generic import ListView, DetailView
from django.utils.translation import ugettext_lazy as _
from .models import Song

http://last.fm
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://www.last.fm/api/
https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/XPath
https://docs.python.org/3/library/xml.etree.elementtree.html

Importing and Exporting Data Chapter 9

[435]

class SongList(ListView):
 model = Song

class SongDetail(DetailView):
 model = Song

Create the urls.py file with the following content:2.

myproject/apps/music/urls.py
from django.urls import path
from .views import SongList, SongDetail

app_name = "music"

urlpatterns = [
 path("", SongList.as_view(), name="song_list"),
 path("<uuid:pk>/", SongDetail.as_view(), name="song_detail"),
]

Include that URL configuration into the project's URL configuration:3.

myproject/urls.py
from django.conf.urls.i18n import i18n_patterns
from django.urls import include, path

urlpatterns = i18n_patterns(
 # …
 path("songs/", include("myproject.apps.music.urls",
 namespace="music")),
)

Create a template for the song list view:4.

{# music/song_list.html #}
{% extends "base.html" %}
{% load i18n %}

{% block main %}

 {% for song in object_list %}

 {{ song }}
 {% endfor %}

{% endblock %}

Importing and Exporting Data Chapter 9

[436]

Then, create one for the song detail view:5.

{# music/song_detail.html #}
{% extends "base.html" %}
{% load i18n %}

{% block content %}
 {% with song=object %}
 <h1>{{ song }}</h1>
 {% if song.image %}

 {% endif %}
 {% if song.url %}
 <a href="{{ song.url }}" target="_blank"
 rel="noreferrer noopener">
 {% trans "Check this song" %}

 {% endif %}
 {% endwith %}
{% endblock %}

How to do it...
To add the paginated sitemap, follow these steps:

Include django.contrib.sitemaps in INSTALLED_APPS in the settings:1.

myproject/settings/_base.py
INSTALLED_APPS = [
 # …
 "django.contrib.sitemaps",
 # …
]

Modify urls.py of your project as follows:2.

myproject/urls.py
from django.conf.urls.i18n import i18n_patterns
from django.urls import include, path
from django.contrib.sitemaps import views as sitemaps_views
from django.contrib.sitemaps import GenericSitemap
from myproject.apps.music.models import Song

class MySitemap(GenericSitemap):
 limit = 50

Importing and Exporting Data Chapter 9

[437]

 def location(self, obj):
 return obj.get_url_path()

song_info_dict = {
 "queryset": Song.objects.all(),
 "date_field": "modified",
}
sitemaps = {"music": MySitemap(song_info_dict, priority=1.0)}

urlpatterns = [
 path("sitemap.xml", sitemaps_views.index,
 {"sitemaps": sitemaps}),
 path("sitemap-<str:section>.xml", sitemaps_views.sitemap,
 {"sitemaps": sitemaps},
 name="django.contrib.sitemaps.views.sitemap"
),
]

urlpatterns += i18n_patterns(
 # …
 path("songs/", include("myproject.apps.music.urls",
 namespace="music")),
)

How it works...
If you look at http://127.0.0.1:8000/sitemap.xml, you will see the index with
paginated sitemaps:

<?xml version="1.0" encoding="UTF-8"?>
<sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
 <sitemap>
 <loc>http://127.0.0.1:8000/sitemap-music.xml</loc>
 </sitemap>
 <sitemap>
 <loc>http://127.0.0.1:8000/sitemap-music.xml?p=2</loc>
 </sitemap>
 <sitemap>
 <loc>http://127.0.0.1:8000/sitemap-music.xml?p=3</loc>
 </sitemap>
</sitemapindex>

Importing and Exporting Data Chapter 9

[438]

Here each page will display up to 50 entries with a URL, its last modification, and priority:

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
 <url>
 <loc>http://127.0.0.1:8000/en/songs/b2d3627b-dbc7
 -4c11-a13e-03d86f32a719/</loc>
 <lastmod>2019-12-15</lastmod>
 <priority>1.0</priority>
 </url>
 <url>
 <loc>http://127.0.0.1:8000/en/songs/f5c386fd-1952
 -4ace-9848-717d27186fa9/</loc>
 <lastmod>2019-12-15</lastmod>
 <priority>1.0</priority>
 </url>
 <url>
 <loc>http://127.0.0.1:8000/en/songs/a59cbb5a-16e8
 -46dd-9498-d86e24e277a5/</loc>
 <lastmod>2019-12-15</lastmod>
 <priority>1.0</priority>
 </url>
 ...
</urlset>

When your site is ready and published to production, you can inform Google Search
Engine about your pages with the ping_google management command provided by the
sitemap framework. Execute this command at the production server as follows:

(env)$ python manage.py ping_google --
settings=myproject.settings.production

There's more...
You can learn more from the following links:

Read about the sitemaps protocol at https:/ / www.sitemaps. org/

Read more about Django sitemap framework at
https:// docs. djangoproject. com/en/ 3.0/ ref/ contrib/ sitemaps/

https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/3.0/ref/contrib/sitemaps/

Importing and Exporting Data Chapter 9

[439]

See also
The Creating filterable RSS feeds recipe

Creating filterable RSS feeds
Django comes with a syndication feed framework that allows you to create Really Simple
Syndication (RSS) and Atom feeds. RSS and Atom feeds are XML documents with specific
semantics. They can be subscribed to an RSS reader, such as Feedly, or they can be
aggregated in other websites, mobile applications, or desktop applications. In this recipe,
we will create an RSS feed that provides information about songs. Moreover, the results
will be filterable by URL query parameters.

Getting ready
Start by creating the music app from the Importing data from a local CSV file and Preparing
paginated sitemaps for search engines recipes. Specifically, follow the steps in the Getting ready
section to set up the models, forms, views, URL configurations, and templates.

To the view listing songs, we will add filtering by artist that later will be used by the RSS
feed too:

Add a filter form to forms.py. It will have the artist choice field with all artist1.
names sorted alphabetically with letter case ignored:

myproject/apps/music/forms.py
from django import forms
from django.utils.translation import ugettext_lazy as _
from .models import Song

…

class SongFilterForm(forms.Form):
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 artist_choices = [
 (artist, artist)
 for artist in sorted(
 Song.objects.values_list("artist",
 flat=True).distinct(),
 key=str.casefold
)

Importing and Exporting Data Chapter 9

[440]

]
 self.fields["artist"] = forms.ChoiceField(
 label=_("Artist"),
 choices=artist_choices,
 required=False,
)

Enhance the SongList view with the methods to manage the filtering: the get()2.
method will handle the filtering and display results, the get_form_kwargs()
method will prepare the keyword arguments for the filter form, and
the get_queryset() method will filter songs by artist:

myproject/apps/music/views.py
from django.http import Http404
from django.views.generic import ListView, DetailView, FormView
from django.utils.translation import ugettext_lazy as _
from .models import Song
from .forms import SongFilterForm

class SongList(ListView, FormView):
 form_class = SongFilterForm
 model = Song

 def get(self, request, *args, **kwargs):
 form_class = self.get_form_class()
 self.form = self.get_form(form_class)

 self.object_list = self.get_queryset()
 allow_empty = self.get_allow_empty()
 if not allow_empty and len(self.object_list) == 0:
 raise Http404(_(u"Empty list and '%(class_name)s
 .allow_empty' is False.")
 % {'class_name':
 self.__class__.__name__})

 context = self.get_context_data(object_list=
 self.object_list, form=self.form)
 return self.render_to_response(context)

 def get_form_kwargs(self):
 kwargs = {
 'initial': self.get_initial(),
 'prefix': self.get_prefix(),
 }
 if self.request.method == 'GET':
 kwargs.update({
 'data': self.request.GET,

Importing and Exporting Data Chapter 9

[441]

 })
 return kwargs

 def get_queryset(self):
 queryset = super().get_queryset()
 if self.form.is_valid():
 artist = self.form.cleaned_data.get("artist")
 if artist:
 queryset = queryset.filter(artist=artist)
 return queryset

Modify the song list template to add the form for filtering:3.

{# music/song_list.html #}
{% extends "base.html" %}
{% load i18n %}

{% block sidebar %}
 <form action="" method="get">
 {{ form.errors }}
 {{ form.as_p }}
 <button type="submit" class="btn btn-primary">
 {% trans "Filter" %}</button>
 </form>
{% endblock %}

{% block main %}

 {% for song in object_list %}

 {{ song }}
 {% endfor %}

{% endblock %}

If you now check the song list view in the browser and filter songs by, let's say,
Lana Del Rey, you would see results like this:

Importing and Exporting Data Chapter 9

[442]

The URL of the filtered song list will
be http://127.0.0.1:8000/en/songs/?artist=Lana+Del+Rey.

How to do it...
Now, we will add the RSS feed to the music app:

In the music app, create the feeds.py file and add the following content:1.

myproject/apps/music/feeds.py
from django.contrib.syndication.views import Feed
from django.urls import reverse

from .models import Song
from .forms import SongFilterForm

class SongFeed(Feed):
 description_template = "music/feeds/song_description.html"

 def get_object(self, request, *args, **kwargs):
 form = SongFilterForm(data=request.GET)
 obj = {}
 if form.is_valid():
 obj = {"query_string": request.META["QUERY_STRING"]}
 for field in ["artist"]:
 value = form.cleaned_data[field]
 obj[field] = value
 return obj

 def title(self, obj):
 the_title = "Music"
 artist = obj.get("artist")
 if artist:
 the_title = f"Music by {artist}"
 return the_title

Importing and Exporting Data Chapter 9

[443]

 def link(self, obj):
 return self.get_named_url("music:song_list", obj)

 def feed_url(self, obj):
 return self.get_named_url("music:song_rss", obj)

 @staticmethod
 def get_named_url(name, obj):
 url = reverse(name)
 qs = obj.get("query_string", False)
 if qs:
 url = f"{url}?{qs}"
 return url

 def items(self, obj):
 queryset = Song.objects.order_by("-created")

 artist = obj.get("artist")
 if artist:
 queryset = queryset.filter(artist=artist)

 return queryset[:30]

 def item_pubdate(self, item):
 return item.created

Create a template for the song descriptions in the RSS feed:2.

{# music/feeds/song_description.html #}
{% load i18n %}
{% with song=obj %}
 {% if song.image %}

 {% endif %}
 {% if song.url %}
 <a href="{{ song.url }}" target="_blank"
 rel="noreferrer noopener">
 {% trans "Check this song" %}

 {% endif %}
{% endwith %}

Importing and Exporting Data Chapter 9

[444]

Plug in the RSS feed in the URL configuration of the app:3.

myproject/apps/music/urls.py
from django.urls import path

from .feeds import SongFeed
from .views import SongList, SongDetail

app_name = "music"

urlpatterns = [
 path("", SongList.as_view(), name="song_list"),
 path("<uuid:pk>/", SongDetail.as_view(), name="song_detail"),
 path("rss/", SongFeed(), name="song_rss"),
]

 In the template of the song list view, add a link to the RSS feed:4.

{# music/song_list.html #}

{% url "music:songs_rss" as songs_rss_url %}
<p>

 {% trans "Subscribe to RSS feed" %}

</p>

How it works...
If you refresh the filtered list view
at http://127.0.0.1:8000/en/songs/?artist=Lana+Del+Rey, you will see
the Subscribe to RSS feed link that leads
to http://127.0.0.1:8000/en/songs/rss/?artist=Lana+Del+Rey. This will be the
RSS feed of up to 30 songs filtered by the artist.

Importing and Exporting Data Chapter 9

[445]

The SongFeed class takes care of automatically generating the XML markup for the RSS
feed. We specified the following methods there:

The get_object() method defines the context dictionary for the Feed class that
will be used by other methods.
The title() method defines the title of the feed depending on whether the
results are filtered or not.
The link() method returns the URL of the list view, whereas feed_url()
returns the URL of the feed. Both of them are using a helper
method, get_named_url(), which forms a URL by pathname and query
parameters.
The items() method returns the queryset of songs, optionally filtered by artist.
The item_pubdate() method returns the creation date of the song.

To see all of the available methods and properties of the Feed class that
we are extending, refer to the following documentation at https:/ /docs.
djangoproject. com/ en/ 3. 0/ref/ contrib/ syndication/ #feed- class-
reference.

See also
The Importing data from a local CSV file recipe
The Preparing paginated sitemaps for search engines recipe

Using Django REST framework to create an
API
When you need to create a RESTful API for your models to transfer data to and from third
parties, the Django REST framework is probably the best tool you can use. This framework
has extensive documentation and a Django-centric implementation, helping to make it
more maintainable. In this recipe, you will learn how to use the Django REST framework to
allow your project partners, mobile clients, or Ajax-based website to access data on your
site to create, read, update, and delete content as appropriate.

https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/3.0/ref/contrib/syndication/#feed-class-reference

Importing and Exporting Data Chapter 9

[446]

Getting ready
First of all, install the Django REST Framework in your virtual environment using the
following command:

(env)$ pip install djangorestframework==3.11.0

Add "rest_framework" to INSTALLED_APPS in the settings.

Then, enhance the music app that we defined in the Importing data from a local CSV file
recipe. You will also want to collect the static files provided by the Django REST framework
for the pages it provides to be as nicely styled as possible:

(env)$ python manage.py collectstatic

How to do it...
To integrate a new RESTful API in our music app, execute the following steps:

Add configurations for the Django REST framework to the settings, as shown1.
here:

myproject/settings/_base.py
REST_FRAMEWORK = {
 "DEFAULT_PERMISSION_CLASSES": ["rest_framework.permissions
 .DjangoModelPermissionsOrAnonReadOnly"
],
 "DEFAULT_PAGINATION_CLASS":
 "rest_framework.pagination.LimitOffsetPagination",
 "PAGE_SIZE": 50,
}

In the music app, create the serializers.py file with the following content:2.

from rest_framework import serializers
from .models import Song

class SongSerializer(serializers.ModelSerializer):
 class Meta:
 model = Song
 fields = ["uuid", "artist", "title", "url", "image"]

Importing and Exporting Data Chapter 9

[447]

Add two new class-based views to the views.py file in the music app:3.

from rest_framework import generics

from .serializers import SongSerializer
from .models import Song

…

class RESTSongList(generics.ListCreateAPIView):
 queryset = Song.objects.all()
 serializer_class = SongSerializer

 def get_view_name(self):
 return "Song List"

class RESTSongDetail(generics.RetrieveUpdateDestroyAPIView):
 queryset = Song.objects.all()
 serializer_class = SongSerializer

 def get_view_name(self):
 return "Song Detail"

Finally, plug in the new views to the project URL configuration:4.

myproject/urls.py
from django.urls import include, path
from myproject.apps.music.views import RESTSongList, RESTSongDetail

urlpatterns = [
 path("api-auth/", include("rest_framework.urls",
 namespace="rest_framework")),
 path("rest-api/songs/", RESTSongList.as_view(),
 name="rest_song_list"),
 path(
 "rest-api/songs/<uuid:pk>/", RESTSongDetail.as_view(),
 name="rest_song_detail"
),
 # …
]

Importing and Exporting Data Chapter 9

[448]

How it works...
What we created here is an API for the music, where you can read a paginated song list,
create a new song, and read, change, or delete a single song by ID. Reading is allowed
without authentication, but you have to have a user account with the appropriate
permissions to add, change, or delete a song. The Django REST framework provides you
with web-based API documentation that is shown when you access the API endpoints in a
browser via GET. Without logging in, the framework would display something like this:

Importing and Exporting Data Chapter 9

[449]

Here's how you can approach the created API:

URL HTTP
Method Description

/rest-api/songs/ GET List songs paginated by 50.
/rest-api/songs/ POST Create a new song if the requesting user is authenticated and authorized to create songs.
/rest-api/songs/b328109b-
5ec0-4124-b6a9-e963c62d212c/

GET Get a song with the ID b328109b-5ec0-4124-b6a9-e963c62d212c.

/rest-api/songs/b328109b-
5ec0-4124-b6a9-e963c62d212c/

PUT
Update a song with the ID b328109b-5ec0-4124-b6a9-e963c62d212c if the user is
authenticated and authorized to change songs.

/rest-api/songs/b328109b-
5ec0-4124-b6a9-e963c62d212c/

DELETE
Delete the song with the ID b328109b-5ec0-4124-b6a9-e963c62d212c if the user is
authenticated and authorized to delete songs.

You might ask how you would use the API practically. For example, we might use the
requests library to create a new song from a Python script, as follows:

import requests

response = requests.post(
 url="http://127.0.0.1:8000/rest-api/songs/",
 data={
 "artist": "Luwten",
 "title": "Go Honey",
 },
 auth=("admin", "<YOUR_ADMIN_PASSWORD>"),
)
assert(response.status_code == requests.codes.CREATED)

Importing and Exporting Data Chapter 9

[450]

The same could be done via Postman app, which provides a user-friendly interface for
submitting requests, as seen here:

You can also try out the APIs via integrated forms under the framework-generated API
documentation when logged in, as shown in the following screenshot:

Importing and Exporting Data Chapter 9

[451]

Importing and Exporting Data Chapter 9

[452]

Let's take a quick look at how the code that we wrote works. In the settings, we have set the
access to be dependent on the permissions of the Django system. For anonymous requests,
only reading is allowed. Other access options include allowing any permission to everyone,
any permission only to authenticated users, any permission to staff users, and so on. The
full list can be found at https:/ /www. django- rest- framework. org/ api-guide/
permissions/.

Then, in the settings, pagination is set. The current option is to have the limit and offset
parameters as in an SQL query. Other options are to have either the pagination by page
numbers for rather static content or cursor pagination for real-time data. We set the default
pagination to 50 items per page.

Later, we define a serializer for the songs. It controls the data that will be shown in the
output and validates the input. There are various ways to serialize relations in the Django
REST framework, and we chose the most verbose one in our example.

To read more about how to serialize relations, refer to the documentation
at https:/ / www. django- rest- framework. org/ api- guide/ relations/ .

After defining the serializers, we created two class-based views to handle the API
endpoints and plugged them into the URL configuration. In the URL configuration, we also
have a rule (/api-auth/) for browsable API pages, login, and logout.

See also
The Preparing paginated sitemaps for search engines recipe
The Creating filterable RSS feeds recipe
The Testing an API created using Django REST framework recipe in Chapter 11,
Testing

https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/
https://www.django-rest-framework.org/api-guide/relations/

10
Bells and Whistles

In this chapter, we will cover the following topics:

Using the Django shell
Using database query expressions
Monkey patching the slugify() function for better internationalization support
Toggling the Debug toolbar
Using ThreadLocalMiddleware
Using signals to notify administrators about new entries
Checking for missing settings

Introduction
In this chapter, we will go over several important bits and pieces that will help you to better
understand and utilize Django. We will provide an overview of how to use the Django shell
to experiment with the code before writing it in the files. You will be introduced to monkey
patching, also known as guerrilla patching, which is a powerful feature of dynamic
languages, such as Python and Ruby. We will also talk about full-text search capabilities,
and you will learn how to debug your code and check its performance. Then, you will learn
how to access the currently logged-in user (and other request parameters) from any
module. You will also learn how to handle signals and create system checks. Get ready for
an interesting programming experience!

Bells and Whistles Chapter 10

[454]

Technical requirements
To work with the code of this chapter, you will need the latest stable version of a Python,
MySQL, or PostgreSQL database and a Django project with a virtual environment.

You can find all the code for this chapter in the ch10 directory of the GitHub repository
at https://github. com/ PacktPublishing/ Django- 3- Web- Development- Cookbook- Fourth-
Edition.

Using the Django shell
With the virtual environment activated and your project directory selected as the current
directory, enter the following command in your command-line tool:

(env)$ python manage.py shell

By executing the preceding command, you will enter an interactive Python shell,
configured for your Django project, where you can play around with the code, inspect the
classes, try out methods, or execute scripts on the fly. In this recipe, we will go over the
most important functions that you need to know in order to work with the Django shell.

Getting ready
You can install either IPython or bpython to provide additional interface options for
Python shells or you can install both if you want a choice. These will highlight the syntax
for the output of your Django shell and will add some other helpers. Install them both by
using the following commands for a virtual environment:

(env)$ pip install ipython
(env)$ pip install bpython

https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition

Bells and Whistles Chapter 10

[455]

How to do it...
Learn the basics of using the Django shell by following these instructions:

Run the Django shell by typing the following command:

(env)$ python manage.py shell

If you have installed IPython or bpython, then whichever one you have installed
will automatically become the default interface when you are entering the shell.
You can also use a particular interface by adding the -i <interface> option to
the preceding command. The prompt will change according to which interface
you use. The following screenshot shows what an IPython shell might look like,
starting with In [1]: as the prompt:

If you use bpython, the shell will be shown with the >>> prompt, along with code
highlighting and text autocompletion when you type, as follows:

The default Python interface shell looks as follows, also using the >>> prompt,
but with a preamble that provides information about the system:

Bells and Whistles Chapter 10

[456]

Now you can import classes, functions, or variables, and play around with them.
For example, to see the version of an installed module, you can import the
module and then try to read its __version__, VERSION, or version attribute
(shown using bpython, which will also demonstrate both its highlighting and
autocompletion features), as follows:

To get a comprehensive description of a module, class, function, method,
keyword, or documentation topic, use the help() function. You can either pass a
string with the path to a specific entity or the entity itself, as follows:

>>> help("django.forms")

This will open the help page for the django.forms module. Use the arrow keys
to scroll the page up and down. Press Q to get back to the shell. If you run help()
without the parameters, it opens an interactive help page. There, you can enter
any path of a module, class, function, and so on, and get information on what it
does and how to use it. To quit the interactive help, press Ctrl + D.

The following is an example of how to pass an entity to the help() function with
IPython:

Bells and Whistles Chapter 10

[457]

Doing this will open a help page for the ModelForm class, as follows:

To quickly see what fields and values are available for a model instance, use the
__dict__ attribute. You can use the pprint() function to print the dictionaries
in a more readable format (not just one long line), as shown in the following
screenshot. Note that when we use __dict__, we don't get many-to-many
relationships; however, this might be enough for a quick overview of the fields
and values:

Bells and Whistles Chapter 10

[458]

To get all of the available properties and methods of an object, you can use the
dir() function, as follows:

To print one attribute per line, you can use the code shown in the following
screenshot:

Bells and Whistles Chapter 10

[459]

The Django shell is useful for experimenting with QuerySets or regular
expressions before putting them into your model methods, views, or
management commands. For example, to check the email validation regular
expression, you can type the following into the Django shell:

>>> import re
>>> email_pattern = re.compile(r"[^@]+@[^@]+\.[^@]+")
>>> email_pattern.match("aidas@bendoraitis.lt")
<_sre.SRE_Match object at 0x1075681d0>

If you want to try out different QuerySets, use the following code:

>>> from django.contrib.auth.models import User
>>> User.objects.filter(groups__name="Editors")
[<User: admin>]

To exit the Django shell, press Ctrl + D or type the following command:

>>> exit()

How it works...
The difference between a normal Python shell and the Django shell is that when you run
the Django shell, manage.py sets the DJANGO_SETTINGS_MODULE environment variable so
that it points to the project's settings.py path, and then all of the code in the Django shell
is handled in the context of your project. With the use of the third-party IPython or bpython
interfaces, we can enhance the default Python shell further, with syntax highlighting,
autocompletion, and more.

See also
The Using database query expressions recipe

The Monkey patching the slugify() function for better internationalization support recipe

Bells and Whistles Chapter 10

[460]

Using database query expressions
Django Object-Relational Mapping (ORM) comes with special abstraction constructs that
can be used to build complex database queries. They are called query expressions, and
they allow you to filter data, order it, annotate new columns, and aggregate relations. In
this recipe, you will see how these can be used in practice. We will create an app that shows
viral videos and counts how many times each video has been seen by anonymous or
logged-in users.

Getting ready
To start with, create a viral_videos app with a ViralVideo model and set up the system
so that it logs to a log file by default:

Create the viral_videos app and add it under INSTALLED_APPS in the settings:

myproject/settings/_base.py
INSTALLED_APPS = [
 # …
 "myproject.apps.core",
 "myproject.apps.viral_videos",
]

Next, create a model for viral videos with a Universally Unique Identifier (UUID) as a
primary key, along with creation and modification timestamps, a title, embedded code,
impressions by anonymous users, and impressions by authenticated users, as follows:

myproject/apps/viral_videos/models.py
import uuid
from django.db import models
from django.utils.translation import ugettext_lazy as _

from myproject.apps.core.models import (
 CreationModificationDateBase,
 UrlBase,
)

class ViralVideo(CreationModificationDateBase, UrlBase):
 uuid = models.UUIDField(primary_key=True, default=None,
 editable=False)
 title = models.CharField(_("Title"), max_length=200, blank=True)
 embed_code = models.TextField(_("YouTube embed code"), blank=True)
 anonymous_views = models.PositiveIntegerField(_("Anonymous
 impressions"), default=0)

Bells and Whistles Chapter 10

[461]

 authenticated_views = models.PositiveIntegerField(
 _("Authenticated impressions"), default=0
)

 class Meta:
 verbose_name = _("Viral video")
 verbose_name_plural = _("Viral videos")

 def __str__(self):
 return self.title

 def get_url_path(self):
 from django.urls import reverse

 return reverse("viral_videos:viral_video_detail",
 kwargs={"pk": self.pk})

 def save(self, *args, **kwargs):
 if self.pk is None:
 self.pk = uuid.uuid4()
 super().save(*args, **kwargs)

Make and run migrations for the new app so that your database will be ready to go:

(env)$ python manage.py makemigrations
(env)$ python manage.py migrate

Add logging configuration to the settings:

LOGGING = {
 "version": 1,
 "disable_existing_loggers": False,
 "handlers": {
 "file": {
 "level": "DEBUG",
 "class": "logging.FileHandler",
 "filename": os.path.join(BASE_DIR, "tmp", "debug.log"),
 }
 },
 "loggers": {"django": {"handlers": ["file"], "level": "DEBUG",
 "propagate": True}},
}

Bells and Whistles Chapter 10

[462]

This will log debugging information into a temporary file named tmp/debug.log.

How to do it...
To illustrate the query expressions, let's create the viral video detail view and plug it into
the URL configuration, as follows:

Create the viral video list and detail views in views.py as follows:1.

myproject/apps/viral_videos/views.py
import logging

from django.conf import settings
from django.db import models
from django.utils.timezone import now, timedelta
from django.shortcuts import render, get_object_or_404
from django.views.generic import ListView

from .models import ViralVideo

POPULAR_FROM = getattr(settings, "VIRAL_VIDEOS_POPULAR_FROM", 500)

logger = logging.getLogger(__name__)

class ViralVideoList(ListView):
 template_name = "viral_videos/viral_video_list.html"
 model = ViralVideo

def viral_video_detail(request, pk):
 yesterday = now() - timedelta(days=1)

 qs = ViralVideo.objects.annotate(
 total_views=models.F("authenticated_views") +
 models.F("anonymous_views"),
 label=models.Case(
 models.When(total_views__gt=POPULAR_FROM,
 then=models.Value("popular")),
 models.When(created__gt=yesterday,
 then=models.Value("new")),
 default=models.Value("cool"),
 output_field=models.CharField(),
),
)

Bells and Whistles Chapter 10

[463]

 # DEBUG: check the SQL query that Django ORM generates
 logger.debug(f"Query: {qs.query}")

 qs = qs.filter(pk=pk)
 if request.user.is_authenticated:
 qs.update(authenticated_views=models
 .F("authenticated_views") + 1)
 else:
 qs.update(anonymous_views=models.F("anonymous_views") + 1)

 video = get_object_or_404(qs)

 return render(request, "viral_videos/viral_video_detail.html",
 {"video": video})

Define the URL configuration for the app as follows:2.

myproject/apps/viral_videos/urls.py
from django.urls import path

from .views import ViralVideoList, viral_video_detail

app_name = "viral_videos"

urlpatterns = [
 path("", ViralVideoList.as_view(), name="viral_video_list"),
 path("<uuid:pk>/", viral_video_detail,
 name="viral_video_detail"),
]

Include the URL configuration of the app in the project's root URL configuration3.
as follows:

myproject/urls.py
from django.conf.urls.i18n import i18n_patterns
from django.urls import include, path

urlpatterns = i18n_patterns(
path("viral-videos/", include("myproject.apps.viral_videos.urls",
namespace="viral_videos")),
)

Bells and Whistles Chapter 10

[464]

Create a template for the viral video list view as follows:4.

{# viral_videos/viral_video_list.html #}
{% extends "base.html" %}
{% load i18n %}

{% block content %}
 <h1>{% trans "Viral Videos" %}</h1>

 {% for video in object_list %}

 {{ video.title }}
 {% endfor %}

{% endblock %}

Create a template for the viral video detail view as follows:5.

{# viral_videos/viral_video_detail.html #}
{% extends "base.html" %}
{% load i18n %}

{% block content %}
 <h1>{{ video.title }}
 {{ video.label }}
 </h1>
 <div>{{ video.embed_code|safe }}</div>
 <div>
 <h2>{% trans "Impressions" %}</h2>

 {% trans "Authenticated views" %}:
 {{ video.authenticated_views }}

 {% trans "Anonymous views" %}:
 {{ video.anonymous_views }}

 {% trans "Total views" %}:
 {{ video.total_views }}

 </div>
{% endblock %}

Set up the administration for the viral_videos app as follows, and add6.
some videos to the database when you are finished:

myproject/apps/viral_videos/admin.py
from django.contrib import admin

Bells and Whistles Chapter 10

[465]

from .models import ViralVideo

@admin.register(ViralVideo)
class ViralVideoAdmin(admin.ModelAdmin):
 list_display = ["title", "created", "modified"]

How it works...
You might have noticed the logger.debug() statement in the view. If you run the server
in DEBUG mode and access a video in the browser (for example,
http://127.0.0.1:8000/en/viral-videos/2b14ffd3-d1f1-4699-a07b-1328421d8

312/, in local development), you will see an SQL query like the following printed in the
logs (tmp/debug.log):

SELECT "viral_videos_viralvideo"."created",
"viral_videos_viralvideo"."modified", "viral_videos_viralvideo"."uuid",
"viral_videos_viralvideo"."title", "viral_videos_viralvideo"."embed_code",
"viral_videos_viralvideo"."anonymous_views",
"viral_videos_viralvideo"."authenticated_views",
("viral_videos_viralvideo"."authenticated_views" +
"viral_videos_viralvideo"."anonymous_views") AS "total_views", CASE WHEN
("viral_videos_viralvideo"."authenticated_views" +
"viral_videos_viralvideo"."anonymous_views") > 500 THEN 'popular' WHEN
"viral_videos_viralvideo"."created" >
'2019-12-21T05:01:58.775441+00:00'::timestamptz THEN 'new' ELSE 'cool' END
 AS "label" FROM "viral_videos_viralvideo" WHERE
"viral_videos_viralvideo"."uuid" = '2b14ffd3-d1f1-4699-
a07b-1328421d8312'::uuid LIMIT 21; args=(500, 'popular',
datetime.datetime(2019, 12, 21, 5, 1, 58, 775441, tzinfo=<UTC>), 'new',
'cool', UUID('2b14ffd3-d1f1-4699-a07b-1328421d8312'))

Then, in the browser, you will see a simple page showing the following:

The title of the video
The label of the video
The embedded video
The number of views from authenticated and anonymous users, and the number
of views in total

Bells and Whistles Chapter 10

[466]

It will be similar to the following image:

The annotate() method in Django QuerySets allows you to add extra columns to the
SELECT SQL statement, as well as properties that were created on the fly for the objects
retrieved from QuerySets. With models.F(), we can reference different field values from
the selected database table. In this example, we will create the total_views attribute,
which is the sum of the views from authenticated and anonymous users.

With models.Case() and models.When(), we can return the values according to
different conditions. To mark the values, we are using models.Value(). In our example,
we will create the label column for the SQL query and the property for the objects
returned by QuerySet. It will be set to popular if it has more than 500 impressions, new if
it was created in the last 24 hours, and cool otherwise.

At the end of the view, we called the qs.update() methods. They increment
the authenticated_views or anonymous_views of the current video, depending on
whether the user looking at the video was logged in. The incrementation happens not at the
Python level, but at the SQL level. This solves issues with so-called race conditions where
two or more visitors are accessing the view at the same time, trying to increase the view
count simultaneously.

See also
The Using the Django shell recipe
The Creating a model mixin with URL-related methods recipe in Chapter 2, Models
and Database Structure
The Creating a model mixin to handle creation and modification dates recipe in
Chapter 2, Models and Database Structure

Bells and Whistles Chapter 10

[467]

Monkey patching the slugify() function for
better internationalization support
A monkey patch (or guerrilla patch) is a piece of code that extends or modifies another
piece of code at runtime. It is not recommended that you use monkey patches often;
however, sometimes, they are the only possible way to fix a bug in complex third-party
modules without creating a separate branch of the module. Also, monkey patching can be
used to prepare functional or unit tests without using complicated and time-consuming
database or file manipulations.

In this recipe, you will learn how to exchange the default slugify() function with the one
from the third-party transliterate package, which handles the conversion of Unicode
characters to ASCII equivalents more intelligently and includes a number of language
packs that provide even more specific transformations as needed. As a quick reminder, we
use the slugify() utility to create a URL-friendly version of an object's title or uploaded
filename. When processed, the function strips any leading and trailing whitespace, converts
the text to lowercase, removes non-alphanumeric characters, and converts spaces to
hyphens.

Getting ready
Let's start with these small steps:

Install transliterate in your virtual environment as follows:1.

(env)$ pip install transliterate==1.10.2

Then, create a guerrilla_patches app in your project and put it under2.
INSTALLED_APPS in the settings.

How to do it...
In the models.py file of the guerrilla_patches app, overwrite the slugify function
from django.utils.text with the one from the transliterate package:

myproject/apps/guerrilla_patches/models.py
from django.utils import text
from transliterate import slugify

text.slugify = slugify

Bells and Whistles Chapter 10

[468]

How it works...
The default Django slugify() function handles German diacritical symbols incorrectly.
To see this for yourself, try to slugify a very long German word with all the German
diacritical symbols. First, run the following code in the Django shell, without the monkey
patch:

(env)$ python manage.py shell
>>> from django.utils.text import slugify
>>> slugify("Heizölrückstoßabdämpfung")
'heizolruckstoabdampfung'

This is incorrect in German, as the letter ß is totally stripped out instead of being substituted
for ss and the letters ä, ö, and ü are changed to a, o, and u, where they should have been
substituted with ae, oe, and ue.

The monkey patch that we created loads the django.utils.text module at initialization
and reassigns transliteration.slugify in place of the core slugify() function. Now,
if you run the same code in the Django shell, you will get the correct results, as follows:

(env)$ python manage.py shell
>>> from django.utils.text import slugify
>>> slugify("Heizölrückstoßabdämpfung")
'heizoelrueckstossabdaempfung'

To read more about how to utilize the transliterate module, refer to
https:/ /pypi. org/ project/ transliterate.

There's more...
Before creating a monkey patch, we need to completely understand how the code that we
want to modify works. This can be done by analyzing the existing code and inspecting the
values of different variables. To do this, there is a useful built-in Python debugger module,
pdb, that can be temporarily added to the Django code (or any third-party module) to stop
the execution of a development server at any breakpoint. Use the following code to debug
an unclear part of a Python module:

breakpoint()

https://pypi.org/project/transliterate/
https://pypi.org/project/transliterate/
https://pypi.org/project/transliterate/
https://pypi.org/project/transliterate/
https://pypi.org/project/transliterate/
https://pypi.org/project/transliterate/
https://pypi.org/project/transliterate/
https://pypi.org/project/transliterate/
https://pypi.org/project/transliterate/
https://pypi.org/project/transliterate/
https://pypi.org/project/transliterate/

Bells and Whistles Chapter 10

[469]

This launches the interactive shell, where you can type in the variables in order to see their
values. If you type c or continue, the code execution will continue until the next
breakpoint. If you type q or quit, the management command will be aborted.

You can learn more Python debugger commands and how to inspect the
traceback of the code at https://docs.python.org/3/library/pdb.html.

Another quick way to see the value of a variable in the development server is to raise a
warning with the variable as a message, as follows:

raise Warning, some_variable

When you are in DEBUG mode, the Django logger will provide you with the traceback and
other local variables.

Don't forget to remove debugging code before committing your work to a
repository.

If you are using the PyCharm interactive development environment, you can set
breakpoints and debug variables there visually without modifying the source code.

See also
The Using the Django shell recipe

Toggling the Debug toolbar
While developing with Django, you may want to inspect request headers and parameters,
check the current template context, or measure the performance of SQL queries. All of this
and more is possible with the Django Debug Toolbar. It is a configurable set of panels that
display various debugging information about the current request and response. In this
recipe, we will guide you through how to toggle the visibility of the Debug toolbar,
depending on a cookie whose value can be set by a bookmarklet. A bookmarklet is a
bookmark with a small piece of JavaScript code that you can run on any page in a browser.

https://docs.python.org/3/library/pdb.html

Bells and Whistles Chapter 10

[470]

Getting ready
To get started with toggling the visibility of the Debug toolbar, go through the following
steps:

Install the Django Debug Toolbar in your virtual environment:1.

(env)$ pip install django-debug-toolbar==2.1

Add "debug_toolbar" under INSTALLED_APPS in the settings:2.

myproject/settings/_base.py
INSTALLED_APPS = [
 # …
 "debug_toolbar",
]

How to do it...
Follow these steps to set up the Django Debug Toolbar, which can be switched on or off
using a bookmarklet in the browser:

Add the following project settings:1.

myproject/settings/_base.py
DEBUG_TOOLBAR_CONFIG = {
 "DISABLE_PANELS": [],
 "SHOW_TOOLBAR_CALLBACK":
 "myproject.apps.core.misc.custom_show_toolbar",
 "SHOW_TEMPLATE_CONTEXT": True,
}

DEBUG_TOOLBAR_PANELS = [
 "debug_toolbar.panels.versions.VersionsPanel",
 "debug_toolbar.panels.timer.TimerPanel",
 "debug_toolbar.panels.settings.SettingsPanel",
 "debug_toolbar.panels.headers.HeadersPanel",
 "debug_toolbar.panels.request.RequestPanel",
 "debug_toolbar.panels.sql.SQLPanel",
 "debug_toolbar.panels.templates.TemplatesPanel",
 "debug_toolbar.panels.staticfiles.StaticFilesPanel",
 "debug_toolbar.panels.cache.CachePanel",
 "debug_toolbar.panels.signals.SignalsPanel",
 "debug_toolbar.panels.logging.LoggingPanel",
 "debug_toolbar.panels.redirects.RedirectsPanel",
]

Bells and Whistles Chapter 10

[471]

In the core app, create a misc.py file with the2.
custom_show_toolbar() function, as follows:

myproject/apps/core/misc.py
def custom_show_toolbar(request):
 return "1" == request.COOKIES.get("DebugToolbar", False)

In the urls.py of the project, add these configuration rules:3.

myproject/urls.py
from django.conf.urls.i18n import i18n_patterns
from django.urls import include, path
from django.conf import settings
import debug_toolbar

urlpatterns = i18n_patterns(
 # …
)

urlpatterns = [
 path('__debug__/', include(debug_toolbar.urls)),
] + urlpatterns

Open the Chrome or Firefox browser and go to the bookmark manager. Then,4.
create two new bookmarks that contain JavaScript. The first link will show the
toolbar, and will look similar to the following:

Bells and Whistles Chapter 10

[472]

The JavaScript code is as follows:

javascript:(function(){document.cookie="DebugToolbar=1;
path=/";location.reload();})();

The second JavaScript link will hide the toolbar, and will look similar to the5.
following:

This is the full JavaScript code:

javascript:(function(){document.cookie="DebugToolbar=0;
path=/";location.reload();})();

How it works...
The DEBUG_TOOLBAR_PANELS setting defines the panels to show in the toolbar. The
DEBUG_TOOLBAR_CONFIG dictionary defines the configuration for the toolbar, including a
path to the function that is used to check whether or not to show the toolbar.

Bells and Whistles Chapter 10

[473]

By default, when you browse through your project, the Django Debug Toolbar will not be
shown; however, as you click on your bookmarklet, Debug Toolbar On, the
DebugToolbar cookie will be set to 1, the page will be refreshed, and you will see the
toolbar with debugging panels—for example, you will be able to inspect the performance of
SQL statements for optimization, as shown in the following screenshot:

Bells and Whistles Chapter 10

[474]

You will also be able to check the template context variables for the current view, as shown
in the following screenshot:

Clicking on the second bookmarklet, Debug Toolbar Off, will similarly set the
DebugToolbar cookie to 0 and refresh the page, hiding the toolbar again.

See also
The Getting detailed error reporting via email recipe in Chapter 13, Maintenance

Bells and Whistles Chapter 10

[475]

Using ThreadLocalMiddleware
The HttpRequest object contains useful information about the current user, language,
server variables, cookies, session, and so on. As a matter of fact, HttpRequest is provided
in the views and middleware, and you can pass it (or its attribute values) to forms, model
methods, model managers, templates, and so on. To make life easier, you can use a so-
called ThreadLocalMiddleware that stores the current HttpRequest object in the
globally accessible Python thread. Therefore, you can access it from model methods, forms,
signal handlers, and other places that didn't have direct access to the HttpRequest object
previously. In this recipe, we will define this middleware.

Getting ready
Create the core app and put it under INSTALLED_APPS in the settings, if you have not
done so already.

How to do it...
Execute the following two steps to set up ThreadLocalMiddleware, which can be used to
get the current HttpRequest or user in any function or method of the project's code:

Add a middleware.py file to the core app with the following content:1.

myproject/apps/core/middleware.py
from threading import local

_thread_locals = local()

def get_current_request():
 """
 :returns the HttpRequest object for this thread
 """
 return getattr(_thread_locals, "request", None)

def get_current_user():
 """
 :returns the current user if it exists or None otherwise """
 request = get_current_request()
 if request:
 return getattr(request, "user", None)

Bells and Whistles Chapter 10

[476]

class ThreadLocalMiddleware(object):
 """
 Middleware to add the HttpRequest to thread local storage
 """

 def __init__(self, get_response):
 self.get_response = get_response

 def __call__(self, request):
 _thread_locals.request = request
 return self.get_response(request)

Add this middleware to MIDDLEWARE in the settings:2.

myproject/settings/_base.py
MIDDLEWARE = [
 "django.middleware.security.SecurityMiddleware",
 "django.contrib.sessions.middleware.SessionMiddleware",
 "django.middleware.common.CommonMiddleware",
 "django.middleware.csrf.CsrfViewMiddleware",
 "django.contrib.auth.middleware.AuthenticationMiddleware",
 "django.contrib.messages.middleware.MessageMiddleware",
 "django.middleware.clickjacking.XFrameOptionsMiddleware",
 "django.middleware.locale.LocaleMiddleware",
 "debug_toolbar.middleware.DebugToolbarMiddleware",
 "myproject.apps.core.middleware.ThreadLocalMiddleware",
]

How it works...
The ThreadLocalMiddleware processes each request and stores the current HttpRequest
object in the current thread. Each request–response cycle in Django is single threaded. We
have created two functions: get_current_request() and get_current_user(). These
functions can be used from anywhere to grab the current HttpRequest object or the
current user, respectively.

For example, you can use this middleware to develop and use CreatorMixin, which will
save the current user as the creator of a new model object, as follows:

myproject/apps/core/models.py
from django.conf import settings
from django.db import models
from django.utils.translation import gettext_lazy as _

Bells and Whistles Chapter 10

[477]

class CreatorBase(models.Model):
 """
 Abstract base class with a creator
 """

 creator = models.ForeignKey(
 settings.AUTH_USER_MODEL,
 verbose_name=_("creator"),
 editable=False,
 blank=True,
 null=True,
 on_delete=models.SET_NULL,
)

 class Meta:
 abstract = True

 def save(self, *args, **kwargs):
 from .middleware import get_current_user

 if not self.creator:
 self.creator = get_current_user()
 super().save(*args, **kwargs)

 save.alters_data = True

See also
The Creating a model mixin with URL-related methods recipe in Chapter 2, Models
and Database Structure
The Creating a model mixin to handle creation and modification dates recipe in
Chapter 2, Models and Database Structure
The Creating a model mixin to take care of meta tags recipe in Chapter 2, Models and
Database Structure
The Creating a model mixin to handle generic relations recipe in Chapter 2, Models
and Database Structure

Bells and Whistles Chapter 10

[478]

Using signals to notify administrators about
new entries
The Django framework includes the concept of signals, which are similar to events in
JavaScript. There are a handful of built-in signals. You can use them to trigger actions
before and after the initialization of a model, saving or deleting an instance, migrating the
database schema, handling a request, and so on. Moreover, you can create your own signals
in your reusable apps and handle them in other apps. In this recipe, you will learn how to
use signals to send emails to administrators whenever a specific model is saved.

Getting ready
Let's start with the viral_videos app that we created in the Using database query
expressions recipe.

How to do it...
Follow these steps to create notifications for administrators:

Create a signals.py file with the following content:1.

myproject/apps/viral_videos/signals.py
from django.db.models.signals import post_save
from django.dispatch import receiver
from django.template.loader import render_to_string

from .models import ViralVideo

@receiver(post_save, sender=ViralVideo)
def inform_administrators(sender, **kwargs):
 from django.core.mail import mail_admins

 instance = kwargs["instance"]
 created = kwargs["created"]

 if created:
 context = {"title": instance.title, "link":
 instance.get_url()}
 subject = render_to_string(
 "viral_videos/email/administrator/subject.txt", context
)

Bells and Whistles Chapter 10

[479]

 plain_text_message = render_to_string(
 "viral_videos/email/administrator/message.txt", context
)
 html_message = render_to_string(
 "viral_videos/email/administrator/message.html",
 context
)

 mail_admins(
 subject=subject.strip(),
 message=plain_text_message,
 html_message=html_message,
 fail_silently=True,
)

Then we need to create some templates. Start with the template for the email2.
subject:

{# viral_videos/email/administrator/subject.txt #}
New Viral Video Added

Then create a template for a plain text message—something like the following:3.

{# viral_videos/email/administrator/message.txt #}
A new viral video called "{{ title }}" has been created.
You can preview it at {{ link }}.

Then create a template for the HTML message as follows:4.

{# viral_videos/email/administrator/message.html #}
<p>A new viral video called "{{ title }}" has been created.</p>
<p>You can preview it here.</p>

Create the apps.py file with the following content:5.

myproject/apps/viral_videos/apps.py
from django.apps import AppConfig
from django.utils.translation import ugettext_lazy as _

class ViralVideosAppConfig(AppConfig):
 name = "myproject.apps.viral_videos"
 verbose_name = _("Viral Videos")

 def ready(self):
 from .signals import inform_administrators

Bells and Whistles Chapter 10

[480]

Update the __init__.py file with the following content:6.

myproject/apps/viral_videos/__init__.py
default_app_config =
"myproject.apps.viral_videos.apps.ViralVideosAppConfig"

Make sure that you have ADMINS set in the project settings similar to
the following:

myproject/settings/_base.py
ADMINS = [("Administrator", "admin@example.com")]

How it works...
The ViralVideosAppConfig app configuration class has the ready() method, which will
be called when all of the models of the project are loaded into the memory. According to
the Django documentation, signals allow for certain senders to notify a set of receivers that
an action has taken place. In the ready() method, therefore, we import the
inform_administrators() function.

Through the @receiver decorator, inform_administrators() is registered for the
post_save signal, and we have limited it to handle only the signals where the
ViralVideo model is sender. Therefore, whenever we save a ViralVideo object, the
receiver function will be called. The inform_administrators() function checks
whether a video is newly created. If it is, it sends an email to the system administrators that
are listed in ADMINS in the settings.

We use templates to generate the content of the subject, plain_text_message, and the
html_message so that we can define default templates for each of these within our app. If
we make our viral_videos app publicly available, those who pull it into their own
projects can then customize the templates as desired, perhaps to wrap them in a company
email template wrapper.

You can learn more about the Django signals in the official documentation
at https:/ / docs. djangoproject. com/en/ 3.0/ topics/ signals/ .

https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/
https://docs.djangoproject.com/en/3.0/topics/signals/

Bells and Whistles Chapter 10

[481]

See also
The Creating app configuration recipe in Chapter 1, Getting Started with Django 3.0
The Using database query expressions recipe
The Checking for missing settings recipe

Checking for missing settings
From Django 1.7 onward, you can use an extensible system-check framework, which
replaces the old validate management command. In this recipe, you will learn how to
create a check if the ADMINS setting is set. Similarly, you will be able to check whether
different secret keys or access tokens are set for the APIs that you are using.

Getting ready
Let's start with the viral_videos app that was created in the Using database query
expressions recipe and was extended in the previous recipe.

How to do it...
To use the system-check framework, go through these steps:

Create the checks.py file with the following content:1.

myproject/apps/viral_videos/checks.py
from textwrap import dedent

from django.core.checks import Warning, register, Tags

@register(Tags.compatibility)
def settings_check(app_configs, **kwargs):
 from django.conf import settings

 errors = []

 if not settings.ADMINS:
 errors.append(
 Warning(
 dedent("""

Bells and Whistles Chapter 10

[482]

 The system admins are not set in the project
 settings
 """),
 obj=settings,
 hint=dedent("""
 In order to receive notifications when new
 videos are created, define system admins
 in your settings, like:
 ADMINS = (
 ("Admin", "administrator@example.com"),
)
 """),
 id="viral_videos.W001",
)
)

 return errors

Import the checks in the ready() method of the app configuration as follows:2.

myproject/apps/viral_videos/apps.py
from django.apps import AppConfig
from django.utils.translation import ugettext_lazy as _

class ViralVideosAppConfig(AppConfig):
 name = "myproject.apps.viral_videos"
 verbose_name = _("Viral Videos")

 def ready(self):
 from .signals import inform_administrators
 from .checks import settings_check

To try the check that you just created, remove or comment out the ADMINS setting3.
and then run the check management command in your virtual environment:

(env)$ python manage.py check
System check identified some issues:

WARNINGS:
<Settings "myproject.settings.dev">: (viral_videos.W001)
The system admins are not set in the project settings

HINT:
In order to receive notifications when new videos are
created, define system admins in your settings, like:

Bells and Whistles Chapter 10

[483]

ADMINS = (
 ("Admin", "administrator@example.com"),
)

System check identified 1 issue (0 silenced).

How it works...
The system-check framework has a bunch of checks in the models, fields, databases,
administration authentication configuration, content types, and security settings, where it
raises errors or warnings if something in the project is not set correctly. Additionally, you
can create your own checks, similar to what we did in this recipe.

We have registered the settings_check() function, which returns a list with Warning if
there is no ADMINS setting defined for the project.

Aside from the Warning instances from the django.core.checks module, the returned
list can also contain instances of the Debug, Info, Error, and Critical built-in classes or
any other class inheriting from django.core.checks.CheckMessage. Logging at the
debug, info, and warning levels would fail silently, whereas logging at the error and critical
levels would prevent the project from running.

In this example, the check is tagged as a compatibility check via the Tags.compatibility
argument passed to the @register decorator. Other options provided in Tags include the
following:

admin for checks related to the admin site
caches for checks related to server caching
database for checks related to the database configuration
models for checks related to models, model fields, and managers
security for security-related checks
signals for checks related to signal declarations and handlers
staticfiles for static-file checks
templates for template-related checks
translation for checks related to string translations
url for checks related to URL configuration

Bells and Whistles Chapter 10

[484]

Learn more about the system-check framework in the official
documentation at https:/ /docs. djangoproject. com/ en/ 3.0/ topics/
checks/ .

See also
The Creating app configurations recipe in Chapter 1, Getting Started with Django 3.0
The Using database query expressions recipe
The Using signals to notify administrators about new entries recipe

https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/
https://docs.djangoproject.com/en/3.0/topics/checks/

11
Testing

In this chapter, we will cover the following topics:

Testing views with mock
Testing the user interface with Selenium
Testing APIs created using Django REST framework
Ensuring test coverage

Introduction
To ensure the quality and correctness of your code, you should have automated software
tests. Django provides tools for you to write test suites for your website. Test suites
automatically check your website and its components to ensure that everything is working
correctly. When you modify your code, you can run the tests to check whether your
changes affected the application's behavior negatively.

The world of automated software testing has a wide range of divisions and terminologies.
For the sake of this book, we will divide testing into the following categories:

Unit testing refers to tests that are strictly targeted at individual pieces, or units,
of code. Most commonly, a unit corresponds to a single file or module, and unit
tests do their best to validate that the logic and behaviors are as expected.
Integration testing goes one step further, dealing with the way that two or more
units work with one another. Such tests do not get as granular as unit tests, and
they are generally written under the assumption that all unit tests have passed by
the time an integration is validated. Hence, integration tests only cover the set of
behaviors that must be true for the units to work properly with one another.

Testing Chapter 11

[486]

Component interface testing is a higher-order form of integration testing, in
which a single component is verified from end to end. Such tests are written in a
way that is ignorant of the underlying logic used to provide the behaviors of the
component, so that logic can change without modifying the behavior, and the
tests will still pass.
System testing verifies the end-to-end integration of all components that make
up a system, often corresponding to complete user flows.
Operational acceptance testing checks that all of the non-functional aspects of a
system operate correctly. Acceptance tests check the business logic to find out
whether the project works the way it is supposed to, from an end user's point of
view.

Technical requirements
For working with the code in this chapter, you will need the latest stable version of Python,
a MySQL or PostgreSQL database, and a Django project with a virtual environment.

You can find all of the code for this chapter at the ch11 directory of the GitHub repository
at: https://github. com/ PacktPublishing/ Django- 3- Web- Development- Cookbook- Fourth-
Edition.

Testing views with mock
In this recipe, we will take a look at how to write unit tests. Unit tests are those that check
whether individual functions or methods return the correct results. We will look at the
likes app and write tests that check whether posting to the json_set_like() view
returns a failure response for unauthenticated users and a successful result for
authenticated users. We will use Mock objects to simulate the HttpRequest and
AnonymousUser objects.

Getting ready
Let's start with the locations and likes apps from the Implementing the Like widget recipe
in Chapter 4, Templates and JavaScript.

We are going to use the mock library, which has been available as a built-in
at unittest.mock since Python 3.3.

https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition

Testing Chapter 11

[487]

How to do it...
We will test the liking action with mock by performing the following steps:

Create the tests module in your likes app1.
In this module, create a test_views.py file with the following content:2.

myproject/apps/likes/tests/test_views.py
import json
from unittest import mock
from django.contrib.auth.models import User
from django.contrib.contenttypes.models import ContentType
from django.test import TestCase
from myproject.apps.locations.models import Location

class JSSetLikeViewTest(TestCase):
 @classmethod
 def setUpClass(cls):
 super(JSSetLikeViewTest, cls).setUpClass()

 cls.location = Location.objects.create(
 name="Park Güell",
 description="If you want to see something spectacular,
 come to Barcelona, Catalonia, Spain and visit Park
 Güell. Located on a hill, Park Güell is a public
 park with beautiful gardens and organic
 architectural elements.",
 picture="locations/2020/01/20200101012345.jpg",
 # dummy path
)
 cls.content_type =
 ContentType.objects.get_for_model(Location)
 cls.superuser = User.objects.create_superuser(
 username="admin", password="admin",
 email="admin@example.com"
)

 @classmethod
 def tearDownClass(cls):
 super(JSSetLikeViewTest, cls).tearDownClass()
 cls.location.delete()
 cls.superuser.delete()

 def test_authenticated_json_set_like(self):
 from ..views import json_set_like

 mock_request = mock.Mock()

Testing Chapter 11

[488]

 mock_request.user = self.superuser
 mock_request.method = "POST"

 response = json_set_like(mock_request,
 self.content_type.pk, self.location.pk)
 expected_result = json.dumps(
 {"success": True, "action": "add", "count":
 Location.objects.count()}
)
 self.assertJSONEqual(response.content, expected_result)

 @mock.patch("django.contrib.auth.models.User")
 def test_anonymous_json_set_like(self, MockUser):
 from ..views import json_set_like

 anonymous_user = MockUser()
 anonymous_user.is_authenticated = False

 mock_request = mock.Mock()
 mock_request.user = anonymous_user
 mock_request.method = "POST"

 response = json_set_like(mock_request,
 self.content_type.pk, self.location.pk)
 expected_result = json.dumps({"success": False})
 self.assertJSONEqual(response.content, expected_result)

Run the tests for the likes app, as follows:3.

(env)$ python manage.py test myproject.apps.likes --
settings=myproject.settings.test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
..

Ran 2 tests in 0.268s
OK
Destroying test database for alias 'default'...

Testing Chapter 11

[489]

How it works...
When you run tests for the likes app, at first, a temporary test database is created. Then,
the setUpClass() method is called. Later, the methods whose names start with test are
executed, and, finally, the tearDownClass() method is called. For each passed test, you
will see a dot (.) in the command-line tool, for each failed test there will be the letter F, and
for each error in the tests, you will see the letter E. At the end, you will see hints about the
failed and erroneous tests. As we currently have only two tests in the suite for the likes
app, you will see two dots in the results.

In setUpClass(), we create a location and a superuser. Also, we find out the
ContentType object for the Location model. We will need it for the json_set_like()
view that sets or removes likes for different objects. As a reminder, the view looks similar to
the following, and returns a JSON string as a result:

def json_set_like(request, content_type_id, object_id):
 # all the view logic goes here…
 return JsonResponse(result)

In the test_authenticated_json_set_like() and
test_anonymous_json_set_like() methods, we use the Mock objects. These are objects
that can have any attributes or methods. Each undefined attribute or method of a Mock
object is another Mock object. Therefore, in the shell, you can try to chain attributes, as
follows:

>>> from unittest import mock
>>> m = mock.Mock()
>>> m.whatever.anything().whatsoever
<Mock name='mock.whatever.anything().whatsoever' id='4320988368'>

In our tests, we use Mock objects to simulate the HttpRequest object. For the anonymous
user, MockUser is generated as a patch of the standard Django User object, via the
@mock.patch() decorator. For the authenticated user, we still need the real User
object because the view uses the user's ID for the Like object.

Testing Chapter 11

[490]

Therefore, we call the json_set_like() function, and check that the returned JSON
response is correct:

It returns {"success": false} in the response if the visitor is unauthenticated
It returns something like {"action": "add", "count": 1, "success":
true} for authenticated users

In the end, the tearDownClass() class method is called, deleting the location and
superuser from the test database.

There's more...
To test something that uses the HttpRequest object, you can also use Django Request
Factory. You can read how to use it at https:/ /docs. djangoproject. com/ en/3. 0/topics/
testing/advanced/ #the- request- factory.

See also
The Implementing the Like widget recipe in Chapter 4, Templates and JavaScript
The Testing the user interface with Selenium recipe
The Testing APIs created using Django REST framework recipe
The Ensuring test coverage recipe

Testing the user interface with Selenium
Operational acceptance tests check the business logic to know whether the project works
the way it is supposed to. In this recipe, you will learn how to write acceptance tests with
Selenium, which allows you to simulate activities at the frontend such as filling in forms or
clicking on specific DOM elements in a browser.

Getting ready
Let's start with the locations and likes apps from the Implementing the Like widget recipe
in Chapter 4, Templates and JavaScript.

https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory
https://docs.djangoproject.com/en/3.0/topics/testing/advanced/#the-request-factory

Testing Chapter 11

[491]

For this recipe, we'll be using the Selenium library with the Chrome browser and
ChromeDriver to control it. Let's prepare that:

Download and install the Chrome browser from https:/ /www. google. com/1.
chrome/.
Create a drivers directory in your Django project. Download the latest stable2.
version of ChromeDriver from https:/ /sites. google. com/ a/chromium. org/
chromedriver/ , unzip it, and place it into the newly created drivers directory.
Install Selenium in your virtual environment, as follows:3.

(env)$ pip install selenium

How to do it...
We will test the Ajax-based liking functionality with Selenium by performing the following
steps:

In your project settings, add a TESTS_SHOW_BROWSER setting:1.

myproject/settings/_base.py
TESTS_SHOW_BROWSER = True

Create the tests module in your locations app and add a2.
test_frontend.py file in it with the following content:

myproject/apps/locations/tests/test_frontend.py
import os
from io import BytesIO
from time import sleep

from django.core.files.storage import default_storage
from django.test import LiveServerTestCase
from django.contrib.contenttypes.models import ContentType
from django.contrib.auth.models import User
from django.conf import settings
from django.test import override_settings
from django.urls import reverse
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.support.ui import WebDriverWait
from myproject.apps.likes.models import Like
from ..models import Location

SHOW_BROWSER = getattr(settings, "TESTS_SHOW_BROWSER", False)

https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/

Testing Chapter 11

[492]

@override_settings(DEBUG=True)
class LiveLocationTest(LiveServerTestCase):
 @classmethod
 def setUpClass(cls):
 super(LiveLocationTest, cls).setUpClass()
 driver_path = os.path.join(settings.BASE_DIR, "drivers",
 "chromedriver")
 chrome_options = Options()
 if not SHOW_BROWSER:
 chrome_options.add_argument("--headless")
 chrome_options.add_argument("--window-size=1200,800")

 cls.browser = webdriver.Chrome(
 executable_path=driver_path, options=chrome_options
)
 cls.browser.delete_all_cookies()

 image_path = cls.save_test_image("test.jpg")
 cls.location = Location.objects.create(
 name="Park Güell",
 description="If you want to see something spectacular,
 come to Barcelona, Catalonia, Spain and visit Park
 Güell. Located on a hill, Park Güell is a public
 park with beautiful gardens and organic
 architectural elements.",
 picture=image_path, # dummy path
)
 cls.username = "admin"
 cls.password = "admin"
 cls.superuser = User.objects.create_superuser(
 username=cls.username, password=cls.password,
 email="admin@example.com"
)

 @classmethod
 def tearDownClass(cls):
 super(LiveLocationTest, cls).tearDownClass()
 cls.browser.quit()
 cls.location.delete()
 cls.superuser.delete()

 @classmethod
 def save_test_image(cls, filename):
 from PIL import Image

 image = Image.new("RGB", (1, 1), 0)
 image_buffer = BytesIO()
 image.save(image_buffer, format="JPEG")

Testing Chapter 11

[493]

 path = f"tests/{filename}"
 default_storage.save(path, image_buffer)
 return path

 def wait_a_little(self):
 if SHOW_BROWSER:
 sleep(2)

 def test_login_and_like(self):
 # login
 login_path = reverse("admin:login")
 self.browser.get(
 f"{self.live_server_url}{login_path}?next=
 {self.location.get_url_path()}"
)
 username_field =
 self.browser.find_element_by_id("id_username")
 username_field.send_keys(self.username)
 password_field =
 self.browser.find_element_by_id("id_password")
 password_field.send_keys(self.password)
 self.browser.find_element_by_css_selector
 ('input[type="submit"]').click()
 WebDriverWait(self.browser, timeout=10).until(
 lambda x:
 self.browser.find_element_by_css_selector(".like-button")
)
 # click on the "like" button
 like_button =
 self.browser.find_element_by_css_selector(".like-button")
 is_initially_active = "active" in
 like_button.get_attribute("class")
 initial_likes = int(
 self.browser.find_element_by_css_selector
 (".like-badge").text
)

 self.assertFalse(is_initially_active)
 self.assertEqual(initial_likes, 0)

 self.wait_a_little()

 like_button.click()
 WebDriverWait(self.browser, timeout=10).until(
 lambda x:
 int(self.browser.find_element_by_css_selector
 (".like-badge").text) != initial_likes
)

Testing Chapter 11

[494]

 likes_in_html = int(
 self.browser.find_element_by_css_selector
 (".like-badge").text
)
 likes_in_db = Like.objects.filter(
 content_type=ContentType.objects.get_for_model(Location),
 object_id=self.location.pk,
).count()
 self.assertEqual(likes_in_html, 1)
 self.assertEqual(likes_in_html, likes_in_db)

 self.wait_a_little()

 self.assertGreater(likes_in_html, initial_likes)

 # click on the "like" button again to switch back to the
 # previous state
 like_button.click()
 WebDriverWait(self.browser, timeout=10).until(
 lambda x: int(self.browser.find_element_by_css_selector
 (".like-badge").text) == initial_likes
)

 self.wait_a_little()

Run the tests for the locations app, as shown in the following:3.

(env)$ python manage.py test myproject.apps.locations --
settings=myproject.settings.test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.

Ran 1 test in 4.284s

OK
Destroying test database for alias 'default'...

How it works...
When we run these tests, we will see a Chrome window opened with the administration
login screen under the URL, for example,
http://localhost:63807/en/admin/login/?next=/en/locations/176255a9-9c07

-4542-8324-83ac0d21b7c3/.

Testing Chapter 11

[495]

The username and password fields will get filled in with admin and you will get redirected
to the detail page of the Park Güell location, under such a URL as
http://localhost:63807/en/locations/176255a9-9c07-4542-8324-83ac0d21b7c

3/. There you will see the Like button clicked twice, causing liking and unliking actions.

If we change the TESTS_SHOW_BROWSER setting to False (or remove it all) and run the tests
again, the testing will happen with minimal waiting time and in the background without
opening a browser's window.

Let's see how this works in the test suite. We define a class extending
LiveServerTestCase. This creates a test suite that will run a local server under a random
unused port such as 63807. By default, LiveServerTestCase runs a server in non-
DEBUG mode. But we switch it to the DEBUG mode using the override_settings()
decorator to make the static files accessible without collecting them and to show error
traceback if any errors happen on any page. The setUpClass() class method will be
executed at the beginning of all of the tests and the tearDownClass() class method will be
executed after the tests have been run. In the middle, the testing will execute all the
methods of the suite whose names start with test.

When we start testing, a new test database is created. In setUpClass(), we create a
browser object, one location, and one superuser. Then, the test_login_and_like()
method is executed, which opens the administration login page, finds the username field,
types in the administrator's username, finds the password field, types in the administrator's
password, finds the submit button, and clicks on it. Then, it waits a maximum of 10 seconds
until a DOM element with the .like-button CSS class can be found on the page.

As you might remember from the Implementing the Like widget recipe in Chapter 4,
Templates and JavaScript, our widget consists of two elements:

A Like button
A badge showing the total number of likes

If a button is clicked, your Like instance is either added or removed from the database by
an Ajax call. Moreover, the badge count is updated to reflect the number of likes in the
database.

Further in the test, we check what is the initial state of the button (whether it has
an .active CSS class or not), check the initial number of likes, and simulate a click on the
button. We wait a maximum of 10 seconds until the count in the badge changes. Then, we
check whether the count in the badge matches the total likes for the location in the
database. We will also check how the count in the badge has changed (increased). Lastly,
we will simulate the click on the button again to switch back to the previous state.

Testing Chapter 11

[496]

Finally, the tearDownClass() method is called, which closes the browser and removes the
location and the superuser from the test database.

See also
The Implementing the Like widget recipe in Chapter 4, Templates and JavaScript
The Testing views with mock recipe
The Testing API created using Django REST framework recipe
The Ensuring test coverage recipe

Testing APIs created using Django REST
framework
You should already have an understanding of how to write unit and operational acceptance
tests. In this recipe, we will go through component interface testing for the RESTful API
that we created earlier in this book.

If you are not familiar with what a RESTful API is and how APIs are used, you can learn
more at http://www. restapitutorial. com/.

Getting ready
Let's start with the music app from the Using Django REST framework to create APIs recipe
in Chapter 9, Importing and Exporting Data.

How to do it...
To test RESTful APIs, perform the following steps:

Create a tests module in your music app. In the tests module, create a1.
test_api.py file with the SongTests class. The class will have setUpClass()
and tearDownClass() methods, as follows:

myproject/apps/music/tests/test_api.py
from django.contrib.auth.models import User
from django.urls import reverse

http://www.restapitutorial.com/
http://www.restapitutorial.com/
http://www.restapitutorial.com/
http://www.restapitutorial.com/
http://www.restapitutorial.com/
http://www.restapitutorial.com/
http://www.restapitutorial.com/
http://www.restapitutorial.com/
http://www.restapitutorial.com/
http://www.restapitutorial.com/

Testing Chapter 11

[497]

from rest_framework import status
from rest_framework.test import APITestCase
from ..models import Song

class SongTests(APITestCase):
 @classmethod
 def setUpClass(cls):
 super().setUpClass()

 cls.superuser = User.objects.create_superuser(
 username="admin", password="admin",
 email="admin@example.com"
)

 cls.song = Song.objects.create(
 artist="Lana Del Rey",
 title="Video Games - Remastered",
 url="https://open.spotify.com/track/5UOo694cVvj
 cPFqLFiNWGU?si=maZ7JCJ7Rb6WzESLXg1Gdw",
)

 cls.song_to_delete = Song.objects.create(
 artist="Milky Chance",
 title="Stolen Dance",
 url="https://open.spotify.com/track/3miMZ2IlJ
 iaeSWo1DohXlN?si=g-xMM4m9S_yScOm02C2MLQ",
)

 @classmethod
 def tearDownClass(cls):
 super().tearDownClass()

 cls.song.delete()
 cls.superuser.delete()

Add an API test checking the listing songs:2.

 def test_list_songs(self):
 url = reverse("rest_song_list")
 data = {}
 response = self.client.get(url, data, format="json")

 self.assertEqual(response.status_code, status.HTTP_200_OK)
 self.assertEqual(response.data["count"], Song.objects.count())

Testing Chapter 11

[498]

Add an API test checking the details of a single song:3.

 def test_get_song(self):
 url = reverse("rest_song_detail", kwargs={"pk": self.song.pk})
 data = {}
 response = self.client.get(url, data, format="json")

 self.assertEqual(response.status_code, status.HTTP_200_OK)
 self.assertEqual(response.data["uuid"], str(self.song.pk))
 self.assertEqual(response.data["artist"], self.song.artist)
 self.assertEqual(response.data["title"], self.song.title)
 self.assertEqual(response.data["url"], self.song.url)

Add an API test checking for the successful creation of a new song:4.

 def test_create_song_allowed(self):
 # login
 self.client.force_authenticate(user=self.superuser)

 url = reverse("rest_song_list")
 data = {
 "artist": "Capital Cities",
 "title": "Safe And Sound",
 "url": "https://open.spotify.com/track/40Fs0YrUGu
 wLNQSaHGVfqT?si=2OUawusIT-evyZKonT5GgQ",
 }
 response = self.client.post(url, data, format="json")

 self.assertEqual(response.status_code,
 status.HTTP_201_CREATED)

 song = Song.objects.filter(pk=response.data["uuid"])
 self.assertEqual(song.count(), 1)

 # logout
 self.client.force_authenticate(user=None)

Add a test that tries to create a song without authentication and failing, therefore:5.

 def test_create_song_restricted(self):
 # make sure the user is logged out
 self.client.force_authenticate(user=None)

 url = reverse("rest_song_list")
 data = {
 "artist": "Men I Trust",
 "title": "Tailwhip",
 "url": "https://open.spotify.com/track/2DoO0sn4S

Testing Chapter 11

[499]

 bUrz7Uay9ACTM?si=SC_MixNKSnuxNvQMf3yBBg",
 }
 response = self.client.post(url, data, format="json")

 self.assertEqual(response.status_code,
 status.HTTP_403_FORBIDDEN)

Add a test for checking the successful changing of a song:6.

def test_change_song_allowed(self):
 # login
 self.client.force_authenticate(user=self.superuser)

 url = reverse("rest_song_detail", kwargs=
 {"pk": self.song.pk})

 # change only title
 data = {
 "artist": "Men I Trust",
 "title": "Tailwhip",
 "url": "https://open.spotify.com/track/2DoO0sn4S
 bUrz7Uay9ACTM?si=SC_MixNKSnuxNvQMf3yBBg",
 }
 response = self.client.put(url, data, format="json")

 self.assertEqual(response.status_code, status.HTTP_200_OK)
 self.assertEqual(response.data["uuid"], str(self.song.pk))
 self.assertEqual(response.data["artist"], data["artist"])
 self.assertEqual(response.data["title"], data["title"])
 self.assertEqual(response.data["url"], data["url"])

 # logout
 self.client.force_authenticate(user=None)

Add a test checking for failed changes because of missing authentication:7.

def test_change_song_restricted(self):
 # make sure the user is logged out
 self.client.force_authenticate(user=None)

 url = reverse("rest_song_detail", kwargs=
 {"pk": self.song.pk})

 # change only title
 data = {
 "artist": "Capital Cities",
 "title": "Safe And Sound",
 "url": "https://open.spotify.com/track/40Fs0YrU

Testing Chapter 11

[500]

 GuwLNQSaHGVfqT?si=2OUawusIT-evyZKonT5GgQ",
 }
 response = self.client.put(url, data, format="json")

 self.assertEqual(response.status_code,
 status.HTTP_403_FORBIDDEN)

Add a test checking for the failed deletion of a song:8.

 def test_delete_song_restricted(self):
 # make sure the user is logged out
 self.client.force_authenticate(user=None)

 url = reverse("rest_song_detail", kwargs=
 {"pk": self.song_to_delete.pk})

 data = {}
 response = self.client.delete(url, data, format="json")

 self.assertEqual(response.status_code,
 status.HTTP_403_FORBIDDEN)

Add a test checking for the successful deletion of a song:9.

 def test_delete_song_allowed(self):
 # login
 self.client.force_authenticate(user=self.superuser)

 url = reverse("rest_song_detail", kwargs=
 {"pk": self.song_to_delete.pk})

 data = {}
 response = self.client.delete(url, data, format="json")

 self.assertEqual(response.status_code,
 status.HTTP_204_NO_CONTENT)

 # logout
 self.client.force_authenticate(user=None)

Run the tests for the music app, as shown in the following:10.

(env)$ python manage.py test myproject.apps.music --
settings=myproject.settings.test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
........

Testing Chapter 11

[501]

Ran 8 tests in 0.370s

OK
Destroying test database for alias 'default'...

How it works...
This RESTful API test suite extends the APITestCase class. Once again, we have the
setUpClass() and tearDownClass() class methods that will be executed before and
after the different tests. Also, the test suite has a client attribute of the APIClient type,
which can be used to simulate API calls. The client provides methods for all standard HTTP
calls: get(), post(), put(), patch(), delete(), head(), and options().

In our tests, we are using the GET, POST, and DELETE requests. Also, the client has methods
to force the authentication of a user based on login credentials, a token, or a User object. In
our tests, we are authenticating the third way: passing a user directly to the
force_authenticate() method.

The rest of the code is self-explanatory.

See also
The Using Django REST framework to create APIs recipe in Chapter 9, Importing
and Exporting Data
The Testing views with mock recipe
The Testing the user interface with Selenium recipe
The Ensuring test coverage recipe

Ensuring test coverage
Django allows the rapid prototyping and building of a project from idea to realization in a
timely manner. But to make sure that your project is stable and production-ready, you
should have tests for as many functionalities as possible. With test coverage, you can check
how much of your project code is tested. Let's have a look at how you can do that.

Testing Chapter 11

[502]

Getting ready
Have some tests ready for your project.

Install the coverage utility in your virtual environment:

(env)$ pip install coverage~=5.0.1

How to do it...
This is how to check the test coverage of your project:

Create a setup.cfg configuration file for the coverage utility with the following1.
content:

setup.cfg
[coverage:run]
source = .
omit =
 media/*
 static/*
 tmp/*
 drivers/*
 locale/*
 myproject/site_static/*
 myprojext/templates/*

Make sure to have these lines in the .gitignore file if you are using Git version2.
control:

.gitignore
htmlcov/
.coverage
.coverage.*
coverage.xml
*.cover

Create a shell script, run_tests_with_coverage.sh, with the commands to3.
run tests with coverage and report the results:

run_tests_with_coverage.sh
#!/usr/bin/env bash
coverage erase
coverage run manage.py test --settings=myproject.settings.test
coverage report

Testing Chapter 11

[503]

Add execution permissions for that script:4.

(env)$ chmod +x run_tests_with_coverage.sh

Run the script:5.

(env)$./run_tests_with_coverage.sh
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
...........

Ran 11 tests in 12.940s

OK
Destroying test database for alias 'default'...
Name Stmts Miss Cover

manage.py 12 2 83%
myproject/__init__.py 0 0 100%
myproject/apps/__init__.py 0 0 100%
myproject/apps/core/__init__.py 0 0 100%
myproject/apps/core/admin.py 16 10 38%
myproject/apps/core/context_processors.py 3 0 100%
myproject/apps/core/model_fields.py 48 48 0%
myproject/apps/core/models.py 87 29 67%
myproject/apps/core/templatetags/__init__.py 0 0 100%
myproject/apps/core/templatetags/utility_tags.py 171 135 21%

the statistics go on…

myproject/settings/test.py 5 0 100%
myproject/urls.py 10 0 100%
myproject/wsgi.py 4 4 0%

TOTAL 1363 712 48%

Testing Chapter 11

[504]

How it works...
The coverage utility runs the tests and checks how many lines of code are covered by tests.
In our example, the tests we wrote covered 48% of the code. If project stability is important
to you, when you have time, seek to get closer to 100%.

In the coverage configuration, we skipped the static assets, templates, and other non-
Python files.

See also
The Testing views with mock recipe
The Testing the user interface with Selenium recipe
The Testing APIs created using Django REST framework recipe

12
Deployment

In this chapter, we will cover the following recipes:

Releasing a reusable Django app
Deploying on Apache with mod_wsgi for the staging environment
Deploying on Apache with mod_wsgi for the production environment
Deploying on Nginx and Gunicorn for the staging environment
Deploying on Nginx and Gunicorn for the production environment

Introduction
Once you have a working website or reusable app, you will want to make it public.
Deploying websites is one of the most difficult activities of development with Django,
because there are lots of moving parts that you have to tackle:

Managing the web server
Configuring the database
Serving static and media files
Processing the Django project
Configuring caching
Setting up email sending
Managing domains
Arranging background tasks and cron jobs
Setting up continuous integration
Other tasks, depending on your project's scale and complexity

In bigger teams, all those tasks are done by DevOps engineers and they require skills like
deeply understanding networking and computer architecture, administering Linux servers,
bash scripting, using vim, and so on.

Deployment Chapter 12

[506]

Professional websites usually have development, staging, and production environments.
Each of them has a specific purpose. Development environments are used for creating the
project. The production environment is the server (or servers) on which your public website
is hosted. The staging environment is a system technically analogous to production, but is
used to check the new features and optimizations before publishing them.

Technical requirements
For working with the code of this chapter, you will need the latest stable version of Python,
MySQL, or PostgreSQL, and a Django project with a virtual environment.

You can find all the code for this chapter at the ch12 directory of the GitHub repository,
at https://github. com/ PacktPublishing/ Django- 3- Web- Development- Cookbook- Fourth-
Edition.

Releasing a reusable Django app
The Django documentation has a tutorial on how to package your reusable apps so that
they can be installed later, with pip, in any virtual environment. This can be viewed
at https://docs.djangoproject. com/ en/ 3.0/ intro/ reusable- apps/ .

However, there is another (and arguably better) way to package and release a reusable
Django app, using the tool, which creates templates for different coding projects, such as
the new Django CMS website, the Flask website, or the jQuery plugin. One of the available
project templates is cookiecutter-djangopackage. In this recipe, you will learn how to
use it to distribute the reusable likes app.

Getting ready
Create a new project with a virtual environment and install cookiecutter there, as
follows:

(env)$ pip install cookiecutter~=1.7.0

https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/
https://docs.djangoproject.com/en/3.0/intro/reusable-apps/

Deployment Chapter 12

[507]

How to do it...
To release your likes app, follow these steps:

Start a new Django app project, as follows:1.

(env)$ cookiecutter
https://github.com/pydanny/cookiecutter-djangopackage.git

Or, since this is a GitHub-hosted cookiecutter template, we can use a
shorthand syntax, as follows:

(env)$ cookiecutter gh:pydanny/cookiecutter-djangopackage

Answer the questions to create the app template, as follows:2.

full_name [Your full name here]: Aidas Bendoraitis
email [you@example.com]: aidas@bendoraitis.lt
github_username [yourname]: archatas
project_name [Django Package]: django-likes
repo_name [dj-package]: django-likes
app_name [django_likes]: likes
app_config_name [LikesConfig]:
project_short_description [Your project description goes here]:
Django app for liking anything on your website.
models [Comma-separated list of models]: Like
django_versions [1.11,2.1]: master
version [0.1.0]:
create_example_project [N]:
Select open_source_license:
1 - MIT
2 - BSD
3 - ISCL
4 - Apache Software License 2.0
5 - Not open source
Choose from 1, 2, 3, 4, 5 [1]:

This will create a basic file structure for the releasable Django package, similar to
the following:

django-likes/
├── docs/
│ ├── Makefile
│ ├── authors.rst
│ ├── conf.py
│ ├── contributing.rst
│ ├── history.rst
│ ├── index.rst

Deployment Chapter 12

[508]

│ ├── installation.rst
│ ├── make.bat
│ ├── readme.rst
│ └── usage.rst
├── likes/
│ ├── static/
│ │ ├── css/
│ │ │ └── likes.css
│ │ ├── img/
│ │ └── js/
│ │ └── likes.js
│ ├── templates/
│ │ └── likes/
│ │ └── base.html
│ └── test_utils/
│ ├── test_app/
| │ ├── migrations/
│ │ │ └── __init__.py
│ │ ├── __init__.py
│ │ ├── admin.py
│ │ ├── apps.py
│ │ └── models.html
│ ├── __init__.py
│ ├── admin.py
│ ├── apps.py
│ ├── models.py
│ ├── urls.py
│ └── views.py
├── tests/
│ ├── __init__.py
│ ├── README.md
│ ├── requirements.txt
│ ├── settings.py
│ ├── test_models.py
│ └── urls.py
├── .coveragerc
├── .editorconfig
├── .gitignore
├── .travis.yml
├── AUTHORS.rst
├── CONTRIBUTING.rst
├── HISTORY.rst
├── LICENSE
├── MANIFEST.in
├── Makefile
├── README.rst
├── manage.py
├── requirements.txt

Deployment Chapter 12

[509]

├── requirements_dev.txt
├── requirements_test.txt
├── runtests.py
├── setup.cfg
├── setup.py*
└── tox.ini

Copy the files of the likes app from the Django project where you are using it to3.
the django-likes/likes directory. In cases where cookiecutter created the
same files, the content will need to be merged, rather than overwritten. For
instance, the likes/__init__.py file will need to contain a version string to
work properly with setup.py in later steps, as follows:

django-likes/likes/__init__.py
__version__ = '0.1.0'

Rework dependencies so that there are no imports from the Django project and4.
all the used functions and classes are inside of this app. For example, in
the likes app, we have a dependency upon some mixins in the core app. We'll
need to copy the related code directly into the files in the django-likes app.

Alternatively, if there is a lot of dependent code, we can release
the core app as an uncoupled package, but then we have to maintain it
separately.

Add the reusable app project to the Git repository in GitHub, using5.
the repo_name that was entered previously.
Explore the different files and complete the license, README, documentation,6.
configuration, and other files.
Make sure that the app passes the cookiecutter template tests:7.

(env)$ pip install -r requirements_test.txt
(env)$ python runtests.py
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.

Ran 1 test in 0.001s

OK
Destroying test database for alias 'default'...

Deployment Chapter 12

[510]

If your package is closed source, create a shareable release as a ZIP archive, as8.
follows:

(env)$ python setup.py sdist

This will create a django-likes/dist/django-likes-0.1.0.tar.gz file that
can then be installed or uninstalled into a virtual environment of any project with
pip, as follows:

(env)$ pip install django-likes-0.1.0.tar.gz
(env)$ pip uninstall django-likes

If your package is open source, you can register and publish your app to the9.
Python Package Index (PyPI):

(env)$ python setup.py register
(env)$ python setup.py publish

Also, to spread the word, add your app to the Django packages by submitting a10.
form at https:/ / www. djangopackages. com/ packages/ add/ .

How it works...
Cookiecutter fills in the requested data in different parts of the Django app project
template, using the defaults given in [square brackets] if you simply press Enter without
entering anything. As a result, you get the setup.py file ready for distribution to the
Python Package Index, Sphinx documentation, MIT as the default license, the universal text
editor configuration for the project, static files and templates included in your app, and
other goodies.

See also
The Creating a project file structure recipe in Chapter 1, Getting Started with Django
3.0
The Working with Docker containers for Django, Gunicorn, Nginx, and
PostgreSQL recipe in Chapter 1, Getting Started with Django 3.0
The Handling project dependencies with pip recipe in Chapter 1, Getting Started with
Django 3.0
The Implementing the Like widget recipe in Chapter 4, Templates and JavaScript
The Testing views with mock recipe in Chapter 11, Testing

https://www.djangopackages.com/packages/add/
https://www.djangopackages.com/packages/add/
https://www.djangopackages.com/packages/add/
https://www.djangopackages.com/packages/add/
https://www.djangopackages.com/packages/add/
https://www.djangopackages.com/packages/add/
https://www.djangopackages.com/packages/add/
https://www.djangopackages.com/packages/add/
https://www.djangopackages.com/packages/add/
https://www.djangopackages.com/packages/add/
https://www.djangopackages.com/packages/add/
https://www.djangopackages.com/packages/add/
https://www.djangopackages.com/packages/add/
https://www.djangopackages.com/packages/add/

Deployment Chapter 12

[511]

Deploying on Apache with mod_wsgi for the
staging environment
In this recipe, I will show you how to create a script for deploying your project to a staging
environment on a virtual machine on your computer. The project will be using
the Apache web server with the mod_wsgi module. For the installation, we are going to
use Ansible, Vagrant, and VirtualBox. As mentioned before, there are lots of details to take
care of and usually, several days are necessary to develop an optimal deployment script
similar to this.

Getting ready
Go through the deployment checklist and make sure that your configuration passes all
security recommendations, as listed at https:/ /docs. djangoproject. com/en/ 3.0/ howto/
deployment/checklist/ . At least make sure that your project configuration doesn't raise
warnings when you run the following:

(env)$ python manage.py check --deploy --
settings=myproject.settings.staging

Install the latest stable versions of Ansible, Vagrant, and VirtualBox. You can get them from
the following official websites:

Ansible: https:/ / docs. ansible. com/ ansible/ latest/ installation_ guide/
intro_installation. html

VirtualBox: https:/ / www. virtualbox. org/ wiki/ Downloads

Vagrant: https:/ /www. vagrantup. com/ downloads. html

On macOS X, you can install all of them with HomeBrew:

$ brew install ansible
$ brew cask install virtualbox
$ brew cask install vagrant

https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html

Deployment Chapter 12

[512]

How to do it...
First of all, we'll need to create some configuration templates for different services used on
the server. Both staging and production deployment procedures will be using them:

In your Django project, create a deployment directory and, inside of it, create1.
an ansible_templates directory.
Create a Jinja template file for time zone configuration:2.

{# deployment/ansible_templates/timezone.j2 #}
{{ timezone }}

Create a Jinja template file for Apache domain configuration before setting up the3.
SSL certificates:

{# deployment/ansible_templates/apache_site-pre.conf.j2 #}
<VirtualHost *:80>
 ServerName {{ domain_name }}
 ServerAlias {{ domain_name }} www.{{ domain_name }}

 DocumentRoot {{ project_root }}/public_html
 DirectoryIndex index.html

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined

 AliasMatch ^/.well-known/(.*) "/var/www/letsencrypt/$1"

 <Directory "/var/www/letsencrypt">
 Require all granted
 </Directory>

 <Directory "/">
 Require all granted
 </Directory>

</VirtualHost>

Deployment Chapter 12

[513]

Create a Jinja template file4.
deployment/ansible_templates/apache_site.conf.j2 for Apache
domain configuration also including SSL certificates. For this file, copy the
content from https:/ /raw. githubusercontent. com/PacktPublishing/ Django-
3-Web- Development- Cookbook- Fourth- Edition/ master/ ch12/ myproject_
virtualenv/ src/ django- myproject/ deployment- apache/ ansible_ templates/
apache_site. conf. j2

Create a template for the PostgreSQL configuration file5.
deployment/ansible_templates/postgresql.j2 with content
from https:/ /github. com/ postgres/ postgres/ blob/ REL_ 10_ STABLE/ src/
backend/ utils/ misc/ postgresql. conf. sample. Later you can tweak the
configuration there to match your server needs.
Create a template for the PostgreSQL permissions configuration file (currently, it6.
is very permissive, but you can tweak it later according to your needs):

{# deployment/ansible_templates/pg_hba.j2 #}
TYPE DATABASE USER CIDR-ADDRESS METHOD
local all all ident
host all all ::0/0 md5
host all all 0.0.0.0/32 md5
host {{ db_name }} {{ db_user }} 127.0.0.1/32 md5

Create a template for the Postfix email server configuration:7.

{# deployment/ansible_templates/postfix.j2 #}
See /usr/share/postfix/main.cf.dist for a commented, more
complete version

Debian specific: Specifying a file name will cause the first
line of that file to be used as the name. The Debian default
is /etc/mailname.
myorigin = /etc/mailname

smtpd_banner = $myhostname ESMTP $mail_name (Ubuntu)
biff = no

appending .domain is the MUA's job.
append_dot_mydomain = no

Uncomment the next line to generate "delayed mail" warnings
delay_warning_time = 4h

readme_directory = no

TLS parameters

https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/ansible_templates/apache_site.conf.j2
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample

Deployment Chapter 12

[514]

smtpd_tls_cert_file=/etc/ssl/certs/ssl-cert-snakeoil.pem
smtpd_tls_key_file=/etc/ssl/private/ssl-cert-snakeoil.key
smtpd_use_tls=yes
smtpd_tls_session_cache_database =
btree:${data_directory}/smtpd_scache
smtp_tls_session_cache_database =
btree:${data_directory}/smtp_scache

See /usr/share/doc/postfix/TLS_README.gz in the postfix-doc
package for information on enabling SSL in
the smtp client.

smtpd_relay_restrictions = permit_mynetworks
permit_sasl_authenticated defer_unauth_destination
myhostname = {{ domain_name }}
alias_maps = hash:/etc/aliases
alias_database = hash:/etc/aliases
mydestination = $myhostname, localhost, localhost.localdomain, ,
 localhost
relayhost =
mynetworks = 127.0.0.0/8 [::ffff:127.0.0.0]/104 [::1]/128
mailbox_size_limit = 0
recipient_delimiter = +
inet_interfaces = all
inet_protocols = all
virtual_alias_domains = {{ domain_name }}
virtual_alias_maps = hash:/etc/postfix/virtual

Create a template for the email forwarding configuration:8.

{# deployment/ansible_templates/virtual.j2 #}
/etc/postfix/virtual

hello@{{ domain_name }} admin@example.com
@{{ domain_name }} admin@example.com

Create a template for the memcached configuration:9.

{# deployment/ansible_templates/memcached.j2 #}
memcached default config file
2003 - Jay Bonci <jaybonci@debian.org>
This configuration file is read by the start-memcached script
provided as part of the Debian GNU/Linux
distribution.

Run memcached as a daemon. This command is implied, and is not
needed for the daemon to run. See the README.Debian that

Deployment Chapter 12

[515]

comes with this package for more information.
-d

Log memcached's output to /var/log/memcached
logfile /var/log/memcached.log

Be verbose
-v

Be even more verbose (print client commands as well)
-vv

Use 1/16 of server RAM for memcached
-m {{ (ansible_memtotal_mb * 0.0625) | int }}

Default connection port is 11211
-p 11211

Run the daemon as root. The start-memcached will default to
running as root if no -u command is present
in this config file
-u memcache

Specify which IP address to listen on. The default is to
listen on all IP addresses
This parameter is one of the only security measures that
memcached has, so make sure it's listening on
a firewalled interface.
-l 127.0.0.1

Limit the number of simultaneous incoming connections.
The daemon default is 1024
-c 1024

Lock down all paged memory. Consult with the README and
homepage before you do this
-k

Return error when memory is exhausted (rather than
removing items)
-M

Maximize core file limit
-r

Deployment Chapter 12

[516]

Finally, create a Jinja template for the secrets.json file:10.

{# deployment/ansible_templates/secrets.json.j2 #}
{
 "DJANGO_SECRET_KEY": "{{ django_secret_key }}",
 "DATABASE_ENGINE": "django.contrib.gis.db.backends.postgis",
 "DATABASE_NAME": "{{ db_name }}",
 "DATABASE_USER": "{{ db_user }}",
 "DATABASE_PASSWORD": "{{ db_password }}",
 "EMAIL_HOST": "{{ email_host }}",
 "EMAIL_PORT": "{{ email_port }}",
 "EMAIL_HOST_USER": "{{ email_host_user }}",
 "EMAIL_HOST_PASSWORD": "{{ email_host_password }}"
}

Now, let's work on the Vagrant and Ansible scripts specific to the staging environment:

In the .gitignore file, add lines to ignore some Vagrant- and Ansible-specific1.
files:

.gitignore
Secrets
secrets.json
secrets.yml

Vagrant / Ansible
.vagrant
*.retry

Create two directories, deployment/staging and2.
deployment/staging/ansible.
Create a Vagrantfile file there with the following script to set up a virtual3.
machine with Ubuntu 18 and run the Ansible script in it:

deployment/staging/ansible/Vagrantfile
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "bento/ubuntu-18.04"
 config.vm.box_version = "201912.14.0"
 config.vm.box_check_update = false
 config.ssh.insert_key=false
 config.vm.provider "virtualbox" do |v|
 v.memory = 512
 v.cpus = 1
 v.name = "myproject"
 end

Deployment Chapter 12

[517]

 config.vm.network "private_network", ip: "192.168.50.5"
 config.vm.provision "ansible" do |ansible|
 ansible.limit = "all"
 ansible.playbook = "setup.yml"
 ansible.inventory_path = "./hosts/vagrant"
 ansible.host_key_checking = false
 ansible.verbose = "vv"
 ansible.extra_vars = { ansible_python_interpreter:
 "/usr/bin/python3" }
 end
end

Create a hosts directory containing a vagrant file with the following content:4.

deployment/staging/ansible/hosts/vagrant
[servers]
192.168.50.5

Create a vars.yml file there with the variables that will be used in the5.
installation scripts and Jinja templates for configurations:

deployment/staging/ansible/vars.yml

a unix path-friendly name (IE, no spaces or special characters)
project_name: myproject

user_username: "{{ project_name }}"

the base path to install to. You should not need to change this.
install_root: /home

project_root: "{{ install_root }}/{{ project_name }}"

the python module path to your project's wsgi file
wsgi_module: myproject.wsgi

any directories that need to be added to the PYTHONPATH.
python_path: "{{ project_root }}/src/{{ project_name }}"

the git repository URL for the project
project_repo: git@github.com:archatas/django-myproject.git

The value of your django project's STATIC_ROOT settings.
static_root: "{{ python_path }}/static"
media_root: "{{ python_path }}/media"

locale: en_US.UTF-8
timezone: Europe/Berlin

Deployment Chapter 12

[518]

domain_name: myproject.192.168.50.5.xip.io
django_settings: myproject.settings.staging

letsencrypt_email: ""
wsgi_file_name: wsgi_staging.py

Also, we'll need a secrets.yml file with secret values including passwords and6.
authentication keys. First, create a sample_secrets.yml file that will have no
sensitive information, but only the variable names, and then copy it
to secrets.yml and fill in the secrets. The former file will be under version
control, whereas the latter will be ignored:

deployment/staging/ansible/sample_secrets.yml
Django Secret Key
django_secret_key: "change-this-to-50-characters-
 long-random-string"

PostgreSQL database settings
db_name: "myproject"
db_user: "myproject"
db_password: "change-this-to-a-secret-password"
db_host: "localhost"
db_port: "5432"

Email SMTP settings
email_host: "localhost"
email_port: "25"
email_host_user: ""
email_host_password: ""

a private key that has access to the repository URL
ssh_github_key: ~/.ssh/id_rsa_github

Now create an Ansible script (a so-called playbook) at7.
deployment/staging/ansible/setup.yml for installing all the dependencies
and configuring services. Copy the content for this file from https:/ /raw.
githubusercontent. com/ PacktPublishing/ Django- 3- Web-Development-
Cookbook- Fourth- Edition/ master/ ch12/ myproject_ virtualenv/ src/django-
myproject/ deployment- apache/ staging/ ansible/ setup. yml.
Then create another Ansible script at8.
deployment/staging/ansible/deploy.yml for dealing with the Django
project. Copy the content for this file from https:/ /raw. githubusercontent.
com/PacktPublishing/ Django- 3-Web- Development- Cookbook- Fourth- Edition/
master/ch12/ myproject_ virtualenv/ src/ django- myproject/ deployment-
apache/staging/ ansible/ deploy. yml.

https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/staging/ansible/deploy.yml

Deployment Chapter 12

[519]

And create a bash script that you can execute to start the deployment:9.

deployment/staging/ansible/setup_on_virtualbox.sh
#!/usr/bin/env bash
echo "=== Setting up the local staging server ==="
date

cd "$(dirname "$0")"
vagrant up --provision

Add execution permissions for the bash script and run it:10.

$ chmod +x setup_on_virtualbox.sh
$./setup_on_virtualbox.sh

If the script fails with errors, it's likely that the virtual machine needs to be11.
rebooted for the changes to take effect. You can do that by connecting to the
virtual machine via ssh, changing to the root user, and then rebooting as follows:

$ vagrant ssh
Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-72-generic x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

 System information as of Wed Jan 15 04:44:42 CET 2020

 System load: 0.21 Processes: 126
 Usage of /: 4.0% of 61.80GB Users logged in: 1
 Memory usage: 35% IP address for eth0: 10.0.2.15
 Swap usage: 4% IP address for eth1: 192.168.50.5

0 packages can be updated.
0 updates are security updates.

*** System restart required ***

This system is built by the Bento project by Chef Software
More information can be found at https://github.com/chef/bento
Last login: Wed Jan 15 04:43:32 2020 from 192.168.50.1
vagrant@myproject:~$ sudo su
root@myproject:/home/vagrant#
reboot
Connection to 127.0.0.1 closed by remote host.
Connection to 127.0.0.1 closed.

Deployment Chapter 12

[520]

To browse the Django project directories, ssh to the virtual machine and change12.
the user to myproject as follows:

$ vagrant ssh
Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-74-generic x86_64)
…
vagrant@myproject:~$ sudo su - myproject
(env) myproject@myproject:~$ pwd
/home/myproject
(env) myproject@myproject:~$ ls
commands db_backups logs public_html src env

How it works...
VirtualBox allows you to have multiple virtual machines on your computer with different
operating systems. Vagrant is a tool allowing you to create those virtual machines and to
download and install operating systems on them using a script. Ansible is a Python-based
utility that reads instructions from a .yaml configuration file and executes them on a
remote server.

The deployment scripts we have just written do the following:

Create a virtual machine in VirtualBox and install Ubuntu 18 there
Assign the IP of 192.168.50.5 to the virtual machine
Set a hostname for the virtual machine
Upgrade the Linux packages
Set the localization settings for the server
Install all Linux dependencies, including Python, Apache, PostgreSQL, Postfix,
Memcached, and so on
Create a Linux user and home directory for the Django project
Create a virtual environment for the Django project
Create the PostgreSQL database user and database
Configure the Apache web server
Install a self-signed SSL certificate
Configure the Memcached caching service
Configure the Postfix email server
Clone the Django project repository
Install Python dependencies
Create the secrets.json file

Deployment Chapter 12

[521]

Migrate the database
Collect static files
Restart Apache

Now the Django website will be accessible
at https://www.myproject.192.168.50.5.xip.io and will show you a Hello,
World! page. Note that some browsers, such as Chrome, might not want to open a website
with a self-signed SSL certificate and will block it as a security measure.

xip.io is a wildcard DNS service that points IP-specific subdomains to the
IP and allows you to use that for SSL certificates or other website features
that require a domain.

If you want to experiment with different configurations or additional commands, it is
reasonable to do the changes incrementally in small steps. For some parts, you will need to
test things out directly on the virtual machine before converting the tasks to Ansible
instructions.

For information how to use Ansible, check the official documentation
at https:/ / docs. ansible. com/ansible/ latest/ index. html. It shows lots
of useful instruction examples for most use cases.

If you get any errors with any service, ssh to the virtual machine, switch to the root user,
and inspect the logs of that service. Googling the error messages will get you closer to a
working system.

To rebuild the virtual machine, use the following commands:

$ vagrant destroy
$ vagrant up --provision

See also
The Creating a virtual environment project file structure recipe in Chapter 1, Getting
Started with Django 3.0
The Handling project dependencies with pip recipe in Chapter 1, Getting Started with
Django 3.0
The Setting up STATIC_URL dynamically for Git users recipe in Chapter 1, Getting
Started with Django 3.0

https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html

Deployment Chapter 12

[522]

The Deploying on Apache with mod_wsgi for the production environment recipe
The Deploying on Nginx and Gunicorn for the staging environment recipe
The Deploying on Nginx and Gunicorn for the production environment recipe
The Creating and restoring PostgreSQL database backups recipe in Chapter 13,
Maintenance
The Setting up cron jobs for regular tasks recipe in Chapter 13, Maintenance

Deploying on Apache with mod_wsgi for the
production environment
Apache is one of the most popular web servers. It makes sense to deploy your Django
project under Apache if you also have to run some services for server management,
monitoring, analytics, blogging, e-commerce, and so on that require Apache on the same
server.

In this recipe, we will continue working from the previous recipe and will implement an
Ansible script (a playbook) to set up a production environment on Apache with
the mod_wsgi module.

Getting ready
Make sure that your project configuration doesn't raise warnings when you run the
following:

(env)$ python manage.py check --deploy --
 settings=myproject.settings.production

Make sure you have the latest stable version of Ansible.

Choose a server provider and create a dedicated server there with root access via SSH with
private and public key authentication. My provider of choice is DigitalOcean (https:/ /
www.digitalocean.com/), with which I created a dedicated server (Droplet) with Ubuntu
18. I can connect to the server by its IP, 142.93.167.30, using a new SSH private and
public key-
pair, ~/.ssh/id_rsa_django_cookbook and ~/.ssh/id_rsa_django_cookbook.pub
respectively.

https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/

Deployment Chapter 12

[523]

Locally, we need to configure SSH connections by creating or modifying the
~/.ssh/config file with the following content:

~/.ssh/config
Host *
 ServerAliveInterval 240
 AddKeysToAgent yes
 UseKeychain yes

Host github
 Hostname github.com
 IdentityFile ~/.ssh/id_rsa_github

Host myproject-apache
 Hostname 142.93.167.30
 User root
 IdentityFile ~/.ssh/id_rsa_django_cookbook

Now, we should be able to connect to the dedicated server as the root user via SSH using
this command:

$ ssh myproject-apache

In your domain configuration, point the DNS A record of your domain to the IP address of
the dedicated server. In our case, we will just be
using myproject.142.93.167.30.xip.io to show how to set up the server with an SSL
certificate for the Django website.

As mentioned before, xip.io is a wildcard DNS service that points IP-
specific subdomains to the IP and allows you to use that for SSL
certificates or other website features that require a domain.

How to do it...
To create a deployment script for production, perform these steps:

Make sure to have the deployment/ansible_templates directory with the1.
Jinja templates for service configuration that we created in the previous Deploying
on Apache with mod_wsgi for the staging environment recipe.
Create the deployment/production and deployment/production/ansible2.
directories for the Ansible scripts.

Deployment Chapter 12

[524]

There, create a hosts directory with a remote file containing the following3.
content:

deployment/production/ansible/hosts/remote
[servers]
myproject-apache

[servers:vars]
ansible_python_interpreter=/usr/bin/python3

Create a vars.yml file there with the variables that will be used in the4.
installation scripts and Jinja templates for configurations:

deployment/production/ansible/vars.yml

a unix path-friendly name (IE, no spaces or special characters)
project_name: myproject

user_username: "{{ project_name }}"

the base path to install to. You should not need to change this.
install_root: /home

project_root: "{{ install_root }}/{{ project_name }}"

the python module path to your project's wsgi file
wsgi_module: myproject.wsgi

any directories that need to be added to the PYTHONPATH.
python_path: "{{ project_root }}/src/{{ project_name }}"

the git repository URL for the project
project_repo: git@github.com:archatas/django-myproject.git

The value of your django project's STATIC_ROOT settings.
static_root: "{{ python_path }}/static"
media_root: "{{ python_path }}/media"

locale: en_US.UTF-8
timezone: Europe/Berlin

domain_name: myproject.142.93.167.30.xip.io
django_settings: myproject.settings.production

letsencrypt settings
letsencrypt_email: hello@myproject.com
wsgi_file_name: wsgi_production.py

Deployment Chapter 12

[525]

Also, we'll need a secrets.yml file with secret values including passwords and5.
authentication keys. First, create a sample_secrets.yml file that will have no
sensitive information, but only the variable names, and then copy it
to secrets.yml and fill in the secrets. The former file will be under version
control whereas the latter will be ignored:

deployment/production/ansible/sample_secrets.yml
Django Secret Key
django_secret_key: "change-this-to-50-characters-
 long-random-string"

PostgreSQL database settings
db_name: "myproject"
db_user: "myproject"
db_password: "change-this-to-a-secret-password"
db_host: "localhost"
db_port: "5432"

Email SMTP settings
email_host: "localhost"
email_port: "25"
email_host_user: ""
email_host_password: ""

a private key that has access to the repository URL
ssh_github_key: ~/.ssh/id_rsa_github

Now create an Ansible script (a playbook)6.
at deployment/production/ansible/setup.yml for installing all the
dependencies and configuring services. Copy the content for this file from
https:// raw. githubusercontent. com/ PacktPublishing/ Django- 3-Web-
Development- Cookbook- Fourth- Edition/ master/ ch12/ myproject_ virtualenv/
src/django- myproject/ deployment- apache/ production/ ansible/ setup. yml.
Then create another Ansible7.
script, deployment/production/ansible/deploy.yml, for dealing with the
Django project. Copy the content for this file from https:/ /raw.
githubusercontent. com/ PacktPublishing/ Django- 3- Web-Development-
Cookbook- Fourth- Edition/ master/ ch12/ myproject_ virtualenv/ src/django-
myproject/ deployment- apache/ production/ ansible/ deploy. yml.

https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-apache/production/ansible/deploy.yml

Deployment Chapter 12

[526]

Create a bash script that you can execute to start the deployment:8.

deployment/production/ansible/setup_remotely.sh
#!/usr/bin/env bash
echo "=== Setting up the production server ==="
date

cd "$(dirname "$0")"
ansible-playbook setup.yml -i hosts/remote

Add execution permissions for the bash script and run it:9.

$ chmod +x setup_remotely.sh
$./setup_remotely.sh

If the script fails with errors, it's likely that the dedicated server needs to be10.
rebooted for the changes to take effect. You can do that by connecting to the
server via ssh and rebooting as follows:

$ ssh myproject-apache
Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-74-generic x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

 System information as of Wed Jan 15 11:39:51 CET 2020

 System load: 0.08 Processes: 104
 Usage of /: 8.7% of 24.06GB Users logged in: 0
 Memory usage: 35% IP address for eth0: 142.93.167.30
 Swap usage: 0%

 * Canonical Livepatch is available for installation.
 - Reduce system reboots and improve kernel security. Activate at:
 https://ubuntu.com/livepatch

0 packages can be updated.
0 updates are security updates.

*** System restart required ***

Last login: Sun Jan 12 12:23:35 2020 from 178.12.115.146
root@myproject:~# reboot
Connection to 142.93.167.30 closed by remote host.
Connection to 142.93.167.30 closed.

Deployment Chapter 12

[527]

Create another bash script just for updating the Django project:11.

deployment/production/ansible/deploy_remotely.sh
#!/usr/bin/env bash
echo "=== Deploying project to production server ==="
date

cd "$(dirname "$0")"
ansible-playbook deploy.yml -i hosts/remote

Add execution permissions for this bash script:12.

$ chmod +x deploy_remotely.sh

How it works...
An Ansible script (a playbook) is idempotent. It means that you can execute it multiple times
and you will always get the same result: an up-to-date dedicated server with a Django
website installed and running. If you have any technical hardware issues with the server
and have backups of the database and media files, you can relatively quickly install the
same configuration on another dedicated server.

The production deployment scripts do these things:

Set a hostname for the virtual machine
Upgrade the Linux packages
Set the localization settings for the server
Install all Linux dependencies including Python, Apache, PostgreSQL, Postfix,
Memcached, and so on
Create a Linux user and home directory for the Django project
Create a virtual environment for the Django project
Create the PostgreSQL database user and database
Configure the Apache web server
Install the Let's Encrypt SSL certificate
Configure the Memcached caching service
Configure the Postfix email server
Clone the Django project repository
Install Python dependencies
Create the secrets.json file

Deployment Chapter 12

[528]

Migrate the database
Collect static files
Restart Apache

Run the setup_remotely.sh script when you need to install the services and
dependencies for the first time. Later, you can use deploy_remotely.sh if you need to
update just the Django project. As you can see, the installation is very similar to the one on
the staging server, but, to keep it flexible and more tweakable, we saved it separately in
the deployment/production directory.

Theoretically, you could skip the staging environment altogether, but it is more practical to
try out the deployment procedure in a virtual machine at first rather than experimenting
with installing directly on a remote server.

See also
The Creating a virtual environment project file structure recipe in Chapter 1, Getting
Started with Django 3.0
The Handling project dependencies with pip recipe in Chapter 1, Getting Started with
Django 3.0
The Setting up STATIC_URL dynamically for Git users recipe in Chapter 1, Getting
Started with Django 3.0
The Deploying on Apache with mod_wsgi for the staging environment recipe
The Deploying on Nginx and Gunicorn for the staging environment recipe
The Deploying on Nginx and Gunicorn for the production environment recipe
The Creating and restoring PostgreSQL database backups recipe
The Setting up cron jobs for regular tasks recipe

Deploying on Nginx and Gunicorn for the
staging environment
Apache with mod_wsgi is a good and stable approach for deployment, but when you need
high performance, it is recommended to use Nginx with Gunicorn to serve your Django
website. Gunicorn is a Python server running WSGI scripts. Nginx is a web server that
parses domain configurations and passes requests to Gunicorn.

Deployment Chapter 12

[529]

In this recipe, I will show you how to create a script for deploying your project to a staging
environment on a virtual machine on your computer. To do this, we are going to
use Ansible, Vagrant, and VirtualBox. As mentioned before, there are lots of details to bear
in mind and several days are usually necessary to develop an optimal deployment script
similar to this.

Getting ready
Go through the deployment checklist and make sure that your configuration passes all
security recommendations at https:/ /docs. djangoproject. com/ en/ 3.0/ howto/
deployment/checklist/ . At least make sure that your project configuration doesn't raise
warnings when you run the following:

(env)$ python manage.py check --deploy --
 settings=myproject.settings.staging

Install the latest stable versions of Ansible, Vagrant, and VirtualBox. You can get them from
the following official websites:

Ansible: https:/ / docs. ansible. com/ ansible/ latest/ installation_ guide/
intro_installation. html

VirtualBox: https:/ / www. virtualbox. org/ wiki/ Downloads

Vagrant: https:/ /www. vagrantup. com/ downloads. html

On macOS X you can install all of them with HomeBrew:

$ brew install ansible
$ brew cask install virtualbox
$ brew cask install vagrant

How to do it...
First of all, we'll need to create some configuration templates for the different services used
on the server. These will be used by both deployment procedures: staging and production.

In your Django project, create a deployment directory and inside of it create1.
an ansible_templates directory.

Create a Jinja template file for time zone configuration:2.

{# deployment/ansible_templates/timezone.j2 #}
{{ timezone }}

https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html

Deployment Chapter 12

[530]

Create a Jinja template file for Nginx domain configuration before setting the SSL3.
certificates:

{# deployment/ansible_templates/nginx-pre.j2 #}
server{
 listen 80;
 server_name {{ domain_name }};

 location /.well-known/acme-challenge {
 root /var/www/letsencrypt;
 try_files $uri $uri/ =404;
 }
 location / {
 root /var/www/letsencrypt;
 }
}

Create a Jinja template file at deployment/ansible_templates/nginx.j2 for4.
our Nginx domain configuration, including the SSL certificates. For this file, copy
the content from https:/ /raw. githubusercontent. com/ PacktPublishing/
Django-3- Web- Development- Cookbook- Fourth- Edition/ master/ ch12/
myproject_ virtualenv/ src/ django- myproject/ deployment- nginx/ ansible_
templates/ nginx. j2.
Create a template for the Gunicorn service configuration:5.

deployment/ansible_templates/gunicorn.j2
[Unit]
Description=Gunicorn daemon for myproject website
After=network.target

[Service]
PIDFile=/run/gunicorn/pid
Type=simple
User={{ user_username }}
Group=www-data
RuntimeDirectory=gunicorn
WorkingDirectory={{ python_path }}
ExecStart={{ project_root }}/env/bin/gunicorn --pid
/run/gunicorn/pid --log-file={{ project_root }}/logs/gunicorn.log -
-workers {{ ansible_processor_count | int }} --bind 127.0.0.1:8000
{{ project_name }}.wsgi:application --env DJANGO_SETTINGS_MODULE={{
django_settings }} --max-requests 1000
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s TERM $MAINPID
PrivateTmp=true

[Install]

https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/ansible_templates/nginx.j2

Deployment Chapter 12

[531]

WantedBy=multi-user.target

Create a template for the PostgreSQL configuration file6.
at deployment/ansible_templates/postgresql.j2 with content
from https:/ /github. com/ postgres/ postgres/ blob/ REL_ 10_ STABLE/ src/
backend/ utils/ misc/ postgresql. conf. sample. Later you can tweak the
configuration in this file.
Create a template for the PostgreSQL permissions configuration file (currently, it7.
is very permissive, but you can tweak it later according to your needs):

{# deployment/ansible_templates/pg_hba.j2 #}
TYPE DATABASE USER CIDR-ADDRESS METHOD
local all all ident
host all all ::0/0 md5
host all all 0.0.0.0/32 md5
host {{ db_name }} {{ db_user }} 127.0.0.1/32 md5

Create a template for the Postfix email server configuration:8.

{# deployment/ansible_templates/postfix.j2 #}
See /usr/share/postfix/main.cf.dist for a commented, more
complete version

Debian specific: Specifying a file name will cause the first
line of that file to be used as the name. The Debian default
is /etc/mailname.
myorigin = /etc/mailname

smtpd_banner = $myhostname ESMTP $mail_name (Ubuntu)
biff = no

appending .domain is the MUA's job.
append_dot_mydomain = no

Uncomment the next line to generate "delayed mail" warnings
#delay_warning_time = 4h

readme_directory = no

TLS parameters
smtpd_tls_cert_file=/etc/ssl/certs/ssl-cert-snakeoil.pem
smtpd_tls_key_file=/etc/ssl/private/ssl-cert-snakeoil.key
smtpd_use_tls=yes
smtpd_tls_session_cache_database =
btree:${data_directory}/smtpd_scache
smtp_tls_session_cache_database =

https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/misc/postgresql.conf.sample

Deployment Chapter 12

[532]

btree:${data_directory}/smtp_scache

See /usr/share/doc/postfix/TLS_README.gz in the postfix-doc
package for information on enabling SSL
in the smtp client.

smtpd_relay_restrictions = permit_mynetworks
permit_sasl_authenticated defer_unauth_destination
myhostname = {{ domain_name }}
alias_maps = hash:/etc/aliases
alias_database = hash:/etc/aliases
mydestination = $myhostname, localhost, localhost.localdomain, ,
 localhost
relayhost =
mynetworks = 127.0.0.0/8 [::ffff:127.0.0.0]/104 [::1]/128
mailbox_size_limit = 0
recipient_delimiter = +
inet_interfaces = all
inet_protocols = all
virtual_alias_domains = {{ domain_name }}
virtual_alias_maps = hash:/etc/postfix/virtual

Create a template for the email forwarding configuration:9.

{# deployment/ansible_templates/virtual.j2 #}
/etc/postfix/virtual

hello@{{ domain_name }} admin@example.com
@{{ domain_name }} admin@example.com

Create a template for the memcached configuration:10.

{# deployment/ansible_templates/memcached.j2 #}
memcached default config file
2003 - Jay Bonci <jaybonci@debian.org>
This configuration file is read by the start-memcached script
provided as part of the Debian GNU/Linux distribution.

Run memcached as a daemon. This command is implied, and is not
needed for the daemon to run. See the README.Debian
that comes with this package for more information.
-d

Log memcached's output to /var/log/memcached
logfile /var/log/memcached.log

Be verbose
-v

Deployment Chapter 12

[533]

Be even more verbose (print client commands as well)
-vv

Use 1/16 of server RAM for memcached
-m {{ (ansible_memtotal_mb * 0.0625) | int }}

Default connection port is 11211
-p 11211

Run the daemon as root. The start-memcached will default to
running as root if no -u command is present
in this config file
-u memcache

Specify which IP address to listen on. The default is to
listen on all IP addresses
This parameter is one of the only security measures that
memcached has, so make sure it's listening
on a firewalled interface.
-l 127.0.0.1

Limit the number of simultaneous incoming connections. The
daemon default is 1024
-c 1024

Lock down all paged memory. Consult with the README and homepage
before you do this
-k

Return error when memory is exhausted (rather than
removing items)
-M

Maximize core file limit
-r

Finally, create a Jinja template for the secrets.json file:11.

{# deployment/ansible_templates/secrets.json.j2 #}
{
 "DJANGO_SECRET_KEY": "{{ django_secret_key }}",
 "DATABASE_ENGINE": "django.contrib.gis.db.backends.postgis",
 "DATABASE_NAME": "{{ db_name }}",
 "DATABASE_USER": "{{ db_user }}",
 "DATABASE_PASSWORD": "{{ db_password }}",
 "EMAIL_HOST": "{{ email_host }}",
 "EMAIL_PORT": "{{ email_port }}",
 "EMAIL_HOST_USER": "{{ email_host_user }}",

Deployment Chapter 12

[534]

 "EMAIL_HOST_PASSWORD": "{{ email_host_password }}"
}

Now let's work on the Vagrant and Ansible scripts specific to the staging environment:

In the .gitignore file, add the following lines to ignore some Vagrant- and1.
Ansible-specific files:

.gitignore
Secrets
secrets.json
secrets.yml

Vagrant / Ansible
.vagrant
*.retry

Create the deployment/staging and deployment/staging/ansible2.
directories.
In the deployment/staging/ansible directory, create a Vagrantfile file3.
with the following script to set up a virtual machine with Ubuntu 18 and run the
Ansible script in it:

deployment/staging/ansible/Vagrantfile
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "bento/ubuntu-18.04"
 config.vm.box_version = "201912.14.0"
 config.vm.box_check_update = false
 config.ssh.insert_key=false
 config.vm.provider "virtualbox" do |v|
 v.memory = 512
 v.cpus = 1
 v.name = "myproject"
 end
 config.vm.network "private_network", ip: "192.168.50.5"
 config.vm.provision "ansible" do |ansible|
 ansible.limit = "all"
 ansible.playbook = "setup.yml"
 ansible.inventory_path = "./hosts/vagrant"
 ansible.host_key_checking = false
 ansible.verbose = "vv"
 ansible.extra_vars = { ansible_python_interpreter:
 "/usr/bin/python3" }
 end
end

Deployment Chapter 12

[535]

Create a hosts directory with a vagrant file containing the following content:4.

deployment/staging/ansible/hosts/vagrant
[servers]
192.168.50.5

Create a vars.yml file there with the variables that will be used in the5.
installation scripts and Jinja templates for configurations:

deployment/staging/ansible/vars.yml

a unix path-friendly name (IE, no spaces or special characters)
project_name: myproject

user_username: "{{ project_name }}"

the base path to install to. You should not need to change this.
install_root: /home

project_root: "{{ install_root }}/{{ project_name }}"

the python module path to your project's wsgi file
wsgi_module: myproject.wsgi

any directories that need to be added to the PYTHONPATH.
python_path: "{{ project_root }}/src/{{ project_name }}"

the git repository URL for the project
project_repo: git@github.com:archatas/django-myproject.git

The value of your django project's STATIC_ROOT settings.
static_root: "{{ python_path }}/static"
media_root: "{{ python_path }}/media"

locale: en_US.UTF-8
timezone: Europe/Berlin

domain_name: myproject.192.168.50.5.xip.io
django_settings: myproject.settings.staging

letsencrypt_email: ""

Deployment Chapter 12

[536]

We'll also need a secrets.yml file containing secret values, such as passwords6.
and authentication keys. First, create a sample_secrets.yml file that will have
no sensitive information, but only the variable names, and then copy it
to secrets.yml and fill in the secrets. The former file will be under version
control whereas the latter will be ignored:

deployment/staging/ansible/sample_secrets.yml
Django Secret Key
django_secret_key: "change-this-to-50-characters-long-random-
string"

PostgreSQL database settings
db_name: "myproject"
db_user: "myproject"
db_password: "change-this-to-a-secret-password"
db_host: "localhost"
db_port: "5432"

Email SMTP settings
email_host: "localhost"
email_port: "25"
email_host_user: ""
email_host_password: ""

a private key that has access to the repository URL
ssh_github_key: ~/.ssh/id_rsa_github

Now create an Ansible script (a playbook)7.
at deployment/staging/ansible/setup.yml for installing all the
dependencies and configuring services. Copy the content for this file
from https:/ /raw. githubusercontent. com/ PacktPublishing/ Django- 3- Web-
Development- Cookbook- Fourth- Edition/ master/ ch12/ myproject_ virtualenv/
src/django- myproject/ deployment- nginx/ staging/ ansible/ setup. yml.
Then create another Ansible script8.
at deployment/staging/ansible/deploy.yml for dealing with the Django
project. Copy the content for this file from https:/ /raw. githubusercontent.
com/PacktPublishing/ Django- 3-Web- Development- Cookbook- Fourth- Edition/
master/ch12/ myproject_ virtualenv/ src/ django- myproject/ deployment-
nginx/staging/ ansible/ deploy. yml.

https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/staging/ansible/deploy.yml

Deployment Chapter 12

[537]

And create a bash script that you can execute to start the deployment:9.

deployment/staging/ansible/setup_on_virtualbox.sh
#!/usr/bin/env bash
echo "=== Setting up the local staging server ==="
date

cd "$(dirname "$0")"
vagrant up --provision

Add execution permissions for the bash script and run it:10.

$ chmod +x setup_on_virtualbox.sh
$./setup_on_virtualbox.sh

If the script fails with errors, it's likely that the virtual machine needs to be11.
rebooted for the changes to take effect. You can do that by connecting to the
virtual machine via ssh, changing to the root user, and then rebooting as follows:

$ vagrant ssh
Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-72-generic x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

 System information as of Wed Jan 15 04:44:42 CET 2020

 System load: 0.21 Processes: 126
 Usage of /: 4.0% of 61.80GB Users logged in: 1
 Memory usage: 35% IP address for eth0: 10.0.2.15
 Swap usage: 4% IP address for eth1: 192.168.50.5

0 packages can be updated.
0 updates are security updates.

*** System restart required ***

This system is built by the Bento project by Chef Software
More information can be found at https://github.com/chef/bento
Last login: Wed Jan 15 04:43:32 2020 from 192.168.50.1
vagrant@myproject:~$ sudo su
root@myproject:/home/vagrant#
reboot
Connection to 127.0.0.1 closed by remote host.
Connection to 127.0.0.1 closed.

Deployment Chapter 12

[538]

To browse the Django project directories, ssh to the virtual machine and change12.
the user to myproject as follows:

$ vagrant ssh
Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-74-generic x86_64)
…
vagrant@myproject:~$ sudo su - myproject
(env) myproject@myproject:~$ pwd
/home/myproject
(env) myproject@myproject:~$ ls
commands db_backups logs public_html src env

How it works...
VirtualBox allows you to have multiple virtual machines on your computer with different
operating systems. Vagrant is a tool that creates those virtual machines and lets you
download and install operating systems on them. Ansible is a Python-based utility that
reads instructions from a .yaml configuration file and executes them on a remote server.

The deployment scripts we have just written do these things:

Create a virtual machine in a VirtualBox and installs Ubuntu 18 there
Assign an IP of 192.168.50.5 to the virtual machine
Set a hostname for the virtual machine
Upgrade the Linux packages
Set localization settings for the server
Install all Linux dependencies, including Python, Nginx, PostgreSQL, Postfix,
Memcached, and so on
Create a Linux user and home directory for the Django project
Create a virtual environment for the Django project
Create the PostgreSQL database user and database
Configure the Nginx web server
Install the self-signed SSL certificate
Configure the Memcached caching service
Configure the Postfix email server
Clone the Django project repository
Install Python dependencies
Set up Gunicorn
Create the secrets.json file

Deployment Chapter 12

[539]

Migrate the database
Collect static files
Restart Nginx

Now the Django website will be accessible
at https://www.myproject.192.168.50.5.xip.io and will show you a Hello,
World! page. Note that some browsers including Chrome might not want to open a website
with a self-signed SSL certificate and will block it as a security measure.

xip.io is a wildcard DNS service that points IP-specific subdomains to the
IP and allows you to use that for SSL certificates or other website features
that require a domain.

If you want to experiment with different configurations or additional commands, it is
reasonable to do the changes incrementally in small steps. For some parts, you will need to
test things out directly on the virtual machine before converting the tasks to Ansible
instructions.

For information about how to use Ansible, check the official
documentation at https:/ /docs. ansible. com/ ansible/ latest/ index.
html. It shows lots of useful instruction examples for most use cases.

If you get any errors with any service, ssh to the virtual machine, switch to the root user,
and inspect the logs of that service. Googling the error messages will get you closer to a
working system.

To rebuild the virtual machine, use the following commands:

$ vagrant destroy
$ vagrant up --provision

See also
The Creating a virtual environment project file structure recipe in Chapter 1, Getting
Started with Django 3.0
The Handling project dependencies with pip recipe in Chapter 1, Getting Started with
Django 3.0
The Setting up STATIC_URL dynamically for Git users recipe in Chapter 1, Getting
Started with Django 3.0

https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html

Deployment Chapter 12

[540]

The Deploying on Apache with mod_wsgi for the staging environment recipe
The Deploying on Apache with mod_wsgi for the production environment recipe
The Deploying on Nginx and Gunicorn for the production environment recipe
The Creating and restoring PostgreSQL database backups recipe
The Setting up cron jobs for regular tasks recipe

Deploying on Nginx and Gunicorn for the
production environment
In this recipe, we will continue working from the previous recipe and will implement
an Ansible script (playbook) to set up a production environment
with Nginx and Gunicorn.

Getting ready
Check that your project configuration doesn't raise warnings when you run the following:

(env)$ python manage.py check --deploy --
settings=myproject.settings.production

Make sure to have the latest stable version of Ansible.

Choose a server provider and create a dedicated server there with root access via ssh by
private and public key authentication. My provider of choice is DigitalOcean (https:/ /
www.digitalocean.com/). At DigitalOcean control panel, I created a dedicated server
(Droplet) with Ubuntu 18. I can connect to the server by its IP of 46.101.136.102 using a
new SSH private and public key pair, ~/.ssh/id_rsa_django_cookbook and
~/.ssh/id_rsa_django_cookbook.pub respectively.

Locally, we need to configure SSH connections by creating or modifying a
~/.ssh/config file with the following content:

~/.ssh/config
Host *
 ServerAliveInterval 240
 AddKeysToAgent yes
 UseKeychain yes

Host github
 Hostname github.com

https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.digitalocean.com/

Deployment Chapter 12

[541]

 IdentityFile ~/.ssh/id_rsa_github

Host myproject-nginx
 Hostname 46.101.136.102
 User root
 IdentityFile ~/.ssh/id_rsa_django_cookbook

Now we should be able to connect to the dedicated server as the root user via ssh using
this command:

$ ssh myproject-nginx

In your domain configuration, point the DNS A record of your domain to the IP address of
the dedicated server. In our case, we will just be
using myproject.46.101.136.102.xip.io to show how to set up the server with an SSL
certificate for the Django website.

How to do it...
To create a deployment script for production, perform these steps:

Make sure to have a deployment/ansible_templates directory with the Jinja1.
templates for service configuration that we created in the previous Deploying on
Nginx with Gunicorn for the staging environment recipe.
Create the deployment/production and deployment/production/ansible2.
directories for the Ansible scripts.
Create a hosts directory with a remote file containing the following content:3.

deployment/production/ansible/hosts/remote
[servers]
myproject-nginx

[servers:vars]
ansible_python_interpreter=/usr/bin/python3

Create a vars.yml file there with the variables that will be used in the4.
installation scripts and Jinja templates for configurations:

deployment/production/ansible/vars.yml

a unix path-friendly name (IE, no spaces or special characters)
project_name: myproject

user_username: "{{ project_name }}"

Deployment Chapter 12

[542]

the base path to install to. You should not need to change this.
install_root: /home

project_root: "{{ install_root }}/{{ project_name }}"

the python module path to your project's wsgi file
wsgi_module: myproject.wsgi

any directories that need to be added to the PYTHONPATH.
python_path: "{{ project_root }}/src/{{ project_name }}"

the git repository URL for the project
project_repo: git@github.com:archatas/django-myproject.git

The value of your django project's STATIC_ROOT settings.
static_root: "{{ python_path }}/static"
media_root: "{{ python_path }}/media"

locale: en_US.UTF-8
timezone: Europe/Berlin

domain_name: myproject.46.101.136.102.xip.io
django_settings: myproject.settings.production

letsencrypt settings
letsencrypt_email: hello@myproject.com

We'll also need a secrets.yml file with secret values such as passwords and5.
authentication keys. First, create a sample_secrets.yml file that will have no
sensitive information, but only the variable names, and then copy it
to secrets.yml and fill in the secrets. The former file will be under version
control, whereas the latter will be ignored:

deployment/production/ansible/sample_secrets.yml
Django Secret Key
django_secret_key: "change-this-to-50-characters-long-random-
string"

PostgreSQL database settings
db_name: "myproject"
db_user: "myproject"
db_password: "change-this-to-a-secret-password"
db_host: "localhost"
db_port: "5432"

Email SMTP settings
email_host: "localhost"

Deployment Chapter 12

[543]

email_port: "25"
email_host_user: ""
email_host_password: ""

a private key that has access to the repository URL
ssh_github_key: ~/.ssh/id_rsa_github

Now create an Ansible script (a playbook)6.
at deployment/production/ansible/setup.yml for installing all the
dependencies and configuring services. Copy the contents for this file
from https:/ /raw. githubusercontent. com/ PacktPublishing/ Django- 3- Web-
Development- Cookbook- Fourth- Edition/ master/ ch12/ myproject_ virtualenv/
src/django- myproject/ deployment- nginx/ production/ ansible/ setup. yml.
Then create another Ansible script7.
at deployment/production/ansible/deploy.yml for dealing with the
Django project. Copy the contents for this file from https:/ / raw.
githubusercontent. com/ PacktPublishing/ Django- 3- Web-Development-
Cookbook- Fourth- Edition/ master/ ch12/ myproject_ virtualenv/ src/django-
myproject/ deployment- nginx/ production/ ansible/ deploy. yml.
Create a bash script that you can execute to start the deployment:8.

deployment/production/ansible/setup_remotely.sh
#!/usr/bin/env bash
echo "=== Setting up the production server ==="
date

cd "$(dirname "$0")"
ansible-playbook setup.yml -i hosts/remote

Add execution permissions for the bash script and run it:9.

$ chmod +x setup_remotely.sh
$./setup_remotely.sh

If the script fails with errors, it's likely that the dedicated server needs to be10.
rebooted for the changes to take effect. You can do that by connecting to the
server via ssh and rebooting as follows:

$ ssh myproject-nginx
Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-74-generic x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

 System information as of Wed Jan 15 11:39:51 CET 2020

https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/setup.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml
https://raw.githubusercontent.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition/master/ch12/myproject_virtualenv/src/django-myproject/deployment-nginx/production/ansible/deploy.yml

Deployment Chapter 12

[544]

 System load: 0.08 Processes: 104
 Usage of /: 8.7% of 24.06GB Users logged in: 0
 Memory usage: 35% IP address for eth0: 142.93.167.30
 Swap usage: 0%

 * Canonical Livepatch is available for installation.
 - Reduce system reboots and improve kernel security. Activate at:
 https://ubuntu.com/livepatch

0 packages can be updated.
0 updates are security updates.

*** System restart required ***

Last login: Sun Jan 12 12:23:35 2020 from 178.12.115.146
root@myproject:~# reboot
Connection to 142.93.167.30 closed by remote host.
Connection to 142.93.167.30 closed.

Create another bash script just for updating the Django project:11.

deployment/production/ansible/deploy_remotely.sh
#!/usr/bin/env bash
echo "=== Deploying project to production server ==="
date

cd "$(dirname "$0")"
ansible-playbook deploy.yml -i hosts/remote

Add execution permissions for the bash script:12.

$ chmod +x deploy_remotely.sh

How it works...
An Ansible script (a playbook) is idempotent. It means that you can execute it multiple times
and you will always get the same results, an up-to-date dedicated server with Django
website installed and running. If you have any technical hardware issues with the server
and have backups of the database and media files, you can relatively quickly install the
same configuration on another dedicated server.

Deployment Chapter 12

[545]

The production deployment scripts do these things:

Set a hostname for the virtual machine
Upgrade the Linux packages
Set the localization settings for the server
Install all Linux dependencies such as Python, Nginx, PostgreSQL, Postfix,
Memcached, and so on
Create a Linux user and home directory for the Django projec
Create a virtual environment for the Django project
Create the PostgreSQL database user and database
Configure the Nginx web server
Install the Let's Encrypt SSL certificate
Configure the Memcached caching service
Configure the Postfix email server
Clone the Django project repository
Install Python dependencies
Set up Gunicorn
Create the secrets.json file
Migrate the database
Collect static files
Restart Nginx

As you can see, the installation is very similar to the one on the staging server, but, to keep
it flexible and more tweakable, we saved it separately in
the deployment/production directory.

Theoretically, you could skip the staging environment altogether, but it is practical to try
out the deployment procedure in a virtual machine rather than experimenting with
installing directly on a remote server.

Deployment Chapter 12

[546]

See also
The Creating a virtual environment project file structure recipe in Chapter 1, Getting
Started with Django 3.0
The Handling project dependencies with pip recipe in Chapter 1, Getting Started with
Django 3.0
The Setting up STATIC_URL dynamically for Git users recipe in Chapter 1, Getting
Started with Django 3.0
The Deploying on Apache with mod_wsgi for the staging environment recipe
The Deploying on Apache with mod_wsgi for the production environment recipe
The Deploying on Nginx and Gunicorn for the staging environment recipe
The Creating and restoring PostgreSQL database backups recipe
The Setting up cron jobs for regular tasks recipe

13
Maintenance

In this chapter, we will cover the following topics:

Creating and restoring MySQL database backups
Creating and restoring PostgreSQL database backups
Setting up cron jobs for regular tasks
Logging events for further introspection
Getting detailed error reporting via email

Introduction
At this point, you should have one or more Django projects developed and published. For
the final steps of the development cycle, we will take a look at how to maintain your
projects and monitor them for optimization. Stay tuned for the final bits and pieces!

Technical requirements
To work with the code of this chapter, you will need the latest stable version of Python,
MySQL, or PostgreSQL database and a Django project with a virtual environment.

Maintenance Chapter 13

[548]

You can find all of the code for this chapter in the ch13 directory of the GitHub
repository: https:/ /github. com/ PacktPublishing/ Django- 3-Web- Development- Cookbook-
Fourth-Edition.

Creating and restoring MySQL database
backups
For website stability, it is very important to be able to recover from hardware failures and
hacker attacks. Therefore, you should always make backups and make sure that they work.
Your code and static files will usually reside in version control from which it can be
recovered, but database and media files should be backed up regularly.

In this recipe, we will show you how to create backups for MySQL databases.

Getting ready
Make sure you have a working Django project running with a MySQL database. Deploy
that project to a remote production (or staging) server.

How to do it...
To back up and restore your MySQL database, perform these steps:

Under the commands directory in your project's home directory, create a bash1.
script: backup_mysql_db.sh. Start the script with variable and function
definitions, as follows:

/home/myproject/commands/backup_mysql_db.sh
#!/usr/bin/env bash
SECONDS=0
export DJANGO_SETTINGS_MODULE=myproject.settings.production
PROJECT_PATH=/home/myproject
REPOSITORY_PATH=${PROJECT_PATH}/src/myproject
LOG_FILE=${PROJECT_PATH}/logs/backup_mysql_db.log
DAY_OF_THE_WEEK=$(LC_ALL=en_US.UTF-8 date +"%w-%A")
DAILY_BACKUP_PATH=${PROJECT_PATH}/db_backups/${DAY_OF_THE_WEEK}.sql
LATEST_BACKUP_PATH=${PROJECT_PATH}/db_backups/latest.sql
error_counter=0

echoerr() { echo "$@" 1>&2; }

https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Django-3-Web-Development-Cookbook-Fourth-Edition

Maintenance Chapter 13

[549]

cd ${PROJECT_PATH}
mkdir -p logs
mkdir -p db_backups

source env/bin/activate
cd ${REPOSITORY_PATH}

DATABASE=$(echo "from django.conf import settings;
print(settings.DATABASES['default']['NAME'])" | python manage.py
shell -i python)
USER=$(echo "from django.conf import settings;
print(settings.DATABASES['default']['USER'])" | python manage.py
shell -i python)
PASSWORD=$(echo "from django.conf import settings;
print(settings.DATABASES['default']['PASSWORD'])" | python
manage.py shell -i python)

EXCLUDED_TABLES=(
django_session
)

IGNORED_TABLES_STRING=''
for TABLE in "${EXCLUDED_TABLES[@]}"; do
 IGNORED_TABLES_STRING+=" --ignore-table=${DATABASE}.${TABLE}"
done

Then, add commands to create a dump of the database structure and data:2.

echo "=== Creating DB Backup ===" > ${LOG_FILE}
date >> ${LOG_FILE}

echo "- Dump structure" >> ${LOG_FILE}
mysqldump -u "${USER}" -p"${PASSWORD}" --single-transaction --no-
data "${DATABASE}" > "${DAILY_BACKUP_PATH}" 2>> ${LOG_FILE}
function_exit_code=$?
if [[$function_exit_code -ne 0]]; then
 {
 echoerr "Command mysqldump for dumping database structure
 failed with exit code ($function_exit_code)."
 error_counter=$((error_counter + 1))
 } >> "${LOG_FILE}" 2>&1
fi

echo "- Dump content" >> ${LOG_FILE}
shellcheck disable=SC2086
mysqldump -u "${USER}" -p"${PASSWORD}" "${DATABASE}"
${IGNORED_TABLES_STRING} >> "${DAILY_BACKUP_PATH}" 2>> ${LOG_FILE}
function_exit_code=$?

Maintenance Chapter 13

[550]

if [[$function_exit_code -ne 0]]; then
 {
 echoerr "Command mysqldump for dumping database content
 failed with exit code ($function_exit_code)."
 error_counter=$((error_counter + 1))
 } >> "${LOG_FILE}" 2>&1
fi

Add commands to compress the database dump and to create a symbolic3.
link, latest.sql.gz:

echo "- Create a *.gz archive" >> ${LOG_FILE}
gzip --force "${DAILY_BACKUP_PATH}"
function_exit_code=$?
if [[$function_exit_code -ne 0]]; then
 {
 echoerr "Command gzip failed with exit code
 ($function_exit_code)."
 error_counter=$((error_counter + 1))
 } >> "${LOG_FILE}" 2>&1
fi

echo "- Create a symlink latest.sql.gz" >> ${LOG_FILE}
if [-e "${LATEST_BACKUP_PATH}.gz"]; then
 rm "${LATEST_BACKUP_PATH}.gz"
fi
ln -s "${DAILY_BACKUP_PATH}.gz" "${LATEST_BACKUP_PATH}.gz"
function_exit_code=$?
if [[$function_exit_code -ne 0]]; then
 {
 echoerr "Command ln failed with exit code
 ($function_exit_code)."
 error_counter=$((error_counter + 1))
 } >> "${LOG_FILE}" 2>&1
fi

Finalize the script by logging the time taken to execute the previous commands:4.

duration=$SECONDS
echo "--" >> ${LOG_FILE}
echo "The operation took $((duration / 60)) minutes and $((duration
% 60)) seconds." >> ${LOG_FILE}
exit $error_counter

Maintenance Chapter 13

[551]

In the same directory, create a bash script, restore_mysql_db.sh, with the5.
following content:

home/myproject/commands/restore_mysql_db.sh
#!/usr/bin/env bash
SECONDS=0
PROJECT_PATH=/home/myproject
REPOSITORY_PATH=${PROJECT_PATH}/src/myproject
LATEST_BACKUP_PATH=${PROJECT_PATH}/db_backups/latest.sql
export DJANGO_SETTINGS_MODULE=myproject.settings.production

cd "${PROJECT_PATH}"
source env/bin/activate

echo "=== Restoring DB from a Backup ==="

echo "- Fill the database with schema and data"
cd "${REPOSITORY_PATH}"
zcat "${LATEST_BACKUP_PATH}.gz" | python manage.py dbshell

duration=$SECONDS
echo "--"
echo "The operation took $((duration / 60)) minutes and $((duration
% 60)) seconds."

Make both scripts executable:6.

$ chmod +x *.sh

Run the database backup script:7.

$./backup_mysql_db.sh

Run the database restoration script (with caution if in production):8.

$./restore_mysql_db.sh

How it works...
The backup script will create backup files under /home/myproject/db_backups/ and
will save the log at /home/myproject/logs/backup_mysql_db.log, similar to this:

=== Creating DB Backup ===
Fri Jan 17 02:12:14 CET 2020
- Dump structure
mysqldump: [Warning] Using a password on the command line interface can be

Maintenance Chapter 13

[552]

insecure.
- Dump content
mysqldump: [Warning] Using a password on the command line interface can be
insecure.
- Create a *.gz archive
- Create a symlink latest.sql.gz
--
The operation took 0 minutes and 2 seconds.

If the operation is successful, the script will return exit code 0; otherwise, the exit code will
be the number of errors while executing the script. And the log file will show the error
messages.

In the db_backups directory, there will be one compressed SQL backup with the day of the
week, such as 0-Sunday.sql.gz, 1-Monday.sql.gz, and so on, and another file, a
symbolic link actually, called latest.sql.gz. The weekday-based backup allows you to
have recent backups of the last 7 days when set properly under cron jobs, and the symbolic
link allows you to quickly or automatically transfer the latest backup to another computer
via SSH.

Note that we take the database credentials from the Django settings and then use them in
the bash script.

We are dumping all data except the sessions table because the sessions are temporary
anyway and very memory-consuming.

When we run the restore_mysql_db.sh script, we get output like this:

=== Restoring DB from a Backup ===
- Fill the database with schema and data
mysql: [Warning] Using a password on the command line interface can be
insecure.
--
The operation took 0 minutes and 2 seconds.

See also
The Deploying on Apache with mod_wsgi for the production environment recipe in
Chapter 12, Deployment
The Deploying on Nginx and Gunicorn for the production environment recipe in
Chapter 12, Deployment

Maintenance Chapter 13

[553]

The Creating and restoring PostgreSQL database backups recipe
The Setting up cron jobs for regular tasks recipe

Creating and restoring PostgreSQL
database backups
In this recipe, you will learn how to back up PostgreSQL databases and recover them in the
event of hardware failure or hacker attacks.

Getting ready
Make sure to have a working Django project running with a PostgreSQL database. Deploy
that project to a remote staging or production server.

How to do it...
To back up and restore your MySQL database, perform these steps:

Under the commands directory in your project's home directory, create a bash1.
script, backup_postgresql_db.sh. Start the script with variable and function
definitions, as follows:

/home/myproject/commands/backup_postgresql_db.sh
#!/usr/bin/env bash
SECONDS=0
PROJECT_PATH=/home/myproject
REPOSITORY_PATH=${PROJECT_PATH}/src/myproject
LOG_FILE=${PROJECT_PATH}/logs/backup_postgres_db.log
DAY_OF_THE_WEEK=$(LC_ALL=en_US.UTF-8 date +"%w-%A")
DAILY_BACKUP_PATH=${PROJECT_PATH}/db_backups/${DAY_OF_THE_WEEK}.bac
kup
LATEST_BACKUP_PATH=${PROJECT_PATH}/db_backups/latest.backup
error_counter=0

echoerr() { echo "$@" 1>&2; }

cd ${PROJECT_PATH}
mkdir -p logs
mkdir -p db_backups

Maintenance Chapter 13

[554]

source env/bin/activate
cd ${REPOSITORY_PATH}

DATABASE=$(echo "from django.conf import settings;
print(settings.DATABASES['default']['NAME'])" | python manage.py
shell -i python)

Then, add a command to create a database dump:2.

echo "=== Creating DB Backup ===" > ${LOG_FILE}
date >> ${LOG_FILE}

echo "- Dump database" >> ${LOG_FILE}
pg_dump --format=p --file="${DAILY_BACKUP_PATH}" ${DATABASE}
function_exit_code=$?
if [[$function_exit_code -ne 0]]; then
 {
 echoerr "Command pg_dump failed with exit code
 ($function_exit_code)."
 error_counter=$((error_counter + 1))
 } >> "${LOG_FILE}" 2>&1
fi

Add commands to compress the database dump and create a symbolic3.
link, latest.backup.gz, to it:

echo "- Create a *.gz archive" >> ${LOG_FILE}
gzip --force "${DAILY_BACKUP_PATH}"
function_exit_code=$?
if [[$function_exit_code -ne 0]]; then
 {
 echoerr "Command gzip failed with exit code
 ($function_exit_code)."
 error_counter=$((error_counter + 1))
 } >> "${LOG_FILE}" 2>&1
fi

echo "- Create a symlink latest.backup.gz" >> ${LOG_FILE}
if [-e "${LATEST_BACKUP_PATH}.gz"]; then
 rm "${LATEST_BACKUP_PATH}.gz"
fi
ln -s "${DAILY_BACKUP_PATH}.gz" "${LATEST_BACKUP_PATH}.gz"
function_exit_code=$?
if [[$function_exit_code -ne 0]]; then
 {
 echoerr "Command ln failed with exit code
 ($function_exit_code)."

Maintenance Chapter 13

[555]

 error_counter=$((error_counter + 1))
 } >> "${LOG_FILE}" 2>&1
fi

Finalize the script by logging the time taken to execute the previous commands:4.

duration=$SECONDS
echo "--" >> ${LOG_FILE}
echo "The operation took $((duration / 60)) minutes and $((duration
% 60)) seconds." >> ${LOG_FILE}
exit $error_counter

In the same directory, create a bash script, restore_postgresql_db.sh, with5.
the following content:

/home/myproject/commands/restore_postgresql_db.sh
#!/usr/bin/env bash
SECONDS=0
PROJECT_PATH=/home/myproject
REPOSITORY_PATH=${PROJECT_PATH}/src/myproject
LATEST_BACKUP_PATH=${PROJECT_PATH}/db_backups/latest.backup
export DJANGO_SETTINGS_MODULE=myproject.settings.production

cd "${PROJECT_PATH}"
source env/bin/activate

cd "${REPOSITORY_PATH}"

DATABASE=$(echo "from django.conf import settings;
print(settings.DATABASES['default']['NAME'])" | python manage.py
shell -i python)
USER=$(echo "from django.conf import settings;
print(settings.DATABASES['default']['USER'])" | python manage.py
shell -i python)
PASSWORD=$(echo "from django.conf import settings;
print(settings.DATABASES['default']['PASSWORD'])" | python
manage.py shell -i python)

echo "=== Restoring DB from a Backup ==="

echo "- Recreate the database"
psql --dbname=$DATABASE --command='SELECT
pg_terminate_backend(pg_stat_activity.pid) FROM pg_stat_activity
WHERE datname = current_database() AND pid <> pg_backend_pid();'

dropdb $DATABASE

createdb --username=$USER $DATABASE

Maintenance Chapter 13

[556]

echo "- Fill the database with schema and data"
zcat "${LATEST_BACKUP_PATH}.gz" | python manage.py dbshell

duration=$SECONDS
echo "--"
echo "The operation took $((duration / 60)) minutes and $((duration
% 60)) seconds."

Make both scripts executable:6.

$ chmod +x *.sh

Run the database backup script:7.

$./backup_postgresql_db.sh

Run the database restoration script (with caution if in production):8.

$./restore_postgresql_db.sh

How it works...
The backup script will create backup files under /home/myproject/db_backups/ and
will save the log at /home/myproject/logs/backup_postgresql_db.log, similar to
this:

=== Creating DB Backup ===
Fri Jan 17 02:40:55 CET 2020
- Dump database
- Create a *.gz archive
- Create a symlink latest.backup.gz
--
The operation took 0 minutes and 1 seconds.

If the operation is successful, the script will return exit code 0; otherwise, the exit code will
be the number of errors while executing the script. And the log file will show the error
messages.

In the db_backups directory, there will be one compressed SQL backup file with the day of
the week, such as 0-Sunday.backup.gz, 1-Monday.backup.gz, and so on, and another
file, a symbolic link actually, called latest.backup.gz. The weekday-based backup
allows you to have recent backups of the last 7 days when set properly under cron jobs, and
the symbolic link allows you to quickly or automatically transfer the latest backup to
another computer via SSH.

Maintenance Chapter 13

[557]

Note that we take the database credentials from the Django settings and then use them in
the bash script.

When we run the restore_postgresql_db.sh script, we get output like this:

=== Restoring DB from a Backup ===
- Recreate the database
 pg_terminate_backend

(0 rows)

- Fill the database with schema and data
SET
SET
SET
SET
SET
 set_config

(1 row)

SET

…

ALTER TABLE
ALTER TABLE
ALTER TABLE
--
The operation took 0 minutes and 2 seconds.

See also
The Deploying on Apache with mod_wsgi for the production environment recipe in
Chapter 12, Deployment
The Deploying on Nginx and Gunicorn for the production environment recipe in
Chapter 12, Deployment
The Creating and restoring PostgreSQL database backups recipe
The Setting up cron jobs for regular tasks recipe

Maintenance Chapter 13

[558]

Setting up cron jobs for regular tasks
Usually, websites have some management tasks to perform in the background on a regular
interval, such as once a week, once a day, or every hour. This can be achieved by using
scheduled tasks, commonly known as cron jobs. These are scripts that run on the server
after the specified period of time. In this recipe, we will create two cron jobs: one to clear
sessions from the database and another to back up the database data. Both will be run every
night.

Getting ready
To start, deploy your Django project to a remote server. Then, connect to the server by SSH.
These steps are written with the assumption that you are using a virtual environment, but a
similar cron job can be created for a Docker project, and it can even run directly within the
app container. Code files are provided with the alternate syntax, and the steps are
otherwise largely the same.

How to do it...
Let's create the two scripts and make them run regularly, via the following steps:

On the production or staging server, navigate to the project user's home directory1.
where your env and src directories are located.
If these don't exist yet, create the commands, db_backups, and logs folders2.
alongside the env directory, as follows:

(env)$ mkdir commands db_backups logs

In the commands directory, create a clear_sessions.sh file. You can edit it3.
with a terminal editor, such as vim or nano, adding the following content:

/home/myproject/commands/clear_sessions.sh
#!/usr/bin/env bash
SECONDS=0
export DJANGO_SETTINGS_MODULE=myproject.settings.production
PROJECT_PATH=/home/myproject
REPOSITORY_PATH=${PROJECT_PATH}/src/myproject
LOG_FILE=${PROJECT_PATH}/logs/clear_sessions.log
error_counter=0

echoerr() { echo "$@" 1>&2; }

Maintenance Chapter 13

[559]

cd ${PROJECT_PATH}
mkdir -p logs

echo "=== Clearing up Outdated User Sessions ===" > ${LOG_FILE}
date >> ${LOG_FILE}

source env/bin/activate
cd ${REPOSITORY_PATH}
python manage.py clearsessions >> "${LOG_FILE}" 2>&1
function_exit_code=$?
if [[$function_exit_code -ne 0]]; then
 {
 echoerr "Clearing sessions failed with exit code
 ($function_exit_code)."
 error_counter=$((error_counter + 1))
 } >> "${LOG_FILE}" 2>&1
fi

duration=$SECONDS
echo "--" >> ${LOG_FILE}
echo "The operation took $((duration / 60)) minutes and $((duration
% 60)) seconds." >> ${LOG_FILE}
exit $err
or_counter

Make the clear_sessions.sh file executable, as follows:4.

$ chmod +x *.sh

Let's assume that you are using PostgreSQL as the database for your project.5.
Then, in the same directory, create a backup script following the instructions
from the previous recipe, Creating and restoring PostgreSQL database backups.
Test the scripts to see whether they are executed correctly, by running them and6.
then checking the *.log files in the logs directory, as follows:

$./clear_sessions.sh
$./backup_postgresql_db.sh

In your project's home directory on the remote server, create a crontab.txt file,7.
with the following content:

/home/myproject/crontab.txt
MAILTO=""
HOME=/home/myproject
PATH=/home/myproject/env/bin:/usr/local/sbin:/usr/local/bin:/usr/sb
in:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
SHELL=/bin/bash

Maintenance Chapter 13

[560]

00 01 * * * /home/myproject/commands/clear_sessions.sh
00 02 * * * /home/myproject/commands/backup_postgresql_db.sh

Install the crontab tasks as the myproject user, as follows:8.

(env)$ crontab crontab.txt

How it works...
With the current setup, every night, clear_sessions.sh will be executed at 1:00 A.M.,
and backup_postgresql_db.sh will be executed at 2:00 A.M. The execution logs will be
saved in ~/logs/clear_sessions.sh and ~/logs/backup_postgresql_db.log. If
you get any errors, you should check these files for the traceback.

Every day, clear_sessions.sh will execute the clearsessions management command,
which, as its name alludes to, clears expired sessions from the database, using the default
database settings.

The database backup script is a little more complex. Every day of the week, it creates a
backup file for that day, using a naming scheme of 0-Sunday.backup.gz, 1-
Monday.backup.gz, and so on. Therefore, you will be able to restore data that was backed
up 7 days ago or later.

The crontab file follows a specific syntax. Each line contains a specific time of day, indicated
by a series of numbers, and then a task to run at that given moment. The time is defined in
five parts, separated by spaces, as shown in the following list:

Minutes, from 0 to 59
Hours, from 0 to 23
Days of the month, from 1 to 31
Months, from 1 to 12
Days of the week, from 0 to 7, where 0 is Sunday, 1 is Monday, and so on—7 is
Sunday again

An asterisk (*) means that every time frame will be used. Therefore, the following task
defines that clear_sessions.sh is to be executed at 1:00 A.M. every day of each month,
every month, and every day of the week:

00 01 * * * /home/myproject/commands/clear_sessions.sh

You can learn more about the specifics of the crontab at https:/ /en. wikipedia. org/ wiki/
Cron.

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron

Maintenance Chapter 13

[561]

There's more...
We defined commands that will be executed at regular intervals, and the logging of results
is also activated, but we can't yet tell whether a cron job was executed successfully or
whether it failed unless we log into the server and check the logs every day manually. To
solve the problem of monotonic manual labor, you can monitor the cron jobs automatically
using the Healthchecks service (https:/ /healthchecks. io/).

With Healthchecks, you would modify the crontab so that it pings a specific URL after each
successful job is executed. If the script fails and exits with a non-zero code,
Healthchecks will know that it was not executed successfully. Every day, you will get an
overview of cron jobs and their execution statuses by email.

See also
The Deploying on Apache with mod_wsgi for the production environment recipe in
Chapter 12, Deployment
The Deploying on Nginx and Gunicorn for the production environment recipe in
Chapter 12, Deployment
The Creating and restoring MySQL database backups recipe
The Creating and restoring PostgreSQL database backups recipe

Logging events for further introspection
In the previous recipes, you could see how logging works for bash scripts. But you
can also log events happening on your Django website, such as user registration, adding a
product to a cart, buying tickets, bank transactions, sending SMS messages, server errors,
and similar.

You should never log sensitive information such as user passwords or
credit card details.

Also, use an analytics tool instead of Python logging for tracking overall
website usage.

https://healthchecks.io/
https://healthchecks.io/
https://healthchecks.io/
https://healthchecks.io/
https://healthchecks.io/
https://healthchecks.io/
https://healthchecks.io/
https://healthchecks.io/

Maintenance Chapter 13

[562]

In this recipe, we will guide you through how to log structured information about your
website into log files.

Getting ready
Let's start with the likes apps from the Implementing the Like widget recipe in Chapter 4,
Templates and JavaScript.

In the virtual environment of a Django project, install django-structlog, as follows:

(env)$ pip install django-structlog==1.3.5

How to do it...
To set up structured logging in your Django website, follow these steps:

Add RequestMiddleware in your project's settings:1.

myproject/settings/_base.py
MIDDLEWARE = [
 "django.middleware.security.SecurityMiddleware",
 "django.contrib.sessions.middleware.SessionMiddleware",
 "django.middleware.common.CommonMiddleware",
 "django.middleware.csrf.CsrfViewMiddleware",
 "django.contrib.auth.middleware.AuthenticationMiddleware",
 "django.contrib.messages.middleware.MessageMiddleware",
 "django.middleware.clickjacking.XFrameOptionsMiddleware",
 "django.middleware.locale.LocaleMiddleware",
 "django_structlog.middlewares.RequestMiddleware",
]

Also in the same file, add Django logging configuration:2.

myproject/settings/_base.py
LOGGING = {
 "version": 1,
 "disable_existing_loggers": False,
 "formatters": {
 "json_formatter": {
 "()": structlog.stdlib.ProcessorFormatter,
 "processor": structlog.processors.JSONRenderer(),
 },
 "plain_console": {
 "()": structlog.stdlib.ProcessorFormatter,

Maintenance Chapter 13

[563]

 "processor": structlog.dev.ConsoleRenderer(),
 },
 "key_value": {
 "()": structlog.stdlib.ProcessorFormatter,
 "processor":
 structlog.processors.KeyValueRenderer(key_order=
 ['timestamp', 'level', 'event', 'logger']),
 },
 },
 "handlers": {
 "console": {
 "class": "logging.StreamHandler",
 "formatter": "plain_console",
 },
 "json_file": {
 "class": "logging.handlers.WatchedFileHandler",
 "filename": os.path.join(BASE_DIR, "tmp", "json.log"),
 "formatter": "json_formatter",
 },
 "flat_line_file": {
 "class": "logging.handlers.WatchedFileHandler",
 "filename": os.path.join(BASE_DIR, "tmp",
 "flat_line.log"),
 "formatter": "key_value",
 },
 },
 "loggers": {
 "django_structlog": {
 "handlers": ["console", "flat_line_file", "json_file"],
 "level": "INFO",
 },
 }
}

Also, set structlog configuration there:3.

myproject/settings/_base.py
structlog.configure(
 processors=[
 structlog.stdlib.filter_by_level,
 structlog.processors.TimeStamper(fmt="iso"),
 structlog.stdlib.add_logger_name,
 structlog.stdlib.add_log_level,
 structlog.stdlib.PositionalArgumentsFormatter(),
 structlog.processors.StackInfoRenderer(),
 structlog.processors.format_exc_info,
 structlog.processors.UnicodeDecoder(),
 structlog.processors.ExceptionPrettyPrinter(),

Maintenance Chapter 13

[564]

 structlog.stdlib.ProcessorFormatter.wrap_for_formatter,
],
 context_class=structlog.threadlocal.wrap_dict(dict),
 logger_factory=structlog.stdlib.LoggerFactory(),
 wrapper_class=structlog.stdlib.BoundLogger,
 cache_logger_on_first_use=True,
)

In views.py of the likes app, let's log the object that will be liked or unliked:4.

myproject/apps/likes/views.py
import structlog

from django.contrib.contenttypes.models import ContentType
from django.http import JsonResponse
from django.views.decorators.cache import never_cache
from django.views.decorators.csrf import csrf_exempt

from .models import Like
from .templatetags.likes_tags import liked_count

logger = structlog.get_logger("django_structlog")

@never_cache
@csrf_exempt
def json_set_like(request, content_type_id, object_id):
 """
 Sets the object as a favorite for the current user
 """
 result = {
 "success": False,
 }
 if request.user.is_authenticated and request.method == "POST":
 content_type = ContentType.objects.get(id=content_type_id)
 obj = content_type.get_object_for_this_type(pk=object_id)

 like, is_created = Like.objects.get_or_create(
 content_type=ContentType.objects.get_for_model(obj),
 object_id=obj.pk,
 user=request.user)
 if is_created:
 logger.info("like_created",
 content_type_id=content_type.pk,
 object_id=obj.pk)
 else:
 like.delete()
 logger.info("like_deleted",

Maintenance Chapter 13

[565]

 content_type_id=content_type.pk,
 object_id=obj.pk)

 result = {
 "success": True,
 "action": "add" if is_created else "remove",
 "count": liked_count(obj),
 }

 return JsonResponse(result)

How it works...
When visitors browse your website, the specific events will be logged in
the tmp/json.log and tmp/flat_line.log files.
django_structlog.middlewares.RequestMiddleware logs the start and end of the
HTTP request processing. In addition, we are logging when a Like instance is created or
deleted.

The json.log file contains logs in JSON format. That means that you can
programmatically parse, inspect, and analyze them:

{"request_id": "ad0ef355-77ef-4474-a91a-2d9549a0e15d", "user_id": 1, "ip":
"127.0.0.1", "request": "<WSGIRequest: POST
'/en/likes/7/1712dfe4-2e77-405c-aa9b-bfa64a1abe98/'>", "user_agent":
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_2) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/79.0.3945.130 Safari/537.36", "event":
"request_started", "timestamp": "2020-01-18T04:27:00.556135Z", "logger":
"django_structlog.middlewares.request", "level": "info"}
{"request_id": "ad0ef355-77ef-4474-a91a-2d9549a0e15d", "user_id": 1, "ip":
"127.0.0.1", "content_type_id": 7, "object_id": "UUID('1712dfe4-2e77-405c-
aa9b-bfa64a1abe98')", "event": "like_created", "timestamp":
"2020-01-18T04:27:00.602640Z", "logger": "django_structlog", "level":
"info"}
{"request_id": "ad0ef355-77ef-4474-a91a-2d9549a0e15d", "user_id": 1, "ip":
"127.0.0.1", "code": 200, "request": "<WSGIRequest: POST
'/en/likes/7/1712dfe4-2e77-405c-aa9b-bfa64a1abe98/'>", "event":
"request_finished", "timestamp": "2020-01-18T04:27:00.604577Z", "logger":
"django_structlog.middlewares.request", "level": "info"}

Maintenance Chapter 13

[566]

The flat_line.log file contains the logs in a shorter format, which might be easier to
read manually:

(env)$ tail -3 tmp/flat_line.log
timestamp='2020-01-18T04:27:03.437759Z' level='info'
event='request_started' logger='django_structlog.middlewares.request'
request_id='a74808ff-c682-4336-aeb9-f043f11a7316' user_id=1 ip='127.0.0.1'
request=<WSGIRequest: POST '/en/likes/7/1712dfe4-2e77-405c-aa9b-
bfa64a1abe98/'> user_agent='Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_2)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36'
timestamp='2020-01-18T04:27:03.489198Z' level='info' event='like_deleted'
logger='django_structlog' request_id='a74808ff-c682-4336-aeb9-f043f11a7316'
user_id=1 ip='127.0.0.1' content_type_id=7
object_id=UUID('1712dfe4-2e77-405c-aa9b-bfa64a1abe98')
timestamp='2020-01-18T04:27:03.491927Z' level='info'
event='request_finished' logger='django_structlog.middlewares.request'
request_id='a74808ff-c682-4336-aeb9-f043f11a7316' user_id=1 ip='127.0.0.1'
code=200 request=<WSGIRequest: POST '/en/likes/7/1712dfe4-2e77-405c-aa9b-
bfa64a1abe98/'>

See also
The Creating and restoring MySQL database backups recipe
The Creating and restoring PostgreSQL database backups recipe
The Setting up cron jobs for regular tasks recipe

Getting detailed error reporting via email
To perform system logging, Django uses Python's built-in logging module or the
structlog module mentioned in the previous recipe. The default Django configuration
seems to be quite complex. In this recipe, you will learn how to tweak it to send error
emails with complete HTML, similar to what is provided by Django in the DEBUG mode
when an error happens.

Getting ready
Locate the Django project in your virtual environment.

Maintenance Chapter 13

[567]

How to do it...
The following procedure will send detailed emails about errors to you:

If you do not already have LOGGING settings set up for your project, set those up1.
first. Find the Django logging utilities file, available
at env/lib/python3.7/site-packages/django/utils/log.py. Copy
the DEFAULT_LOGGING dictionary to your project's settings as
the LOGGING dictionary.
Add the include_html setting to the mail_admins handler. The result of the2.
first two steps should be something like the following:

myproject/settings/production.py
LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'filters': {
 'require_debug_false': {
 '()': 'django.utils.log.RequireDebugFalse',
 },
 'require_debug_true': {
 '()': 'django.utils.log.RequireDebugTrue',
 },
 },
 'formatters': {
 'django.server': {
 '()': 'django.utils.log.ServerFormatter',
 'format': '[{server_time}] {message}',
 'style': '{',
 }
 },
 'handlers': {
 'console': {
 'level': 'INFO',
 'filters': ['require_debug_true'],
 'class': 'logging.StreamHandler',
 },
 'django.server': {
 'level': 'INFO',
 'class': 'logging.StreamHandler',
 'formatter': 'django.server',
 },
 'mail_admins': {
 'level': 'ERROR',
 'filters': ['require_debug_false'],
 'class': 'django.utils.log.AdminEmailHandler',

Maintenance Chapter 13

[568]

 'include_html': True,
 }
 },
 'loggers': {
 'django': {
 'handlers': ['console', 'mail_admins'],
 'level': 'INFO',
 },
 'django.server': {
 'handlers': ['django.server'],
 'level': 'INFO',
 'propagate': False,
 },
 }
}

How it works...
The logging configuration consists of four parts: loggers, handlers, filters, and formatters.
The following list describes them:

Loggers are entry points into the logging system. Each logger can have a log
level: DEBUG, INFO, WARNING, ERROR, or CRITICAL. When a message is written to
the logger, the log level of the message is compared with the logger's level. If it
meets or exceeds the log level of the logger, it will be further processed by a
handler. Otherwise, the message will be ignored.
Handlers are engines that define what happens to each message in the logger.
They can be written to a console, sent by email to the administrator, saved to a
log file, sent to the Sentry error-logging service, and so on. In our case, we set
the include_html parameter for the mail_admins handler, as we want the full
HTML with traceback and local variables for the error messages that happen in
our Django project.
Filters provide additional control over the messages that are passed from the
loggers to handlers. For example, in our case, the emails will only be sent when
the DEBUG mode is set to false.
Formatters are used to define how to render a log message as a string. They are
not used in this example; however, for more information about logging, you can
refer to the official documentation at https:/ /docs. djangoproject. com/ en/ 3.0/
topics/logging/ .

https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/
https://docs.djangoproject.com/en/3.0/topics/logging/

Maintenance Chapter 13

[569]

There's more...
The configuration we have just defined will send emails about each server error that
happens on your website. If you have high traffic and, let's say, the database crashes, you
will get tons of emails that will flood your inbox or even hang your email server.

To avoid such problems, you can use Sentry (https:/ /sentry. io/ for/ python/). It tracks
all server errors at their server and sends only one notification email to you for each error
type.

See also
The Deploying on Apache with mod_wsgi for the production environment recipe in
Chapter 12, Deployment
The Deploying on Nginx and Gunicorn for the production environment recipe in
Chapter 12, Deployment
The Logging events for further introspection recipe

https://sentry.io/for/python/
https://sentry.io/for/python/
https://sentry.io/for/python/
https://sentry.io/for/python/
https://sentry.io/for/python/
https://sentry.io/for/python/
https://sentry.io/for/python/
https://sentry.io/for/python/
https://sentry.io/for/python/
https://sentry.io/for/python/
https://sentry.io/for/python/
https://sentry.io/for/python/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Django Design Patterns and Best Practices - Second Edition
Arun Ravindran

ISBN: 978-1-78883-134-5

Make use of common design patterns to help you write better code
Implement best practices and idioms in this rapidly evolving framework
Deal with legacy code and debugging
Use asynchronous tools such as Celery, Channels, and asyncio
Use patterns while designing API interfaces with the Django REST Framework
Reduce the maintenance burden with well-tested, cleaner code
Host, deploy, and secure your Django projects

https://www.packtpub.com/web-development/django-design-patterns-and-best-practices-second-edition

Other Books You May Enjoy

[571]

Hands-On RESTful Python Web Services - Second Edition
Gaston C. Hillar

ISBN: 978-1-78953-222-7

Select the most appropriate framework based on requirements
Develop complex RESTful APIs from scratch using Python
Use requests handlers, URL patterns, serialization, and validations
Add authentication, authorization, and interaction with ORMs and databases
Debug, test, and improve RESTful APIs with four frameworks
Design RESTful APIs with frameworks and create automated tests

https://www.packtpub.com/application-development/hands-restful-python-web-services-second-edition

Other Books You May Enjoy

[572]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

@
@lru_cache decorator
 reference link 365

A
admin actions
 creating 284, 285, 287, 289
aggregation function
 reference link 292
Ajax
 images, uploading 233, 234, 236, 237, 239,

240, 241, 242, 244
ancestors 373
API
 creating, with Django REST framework 445,

447, 448, 449, 450, 452
 testing, Django REST framework used 496, 498,

499, 500, 501
app configuration
 creating 38, 39, 40
 reference link 41
app label
 changing, of third-party app 292, 293, 294
app
 creating, with CRUDL functions 100, 102, 105,

106

argparse documentation
 reference link 415
art direction 211
Atom feeds 439
Auth0
 using 355, 356, 358, 360, 361
authorized files
 downloading 346, 347, 348, 349

B
base.html template
 arranging 182, 183, 184
 body section 185, 186
 head section 185

C
Cascading Style Sheets (CSS) 13
categories
 rendering, in template with django-mptt 385, 387
category administration interface
 creating, with django-mptt-admin 380, 381, 383
 creating, with django-treebeard 404, 405, 406,

407, 408
Celery
 reference link 310
change form
 map, inserting into 310, 311, 313, 315, 317,

319, 321, 323, 325, 326
change list filters
 developing 289, 290, 291, 292
change list page
 columns, customizing on 275, 276, 277, 278,

279, 280
checkbox list
 using, to select multiple categories in forms with

django-mptt 392, 393, 395, 396, 397, 399
child nodes 372
circular dependencies
 avoiding 83, 84, 85
class-based views
 composing 148, 150
CodeKit
 URL 13
columns
 customizing, on change list page 275, 276, 277,

[574]

278, 279, 280
Comma-Separated Values (CSV) 411
component interface testing 486, 496
Content Security Policy (CSP)
 requests, securing 333, 334, 335, 336, 337
continuous scrolling, features
 contentSelector 218
 loadingHtml 218
 nextSelector 218
 padding 218
 pagingSelector 218
continuous scrolling
 implementing 211, 212, 214, 215, 216, 217,

218

Coordinated Universal Time (UTC) 62
Create, Read, Update, Delete, and List (CRUDL)

functions
 used, for creating app 100, 102, 105, 106
cron jobs
 setting up, for regular tasks 558, 559, 560
crontab
 URL 560
Cross-Site Request Forgery (CSRF)
 forms, securing from 329, 331, 332
custom accounts app
 creating 295, 297, 299, 300, 301
custom templates
 used, for creating form layout 114, 115, 116,

118, 120

D
data
 importing, from data 428, 429, 430, 431, 432,

433

 importing, from external JSON file 422, 424,
425, 427

 importing, from local CSV file 411, 412, 413,
415, 416

 importing, from local Excel file 417, 418, 420,
421

database constraints
 adding 86, 87
database migrations
 reference link 92
database query expressions

 using 460, 461, 462, 463, 464
 working 465, 466
Debug toolbar
 toggling 469, 470, 471
 working 472, 474
descendants 372
detailed error reporting
 obtaining, via email 566, 568
development environment
 settings, configuring for 19, 21
Django framework
 URL 292
Django messages framework
 reference link 107
Django Request Factory
 reference link 490
 using 490
Django REST framework
 used, for creating API 445, 447, 448, 449, 450,

452

 used, for testing API 496, 498, 499, 500, 501
Django Sekizai
 using 186, 187, 188
 working 189
Django shell
 using 454, 455, 456, 457, 458, 459
Django sitemap framework
 reference link 438
Django views
 caching, with Memcached 366, 368
 caching, with Redis 368, 369, 370
django-admin-honeypot
 using 338, 339
django-crispy-forms
 used, for creating form layout 120, 121, 123,

124

django-mptt-admin
 used, for creating category administration

interface 380, 381, 383
django-mptt
 used, for creating hierarchical categories 375,

376, 377, 378, 379
 used, for rendering categories in template 385,

387

 used, for selecting category in forms with single
selection field 388, 389, 390, 391

[575]

 used, for selecting multiple categories in forms
with checkbox list 392, 393, 395, 396, 397,
399

django-treebeard, tree forms
 Adjacency List 399
 Materialized Path 400
 Nested Sets 400
django-treebeard
 used, for creating category administration

interface 404, 405, 407, 408
 used, for creating hierarchical categories 399,

400, 401, 402, 403
Docker Compose
 URL 52
Docker containers for Django
 working with 44
Docker containers for Gunicorn
 working with 44
Docker containers for Nginx
 working with 44
Docker containers for PostgreSQL
 working with 44
Docker containers
 destroying 52
 working with 45, 46, 48, 49, 50, 51
Docker Engine
 reference link 45
Docker
 about 44
 URL 52
dynamic watermark
 adding, to images 350, 351, 352, 353

E
Elasticsearch DSL
 used, for implementing multilingual search 170,

175, 178, 180
ElementTree
 reference link 434
email
 detailed error reporting, obtaining via 566, 568
events
 logging, for further introspection 561, 562, 564,

565

external dependencies

 including, in project 26, 27, 28
external JSON file
 data, importing from 422, 424, 425, 427
external XML file
 data, importing from 428, 429, 430, 431, 432,

433

F
Feed class
 reference link 445
filterable RSS feeds
 creating 439, 440, 441, 444, 445
filters 568
foreign key
 modifying, to many-to-many field 93, 94, 95, 97
form layout
 creating, with custom templates 114, 115, 116,

118, 120
 creating, with django-crispy-forms 120, 121,

123, 124
formatters 568
forms
 securing, from Cross-Site Request Forgery

(CSRF) 329, 331, 332
formsets
 working with 125, 126, 128, 129, 130, 131,

133, 135

G
Git 34
Git ignore file
 creating 34, 35
Google Search Engine 438
Gravatar service
 reference link 302
Gunicorn 528

H
handlers 568
Haystack
 used, for implementing multilingual search 163,

167, 170
Healthchecks
 URL 561
hierarchical categories

[576]

 creating, with django-mptt 375, 376, 377, 378,
379

 creating, with django-treebeard 399, 400, 401,
402, 403

HTML5 data attributes
 using 193, 194, 195, 196, 197, 198, 199, 200,

201, 202, 203, 204
Huey
 reference link 310

I
image uploads
 handling 113
images
 dynamic watermark, adding to 350, 351, 352,

353

 uploading 109, 110, 111, 113
 uploading, via Ajax 233, 234, 236, 237, 239,

240, 241, 242, 244
import order
 in Python files 37, 38
integration testing 485

J
JavaScript
 settings, exposing 189, 190, 191, 192
js-cookie API
 reference link 332
jScroll script
 download link 211

L
Last.fm
 URL 427
leaf node 373
Least Recently Used (LRU) 364
Like widget
 implementing 224, 225, 226, 227, 228, 229,

230, 231, 232
local CSV file
 data, importing from 411, 412, 413, 415, 416
local Excel file
 data, importing from 417, 418, 420, 421
loggers 568

M
many-to-many field
 foreign key, modifying to 93, 94, 95, 97
map
 inserting, into change form 310, 311, 313, 315,

317, 319, 321, 323, 325, 326
Memcached
 about 366
 using, to cache Django views 366, 368
method return value
 caching 362, 363
migrations
 using 89, 90, 91
missing settings
 checking 481, 482
mock
 used, for testing views 486, 488, 489
modal dialog
 object details, opening 219, 220, 221, 222, 223
model inheritance
 reference link 57
model instance
 author, saving of 107, 108, 109
model mixin
 creating, for meta tags 63, 64, 66
 creating, to handle creation and modification

dates 61, 62
 creating, to handle generic relations 67, 68, 70,

71

 creating, with URL-related methods 58, 60
 using 55, 56
model translation tables
 working with 78, 79, 81, 82, 83
Modified Preorder Tree Traversal (MPTT)
 about 372
 working 373, 374
monkey patch 467, 468
Mozilla Developer Network (MDN) 211
multilingual fields
 handling 71, 72, 74, 75, 76, 77
multilingual search
 implementing, with Elasticsearch DSL 170, 175,

178, 180
 implementing, with Haystack 163, 168, 170
 implementing, with Whoosh 163, 165, 169, 170

[577]

MySQL configuration
 UTF-8, setting as default encoding 32, 33
MySQL database backups
 creating 548, 549, 550, 551, 552
 restoring 548, 549, 550, 551, 552

N
Nginx 528
nodes 372

O
object lists
 filtering 136, 137, 138, 140, 142, 143
Object-Relational Mapping (ORM) 460
Office Open XML (OOXML) 289
Open Graph data
 providing 151, 152, 154
Open Graph implementation, validating
 reference link 154
operational acceptance testing 486
operational acceptance tests 490
overwritable app settings
 defining 41, 42, 43, 44

P
paginated lists
 managing 144, 146, 147
paginated sitemaps
 preparing, for search engines 434, 435, 436,

437

parent node 372
password validation
 implementing 342, 343
password validators 344, 345
PDF documents
 generating 158, 159, 160, 162, 163
PEP 8
 reference link 38
pip
 project dependencies, handling 16, 17, 18
 reference link 19
Pipenv
 reference link 19
PostgreSQL database backups
 creating 553, 554, 555, 556, 557

 restoring 553, 554, 555, 556, 557
Prepros
 URL 13
production environment
 project, deploying on Apache with mod_wsgi

522, 523, 524, 525, 526, 527
 project, deploying on Gunicorn 540, 541, 542,

543, 544
 project, deploying on Nginx 540, 541, 542, 543,

544

 settings, configuring for 19, 21
Progressive Web Apps (PWAs) 337
project dependencies
 handling, with pip 16, 17, 18
project file structure
 creating 11, 12, 13, 14
project
 external dependencies, including 26, 27, 28
Python files
 import order 37, 38
Python Package Index (PyPI) 26
Python Social Auth
 installation link 293
Python-compiled files
 deleting 36
Python
 installation instructions link 10

Q
QueryDict objects
 reference link 271

R
Really Simple Syndication (RSS) 439
Redis
 using, to cache Django views 368, 369, 370
regular expressions
 reference link 253
relative paths
 defining, in settings 22, 23
requests
 securing, with Content Security Policy (CSP)

333, 334, 335, 336, 337
response headers 335
responsive images

[578]

 providing 205, 206, 207
 working 208, 209, 210
reusable Django app
 releasing 506, 507, 509, 510
root nodes 372

S
schema.org vocabularies
 providing 155, 157
Search Engine Optimization (SEO) 155
search engines
 paginated sitemaps, preparing for 434, 435,

436, 437
Selenium
 used, for testing user interface 490, 491, 494,

495, 496
sensitive settings
 handling 23, 24
Sentry
 URL 569
settings
 configuring, for development environment 19, 21
 configuring, for production environment 19, 21
 configuring, for staging environment 19, 21
 configuring, for testing environment 19, 21
 relative paths, defining in 22, 23
siblings 373
signals
 using, to notify administrators about new entries

478, 479, 480
single selection field
 using, to select category in form with django-mptt

388, 389, 390, 391
sitemaps 434
sitemaps protocol
 reference link 438
slugify() function
 monkey patching, for internationalization support

467, 468
sortable inlines
 creating 281, 282, 283, 284
staging environment
 project, deploying on Apache with mod_wsgi

511, 512, 513, 516, 517, 518, 520
 project, deploying on Gunicorn 528, 530, 532,

534, 536, 537, 538
 project, deploying on Nginx 528, 530, 532, 534,

536, 537, 538
 settings, configuring for 19, 21
STATIC_URL
 setting up, dynamically 29, 30
syndication feed framework 439
system testing 486
system-check framework
 using 481
 working 483

T
tags
 conventions 247
template filter
 conventions 247
 creating, to display how many days have passed

since post published 248, 249, 250
 creating, to extract first media object 251, 252,

253

 creating, to humanize URLs 254, 255
template tag
 creating, to include template 255, 256, 257, 258
 creating, to load QuerySet in template 260, 261,

263, 264, 265
 creating, to modify request query parameters

268, 269, 270, 271, 273
 creating, to parse content as template 265, 266,

267, 268
test coverage
 ensuring 501, 502, 504
testing environment
 settings, configuring for 19, 21
third-party app
 app label, changing 292, 293, 294
ThreadLocalMiddleware
 using 475, 476
 working 476
tree data structure 372
Twitter Card data
 providing 151, 152, 154
Twitter Card implementation, validating
 reference link 154

U
unit testing 485
Universal Unique Identifier (UUID) 61
URL-related methods
 model mixin, creating 58, 60
user Gravatars
 obtaining 302, 303, 304, 307, 308, 309
user interface
 testing, with Selenium 490, 491, 494, 495, 496
UTF-8
 setting, as default encoding 32, 33

V
views
 testing, with mock 486, 488, 489

virtual environment
 working with 9, 10, 11

W
WeasyPrint library
 about 158
 installation instruction link 158
 reference link 163
Whoosh
 used, for implementing multilingual search 163,

166, 169

X
XPath
 URL 434

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with Django 3.0
	Introduction
	Technical requirements
	Working with a virtual environment
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a project file structure
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Handling project dependencies with pip
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Configuring settings for development, testing, staging, and production environments
	Getting ready
	How to do it...
	How it works...
	See also

	Defining relative paths in the settings
	Getting ready
	How to do it...
	How it works...
	See also

	Handling sensitive settings
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Including external dependencies in your project
	Getting ready
	How to do it...
	How it works...
	See also

	Setting up STATIC_URL dynamically
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting UTF-8 as the default encoding for the MySQL configuration
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating the Git ignore file
	Getting ready
	How to do it...
	How it works...
	See also

	Deleting Python-compiled files
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Respecting the import order in Python files
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating an app configuration
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Defining overwritable app settings
	Getting ready
	How to do it...
	How it works...
	See also

	Working with Docker containers for Django, Gunicorn, Nginx, and PostgreSQL
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 2: Models and Database Structure
	Introduction
	Technical requirements
	Using model mixins
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a model mixin with URL-related methods
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a model mixin to handle creation and modification dates
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a model mixin to take care of meta tags
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a model mixin to handle generic relations
	Getting ready
	How to do it...
	How it works...
	See also

	Handling multilingual fields
	Getting ready
	How to do it...
	How it works...
	See also

	Working with model translation tables
	Getting ready
	How to do it...
	How it works...
	See also

	Avoiding circular dependencies
	Getting ready
	How to do it...
	See also

	Adding database constraints
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using migrations
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Changing a foreign key to the many-to-many field
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 3: Forms and Views
	Introduction
	Technical requirements
	Creating an app with CRUDL functions
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Saving the author of a model instance
	Getting ready
	How to do it...
	How it works...
	See also

	Uploading images
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a form layout with custom templates
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a form layout with django-crispy-forms
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Working with formsets
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Filtering object lists
	Getting ready
	How to do it...
	How it works...
	See also

	Managing paginated lists
	Getting ready
	How to do it...
	How it works...
	See also

	Composing class-based views
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Providing Open Graph and Twitter Card data
	Getting ready
	How to do it...
	How it works...
	See also

	Providing schema.org vocabularies
	Getting ready
	How to do it...
	How it works...
	See also

	Generating PDF documents
	Getting ready
	How to do it...
	How it works...
	See also

	Implementing a multilingual search with Haystack and Whoosh
	Getting ready
	How to do it...
	How it works...
	See also

	Implementing a multilingual search with Elasticsearch DSL
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 4: Templates and JavaScript
	Introduction
	Technical requirements
	Arranging the base.html template
	Getting ready
	How to do it...
	 How it works...
	See also

	Using Django Sekizai
	Getting ready
	How to do it...
	How it works...
	See also

	Exposing settings in JavaScript
	Getting ready
	How to do it...
	How it works...
	See also

	Using HTML5 data attributes
	Getting ready
	How to do it...
	How it works...
	See also

	Providing responsive images
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Implementing a continuous scrolling
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Opening object details in a modal dialog
	Getting ready
	How to do it...
	How it works...
	See also

	Implementing the Like widget
	Getting ready
	How to do it...
	How it works...
	See also

	Uploading images via Ajax
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 5: Custom Template Filters and Tags
	Introduction
	Technical requirements
	Following conventions for your own template filters and tags
	Creating a template filter to show how many days have passed since a post was published
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a template filter to extract the first media object
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a template filter to humanize URLs
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a template tag to include a template, if it exists
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a template tag to load a QuerySet in a template
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a template tag to parse content as a template
	Getting ready
	How to do it...
	How it works...
	See also

	Creating template tags to modify request query parameters
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 6: Model Administration
	Introduction
	Technical requirements
	Customizing columns on the change list page
	Getting ready
	How to do it...
	How it works...
	See also

	Creating sortable inlines
	Getting ready
	How to do it...
	How it works...
	See also

	Creating admin actions
	Getting ready
	How to do it...
	How it works...
	See also

	Developing change list filters
	Getting ready
	How to do it...
	How it works...
	See also

	Changing the app label of a third-party app
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a custom accounts app
	Getting ready
	How to do it...
	How it works...
	See also

	Getting user Gravatars
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Inserting a map into a change form
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 7: Security and Performance
	Introduction
	Technical requirements
	Making forms secure from Cross-Site Request Forgery (CSRF)
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Making requests secure with Content Security Policy (CSP)
	Getting ready
	How to do it...
	How it works...
	See also

	Using django-admin-honeypot
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Implementing password validation
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Downloading authorized files
	Getting ready
	How to do it...
	How it works...
	See also

	Adding a dynamic watermark to images
	Getting ready
	How to do it...
	How it works...
	See also

	Authenticating with Auth0
	Getting ready
	How to do it...
	How it works...
	See also

	Caching the method return value
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using Memcached to cache Django views
	Getting ready
	How to do it...
	How it works...
	See also

	Using Redis to cache Django views
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 8: Hierarchical Structures
	Introduction
	Technical requirements
	Creating hierarchical categories with django-mptt
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a category administration interface with django-mptt-admin
	Getting ready
	How to do it...
	How it works...
	See also

	Rendering categories in a template with django-mptt
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using a single selection field to choose a category in forms with django-mptt
	Getting ready
	How to do it...
	How it works...
	See also

	Using a checkbox list to choose multiple categories in forms with django-mptt
	Getting ready
	How to do it...
	How it works...
	See also

	Creating hierarchical categories with django-treebeard
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a basic category administration interface with django-treebeard
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 9: Importing and Exporting Data
	Introduction
	Technical requirements
	Importing data from a local CSV file
	Getting ready
	How to do it...
	How it works...
	See also

	Importing data from a local Excel file
	Getting ready
	How to do it...
	How it works...
	See also

	Importing data from an external JSON file
	Getting ready
	How to do it...
	How it works...
	See also

	Importing data from an external XML file
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Preparing paginated sitemaps for search engines
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating filterable RSS feeds
	Getting ready
	How to do it...
	How it works...
	See also

	Using Django REST framework to create an API
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 10: Bells and Whistles
	Introduction
	Technical requirements
	Using the Django shell
	Getting ready
	How to do it...
	How it works...
	See also

	Using database query expressions
	Getting ready
	How to do it...
	How it works...
	See also

	Monkey patching the slugify() function for better internationalization support
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Toggling the Debug toolbar
	Getting ready
	How to do it...
	How it works...
	See also

	Using ThreadLocalMiddleware
	Getting ready
	How to do it...
	How it works...
	See also

	Using signals to notify administrators about new entries
	Getting ready
	How to do it...
	How it works...
	See also

	Checking for missing settings
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 11: Testing
	Introduction
	Technical requirements
	Testing views with mock
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Testing the user interface with Selenium
	Getting ready
	How to do it...
	How it works...
	See also

	Testing APIs created using Django REST framework
	Getting ready
	How to do it...
	How it works...
	See also

	Ensuring test coverage
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 12: Deployment
	Introduction
	Technical requirements
	Releasing a reusable Django app
	Getting ready
	How to do it...
	How it works...
	See also

	Deploying on Apache with mod_wsgi for the staging environment
	Getting ready
	How to do it...
	How it works...
	See also

	Deploying on Apache with mod_wsgi for the production environment
	Getting ready
	How to do it...
	How it works...
	See also

	Deploying on Nginx and Gunicorn for the staging environment
	Getting ready
	How to do it...
	How it works...
	See also

	Deploying on Nginx and Gunicorn for the production environment
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 13: Maintenance
	Introduction
	Technical requirements
	Creating and restoring MySQL database backups
	Getting ready
	How to do it...
	How it works...
	See also

	Creating and restoring PostgreSQL database backups
	Getting ready
	How to do it...
	How it works...
	See also

	Setting up cron jobs for regular tasks
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Logging events for further introspection
	Getting ready
	How to do it...
	How it works...
	See also

	Getting detailed error reporting via email
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Other Books You May Enjoy
	Index

