

Embedded Programming with
Modern C++ Cookbook

Practical recipes to help you build robust and secure
embedded applications on Linux

Igor Viarheichyk

BIRMINGHAM - MUMBAI

Embedded Programming with Modern C++
Cookbook
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Vincy Davis
Content Development Editor: Pathikrit Roy
Senior Editor: Storm Mann
Technical Editor: Pradeep Sahu
Copy Editor: Safis Editing
Project Coordinator: Francy Puthiry
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Jyoti Chauhan

First published: April 2020

Production reference: 1170420

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83882-104-3

www.packt.com

http://www.packt.com

To my mother, Tamara, and to the memory of my father, Vyacheslav, for their love and support.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Igor Viarheichyk works as an engineering manager at Samsung, developing a safety-
critical middleware platform for advanced driver assistance systems aimed at specialized
automotive embedded platforms. Prior to joining Samsung, in the past 20 years of his
career, he has played different roles, from software engineer to software architect, to
engineering manager in a variety of projects, and he has gained vast experience in the areas
of system programming, embedded programming, network protocols, distributed and
fault-tolerant systems, and software internationalization. Though he knows and actively
uses programming languages such as C, Java, and Python, C++ is his language of choice to
implement large-scale, high-performance applications.

I would like to thank Pathikrit Roy, Content Development Editor, and Tanvi Bhatt,
Project Manager of this book, for their guidance, attention to detail, and dedication,
essential to bring this book to life.
Many thanks go to Antonio Calderone for the technical review of the book and for testing
all code samples. Your suggestions were extremely valuable.
Finally, I want to thank my family for their patience and support.

About the reviewer
Antonino Calderone has worked in the computer software industry for over 20 years as a
software engineer in various domains, including telecommunications and networks,
embedded systems, cybersecurity, machine learning algorithms, and DBMS. He has
worked for companies such as Ericsson, Intel, and McAfee. He has also been a security
architect, technical writer, and teacher in programming courses in C++ and design patterns.
Antonino is an author and maintainer of several open source projects, including mipOS, an
RTOS for SoC microcontrollers, and nuBASIC, a language designed for educational
purposes. He was also a contributor to the magazine Computer Programming, one of the
most well-known programming magazines in Italy in the 90s and 2000s.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Fundamentals of Embedded Systems 9
Exploring embedded systems 10

How are they different from desktop or web applications? 10
Types of embedded systems 11
Microcontrollers 11
System on Chip 11
Application-specific integrated circuits 13
Field programmable gate arrays 13

Working with limited resources 13
Looking at performance implications 14
Working with different architectures 14

Endianness 14
Alignment 16
Fixed-width integer types 17

Working with hardware errors 17
Early versions of hardware 18
Hardware is unreliable 18
The influence of environmental conditions 18

Using C++ for embedded development 18
You don't pay for what you don't use 19
Object-oriented programming to time the code complexity 21
Resource acquisition is initialization 22
Exceptions 23
The powerful standard library 25
Threads and a memory model as part of the language specification 26

Deploying software remotely 27
Running software remotely 28
Logging and diagnostics 29
Summary 30

Chapter 2: Setting Up the Environment 31
Setting up the build system in a Docker container 32

How to do it... 32
How it works... 33
There's more... 35

Working with emulators 35
How to do it... 36
How it works... 37

Table of Contents

[ii]

There's more... 38
Cross-compilation 39

Getting ready 39
How to do it... 39
How it works... 40
There's more... 43

Connecting to the embedded system 43
Getting ready 43
How to do it... 44
How it works... 45
There's more... 46

Debugging embedded applications 47
Getting ready 47
How to do it... 48
How it works... 48
There's more... 50

Using gdbserver for remote debugging 50
Getting ready 50
How to do it... 51
How it works... 52
There's more... 53

Using CMake as a build system 54
Getting ready 54
How to do it... 54
How it works... 55
There's more... 59

Chapter 3: Working with Different Architectures 60
Exploring fixed-width integer types 61

How to do it... 61
How it works... 63
There's more... 64

Working with the size_t type 64
How to do it... 64
How it works... 65
There's more... 66

Detecting the endianness of the platform 66
How to do it... 67
How it works... 68
There's more... 69

Converting the endianness 69
How to do it... 70
How it works... 73

Working with data alignment 74
How to do it... 75

Table of Contents

[iii]

How it works... 77
There's more... 78

Working with packed structures 78
How to do it... 79
How it works... 79
There's more... 80

Aligning data with cache lines 80
How to do it... 81
How it works... 82
There's more... 84

Chapter 4: Handling Interrupts 85
Data polling 86
Interrupt service routines 86
General considerations for ISRs 87
8051 microcontroller interrupts 87
Implementing an interrupt service routine 88

How to do it... 88
How it works... 90

Generating a 5 kHz square signal using 8-bit auto-reload mode 92
How to do it... 93
How it works... 94

Using Timer 1 as an event counter to count a 1 Hz pulse 95
How to do it... 96
How it works... 97
There's more... 98

Receiving and transmitting data serially 98
How to do it... 99
How it works... 100
There's more... 100

Chapter 5: Debugging, Logging, and Profiling 101
Technical requirements 102
Running your applications in the GDB 102

How to do it... 103
How it works... 106
There's more... 111

Working with breakpoints 112
How to do it... 112
How it works... 114
There's more... 120

Working with core dumps 120
How to do it... 120
How it works... 122
There's more... 124

Table of Contents

[iv]

Using gdbserver for debugging 125
Getting ready... 125
How to do it... 125
How it works... 126

Adding debug logging 126
How to do it... 127
How it works... 128
There's more... 130

Working with debug and release builds 131
How to do it... 131
How it works... 133
There's more... 135

Chapter 6: Memory Management 136
Using dynamic memory allocation 137

How to do it... 137
How it works... 139

Exploring object pools 140
How to do it... 140
How it works... 143
There's more... 146

Using ring buffers 146
How to do it... 147
How it works... 149

Using shared memory 153
How to do it... 154
How it works... 157
There's more... 160

Using specialized memory 160
How to do it... 161
How it works... 162
There's more... 164

Chapter 7: Multithreading and Synchronization 165
Exploring thread support in C++ 166

How to do it... 166
How it works... 167

Exploring data synchronization 169
How to do it... 169
How it works... 170
There's more... 172

Using condition variables 172
How to do it... 172
How it works... 174
There's more... 176

Table of Contents

[v]

Using atomic variables 177
How to do it... 177
How it works... 179
There's more... 181

Using the C++ memory model 182
How to do it... 182
How it works... 183
There's more... 185

Exploring lock-free synchronization 185
How to do it... 186
How it works... 187
There's more... 189

Using atomic variables in shared memory 189
How to do it... 190
How it works... 193

Exploring async functions and futures 195
How to do it... 196
How it works... 197
There's more... 199

Chapter 8: Communication and Serialization 200
Using inter-process communication in applications 201

How to do it... 201
How it works... 204
There's more... 207

Exploring the mechanisms of inter-process communication 207
Getting ready 207
How to do it... 208
How it works... 209
There's more... 210

Learning about message queue and publisher-subscriber models 211
How to do it... 211
How it works... 215
There's more... 218

Using C++ lambdas for callbacks 218
How to do it... 218
How it works... 219
There's more... 221

Exploring data serialization 221
How to do it... 221
How it works... 224
There's more... 226

Using the FlatBuffers library 226
How to do it... 227
How it works... 229

Table of Contents

[vi]

There's more... 230

Chapter 9: Peripherals 231
Controlling devices connected via GPIO 231

How to do it... 232
How it works... 233

Exploring pulse-width modulation 235
How to do it... 236
How it works... 237
There's more... 239

Using ioctl to access a real-time clock in Linux 239
How to do it... 240
How it works... 242
There's more 244

Using libgpiod to control GPIO pins 244
How to do it... 244
How it works... 246
There's more... 247

Controlling I2C peripheral devices 247
How to do it... 248
How it works... 252
There's more... 254

Chapter 10: Reducing Power Consumption 255
Technical requirements 256
Exploring power-saving modes in Linux 256

How to do it... 256
How it works... 257
There's more... 259

Waking up using RTC 259
How to do it... 259
How it works... 260
There's more... 261

Controlling the autosuspend of USB devices 261
How to do it... 262
How it works... 262
There's more... 265

Configuring CPU frequency 266
How to do it... 266
How it works... 267
There's more... 272

Using events for waiting 272
How to do it... 273
How it works... 275
There's more... 279

Table of Contents

[vii]

Profiling power consumption with PowerTOP 279
How to do it... 279
How it works... 280
There's more... 282

Chapter 11: Time Points and Intervals 283
Exploring the C++ Chrono library 284

How to do it... 284
How it works... 285
There's more... 286

Measuring time intervals 286
How to do it... 286
How it works... 287
There's more... 288

Working with delays 289
How to do it... 289
How it works... 290
There's more... 293

Using the monotonic clock 293
How to do it... 294
How it works... 295
There's more... 297

Using POSIX timestamps 297
How to do it... 297
How it works... 298
There's more... 299

Chapter 12: Error Handling and Fault Tolerance 300
Working with error codes 300

How to do it... 301
How it works... 303
There's more... 305

Using exceptions for error handling 305
How to do it... 305
How it works... 307
There's more... 309

Using constant references when catching exceptions 309
How to do it... 310
How it works... 312
There's more... 313

Tackling static objects 313
How to do it... 314
How it works... 316

Working with watchdogs 317
How to do it... 318
How it works... 319

Table of Contents

[viii]

Exploring heartbeats for highly available systems 321
How to do it... 322
How it works... 325
There's more... 329

Implementing software debouncing logic 329
How to do it... 329
How it works... 331

Chapter 13: Guidelines for Real-Time Systems 333
Using real-time schedulers in Linux 334

How to do it... 334
How it works... 336

Using statically allocated memory 338
How to do it... 338
How it works... 340
There's more... 341

Avoiding exceptions for error handling 342
How to do it... 342
How it works... 344
There's more... 345

Exploring real-time operating systems 345
How to do it... 346
How it works... 347
There's more... 348

Chapter 14: Guidelines for Safety-Critical Systems 349
Using the return values of all functions 349

How to do it... 350
How it works... 352
There's more... 355

Using static code analyzers 355
How to do it... 356
How it works... 356
There's more... 357

Using preconditions and postconditions 358
How to do it... 358
How it works... 359
There's more... 362

Exploring the formal validation of code correctness 362
How to do it... 362
How it works... 363
There's more... 365

Chapter 15: Microcontroller Programming 366
Setting up the development environment 367

How to do it... 367

Table of Contents

[ix]

How it works... 367
There's more... 369

Compiling and uploading a program 369
How to do it... 369
How it works... 369
There's more... 372

Debugging microcontroller code 372
How to do it... 372
How it works... 373

Other Books You May Enjoy 375

Index 378

Preface
For a long time, development for embedded systems required either plain C or assembly
language. There was a host of good reasons for this. The hardware did not have enough
resources to run applications written in higher-level programming languages, such as C++,
Java, or Python, but more importantly, there was no real need to write software in these
languages. Limited hardware resources put a limit on software complexity, the
functionality of embedded applications remained relatively simple, and the
capabilities of C were sufficient to implement it.

As a result of the progress in hardware development, more and more embedded systems
nowadays are powered by inexpensive yet powerful System-on-Chip capable of running a
general-purpose multitasking operating system such as Linux.

Growing hardware capabilities demand more complex software, and more and more often
C++ becomes the language of choice for new embedded systems. With its you don't pay for
what you don't use approach it allows developers to create applications that use
computational and memory resources, like applications written in C, but gives developers
many more tools for dealing with complexity and safer resource management, such as
object-oriented programming and the RAII idiom.

Seasoned embedded developers with substantial experience in C often tend to write code in
C++ in a similar, habitual way, considering this language just as an object-oriented
extension of C, a C with classes. Modern C++, however, has its own best practices and
concepts that, properly used, help developers avoid common pitfalls and allow them to do
a lot in a few lines of code.

On the other side, developers with C++ experience entering the world of embedded systems
should be aware of the requirements, limitations, and capabilities of specific hardware
platforms and application domains and design their C++ code accordingly.

The goal of this book is to bridge this gap and demonstrate how features and best practices
of modern C++ can be applied in the context of embedded systems.

Who this book is for
This book is for developers and electronic hardware, software, and system-on-chip
engineers who want to build effective embedded programs in C++.

Preface

[2]

The world of embedded systems is vast. This book tries to cover one type of them, the SoCs
running Linux OS, such as Raspberry Pi or BeagleBoard, briefly touching low-level
microcontrollers such as Arduino.

Familiarity with C++ is expected, but no deep knowledge of C++ or experience with
embedded systems is required.

What this book covers
Chapter 1, Fundamentals of Embedded Systems, defines what embedded systems are, how
they are different from other systems, why specific programming techniques are needed,
and why C++ is good and in many cases the best choice for embedded development. It
outlines the constraints and challenges that embedded developers encounter in their
everyday work: limited system resources and CPU performance, dealing with hardware
errors, and remote debugging.

Chapter 2, Setting Up the Environment, explains the differences in a development
environment for embedded systems compared to web or desktop application development
and goes through concepts of the build and target system, cross-compilation and cross-
toolkits, the serial console, and the remote shell. It provides practical steps for setting up
virtualized build and target hosts for the most common desktop configurations running
Windows, macOS, or Linux.

Chapter 3, Working with Different Architectures, explains how to take into account important
differences in CPU architectures and memory configuration of target systems in your C++
code.

Chapter 4, Handling Interrupts, covers the low-level concepts of interrupts and interrupt
service routines. In modern OSes, even developers or device drivers have to use a higher-
level API provided by the OS. That is why we explore the interrupt techniques using the
8051 microcontroller.

Chapter 5, Debugging, Logging, and Profiling, covers debugging techniques specific to Linux-
based embedded systems, such as running gdb directly on the target board, setting up
gdbserver for remote debugging, and the importance of logging for debugging and failure
root cause analysis.

Chapter 6, Memory Management, provides several recipes and best practices of memory
allocation that will be helpful for developers of embedded systems. We discuss why
dynamic memory allocation is avoided in embedded applications and what alternatives can
be considered for fast, deterministic memory allocation.

Preface

[3]

Chapter 7, Multithreading and Synchronization, explains how to use the functions and classes
provided by the standard library of C++ to implement efficient multithreading applications
that can utilize all the power of the modern multicore CPUs.

Chapter 8, Communication and Serialization, covers the concepts, challenges, and best
practices for inter-process and inter-system communications, such as sockets, pipes, shared
memory, and memory-efficient serialization using the FlatBuffers library. Decoupling
applications into independent components that talk to each other using well-defined
asynchronous protocols is a de facto standard way of scaling a software system while
keeping it fast and fault-tolerant.

Chapter 9, Peripherals, explains how to work with various peripheral devices in C++
programs. Though most device communication APIs do not depend on a particular
programming language, we will learn how to use the power of C++ to write wrappers that
are convenient for developers and help prevent common resource leaking errors.

Chapter 10, Reducing Power Consumption, explores the best practices for writing energy-
efficient applications and utilizing the power management functions of the OS. It provides
several practical recipes for Linux-based embedded systems, but the same concepts can be
expanded to any OS and any platform.

Chapter 11, Time Points and Intervals, covers various topics related to time manipulations,
from measuring intervals to adding delays. We will learn about the API provided by the
standard C++ Chrono library and how it can be used efficiently to build portable embedded
applications.

Chapter 12, Error Handling and Fault Tolerance, explores possible implementations and best
practices of error handling for embedded applications written in C++. It explains how to use
C++ exceptions efficiently and compares it to alternatives such as traditional error codes
and complex return types. It touches on basic fault-tolerance mechanisms such as watchdog
timers and heartbeats.

Chapter 13, Guidelines for Real-Time Systems, covers the specifics of real-time systems. It
briefly describes how real-time systems are defined and what kinds of real-time systems
exist. It contains practical recipes on how to make the behavior of applications more
deterministic, a crucial requirement for real-time systems.

Chapter 14, Guidelines for Safety-Critical Systems, explains what safety-critical systems are
and how they are different from other embedded systems. It covers development
methodologies and tools that are required when working on safety-critical systems, from
following formalized coding guidelines such as MISRA, AUTOSAR, or JSF to using static
code analysis or formal software validation tools.

Preface

[4]

Chapter 15, Microcontroller Programming, outlines basic concepts of writing, compiling, and
debugging C++ code for microcontrollers. We will learn how to set up the development
environment using the widely used Arduino board as an example.

To get the most out of this book
Development for embedded systems implies that your applications will interact with some
sort of specialized hardware—a specific SoC platform, a specific microcontroller, or a
specific peripheral device. There is a huge variety of possible hardware configurations,
along with specialized OSes or IDEs that are needed to work with those hardware setups.

The goal of this book is to let everyone start learning about programming for embedded
systems without investing too much in hardware. That is why most of the recipes are aimed
at working in a virtualized Linux environment or an emulator. Some of the recipes,
however, may require physical hardware. These recipes were designed to be run on either a
Raspberry Pi or an Arduino, the two most widely used and inexpensive platforms that can
be obtained relatively easily.

Software/Hardware covered in the book OS requirements

Docker
(https://www.docker. com/ products/ docker- desktop)

• Microsoft Windows 10 Professional or
Enterprise 64-bit
• macOS 10.13 or newer
• Ubuntu Linux 16.04 or newer
• Debian Linux Stretch (9) or Buster (10)
• Fedora Linux 30 or newer

QEMU
(https://www.qemu. org/ download/)

• Windows 8 or newer (32-bit or 64-bit)
• macOS 10.7 or newer
• Linux (various distributions)

Raspberry Pi 3 Model B+
Arduino UNO R3 or ELEGOO UNO R3

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
http://www.packt.com/
https://www.packtpub.com/support

Preface

[5]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Embedded- Programming- with- Modern- CPP- Cookbook. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781838821043_ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Run the hello application under gdbserver."

http://www.packt.com/
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/Embedded-Programming-with-Modern-CPP-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838821043_ColorImages.pdf

Preface

[6]

A block of code is set as follows:

#include <iostream>

int main() {
 std::cout << "Hello, world!" << std::endl;
 return 0;
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

#include <iostream>

int main() {
 std::cout << "Hello, world!" << std::endl;
 return 0;
}

Any command-line input or output is written as follows:

$ docker run -ti -v $HOME/test:/mnt ubuntu:bionic

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The best way to configure cross-compilation for CMake is by using the so-
called toolchain files"

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[7]

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[8]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Fundamentals of Embedded

Systems
Embedded systems are computer systems that combine hardware and software
components to solve a specific task within a larger system or device. Unlike general-
purpose computers, they are heavily specialized and optimized to perform only one task
but do it really well.

They are everywhere around us, but we rarely notice them. You can find them in virtually
every home appliance or gadget, such as a microwave oven, TV set, network-attached
storage, or smart thermostat. Your car contains several interconnected embedded systems
that handle brakes, fuel injection, and infotainment.

In this chapter, we are going to deal with the following topics on embedded systems:

Exploring embedded systems
Working with limited resources
Looking at performance implications
Working with different architectures
Working with hardware errors
Using C++ for embedded development
Deploying software remotely
Running software remotely
Logging and diagnostics

Fundamentals of Embedded Systems Chapter 1

[10]

Exploring embedded systems
Every computer system created to solve a particular problem as part of a larger system or
device is an embedded system. Even your general-purpose PC or laptop contains many
embedded systems. A keyboard, a hard drive, a network card, or a Wi-Fi module—each of
these is an embedded system with a processor, often called a microcontroller, and its own
software, often called firmware.

Let's now dive into the different features of an embedded system.

How are they different from desktop or web
applications?
The most distinctive feature of embedded systems compared to desktops or servers is their
tight coupling of hardware and software specialized to accomplish a particular task.

Embedded devices work in a wide range of physical and environmental conditions. Most of
them are not designed to work only in dedicated conditioned data centers or offices. They
have to be functional in uncontrollable environments, often without any supervision and
maintenance.

Since they are specialized, hardware requirements are precisely calculated to accomplish
the task of being as cost-efficient as possible. As a result, the software aims to utilize 100%
of the available resources with minimal or no reserves.

The hardware of embedded systems is much more differentiated compared to regular
desktops and servers. The design of each system is individual. They may require very
specific CPUs and schematics that connect them to memory and peripheral hardware.

Embedded systems are designed to communicate with peripheral hardware. A major part
of an embedded program is checking the status, reading input, sending data, or controlling
the external device. It is common for an embedded system to not have a user interface. This
makes development, debugging, and diagnostics much more difficult compared to doing
the same on traditional desktop or web applications.

Fundamentals of Embedded Systems Chapter 1

[11]

Types of embedded systems
Embedded systems span a wide range of use cases and technologies—from powerful
systems used for autonomous driving or large-scale storage systems to tiny
microcontrollers used to control light bulbs or LED displays.

Based on the level of integration and specialization of hardware, embedded systems can
roughly be divided into the following categories:

Microcontrollers (MCUs)
A System on Chip (SoC)
Application-Specific Integrated Circuits (ASICs)
Field Programmable Gate Arrays (FPGAs)

Microcontrollers
MCUs are general-purpose integrated circuits designed for embedded applications. A
single MCU chip typically contains one or more CPUs, memory, and programmable
input/output peripherals. Their design allows them to interface directly with sensors or
actuators without adding any additional components.

MCUs are widely used in automobile engine control systems, medical devices, remote
controls, office machines, appliances, power tools, and toys.

Their CPUs vary from simple 8-bit processors to the more complex 32-bit and even 64-bit
processors.

Lots of MCUs exist; the most common ones nowadays are the following:

The Intel MCS-51 or 8051 MCU.
AVR by Atmel
The Programmable Interface Controller (PIC) from Microchip Technology
Various ARM-based MCUs

System on Chip
An SoC is an integrated circuit that combines all the electronic circuits and parts needed to
solve a particular class of problem on a single chip.

Fundamentals of Embedded Systems Chapter 1

[12]

It may contain digital, analog, or mixed-signal functions, depending on the application. The
integration of most electronic parts in a single chip gives two major benefits:
miniaturization and low power consumption. Compared to a less-integrated hardware
design, an SoC requires significantly less power. The optimization of power consumption
on the hardware and software levels allows it to create systems that can work for days,
months, and even years on a battery without an external power source. Often, it also
integrates radio frequency signal processing, which, along with its compact physical size,
makes it an ideal solution for mobile applications. Besides that, SoCs are commonly used in
the automotive industry, in wearable electronics, and in the Internet of Things (IoT):

Figure 1.1: A Raspberry Pi Model B+

A Raspberry Pi family of single-board computers is an example of a system based on the
SoC design. Model B+ is built on top of a Broadcom BCM2837B0 SoC with an integrated
quad-core 1.4 Hz ARM-based CPU, 1 GB memory, a network interface controller, and four
Ethernet interfaces.

The board has four USB interfaces, a MicroSD card port to boot an operating system and
store data, Ethernet and Wi-Fi network interfaces, HDMI video output, and a 40-pin GPIO
header to connect custom peripheral hardware.

It is shipped with the Linux operating system and is an excellent choice for educational and
DIY projects.

Fundamentals of Embedded Systems Chapter 1

[13]

Application-specific integrated circuits
Application-specific integrated circuits, or ASICs, are integrated circuits customized by
their manufactures for a particular use. The customization is an expensive process but
allows them to meet the requirements that are often infeasible for solutions based on
general-purpose hardware. For example, modern high-efficiency Bitcoin miners are usually
built on top of specialized ASIC chips.

To define the functionality of ASICs, hardware designers use one of the hardware
description languages, such as Verilog or VHDL.

Field programmable gate arrays
Unlike SoCs, ASICs, and MCUs, field programmable gate arrays, or FPGAs, are
semiconductor devices that can be reprogrammed on a hardware level after manufacturing.
They are based around a matrix of configurable logic blocks (CLBs), which are connected
via programmable interconnects. The interconnects can be programmed by developers to
perform a specific function according to their requirements. The FPGA is programmed with
a Hardware Definition Language (HDL). It allows the implementation of any combination
of digital functions in order to process a massive amount of data very quickly and
efficiently.

Working with limited resources
It is a common misconception that embedded systems are based on hardware that is much
slower compared to regular desktop or server hardware. Although this is commonly the
case, it is not always true.

Some particular applications may require lots of computation power of large amounts of
memory. For example, autonomous driving requires both memory and CPU resources to
handle the large amount of data that comes from various sensors using AI algorithms in
real time. Another example is high-end storage systems that utilize large amounts of
memory and resources for data caching, replication, and encryption.

In either case, the embedded system hardware is designed to minimize the cost of the
overall system. The results for software engineers working with embedded systems is that
resources are scarce. They are expected to utilize all of the available resources and take
performance and memory optimizations very seriously.

Fundamentals of Embedded Systems Chapter 1

[14]

Looking at performance implications
Most embedded applications are optimized for performance. As discussed earlier, the
target CPU is chosen to be cost-efficient and developers extract all the computation power
that it is capable of. An additional factor is communication with peripheral hardware. This
often requires precise and fast reaction times. As a result, there is only limited room for the
scripting, interpretable, bytecode languages such as Python or Java. Most of the embedded
programs are written in languages that compile into the native code, primarily C and C++.

To achieve maximum performance, embedded programs utilize all the performance
optimization capabilities of compilers. Modern compilers are so good at code optimization
that they can outperform code in assembly language written by skilled developers.

However, engineers cannot rely solely on the performance optimizations provided by
compilers. To achieve maximum efficiency, they have to take into account the specifics of
the target platform. Coding practices that are commonly used for desktop or server
applications running on an x86 platform may be inefficient for different architectures such
as ARM or MIPS. The utilization of specific features of the target architecture often gives a
significant performance boost to the program.

Working with different architectures
Developers of desktop applications usually pay little attention to the hardware architecture.
First, they often use high-level programming languages that hide these complexities at the
cost of some performance drop. Second, in most cases, their code runs on x86 architecture
and they often take its features for granted. For example, they may assume that the size of
int is 32 bits, which is not true in many cases.

Embedded developers deal with a much wider variety of architectures. Even if they do not
write code in assembly language native to the target platform, they should be aware that all
C and C++ fundamental types are architecture-dependent; the standard only guarantees
that int is at least 16 bits. They should also know the traits of particular architectures, such
as endianness and alignment, and take into account that operations with floating point or
64-bit numbers, which are relatively cheap on x86 architecture, may be much more
expensive on other architectures.

Endianness
Endianness defines the order in which bytes that represent large numerical values are
stored in memory.

Fundamentals of Embedded Systems Chapter 1

[15]

There are two types of endianness:

Big-endian: The most significant byte is stored first. The 0x01020304 32-bit
value is stored at the ptr address as follows:

Offset in memory Value
ptr 0x01
ptr + 1 0x02
ptr + 2 0x03
ptr + 3 0x04

Examples of big-endian architectures are AVR32 and Motorola 68000.

Little-endian: The least significant byte is stored first. The 0x01020304 32-bit
value is stored at the ptr address as follows:

Offset in memory Value
ptr 0x04
ptr + 1 0x03
ptr + 2 0x02
ptr + 3 0x01

The x86 architecture is little-endian.

Bi-endian: Hardware supports switchable endianness. Some examples are
PowerPC, ARMv3, and the preceding examples.

Endianness is particularly essential when exchanging data with other systems. If a
developer sends the 0x01020304 32-bit integer as is, it may be read as 0x04030201 if the
endianness of the receiver does not match the endianness of the sender. That is why data
should be serialized.

This C++ snippet can be used to determine the endianness of a system:

#include <iostream>
int main() {
 union {
 uint32_t i;
 uint8_t c[4];
 } data;
 data.i = 0x01020304;
 if (data.c[0] == 0x01) {
 std::cout << "Big-endian" << std::endl;

Fundamentals of Embedded Systems Chapter 1

[16]

 } else {
 std::cout << "Little-endian" << std::endl;
 }
}

Alignment
Processors don't read and write data in bytes but in memory words—chunks that match
their data address size. 32-bit processors work with 32-bit words, 64-bit processors with 64-
bit words, and so on.

Reads and writes are most efficient when words are aligned—the data address is a multiple
of the word size. For example, for 32-bit architectures, the 0x00000004 address is aligned,
while 0x00000005 is unaligned.

Compilers align data automatically to achieve the most efficient data access. When it comes
to structures, the result may be surprising for developers who are not aware of alignment:

 struct {

 uint8_t c;

 uint32_t i;

 } a = {1, 1};

 std::cout << sizeof(a) << std::endl;

What is the output of the preceding code snippet? The size of uint8_t is 1 and the size
of uint32_t is 4. A developer may expect that the size of the structure is the sum of the
individual sizes. However, the result highly depends on the target architecture.

For x86, the result is 8. Let's add one more uint8_t field before i:

struct {

 uint8_t c;

 uint8_t cc;

 uint32_t i;

 } a = {1, 1};

 std::cout << sizeof(a) << std::endl;

Fundamentals of Embedded Systems Chapter 1

[17]

The result is still 8! The compiler optimizes the placement of the data fields within a
structure according to alignment rules by adding padding bytes. The rules are architecture-
dependent and the result may be different for other architectures. As a result, structures
cannot be exchanged directly between two different systems without serialization, which
will be explained in more depth in Chapter 8, Communication and Serialization.

Besides the CPU, access data alignment is also crucial for efficient memory mapping
through hardware address translation mechanisms. Modern operating systems operate 4
KB memory blocks or pages to map a process virtual address space to physical memory.
Aligning data structures on 4 KB boundaries can lead to performance gain.

Fixed-width integer types
C and C++ developers often forget that the size of fundamental data types, such as char,
short, or int, is architecture-dependent. To make the code portable, embedded
developers often use fixed-size integer types that explicitly specify the size of a data field.

The most commonly used data types are as follows:

Width Signed Unsigned
8-bit int8_t uint8_t

16-bit int16_t uint16_t

32-bit int32_t uint32_t

The pointer size also depends on the architecture. Developers often need to address
elements of arrays and since arrays are internally represented as pointers, the offset
representation depends on the pointer size. size_t is a special data type to represent the
offset and data sizes in an architecture-independent way.

Working with hardware errors
A significant part of an embedded developer's work is dealing with hardware. Unlike most
application developers, embedded developers cannot rely on hardware. Hardware fails for
different reasons and embedded developers have to distinguish purely software failures
from software failures caused by hardware failures or glitches.

Fundamentals of Embedded Systems Chapter 1

[18]

Early versions of hardware
Embedded systems are based on specialized hardware designed and manufactured for a
particular use case. This implies that at the time that the software for the embedded system
is being developed, its hardware is not yet stable and well tested. When software
developers encounter an error in their code behavior, it does not necessarily mean there is a
software bug but it might be a result of incorrectly working hardware.

It is hard to triage these kinds of problems. They require knowledge, intuition, and
sometimes the use of an oscilloscope to narrow the root cause of an issue down to
hardware.

Hardware is unreliable
Hardware is inherently unreliable. Each hardware component has a probability of failure
and developers should be aware that hardware can fail at any time. Data stored in memory
can be corrupted because of memory failure. Messages being transmitted over a
communication channel can be altered because of external noise.

Embedded developers are prepared for these situations. They use checksums or cyclic
redundancy check (CRC) code to detect and, if possible, correct corrupted data.

The influence of environmental conditions
High temperature, low temperature, high humidity, vibration, dust, and other
environmental factors can significantly affect the performance and reliability of hardware.
While developers design their software to handle all potential hardware errors, it is
common practice to test the system in different environments. Besides that, knowledge of
environmental conditions can give an important clue when working on the root-cause
analysis of an issue.

Using C++ for embedded development
For many years, the vast majority of an embedded project was developed using the C
programming language. This language perfectly fits the needs of embedded software
developers. It provides feature-rich and convenient syntax but at the same time, it is
relatively low-level and does not hide platform specifics from developers.

Fundamentals of Embedded Systems Chapter 1

[19]

Due to its versatility, compactness, and the high performance of the compiled code, it
became a de facto standard development language in the embedded world. Compilers for
the C language exist for most, if not all, architectures; they are optimized to generate
machine code that is more efficient than those that are written manually.

Over time, the complexity of embedded systems increased and developers faced the
limitations of C, the most notable being error-prone resource management and a lack of
high-level abstractions. The development of complex applications in C requires a lot of
effort and time.

At the same time, C++ was evolving, gaining new features and adopting programming
techniques that make it the best choice for developers of modern embedded systems. These
new features and techniques are as follows:

You don't pay for what you don't use.
Object-oriented programming to time the code complexity.
Resource acquisition is initialization (RAII).
Exceptions.
A powerful standard library.
Threads and memory model as part of the language specification.

You don't pay for what you don't use
One of the mottos of C++ is You don't pay for what you don't use. This language is packed
with many more features than C, yet it promises zero overhead for those that are not used.

Take, for example, virtual functions:

#include <iostream>

class A {

public:

 void print() {

 std::cout << "A" << std::endl;

 }

};

class B: public A {

Fundamentals of Embedded Systems Chapter 1

[20]

public:

 void print() {

 std::cout << "B" << std::endl;

 }

};

int main() {

 A* obj = new B;

 obj->print();

}

The preceding code will output A, despite obj pointing to the object of the B class. To make
it work as expected, the developer adds a keyword—virtual:

#include <iostream>

class A {

public:

 virtual void print() {

 std::cout << "A" << std::endl;

 }

};

class B: public A {

public:

 void print() {

 std::cout << "B" << std::endl;

 }

};

int main() {

Fundamentals of Embedded Systems Chapter 1

[21]

 A* obj = new B;

 obj->print();

}

After this change, the code outputs B, which is what most developers expect to get as a
result. You may ask why C++ does not enforce every method to be virtual by default.
This approach is adopted by Java and doesn't seem to have any downsides.

The reason is that virtual functions are not free. Function resolution is performed at
runtime via the virtual table—an array of function pointers. It adds a slight overhead to the
function invocation time. If you do not need dynamic polymorphism, you do not pay for it.
That is why C++ developers add the virtual keyboard, to explicitly agree with
functionality that adds performance overhead.

Object-oriented programming to time the code
complexity
As the complexity of embedded programs grows over time, it becomes more and more
difficult to manage them using the traditional procedural approach provided by the C
language. If you take a look at a large C project, such as the Linux kernel, you will see that
it adopts many aspects of object-oriented programming.

The Linux kernel extensively uses encapsulation, hiding implementation details and
providing object interfaces using C structures.

Though it is possible to write object-oriented code in C, it is much easier and convenient to
do it in C++, where a compiler does all the heavy lifting for the developers.

Fundamentals of Embedded Systems Chapter 1

[22]

Resource acquisition is initialization
Embedded developers work a lot with the resources provided by the operating system:
memory, files, and network sockets. C developers use pairs of API functions to acquire and
free resources; for example, malloc to claim a block of memory and free to return it to the
system. If for some reason the developer forgets to invoke free, this block of memory
leaks. Memory leaking, or resource leaking, is generally a common problem in applications
written in C:

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#include <string.h>

int AppendString(const char* str) {

 int fd = open("test.txt", O_CREAT|O_RDWR|O_APPEND);

 if (fd < 0) {

 printf("Can't open file\n");

 return -1;

 }

 size_t len = strlen(str);

 if (write(fd, str, len) < len) {

 printf("Can't append a string to a file\n");

 return -1;

 }

 close(fd);

 return 0;

}

Fundamentals of Embedded Systems Chapter 1

[23]

This preceding code looks correct, but it contains several serious issues. If the write
function returns an error or writes less data than requested (and this is correct behavior),
the AppendString function logs an error and returns. However, if it forgets to close the file
descriptor, it leaks. Over time, more and more file descriptors leak and at some point, the
program reaches the limit of open file descriptors, making all calls to the open function fail.

C++ provides a powerful programming idiom that prevents resource leakage: RAII. A
resource is allocated in an object constructor and deallocated in the object destructor. This
means that the resource is only held while the object is alive. It is automatically freed when
the object is destroyed:

#include <fstream>

void AppendString(const std::string& str) {

 std::ofstream output("test.txt", std::ofstream::app);

 if (!output.is_open()){

 throw std::runtime_error("Can't open file");

 }

 output << str;

}

Note that this function does not call close explicitly. The file is closed in the destructor of
the output object, which is automatically invoked when the AppendString function
returns.

Exceptions
Traditionally, C developers handled errors using error codes. This approach requires lots of
attention from the coders and is a constant source of hard-to-find bugs in C programs. It is
too easy to omit or overlook missing check-for-a-return code, masking the error:

#include <stdio.h>

 #include <unistd.h>

 #include <fcntl.h>

 #include <iostream>

Fundamentals of Embedded Systems Chapter 1

[24]

 #include <fstream>

 char read_last_byte(const char* filename) {

 char result = 0;

 int fd = open(filename, O_RDONLY);

 if (fd < 0) {

 printf("Can't open file\n");

 return -1;

 }

 lseek(fd, -1, SEEK_END);

 size_t s = read(fd, &result, sizeof(result));

 if (s != sizeof(result)) {

 printf("Can't read from file: %lu\n", s);

 close(fd);

 return -1;

 }

 close(fd);

 return result;

 }

The preceding code has at least two issues related to error handling. First, the result of the
lseek function call is not checked. If lseek returns an error, the function will work
incorrectly. The second issue is more subtle, yet more important and harder to fix. The
read_last_byte function returns -1 to indicate an error, but it is also a valid value of a
byte. It is not possible to distinguish whether the last byte of a file is 0xFF or whether the
function encountered an error. To correctly handle this case, the function interface should
be redefined as follows:

int read_last_byte(const char* filename, char* result);

Fundamentals of Embedded Systems Chapter 1

[25]

The function returns -1 in the case of an error and 0 otherwise. The result is stored in a
char variable passed by reference. Although this interface is correct, it is not as convenient
for developers as the original one.

A program that eventually crashes randomly may be considered the best outcome for these
kinds of errors. It would be worse if it keeps working, silently corrupting data or generating
incorrect results.

Besides that, the code that implements the logic and the code responsible for error checks
are intertwined. The code becomes hard to read and hard to understand and, as a result,
even more error-prone.

Although developers can still keep using return codes, the recommended way of error
handling in modern C++ is exceptions. Correctly designed and correctly used exceptions
significantly reduce the complexity of error handling, making code readable and robust.

The same function written in C++ using exceptions looks much cleaner:

char read_last_byte2(const char* filename) {

 char result = 0;

 std::fstream file;

 file.exceptions (

 std::ifstream::failbit | std::ifstream::badbit);

 file.open(filename);

 file.seekg(-1, file.end);

 file.read(&result, sizeof(result));

 return result;

 }

The powerful standard library
C++ comes with a feature-rich and powerful standard library. Many functions that required
C developers to use third-party libraries are now part of the standard C++ library. This
means less external dependencies, more stable and predictable behavior, and improved
portability between hardware architectures.

Fundamentals of Embedded Systems Chapter 1

[26]

The C++ standard library comes with containers built on top of the most commonly used
data structures, such as arrays, binary trees, and hash tables. These containers are generic
and efficiently cover most of the developer's everyday needs. Developers do not need to
spend time and effort creating their own, often error-prone, implementations of the
essential data structures.

The containers are carefully designed in a way that minimizes the need for explicit
resources, allocation, or deallocation, leading to significantly lower chances of memory or
other system resources leaking.

The standard library also provides many standard algorithms, such as find, sort,
replace, binary search, operations with sets, and permutations. The algorithms can be
applied to any containers that expose integrator interfaces. Combined with standard
containers, they help developers focus on high-level abstractions and build them on top of
well-tested functionality with a minimal amount of additional code.

Threads and a memory model as part of the
language specification
The C++11 standard introduced a memory model that clearly defines the behavior of a C++
program in a multithreaded environment.

For the C language specifications, the memory model was out of scope. The language itself
was not aware of threads or parallel execution semantics. It was up to the third-party
libraries, such as pthreads, to provide all the necessary support for multithread
applications.

Earlier versions of C++ followed the same principle. Multithreading was out of the scope of
the language specification. However, modern CPUs with multiple pipelines supporting
instruction reordering demanded more deterministic behavior of compilers.

As a result, modern specifications of C++ explicitly define classes for threads, various types
of locks and mutexes, condition variables, and atomic variables. This gives embedded
developers a powerful tool kit to design and implement applications capable of utilizing all
the power of modern multicore CPUs. Since the tool kit is part of the language
specification, these applications have deterministic behavior and are portable to all
supported architectures.

Fundamentals of Embedded Systems Chapter 1

[27]

Deploying software remotely
The deployment of software for embedded systems is often a complex procedure that
should be carefully designed, implemented, and tested. There are two major challenges:

Embedded systems are often deployed in places that are difficult or impractical
for a human operator to access.
If software deployment fails, the system can become inoperable. It will require
the intervention of a skilled technician and additional tools for recovery. This is
expensive and often impossible.

A solution for the first challenge of embedded systems that are connected to the internet
was found in the form of Over-the-Air (OTA) updates. A system periodically connects to
the dedicated server and checks for available updates. If the updated version of the
software is found, it is downloaded to the device and installed to the persistent memory.

This approach is widely adopted by manufacturers of smartphones, Set-Top-Box (STB)
appliances, smart TVs, and game consoles connected to the internet.

When designing OTA updates, system architects should take into account many factors that
affect the scalability and reliability of the overall solution. For example, if all devices check
for updates at approximately the same time, it creates high peak loads in the update
servers, while leaving them idle all other time. Randomizing the check time keeps the load
distributed evenly. The target system should be designed to reserve enough persistent
memory to download the complete update image before applying it. The code
implementing the updated software image download should handle network connection
drops and resume download once the connection is recovered, rather than start over.
Another important factor of OTA update is security. The updated process should only
accept genuine update images. Updates are cryptographically signed by the manufacturer
and an image is not accepted by the installer running on the device unless the signature
matches.

Developers of embedded systems are aware that the update may fail for different reasons;
for example, a power outage during the update. Even if the update completes successfully,
the new version of the software may be unstable and crash on startup. It is expected that
even in such situations the system will be able to recover.

Fundamentals of Embedded Systems Chapter 1

[28]

This is achieved by separating the main software components and the bootloader. The
bootloader validates the consistency of the main components, such as the operating system
kernel and root filesystem that contains all the executables, data, and scripts. Then, it tries
to run the operating system. In the case of failure, it switches to the previous version, which
should be kept in the persistent memory along with the new one. Hardware watchdog
timers are used to detect and prevent situations where a software update causes the system
to hang.

It is impractical to use OTA or complete image re-flashing during software development
and testing. It significantly slows down the development process. Engineers use other ways
to deploy their software builds to the development systems, such as a remote shell or
network filesystems that allow file sharing between developers' workstations and target
boards.

Running software remotely
Embedded systems are designed to solve a particular problem using a specific combination
of hardware and software components. That is why all software components in a system
are tailored to fulfill this goal. Everything non-essential is disabled and all custom software
is integrated into the boot sequence.

Users do not launch embedded programs; they start on system boot. However, during the
development process, engineers need to run their applications without rebooting the
system.

This is done differently depending on the type of the target platform. For powerful-enough
systems based on SoC and running a preemptive multitasking operating system such as
Linux, it can be done using a remote shell.

Modern systems usually use a secure shell (SSH) as a remote shell. The target system runs
an SSH daemon waiting for incoming connections. Developers connect using a client SSH
program, such as SSH in Linux or PuTTY in Windows, to get access to the target system.
Once connected, they can work with the Linux shell on the embedded board in the same
way as on a local computer.

Fundamentals of Embedded Systems Chapter 1

[29]

The common workflow for running the program remotely is as follows:

Build a program executable in your local system using a cross-compilation1.
toolkit.
Copy it to the remote system using the scp tool.2.

Connect to the remote system using SSH and run the executable from the3.
command line.
Using the same SSH connection, analyze the program output.4.
When the program terminates or gets interrupted by the developer, fetch its logs5.
back to the developer's workstation for in-depth analysis.

MCUs do not have enough resources for a remote shell. Developers usually upload the
compiled code directly into the platform memory and initiate the code execution from the
particular memory address.

Logging and diagnostics
Logging and diagnostics are an important aspect of any embedded project.

In many cases, using an interactive debugger is not possible or practical. Hardware state
can change in a few milliseconds. After a program stops on a breakpoint, a developer does
not have enough time to analyze it. Collecting detailed log data and using tools for their
analysis and visualization is a better approach for high-performance, multithreaded, time-
sensitive embedded systems.

Since in most cases resources are limited, developers often have to make tradeoffs. On the
one hand, they need to collect as much data as possible to identify the root cause of
failure—whether it is the software or hardware, the status of the hardware components at
the time of the failure, and the accurate timing of the hardware and software events
handled by the system. On the other hand, the space available for the log is limited, and
each time writing the log affects the overall performance.

The solution is buffering log data locally on a device and sending it to a remote system for
detailed analysis.

This approach works fine for the development of embedded software. However, the
diagnostics of the deployed systems require more sophisticated techniques.

Fundamentals of Embedded Systems Chapter 1

[30]

Many embedded systems work offline and do not provide convenient access to internal
logs. Developers need to design and implement other ways of diagnostics and reporting
carefully. If a system does not have a display, LED indicators or beeps are often used to
encode various error conditions. They are sufficient for giving information about the failure
category but in most cases cannot provide the necessary details to nail it down to the root
cause.

Embedded devices have dedicated diagnostics modes that are used to test the hardware
components. After powering up, virtually any device or appliance performs a Power-On
Self-Test (POST), which runs quick tests of the hardware. These tests are supposed to be
fast and do not cover all testing scenarios. That is why many devices have hidden service
modes that can be activated by developers or field engineers to perform more thorough
tests.

Summary
In this chapter, we discussed a high-level overview of embedded software, what makes it
different, and also learned why and how C++ can be used efficiently in this area.

2
Setting Up the Environment

To start working with an embedded system, we need to set up an environment. Unlike
the environment we use for desktop development, the environment for
embedded programming requires two systems:

A build system: The system you use to write the code
A target system: The system your code is going to be run on

In this chapter, we will learn how to set up these two systems and connect them together.
Configurations of build systems may vary significantly— there may be different operating
systems, compilers, and IDEs. The variance in target system configurations is even greater
since each embedded system is unique. Moreover, while you can use your laptop or
desktop as a build system, you do need some sort of embedded board as a target system.

It would be impossible to cover all the possible combinations of build and target systems.
Instead, we will just learn how to use one popular configuration:

Ubuntu 18.04 as the build system
Raspberry Pi as the target system

We will use Docker to run Ubuntu in a virtual environment on your laptop or
desktop. Docker supports Windows, macOS, and Linux, but, if you already use Linux, you
can use it directly without running a container on top of it.

We will use Quick EMUlator (QEMU) to emulate the Raspberry Pi board. This will teach
us how to build applications for embedded boards even without access to the real
hardware. Carrying out the initial phases of development in an emulated environment is
common and, in many cases, the only possible practical solution, given that the target
hardware may not be available when the software development starts.

Setting Up the Environment Chapter 2

[32]

This chapter will cover the following topics:

Setting up the build system in a Docker container
Working with emulators
Cross-compilation
Connecting to an embedded system
Debugging embedded applications
Using gdbserver for remote debugging
Using CMake as a build system

Setting up the build system in a Docker
container
In this recipe, we will set up a Docker container to run Ubuntu 18.04 on your desktop or
laptop. It does not matter what operating system runs on your machine, as Docker supports
Windows, macOS, and Linux. As a result of this recipe, you will have a unified, virtualized
Ubuntu Linux build system running within your host operating system.

If your operating system already runs Ubuntu Linux, feel free to skip to the next recipe.

How to do it...
We are going to install the Docker application on our laptop or desktop and then use a
ready-made image of Ubuntu to run this operating system in a virtual environment:

In your web browser, open the following link and follow the instructions to set1.
up Docker for your operating system:
For Windows: https:/ /docs. docker. com/ docker- for- windows/ install/ 2.
For macOS: https:/ /docs. docker. com/ docker- for-mac/ install/ 3.
Open a terminal window (Command Prompt in Windows, the Terminal app in4.
macOS) and run the following command to check that it has been installed
correctly:

 $ docker --version

https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/

Setting Up the Environment Chapter 2

[33]

Run this command to use an Ubuntu image:5.

$ docker pull ubuntu:bionic

Create a working directory. In either macOS, Linux shell, or Windows6.
PowerShell, run the following command:

 $ mkdir ~/test

Now, run the downloaded image in the container:7.

$ docker run -ti -v $HOME/test:/mnt ubuntu:bionic

Next, run the uname -a command to get information about the system:8.

uname -a

You are now in a virtual Linux environment, which we will use for the
subsequent recipes in this book.

How it works...
In the first step, we install Docker—a virtualization environment that allows an isolated
Linux operating system to run on Windows, macOS, or Linux. This is a convenient way of
distributing and deploying containers that uniformly encapsulate all of the libraries and
programs required for any operating system you use.

After installing Docker, run a quick command to check whether it has been installed
correctly:

Setting Up the Environment Chapter 2

[34]

After checking the installation, we need to fetch the ready-made Ubuntu image from the
Docker repository. Docker images have tags; we can use the bionic tag to find Ubuntu
version 18.04:

It takes time for the image to download. Once the image is fetched, we can create a
directory, which we will use for development. The directory content will be shared
between your operating system and Linux, running in Docker. This way, you can use your
favorite text editor to work on code but still use the Linux build tools to compile the code
into the binary executable files.

Then, we can start a Docker container using the Ubuntu image fetched in step 4.
The option -v $HOME/test:/mnt command line makes the folder created in step 5
visible to Ubuntu as the /mnt directory. This means that all of the files you create in
the ~/test directory automatically appear in /mnt. The -ti option makes the container
interactive, giving you access to the Linux shell environment (bash):

Setting Up the Environment Chapter 2

[35]

Finally, we run a quick sanity check of the . uname container, which displays information
about the Linux kernel, as shown here:

Although the exact version of your kernel may differ, we can see that we are running Linux
and our architecture is x86. This means we have set up our build environment, where we
will be able to compile our code in a unified way, whatever operating system is running on
our computer. However, we are still not able to run the compiled code because our target
architecture is Acorn RISC Machines (ARM), not x86. We will learn how to set up an
emulated ARM environment in the next recipe.

There's more...
Docker is a powerful and flexible system. Moreover, its repository contains lots of ready-
made images that contain tools that are useful to most developers.

Go to https://hub. docker. com/ search? q=type= image and browse through the most
popular images. You can also search for images using keywords, such as embedded.

Working with emulators
Using a real embedded board is not always possible or practical—hardware is not yet
ready, or the number of boards is limited. Emulators help developers use an environment
that's as close to the target system as possible, yet do not depend on hardware availability.
It is also the best way to start learning embedded development.

In this recipe, we will learn how to set up QEMU (a hardware emulator) and configure it to
emulate an ARM-based embedded system running Debian Linux.

https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image

Setting Up the Environment Chapter 2

[36]

How to do it...
We need a virtual environment that, unlike Docker, can emulate processors with
architectures that differ from the architecture of our computer:

Navigate to https:/ /www. qemu. org/download/ and click on the tab that matches1.
your operating system—Linux, macOS, or Windows—and follow the
installation instructions.
Create a test directory, unless one already exists:2.

 $ mkdir -p $HOME/raspberry

Download the following files and copy them over to the ~/raspberry directory3.
you created in the previous step:

Raspbian Lite zip-archive: http:/ /downloads. raspberrypi. org/
raspbian_ lite/ images/ raspbian_ lite- 2019- 07- 12/2019- 07- 10-
raspbian- buster- lite.zip

Kernel image: https:/ /github. com/ dhruvvyas90/ qemu- rpi- kernel/
raw/ master/ kernel- qemu- 4.14. 79-stretch

Device tree blob: https:/ /github. com/dhruvvyas90/ qemu- rpi-
kernel/ raw/ master/ versatile- pb.dtb

Change the directory to ~/raspberry and extract the Raspbian Lite zip archive4.
downloaded in the previous step. It contains a single file named 2019-07-10-
raspbian-buster-lite.img.
Open a terminal window and run QEMU. For Windows and Linux, the5.
command line is as follows:

$ qemu-system-arm -M versatilepb -dtb versatile-pb.dtb -cpu arm1176
-kernel kernel-qemu-4.14.79-stretch -m 256 -drive file=2019-07-10-
raspbian-buster-lite.img,format=raw -append "rw console=ttyAMA0
rootfstype=ext4 root=/dev/sda2 loglevel=8" -net
user,hostfwd=tcp::22023-:22,hostfwd=tcp::9090-:9090 -net nic -
serial stdio

A new window should show up, displaying the Linux boot process. In a few6.
seconds, a login prompt will be displayed.
Log in using pi as the username and raspberry as the password. Then, type the7.
following command:

 # uname -a

https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
https://www.qemu.org/download/
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2019-07-12/2019-07-10-raspbian-buster-lite.zip
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/kernel-qemu-4.14.79-stretch
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb
https://github.com/dhruvvyas90/qemu-rpi-kernel/raw/master/versatile-pb.dtb

Setting Up the Environment Chapter 2

[37]

Check the output of the command. It indicates that our system architecture is8.
ARM, not x86. Now we can use this environment to test applications built for the
ARM platform.

How it works...
In the first step, we install the QEMU emulator. Without the loadable code images, this
virtual machine doesn't have much use. Then, we can fetch the three images required to run
a Linux operating system:

The Linux root filesystem: Contains a snapshot of Raspbian Linux, used on
Raspberry Pi devices
The Linux kernel
The Device tree blob: Contains a description of the hardware components of a
system

Once all the images are fetched and put into the ~/raspberry directory, we run QEMU,
providing paths to the images as command-line parameters. Additionally, we configure the
virtual network, which allows us to connect to the Linux system running in the virtual
environment from our native environment.

After QEMU starts, we can see a window with a Linux login prompt:

Setting Up the Environment Chapter 2

[38]

After logging into the system, we can run a quick sanity check by running the uname
command:

Similar to the sanity check we ran in the previous recipe, Setting up the build system in a
Docker container, this shows that we are running a Linux operating system, but, in this case,
we can see that the target architecture is ARM.

There's more...
QEMU is a powerful processor emulator that supports other multiple architectures aside
from x86 and ARM, such as PowerPC, SPARC64, SPARC32, and Microprocessor without
Interlocked Pipelined Stages (MIPS). One aspect that makes it so powerful is its flexibility,
due to its many configuration options. Go to https:/ /qemu. weilnetz. de/doc/ qemu- doc.
html to configure QEMU to your needs.

https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html

Setting Up the Environment Chapter 2

[39]

Microcontroller vendors also often provide emulators and simulators. When starting
development for particular hardware, check for the available emulation options, as it might
significantly affect the development time and effort.

Cross-compilation
We have already learned that the environment for embedded development consists of two
systems: the build system, where you write and build code, and the host system, which
runs the code.

We now have two virtualized environments set up:

Ubuntu Linux in a Docker container, which will be our build system
QEMU running Raspbian Linux, which will be our host system

In this recipe, we will set up the cross-compilation tools required to build Linux
applications for the ARM platform and build a simple Hello, world! application to test the
setup.

Getting ready
To set up the cross-compilation toolkit, we will need to use Ubuntu Linux, which we set up
in the Setting up the build system in a Docker container recipe.

We also need the ~/test directory to exchange our source code between our operating
system and the Ubuntu container.

How to do it...
Let's start by creating a simple C++ program, which we want to compile for our target
platform:

Create a file named hello.cpp in the ~/test directory.1.
Use your favorite text editor to add the following code snippet to it: 2.

#include <iostream>

int main() {
 std::cout << "Hello, world!" << std::endl;

Setting Up the Environment Chapter 2

[40]

 return 0;
}

Now that we have the code for the Hello, world! program, we need to3.
compile it.
Switch to the Ubuntu (our build system) console.4.
Get the up-to-date list of packages available for the installation by running the5.
following command:

apt update -y

It will take some time to fetch the package descriptions from the Ubuntu6.
servers. Run the following command to install the cross-compilation tools:

 # apt install -y crossbuild-essential-armel

You will see a long list of packages to install. Press Y to confirm the7.
installation.As a sanity check, run a cross-compiler with no parameters:

arm-linux-gnueabi-g++

Change the directory to /mnt8.

cd /mnt

The hello.cpp file that we created in step 1 is located here. Let's now build it:9.

 # arm-linux-gnueabi-g++ hello.cpp -o hello

This command generates an executable file named hello. You may be10.
wondering why it doesn't have any extensions. In Unix systems, extensions are
completely optional and binary executable files usually do not have any
extensions. Try to run the file. It should fail with an error.
Let's generate the details about the executable binary using the file tool.11.

How it works...
In the first step, we created a simple Hello, World! C++ program. We put this into the
~/test directory, which makes it accessible from the Docker container running Linux.

Setting Up the Environment Chapter 2

[41]

To build the source code, we switched to the Ubuntu shell.

If we try to run a standard Linux g++ compiler to build it, we will get an executable for the
build platform, which is x86. However, we need an executable for the ARM platform. To
build it, we need a version of the compiler that can run on x86, building the ARM code.

As a preliminary step, we need to update the information about the packages available in
the Ubuntu packages distributive:

Setting Up the Environment Chapter 2

[42]

We can install this compiler, along with a set of related tools, by running apt-get
install crossbuild-essential-armel:

The quick sanity check carried out in step 9 shows that it was properly installed:

Now, we need to build hello.cpp using the cross-compiler. It generates the executable for
the ARM platform, which is why our attempt to run it in the build system in step 12 fails.

Setting Up the Environment Chapter 2

[43]

To make sure it is really an ARM executable, we need to run the file command. Its output
is as follows:

As you can see, the binary is built for the ARM platform, which is why it fails to run on a
build system.

There's more...
Many cross-compilation toolkits exist for various architectures. Some of them are readily
available in the Ubuntu repository; some may require manual installation.

Connecting to the embedded system
After an embedded application is built on a build system using a cross-compiler, it should
be transferred to the target system. The best way to do this on Linux-based embedded
systems is by using networking connectivity and a remote shell. Secure Shell (SSH) is
widely used due to its security and versatility. It allows you to not only run shell
commands on a remote host but also copy files from one machine to another using
cryptographic encryption and key-based authentication.

In this recipe, we will learn how to copy the application binary to the emulated ARM
system using secure copy, connect to it using SSH, and run the executable in SSH.

Getting ready
We will use the Raspberry Pi emulator we set up in the Working with emulators recipe as our
target system. Also, we need our Ubuntu build system and the executable hello file we
built in the Cross-compilation recipe.

Setting Up the Environment Chapter 2

[44]

How to do it...
We are going to access our target system via the network. QEMU provides a virtual
network interface for the emulated machine, and we can use it without connecting to a real
network. In order to do so, we need to figure out an IP address to use and make sure that
the SSH server is running in our virtual environment:

In your native operating system environment, work out the IP address of your machine.
Open a Terminal window or PowerShell. Run ifconfig on macOS, or Linux, or ipconfig
for Windows, and check its output.

In the next steps, we will use 192.168.1.5 as a template IP address; you will need to
replace it with your actual IP address.

Switch to the Raspberry Pi emulator and enable SSH services by running the1.
following command:

$ sudo systemctl start ssh

Switch to the Ubuntu window and install the SSH client:2.

apt install -y ssh

Now, we can copy the hello executable to the target system:3.

scp -P22023 /mnt/hello pi@192.168.1.5:~

When asked for a password, type raspberry. Switch back to the Raspberry Pi4.
emulator window. Check that the executable we just copied is there:

$ ls hello
hello

Now, run the program:5.

$./hello

 As we can see, the program is now running as expected.

Setting Up the Environment Chapter 2

[45]

How it works...
In this recipe, we set up a data exchange between two virtual environments—Docker and
QEMU—using SSH. To do this, we need an SSH server to be running and accepting
connections on the target system (QEMU), and an SSH client initiating connections on the
build system.

In step 2, we set up the SSH client on our build system. Our target system, running in
QEMU, already had an SSH server up and running. During the Working with emulators
recipe, we configured QEMU to forward connections from our host port, 22023, to our
virtual machine port, 22, which is SSH.

Now, we can use scp to copy a file from the build system to the target system using a
secure network connection. We can specify our system IP address (discovered in step 1)
and port 22023, configured for QEMU forwarding, as parameters for scp to connect to:

After we have copied the file, we can log in to the target system with SSH using the same IP
address, port, and username as we used for scp. It opens a login prompt similar to the local
console and, after authorization, we get the same command shell as the local terminal.

The hello application we copied in the previous step should be available in the home
directory. We checked this in step 5 by running the ls command.

Setting Up the Environment Chapter 2

[46]

Finally, we can run the application:

 When we tried to run it on our build system, we received an error. Now, the output is
Hello, world!. This is what we would expect, since our application is built for the ARM
platform and being run on the ARM platform.

There's more...
Although we ran the recipe to connect to the emulated system, the same steps are
applicable for real embedded systems. Even if a target system does not have a display, you
can set up SSH using the serial console connection.

Setting Up the Environment Chapter 2

[47]

In this recipe, we only copied files to our target system. Besides copying, it is a common
practice to open an interactive SSH session to the embedded system. Usually, it is more
efficient and convenient to use than a serial console. It is established in a similar way
to scp:

ssh pi@192.168.1.5 -p22023

SSH provides various authentication mechanisms. Once you enable and set up public key
authentication, there is no need to type in your password for every copy or login. This
makes the development process faster and more convenient for developers.

To learn more about ss keys, go to https:/ /www.ssh. com/ ssh/ key/ .

Debugging embedded applications
Debugging embedded applications depends significantly on the type of the target
embedded systems. Microcontroller manufacturers often provide specialized debuggers for
their microcontroller units (MCUs) as well as hardware support for remote debugging
using a Joint Test Action Group (JTAG) protocol. It allows developers to debug the
microcontroller code immediately after the MCU starts executing instructions.

If the target board runs Linux, the most practical method of debugging is to use an
extensive debug output and to use GDB as an interactive debugger.

In this recipe, we will learn how to run our application in a command-line debugger: GDB.

Getting ready
We have already learned how to transfer executable files to the target system. We will use
the Connecting to the embedded system recipe as a starting point to learn how to use a
debugger on the target system.

https://www.ssh.com/ssh/key/
https://www.ssh.com/ssh/key/
https://www.ssh.com/ssh/key/
https://www.ssh.com/ssh/key/
https://www.ssh.com/ssh/key/
https://www.ssh.com/ssh/key/
https://www.ssh.com/ssh/key/
https://www.ssh.com/ssh/key/
https://www.ssh.com/ssh/key/
https://www.ssh.com/ssh/key/
https://www.ssh.com/ssh/key/
https://www.ssh.com/ssh/key/
https://www.ssh.com/ssh/key/
https://www.ssh.com/ssh/key/

Setting Up the Environment Chapter 2

[48]

How to do it...
We have learned how to copy an application to the target system and run it there. Now,
let's learn how to start debugging an application on a target system using GDB. In this
recipe, we will only learn how to invoke the debugger and run applications in the debugger
environment. It will be used as a foundation for more advanced and practical debugging
techniques later:

Switch to the QEMU window.1.
If you have not done so already, log in using pi as the username and raspberry2.
as the password.
Run the following command:3.

$ gdb ./hello

This will open the gdb command line.4.
Type run to run the application:5.

(gdb) run

You should see Hello, world in the output.5.
Now, run the quit command, or just q:6.

(gdb) q

This terminates the debugging session and returns us back to the Linux shell.

How it works...
The Raspberry Pi image we use for emulation comes with a pre-installed GNU debugger,
so we can use it right away.

In the home user directory, we should find the hello executable file, which we copied from
our build system as part of the Connecting to the embedded system recipe.

We run gdb, passing the path to the hello executable as a parameter. This command opens
the gdb shell but does not run the application itself. To run it, we type in the run command:

Setting Up the Environment Chapter 2

[49]

The application runs, printing the Hello world! message on the screen, and then
terminates. However, we are still in the debugger. To exit the debugger, we type the quit
command:

Setting Up the Environment Chapter 2

[50]

You can see that the command-line prompt has changed. It is an indication that we are not
in the gdb environment anymore. We have returned to the default shell environment of
Raspberry Pi Linux, which we were using before running GDB.

There's more...
A GNU debugger is pre-installed in this case, but it may not be in your real target system. If
it is Debian-based, you can install it by running the following command:

apt install gdb gdb-multiarch

In other Linux-based systems, different commands to install GDB are required. In many
cases, you will need to build it from source code and install it manually, similarly to the
hello application we have built and tested as part of the recipes in this chapter.

In this recipe, we only learned how to run an application using GDB, which is a complex
tool with lots of commands, techniques, and best practices. We will discuss some of them in
the Chapter 5, Debugging, Logging, and Profiling.

Using gdbserver for remote debugging
As we have discussed, the environment for embedded development usually involves two
systems—a build system and a target system (or emulator). Sometimes, interactive
debugging on the target system is impractical because of the high latency of remote
communication.

In such situations, developers can use remote debugging support provided by GDB. In this
setup, an embedded application is launched on the target system using gdbserver.
Developers run GDB on a build system and connect to gdbserver over the network.

In this recipe, we will learn how to start debugging an application using GDB and
gdbserver.

Getting ready
In the Connecting to the embedded system recipe, we learned how to make our application
available on the target system. We will use that recipe as a starting point to learn a remote
debugging technique.

Setting Up the Environment Chapter 2

[51]

How to do it...
We are going to install and run the gdbserver application, which will allow us to run GDB
on our build system and forward all commands to the target system. Switch to the
Raspberry Pi emulator window.

Log in as pi using the raspberry password, unless you're already logged in.1.
To install gdbserver, run the following command:2.

 # sudo apt-get install gdbserver

Run the hello application under gdbserver:3.

 $ gdbserver 0.0.0.0:9090 ./hello

Switch to the build system terminal and change the directory to /mnt/hello:4.

 # cd /mnt/hello

Install the gdb-multiarch package, which provides the necessary support for5.
the ARM platform:

 # apt install -y gdb-multiarch

Next, run gdb:6.

 # gdb-multiarch -q ./hello

Configure the remote connection by typing the following command in the gdb7.
command line (make sure you replace 192.168.1.5 with your actual IP
address):

 target remote 192.168.1.5:9090

Type the following command:8.

 continue

 The program will now run.

Setting Up the Environment Chapter 2

[52]

How it works...
In the Raspberry Pi image we used, gdbserver is not installed by default. So, as a first step,
we install gdbserver:

After the installation is complete, we run gdbserver, passing the name of the application
that needs to be debugged, the IP address, and the port to listen out for incoming
connections as its parameters. We use 0.0.0.0 as the IP address to indicate that we want
to accept connections on any IP address:

Then, we switch to our build system and run gdb there. But, instead of running the
application in GDB directly, we instruct gdb to initiate a connection to a remote host using
the IP address and port provided:

Setting Up the Environment Chapter 2

[53]

After that, all the commands you type at the gdb prompt will be transferred to gdbserver
and executed there. When we run the application, we will see the resulting output in the
gdb console of the build system, even if we run the ARM executable:

An explanation is simple—the binary runs on a remote ARM system: our Raspberry Pi
emulator. This is a convenient way of debugging applications on a target platform,
allowing you to remain in the more comfortable environment of your build system.

There's more...
Make sure that the versions of GDB and gdbserver that you are using match, otherwise
there can be issues with communication between them.

Setting Up the Environment Chapter 2

[54]

Using CMake as a build system
In the previous recipes, we learned how to compile a program that consists of one C++ file.
Real applications, however, usually have a more complex structure. They can contain
multiple source files, depend on other libraries, and be split into independent projects.

We need a way to conveniently define build rules for any type of application. CMake is one
of the most well-known and widely used tools that allow developers to define high-level
rules and translate them into a lower-level build system, such as a Unix make.

In this recipe, we will learn how to set up CMake and create a simple project definition for
our Hello, world! application.

Getting ready
As discussed earlier, a common embedded development workflow includes two
environments: a build system and a target system. CMake is part of the build system. We
are going to use the Ubuntu build system, created as a result of the Setting up the build
system in a Docker container recipe, as a starting point.

How to do it...
Our build system does not have CMake installed yet. To install it, run the1.
following command:

 # apt install -y cmake

Switch back to your native operating system environment.2.
In the ~/test directory, create a subdirectory, hello. Use your favorite text3.
editor to create a file, called CMakeLists.txt, in the hello subdirectory.
Enter the following lines:4.

cmake_minimum_required(VERSION 3.5.1)
project(hello)
add_executable(hello hello.cpp)

Save the file and switch to the Ubuntu console.5.
Switch to the hello directory:6.

cd /mnt/hello

Setting Up the Environment Chapter 2

[55]

Run CMake:7.

 # mkdir build && cd build && cmake ..

Now, build the application by running the following:8.

make

Get information about the resulting executable binary using the file command:9.

file hello

 As you can see, the build is native to the x86 platform. We need to add cross-9.
compilation support. Switch back to the text editor, open CMakeLists.txt, and
add the following lines:

set(CMAKE_C_COMPILER /usr/bin/arm-linux-gnueabi-gcc)
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)

Save it and switch to the Ubuntu terminal.10.
Run the cmake command again to re-generate the build files:11.

cmake ..

Build the code by running make:12.

make

Check the type of the resulting output file again:13.

file hello

Now, we have an executable file built for our target system using CMake.

How it works...
First, we install CMake to our build system. Once the installation is complete, we switch to
the native environment to create CMakeLists.txt. This file contains high-level build
instructions about the project's composition and properties.

Setting Up the Environment Chapter 2

[56]

We name our project hello, which creates an executable, called hello, from a source file
named hello.cpp. Additionally, we specify the minimal version of CMake required to
build our application.

After we have created the project definition, we can switch back to the build system shell
and generate low-level build instructions by running make.

It is common practice to create a dedicated build directory to keep all our build artifacts. By
doing this, the object files generated by a compiler or files generated by CMake do not
pollute the source code directories.

In a single command line, we create a build directory, change to the newly-created
directory, and run CMake.

We pass the parent directory as a parameter to let CMake know where to look for
CMakeListst.txt:

Setting Up the Environment Chapter 2

[57]

By default, CMake generates the Makefile files for the traditional Unix make utility. We
run make to actually build the application:

Setting Up the Environment Chapter 2

[58]

It works, but results in an executable binary built for the x86 platform, while our target
system is ARM:

To solve this, we add several options to our CMakeLists.txt file to configure cross-
compilation. Repeating the build steps again, we get a new hello binary, now for the ARM
platform:

Setting Up the Environment Chapter 2

[59]

As we can see in the output of the file command, we have built the executable file for the
ARM platform, not x86, which we used as a build platform. This means that this program
will not run on the build machine, but can be successfully copied to our target platform and
run there.

There's more...
The best way to configure cross-compilation for CMake is by using the so-called toolchain
files. Toolchain files define all the settings and parameters of the build rules specific to the
particular target platform, such as a compiler prefix, compilation flags, and the location of
the libraries pre-built on the target platform. An application can be rebuilt for different
target platforms by using different toolchain files. See the CMake toolchains documentation
at https://cmake. org/ cmake/ help/ v3. 6/ manual/ cmake- toolchains. 7.html for more
details.

https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/v3.6/manual/cmake-toolchains.7.html

3
Working with Different

Architectures
The developers of desktop applications usually pay little attention to the hardware
architecture. First, they often use high-level programming languages that hide these
complexities at the cost of performance. Second, in most cases, their code runs on the x86
architecture, and they often take its features for granted. For example, they may assume
that the size of int is 32 bits, but that is not true in many cases.

Embedded developers deal with a much wider variety of architectures. Even if they do not
write code in an assembly language that's native to the target platform, they should be
aware that all C and C++ fundamental types are architecture-dependent; the standard only
guarantees that int is at least 16-bit. They should also know the traits of particular
architectures, such as endianness and alignment, and take into account that operations that
are performed with the floating-point or 64-bit numbers, which are relatively cheap on the
x86 architecture, can be much more expensive on other architectures.

Since they aim to achieve maximal possible performance from embedded hardware, they
should understand how to organize data in memory to get the most efficient use out of the
CPU cache and operating system paging mechanisms.

In this chapter, we will cover the following topics:

Exploring fixed-width integer types
Working with the size_t type
Detecting the endianness of the platform
Converting the endianness
Working with data alignment
Working with packed structures
Aligning data with cache lines

Working with Different Architectures Chapter 3

[61]

By looking at these topics, we will learn how to tailor our code to target platforms to
achieve maximum performance and portability.

Exploring fixed-width integer types
C and C++ developers often forget that the size of fundamental data types such as char,
short, and int are architecture-dependent. At the same time, most of the hardware
peripherals define specific requirements regarding the size of the fields that are used for
data exchanges. To make the code working with the external hardware or communication
protocols portable, embedded developers use fixed-size integer types, which explicitly
specify the size of a data field.

Some of the most commonly used data types are as follows:

Width Signed Unsigned
8-bit int8_t uint8_t

16-bit int16_t uint16_t

32-bit int32_t uint32_t

The pointer size also depends on the architecture. Developers often need to address the
elements of arrays, and since arrays are internally represented as pointers, the offset
representation depends on the pointer's size. size_t is a special data type as it represents
the offset and data sizes in an architecture-independent way.

In this recipe, we will learn how to use fixed-size data types in our code to make it portable
across architectures. This way, we can make our application work with other target
platforms faster and with fewer code modifications.

How to do it...
We are going to create an application that emulates data exchange with a peripheral device.
Follow these steps to do so:

In your working directory, that is, ~/test, create a subdirectory1.
called fixed_types.

Working with Different Architectures Chapter 3

[62]

Use your favorite text editor to create a file called fixed_types.cpp in the2.
fixed_types subdirectory. Copy the following code snippet into
the fixed_types.cpp file:

#include <iostream>
void SendDataToDevice(void* buffer, uint32_t size) {
 // This is a stub function to send data pointer by
 // buffer.
 std::cout << "Sending data chunk of size " << size << std::endl;
}

int main() {
 char buffer[] = "Hello, world!";
 uint32_t size = sizeof(buffer);
 SendDataToDevice(&size, sizeof(size));
 SendDataToDevice(buffer, size);
 return 0;
}

Create a file called CMakeLists.txt in the loop subdirectory with the following3.
content:

cmake_minimum_required(VERSION 3.5.1)
project(fixed_types)
add_executable(fixed_types fixed_types.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

Build the application and copy the resulting executable binary to4.
the target system. Use the recipes from Chapter 2, Setting Up the Environment, to
do so.
Switch to the target system's Terminal. Log in using your user credentials, if5.
needed.
Run the binary to see how it works.6.

Working with Different Architectures Chapter 3

[63]

How it works...
When you run the binary, you will see the following output:

In this simple program, we're simulating communication with an external device. Since we
don't have a real device, the SendDataToDevice function just prints the size of the data it
is supposed to send to the target device.

Suppose the device can operate on chunks of data of a variable size. Each chunk of data is
prepended by its size and encoded as a 32-bit unsigned integer. This can be described as
follows:

Size Payload
0-4 bytes 5 - N bytes, where N is Size

In our code, we declare size as uint32_t:

 uint32_t size = sizeof(buffer);

This means that it will take 32 bits exactly on every platform – 16-, 32-, or 64-bit.

Now, we will send the size to the device:

 SendDataToDevice(&size, sizeof(size));

SendDataToDevice doesn't send the actual data; instead, it reports the size of the data to
be sent. As we can see, the size is 4 bytes, as expected:

 Sending data chunk of size 4

Suppose that we declare the int data type, as follows:

 int size = sizeof(buffer);

In this case, this code can only work on 32- and 64-bit systems, and silently produce
incorrect results on 16-bit systems, since sizeof(int) is 16 here.

Working with Different Architectures Chapter 3

[64]

There's more...
The code we implemented in this recipe is not fully portable since it doesn't take the order
of bytes in a 32-bit word into account. This order is called endianness, and its implications
will be discussed later in this chapter.

Working with the size_t type
The pointer size also depends on the architecture. Developers often need to address the
elements of arrays, and, since arrays are internally represented as pointers, the offset
representation depends on the pointer's size.

For example, in a 32-bit system, pointers are 32-bit, the same as int. However, in a 64-bit
system, the size of int is still 32-bit, while pointers are 64-bit.

size_t is a special data type since it represents offset and data sizes in an architecture-
independent way.

In this recipe, we will learn how to use size_t when working with arrays.

How to do it...
We will create an application that handles a data buffer of a variable size. We need an
ability to access any address of memory provided by a target platform if needed. Follow
these steps to do so:

In your working directory, that is, ~/test, create a subdirectory called sizet.1.
Use your favorite text editor to create a file called sizet.cpp in2.
the sizet subdirectory. Copy the following code snippet into
the sizet.cpp file:

#include <iostream>
void StoreData(const char* buffer, size_t size) {
 std::cout << "Store " << size << " bytes of data" << std::endl;
}

int main() {
 char data[] = "Hello,\x1b\a\x03world!";
 const char *buffer = data;
 std::cout << "Size of buffer pointer is " << sizeof(buffer) <<
std::endl;

Working with Different Architectures Chapter 3

[65]

 std::cout << "Size of int is " << sizeof(int) << std::endl;
 std::cout << "Size of size_t is " << sizeof(size_t) << std::endl;
 StoreData(data, sizeof(data));
 return 0;
}

Create a file called CMakeLists.txt in the loop subdirectory with the following3.
content:

cmake_minimum_required(VERSION 3.5.1)
project(sizet)
add_executable(sizet sizet.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

Build the application and copy the resulting executable binary to4.
the target system. Use the recipes from Chapter 2, Setting Up the Environment, to
do so.
Switch to the target system's Terminal. Log in using your user credentials if5.
needed.
Run the sizet application executable file.6.

How it works...
In this example, we're emulating a function that stores arbitrary data in a file or a
database. The function accepts a pointer to the data and data size. But what type should we
use to represent the size? If we use an unsigned int in a 64-bit system, we're artificially
limiting the capability of our function to handle only up to 4 GB of data.

To avoid such limitations, we use size_t as a data type for size:

void StoreData(const char* buffer, size_t size) {

Most standard library APIs that accept indices and sizes also deal with size_t parameters.
For example, the memcpy C function, which copies a chunk of data from the source buffer to
the destination buffer, is declared as follows:

void *memset(void *b, int c, size_t len);

Working with Different Architectures Chapter 3

[66]

Running the preceding code produces the following output:

As we can see, the size of the pointer on the target system is 64-bit, despite the size of int
being 32-bit. Using size_t in our program allows it to use all the memory of the
embedded board.

There's more...
The C++ standard defines an std::size_t type. It is identical to the plain C size_t,
except it is defined in the std namespace. Usage of std::size_t is preferable in your C++
code since it is part of the standard, but both std::size_t and size_t are
interchangeable.

Detecting the endianness of the platform
Endianness defines the order in which bytes that represent large numerical values are
stored in memory.

There are two types of endianness:

Big-endian: The most significant byte is stored first. A 32-bit
value, 0x01020304, is stored at the ptr address, as follows:

Offset in memory (byte) Value
ptr 0x01
ptr + 1 0x02
ptr + 2 ox03
ptr + 3 0x04

Examples of big-endian architectures include AVR32 and Motorola 68000.

Working with Different Architectures Chapter 3

[67]

Little-endian: The least significant byte is stored first. A 32-bit value, 0x01020304,
is stored at the ptr address, as follows:

Offset in memory (byte) Value
ptr 0x04
ptr + 1 0x03
ptr + 2 0x02
ptr + 3 0x01

The x86 architecture is little-endian.

Taking care of endianness is especially essential when exchanging data with other systems.
If a developer sends a 32-bit integer, say, 0x01020304, as it is, it may be read as 0x04030201
if the endianness of the receiver does not match the endianness of the sender. That is why
data should be serialized.

In this recipe, we will learn how to determine the endianness of our target system.

How to do it...
We will create a simple program that can detect the endianness of the target platform.
Follow these steps to do so:

In your working directory, that is, ~/test, create a subdirectory1.
called endianness.
Use your favorite text editor to create a file called loop.cpp in the loop2.
subdirectory. Copy the following code snippet into the endianness.cpp file:

#include <iostream>

int main() {
 union {
 uint32_t i;
 uint8_t c[4];
 } data;
 data.i = 0x01020304;
 if (data.c[0] == 0x01) {
 std::cout << "Big-endian" << std::endl;
 } else {
 std::cout << "Little-endian" << std::endl;
 }
}

Working with Different Architectures Chapter 3

[68]

Create a file called CMakeLists.txt in the loop subdirectory with the following3.
content:

cmake_minimum_required(VERSION 3.5.1)
project(endianness)
add_executable(endianness endianness.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

Build the application and copy the resulting executable binary to the target4.
system. Use the recipes from Chapter 2, Setting Up the Environment, to do so.
Switch to the target system's Terminal. Log in using your user credentials, if5.
needed.
Run the binary. 6.

How it works...
In this recipe, we utilized the capability of C's union function to map the representation of
different data types to the same memory space.

We define a union with two data fields – an array of 8-bit integers and a single 32-bit
integer. These data fields share the same memory, so changes that are made in one field are
automatically reflected in another field:

 union {
 uint32_t i;
 uint8_t c[4];
 } data

Next, we assign the 32-bit integer field a specially crafted value, where each byte is known
in advance and different from any of the others. We used bytes with values of one, two,
three, and four to compose the target value.

When the value is assigned to the 32-bit field, i, it automatically rewrites all the fields into
the c byte array field. Now, we can read the first element of the array, and, depending on
what we read, we can infer the endianness of the hardware platform.

Working with Different Architectures Chapter 3

[69]

If the value is one, this means that the first byte contains the most significant byte, and
hence the architecture is big-endian. Otherwise, it is little-endian. When we run the binary,
it produces the following output:

As we can see, the program detected our system as little-endian. This technique can be used
to detect the endianness in our runtime and adjust the application logic accordingly.

There's more...
Nowadays, most widespread platforms, such as x86 and Acorn RISC Machine (ARM), are
little-endian. However, your code should never assume the endianness of the system
implicitly.

If you need to exchange data between applications running on the same system, it is safe to
stick with the target platform's endianness. However, if your application needs to exchange
data with other systems, either via network protocols or common data storage, consider
converting your binary data into the common endianness.

Text-based data formats do not have issues with endianness. Use JSON format for
platform-independent and human-readable representations of your data.

Note: Converting from a binary representation and back can be costly for
your target embedded platform.

Converting the endianness
While serialization libraries deal with the endianness under the hood, there are situations
where developers might want to implement a lightweight communication protocol
themselves.

While the C++ Standard Library does not provide functions for serialization, developers
may utilize the fact that, in binary network protocols, byte order is defined and is always
big-endian.

Working with Different Architectures Chapter 3

[70]

The Standard Library provides a set of functions that can be used for conversion between
the current platform (hardware) and big-endian (network) byte orders:

uint32_t htonl (uint32_t value): Converts uint32_t from hardware to
network order
uint32_t ntohl (uint32_t value): Converts uint32_t from network to
hardware order
uint16_t htons (uint16_t value): Converts uint16_t from hardware to
network order
uint16_t ntohl (uint16_t value): Converts uint16_t from network to
hardware order

Developers can use these functions to exchange binary data between applications running
on different platforms.

In this recipe, we will learn how to encode strings so that they can be exchanged between
two systems that may have the same or different endianness.

How to do it...
In this recipe, we are going to create two applications: a sender and a receiver. The sender
will write data for the receiver, thus encoding them in a platform-independent way. Follow
these steps to do so:

In your working directory, that is, ~/test, create a subdirectory called enconv.1.
Use your favorite text editor to create and edit a file called sender.cpp in the2.
enconv subdirectory. Include the required header files, as follows:

#include <stdexcept>
#include <arpa/inet.h>
#include <fcntl.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>

Then, define a function that writes data to the file descriptor:3.

void WriteData(int fd, const void* ptr, size_t size) {
 size_t offset =0;
 while (size) {
 const char *buffer = (const char*)ptr + offset;
 int written = write(fd, buffer, size);
 if (written < 0) {

Working with Different Architectures Chapter 3

[71]

 throw std::runtime_error("Can not write to file");
 }
 offset += written;
 size -= written;
 }
 }

Now, we need to define a function that formats and writes messages, along with4.
the main function that invokes it:

void WriteMessage(int fd, const char* str) {
 uint32_t size = strlen(str);
 uint32_t encoded_size = htonl(size);
 WriteData(fd, &encoded_size, sizeof(encoded_size));
 WriteData(fd, str, size);
}

int main(int argc, char** argv) {
 int fd = open("envconv.data",
 O_WRONLY|O_APPEND|O_CREAT, 0666);
 for (int i = 1; i < argc; i++) {
 WriteMessage(fd, argv[i]);
 }
}

Similarly, create a file called receiver.cpp with the same set of includes:5.

#include <stdexcept>
#include <arpa/inet.h>
#include <fcntl.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>

Add the following code, which reads data from a file descriptor:6.

void ReadData(int fd, void* ptr, size_t size) {
 size_t offset =0;
 while (size) {
 char *buffer = (char*)ptr + offset;
 int received = read(fd, buffer, size);
 if (received < 0) {
 throw std::runtime_error("Can not read from file");
 } else if (received == 0) {
 throw std::runtime_error("No more data");
 }
 offset += received;
 size -= received;

Working with Different Architectures Chapter 3

[72]

 }
 }

Now, define a function that will read messages, along with the main function7.
that invokes it:

std::string ReadMessage(int fd) {
 uint32_t encoded_size = 0;
 ReadData(fd, &encoded_size, sizeof(encoded_size));
 uint32_t size = ntohl(encoded_size);
 auto data = std::make_unique<char[]>(size);
 ReadData(fd, data.get(), size);
 return std::string(data.get(), size);
}

int main(void) {
 int fd = open("envconv.data", O_RDONLY, 0666);
 while(true) {
 try {
 auto s = ReadMessage(fd);
 std::cout << "Read: " << s << std::endl;
 } catch(const std::runtime_error& e) {
 std::cout << e.what() << std::endl;
 break;
 }
 }
 }

Create a file called CMakeLists.txt in the loop subdirectory with the following8.
content:

cmake_minimum_required(VERSION 3.5.1)
project(conv)
add_executable(sender sender.cpp)
add_executable(receiver receiver.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++14")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

Build the application and copy the two resulting executable binaries, sender and9.
receiver, to the target system. Use the recipes from Chapter 2, Setting Up the
Environment, to do so.
Switch to the target system's Terminal. Log in using your user credentials, if10.
needed.

Working with Different Architectures Chapter 3

[73]

Run the sender binary and pass two command-line arguments: Hello and11.
Worlds. This won't generate any output.
Then, run the receiver.12.
Now, check the content of the file for both the sender and receiver that were13.
used for data exchange. It will be in binary format, so we need to use the xxd tool
to convert it into hexadecimal format:

$ xxd envconv.data
0000000: 0000 0005 4865 6c6c 6f00 0000 0557 6f72Hello....Wor
0000010: 6c64 ld

The file contains two strings, hello and world, prepended by their sizes. The14.
size fields are always stored in big-endian byte order, independent of
the architecture. This allows the sender and the receiver to be run on two
different machines with different endianness.

How it works...
In this recipe, we created two binaries, sender and receiver, that emulate data exchange
between two hosts. We can't make any assumptions regarding their endianness, which is
why the data exchange format has to be unambiguous.

The sender and receiver exchange data blocks of variable size. We encoded each block as a
4-byte integer in order to define the upcoming block size, followed by the block content.

While the sender does not generate any output on the screen, it saves an encoded block of
data in a file. When we run the receiver, it is able to read, decode, and display any
information that was saved by the sender, as shown in the following screenshot:

While we keep the block size in the platform format locally, we need to convert it into a
unified representation when sending it out. We use the htonl function to do so:

 uint32_t encoded_size = htonl(size);

Working with Different Architectures Chapter 3

[74]

At this point, we can write the encoded size to the output stream:

 WriteData(fd, &encoded_size, sizeof(encoded_size));

The block's content is as follows:

 WriteData(fd, str, size);

The receiver, in turn, reads the size from the input stream:

 uint32_t encoded_size = 0;
 ReadData(fd, &encoded_size, sizeof(encoded_size));

The size is encoded and cannot be used directly until the receiver converts it into a platform
representation using the ntohl function:

 uint32_t size = ntohl(encoded_size);

Only after doing this, will it know the size of the block that follows and can allocate and
read it:

 auto data = std::make_unique<char[]>(size);
 ReadData(fd, data.get(), size);

Since the serialized data size is always represented as big-endian, the read function doesn't
need to make assumptions about the endianness of the platform where the data was
written. It can deal with data coming from any processor architecture.

Working with data alignment
Processors read and write data not in bytes, but in memory words – chunks that match
their data address size. 32-bit processors work with 32-bit words, 64-bit processors with 64-
bit words, and so on.

Reads and writes are most efficient when words are aligned – the data address is a multiple
of the word size. For example, for 32-bit architectures, the address 0x00000004 is aligned,
while 0x00000005 is unaligned. On x86 platform, access to unaligned data is slower that to
aligned. On ARM, however, access to unaligned data generates a hardware exception and
lead to program termination:

Compilers align data automatically. When it comes to structures, the result
may be surprising for developers who are not aware of alignment.
struct {
 uint8_t c;
 uint32_t i;

Working with Different Architectures Chapter 3

[75]

} a = {1, 1};

std::cout << sizeof(a) << std::endl;

What is the output of the preceding code snippet? sizeof(uint8_t) is 1,
while sizeof(uint32_t) is 4. A developer may expect the size of the structure to be the
sum of the individual sizes; however, the result highly depends on the target architecture.

For x86, the result is 8. Let's add one more uint8_t field before i:

struct {
 uint8_t c;
 uint8_t cc;
 uint32_t i;
} a = {1, 1};

std::cout << sizeof(a) << std::endl;

The result is still 8! The compiler optimizes the placement of the data fields within a
structure according to the alignment rules by adding padding bytes. The rules are
architecture-dependent, and the result may be different for other architectures. As a result,
structures cannot be exchanged directly between two different systems
without serialization, which will be explained in depth in Chapter 8, Communication and
Serialization.

In this recipe, we will learn how to use the rules that compilers implicitly apply to align
data to write more memory-efficient code.

How to do it...
We will create a program that allocates an array of structures and check how the order of
the fields affects memory consumption. Follow these steps to do so:

In your working directory, that is, ~/test, create a subdirectory1.
called alignment.
Use your favorite text editor to create a file called alignment.cpp in the loop2.
subdirectory. Add the required header and define two data types, that
is, Category and ObjectMetadata1:

#include <iostream>
enum class Category: uint8_t {
 file, directory, socket
};
struct ObjectMetadata1 {

Working with Different Architectures Chapter 3

[76]

 uint8_t access_flags;
 uint32_t size;
 uint32_t owner_id;
 Category category;
};

Now, let's define another data type, called ObjectMetadata2, along with the3.
code that uses all of them:

struct ObjectMetadata2 {
 uint32_t size;
 uint32_t owner_id;
 uint8_t access_flags;
 Category category;
};

int main() {
 ObjectMetadata1 object_pool1[1000];
 ObjectMetadata2 object_pool2[1000];
 std::cout << "Poorly aligned:" << sizeof(object_pool1) <<
std::endl;
 std::cout << "Well aligned:" << sizeof(object_pool2) <<
std::endl;
 return 0;
}

Create a file called CMakeLists.txt in the loop subdirectory with the following4.
content:

cmake_minimum_required(VERSION 3.5.1)
project(alignment)
add_executable(alignment alignment.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

Build the application and copy the resulting executable binary to5.
the target system. Use the recipes from Chapter 2, Setting Up the Environment, to
do so.
Switch to the target system's Terminal. Log in using your user credentials if6.
needed.
Run the binary. 7.

Working with Different Architectures Chapter 3

[77]

How it works...
In our sample application, we defined two data structures, ObjectMetadata1 and
ObjectMetadata2, that will hold some metadata about file objects. We defined four fields
that represent an object:

Access flags: A combination of bits representing a type of file access, such as
read, write, or execute. All bit fields are packed into a single uint8_t field.
Size: Object size as a 32-bit unsigned integer. It limits the supported object size to
4 GB, but it is sufficient for our goal to demonstrate the importance of proper
data alignment.
Owner ID: A 32-bit integer that identifies a user in our system.
Category: The category of the object. This can be a file, a directory, or a socket.
Since we've only defined three categories, the uint8_t data type is sufficient to
represent all of them. This is why we declare them using the enum class:

enum class Category: uint8_t {

Both ObjectMetadata1 and ObjectMetadata2 contain exactly the same fields; the only
difference is how they are ordered within their structures.

Now, we declare two pools of objects. Both pools contain 1,000 objects; object_pool1
holds metadata in ObjectMetadata1 structures, while object_pool2 uses
ObjectMetadata2 structures. Now, let's check the output of the application:

Both object pools are identical in terms of functionality and performance. However, if we
check how much memory they occupy, we can see a significant difference: object_pool1
is 4 KB larger than object_pool2. Given the size of object_pool2 is 12 KB, we wasted
33% of memory by not paying attention to data alignment. Be aware of alignment and
padding when working on your data structures, as improper field ordering may lead to
inefficient memory usage, as in the case of object_pool2. Use these simple rules to
organize your data fields in order to keep them properly aligned:

Group them by their size.
Order the groups from largest to smallest data types.

Working with Different Architectures Chapter 3

[78]

Well-aligned data structures are fast, memory-efficient, and do not require any additional
code to be implemented.

There's more...
Each hardware platform has its own alignment requirements, and some of them are tricky.
You might need to consult the target platform compiler documentation and best practices
to get the most out of the hardware. If your target platform is ARM, consider reading the
ARM technical article at http:/ / infocenter. arm. com/ help/ index. jsp? topic= /com. arm.
doc.faqs/ka15414. html on alignment expectations.

While the proper alignment of data fields within a structure can result in a more compact
data representation, be aware of performance implications. Keeping data that's used
together in the same memory region is called data locality and may significantly improve
data access performance. Data elements that fit into the same cache line can be read or
written much faster than elements that span the cache line boundaries. In many cases, it is
preferable to get a performance gain at the cost of additional memory use. We will review
this technique in more detail in the Aligning data with cache lines recipe.

Working with packed structures
In this recipe, we will learn how to define structures that do not have any padding bytes
between their data members. This may significantly reduce the amount of memory that's
used by your application if it works with a large number of objects.

Note, though, that this has a cost. Unaligned memory access is slower, which results in sub-
optimal performance. For some architectures, unaligned access is forbidden, thus requiring
the C++ compiler to generate much more code to access the data fields than for aligned
access.

Although packing your structs may result in more efficient memory usage, avoid using this
technique unless it's really necessary. It has too many implied limitations that may lead to
obscure, hard-to-find issues in your application later.

Consider packed structures as transport encoding and only use them to store, load, or
exchange data outside of your application. But, even in these cases, using a proper data
serialize is a better solution.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html

Working with Different Architectures Chapter 3

[79]

How to do it...
In this simple application, we will define an array of packed structures and see how this
affects the amount of memory it requires. Follow these steps to do so:

In your working directory, that is, ~/test, create a copy of1.
the alignment subdirectory. Name it packed_alignment.
Modify the alignment.cpp file by adding __attribute__((packed)) to the2.
definition of each structure:

struct ObjectMetadata1 {
 uint8_t access_flags;
 uint32_t size;
 uint32_t owner_id;
 Category category;
} __attribute__((packed));

struct ObjectMetadata2 {
 uint32_t size;
 uint32_t owner_id;
 uint8_t access_flags;
 Category category;
} __attribute__((packed));

Build the application and copy the resulting executable binary to3.
the target system. Use the recipes from Chapter 2, Setting Up the Environment, to
do so.
Switch to the target system's Terminal. Log in using your user credentials, if4.
needed.
Run the binary. 5.

How it works...
In this recipe, we modified the code from the Working with data alignment recipe by adding a
packed attribute to each struct:

} __attribute__((packed));

This attribute instructs the compiler to not add padding bytes to the structs in order to
conform to the alignment requirements of the target platform.

Working with Different Architectures Chapter 3

[80]

Running the preceding code gives us the following output:

If the compiler does not add padding bytes, the order of the data fields becomes
insignificant. Given that the ObjectMetadata1 and ObjectMetadata2 structs have
exactly the same data fields, their size in packed form becomes identical.

There's more...
The GNU Compiler Collection (GCC) gives developers lots of control over data layout
using its attributes. You can find out about all of the supported attributes and their
meaning by going to the GCC Type Attributes page.

Other compilers provide similar functionality, but their APIs might differ. For example,
Microsoft compilers define the #pragma pack compiler directive to declare packed
structures. More details can be found on the Pragma Pack Reference page.

Aligning data with cache lines
In this recipe, we will learn how to align data structures with cache lines. Data alignment
can significantly affect the performance of your system, especially in the case of a
multithreaded application that works in a multicore system.

Firstly, frequently accessing data that's used together is much faster if they live in the same
cache line. If you program accesses variable A and then variable B consistently, a processor
has to invalidate and reload its cache every time, if they are not in the same line.

Secondly, you don't want to keep data that's used independently by different threads in the
same cache line. If the same cache line is modified by different CPU cores, this requires
cache synchronization, which affects the overall performance of a multithreaded
application that uses shared data, since in this scenario memory access time significantly
increases.

https://gcc.gnu.org/onlinedocs/gcc-9.1.0/gcc/Type-Attributes.html#Type-Attributes
https://docs.microsoft.com/en-us/cpp/preprocessor/pack?view=vs-2019

Working with Different Architectures Chapter 3

[81]

How to do it...
We are going to create an application that allocates four buffers using four different
methods to learn how to align statically and dynamically allocated memory. Follow these
steps to do so:

In your working directory, that is, ~/test, create a subdirectory1.
called cache_align.
Use your favorite text editor to create a file called cache_align.cpp in the2.
cache_align subdirectory. Copy the following code snippet into
the cache_align.cpp file to define the necessary constants and a function that
detects the alignment:

#include <stdlib.h>
#include <stdio.h>

constexpr int kAlignSize = 128;
constexpr int kAllocBytes = 128;

constexpr int overlap(void* ptr) {
 size_t addr = (size_t)ptr;
 return addr & (kAlignSize - 1);
 }

Now, define several buffers that are allocated in different ways:3.

int main() {
 char static_buffer[kAllocBytes];
 char* dynamic_buffer = new char[kAllocBytes];

 alignas(kAlignSize) char aligned_static_buffer[kAllocBytes];
 char* aligned_dynamic_buffer = nullptr;
 if (posix_memalign((void**)&aligned_dynamic_buffer,
 kAlignSize, kAllocBytes)) {
 printf("Failed to allocate aligned memory buffer\n");
 }

Add the following code, which uses them:4.

 printf("Static buffer address: %p (%d)\n", static_buffer,
 overlap(static_buffer));
 printf("Dynamic buffer address: %p (%d)\n", dynamic_buffer,
 overlap(dynamic_buffer));
 printf("Aligned static buffer address: %p (%d)\n",
aligned_static_buffer,

Working with Different Architectures Chapter 3

[82]

 overlap(aligned_static_buffer));
 printf("Aligned dynamic buffer address: %p (%d)\n",
aligned_dynamic_buffer,
 overlap(aligned_dynamic_buffer));
 delete[] dynamic_buffer;
 free(aligned_dynamic_buffer);
 return 0;
 }

Create a file called CMakeLists.txt in the loop subdirectory with the following5.
content:

cmake_minimum_required(VERSION 3.5.1)
project(cache_align)
add_executable(cache_align cache_align.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "-std=c++11")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

Build the application and copy the resulting executable binary to6.
the target system. Use the recipes from Chapter 2, Setting Up the Environment, to
do so.
Switch to the target system's Terminal. Log in using your user credentials, if7.
needed.
Run the binary. 8.

How it works...
In the first code snippet, we created two pairs of memory buffers. In each pair, the first
buffer is allocated to the stack, while the second one is allocated to the heap.

The first pair is created using the standard C++ technique. The static buffer on the stack is
declared as an array:

 char static_buffer[kAllocBytes];

To create a dynamic buffer, we use the new C++ keyword:

 char* dynamic_buffer = new char[kAllocBytes];

Working with Different Architectures Chapter 3

[83]

In the second pair, we create memory-aligned buffers. Declaring the static buffer on the
stack is similar to the regular static buffer. We use an additional attribute, alignas, which
was introduced in C++11 as a standardized and platform-independent way to align data in
memory:

 alignas(kAlignSize) char aligned_static_buffer[kAllocBytes];

This attribute requires an alignment size as a parameter. We want to have data aligned by
the cache line boundaries. Depending on the platform, the cache line size may differ. The
most common sizes are 32, 64, and 128 bytes. Using 128 bytes makes our buffer aligned for
any of them.

There is no standard way to do the same for a dynamic buffer. To allocate memory on the
heap, we use a C function called posix_memalign. This is available only in Portable
Operating System Interface (POSIX) systems (mostly Unix-like), but this doesn't require
the support of the C++11 standard:

 if (posix_memalign((void**)&aligned_dynamic_buffer,
 kAlignSize, kAllocBytes)) {

posix_memalign is similar to malloc, but has three parameters instead of one. The second
parameter is an alignment size, the same as it is for the align attribute. The third is the size
of the memory to allocate. The first parameter is used to return a pointer to the allocated
memory. Unlike malloc, posix_memalign may fail not only if it can't allocate memory,
but also if the alignment size passed to the function is not a power of two.
posix_memalign returns an error code as its result value to help developers differentiate
between these two cases.

We define function overlap to calculate an unaligned part of a pointer by masking out all
the aligned bits:

 size_t addr = (size_t)ptr;
 return addr & (kAlignSize - 1);

When we run the application, we can see the difference:

Working with Different Architectures Chapter 3

[84]

The addresses of both buffers in the first pair have unaligned parts, while the addresses of
the second pair are aligned – the unaligned part is zero. As a result, random access to the
elements of the second pair of buffers is faster, because all of them are available in the cache
at the same time.

There's more...
CPU access data alignment is also crucial for efficiently mapping memory through a
hardware address translation mechanism. Modern operating systems operate 4 KB memory
blocks or pages to map a process' virtual address space to physical memory. Aligning data
structures on 4 KB boundaries can lead to performance gains.

The same technique we described in this recipe can be applied to align data to the memory
page boundaries. Note, however, that posix_memalign may require twice as much
memory than what was requested to fulfill this request. This memory overhead
growth may be significant for larger alignment blocks.

4
Handling Interrupts

One of the primary tasks of embedded applications is communicating with external
hardware peripherals. Sending data to peripherals using the output port is easy to
understand. When it comes to reading, though, things become more complicated.

Embedded developers have to know when data is available to be read. Since the peripheral
is external to the processor, this can happen at any moment in time.

In this chapter, we will learn about what interrupts are and how to work with them. While
using an 8-bit microcontroller, 8051, as a target platform, we will learn about the following
topics:

How to implement a basic interrupt handling
How to generate a signal on the output pin of the Microcontroller Unit (MCU)
using interrupts from the timer
How to use interrupts to count events on the external pins of the MCU
How to use interrupts to communicate over the serial channel

We will learn about these topics by completing the following recipes:

Implementing an interrupt service routine
Generating a 5 kHz square signal using 8-bit auto-reload mode
Using Timer 1 as an event counter to count a 1 Hz pulse
Receiving and transmitting data serially

Understanding the core concepts of how to handle interrupts will help you implement
responsive and power-efficient embedded applications.

Before we do this, however, we'll acquire some background knowledge of a few concepts.

Handling Interrupts Chapter 4

[86]

Data polling
The first approach to waiting for data from an external source is called polling. An
application periodically queries the input port of an external device to check if it has new
data. It is easy to implement but has significant downsides.

First, it wastes processor resources. Most poll calls report that data is not available yet and
we need keep waiting. Since these calls do not lead to some data processing, it is waste of
computing resources. Moreover, the polling interval should be short enough that it
responds to an external event quickly. Developers should look for a compromise between
the efficient utilization of processor power and reaction time.

Secondly, it makes the logic of the program convoluted. If the program should poll for
events, for example, every 5 milliseconds, none of its subroutines should take longer than 5
milliseconds. As a result, developers artificially split the code into smaller chunks and
organize complex switching between them to allow polling.

Interrupt service routines
Interrupts are an alternative to polling. Once an external device has new data, it triggers an
event in a processor called an interrupt. As its name suggests, it interrupts the normal
workflow of executing instructions. The processor saves its current state and starts
executing instructions from a different address until it encounters the return from an
interrupt instruction. Then, it reads the saved state to continue executing the instruction
stream from the moment it was interrupted. This alternative sequence of instructions is
called an Interrupt Service Routine (ISR).

Each processor defines its own set of instructions and conventions to work with interrupts;
however, all of them use the same general approach while dealing with interrupts:

Interrupts are identified by numbers, starting with 0. The numbers are mapped
to the hardware interrupt request lines (IRQ) that physically correspond to
specific processor pins.
When an IRQ line is activated, the processor uses its number as an offset in the
interrupt vector array to locate the address of the interrupt service routine. The
interrupt vector array is stored in memory on a fixed address.
Developers can define or redefine ISRs by updating the entries in the interrupt
vector arrays.

Handling Interrupts Chapter 4

[87]

A processor can be programmed to enable or disable interrupts, either for
specific IRQ lines or all interrupts at once. When interrupts are disabled, the
processor does not invoke the corresponding ISRs, although the status of the IRQ
lines can be read.
IRQ lines can be programmed to trigger interrupts, depending on the signal on
the physical pin. This can be at the low level of the signal, the high level of the
signal, or the edge (which is a transition from low to high or high to low).

General considerations for ISRs
This approach does not waste processor resources for polling and provides a very short
reaction time since interrupt processing is performed at the hardware level. However,
developers should be aware of its specifics to avoid critical or hard-to-detect issues in the
future.

First of all, dealing with multiple interrupts at the same time, or responding to the same
interrupt while still handling the previous interrupt, is hard to implement. That is why ISRs
are executed with interrupts disabled. This prevents the ISR from being interrupted with
another interrupt, but it also means that the reaction time for the pending interrupt can be
longer. Worse, this can lead to data or events being lost if interrupts are not re-enabled
quickly.

To avoid such situations, all ISRs are written to be short. They only do a minimal amount of
work to read or acknowledge data from a device. Complex data analysis and processing are
performed outside of the ISR.

8051 microcontroller interrupts
The 8051 microcontroller supports six interrupt sources – reset, two hardware interrupts,
two timer interrupts, and a serial communication interrupt:

Interrupt
number Description Offset in bytes

Reset 0
0 External interrupt INT0 3
1 Timer 0 (TF0) 11
2 External interrupt INT1 19
3 Timer 1 (TF1) 27
4 Serial 36

Handling Interrupts Chapter 4

[88]

The interrupt vector array is located at address 0; each entry except reset is 8 bytes in size.
Though a minimal ISR can fit into 8 bytes, normally, the entries contain code that redirects
execution to the actual ISR located elsewhere.

The reset entry is special. It is activated by the reset signal and immediately jumps to the
address where the main program is located.

8051 defines a special register called Interrupt Enable (EA), which is used to enable and
disable interrupts. Its 8-bits are allocated in the following way:

Bit Name Meaning
0 EX0 External Interrupt 0
1 ET0 Timer 0 Interrupt
2 EX1 External Interrupt 1
3 ET1 Timer 1 Interrupt
4 ES Serial Port Interrupt
5 - Not used
6 - Not used
7 EA Global Interrupt Control

Setting these bits to 1 enables corresponding interrupts, to 0 disables them. The EA bit
enables or disables all interrupts.

Implementing an interrupt service routine
In this recipe, we will learn how to define an interrupt service routine for the 8051
microcontroller.

How to do it...
Follow these steps to complete this recipe:

Switch to the build system we set up in Chapter 2, Setting Up the Environment.1.
Make sure that the 8051 emulator is installed:2.

apt install -y mcu8051ide

Launch mcu8051ide and create a new project called Test.3.

Handling Interrupts Chapter 4

[89]

Create a new file called test.c and put the following code snippet into it. This4.
increments an internal counter for each timer interrupt:

#include<mcs51reg.h>

volatile int Counter = 0;
void timer0_ISR (void) __interrupt(1) /*interrupt no. 1 for Timer0
*/
{

 Counter++;
}

void main(void)
{
 TMOD = 0x03;
 TH0 = 0x0;
 TL0 = 0x0;
 ET0 = 1;
 TR0 = 1;
 EA = 1;
 while (1); /* do nothing */
}

Select Tools | Compile to build the code. The messages window will display the5.
following output:

Starting compiler ...

cd "/home/dev"
sdcc -mmcs51 --iram-size 128 --xram-size 0 --code-size 4096 --
nooverlay --noinduction --verbose --debug -V --std-sdcc89 --model-
small "test.c"
sdcc: Calling preprocessor...
+ /usr/bin/sdcpp -nostdinc -Wall -obj-ext=.rel -D__SDCC_NOOVERLAY -
DSDCC_NOOVERLAY -D__SDCC_MODEL_SMALL -DSDCC_MODEL_SMALL -
D__SDCC_FLOAT_REENT -DSDCC_FLOAT_REENT -D__SDCC=3_4_0 -DSDCC=340 -
D__SDCC_REVISION=8981 -DSDCC_REVISION=8981 -D__SDCC_mcs51 -
DSDCC_mcs51 -D__mcs51 -D__STDC_NO_COMPLEX__ -D__STDC_NO_THREADS__ -
D__STDC_NO_ATOMICS__ -D__STDC_NO_VLA__ -isystem
/usr/bin/../share/sdcc/include/mcs51 -isystem
/usr/share/sdcc/include/mcs51 -isystem
/usr/bin/../share/sdcc/include -isystem /usr/share/sdcc/include
test.c
sdcc: Generating code...
sdcc: Calling assembler...
+ /usr/bin/sdas8051 -plosgffwy test.rel test.asm
sdcc: Calling linker...

Handling Interrupts Chapter 4

[90]

sdcc: Calling linker...
+ /usr/bin/sdld -nf test.lk

Compilation successful

Select the Simulator | Start/Shutdown menu entry to activate a simulator.6.
Select Simulator | Animate to run the program in slow mode.7.
Switch to the C variables panel and scroll down until it shows Counter variable.8.
Observe how it increases over time:9.

As you can see, the Value field for the Counter variable is now 74.

How it works...
For our sample applications, we are going to use an emulator for the 8051 microcontroller.
Several of them are available; however, we will be using MCU8051IDE since it's readily
available in the Ubuntu repository.

We install it as a regular Ubuntu package, as follows:

apt install -y mcu8051ide

Handling Interrupts Chapter 4

[91]

This is a GUI IDE and requires an X Window system to run. If you use Linux or Windows
as your working environment, consider installing and running it directly from https:/ /
sourceforge.net/ projects/ mcu8051ide/ files/ .

The simple program we created defines a global variable called Counter, as shown here:

volatile int Counter = 0;

This is defined as volatile, indicating that it can be changed externally and that a
compiler shouldn't try to optimize the code to eliminate it.

Next, we define a simple function called timer0_ISR:

void timer0_ISR (void) __interrupt(1)

It doesn't accept any parameters and doesn't return any values. The only thing it does is
increment the Counter variable. It is declared with an important attribute
called __interrupt(1) to let the compiler know that it is an interrupt handler and that it
serves the interrupt number 1. The compiler generates code that updates the corresponding
entry of the interrupt vector array automatically.

After defining the ISR itself, we configure the parameters of the timer:

TMOD = 0x03;
TH0 = 0x0;
TL0 = 0x0;

Then, we turn on Timer 0, as shown here:

TR0 = 1;

The following command enables interrupts from Timer 0:

ET0 = 1;

The following code enables all interrupts:

EA = 1;

https://sourceforge.net/projects/mcu8051ide/files/
https://sourceforge.net/projects/mcu8051ide/files/
https://sourceforge.net/projects/mcu8051ide/files/
https://sourceforge.net/projects/mcu8051ide/files/
https://sourceforge.net/projects/mcu8051ide/files/
https://sourceforge.net/projects/mcu8051ide/files/
https://sourceforge.net/projects/mcu8051ide/files/
https://sourceforge.net/projects/mcu8051ide/files/
https://sourceforge.net/projects/mcu8051ide/files/
https://sourceforge.net/projects/mcu8051ide/files/
https://sourceforge.net/projects/mcu8051ide/files/
https://sourceforge.net/projects/mcu8051ide/files/
https://sourceforge.net/projects/mcu8051ide/files/

Handling Interrupts Chapter 4

[92]

At this point, our ISR is being periodically activated by the timer's interrupt. We run an
endless loop that does nothing since all the work is done within ISR:

while (1); // do nothing

When we run the preceding code in the simulator, we will see that the actual value of the
counter variable changes over time, indicating that our ISR is being activated by the timer.

Generating a 5 kHz square signal using 8-bit
auto-reload mode
In the preceding recipe, we learned how to create a simple ISR that only does a counter
increment. Let's make the interrupt routine do something more useful. In this recipe, we
will learn how to program the 8051 microcontroller so that it generates a signal with a given
frequency.

The 8051 microcontroller has two timers – Timer 0 and Timer 1 – both of which are
configured using two special function registers: Timer Mode (TMOD) and Timer Control
(TCON). The timer's values are stored in the TH0 and TL0 timer registers for Timer 0 and
the TH1 and TL1 timer registers for Timer 1.

The TMOD and TCON bits have special meanings. The bits of the TMOD registers are
defined as follows:

Bit Timer Name Purpose
0 0 M0 Timer mode selector – lower bit.
1 0 M1 Timer mode selector – upper bit.
2 0 CT Counter (1) or Timer (0) mode.
3 0 GATE Enable Timer 1, but only if the external interrupt of INT0 is high.
4 1 M0 Timer mode selector – lower bit.
5 1 M1 Timer mode selector – upper bit.
6 1 CT Counter (1) or Timer (0) mode.
7 1 GATE Enable Timer 1, but only if the external interrupt of INT1 is high.

The lower 4 bits are assigned to Timer 0, while the upper 4 bits are assigned to Timer 1.

Handling Interrupts Chapter 4

[93]

The M0 and M1 bits allow us to configure the timers in one of four modes:

Mode M0 M1 Description

0 0 0 13-bit mode. TL0 or TL1 registers contain lower 5 bits, TH0 or TH1
registers contain upper 8 bits of the corresponding timer value.

1 0 1 16-bit mode. TL0 or TL1 registers contain lower 8-bits, TH0 or TH1
registers contain upper 8 bits of the corresponding timer value.

2 1 0 8 bits mode with auto-reload. TL0 or TL1 contains the corresponding
timer value, while TH0 or TL1 contains the reload value.

3 1 1 Special 8 bits mode for Timer 0

The Timer Control (TCON) registers the control's timer interrupts. Its bits are defined as
follows:

Bit Name Purpose
0 IT0 External interrupt 0 control bit.

1 IE0 External interrupt 0 edge flag. Set to 1 when high-to-low edge signal received
at INT0.

2 IT1 External interrupt 1 control bit.

3 IE1 External interrupt 1 edge flag. Set to 1 when high-to-low edge signal received
at INT1.

4 TR0 Run Control for Timer 0. Set to 1 to start, 0 to halt the timer.
5 TF0 Timer 0 overflow. Set to 1 when the timer reaches its maximal value.
6 TR1 Run Control for Timer 1. Set to 1 to start, 0 to halt the timer.
7 TF1 Timer 1 overflow. Set to 1 when the timer reaches its maximal value.

We are going to use the specific mode of 8051 timers called auto-reload. In this mode, the
TL0 (TL1 for Timer 1) register contains the timer value, while TH0 (TH1 for Timer 1)
contains a reload value. Once TL0 reaches the maximum value of 255, it generates the
overflow interrupt and is automatically reset to the reload value.

How to do it...
Follow these steps to complete this recipe:

Launch mce8051ide and create a new project called Test.1.
Create a new file called generator.c and put the following code snippet into it.2.
This will generate a 5 kHz signal on the P0_0 pin of the MCU:

#include<8051.h>

void timer0_ISR (void) __interrupt(1)

Handling Interrupts Chapter 4

[94]

{
 P0_0 = !P0_0;
}

void main(void)
{
 TMOD = 0x02;
 TH0 = 0xa3;
 TL0 = 0x0;
 TR0 = 1;
 EA = 1;
 while (1); // do nothing
}

Select Tools | Compile to build the code.3.
Select the Simulator | Start/Shutdown menu entry to activate a simulator.4.
Select Simulator | Animate to run the program in slow mode.5.

How it works...
The following code defines an ISR for Timer 0:

void timer0_ISR (void) __interrupt(1)

On every timer interrupt, we flip the 0 bit of P0's input-output register. This will efficiently
generate the square wave signal on a P0 output pin.

Now, we need to figure out how to program the timer to generate interrupts with the given
frequency. To generate the 5 kHz signal, we need to flip the bit with the 10 kHz frequency
since each wave consists of one high and one low phase.

The 8051 MCU uses an external oscillator as a clock source. The timer unit divides the
external frequency by 12. For the 11.0592 MHz oscillator, which is commonly used as a time
source for 8051, the timer is activated every 1/11059200*12 = 1.085 milliseconds.

Our timer ISR should be activated with 10 kHz frequency, or every 100 milliseconds, or
after every 100/1.085 = 92 timer ticks.

We programmed Timer 0 to run in mode two, as follows:

TMOD = 0x02;

Handling Interrupts Chapter 4

[95]

In this mode, we store the reset value of the timer in the TH0 register. The ISR is activated
by the timer overflow, which happens after the timer counter reaches the maximum value.
Mode two is an 8-bit mode, meaning the maximum value is 255. To activate the ISR every
92 ticks, the auto-reload value should be 255-92 = 163, or 0xa3 in hexadecimal
representation.

We store the auto-reload value along with the initial timer value in the timer registers:

TH0 = 0xa3;
TL0 = 0x0;

Timer 0 is activated, as shown here:

TR0 = 1;

Then, we enable timer interrupts:

TR0 = 1;

Finally, all the interrupts are activated:

EA = 1;

From now on, our ISR is invoked every 100 microseconds, as shown in the following code:

P0_0 = !P0_0;

This flips the 0 bit of the P0 register, resulting in the 5 kHz square signal being produced on
the corresponding output pin.

Using Timer 1 as an event counter to count
a 1 Hz pulse
8051 timers have dual functionality. When they are activated by the clock oscillator, they
act as timers. However, they can also be activated by the signal pulse on the external pins,
that is, P3.4 (Timer 0) and P3.5 (Timer 1), acting as counters.

In this recipe, we will learn how to program Timer 1 so that it counts the activations of the
P3.5 pin of the 8051 processor.

Handling Interrupts Chapter 4

[96]

How to do it...
Follow these steps to complete this recipe:

Open mcu8051ide.1.
Create a new project called Counters.2.
Create a new file called generator.c and put the following code snippet into it.3.
This increments a counter variable each time a timer interrupt is triggered:

#include<8051.h>

volatile int counter = 0;
void timer1_ISR (void) __interrupt(3)
{
 counter++;
}

void main(void)
{
 TMOD = 0x60;
 TH1 = 254;
 TL1 = 254;
 TR1 = 1;
 ET1 = 1;
 EA = 1;
 while (1); // do nothing
}

Select Tools | Compile to build the code.4.
Open the Virtual HW menu and select the Simple Key... entry. A new window5.
will open.
In the Simple Keypad window, assign PORT 3 and BIT 5 to the first key. Then,6.
click the ON or OFF button to activate it:

Handling Interrupts Chapter 4

[97]

Select the Simulator | Start/Shutdown menu entry to activate the simulator.7.
Select Simulator | Animate to run the program in the animation mode that8.
displays all changes to the special registers in the debugger window.
Switch to the Simple Keypad window and click the first key.9.

How it works...
In this recipe, we utilize the capability of 8051 timers so that they act as counters. We define
an interrupt service routine in exactly the same way as we do for ordinary timers. Since we
use Timer 1 as a counter, we use interrupt line number 3, as follows:

void timer1_ISR (void) __interrupt(3)

The body of the interrupt routine is simple. We only increment the counter variable.

Now, let's ensure the ISR is activated by the external source rather than the clock oscillator.
To do so, we configure Timer 1 by setting the C/T bit of the TMOD special function register to
one:

TMOD = 0x60;

The same line configures Timer 1 to run in Mode 2 – 8-bit mode with auto-reload. Since our
goal is to make the interrupt routine invoked on every external pin activation, we set the
auto-reload and initial values to the maximum value of 254:

TH1 = 254;
TL1 = 254;

Next, we enable Timer 1:

 TR1 = 1;

Then, all the interrupts from Timer 1 are activated, as shown here:

 ET1 = 1;
 EA = 1;

After that, we can enter the endless loop that does nothing since all the work is done in the
Interrupt Service Routine:

 while (1); // do nothing

Handling Interrupts Chapter 4

[98]

At this point, we can run the code in the emulator. However, we need to configure the
external source of events. For this purpose, we utilize one of the virtual external hardware
components supported by MCU8051IDE – the virtual keypad.

We configure one of its keys to activate pin P3.5 of 8051. This pin is used as a source for
Timer 1 when it is used in counting mode.

Now, we run the code. Pressing the virtual key activates the counter. Once the timer value
overflows, our ISR is triggered, incrementing the counter variable.

There's more...
In this recipe, we used Timer 1 as a counter. The same can be applied to Counter 0. In this
case, pin P3.4 should be used as an external source.

Receiving and transmitting data serially
8051 microcontrollers come with a built-in Universal Asynchronous Receiver
Transmitter (UART) port for serial data exchange.

The serial port is controlled by a Special Function Register (SFR) called Serial
Control (SCON). Its bits are defined as follows:

Bit Name Purpose

0 RI (short for Receive
Interrupt) Set by UART when a byte is received completely

1 TI (short for Transmit
Interrupt) Set by UART when a byte is transmitted completely

2 RB8 (short for Receive Bit 8) Stores the ninth bit of the received data in 9-bit mode.

3 TB8 (short for Transmit Bit
8)

Stores the ninth bit of data to be transmitted in 9-bit mode (see
below)

4 REN (short for Receiver
Enabled) Enables (1) or disables (0) the receive operation

5 SM2 (Enable
Multiprocessor)

Enables (1) or disables (0) multiprocessor communication for 9-bit
mode

6 SM1 (Serial Mode, high bit) Defines the serial communication mode
7 SM0 (Serial Mode, low bit) Defines the serial communication mode

Handling Interrupts Chapter 4

[99]

8051 UART supports four m of serial communication modes, all of which are defined by the
SM1 and SM0 bits:

Mode SM0 SM1 Description
0 0 0 Shift-register, fixed baud rate
1 0 1 8-bit UART, baud rate set with Timer 1
2 1 0 9-bit UART, fixed baud rate
3 1 1 9-bit UART, baud rate set with Timer 1

In this recipe, we will learn how to use interrupts to implement a simple data exchange
over a serial port using the 8-bit UART mode with a programmable baud rate (mode 1).

How to do it...
Follow these steps to complete this recipe:

Open mcu8051ide and create a new project.1.
Create a new file called serial.c and copy the following code snippet into it.2.
This code copies the bytes that were received over the serial link to the P0 output
register. This is associated with the general-purpose input/output pins on the
MCU:

#include<8051.h>

void serial_isr() __interrupt(4) {
 if(RI == 1) {
 P0 = SBUF;
 RI = 0;
 }
 }

void main() {
 SCON = 0x50;
 TMOD = 0x20;
 TH1 = 0xFD;
 TR1 = 1;
 ES = 1;
 EA = 1;

 while(1);
 }

Handling Interrupts Chapter 4

[100]

Select Tools | Compile to build the code.3.
Select the Simulator | Start/Shutdown menu entry to activate the simulator.4.

How it works...
We define an ISR for interrupt line 4, which is triggered for serial port events:

void serial_isr() __interrupt(4)

The interrupt routine is invoked as soon as a full byte is received and stored in the Serial
buffer register (SBUF). Our implementation of ISR just copies the received byte to the
input/output port, that is, P0 :

P0 = SBUF;

Then, it resets the RI flag to enable the interrupt for the upcoming byte.

To make the interrupts work as expected, we configure both the serial port and the timer.
First, the serial port is configured, as follows:

SCON = 0x50;

According to the preceding table, this means only the SM1 and REN bits of the Serial
Control Register (SCON) are set to 1, resulting in the selection of communication mode 1.
This is an 8-bit UARS with a baud rate defined via Timer 1. Then, it enables the receiver.

Since the baud rate is defined by Timer 1, the next step is to configure the timer, as follows:

TMOD = 0x20;

The preceding code configures Timer 1 to use mode 2, which is the 8-bit auto-reload mode.

Loading 0xFD into the TH1 register sets the baud rate to 9600 bps. Then, we enable Timer 1,
serial interrupts, and all interrupts.

There's more...
Data transmission can be implemented in a similar way. If you write data to the SBUF
special register, the 8051 UART will start transmission. Once completed, a serial interrupt
will be invoked and the TI flag will be set to 1.

5
Debugging, Logging, and

Profiling
Debugging and profiling is an important part of the development workflow for any type of
application. In the case of an embedded environment, these tasks require special attention
from developers. Embedded applications run on a system that might be very different from
a developer's workstation, and that often has limited resources and user interface
capabilities.

Developers should plan in advance how they are going to debug their application during
the development phase, and how they are going to determine the root causes of, as well as
fix, the issues in the production environment.

Often, the solution is to use an emulator for a target device along with an interactive
debugger that is provided by the embedded system vendor. For more complex systems,
however, complete and accurate emulation is hardly feasible, and remote debugging is the
most viable solution.

In many cases, using an interactive debugger is not possible or not practical at all.
Hardware states can change in a few milliseconds after a program stops on a breakpoint,
and a developer has insufficient time to analyze it. In such cases, developers have to use
extensive logging for root cause analysis.

In this chapter, we will focus on debugging approaches for the more powerful systems
based on SoC (short for System On a Chip) and running Linux OS. We will cover the
following topics:

Running your applications in the GDB (short for GNU Project Debugger)
Working with breakpoints
Working with core dumps

Debugging, Logging, and Profiling Chapter 5

[102]

Using gdbserver for debugging
Adding debug logging
Working with debug and release builds

These basic debugging techniques will help significantly while working with the recipes in
this book as well as in your work on embedded applications of any kind.

Technical requirements
In this chapter, we will learn how to debug embedded applications in the ARM (short
for Acorn RISC Machines) platform emulator. At this point, you should already have two
systems configured in a virtualized Linux environment running on your laptop or desktop:

Ubuntu Linux in a Docker container as a build system
Debian Linux in a QEMU (short for Quick EMUlato) ARM emulator as a target
system

To learn the theory of cross-compilation and set up the development environment, please
refer to the recipes in Chapter 2, Setting Up the Environment.

Running your applications in the GDB
In this recipe, we will learn how to run a sample application in a debugger on a target
system, as well as try out some basic debugging techniques.

GDB is an open source and widely used interactive debugger. Unlike most of the
debuggers that come as part of Integrated Development Environment (IDE) products, the
GDB is a standalone, command-line debugger. This means that it does not depend on any
particular IDE. As you can see in the example, you can use a plain text editor to work on
the code of your application, while still being able to debug it interactively, use breakpoints,
view the content of variables and stack traces, and much more.

The user interface of the GDB is minimalist. You run with it in the same way as you work
with a Linux console— by typing in commands and analyzing their output. This simplicity
makes it extremely suitable for embedded projects. It can run on a system that does not
have a graphical subsystem. It is especially handy if the target system can only be accessed
over a serial connection or ssh shell. Since it does not have a fancy user interface, it can
work on systems with limited resources.

Debugging, Logging, and Profiling Chapter 5

[103]

In this recipe, we will use an artificial sample application that crashes with an exception. It
does not log any useful information and the exception message is too vague to determine
the root cause of the crash. We will use the GDB to determine the root cause of the issue.

How to do it...
We are now going to create a simple application that crashes under specific conditions:

In your working directory, ~/test, create a subdirectory called loop.1.
Use your favorite text editor to create a loop.cpp file in the loop subdirectory.2.
Let's put some code into the loop.cpp file. We start with includes:3.

#include <iostream>
#include <chrono>
#include <thread>
#include <functional>

Now, we define three functions that our program will consist of. The first one is4.
runner:

void runner(std::chrono::milliseconds limit,
 std::function<void(int)> fn,
 int value) {
 auto start = std::chrono::system_clock::now();
 fn(value);
 auto end = std::chrono::system_clock::now();
 std::chrono::milliseconds delta =
 std::chrono::duration_cast<std::chrono::milliseconds>(end -
start);
 if (delta > limit) {
 throw std::runtime_error("Time limit exceeded");
 }
 }

The second function is delay_ms:5.

void delay_ms(int count) {
 for (int i = 0; i < count; i++) {
 std::this_thread::sleep_for(std::chrono::microseconds(1050));
 }
 }

Debugging, Logging, and Profiling Chapter 5

[104]

And finally, we add the entry-point function, main:6.

int main() {
 int max_delay = 10;
 for (int i = 0; i < max_delay; i++) {
 runner(std::chrono::milliseconds(max_delay), delay_ms, i);
 }
 return 0;
 }

Create a file called CMakeLists.txt in the loop subdirectory with the following7.
content:

cmake_minimum_required(VERSION 3.5.1)
project(loop)
add_executable(loop loop.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "-g --std=c++11")

set(CMAKE_C_COMPILER /usr/bin/arm-linux-gnueabi-gcc)
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)

Now, switch to the build system terminal and change the current directory to8.
/mnt/loop by running the following command.

$ cd /mnt/loop

Build the application as follows:9.

$ cmake . && make

Switch back to your native environment, find the loop output file in the loop10.
subdirectory, and copy it over ssh to the target system. Use the user account.
Switch to the target system terminal. Log in using the user credentials if needed.
Now, run the loop executable binary using gdb:

$ gdb ./loop

Debugging, Logging, and Profiling Chapter 5

[105]

The debugger has been started and shows the command-line prompt (gdb). To11.
run the application, type the run command:

(gdb) run

You can see that the application terminated abnormally due to the runtime12.
exception. The exception message, Time limit exceeded, gives us a clue, but
does not indicate under what specific conditions it happened. Let's try to
establish this. Firstly, let's check the stack trace of the crashing application:

(gdb) bt

This shows seven stack frames from the top-level function, main, down to the13.
library function, __GI_abort, which actually terminates the application. As we
can see, only frames 7 and 6 belong to our application, since only they are
defined in loop.cpp. Let's take a close look at frame 6, since this is the function
that throws the exception:

(gdb) frame 6

Run the list command to see the nearby code:14.

(gdb) list

As we can see, the exception is thrown if the value of the delta variable exceeds15.
the value of the limit variable. But what are what are these values?. These are the
values of variable ‘delta’ and ‘limit Run the info locals command to figure this
out:

(gdb) info locals

We cannot see the value of the limit variable here. Use the info args16.
command to see it:

(gdb) info args

Now, we can see that the limit is 10, and the delta 11. The crash happens when17.
the function is called with the fn parameter set to the delay_ms function and the
value of the value parameter set to 7.

Debugging, Logging, and Profiling Chapter 5

[106]

How it works...
The application is intentionally created to crash under certain conditions and does not
provide enough information to be able to nail down to these conditions. The application
consists of two major functions – runner and delay_ms.

The runner function accepts three parameters—the time limit, the function of one
parameter, and the function parameter value. It runs the function provided as a parameter,
passing it the value, and measures the elapsed time. If the time exceeds the time limit, it
throws an exception.

The delay_ms function performs a delay. However, it is implemented incorrectly and
considers each millisecond as consisting of 1,100 microseconds instead of 1,000.

The main function runs the runner in the loop directory, providing fixing values of 10
milliseconds as a time limit and delay_ms as a function to run, but increasing values of the
value parameter. At some point, the delay_ms function exceeds the time limit and the app
crashes.

First, we build the application for the ARM platform and transfer it to the emulator to run:

Debugging, Logging, and Profiling Chapter 5

[107]

It is important to pass the -g parameter to the compiler. This parameter instructs the
compiler to add debug symbols to the resulting binary. We add it to the CMAKE_CXX_FLAGS
parameter in the CMakeLists.txt file, as shown here:

SET(CMAKE_CXX_FLAGS "-g --std=c++11")

Now, we run the debugger and pass the application executable name as its parameter:

Debugging, Logging, and Profiling Chapter 5

[108]

The application does not run immediately. We start it using the run GDB command and
observe it crashing shortly afterward:

Debugging, Logging, and Profiling Chapter 5

[109]

Next, we use the backtrace command to review the stack trace:

Debugging, Logging, and Profiling Chapter 5

[110]

An analysis of the stack trace shows that frame 6 should give us more information to
reveal the root cause. By way of the next steps, we switch to frame 6 and review the
relevant fragment of code:

Next, we analyze the values of local variables and function parameters to determine how
they are related to the time limit:

Debugging, Logging, and Profiling Chapter 5

[111]

We ascertain that the crash occurs when the value passed to delay_ms reaches 7, not 11, as
would be expected in the case of correct implementation of the delay.

There's more...
GDB commands often accept multiple parameters to fine-tune their behavior. Learn more
about each command using the help GDB command. For example, here is the output of the
help bt command:

Debugging, Logging, and Profiling Chapter 5

[112]

This displays information on the bt command that is used to review and analyze stack
traces. Similarly, you can get information regarding all the other commands supported by
the GDB.

Working with breakpoints
In this recipe, we will learn more advanced debugging techniques when working with the
GDB. We will use the same sample application and use breakpoints to find the dependency
of the actual delay on the value of the delay_ms parameter.

Working with breakpoints in the GDB is similar to working with breakpoints in debuggers
integrated into IDE, the only difference being that instead of using the built-in editor to
navigate the source code, developers have to learn to use line numbers, filenames, or
function names explicitly.

This is less convenient than click-and-run debuggers, but the flexibility allows developers
to create powerful debugging scenarios. In this recipe, we will learn how to use breakpoints
in the GDB.

How to do it...
In this recipe, we will use the same environment and the same test application as in the first
recipe. Refer to steps 1 to 9 of the Running your applications in the GDB recipe to build the
application and copy it over to the target system:

We want to debug our runner function. Let's take a look at its content. In the1.
gdb shell, run the program as follows:

(gdb) list runner,delay_ms

We want to see how the delta changes on each iteration. Let's set a breakpoint at2.
the line:

14 if (delta > limit) {

Use the break 14 command to set a breakpoint on line 14:3.

(gdb) break 14

Now, run the program:4.

(gdb) run

Debugging, Logging, and Profiling Chapter 5

[113]

Check the value of delta:5.

(gdb) print delta
$1 = {__r = 0}

Continue execution of the program by typing continue, or just c:6.

(gdb) c

Check the value of delta again:7.

(gdb) print delta

As we expected, the value of delta increases on each iteration, since delay_ms8.
takes more and more time.
Running print delta each time is not convenient. Let's automate it using the9.
command named command:

(gdb) command

Run c again. Now, the value of delta is displayed after each stop:10.

(gdb) c

However, the output is too verbose. Let's silence the GDB output by11.
typing command again and writing the following instructions. Now, run the c or
continue command several times to see the difference:

(gdb) command
Type commands for breakpoint(s) 1, one per line.
End with a line saying just "end".
>silent
>print delta
>end
(gdb) c

We can make the output even more concise by using the printf command, as12.
shown here:

(gdb) command
Type commands for breakpoint(s) 1, one per line.
End with a line saying just "end".
>silent
>printf "delta=%d, expected=%d\n", delta.__r, value
>end
(gdb) c

Debugging, Logging, and Profiling Chapter 5

[114]

Now, we can see two values, the calculated delay and the expected delay, and can
see how they diverge over time.

How it works...
In this recipe, we want to set a breakpoint to debug the runner function. Since the GDB
does not have a built-in editor, we need to know the line number to set the breakpoint.
Though we can get it directly from a text editor, another way is to look at the relevant code
snippet in the GDB. We use the gdb command list with two parameters – function names,
to display lines of code between the first line of the function runner and the first line of the
delay_ms function. This efficiently shows the content of the function runner:

Debugging, Logging, and Profiling Chapter 5

[115]

At step 4, set the breakpoint at line 14 using the break 14 command and run the program.
The execution stops at the breakpoint:

Debugging, Logging, and Profiling Chapter 5

[116]

We check the value of the delta variable using the print command and continue
execution of the program using the continue command, and since the runner function is
invoked in the loop, it stops at the same breakpoint again:

Debugging, Logging, and Profiling Chapter 5

[117]

Next, we try a more advanced technique. We define a set of GDB commands to be executed
when the breakpoint is triggered. We start with a simple print command. Now, every
time we continue execution, we can see the value of the delta variable:

Debugging, Logging, and Profiling Chapter 5

[118]

Next, we disable the auxiliary GDB output using the silent command to make the output
more concise:

Debugging, Logging, and Profiling Chapter 5

[119]

Finally, we use the printf command to format messages with the two most interesting
variables:

As you can see, the GDB provides lots of flexibility for developers to make debugging
comfortable, even lacking the graphical interface.

Debugging, Logging, and Profiling Chapter 5

[120]

There's more...
It is important to remember that the optimization options, -O2 and -O3, may result in some
lines of code being eliminated by the compiler completely. If you set breakpoints to such
lines, these breakpoints are never triggered. To avoid such situations, turn off the compiler
optimizations for the debug builds.

Working with core dumps
In the first recipe, we learned how to nail down the root cause of a crashing application
using an interactive command-line debugger. However, there are situations when
applications crash in the production environment, and it is impossible or impractical to
reproduce the same issue running the application under the GDB on a test system.

Linux provides a mechanism to help with the analysis of crashing applications even when
they are not run from the GDB directly. When an application is terminated abnormally, the
operating system saves the image of its memory into a file named core. In this recipe, we
will learn how to configure Linux to generate core dumps for crashing applications, and
how to use the GDB for their analysis.

How to do it...
We are going to identify the root cause of a crash in an application that was not run in the
GDB:

In this recipe, we will use the same environment and the same test application as1.
in the first recipe. Refer to steps 1 to 7 of the first recipe to build the application
and copy it over to the target system.
Firstly, we need to enable the generation of core dumps for crashing applications.2.
This feature is turned off by default in most Linux distribution. Run the ulimit
-c command to check the current status:

$ ulimit -c

Debugging, Logging, and Profiling Chapter 5

[121]

The value reported by the preceding command is the maximum size of core3.
dumps to generate. Zero means no core dumps. To increase the limit, we need to
get superuser privileges first. Run the su - command. When prompted for a
Password, type root:

$ su -
Password:

Run the ulimit -c unlimited command to allow core dumps of any size:4.

ulimit -c unlimited

Now, exit the root shell by pressing Ctrl + D or by running the logout command.5.
Preceding commands changed the core dump limit for the superuser only. To6.
apply it to the current user, run the same command again in the user shell:

$ ulimit -c unlimited

Make sure that the limit was changed:7.

$ ulimit -c
unlimited

Now, run the application as usual: 8.

$./loop

It will crash with an exception. Run the ls command to check whether a core file9.
was created in the current directory:

$ ls -l core
-rw------- 1 dev dev 536576 May 31 00:54 core

Now, run gdb, passing the executable and the core files as parameters:10.

$ gdb ./loop core

In the GDB shell, run the bt command to see the stack trace:11.

(gdb) bt

You can see the same stack trace as for the application running from inside gdb.12.
However, in this case, we see the stack trace of the core dump.
At this point, we can use the same debugging techniques as in the first recipe to13.
narrow down the cause of the crash.

Debugging, Logging, and Profiling Chapter 5

[122]

How it works...
Core dump functionality is a standard feature of Linux and other Unix-like operating
systems. However, the creation of core files in every case is not practical. Since core files are
snapshots of process memory, they can account for megabytes or even gigabytes on a
filesystem. In many cases, this is not acceptable.

Developers need to explicitly specify the maximum size of the core files that are allowed to
be generated by the operating system. This limit, among other limits, can be set using the
ulimit command.

We run ulimit twice to remove the limit first for the superuser root, and then for the
ordinary user/developer. The two-stage process is needed because the ordinary user limit
cannot exceed the superuser limit.

After we have removed the limit for the core file size, we run our test application without
the GDB. It crashes, as expected. After the crash, we can see that a new file called core was
created in the current directory.

When we run our application, it crashes. Normally, we would not be able to track the root
cause of the crash. However, since we enabled core dumps, a file named core was
automatically created for us by the operating system:

A core file is a binary dump of all process memory, but it is difficult to analyze it without
additional tools. Thankfully, the GDB provides the necessary support.

Debugging, Logging, and Profiling Chapter 5

[123]

We run the GDB passing two parameters – the path to the executable, and the path to the
core file. In this mode, we do not run the application from inside the GDB. We already have
its state frozen at the moment of the crash in the core dump. The GDB uses the executable
to bind memory addressed within the core file to functions and variable names:

Debugging, Logging, and Profiling Chapter 5

[124]

As a result, you can analyze the crashed application in an interactive debugger, even when
the application was not run from the debugger. When we invoke the bt command, the
GDB displays the stack trace at the moment of the crash:

This way, we can nail down the root cause of an application crashing even if, initially, it
was not run in a debugger.

There's more...
Analyzing core dumps using the GDB is a widely used and effective practice for embedded
applications. However, to use the full capabilities of the GDB, the application should be
built with debug symbol support.

Debugging, Logging, and Profiling Chapter 5

[125]

In most cases, however, embedded applications are deployed and run without debug
symbols to reduce the binary size. In this case, an analysis of core dumps becomes harder
and may require some knowledge of assembly language for the particular architecture and
of the internals of data structure implementations.

Using gdbserver for debugging
The environment for embedded development normally involves two systems— a build
system and a target system, or an emulator. Although the command-line interface of the
GDB makes it a good choice even for low-performance embedded systems, in many cases,
interactive debugging on the target system is impractical because of the high latency of
remote communication.

In such situations, developers can use remote debugging support provided by the GDB. In
this setup, an embedded application is launched on the target system using gdbserver.
Developers run the GDB on a build system and connect to gdbserver over the network.

In this recipe, we will learn how to start debugging an application using the GDB and
gdbserver.

Getting ready...
Follow the Connecting to the embedded system recipe of Chapter 2, Setting Up the
Environment, to have the hello application available on the target system.

How to do it...
We will use the same application we used in the preceding recipes, but now we will run the
GDB and applications in different environments:

Switch to the target system window and type Ctrl + D to log out from the existing1.
user session.
Log in as user, using the user password.2.
Run the hello application under gdbserver:3.

$ gdbserver 0.0.0.0:9090 ./hello

Debugging, Logging, and Profiling Chapter 5

[126]

Switch to the build system terminal and change the directory to /mnt:4.

cd /mnt

Run gdb, passing the application binary as a parameter:5.

gdb -q hello

Configure a remote connection by typing the following command in the GDB6.
command line:

target remote X.X.X.X:9090

Finally, type the continue command:7.

 continue

The program now runs and we can see its output and debug it as if it were run
locally.

How it works...
First, we log in to our target system as root and install gdbserver, unless it is already
installed. Once installation is complete, we log in again with user credentials and run
gdbserver, passing the name of the application to debug, the IP address, and the port to
listen to for incoming connections as its parameters.

Then, we switch to our build system and run the GDB there. However, instead of running
the application in the GDB directly, we instruct the GDB to initiate a connection to a remote
host using the provided IP address and port. After that, all commands you type at the
GDB prompt will be transferred to gdbserver and executed there.

Adding debug logging
Logging and diagnostics are an important aspect of any embedded project. In many cases,
using an interactive debugger is not possible or not practical. Hardware state can change in
a few milliseconds after a program stops on a breakpoint, and a developer has insufficient
time to analyze it. Collecting detailed log data and using tools for their analysis and
visualization is a better approach for high-performance, multithreaded, time-sensitive
embedded systems.

Debugging, Logging, and Profiling Chapter 5

[127]

Logging itself introduces certain delays. Firstly, it takes time to format the log messages
and put them into the log stream. Secondly, the log stream should be reliably stored in
persistent storage, such as a flash card or a disk drive, or sent to the remote system.

In this recipe, we will learn how to use logging instead of interactive debugging to find the
root causes of issues. We will use a system of different log levels to minimize the delays
introduced by logging.

How to do it...
We will modify our application to output information that is useful for root cause analysis:

Go to your work directory, ~/test, and make a copy of the loop project1.
directory. Name the copy loop2. Change directory to loop2.
Use your text editor to open the loop.cpp file.2.
Add one more include:3.

#include <iostream>
#include <chrono>
#include <thread>
#include <functional>

#include <syslog.h>

Modify the runner function by adding calls to the syslog function, as4.
highlighted in the following code snippet:

void runner(std::chrono::milliseconds limit,
 std::function<void(int)> fn,
 int value) {
 auto start = std::chrono::system_clock::now();
 fn(value);
 auto end = std::chrono::system_clock::now();
 std::chrono::milliseconds delta =
 std::chrono::duration_cast<std::chrono::milliseconds>(end -
start);
 syslog(LOG_DEBUG, "Delta is %ld",
 static_cast<long int>(delta.count()));
 if (delta > limit) {
 syslog(LOG_ERR,
 "Execution time %ld ms exceeded %ld ms limit",
 static_cast<long int>(delta.count()),
 static_cast<long int>(limit.count()));
 throw std::runtime_error("Time limit exceeded");

Debugging, Logging, and Profiling Chapter 5

[128]

 }
}

Similarly, update the main function to initialize and finalize syslog:5.

int main() {
 openlog("loop3", LOG_PERROR, LOG_USER);
 int max_delay = 10;
 for (int i = 0; i < max_delay; i++) {
 runner(std::chrono::milliseconds(max_delay), delay_ms, i);
 }
 closelog();
 return 0;
}

Switch to the build system terminal. Go to the /mnt/loop2 directory and run the6.
program:

cmake && make

Copy the resulting binary file loop to the target system and run it:7.

$./loop

The debug output is verbose and gives more context to find the root cause of the
issue.

How it works...
In this recipe, we added logging using the standard logging tool, syslog. Firstly, we
initialized our logging by using a call to openlog:

 openlog("loop3", LOG_PERROR, LOG_USER);

Next, we added logging to the runner function. There are different logging levels that
facilitate the filtering of log messages, from most severe to least severe. We log the delta
value, which indicates how long the function that the runner invokes actually runs for,
using the LOG_DEBUG level:

 syslog(LOG_DEBUG, "Delta is %d", delta);

Debugging, Logging, and Profiling Chapter 5

[129]

This level is used to log detailed information that is helpful for application debugging but
might prove to be too verbose when running applications in production.

If the delta, however, exceeds the limit, we log this situation using the LOG_ERR level to
indicate that this situation should not normally happen and that it is an error:

 syslog(LOG_ERR,
 "Execution time %ld ms exceeded %ld ms limit",
 static_cast<long int>(delta.count()),
 static_cast<long int>(limit.count()));

Before returning from the application, we close the logging to make sure that all the log
messages are properly saved:

 closelog();

When we run the application on the target system, we can see our log messages on the
screen:

Debugging, Logging, and Profiling Chapter 5

[130]

Since we use standard Linux logging, we can find the messages in the system logs as well:

As you can see, logging is not hard to implement, but it is extremely helpful in finding the
root causes of various issues in your application during debugging and normal operation.

There's more...
There are a number of logging libraries and frameworks that may be more suitable for
particular tasks than the standard logger; for example, Boost.Log, at https:/ /
theboostcpplibraries. com/ boost. log, and spdlog, at https:/ /github. com/ gabime/
spdlog. They provide a more convenient C++ interface compared to the generic C interface
of syslog. When starting work on your project, check existing logging libraries and pick
the one that best suits your requirements.

https://theboostcpplibraries.com/boost.log
https://theboostcpplibraries.com/boost.log
https://theboostcpplibraries.com/boost.log
https://theboostcpplibraries.com/boost.log
https://theboostcpplibraries.com/boost.log
https://theboostcpplibraries.com/boost.log
https://theboostcpplibraries.com/boost.log
https://theboostcpplibraries.com/boost.log
https://theboostcpplibraries.com/boost.log
https://theboostcpplibraries.com/boost.log
https://github.com/gabime/spdlog
https://github.com/gabime/spdlog
https://github.com/gabime/spdlog
https://github.com/gabime/spdlog
https://github.com/gabime/spdlog
https://github.com/gabime/spdlog
https://github.com/gabime/spdlog
https://github.com/gabime/spdlog
https://github.com/gabime/spdlog
https://github.com/gabime/spdlog

Debugging, Logging, and Profiling Chapter 5

[131]

Working with debug and release builds
As we learned in the preceding recipe, logging has costs associated with it. It introduces
delays to format log messages and writes them to persistent storage or a remote system.

Using log levels helps to reduce the overhead by skipping the writing of some messages to
the log file. However, the message is usually being formatted before passing to a log
function. For example, in the case of a system error, a developer wants to add an error code
reported by the system to the log message. Although string formatting is generally less
expensive than writing data to a file, it might still be an issue for highly-loaded systems or
systems with limited resources.

Debug symbols added by a compiler do not add runtime overhead. However, they increase
the size of the resulting binary. Moreover, performance optimizations made by the
compiler can make interactive debugging difficult.

In this recipe, we will learn how to avoid runtime overheads by separating debug and
release builds and using the C pre-processor macros.

How to do it...
We are going to modify build rules of the application we used in the preceding recipes to
have two build targets—debug and release:

Go to your work directory, ~/test, and make a copy of the loop2 project1.
directory. Name the copy loop3. Change directory to loop3.
Use your text editor to open the CMakeLists.txt file. Replace the following2.
line:

SET(CMAKE_CXX_FLAGS "-g --std=c++11")

The preceding line needs to be replaced with the following lines:3.

SET(CMAKE_CXX_FLAGS_RELEASE "--std=c++11")
SET(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_RELEASE} -g -DDEBUG")

Use your text editor to open the loop.cpp file. Modify the file by adding the4.
highlighted lines:

#include <iostream>
#include <chrono>
#include <thread>
#include <functional>

Debugging, Logging, and Profiling Chapter 5

[132]

#include <cstdarg>

#ifdef DEBUG
#define LOG_DEBUG(fmt, args...) fprintf(stderr, fmt, args)
#else
#define LOG_DEBUG(fmt, args...)
#endif

void runner(std::chrono::milliseconds limit,
 std::function<void(int)> fn,
 int value) {
 auto start = std::chrono::system_clock::now();
 fn(value);
 auto end = std::chrono::system_clock::now();
 std::chrono::milliseconds delta =
 std::chrono::duration_cast<std::chrono::milliseconds>(end -
start);
 LOG_DEBUG("Delay: %ld ms, max: %ld ms\n",
 static_cast<long int>(delta.count()),
 static_cast<long int>(limit.count()));
 if (delta > limit) {
 throw std::runtime_error("Time limit exceeded");
 }
}

Switch to the build system terminal. Go to the /mnt/loop3 directory and run the5.
following code:

cmake -DCMAKE_BUILD_TYPE=Release . && make

Copy the resulting loop binary file to the target system and run it:6.

$./loop

As you can see, the application does not generate any debug output. Let's now7.
check its size using the ls -l command:

$ ls -l loop
-rwxr-xr-x 1 dev dev 24880 Jun 1 00:50 loop

The size of the resulting binary is 24 KB. Now, let's build the Debug build and8.
effect a comparison as shown here:

$ cmake -DCMAKE_BUILD_TYPE=Debug && make clean && make

Debugging, Logging, and Profiling Chapter 5

[133]

Check the size of the executable file:9.

$ ls -l ./loop
-rwxr-xr-x 1 dev dev 80008 Jun 1 00:51 ./loop

The size of the executable is now 80 KB. It is more than three times bigger than10.
the release build. Run it the same way as before:

$./loop

As you can see, the output is now different.

How it works...
We start with the copy of the project we used for the Adding debug logging recipe and create
two distinct build configurations:

Debug: A configuration with interactive debugging and debug logging support
Release: A highly optimized configuration that has all debug support disabled at
compile time

To implement it, we utilize the functionality provided by CMake. It supports different built
types out of the box. We only need to define compile options for release and debug builds
separately.

The only build flag we define for the release build is the C++ standard to use. We explicitly
require the code to conform to the C++11 standard:

SET(CMAKE_CXX_FLAGS_RELEASE "--std=c++11")

For the debug build, we reuse the same flags as for the release build, referencing them as
${CMAKE_CXX_FLAGS_RELEASE}, and adding two more options. -g instructs the compiler
to add debug symbols to the target executable binary, and -DDEBUG defines a pre-processor
macro, DEBUG.

We use the DEBUG macro in the code of loop.cpp to select between two different
implementations of the LOG_DEBUG macro.

Debugging, Logging, and Profiling Chapter 5

[134]

If DEBUG is defined, LOG_DEBUG is expanded to the call of the fprintf function, which
performs actual logging in the standard error channel. If, however, DEBUG is not defined,
LOG_DEBUG is expanded to the empty string. This means that in this case, LOG_DEBUG does
not produce any code, and hence does not add any runtime overhead.

We use LOG_DEBUG in the body of the runner function to log values of the actual delay and
the limit. Note that there is no if around LOG_DEBUG – the decision to format and log data
or do nothing is done not by our program when it runs, but by the code pre-processor
when we build the application.

To select a build type, we invoke cmake, passing the name of the build type as a command-
line parameter:

cmake -DCMAKE_BUILD_TYPE=Debug

CMake only generates a Make file to actually build the application we require in order to
invoke make. We can combine these two commands in a single command line:

cmake -DCMAKE_BUILD_TYPE=Release && make

When we build and run our application for the first time, we select the release build. As a
result, we do not see any debug output:

Debugging, Logging, and Profiling Chapter 5

[135]

After that, we rebuild our application using the debug build type and see a different result
when running it:

With debug and release builds, you can have sufficient information for comfortable
debugging, but be sure that the production build won't have any unnecessary overhead.

There's more...
When switching between release and debug builds in a complex project, make sure that all
the files were rebuilt properly. The easiest way to do this is by removing all the previous
build files. When using make, this can be done by invoking the make clean command.

It can be added as part of the command line along with cmake and make:

cmake -DCMAKE_BUILD_TYPE=Debug && make clean && make

 Combining all three commands into one line makes this more convenient for developers.

6
Memory Management

Memory efficiency is one of the major requirements for embedded applications. Since target
embedded platforms often have limited performance and memory capabilities, developers
need to know how to use available memory in the most efficient way.

Surprisingly, the most efficient way does not necessarily mean that the least amount of
memory is used. Since embedded systems are specialized, developers know in advance
which applications or components will be executed on the system. Saving memory in one
application does not result in any gain unless another application running in the same
system can use the extra memory. That is why the most important characteristic of memory
management in embedded systems is determinism, or predictability. It is much more
important to know that an application can use two megabytes of memory under any load
than knowing an application can use one megabyte of memory most of the time, but can
occasionally require three megabytes.

Similarly, predictability also applies to memory allocation and deallocation time. In many
situations, embedded applications favor spending more memory to achieve deterministic
timing.

In this chapter, we will learn several of memory management techniques that are widely
used in embedded applications. The recipes covered in this chapter are as follows:

Using dynamic memory allocation
Exploring object pools
Using ring buffers
Using shared memory
Using specialized memory

These recipes will help you understand memory management best practices and can be
used as building blocks when working with memory allocation in your applications.

Memory Management Chapter 6

[137]

Using dynamic memory allocation
Dynamic memory allocation is a common practice among C++ developers, and it is widely
utilized in the C++ standard library; however, in the context of embedded systems, it often
becomes a source of issues that are hard to discover and hard to avoid.

The most notable issue is timing. The worst-case time for memory allocation is not-bound;
however, embedded systems, especially those controlling real-world processes or
equipment, are often required to respond within a specific amount of time.

Another problem is fragmentation. When memory blocks of different sizes are allocated
and deallocated, memory regions appear that are technically free but cannot be allotted
because they are too small to fulfill an application request. Memory fragmentation grows
over time and can lead to the situation where a memory allocation request fails despite a
substantial total amount of free memory.

A simple yet powerful strategy to avoid these types of issue is to allocate all the memory
that an application might need in advance at compile time or at startup time. Then the
application uses this memory as needed. This memory, once allocated, is never freed until
the application terminates.

A disadvantage of this approach is that the application allocates more memory than it
really uses at this point in time instead of letting other applications use it. In practice, this is
not an issue for embedded applications, since they are running within a controlled
environment, where all applications and their memory needs are known in advance.

How to do it...
In this recipe, we will learn how to preallocate memory and use it later in your application:

In your working ~/test directory, create a subdirectory called prealloc.1.
Use your favorite text editor to create a file called prealloc.cpp in the2.
prealloc subdirectory. Copy the following code snippet into
the prealloc.cpp file to define a SerialDevice class:

#include <cstdint>
#include <string.h>

constexpr size_t kMaxFileNameSize = 256;
constexpr size_t kBufferSize = 4096;
constexpr size_t kMaxDevices = 16;

Memory Management Chapter 6

[138]

class SerialDevice {
 char device_file_name[256];
 uint8_t input_buffer[kBufferSize];
 uint8_t output_buffer[kBufferSize];
 int file_descriptor;
 size_t input_length;
 size_t output_length;

 public:
 SerialDevice():
 file_descriptor(-1), input_length(0), output_length(0) {}

 bool Init(const char* name) {
 strncpy(device_file_name, name, sizeof(device_file_name));
 }

 bool Write(const uint8_t* data, size_t size) {
 if (size > sizeof(output_buffer)) {
 throw "Data size exceeds the limit";
 }
 memcpy(output_buffer, data, size);
 }

 size_t Read(uint8_t* data, size_t size) {
 if (size < input_length) {
 throw "Read buffer is too small";
 }
 memcpy(data, input_buffer, input_length);
 return input_length;
 }
};

Add the main function that uses the SerialDevice class:3.

int main() {
 SerialDevice devices[kMaxDevices];
 size_t number_of_devices = 0;

 uint8_t data[] = "Hello";
 devices[0].Init("test");
 devices[0].Write(data, sizeof(data));
 number_of_devices = 1;

 return 0;
}

Memory Management Chapter 6

[139]

Create a file called CMakeLists.txt in the loop subdirectory with the following4.
content:

cmake_minimum_required(VERSION 3.5.1)
project(prealloc)
add_executable(prealloc prealloc.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++17")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can now build and run the application. It does not output any data since its
purpose is to demonstrate how we preallocate memory in advance without
knowing the number of devices and the size of the messages we exchange with
devices.

How it works...
In this recipe, we define objects that encapsulate data exchange with serial devices. A
device is identified by a device file name string of variable length. We can send and receive
messages of variable length to and from devices.

Since we can only discover the number of devices connected to the system at runtime, we
might be tempted to create a device object when it is discovered. Similarly, since we do not
know the sizes of the messages we send and receive, it is natural to allocate memory for
message dynamically.

Instead, we preallocate arrays of uninitialized device objects:

 SerialDevice devices[kMaxDevices];

In turn, each object preallocates a sufficient amount of memory to store messages and the
device filename:

 char device_file_name[kMaxFileNameSize];
 uint8_t input_buffer[kBufferSize];
 uint8_t output_buffer[kBufferSize];

We use local variables to track the actual size of data in the input and output buffers. There
is no need to track the size of the file name since it is expected to be zero-terminated:

 size_t input_length;
 size_t output_length;

Memory Management Chapter 6

[140]

Similarly, we track the actual amount of devices discovered:

 size_t number_of_devices = 0;

This way, we avoid dynamic memory allocation. It has its costs, though: we artificially limit
the maximum number of devices and the maximum size of messages we support. Secondly,
a substantial amount of allocated memory is never used. For example, if we support up to
16 devices and only 1 is present in the system, we actually use only 1/16 of allocated
memory. As mentioned before, this is not a problem for embedded systems, since all
applications and their requirements are predefined. There is no application that can benefit
from the extra memory it can allocate.

Exploring object pools
As we discussed in the first recipe in this chapter, preallocation of all memory used by the
application is an efficient strategy that helps embedded applications avoid various pitfalls
related to memory fragmentation and allocation time.

One disadvantage of ad-hoc memory preallocation is that the application is now
responsible for the tracking of preallocated object usage.

Object pools aim to hide the burden of object tracking by providing a generalized and
convenient interface, similar to dynamic memory allocation but working with objects in the
preallocated arrays.

How to do it...
In this recipe, we will create a simple implementation of an object pool and learn how to
use it in your applications:

In your working ~/test directory, create a subdirectory called objpool.1.
Use your favorite text editor to create a objpool.cpp file in2.
the objpool subdirectory. Let's define a templated ObjectPool class. We start
with the private data members and a constructor:

#include <iostream>

template<class T, size_t N>
class ObjectPool {
 private:
 T objects[N];

Memory Management Chapter 6

[141]

 size_t available[N];
 size_t top = 0;
 public:
 ObjectPool(): top(0) {
 for (size_t i = 0; i < N; i++) {
 available[i] = i;
 }
 }

Now let's add a method to get elements from the pool:3.

 T& get() {
 if (top < N) {
 size_t idx = available[top++];
 return objects[idx];
 } else {
 throw std::runtime_error("All objects are in use");
 }
 }

Next, we add a method that returns an element to the pool:4.

 void free(const T& obj) {
 const T* ptr = &obj;
 size_t idx = (ptr - objects) / sizeof(T);
 if (idx < N) {
 if (top) {
 top--;
 available[top] = idx;
 } else {
 throw std::runtime_error("Some object was freed more than once");
 }
 } else {
 throw std::runtime_error("Freeing object that does not belong to
 the pool");
 }
 }

Then, wrap up the class definition with a small function that returns the number5.
of elements that are requested from the pool:

 size_t requested() const { return top; }
 };

Memory Management Chapter 6

[142]

Define a data type to be stored in the object pool as shown in the following code:6.

struct Point {
 int x, y;
};

Then add code that works with the object pool:7.

int main() {
 ObjectPool<Point, 10> points;

 Point& a = points.get();
 a.x = 10; a.y=20;
 std::cout << "Point a (" << a.x << ", " << a.y << ") initialized,
requested " <<
 points.requested() << std::endl;

 Point& b = points.get();
 std::cout << "Point b (" << b.x << ", " << b.y << ") not
initialized, requested " <<
 points.requested() << std::endl;

 points.free(a);
 std::cout << "Point a(" << a.x << ", " << a.y << ") returned,
requested " <<
 points.requested() << std::endl;

 Point& c = points.get();
 std::cout << "Point c(" << c.x << ", " << c.y << ") not
intialized, requested " <<
 points.requested() << std::endl;

 Point local;
 try {
 points.free(local);
 } catch (std::runtime_error e) {
 std::cout << "Exception caught: " << e.what() << std::endl;
 }
 }

Create a file called CMakeLists.txt in the loop subdirectory with the following8.
content:

cmake_minimum_required(VERSION 3.5.1)
project(objpool)
add_executable(objpool objpool.cpp)

set(CMAKE_SYSTEM_NAME Linux)

Memory Management Chapter 6

[143]

set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

Build the application and copy the resulting executable binary to9.
the target system. Use recipes from Chapter 2,Setting Up the Environment, to do
it.
Switch to the target system terminal. Log in using user credentials, if needed.10.
Run the binary.11.

How it works...
In this application, we use the same idea (static arrays of preallocated objects) that we used
in the first recipe; however, we wrap it into a templated ObjectPool class to provide a
generic interface for handling objects of different types.

Our template has two parameters—a class or a data type of objects stored in an instance of
the ObjectPool class, and the pool size. These parameters are used to define two private
data fields of the class—an array of objects and an array of free indices:

 T objects[N];
 size_t available[N];

Since template parameters are being resolved at compile time, these arrays are allocated
statically. Additionally, the class has a private data member called top that acts as an index
in the available array and points to the next available object.

The available array contains indices of all objects in the objects array that are currently
available for use. At the very beginning, all objects are free, and the available array is
populated with indices of all elements in the objects array:

 for (size_t i = 0; i < N; i++) {
 available[i] = i;
 }

When the application needs to get an element from the pool, it invokes the get method.
This method uses the top variable to get the index of the next available element in the pool:

 size_t idx = available[top++];
 return objects[idx];

Memory Management Chapter 6

[144]

When the top index reaches the size of the array, it means that no more elements can be
allocated, and so the method throws an exception to indicate the error condition:

 throw std::runtime_error("All objects are in use");

Objects can be returned into the pool using free . First, it detects an index of the element
based on its address. The index is calculated as a difference between the object address and
the pool start address. Since pool objects are stored in memory contiguously, we can easily
filter out objects of the same type, but not those that originate from this pool:

 const T* ptr = &obj;
 size_t idx = (ptr - objects) / sizeof(T);

Note that, since the size_t type is unsigned, we do not need to check that the resulting
index is less than zero—it is not possible. If we try to return an object to the pool that does
not belong to it and has an address less than the pool's start address, it will be treated as a
positive index anyway.

If the object we return belongs to the pool, we update the top counter and put the resulting
index into the available array for further use:

 top--;
 available[top] = idx;

Otherwise, we throw an exception indicating that we tried to return an object that was not
taken from this pool:

 throw std::runtime_error("Freeing object that does not belong to the
pool");

The method requested is used to track pool object usage. It returns the top variable, which
efficiently tracks the number of objects that were claimed but have not yet been returned to
the pool.

 size_t requested() const { return top; }

Let's define a data type and try to work with objects from the pool. We declare a struct
called Point that holds two int fields, as shown in the following code:

 struct Point {
 int x, y;
 };

Now we create a pool of Point objects of size 10:

 ObjectPool<Point, 10> points;

Memory Management Chapter 6

[145]

We get one object from the pool and populate its data fields:

 Point& a = points.get();
 a.x = 10; a.y=20;

The program produces the following output:

The first line of the output reports one object as requested.

We request one more object and print its data fields as-is, without any initialization. The
pool reports that two objects were requested, as expected.

Now we return our first object back to the pool and make sure that the count of requested
objects decreases. We can also note that, even after returning the object to the pool, we can
read data from it.

Let's claim one more object from the pool. The requested count increases, but the requested
object is the same as the one we returned on the preceding step.

We can see that Point c was not initialized after it was taken from the pool, but its fields
contain the same values as Point a. In fact, now a and c are references to the same object
in the pool, and so the modification of variable a will affect variable c. This is one of the
limitations of our implementation of the object pool.

Finally, we create a local Point object and try to return it into the pool:

 Point local;
 try {
 points.free(local);
 } catch (std::runtime_error e) {
 std::cout << "Exception caught: " << e.what() << std::endl;
 }

It is expected to fail with an exception, and it does. In the program output, you can see
an Exception caught: Freeing object that does not belong to the
pool message.

Memory Management Chapter 6

[146]

There's more...
Even though the implementation of the object pool simplifies working with preallocated
objects, it has a number of limitations.

Firstly, all objects are created at the very beginning. As a result, calling the get method of
our pool does not trigger an object constructor, and calling the free method does not call a
destructor. Developers need to use various workarounds for the initialization and
deinitialization of objects.

One possible workaround is to define special methods of the target object, such as
initialize and deinitialize, which will be invoked respectively by the get and free
methods of the ObjectPool class. This approach, however, couples the implementation of
the classes to the ObjectPool implementation. Later in the chapter, we will look at more
advanced techniques to overcome this limitation.

Our implementation of the pool does not detect whether the free method was called more
than once for an object. It is a mistake, but it is common and leads to issues that are hard to
debug. While technically feasible, it adds extra complexity to the implementation that is
not necessary for this example.

Using ring buffers
A ring buffer, or circular buffer, is a widely used data structure in the embedded world. It
works as a queue placed on top of a fixed-size memory array. The buffer can contain a fixed
number of elements. A function that generates these elements puts them into the buffer
sequentially, one by one. When the end of the buffer is reached, it switches to the start of
the buffer, as if its first element follows the last element.

This design has proven to be remarkably efficient when it comes to organizing data
exchange between data producers and consumers that are independent and cannot wait for
each other, which is a common scenario in embedded development. For example, an
interrupt service routine should quickly queue data coming from a device for further
processing, while interrupts are disabled. It cannot wait for the function that processes the
data if it lags behind. At the same time, the processing function does not need to be
completely in sync with the Interrupt Service Routine (ISR); it can process several
elements at once and catch up with the ISR later.

This, along with the fact that ring they can be preallocated statically, makes ring buffers the
best choice in many cases.

Memory Management Chapter 6

[147]

How to do it...
In this recipe, we will learn how to create and use a ring buffer on top of a C++ array:

In your working ~/test directory, create a subdirectory called ringbuf.1.
Use your favorite text editor to create a ringbuf.cpp file in2.
the ringbuf subdirectory.
Define the RingBuffer class, starting from the private data fields:3.

#include <iostream>
template<class T, size_t N>
class RingBuffer {
 private:
 T objects[N];
 size_t read;
 size_t write;
 size_t queued;
 public:
 RingBuffer(): read(0), write(0), queued(0) {}

Now we add a method to push data to the buffer:4.

 T& push() {
 T& current = objects[write];
 write = (write + 1) % N;
 queued++;
 if (queued > N) {
 queued = N;
 read = write;
 }
 return current;
 }

Next, we add a method to pull data from the buffer:5.

 const T& pull() {
 if (!queued) {
 throw std::runtime_error("No data in the ring buffer");
 }
 T& current = objects[read];
 read = (read + 1) % N;
 queued--;
 return current;
 }

Memory Management Chapter 6

[148]

Let's add a small method to check whether the buffer contains any data and wrap6.
up the class definition:

bool has_data() {
 return queued != 0;
}
};

With RingBuffer defined, we can now add code that uses it. Firstly, let's define7.
the data type we are going to use:

struct Frame {
 uint32_t index;
 uint8_t data[1024];
};

Secondly, add the main function and define an instance of RingBuffer as its8.
variable, along with code that tries to work with an empty buffer:

int main() {
 RingBuffer<Frame, 10> frames;

 std::cout << "Frames " << (frames.has_data() ? "" : "do not ")
 << "contain data" << std::endl;
 try {
 const Frame& frame = frames.pull();
 } catch (std::runtime_error e) {
 std::cout << "Exception caught: " << e.what() << std::endl;
 }

Next, add code that works with five elements in the buffer:9.

for (size_t i = 0; i < 5; i++) {
Frame& out = frames.push();
out.index = i;
out.data[0] = 'a' + i;
out.data[1] = '\0';
 }
std::cout << "Frames " << (frames.has_data() ? "" : "do not ")
<< "contain data" << std::endl;
while (frames.has_data()) {
const Frame& in = frames.pull();
 std::cout << "Frame " << in.index << ": " << in.data <<
std::endl;
 }

Memory Management Chapter 6

[149]

After that, add similar code that deals with a larger number of elements that can10.
be added:

 for (size_t i = 0; i < 26; i++) {
 Frame& out = frames.push();
 out.index = i;
 out.data[0] = 'a' + i;
 out.data[1] = '\0';
 }
 std::cout << "Frames " << (frames.has_data() ? "" : "do not ")
 << "contain data" << std::endl;
 while (frames.has_data()) {
 const Frame& in = frames.pull();
 std::cout << "Frame " << in.index << ": " << in.data << std::endl;
 }
 }

Create a file called CMakeLists.txt in the loop subdirectory with the following11.
content:

cmake_minimum_required(VERSION 3.5.1)
project(ringbuf)
add_executable(ringbuf ringbuf.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

Build the application and copy the resulting executable binary to12.
the target system. Use recipes from Chapter 2, Setting Up the Environment, to do
it.
Switch to the target system terminal. Log in using user credentials, if needed.13.
Run the binary.14.

How it works...
We implement our ring buffer as a templated C++ class that has three private data fields:

objects: A static array of N elements of type T
read: An index to read elements from
write: An index to write elements to

Memory Management Chapter 6

[150]

The RingBuffer class exposes three public methods:

push(): To write data into the buffer
pull(): To read data from the buffer
has_data(): To check whether the buffer contains data

Let's take a close look at how they work.

The push() method is intended to be used by a function to store data in the buffer. Unlike
the similar push() method for a dynamic queue or dynamic stack, which accepts a value to
store as a parameter, our implementation does not accept any parameters. Since all
elements are preallocated at compile time, it returns a reference to a value in the buffer to
be updated.

The implementation of the push() method is straightforward; it gets a pointer to the
element via the write index, then advances the write index and increments the number of
elements stored in the buffer. Note how the division remainder operator is used to wrap
the write index to the beginning of the array once it reaches the size limit:

T& current = objects[write];
write = (write + 1) % N;
queued++;

What happens if we try to push more elements than the capacity of the objects array can
handle? That depends on the nature of the data we plan to store in the buffer. In our
implementation, we assume that the receiver is interested in the most recent data and can
tolerate the loss of intermediate data if it cannot catch up with the sender. If the receiver is
too slow, it does not matter how many laps the sender runs before the receiver read data:
all data more than N steps behind is overwritten at this point. That is why, as soon as the
number of stored elements exceeds N, we start advancing the read index along with the
write index to keep them exactly N steps apart:

 if (queued > N) {
 queued = N;
 read = write;
 }

Memory Management Chapter 6

[151]

The pull() method is used by functions that read data from the buffer. Similarly to the
push() method, it does not accept any parameters and returns a reference to an element in
the buffer. Unlike the push() method, though, it returns a constant reference (as shown in
the following code) to indicate the fact that it is not supposed to modify data in the buffer:

 const T& pull() {

Firstly, it checks whether there is data in the buffer and throws an exception if the buffer
does not contain elements:

 if (!queued) {
 throw std::runtime_error("No data in the ring buffer");
 }

It gets a reference to an element by the read index, then advances the read index, applying
the same division remainder operator that the push() method does for the write index:

 read = (read + 1) % N;
 queued--;

The implementation of the has_data() method is trivial. It returns false if the object
counter is zero and true otherwise:

 bool has_data() {
 return queued != 0;
 }

Now, let's try it in action. We declare a simple data structure, Frame, that mimics data
generated by a device. It contains a frame index and an opaque data buffer:

 uint32_t index;
 uint8_t data[1024];
 };

We define a ring buffer with a capacity of 10 elements of the frame type:

 RingBuffer<Frame, 10> frames;

Let's take a look at the program output:

Memory Management Chapter 6

[152]

Firstly, we try to read from the empty buffer and get an exception, as expected.

Then, we write five elements to the buffer, using characters of the Latin alphabet as the data
payload:

 for (size_t i = 0; i < 5; i++) {
 Frame& out = frames.push();
 out.index = i;
 out.data[0] = 'a' + i;
 out.data[1] = '\0';
 }

Note how we get the reference to an element and then update it in-place rather than push a
local copy of frame into the ring buffer. Then we read all the data in the buffer and print it
on the screen:

 while (frames.has_data()) {
 const Frame& in = frames.pull();
 std::cout << "Frame " << in.index << ": " << in.data << std::endl;
 }

Memory Management Chapter 6

[153]

The program output indicates that we can successfully read all five elements. Now we try
to write all 26 letters of the Latin alphabet to the array, way more than its capacity.

 for (size_t i = 0; i < 26; i++) {
 Frame& out = frames.push();
 out.index = i;
 out.data[0] = 'a' + i;
 out.data[1] = '\0';
 }

Then we read the data in the same way that we did for the five elements. The read is
successful, but we receive only the last 10 elements written; all other frames were lost and
overwritten by this point. It is not critical for our sample application, but maybe this isn't
acceptable for many other applications. The best way to ensure that data is not being lost is
to guarantee that the receiver is activated more frequently than the sender. Sometimes the
receiver will be activated if no data is available in the buffer, but this is an acceptable price
to pay to avoid data loss.

Using shared memory
In modern operating systems running on hardware that supports an MMU (short for
memory management unit), each application runs as a process and has its memory isolated
from other applications.

Such isolation brings important reliability benefits. An application cannot accidentally
corrupt the memory of another application. Similarly, an application that accidentally
corrupts its own memory and crashes can be shut down by the operating system without
affecting other applications in the system. Decoupling the functionality of the embedded
system into several isolated applications that communicate with each other over a well-
defined API significantly decreases the complexity of the implementation, resulting in
improved stability.

The isolation, however, incurs costs. Since each process has its own isolated address space,
data exchange between two applications implies data copying, context switching, and the
use of operating system kernel synchronization mechanisms that can be relatively
expensive.

Shared memory is a mechanism provided by many operating systems to declare certain
memory regions as shared. This way, applications can exchange data without copying.
This is especially important for the exchange of large data objects, such as video frames or
audio samples.

Memory Management Chapter 6

[154]

How to do it...
In this recipe, we will learn how to use a Linux shared memory API for data exchange
between two or more applications:

In your working ~/test directory, create a subdirectory called shmem.1.
Use your favorite text editor to create a shmem.cpp file in2.
the shmem subdirectory. Define the SharedMem class, starting with common
headers and constants:

#include <algorithm>
#include <iostream>
#include <chrono>
#include <thread>

#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>

const char* kSharedMemPath = "/sample_point";
const size_t kPayloadSize = 16;

using namespace std::literals;

template<class T>
class SharedMem {
 int fd;
 T* ptr;
 const char* name;

 public:

Then, define a constructor that does most of the work:3.

SharedMem(const char* name, bool owner=false) {
fd = shm_open(name, O_RDWR | O_CREAT, 0600);
if (fd == -1) {
throw std::runtime_error("Failed to open a shared memory region");
}
if (ftruncate(fd, sizeof(T)) < 0) {
close(fd);
throw std::runtime_error("Failed to set size of a shared memory
region");
};
ptr = (T*)mmap(nullptr, sizeof(T), PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);
if (!ptr) {

Memory Management Chapter 6

[155]

close(fd);
 throw std::runtime_error("Failed to mmap a shared memory
region");
}
 this->name = owner ? name : nullptr;
 std::cout << "Opened shared mem instance " << name <<
std::endl;
}

Add the definition of the destructor:4.

 ~SharedMem() {
 munmap(ptr, sizeof(T));
 close(fd);
 if (name) {
 std::cout << "Remove shared mem instance " << name << std::endl;
 shm_unlink(name);
 }
 }

Finalize the class definition with a small method that returns a reference to the5.
shared object:

 T& get() const {
 return *ptr;
 }
 };

Our SharedMem class can work with different data types. Let's declare a custom6.
data structure that we want to use:

struct Payload {
 uint32_t index;
 uint8_t raw[kPayloadSize];
};

Now add code that writes data to the shared memory:7.

void producer() {
 SharedMem<Payload> writer(kSharedMemPath);
 Payload& pw = writer.get();
 for (int i = 0; i < 5; i++) {
 pw.index = i;
 std::fill_n(pw.raw, sizeof(pw.raw) - 1, 'a' + i);
 pw.raw[sizeof(pw.raw) - 1] = '\0';
 std::this_thread::sleep_for(150ms);
 }
}

Memory Management Chapter 6

[156]

Also, add code that reads data from the shared memory:8.

void consumer() {
 SharedMem<Payload> point_reader(kSharedMemPath, true);
 Payload& pr = point_reader.get();
 for (int i = 0; i < 10; i++) {
 std::cout << "Read data frame " << pr.index << ": " << pr.raw
<< std::endl;
 std::this_thread::sleep_for(100ms);
 }
 }

Add the main function to tie everything together, as shown in the following9.
code:

int main() {

 if (fork()) {
 consumer();
 } else {
 producer();
 }
 }

Create a file called CMakeLists.txt in the loop subdirectory with the following10.
content:

cmake_minimum_required(VERSION 3.5.1)
project(shmem)
add_executable(shmem shmem.cpp)
target_link_libraries(shmem rt)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++14")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

Build the application and copy the resulting executable binary to11.
the target system. Use recipes from Chapter 2,Setting Up the Environment, to do
it.
Switch to the target system terminal. Log in using user credentials, if needed.12.
Run the binary.13.

Memory Management Chapter 6

[157]

How it works...
In this recipe, we use the POSIX (short for Portable Operating System Interface) API to
work with shared memory. This is a flexible and fine-grained C API, with lots of
parameters that can be tuned or configured. Our goal is to hide the complexity of this low-
level API by implementing a more convenient and type-safe C++ wrapper on top of it. We
are going to use the RAII (short for resource acquisition is initialization) idiom to make
sure all allocated resources are properly deallocated and we do not have memory or file
descriptor leaks in our application.

We define a templated SharedMem class. The template argument defines a data type that is
stored in our shared memory instance. This way, we make instances of the SharedMem
class type safe. Instead of our working with void pointers and casting types in the
application code, the C++ compiler does it for us automatically:

template<class T>
class SharedMem {

All shared memory allocation and initialization is implemented in the SharedMem
constructor. It accepts two parameters:

A shared memory object name
An ownership flag

POSIX defines a shm_open API, where shared memory objects are identified by names,
similar to filenames. This way, two independent processes that use the same name can
reference the same shared memory object. What is the lifetime of the shared object? The
shared object is destroyed when the shm_unlink function is invoked for the same object
name. If the object is used by multiple processes, the first one that calls shm_open will
create it, and the others will reuse the same object. But which of them is responsible for its
deletion? This is what the ownership flag is used for. When set to true, it indicates that the
SharedMem instance is responsible for the shared object cleanup when it is destroyed.

The constructor sequentially calls three POSIX API functions. Firstly, it creates a shared
object using shm_open. Though the function accepts access flags and file permissions as its
parameters, we always use the read–write access mode and read and write access for the
current user:

fd = shm_open(name, O_RDWR | O_CREAT, 0600);

Memory Management Chapter 6

[158]

Next, we define the size of the shared region using the ftruncate call. We use the size of
the template data type for this purpose:

if (ftruncate(fd, sizeof(T)) < 0) {

Finally, we map the shared region into our process memory address space using the mmap
function. It returns a pointer that we can use to reference our data instance:

ptr = (T*)mmap(nullptr, sizeof(T), PROT_READ | PROT_WRITE, MAP_SHARED, fd,
0);

The object holds the file descriptor for the shared memory block and the pointer to the
memory region as its private members. The destructor deallocates them when the object is
being destroyed. If the owner flag is set, we also keep the object name so that we can
remove it:

int fd;
T* ptr;
const char* name;

The SharedMem destructor unmaps the shared memory object from the address space:

 munmap(ptr, sizeof(T));

In the event that the object is the owner, we can remove it using a shm_unlink call. Note
that we do not need the owner flag anymore since the name is set to nullptr, unless the
object is the owner:

 if (name) {
 std::cout << "Remove shared mem instance " << name << std::endl;
 shm_unlink(name);
 }

To access shared data, the class provides a simple get method. It returns a reference to the
object stored in the shared memory:

 T& get() const {
 return *ptr;
 }

Let's create two independent processes that use the shared memory API we created. We use
a POSIX fork function to spawn a child process. The child process will be a data producer
and the parent process will be a data consumer:

 if (fork()) {
 consumer();
 } else {

Memory Management Chapter 6

[159]

 producer();
 }

We define a Payload data type, used by both the producer and the consumer for data
exchange:

 struct Payload {
 uint32_t index;
 uint8_t raw[kPayloadSize];
 };

The data producer creates a SharedMem instance:

 SharedMem<Payload> writer(kSharedMemPath);

It updates the shared object every 150 milliseconds using the reference it received using the
get method. Each time, it increments the index field of the payload and fills its data with
letters of the Latin alphabet that match the index.

The consumer is as simple as the producer. It creates a SharedMem instance with the same
name as the producer, but it claims the ownership of the object. This means that it will be
responsible for its deletion, as shown in the following code:

 SharedMem<Payload> point_reader(kSharedMemPath, true);

Run the application and observe the following output:

Memory Management Chapter 6

[160]

Every 100 milliseconds, the application reads data from the shared object and prints it to
the screen. In the consumer output, we can see that it receives data written by the producer.
Since the duration of the consumer and the producer cycles does not match, we can see that
sometimes the same data is being read twice

An important part of the logic that was intentionally omitted in this example is the
synchronization of the producer and the consumer. Since they run as independent projects,
there is no guarantee that the producer has updated any data by the time the consumer
tries to read it. The following is what we see in the resulting output:

Opened shared mem instance /sample_point
Read data frame 0:
Opened shared mem instance /sample_point

We can see that the consumer opened the shared memory object and read some data before
the producer opened the same object.

Similarly, there is no guarantee that data fields are updated completely by the producer
when the consumer tries to read them. We will discuss this topic in more detail in the next
chapter.

There's more...
Shared memory is a fast and efficient mechanism for inter-process communication by itself,
but it really shines when combined with ring buffers. By placing a ring buffer into shared
memory, developers allow independent data producers and data consumers to exchange
data asynchronously, and with minimal overhead for synchronization.

Using specialized memory
Embedded systems often provide access to their peripheral devices over specific ranges of
memory addresses. When a program accesses an address in such a region, it does not read
or write a value in memory. Instead, data is sent to a device or read from a device mapped
to this address.

This technique is commonly named MMIO (short for memory-mapped input/output). In
this recipe, we will learn how to access peripheral devices of the Raspberry PI using MMIO
from userspace Linux applications.

Memory Management Chapter 6

[161]

How to do it...
The Raspberry PI has a number of peripheral devices that are accessible over MMIO. To
demonstrate how MMIO works, our application will access the system timer:

In your working ~/test directory, create a subdirectory called timer.1.
Use your favorite text editor to create a file named timer.cpp in2.
the timer subdirectory.
Put the required headers, constants, and declarations of types into timer.cpp: 3.

#include <iostream>
#include <chrono>
#include <system_error>
#include <thread>

#include <fcntl.h>
#include <sys/mman.h>

constexpr uint32_t kTimerBase = 0x3F003000;

struct SystemTimer {
 uint32_t CS;
 uint32_t counter_lo;
 uint32_t counter_hi;
};

Add the main function, which contains all the logic of the program:4.

int main() {

 int memfd = open("/dev/mem", O_RDWR | O_SYNC);
 if (memfd < 0) {
 throw std::system_error(errno, std::generic_category(),
 "Failed to open /dev/mem. Make sure you run as root.");
 }

 SystemTimer *timer = (SystemTimer*)mmap(NULL,
sizeof(SystemTimer),
 PROT_READ|PROT_WRITE, MAP_SHARED,
 memfd, kTimerBase);
 if (timer == MAP_FAILED) {
 throw std::system_error(errno, std::generic_category(),
 "Memory mapping failed");
 }

Memory Management Chapter 6

[162]

 uint64_t prev = 0;
 for (int i = 0; i < 10; i++) {
 uint64_t time = ((uint64_t)timer->counter_hi << 32) +
timer->counter_lo;
 std::cout << "System timer: " << time;
 if (i > 0) {
 std::cout << ", diff " << time - prev;
 }
 prev = time;
 std::cout << std::endl;
 std::this_thread::sleep_for(std::chrono::milliseconds(10));
 }
 return 0;
 }

Create a file called CMakeLists.txt in the timer subdirectory with the5.
following content:

cmake_minimum_required(VERSION 3.5.1)
project(timer)
add_executable(timer timer.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")

set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can now build and run the application.6.

Please note that it should be run under root on a real Raspberry PI 3
device.

How it works...
The system timer is a peripheral device that is connected to the processor using an MMIO
interface. This means it has a dedicated range of physical addresses, each of them with a
specific format and purpose.

Our application works with a timer counter represented as two 32-bit values. Combined,
they form a 64-bit read-only counter always incrementing when the system is running.

Memory Management Chapter 6

[163]

For the Raspberry PI 3, a physical memory address range allocated for the system timer has
offset the following —0x3F003000 (it may be different depending on the Raspberry PI
hardware revision). We define it as a constant.

constexpr uint32_t kTimerBase = 0x3F003000;

To access individual fields within the region, we define a SystemTimer struct:

struct SystemTimer {
 uint32_t CS;
 uint32_t counter_lo;
 uint32_t counter_hi;
};

Now, we need to get the pointer to the timer address range and convert it to a pointer
to SystemTimer. This way, we can access the addresses of the counter by reading
the SystemTimer data fields.

There is, however, a problem we need to solve. We know the offset in the physical address
space, but our Linux application works within the virtual address space. We need to find a
way to map physical addresses to virtual addresses.

Linux provides access to physical memory addresses using the special /proc/mem file.
Since it contains a snapshot of all physical memory, it is accessible only by root.

We open it as a regular file using the open function:

int memfd = open("/dev/mem", O_RDWR | O_SYNC);

Once the file is open and we know its descriptor, we can map it into our virtual address
space. We do not need to map the whole physical memory. A region related to the timer is
sufficient; that is why we pass the system timer range start as an offset parameter and the
size of the SystemTimer structure as the size parameter:

SystemTimer *timer = (SystemTimer*)mmap(NULL, sizeof(SystemTimer),
PROT_READ|PROT_WRITE, MAP_SHARED, memfd, kTimerBase);

Now we can access the timer fields. We read the timer counter in the loop and display its
current value and its variance from the preceding value. When we run our application as
root, we get the following output:

Memory Management Chapter 6

[164]

As we can see, reading from this memory address returns increasing values. The value of
the difference is around 10,000 and pretty constant. Since we added a 10-millisecond delay
into the counter read loop, we can infer that the memory address is associated with the
timer, not regular memory, and the timer counter granularity is 1 microsecond.

There's more...
The Raspberry Pi has a number of peripheral devices that are accessible over MMIO. You
can find detailed information about their address ranges and access semantics in
the BCM2835 ARM Peripherals manual, available at https:/ /www. raspberrypi. org/
documentation/hardware/ raspberrypi/ bcm2835/ BCM2835- ARM- Peripherals. pdf

Please note that developers have to be extremely careful when working with memory that
can be accessed by multiple devices simultaneously. When memory is accessible by
multiple processors or multiple cores of the same processor, you may need to use advanced
synchronization techniques such as memory barriers to avoid synchronization issues. We
will discuss some of them in the next chapter. Things become even more complicated if you
use direct memory access (DMA), or MMIO. Since the CPU may be unaware that memory
is changed by external hardware, its cache may be out of sync, leading to data-coherency
issues.

https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf

7
Multithreading and

Synchronization
Embedded platforms span a vast landscape of computing power. There are
microcontrollers with just a few kilobytes of memory; there are powerful systems-on-chip
(SoCs) with gigabytes of memory; there are multi-core CPUs capable of running many
applications at the same time.

With more computational resources available for embedded developers, and more complex
applications they can build on top of them, multithreading support has become very
important. Developers need to know how to parallelize their applications to efficiently
utilize all CPU cores. We will learn how to write applications that can utilize all available
CPU cores in an efficient and safe way.

In this chapter, we will cover the following topics:

Exploring thread support in C++
Exploring data synchronization
Using condition variables
Using atomic variables
Using the C++ memory model
Exploring lock-free synchronization
Using atomic variables in shared memory
Exploring async functions and futures

These recipes can be used as examples of building your own efficient multithreading and
multiprocessing synchronization code.

Multithreading and Synchronization Chapter 7

[166]

Exploring thread support in C++
Prior to C++11, threads were completely out of the scope of C++ as a language. Developers
could use platform-specific libraries, such as pthreads or the Win32 application
programming interface (API). Since each library has its own behavior, porting applications
to another platform required significant development and testing efforts.

C++11 introduced threads as part of the C++ standard and defined a set of classes to create
multithreaded applications in its standard library.

In this recipe, we will learn how to use C++ to spawn multiple concurrent threads in a
single application.

How to do it...
In this recipe, we will learn how to create two worker threads that run concurrently.

In your ~/test working directory, create a subdirectory called threads.1.
Use your favorite text editor to create a threads.cpp file in2.
the threads subdirectory. Copy the code snippet into the threads.cpp file:

#include <chrono>
#include <iostream>
#include <thread>

void worker(int index) {
 for (int i = 0; i < 10; i++) {
 std::cout << "Worker " << index << " begins" << std::endl;
 std::this_thread::sleep_for(std::chrono::milliseconds(50));
 std::cout << "Worker " << index << " ends" << std::endl;
 std::this_thread::sleep_for(std::chrono::milliseconds(1));
 }
}

int main() {
 std::thread worker1(worker, 1);
 std::thread worker2(worker, 2);
 worker1.join();
 worker2.join();
 std::cout << "Done" << std::endl;
}

Multithreading and Synchronization Chapter 7

[167]

Create a file called CMakeLists.txt in the loop subdirectory, with the3.
following content:

cmake_minimum_required(VERSION 3.5.1)
project(threads)
add_executable(threads threads.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
target_link_libraries(threads pthread)

set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can build and run the application.

How it works...
In this application, we defined a function called worker. To keep the code simple, it does
not do much useful work, only printing Worker X starts and Worker X ends 10 times, with
50 milliseconds' delay between the messages.

In the main function, we create two worker threads, worker1 and worker2:

 std::thread worker1(worker, 1);
 std::thread worker2(worker, 2);

We pass two parameters into the thread constructors:

A function that runs in the thread.
A parameter for the function. Since we pass the previously defined worker
function as a thread function, the parameter should match its type—in our case,
it is int.

This way, we defined two worker thread that do the same job but have different indices—1

and 2.

Multithreading and Synchronization Chapter 7

[168]

The threads start running immediately as soon as they are created; there is no need to call
any additional methods to start them. They are executed completely concurrently, as we
can see from the program output:

The output from our worker thread is mixed, and sometimes garbled, such as Worker
Worker 1 ends2 ends. This happens because output to the Terminal is also working
concurrently.

Since worker threads are executed independently, the main thread has nothing to do after
creating the worker thread. However, if the execution of the main thread reaches the end of
the main function, the program terminates. To avoid this, we added calls to
the join method for each of our worker threads. This method blocks until the thread
terminates. This way, we exit the main program only after both of the worker threads
complete their work.

Multithreading and Synchronization Chapter 7

[169]

Exploring data synchronization
Data synchronization is an important aspect of any application that deals with multiple
execution threads. Different threads often need to access the same variables or memory
regions. Writing to the same memory at the same time by two or more independent threads
can result in data corruption. Even reading the variable at the same time when it is being
updated by another thread is dangerous, since it can be only partially updated at the
moment of the read.

To avoid these issues, concurrent threads can use so-called synchronization primitives, the
API that makes access to the shared memory deterministic and predictable.

Similar to the case with thread support, the C++ language did not provide any
synchronization primitives prior to the C++11 standard. Starting with C++11, a number of
synchronization primitives were added into the C++ standard library as part of the
standard.

In this recipe, we will learn how to synchronize access to a variable, using a mutex and a
lock guard.

How to do it...
In the preceding recipe, we learned how to run two worker threads completely
concurrently and noticed that it can lead to garbled output to the Terminal. We are going to
modify the code from the preceding recipe to add synchronization, using a mutex and a
lock guard, and see the difference.

In your ~/test working directory, create a subdirectory called mutex.1.
Use your favorite text editor to create a mutex.cpp file in2.
the mutex subdirectory. Copy the code snippet into the mutex.cpp file:

#include <chrono>
#include <iostream>
#include <mutex>
#include <thread>

std::mutex m;

void worker(int index) {
 for (int i = 0; i < 10; i++) {
 {
 std::lock_guard<std::mutex> g(m);
 std::cout << "Worker " << index << " begins" << std::endl;

Multithreading and Synchronization Chapter 7

[170]

 std::this_thread::sleep_for(std::chrono::milliseconds(50));
 std::cout << "Worker " << index << " ends" << std::endl;
 }
 std::this_thread::sleep_for(std::chrono::milliseconds(1));
 }
}

int main() {
 std::thread worker1(worker, 1);
 std::thread worker2(worker, 2);
 worker1.join();
 worker2.join();
 std::cout << "Done" << std::endl;
}

Create a file called CMakeLists.txt in the loop subdirectory, with the 3.
following content:

cmake_minimum_required(VERSION 3.5.1)
project(mutex)
add_executable(mutex mutex.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
target_link_libraries(mutex pthread)

set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can build and run the application.

How it works...
After we build and run our application, we can see that its output is similar to the output of
the thread application. However, there are also noticeable differences:

Multithreading and Synchronization Chapter 7

[171]

Firstly, the output is not garbled. Secondly, we can see a clear order—no worker is
interrupted by another worker, and each begin is followed by the corresponding end. The
difference lies in the highlighted fragments of the source code. We create a global mutex m:

std::mutex m;

Then, we use lock_guard to protect our critical section of code, which starts from the line
that prints Worker X begins and ends at the line that prints Worker X ends.

lock_guard is a wrapper on top of a mutex that uses an RAII (short for Resource
Acquisition Is Initialization) technique to automatically lock the corresponding mutex in
the constructor when the lock object is defined, and unlock it in the destructor after
reaching the end of its scope. That is why we add extra curly braces to define the scope of
our critical section:

 {
 std::lock_guard<std::mutex> g(m);
 std::cout << "Worker " << index << " begins" << std::endl;
 std::this_thread::sleep_for(std::chrono::milliseconds(50));
 std::cout << "Worker " << index << " ends" << std::endl;
 }

Multithreading and Synchronization Chapter 7

[172]

Though it is possible to lock and unlock the mutex explicitly, by calling its lock and unlock
methods, it is not recommended. Forgetting to unlock a locked mutex leads to
multithreading synchronization issues that are hard to detect and hard to debug. The RAII
approach unlocks mutexes automatically, making code safer, easier to read, and easier to
understand.

There's more...
Proper implementation of thread synchronization requires a lot of attention to detail and
thorough analysis. A very common problem in multithreaded applications is a deadlock.
This is a situation whereby a thread is blocked because it is waiting for another thread that,
in turn, is blocked because it is waiting for the first thread. As a result, two threads are
blocked infinitely.

A deadlock occurs if two or more mutexes are required for synchronization. C++17
introduced std::scoped_lock, available at https:/ /en.cppreference. com/ w/cpp/ thread/
scoped_lock an RAII wrapper for multiple mutexes that helps to avoid deadlocks.

Using condition variables
We learned how to synchronize simultaneous access to the same variable from two or more
threads. The particular order in which threads accessed the variable was not important; we
only prevented simultaneous reads and writes to the variable.

A thread waiting for another thread to start processing data is a common scenario. In this
case, the second thread should be notified by the first thread when the data is available. It
can be done using condition variables, supported by C++, starting from the C++11 standard.

In this recipe, we will learn how to use condition variables to activate data processing in a
separate thread as soon as the data is available.

How to do it...
We are going to implement an application with two worker threads, similar to the
application we created in the Exploring data synchronization recipe.

In your ~/test working directory, create a subdirectory called condvar.1.
Use your favorite text editor to create a condv.cpp file in2.
the condvar subdirectory.

https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/scoped_lock

Multithreading and Synchronization Chapter 7

[173]

Now, we put the required headers and define global variables in condvar.cpp: 3.

#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread>
#include <vector>

std::mutex m;
std::condition_variable cv;
std::vector<int> result;
int next = 0;

After the global variables are defined, we add our worker function, which is4.
similar to the worker function from the preceding recipes:

void worker(int index) {
 for (int i = 0; i < 10; i++) {
 std::unique_lock<std::mutex> l(m);
 cv.wait(l, [=]{return next == index; });
 std::cout << "worker " << index << "\n";
 result.push_back(index);
 next = next + 1;
 if (next > 2) { next = 1; };
 cv.notify_all();
 }
}

Finally, we define our entry point—the main function:5.

int main() {
 std::thread worker1(worker, 1);
 std::thread worker2(worker, 2);
 {
 std::lock_guard<std::mutex> l(m);
 next = 1;
 }
 std::cout << "Start\n";
 cv.notify_all();
 worker1.join();
 worker2.join();
 for (int e : result) {
 std::cout << e << ' ';
 }
 std::cout << std::endl;
}

Multithreading and Synchronization Chapter 7

[174]

Create a file called CMakeLists.txt in the loop subdirectory, with the 6.
following content:

cmake_minimum_required(VERSION 3.5.1)
cmake_minimum_required(VERSION 3.5.1)
project(condvar)
add_executable(condvar condvar.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
target_link_libraries(condvar pthread)

set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can build and run the application.

How it works...
Similarly to the application that we created in the Exploring data synchronization recipe, we
create two worker threads, worker1 and worker2, that use the same worker function
thread and differ only by the index parameter.

Besides printing messages to the console, the worker thread update a global vector result.
Each worker just adds its index into the result variable in its loop, as shown in the
following command:

std::vector<int> result;

We want each worker to add its index to the result only on its turn— worker 1, then
worker 2, then worker 1 again, and so on. It is not possible to do this without
synchronization; however, simple synchronization using mutexes is not sufficient. It can
guarantee that two concurrent threads will not access the same critical section of the code at
the same time, but cannot guarantee the order. It is possible that worker 1 will lock the
mutex again before worker 2 locks it.

To solve the ordering problem, we define a cv condition variable and a next integer
variable:

std::condition_variable cv;
int next = 0;

Multithreading and Synchronization Chapter 7

[175]

The next variable contains an index of the worker. It is initialized with 0 and set to a
specific worker index in the main function. Since this variable is accessed from multiple
threads, we do it under the protection of the lock guard:

 {
 std::lock_guard<std::mutex> l(m);
 next = 1;
 }

Though the worker threads start executing after their creation, both of them are
immediately blocked on the condition variables, waiting until the value of the next
variable matches their index. Condition variables need std::unique_lock for waiting.
We create it right before calling the wait method:

std::unique_lock<std::mutex> l(m);
cv.wait(l, [=]{return next == index; });

Though the condition variable cv was set to 1 in the main function, it is not enough. We
need to explicitly notify threads waiting on the condition variable. We do this using
the notify_all method:

cv.notify_all();

This wakes up all waiting threads, and they compare their index against the next variable.
The matching thread unblocks, and all other threads go to sleep again.

The active thread writes a message to the console and updates the result variable. Then, it
updates the next variable to choose a thread that will be activated next. We increment the
index until it reaches the maximum value, then reset it to 1:

next = next + 1;
if (next > 2) { next = 1; };

Similar to the case with the code in the main function, after the index of the next thread is
decided, we need to invoke notify_all to wake all threads up and let them decide whose
turn it is to work:

cv.notify_all();

While the worker threads work, the main function waits for their completion:

 worker1.join();
 worker2.join();

Multithreading and Synchronization Chapter 7

[176]

When all worker threads complete, the value of the result variable is printed:

 for (int e : result) {
 std::cout << e << ' ';
 }

After we build and run our program, we get the following output:

As we can see, all threads were activated in the expected order.

There's more...
In this recipe, we only used a few methods provided by the condition variable object.
Besides the simple wait function, there are functions for waiting for a specific time or
waiting until a specified time point is reached. Learn more about the C++ condition variable
class at its https:// en. cppreference. com/ w/cpp/ thread/ condition_ variable reference
page.

https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable

Multithreading and Synchronization Chapter 7

[177]

Using atomic variables
Atomic variables are named as such because they cannot be read or written partially.
Compare, for example, the Point and int data types:

struct Point {
 int x, y;
};

Point p{0, 0};
int b = 0;

p = {10, 10};
b = 10;

In this example, modification of the p variable is equivalent to two assignments:

p.x = 10;
p.y = 10;

This means that any concurrent thread reading the p variable can get partially modified
data, such as x=10, y=0, which can lead to incorrect calculations that are hard to detect and
hard to reproduce. That is why access to such data types should be synchronized.

How about the b variable? Can it be modified partially? The answer is: yes, depending on
the platform. However, C++ provides a set of data types and templates to ensure that a
variable changes all at once, as a whole, atomically.

In this recipe, we will learn how to use atomic variables for the synchronization of multiple
threads. Since atomic variables cannot be modified partially, there is no need to use
mutexes or other expensive synchronization primitives.

How to do it...
We will create an application that spawns two worker threads to concurrently update an
array of data. Instead of mutexes, we will use atomic variables to make sure the concurrent
updates are safe.

In your ~/test working directory, create a subdirectory called atomic.1.
Use your favorite text editor to create an atomic.cpp file in2.
the atomic subdirectory.

Multithreading and Synchronization Chapter 7

[178]

Now, we put the required headers, and define global variables in atomic.cpp: 3.

#include <atomic>
#include <chrono>
#include <iostream>
#include <thread>
#include <vector>

std::atomic<size_t> shared_index{0};
std::vector<int> data;

After global variables are defined, we add our worker function. It resembles4.
the worker function from the preceding recipes, but besides an index, it has an
additional parameter—timeout:

void worker(int index, int timeout) {
 while(true) {
 size_t worker_index = shared_index.fetch_add(1);
 if (worker_index >= data.size()) {
 break;
 }
 std::cout << "Worker " << index << " handles "
 << worker_index << std::endl;
 data[worker_index] = data[worker_index] * 2;
std::this_thread::sleep_for(std::chrono::milliseconds(timeout));
 }
 }

Finally, we define our entry point— the main function: 5.

int main() {
 for (int i = 0; i < 10; i++) {
 data.emplace_back(i);
 }
 std::thread worker1(worker, 1, 50);
 std::thread worker2(worker, 2, 20);
 worker1.join();
 worker2.join();
 std::cout << "Result: ";
 for (auto& v : data) {
 std::cout << v << ' ';
 }
 std::cout << std::endl;
}

Multithreading and Synchronization Chapter 7

[179]

Create a file called CMakeLists.txt in the loop subdirectory, with the6.
following content:

cmake_minimum_required(VERSION 3.5.1)
project(atomic)
add_executable(atomic atomic.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
target_link_libraries(atomic pthread)

set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can build and run the application.

How it works...
We are creating an application that updates all elements of an array using multiple worker
threads. For expensive update operations, this approach can result in substantial
performance gains on a multi-core platform.

The difficulty is sharing the work between multiple worker threads, given that each of
them may require a different amount of time to process a data element.

We use a shared_index atomic variable to store an index of the next element that has not
yet been claimed by any of the worker threads. This variable, along with the array to be
processed, is declared as a global variable:

std::atomic<size_t> shared_index{0};
std::vector<int> data;

Our worker function resembles the worker function from earlier recipes but has important
differences. Firstly, it has an additional parameter, timeout. This is used to simulate
differences in the time required to process each element.

Secondly, instead of a fixed number of iterations, our worker threads run in a loop until the
shared_index variable reaches the maximum value. This indicates that all elements were
processed, and the worker can terminate.

On each iteration, a worker reads the value of shared_index. If there are elements to
process, it stores the value of the shared_index variable in a
local worker_index variable and increments the shared_index variable at the same time.

Multithreading and Synchronization Chapter 7

[180]

Though it is possible to use an atomic variable in the same way as a regular variable—first,
get its current value, and then increment the variable—it can lead to a race condition. Both
worker threads can read the variable at almost the same time. In this case, both of them get
the same value, then start processing the same element, interfering with each other. That is
why we use a special method, fetch_add, which increments the variable and returns the
value it had before the increment as a single, non-interruptible action:

size_t worker_index = shared_index.fetch_add(1);

If the worker_index variable reaches the size of the array, it means that all elements were
processed, and the worker can terminate:

if (worker_index >= data.size()) {
 break;
}

If the worker_index variable is valid, it is used by the worker to update the value of the
array element by this index. In our case, we just multiply it by 2:

data[worker_index] = data[worker_index] * 2;

To simulate expensive data operation, we use a custom delay. The duration of the delay is
determined by the timeout parameter:

std::this_thread::sleep_for(std::chrono::milliseconds(timeout));

In the main function, we add elements to process into the data vector. We use a loop to
populate the vector with numbers from zero to nine:

for (int i = 0; i < 10; i++) {
 data.emplace_back(i);
}

After the initial dataset is ready, we create two worker threads, providing the index and
the timeout parameters. Different timeouts of the worker thread are used to simulate
different performances:

 std::thread worker1(worker, 1, 50);
 std::thread worker2(worker, 2, 20);

Then, we wait till both worker threads complete their jobs, and print the result to the
console. When we build and run our application, we get the following output:

Multithreading and Synchronization Chapter 7

[181]

As we can see, Worker 2 has processed more elements than Worker 1 because its timeout
was 20 milliseconds, compared to the 50 milliseconds of Worker 1. Also, all elements were
processed without omissions and repetitions, as intended.

There's more...
We learned how to work with integer atomic variables. Though this type of atomic variable
is the most commonly used, C++ allows atomic variables of other types to be defined as
well, including non-integral types, given that they are trivially copyable, copy constructible,
and copy assignable.

Besides the fetch_add method we used in our example, atomic variables have other
similar methods that help developers to query the value and modify the variable in a single
operation. Consider using these methods to avoid race conditions or expensive
synchronization using mutexes.

In C++20, atomic variables receive wait, notify_all, and notify_one methods, similar
to the methods of condition variables. They allow implementation of the logic that
previously required condition variables by using much more efficient and lightweight
atomic variables.

More information about atomic variables can be found at https:/ / en.cppreference. com/
w/cpp/atomic/atomic.

https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic

Multithreading and Synchronization Chapter 7

[182]

Using the C++ memory model
Beginning with the C++11 standard, C++ defined an API and primitives for threads and
synchronization as part of the language. Memory synchronization in a system that has
multiple processor cores is complicated because modern processors can optimize code
execution by reordering instructions. Even when using atomic variables, there is no
guarantee that the data is modified or accessed in the desired order, since the order can be
changed by a compiler.

To avoid ambiguity, C++11 introduced the memory model, defining the behavior of the
concurrent access to the memory region. As part of the memory model, C++ defined the
std::memory_order enum, which gives hints to a compiler regarding the intended model
of access. This helps the compiler to optimize the code in a way that does not interfere with
the intended code behavior.

In this recipe, we will learn how to use the simplest form of
the std::memory_order enum to implement a shared counter variable.

How to do it...
We are implementing an application that has a shared counter that is incremented by two
concurrent worker threads.

In your ~/test working directory, create a subdirectory called memorder.1.
Use your favorite text editor to create a memorder.cpp file in2.
the atomic subdirectory.
Now, we put the required headers and define global variables3.
in memorder.cpp:

#include <atomic>
#include <chrono>
#include <iostream>
#include <thread>
#include <vector>

std::atomic<bool> running{true};
std::atomic<int> counter{0};

Multithreading and Synchronization Chapter 7

[183]

After global variables are defined, we add our worker function. The function4.
only increments a counter, and then sleeps for a specific time interval:

void worker() {
 while(running) {
 counter.fetch_add(1, std::memory_order_relaxed);
 }
 }

Then, we define our main function:5.

int main() {
 std::thread worker1(worker);
 std::thread worker2(worker);
 std::this_thread::sleep_for(std::chrono::seconds(1));
 running = false;
 worker1.join();
 worker2.join();
 std::cout << "Counter: " << counter << std::endl;
}

Create a file called CMakeLists.txt in the loop subdirectory, with the6.
following content:

cmake_minimum_required(VERSION 3.5.1)
project(memorder)
add_executable(memorder memorder.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
target_link_libraries(memorder pthread)

set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can build and run the application.

How it works...
In our application, we are going to create two worker threads that will increment a shared
counter, and let them run for a specific amount of time.

Multithreading and Synchronization Chapter 7

[184]

As a first step, we define two global atomic variables, running and counter:

std::atomic<bool> running{true};
std::atomic<int> counter{0};

The running variable is a binary flag. When it is set to true, the worker threads should
keep running. After it changes to false, the worker threads should terminate.

The counter variable is our shared counter. The worker threads will concurrently
increment it. We use the fetch_add method that we already used in the Using atomic
variables recipe. It is used to increment a variable atomically. In this recipe, we pass an
additional argument, std::memory_order_relaxed, to this method:

counter.fetch_add(1, std::memory_order_relaxed);

This argument is a hint. While consistency in atomicity and modification is important and
should be guaranteed for an implementation of a counter, the order among concurrent
memory accesses is not that important. std::memory_order_relaxed defines this kind of
memory access for atomic variables. Passing it into the fetch_add method allows us to
fine-tune it for a particular target platform, to avoid unneeded synchronization delays that
can affect performance.

In the main function, we create two worker threads:

std::thread worker1(worker);
std::thread worker2(worker);

Then, the main thread is paused for 1 second. After the pause, the main thread sets the
value of the running variable to false, indicating that the worker threads should
terminate:

running = false;

After the worker threads terminate, we print the value of the counter:

Multithreading and Synchronization Chapter 7

[185]

The resulting counter value is determined by the timeout intervals passed to the worker
functions. Changing the type of memory order in the fetch_add method does not result in
a noticeable change in the resulting value in our example. However, it can result in the
better performance of highly concurrent applications that use atomic variables, because a
compiler can reorder operations in concurrent threads without breaking the application
logic. This kind of optimization is highly dependent on a developer's intents, and cannot be
inferred automatically without hints from the developer.

There's more...
The C++ memory model and memory ordering types are complex topics that require a deep
understanding of how modern CPUs access memory and optimize their code
execution. C++ Memory Model reference , https:/ /en.cppreference. com/ w/cpp/ language/
memory_model provides lots of information and is a good starting point to learn advanced
techniques for the optimization of multithreaded applications.

Exploring lock-free synchronization
In the preceding recipes, we learned how to synchronize access of multiple threads to
shared data, using mutexes and locks. If several threads try to run critical sections of the
code protected by a lock, only one thread at a time can do it. All other threads have to wait
until that thread leaves the critical section.

In some cases, however, it is possible to synchronize access to shared data without mutexes
and explicit locks. The idea is to use a local copy of data for modification, and then update
the shared copy in a single, uninterruptible, and undividable operation.

This type of synchronization depends on the hardware. Target processors should provide
some form of Compare And Swap (CAS) instruction. This checks whether the value in a
memory location matches a given value, and replaces it with a new given value only if they
match. Since it is a single-processor instruction, it cannot be interrupted by a context switch.
This makes it a basic building block for more complex atomic operations.

In this recipe, we will learn how to check whether an atomic variable is lock-free or
implemented using mutexes or other locking operations. We will also implement a lock-
free push operation for a custom stack, based on the example for the atomic compare-
exchange family of functions for C++11, available at https:/ /en. cppreference. com/w/ cpp/
atomic/atomic_compare_ exchange

https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/language/memory_model
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange

Multithreading and Synchronization Chapter 7

[186]

How to do it...
We are implementing a simple Stack class that provides a constructor and a function
named Push.

In your ~/test working directory, create a subdirectory called lockfree.1.
Use your favorite text editor to create a lockfree.cpp file in2.
the lockfree subdirectory.
Now, we put in the required headers, and define a Node helper data type in3.
the lockfree.cpp file:

#include <atomic>
#include <iostream>

struct Node {
 int data;
 Node* next;
};

Next, we define a simple Stack class. This uses the Node data type to organize4.
data storage:

class Stack {
 std::atomic<Node*> head;

 public:
 Stack() {
 std::cout << "Stack is " <<
 (head.is_lock_free() ? "" : "not ")
 << "lock-free" << std::endl;
 }

 void Push(int data) {
 Node* new_node = new Node{data, nullptr};
 new_node->next = head.load();
 while(!std::atomic_compare_exchange_weak(
 &head,
 &new_node->next,
 new_node));
 }
 };

Multithreading and Synchronization Chapter 7

[187]

Finally, we define a simple main function that creates an instance of Stack and5.
pushes an element into it:

int main() {
 Stack s;
 s.Push(1);
}

Create a file called CMakeLists.txt in the loop subdirectory, with the6.
following content:

cmake_minimum_required(VERSION 3.5.1)
project(lockfree)
add_executable(lockfree lockfree.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
target_link_libraries(lockfree pthread)

set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can build and run the application.

How it works...
We created a simple application that implements a simple stack of integer values. We store
elements of the stack in dynamic memory, and for each element, we should be able to
determine the elements that follow it.

For this purpose, we define a Node helper structure that has two data fields. The data field
stores the actual value of an element, while the next field is a pointer to the next element in
the stack:

int data;
Node* next;

Then, we define the Stack class. Normally, a stack implies two operations:

Push: to place an element on top of the stack
Pull: to fetch an element from the top of the stack

Multithreading and Synchronization Chapter 7

[188]

To track the top of the stack, we create a top variable that holds a pointer to the Node
object. It will be the top of our stack:

std::atomic<Node*> head;

We also define a simple constructor that initializes the value of our top variable and checks
whether it is lock-free or not. In C++, atomic variables can be implemented using atomic
Consistency, Availability, and Partition tolerance (CAP) operations or using regular
mutexes. It depends on the target CPU:

(head.is_lock_free() ? "" : "not ")

In our application, we implement only the Push method, to demonstrate how it can be
done in a lock-free way.

The Push method accepts a value to put on top of the stack. To do this, we create a new
instance of the Node object:

 Node* new_node = new Node{data, nullptr};

Since we put the element on the top of the stack, the pointer to the newly created instance
should be assigned to the top variable, and the old value of the top variable should be
assigned to the next pointer of our new Node object.

However, doing it directly is not thread-safe. Two or more threads can modify the top
variable simultaneously, causing data corruption. We need some kind of data
synchronization. We can do this using locks and mutexes, but it is also possible to do it in a
lock-free way.

That is why we initially update only the next pointer. Since our new Node object is not yet
part of the stack, we can do it without synchronization, since other threads do not have
access to it:

new_node->next = head.load();

Now, we need to add it as a new top variable of the stack. We do this using a loop over
the std::atomic_compare_exchange_weak function:

 while(!std::atomic_compare_exchange_weak(
 &head,
 &new_node->next,
 new_node));

Multithreading and Synchronization Chapter 7

[189]

This function compares the value of the top variable to the value stored in the next pointer
of the new element. If they match, it replaces the value of the top variable with the pointer
to the new node and returns true. Otherwise, it writes the value of the top variable into
the next pointer of the new element and returns false. Since we updated the next pointer
to match the top variable on the next step, this can only happen if another thread modified
it before the std::atomic_compare_exchange_weak function was invoked. Eventually,
the function will return true, indicating that the top header is updated with the pointer to
our element.

The main function creates an instance of stack and pushes one element to it. In the output,
we can see if the underlying implementation is lock-free or not:

For our target, the implementation is lock-free.

There's more...
Lock-free synchronization is an extremely complex topic. The development of lock-free
data structures and algorithms requires lots of effort. Even the implementation of simple
Push logic using lock-free operations is not easy to understand. An even larger effort is
needed for proper analysis and debugging of your code. Often, it can lead to subtle issues
that are hard to notice and hard to implement.

Though the implementation of a lock-free algorithm can improve the performance of your
application, consider using one of the existing libraries of lock-free data structures instead
of writing of your own. For example, Boost.Lockfree provides a collection of lock-free data
types for you to use.

Using atomic variables in shared memory
We learned how to use atomic variables for the synchronization of two or more threads in a
multithreaded application. However, atomic variables can also be used to synchronize
independent applications that run as separate processes.

https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html

Multithreading and Synchronization Chapter 7

[190]

We already know how to use shared memory for exchanging data between two
applications. Now, we can combine these two techniques—shared memory and atomic
variables—to implement both the data exchange and synchronization of two independent
applications.

How to do it...
In this recipe, we will modify an application we created in Chapter 6, Memory
Management, for exchanging data between two processors using a shared memory region.

In your ~/test working directory, create a subdirectory called shmatomic.1.
Use your favorite text editor to create a shmatomic.cpp file in2.
the shmatomic subdirectory.
We reuse the shared memory data structure we created in the shmem application.3.
Put the common headers and constants into the shmatomic.cpp file:

#include <atomic>
#include <iostream>
#include <chrono>
#include <thread>

#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>

const char* kSharedMemPath = "/sample_point";

Next, start defining the templated SharedMem class:4.

template<class T>
class SharedMem {
 int fd;
 T* ptr;
 const char* name;

 public:

The class will have a constructor, a destructor, and a getter method. Let's add the5.
constructor:

 SharedMem(const char* name, bool owner=false) {
 fd = shm_open(name, O_RDWR | O_CREAT, 0600);
 if (fd == -1) {
 throw std::runtime_error("Failed to open a shared

Multithreading and Synchronization Chapter 7

[191]

 memory region");
 }
 if (ftruncate(fd, sizeof(T)) < 0) {
 close(fd);
 throw std::runtime_error("Failed to set size of a shared
 memory region");
 };
 ptr = (T*)mmap(nullptr, sizeof(T), PROT_READ | PROT_WRITE,
 MAP_SHARED, fd, 0);
 if (!ptr) {
 close(fd);
 throw std::runtime_error("Failed to mmap a shared memory
 region");
 }
 this->name = owner ? name : nullptr;
 }

The simple destructor and the getter follow:6.

~SharedMem() {
munmap(ptr, sizeof(T));
close(fd);
if (name) {
std::cout << "Remove shared mem instance " << name << std::endl;
shm_unlink(name);
}
}

T& get() const {
return *ptr;
}
};

Now, we define the data type we will use for data exchange and synchronization:7.

struct Payload {
std::atomic_bool data_ready;
std::atomic_bool data_processed;
int index;
};

Multithreading and Synchronization Chapter 7

[192]

Next, we define a function that will generate data:8.

void producer() {
 SharedMem<Payload> writer(kSharedMemPath);
 Payload& pw = writer.get();
if (!pw.data_ready.is_lock_free()) {
throw std::runtime_error("Flag is not lock-free");
 }
for (int i = 0; i < 10; i++) {
pw.data_processed.store(false);
pw.index = i;
 pw.data_ready.store(true);
while(!pw.data_processed.load());
}
}

It is followed by the function that consumes the data:9.

void consumer() {
SharedMem<Payload> point_reader(kSharedMemPath, true);
Payload& pr = point_reader.get();
if (!pr.data_ready.is_lock_free()) {
throw std::runtime_error("Flag is not lock-free");
}
for (int i = 0; i < 10; i++) {
 while(!pr.data_ready.load());
 pr.data_ready.store(false);
std::cout << "Processing data chunk " << pr.index << std::endl;
 pr.data_processed.store(true);
}
}

Finally, we add our main function, which ties everything together:10.

int main() {

if (fork()) {
 consumer();
} else {
 producer();
}
}

Create a file called CMakeLists.txt in the loop subdirectory, with the11.
following content:

cmake_minimum_required(VERSION 3.5.1)
project(shmatomic)

Multithreading and Synchronization Chapter 7

[193]

add_executable(shmatomic shmatomic.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
target_link_libraries(shmatomic pthread rt)

set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can build and run the application.

How it works...
In our application, we reuse the templated SharedMem class we introduced in Chapter
6, Memory Management. This class is used to store an element of a specific type in a shared
memory region. Let's quickly recap how it works.

The SharedMem class is a wrapper on top of the Portable Operating System Interface
(POSIX) shared memory API. It defines three private data fields to hold system-specific
handlers and pointers, and exposes a public interface consisting of two functions:

A constructor function that accepts the name of a shared region and the
ownership flag
A get method that returns a reference to the object stored in shared memory

The class also defines a destructor that performs all operations needed to properly close the
shared object. As a result, the SharedMem class can be used for safe resource management
using the C++ RAII idiom.

The SharedMem class is a templated class. It is parameterized by the data type we want to
store in the shared memory. For this purpose, we define a structure called Payload:

struct Payload {
 std::atomic_bool data_ready;
 std::atomic_bool data_processed;
 int index;
};

It has an index integer variable that we are going to use as a data exchange field, and two
atomic Boolean flags, data_ready and data_processed, that are used for data
synchronization.

Multithreading and Synchronization Chapter 7

[194]

We also define two functions, producer and consumer, that will work in separate
processes and exchange data between each other using a shared memory region.

The producer function is producing data chunks. Firstly, it creates an instance of the
SharedMem class, parametrized by the Payload data type. It passes a path to the shared
memory region to the SharedMem constructor:

SharedMem<Payload> writer(kSharedMemPath);

After the shared memory instance is created, it gets the reference to the payload data stored
there and checks whether any of the atomic flags we defined in the Payload data type are
lock-free:

if (!pw.data_ready.is_lock_free()) {
 throw std::runtime_error("Flag is not lock-free");
}

The function produces 10 chunks of data in a loop. An index of the chunk is put into the
index field of the payload:

pw.index = i;

However, besides putting the data into shared memory, we need to synchronize access to
this data. This is when we use our atomic flags.

For each iteration, before updating the index field, we reset the data_processed flag.
After the index is updated, we set the data ready flag, which is an indicator to the
consumer that a new chunk of data is ready, and wait till the data is processed by the
consumer. We loop until the data_processed flag becomes true, and then go to the next
iteration:

pw.data_ready.store(true);
while(!pw.data_processed.load());

The consumer function works in a similar way. Since it works in a separate process, it
opens the same shared memory region by creating an instance of the SharedMem class
using the same path. We also make the consumer function the owner of the shared
memory instance. It means it is responsible for removing the shared memory region after
its instance of SharedMem is destroyed:

SharedMem<Payload> point_reader(kSharedMemPath, true);

Similarly to the producer function, the consumer function checks whether an atomic flag
is lock-free, and enters the loop of data consumption.

Multithreading and Synchronization Chapter 7

[195]

For each iteration, it waits in a tight loop until the data is ready:

while(!pr.data_ready.load());

After the producer function sets the data_ready flag to true, the consumer function can
safely read and process data. In our implementation, it only prints the index field to the
console. After the data is processed, the consumer function indicates this by setting the
data_processed flag to true:

pr.data_processed.store(true);

This triggers the next iteration of data production on the producer function side:

As a result, we can see a deterministic output of processed data chunks, with no omissions
or duplications; this is common in cases where data access is not synchronized.

Exploring async functions and futures
Dealing with data synchronization in multithreaded applications is hard, error-prone, and
requires developers to write a lot of code to properly align data exchange and data
notifications. In order to simplify development, C++11 introduced a standard API for
writing asynchronous code in a way that resembles regular synchronous function calls and
hides lots of the synchronization complexities under the hood.

Multithreading and Synchronization Chapter 7

[196]

In this recipe, we will learn how to use asynchronous function invocations and futures to
run our code in multiple threads with virtually no extra effort, for data synchronization.

How to do it...
We will implement a simple application that invokes a long-running function in a separate
thread and waits for its result. While the function is running, the application can keep
working on other calculations.

In your ~/test working directory, create a subdirectory called async.1.
Use your favorite text editor to create an async.cpp file in2.
the async subdirectory.
Put the code of our application into the async.cpp file, starting from the3.
common headers and our long-running function:

#include <chrono>
#include <future>
#include <iostream>

int calculate (int x) {
 auto start = std::chrono::system_clock::now();
 std::cout << "Start calculation\n";
 std::this_thread::sleep_for(std::chrono::seconds(1));
 auto delta = std::chrono::system_clock::now() - start;
 auto ms =
std::chrono::duration_cast<std::chrono::milliseconds>(delta);
 std::cout << "Done in " << ms.count() << " ms\n";
 return x*x;
}

Next, add the test function, which invokes the long-running function:4.

void test(int value, int worktime) {
 std::cout << "Request result of calculations for " << value <<
std::endl;
 std::future<int> fut = std::async (calculate, value);
 std::cout << "Keep working for " << worktime << " ms" <<
std::endl;
 std::this_thread::sleep_for(std::chrono::milliseconds(worktime));
 auto start = std::chrono::system_clock::now();
 std::cout << "Waiting for result" << std::endl;
 int result = fut.get();
 auto delta = std::chrono::system_clock::now() - start;
 auto ms =

Multithreading and Synchronization Chapter 7

[197]

std::chrono::duration_cast<std::chrono::milliseconds>(delta);

 std::cout << "Result is " << result
 << ", waited for " << ms.count() << " ms"
 << std::endl << std::endl;
}

Finally, add a main minimalistic function:5.

int main ()
{
 test(5, 400);
 test(8, 1200);
 return 0;
}

Create a file called CMakeLists.txt in the loop subdirectory, with the6.
following content:

cmake_minimum_required(VERSION 3.5.1)
project(async)
add_executable(async async.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++14")
target_link_libraries(async pthread -static-libstdc++)

set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can build and run the application.

How it works...
In our application, we defined a calculate function that should take a long time to run.
Technically, our function calculates the square of an integer argument, but we added an
artificial delay to make it run for 1 second. We use a sleep_for standard library function
to add a delay to the application:

std::this_thread::sleep_for(std::chrono::seconds(1));

Besides calculations, the function logs to the console when it started working, when it
completed, and how much time it took.

Multithreading and Synchronization Chapter 7

[198]

Next, we defined a test function that invokes the calculate function, to demonstrate
how asynchronous invocation works.

The function has two parameters. The first parameter is a value that is passed to the
calculate function. The second parameter is the amount of time the test function is
going to spend after running the calculate function and before requesting the result. This
way, we model the useful work the function can perform in parallel to the calculations it
requested.

The test function starts working by running the calculate function in asynchronous
mode and passing it the first parameter, value:

std::future<int> fut = std::async (calculate, value);

The async function implicitly spawns a thread and starts the execution of
the calculate function.

Since we run the function asynchronously, the result is not yet ready. Instead,
the async function returns an instance of std::future, an object that will hold the result
when it is available.

Next, we simulate the useful work. In our case, it is the pause for the specified interval of
time. After the work that can be done in parallel is completed, we need to get the result of
the calculate function to proceed. To request the result, we use the get method of our
std::future object, as shown:

int result = fut.get();

The get method blocks until the result is available. Then, we can calculate the amount of
time we have spent waiting for the result, and output the result—along with the wait
time—to the console.

In the main function, we run the test function to evaluate two scenarios:

The useful work takes less time than the calculation of the result.
The useful work takes more time than the calculation of the result.

Running the application produces the following output.

In the first scenario, we can see that we are starting the calculations, and then started
waiting for the result before the calculation has been completed. As a result,
the get method blocked for 600 milliseconds until the result was ready:

Multithreading and Synchronization Chapter 7

[199]

In the second scenario, the useful work took 1200 milliseconds. As we can see, the
calculation has been done before the result was requested, and because of that,
the get method did not block, and immediately returned the result.

There's more...
Futures and async functions provide a powerful mechanism for writing parallel and
understandable code. Async functions are flexible and support different execution policies.
Promises are another mechanism that enables developers to overcome the complexities of
asynchronous programming. More information can be found in the reference pages for
std::future at [https:/ /en. cppreference. com/ w/cpp/ thread/ future], std::promise
at [https://en.cppreference. com/ w/ cpp/ thread/ promise], and std::async at [https:/ /
en.cppreference.com/ w/ cpp/ thread/ async].

https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/async
https://en.cppreference.com/w/cpp/thread/async

8
Communication and

Serialization
Complex embedded systems are rarely composed of a single application. Having all the
logic in the same application is brittle, error-prone, and sometimes hardly feasible because
different functions of the system may be developed by different teams and even different
vendors. That is why isolating the logic of the functions in standalone applications and
communicating with each other using a well-defined protocol is a common approach used
to scale embedded software. In addition, this kind of isolation can be used with minimal
modifications to communicate with applications hosted on remote systems, making it even
more scalable. We will learn how to build robust and scalable applications by splitting their
logic into independent components that communicate with each other.

In this chapter, we will cover the following topics:

Using inter-process communication in applications
Exploring the mechanisms of inter-process communication
Learning about message queue and publisher-subscriber models
Using C++ lambdas for callbacks
Exploring data serialization
Using the FlatBuffers library

The recipes in this chapter will help you understand the basic concepts of scalable and
platform-independent data exchange. They can be used to implement data transfer from an
embedded system to the cloud or to a remote backend, or to design an embedded system
using microservice architecture.

Communication and Serialization Chapter 8

[201]

Using inter-process communication in
applications
Most modern operating systems use memory virtualization support provided by the
underlying hardware platform to isolate application processes from each other.

Each process has its own virtual address space that is completely independent of the
address spaces of other applications. This provides huge benefits to developers. Since the
address processes of applications are independent, an application cannot accidentally
corrupt the memory of another application. As a result, a failure in one application does not
affect the whole system. Since all the other applications keep working, the system can
recover by restarting the failing application.

The benefits of memory isolation come at a cost. Since one process cannot access the
memory of another, it needs to use a dedicated Application Program Interface (API) for
data exchange, or inter-process communication (IPC), which is provided by the operating
system.

In this recipe, we will learn how to exchange information between two processes using
shared files. It may not be the most performance-efficient mechanism, but it is ubiquitous,
easy to use, and good enough for various practical use cases.

How to do it...
In this recipe, we will create a sample application that creates two processes. One process
generates data while another reads the data and prints it to the console:

In your working directory (~/test), create a subdirectory called ipc1.1.
Use your favorite text editor to create an ipc1.cpp file in the ipc1 subdirectory.2.
We are going to define two templated classes to organize our data exchange. The3.
first class, Writer, is used to write data into a file. Let's put its definition in the
ipc1.cpp file:

#include <fstream>
#include <iostream>
#include <thread>
#include <vector>

#include <unistd.h>

std::string kSharedFile = "/tmp/test.bin";

Communication and Serialization Chapter 8

[202]

template<class T>
class Writer {
 private:
 std::ofstream out;
 public:
 Writer(std::string& name):
 out(name, std::ofstream::binary) {}

 void Write(const T& data) {
 out.write(reinterpret_cast<const char*>(&data), sizeof(T));
 }
};

This is followed by the definition of the Reader class, which is responsible for4.
reading data from a file:

template<class T>
class Reader {
 private:
 std::ifstream in;
 public:
 Reader(std::string& name) {
 for(int count=10; count && !in.is_open(); count--) {
 in.open(name, std::ifstream::binary);
 std::this_thread::sleep_for(std::chrono::milliseconds(10));
 }
 }

 T Read() {
 int count = 10;
 for (;count && in.eof(); count--) {
 std::this_thread::sleep_for(std::chrono::milliseconds(10));
 }

 T data;
 in.read(reinterpret_cast<char*>(&data), sizeof(data));
 if (!in) {
 throw std::runtime_error("Failed to read a message");
 }
 return data;
 }
};

Communication and Serialization Chapter 8

[203]

Next, we define the data type that we will use for our data:5.

struct Message {
 int x, y;
};

std::ostream& operator<<(std::ostream& o, const Message& m) {
 o << "(x=" << m.x << ", y=" << m.y << ")";
}

To wrap everything together, we define the DoWrites and DoReads functions, as6.
well as the main function that invokes them:

void DoWrites() {
 std::vector<Message> messages {{1, 0}, {0, 1}, {1, 1}, {0, 0}};
 Writer<Message> writer(kSharedFile);
 for (const auto& m : messages) {
 std::cout << "Write " << m << std::endl;
 writer.Write(m);
 }
}

void DoReads() {
 Reader<Message> reader(kSharedFile);
 try {
 while(true) {
 std::cout << "Read " << reader.Read() << std::endl;
 }
 } catch (const std::runtime_error& e) {
 std::cout << e.what() << std::endl;
 }
}

int main(int argc, char** argv) {
 if (fork()) {
 DoWrites();
 } else {
 DoReads();
 }
}

Finally, create a CMakeLists.txt file containing the build rules for our7.
program:

cmake_minimum_required(VERSION 3.5.1)
project(ipc1)
add_executable(ipc1 ipc1.cpp)

Communication and Serialization Chapter 8

[204]

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")

set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can now build and run the application.

How it works...
In our application, we explore data exchange between two independent processes using a
shared file in a filesystem. One process writes data to a file, another reads data from the
same file.

Files can store any unstructured sequences of bytes. In our application, we utilize the C++
templates' capabilities to work with strictly typed C++ values rather than raw byte streams.
This approach helps in writing clean and error-free code.

We start with a definition of the Write class. It is a simple wrapper on top of the standard
C++ fstream class used for file input/output. The constructor of the class only opens a file
stream to write the following:

Writer(std::string& name):
 out(name, std::ofstream::binary) {}

Besides the constructor, the class contains only one method, Write, which is responsible for
writing data to a file. Since the file API operates with byte streams, we first need to convert
our templated data type into a raw character buffer. We can do this using the C++
reinterpret_cast:

out.write(reinterpret_cast<const char*>(&data), sizeof(T));

The Reader class does the opposite job—it reads data written by the Writer class. Its
constructor is a bit more complicated. Since the data file might not be ready by the time the
instance of the Reader class is created, the constructor tries to open it in a loop until an
open attempt succeeds. It makes 10 attempts with 10-millisecond pauses between each:

for(int count=10; count && !in.is_open(); count--) {
 in.open(name, std::ifstream::binary);
 std::this_thread::sleep_for(std::chrono::milliseconds(10));
 }

Communication and Serialization Chapter 8

[205]

The Read method reads data from the input stream into a temporary value and returns it to
the caller. Similar to the Write method, we use reinterpret_cast to access the memory
of our data objects as raw character buffers:

in.read(reinterpret_cast<char*>(&data), sizeof(data));

We also add a wait loop into the Read method to wait for data being written by Write. If
we reach the end of the file, we wait for up to 1 second for new data:

 for (;count && in.eof(); count--) {
 std::this_thread::sleep_for(std::chrono::milliseconds(10));
 }

If data is not available in the file at this point, or in the case of an I/O error, we throw an
exception to indicate it:

 if (!in) {
 throw std::runtime_error("Failed to read a message");
 }

Please note that we do not need to add any code to handle a situation
where a file cannot be opened within 1 second, or data is not ready within
one second. Both of these cases are handled by the same preceding code.

Now that the Writer and Reader classes are implemented, we can define a data type for
our data exchange. In our application, we will exchange coordinates, represented as the x
and y integer values. Our data message looks like this:

struct Message {
 int x, y;
};

For convenience, we override the << operator for our Message structure. Any time an
instance of Message is written to an output stream, it is formatted as (x, y):

std::ostream& operator<<(std::ostream& o, const Message& m) {
 o << "(x=" << m.x << ", y=" << m.y << ")";
}

With all the preparations in place, let's write the functions for data exchange.
The DoWrites function defines a vector of four coordinates and creates a Writer object:

 std::vector<Message> messages {{1, 0}, {0, 1}, {1, 1}, {0, 0}};
 Writer<Message> writer(kSharedFile);

Communication and Serialization Chapter 8

[206]

Then, it writes all the coordinates in a loop:

 for (const auto& m : messages) {
 std::cout << "Write " << m << std::endl;
 writer.Write(m);
 }

The DoReads function, in turn, creates an instance of the Reader class using the same
filename as the Writer instance before it. It enters an endless loop, trying to read all the
messages in the file:

 while(true) {
 std::cout << "Read " << reader.Read() << std::endl;
 }

When no more messages are available, the Read method throws an exception that breaks
the loop:

 } catch (const std::runtime_error& e) {
 std::cout << e.what() << std::endl;
 }

The main function creates two independent processes, running DoWrites in one of them
and DoReads in another. After running the application, we get the following output:

As we can see, the writer did write four coordinates and the reader was able to read the
same four coordinates using a shared file.

Communication and Serialization Chapter 8

[207]

There's more...
We created our application to be as simple as possible, focusing on strictly typed data
exchange and leaving data synchronization and data serialization out of the scope. We are
going to use this application as a foundation for more advanced techniques, which will be
described in the recipes that follow.

Exploring the mechanisms of inter-process
communication
Modern operating systems provide a number of IPC mechanisms beyond the shared files
we have already learned about, namely the following:

Pipes
Named pipes
Local sockets
Network sockets
Shared memory

It is interesting that many of them provide exactly the same API that we use when working
with regular files. As a result, switching between these types of IPC is trivial and the same
code that we used to read and write to local files can be used to communicate with
applications running on a remote network host.

In this recipe, we will learn how to use Portable Operating System Interface
(POSIX) named pipes to communicate between two applications that reside on the same
computer.

Getting ready
We are going to use the source code of the application we created as part of the Using inter-
process communication in applications recipe as a starting point for this recipe.

Communication and Serialization Chapter 8

[208]

How to do it...
In this recipe, we will start with the source code that uses regular files for IPC. We will
modify it to use an IPC mechanism called named pipes:

Copy the contents of the ipc1 directory into a new directory called ipc2.1.
Open the ipc1.cpp file and add two more include instance after #include2.
<unistd.h>:

#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>

Modify the Write method of the Writer class by adding one more line:3.

 void Write(const T& data) {
 out.write(reinterpret_cast<const char*>(&data), sizeof(T));
 out.flush();
 }

Modifications in the Reader class are more substantial. Both the constructor and4.
the Read method are affected:

template<class T>
class Reader {
 private:
 std::ifstream in;
 public:
 Reader(std::string& name):
 in(name, std::ofstream::binary) {}
 T Read() {
 T data;
 in.read(reinterpret_cast<char*>(&data), sizeof(data));
 if (!in) {
 throw std::runtime_error("Failed to read a message");
 }
 return data;
 }
};

Add a small change to the DoWrites function. The only difference is we add a 105.
millisecond delay after sending each message:

void DoWrites() {
 std::vector<Message> messages {{1, 0}, {0, 1}, {1, 1}, {0, 0}};
 Writer<Message> writer(kSharedFile);
 for (const auto& m : messages) {

Communication and Serialization Chapter 8

[209]

 std::cout << "Write " << m << std::endl;
 writer.Write(m);
 std::this_thread::sleep_for(std::chrono::milliseconds(10));
 }
}

Finally, modify our main function to create a named pipe instead of a regular file:6.

int main(int argc, char** argv) {
 int ret = mkfifo(kSharedFile.c_str(), 0600);
 if (!ret) {
 throw std::runtime_error("Failed to create named pipe");
 }
 if (fork()) {
 DoWrites();
 } else {
 DoReads();
 }
}

You can now build and run the application.

How it works...
As you can see, we introduced a minimal number of changes to the code of our application.
All the mechanisms and the API for reading and writing data remain the same. The crucial
difference hides behind a single line of code:

 int ret = mkfifo(kSharedFile.c_str(), 0600);

This line creates a special type of file called named pipe. It looks like a regular file—it has a
name, permission attributes, and a modification time. However, it does not store any real
data. Everything written to this file is immediately delivered to the processes that read from
this file.

This difference has a number of consequences. Since no real data is stored in the file, all
reading attempts are blocked until any data is written. Similarly, writes are blocked until
previous data is read by the readers.

As a result, there is no further need for external data synchronization. Take a look at the
Reader class implementation. It does not have a retry loop in the constructor or in the Read
method.

Communication and Serialization Chapter 8

[210]

To test that we really do not need to use any additional synchronization, we added an
artificial delay after writing each of the messages:

 std::this_thread::sleep_for(std::chrono::milliseconds(10));

When we build and run the application, we can see the following output:

Each Write method is followed by the proper Read method, despite the fact that we did
not add any delays or checks anywhere in the Reader code. The IPC mechanisms of the
operating system take care of data synchronization transparently for us, leading to cleaner
and more readable code.

There's more...
As you can see, working with named pipes is as simple as working with regular functions.
A socket API is another widely used mechanism of IPC. It is a little bit more complex but
provides more flexibility. By choosing different transport layers, developers can use the
same socket APIs for both local data exchange and for network connectivity with remote
hosts.

More information about socket APIs can be found at http:/ /man7. org/ linux/ man- pages/
man7/socket.7.html.

http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.
http://man7.org/linux/man-pages/man7/socket.7.html.

Communication and Serialization Chapter 8

[211]

Learning about message queue and
publisher-subscriber models
Most of the IPC mechanisms provided by POSIX operating systems are quite basic. Their
APIs are built using file descriptors and they treat input and output channels as raw
sequences of bytes.

Applications, however, tend to use data fragments of specific lengths and purposes for data
interchange messages. Despite API mechanisms of operating systems being flexible and
generic, they are not always convenient for message exchange. That is why dedicated
libraries and components were built on top of default IPC mechanisms to simplify the
message exchange mode.

In this recipe, we will learn how to implement an asynchronous data exchange between
two applications using the publisher-subscriber (pub-sub) model.

The model is easy to understand and widely used for the development of software systems
designed as collections of independent, loosely coupled components communicating with
each other. The isolation of functions and asynchronous data exchange allows us to build
flexible, scalable, and robust solutions.

In the pub-sub model, applications act as publishers, subscribers, or both. Instead of
sending requests to particular applications and expecting them to respond, an application
can publish a message to a specific topic or subscribe to receive messages on a topic it is
interested in. When publishing a message, the application does not care how many
subscribers are listening to the topic. Similarly, a subscriber does not know which
application is going to send a message on a particular topic or when to expect it.

How to do it...
The application we created as part of the Exploring the mechanisms of IPC recipe already
contains a number of building blocks we can reuse to implement the pub/sub
communication.

The Writer class can act as a publisher and the Reader class as a subscriber. We
implemented them to handle the strictly defined data types that will define our messages.
The named pipes mechanism we used in the preceding recipe works on a byte level and
does not guarantee that messages are delivered automatically.

Communication and Serialization Chapter 8

[212]

To overcome this limitation, we will use the POSIX message queue API instead of the
named pipes. A name used to identify a message queue that both Reader and Writer will
accept in their constructors will be used as a topic:

Copy the contents of the ipc2 directory that we created in the previous recipe1.
into a new directory: ipc3.
Let's create a C++ wrapper for the POSIX message queue API. Open ipc1.cpp in2.
your editor and add the required header files and constant definition:

#include <unistd.h>
#include <signal.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <mqueue.h>

std::string kQueueName = "/test";

Then, define a MessageQueue class. This holds a message queue handle as its3.
private data member. We can use constructors and destructors to manage the
opening and closing of the handle in a safe manner using the C++ RAII idiom:

class MessageQueue {
 private:
 mqd_t handle;
 public:
 MessageQueue(const std::string& name, int flags) {
 handle = mq_open(name.c_str(), flags);
 if (handle < 0) {
 throw std::runtime_error("Failed to open a queue for
 writing");
 }
 }

 MessageQueue(const std::string& name, int flags, int max_count,
 int max_size) {
 struct mq_attr attrs = { 0, max_count, max_size, 0 };
 handle = mq_open(name.c_str(), flags | O_CREAT, 0666,
 &attrs);
 if (handle < 0) {
 throw std::runtime_error("Failed to create a queue");
 }
 }

 ~MessageQueue() {
 mq_close(handle);
 }

Communication and Serialization Chapter 8

[213]

Then, we define two simple methods to write messages into and read messages4.
from the queue:

 void Send(const char* data, size_t len) {
 if (mq_send(handle, data, len, 0) < 0) {
 throw std::runtime_error("Failed to send a message");
 }
 }

 void Receive(char* data, size_t len) {
 if (mq_receive(handle, data, len, 0) < len) {
 throw std::runtime_error("Failed to receive a message");
 }
 }
};

We now modify our Writer and Reader classes to work with the new API. Our5.
MessageQueue wrapper does most of the heavy lifting and the code changes are
minimal. The Writer class now looks like this:

template<class T>
class Writer {
 private:
 MessageQueue queue;
 public:
 Writer(std::string& name):
 queue(name, O_WRONLY) {}

 void Write(const T& data) {
 queue.Send(reinterpret_cast<const char*>(&data),
sizeof(data));
 }
};

Modifications in the Reader class are more substantial. We make it act as a6.
subscriber and we encapsulate the logic that fetches and handles messages from
the queue directly into the class:

template<class T>
class Reader {
 private:
 MessageQueue queue;
 public:
 Reader(std::string& name):
 queue(name, O_RDONLY) {}

 void Run() {

Communication and Serialization Chapter 8

[214]

 T data;
 while(true) {
 queue.Receive(reinterpret_cast<char*>(&data),
 sizeof(data));
 Callback(data);
 }
 }

 protected:
 virtual void Callback(const T& data) = 0;
};

Since we still want to keep the Reader class as generic as possible, we will define7.
a new class (CoordLogger), which is derived from Reader, to define the specific
handling of our messages:

class CoordLogger : public Reader<Message> {
 using Reader<Message>::Reader;

 protected:
 void Callback(const Message& data) override {
 std::cout << "Received coordinate " << data << std::endl;
 }
};

The DoWrites code remains mostly the same; the only change is that we use a8.
different constant to identify our queue:

void DoWrites() {
 std::vector<Message> messages {{1, 0}, {0, 1}, {1, 1}, {0, 0}};
 Writer<Message> writer(kQueueName);
 for (const auto& m : messages) {
 std::cout << "Write " << m << std::endl;
 writer.Write(m);
 std::this_thread::sleep_for(std::chrono::milliseconds(10));
 }
}

Since the message handling logic was moved to the Reader and CoordLogger9.
classes, DoReads is now as simple as this:

void DoReads() {
 CoordLogger logger(kQueueName);
 logger.Run();
}

Communication and Serialization Chapter 8

[215]

The updated main function follows:10.

int main(int argc, char** argv) {
 MessageQueue q(kQueueName, O_WRONLY, 10, sizeof(Message));
 pid_t pid = fork();
 if (pid) {
 DoWrites();
 std::this_thread::sleep_for(std::chrono::milliseconds(100));
 kill(pid, SIGTERM);
 } else {
 DoReads();
 }
}

Finally, our application needs to be linked with the rt library. We do this by11.
adding one line into our CMakeLists.txt file:

target_link_libraries(ipc3 rt)

You can now build and run the application.

How it works...
In our application, we reused a lot of the code from the application we created in the
preceding recipe, Exploring the mechanisms of IPC. To implement the pub-sub model, we
need to make two important changes:

Make our IPC message-based. We should be able to send and receive messages
automatically. Messages sent by one publisher should not break messages sent
by other publishers and subscribers should be able to read messages as a whole.
Let subscribers define the callbacks that are invoked as soon as a new message is
available.

To make message-based communication, we switch from the named pipes to the POSIX
message queue API. The message queue API differs from the regular file-based API of
named pipes, which is why we implement a C++ wrapper on top of the plain C interface
provided by the Linux standard library.

The main goal of the wrapper is to provide safe resource management using the Resource
Acquisition Is Initialization (RAII) idiom. We do this by defining the constructors that
acquire the queue handler by calling mq_open and the destructor that releases it using
mq_close. This way, the queue is automatically closed when the corresponding instance of
the MessageQueue class is destroyed.

Communication and Serialization Chapter 8

[216]

The wrapper class has two constructors. One constructor is used to open an existing queue.
It accepts two parameters—a queue name and access flags. The second constructor is used
to create a new queue. It accepts two additional parameters—a message length and the
maximal size of a message in the queue.

In our application, we create a queue in the main function, passing 10 as the number of
messages that can be stored in the queue. The size of the Message structure is the
maximum size of the message in our queue:

 MessageQueue q(kQueueName, O_WRONLY, 10, sizeof(Message));

Then, the DoWrites and DoReads functions open the queue already created with the same
name.

Since the public API for our MessageQueue class is similar to the fstream interface we
used for IPC using named pipes, it requires only minimal changes in the writer and reader
to make them work with another IPC mechanism. We use an instance of MessageQueue
instead of fstream as a data member, keeping other logic unchanged.

To let subscribers define their callback methods, we need to modify the Reader class.
Instead of a Read method that reads and returns a single method, we introduce
the Run method. It loops over all the messages available in the queue. For each method
being read, it invokes a callback method:

 while(true) {
 queue.Receive(reinterpret_cast<char*>(&data), sizeof(data));
 Callback(data);
 }

Our goal is to keep the Reader class generic and reusable for different types of messages.
However, there is no such thing as a generic callback. Each callback is specific and should
be defined by users of the Reader class.

One way to resolve this contradiction is by making Reader an abstract class. We define our
Callback method as a virtual function:

 protected:
 virtual void Callback(const T& data) = 0;

Communication and Serialization Chapter 8

[217]

Now, since Reader is abstract, we cannot create instances of this class. We have to inherit it
and provide a definition of the Callback method in a derived class named CoordLogger:

 protected:
 void Callback(const Message& data) override {
 std::cout << "Received coordinate " << data << std::endl;
 }

Please note that since the Reader constructor accepts a parameter, we need to define
constructors in the inherited class as well. We'll use the inheriting constructors that were
added in the C++11 standard:

 using Reader<Message>::Reader;

Now, having a CoordLogger class that is capable of handling the messages of
the Message type, we can use it in our DoReads implementation. We only need to create an
instance of this class and invoke its Run method:

 CoordLogger logger(kQueueName);
 logger.Run();

When we run the application, we get the following output:

This output is not that different from the output from the preceding recipe, but now the
implementation is much more scalable. The DoReads method does not do anything specific
to messages. Its only task is to create and run subscribers. All data handling is encapsulated
in specific classes. You can add, replace, and combine publishers and subscribers without
changing the architecture of the application.

Communication and Serialization Chapter 8

[218]

There's more...
The POSIX message queue API provides basic functionality for message queues but it also
has a number of limitations. It is not possible to send a message to multiple subscribers
using one message queue. You have to create a separate queue for each subscriber,
otherwise only one of the subscribers reading from a queue will receive the message.

There are a number of elaborated message queues and pub-sub middleware available in the
form of external libraries. ZeroMQ is a powerful, flexible and—at the same
time—lightweight transport library. This makes it an ideal choice for embedded
applications that are built using the pub-sub model of data exchange.

Using C++ lambdas for callbacks
In the pub-sub model, a subscriber usually registers a callback that is being invoked when a
message from a publisher is delivered to the subscriber.

In the preceding recipe, we created a mechanism to register callbacks using inheritance and
abstract classes. It is not the only mechanism available in C++. Lambda functions available
in C++, starting from the C++11 standard, can be used as an alternative solution. This
eliminates lots of boilerplate code needed to define derived classes and, in most cases,
allows developers to express their intent in a clearer way.

In this recipe, we will learn how to use C++ lambda functions to define callbacks.

How to do it...
We are going to use most of the code from the preceding recipe, Learning about message
queue and publisher-subscriber models. We will modify the Reader class to accept a callback as
a parameter. With this modification, we can use Reader directly and do not need to rely on
inheritance to define a callback:

Copy the contents of the ipc3 directory that we created in the preceding recipe1.
into a new directory: ipc4.
Keep all the code unchanged, except for the Reader class. Let's replace that with2.
the following code snippet:

template<class T>
class Reader {
 private:

Communication and Serialization Chapter 8

[219]

 MessageQueue queue;
 void (*func)(const T&);
 public:
 Reader(std::string& name, void (*func)(const T&)):
 queue(name, O_RDONLY), func(func) {}

 void Run() {
 T data;
 while(true) {
 queue.Receive(reinterpret_cast<char*>(&data),
 sizeof(data));
 func(data);
 }
 }
};

Now that our Reader class is changed, we can update the DoReads method. We3.
can use a lambda function to define a callback handler and pass it to the
Reader constructor:

void DoReads() {
 Reader<Message> logger(kQueueName, [](const Message& data) {
 std::cout << "Received coordinate " << data << std::endl;
 });
 logger.Run();
}

The CoordLogger class is not needed anymore, so we can safely remove it from4.
our code entirely.
You can build and run the application. 5.

How it works...
In this recipe, we modified the preceding defined Reader class to accept an additional
parameter in its constructor. This parameter has a specific data type—a pointer to a
function, which will be used as a callback:

Reader(std::string& name, void (*func)(const T&)):

The handler is stored in the data field for future use:

void (*func)(const T&);

Communication and Serialization Chapter 8

[220]

Now, every time the Run method reads a message, it invokes the function stored in the
func field, rather than the Callback method that we need to override:

queue.Receive(reinterpret_cast<char*>(&data), sizeof(data));
func(data);

Getting rid of the Callback function makes Reader a concrete class and we can create its
instance directly. However, now we need to provide a handler as a parameter of its
constructor.

With plain C, we would have to define a named function and pass its name as a parameter.
With C++, this approach is also possible, but C++ also provides the mechanism of
anonymous functions or lambda functions, which can be defined right in-place.

In the DoReads method, we create a lambda function and pass it directly to the Reader
constructor:

 Reader<Message> logger(kQueueName, [](const Message& data) {
 std::cout << "Received coordinate " << data << std::endl;
 });

Building and running the application produces the following output:

As we can see, it is identical to the output of the application we created in the preceding
recipe. However, we do it with less code and in a more readable way.

Lambda functions should be used wisely. They make the code more readable if kept
minimal. If a function grows bigger than five lines, consider using a named function
instead.

Communication and Serialization Chapter 8

[221]

There's more...
C++ provides flexible mechanisms for working with function-like objects and binds them
with parameters. These mechanisms are widely used to forward calls and build function
adapters. The Function objects page at https:/ / en.cppreference. com/ w/cpp/ utility/
functional is a good starting point to get a deeper understanding of these topics.

Exploring data serialization
We already briefly touched on some aspects of serialization in Chapter 3, Working with
Different Architectures. When it comes to data exchange, serialization is crucial. The task of
serialization is to represent all data being sent by the sender application in a way that can
be unambiguously read by the receiver application. This task is not that straightforward,
given that the sender and the receiver may be running on different hardware platforms and
connected over a variety of transport links—a Transmission Control Protocol/Internet
Protocol (TCP/IP) network, a Serial Peripheral Interface (SPI) bus, or a serial link.

There are many different ways of implementing serialization depending on requirements,
which is why the C++ standard library does not provide it out of the box.

In this recipe, we will learn how to implement simple generic serialization and
deserialization in a C++ application.

How to do it...
The goal of serialization is to encode any data in a way that can be properly decoded on
another system or in another application. The typical obstacles for developers are as
follows:

Platform-specific differences, such as data alignment and endianness.
Data scattered across memory; for example, elements of a linked list can be
located far away from each other. The representation of disconnected blocks
linked by pointers is natural for memory but cannot be automatically translated
into a sequence of bytes when transferring it to another process.

https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional
https://en.cppreference.com/w/cpp/utility/functional

Communication and Serialization Chapter 8

[222]

A generic approach to this problem is letting a class define the functions to convert its
content into a serialized form and restore an instance of a class from the serialized form.

In our application, we will overload operator<< of the output stream and operator>> of
the input stream to serialize and deserialize data respectively:

In your ~/test working directory, create a subdirectory called stream.1.
Use your favorite text editor to create a stream.cpp file in2.
the stream subdirectory.
Start with the definition of the data structures that you want to serialize:3.

#include <iostream>
#include <sstream>
#include <list>

struct Point {
 int x, y;
};

struct Paths {
 Point source;
 std::list<Point> destinations;
};

Next, we overload the << and >> operators that are responsible for writing and4.
reading the Point objects into and from a stream respectively. For the Point
data type enter the following:

std::ostream& operator<<(std::ostream& o, const Point& p) {
 o << p.x << " " << p.y << " ";
 return o;
}

std::istream& operator>>(std::istream& is, Point& p) {
 is >> p.x;
 is >> p.y;
 return is;
}

Communication and Serialization Chapter 8

[223]

They are followed by the << and >> overloaded operators for the Paths objects:5.

std::ostream& operator<<(std::ostream& o, const Paths& paths) {
 o << paths.source << paths.destinations.size() << " ";
 for (const auto& x : paths.destinations) {
 o << x;
 }
 return o;
}

std::istream& operator>>(std::istream& is, Paths& paths) {
 size_t size;
 is >> paths.source;
 is >> size;
 for (;size;size--) {
 Point tmp;
 is >> tmp;
 paths.destinations.push_back(tmp);
 }
 return is;
}

Now, let's wrap everything up in the main function:6.

int main(int argc, char** argv) {
 Paths paths = {{0, 0}, {{1, 1}, {0, 1}, {1, 0}}};

 std::stringstream in;
 in << paths;
 std::string serialized = in.str();
 std::cout << "Serialized paths into the string: ["
 << serialized << "]" << std::endl;

 std::stringstream out(serialized);
 Paths paths2;
 out >> paths2;
 std::cout << "Original: " << paths.destinations.size()
 << " destinations" << std::endl;
 std::cout << "Restored: " << paths2.destinations.size()
 << " destinations" << std::endl;

 return 0;
}

Communication and Serialization Chapter 8

[224]

Finally, create a CMakeLists.txt file containing the build rules for our7.
program:

cmake_minimum_required(VERSION 3.5.1)
project(stream)
add_executable(stream stream.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")

set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can now build and run the application.

How it works...
In our test application, we defined a data type to represent paths from a source point to
multiple destination points. We intentionally used hierarchical structures scattered in
memory to demonstrate how to approach this problem in a generic way.

If we do not have specific requirements for performance, one of the possible approaches to
serialization is storing data in text format. Besides its simplicity, it has two major
advantages:

Text encoding automatically resolves all issues related to endianness, alignment,
and the size of integer data types.
It is readable by humans. Developers can use serialized data for debugging
without any additional tools.

To work with text representation, we can use the input and output streams provided by the
standard library. They already define functions to write and read formatted numbers.

The Point structure is defined as two integer values: x and y. We override operator<< for
this data type to write the x and y values followed by spaces. This way, we can read them
sequentially in the overridden operator>> operation.

The Path data type is a bit trickier. It contains a linked list of destinations. Since the size of
the list may vary, we need to write the actual size of the list before serializing its content to
be able to recover it properly during deserialization:

 o << paths.source << paths.destinations.size() << " ";

Communication and Serialization Chapter 8

[225]

Since we have the Point methods for the << and >> operators already overridden, we can
use them in the Paths methods. This way, we write the Point objects to a stream or read
them from a stream without knowing the contents of their data fields. Hierarchical data
structures are handled recursively:

 for (const auto& x : paths.destinations) {
 o << x;
 }

Finally, we test our implementation of serialization and deserialization. We create a sample
instance of the Paths object:

Paths paths = {{0, 0}, {{1, 1}, {0, 1}, {1, 0}}};

Then, we serialize its content into a string using the std::stringstream data type:

 std::stringstream in;
 in << paths;
 std::string serialized = in.str();

Next, we create an empty Path object and deserialize the content of the string into it:

 Paths paths2;
 out >> paths2;

Finally, we check whether they match. When we run the application, we can use the
following output to do this:

The size of the destinations list of the restored object matches the size of the
destinations list of the original object. We can also see the content of the serialized data.

Communication and Serialization Chapter 8

[226]

This example shows how to build custom serialization for any data type. It can be done
without any external libraries. However, in cases where performance and memory
efficiency matter, using third-party serialization libraries would be a more practical
approach.

There's more...
Implementing serialization from scratch is difficult. The cereal library at https:/ / uscilab.
github.io/cereal/ and the boost library at https:/ /www. boost. org/ doc/ libs/ 1_71_ 0/
libs/serialization/ doc/ index. html provide a foundation that helps you to add
serialization to applications much faster and more easily.

Using the FlatBuffers library
Serialization and deserialization is a complex topic. While ad hoc serialization may look
simple and straightforward, it is difficult to make it generic, easy to use, and fast.
Thankfully, there are libraries that handle all of these complexities.

In this recipe, we will learn how to use one of the serialization libraries: FlatBuffers. It was
designed with embedded programming in mind, making serialization and deserialization
memory efficient and fast.

FlatBuffers uses an Interface Definition Language (IDL) to define a data schema. The
schema describes all the fields of data structures that we need to serialize. When the schema
is designed, we use a special tool called flatc to generate the code for a particular
programming language, which is C++ in our case.

The generated code stores all data in serialized form and provides developers with so-
called getter and setter methods to access the data fields. The getters perform
deserialization on the fly. Storing data in its serialized form makes FlatBuffers really
memory efficient. There is no need for extra memory to store serialized data and, in most
cases, the overhead of deserialization is low.

In this recipe, we will learn how to start using FlatBuffers for data serialization in our
applications.

https://uscilab.github.io/cereal/
https://uscilab.github.io/cereal/
https://uscilab.github.io/cereal/
https://uscilab.github.io/cereal/
https://uscilab.github.io/cereal/
https://uscilab.github.io/cereal/
https://uscilab.github.io/cereal/
https://uscilab.github.io/cereal/
https://uscilab.github.io/cereal/
https://uscilab.github.io/cereal/
https://uscilab.github.io/cereal/
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html

Communication and Serialization Chapter 8

[227]

How to do it...
FlatBuffers is a set of tools and libraries. Before using it, we need to download and build it:

Download the most recent archive of FlatBuffers, available at https:/ / codeload.1.
github.com/ google/ flatbuffers/ zip/ master, and extract it in the test
directory. This will create a new directory called flatbuffers-master.
Switch to the build console, change the directory to flatbuffers-master, and2.
run the following commands to build and install the library and tools. Make sure
you run as root. If not, press Ctrl + C to exit the user shell:

cmake .
make
make install

Now, we are ready to use FlatBuffers in our application. Let's reuse an application
we created in one of the previous recipes:

Copy the contents of the ipc4 directory into the newly created directory named3.
flat.
Create a file named message.fbs, open it in an editor, and put in the following4.
code:

 struct Message {
 x: int;
 y: int;
}

Generate the C++ source code from message.fbs by running the following:5.

$ flatc --cpp message.fbs

 This will create a new file called message_generated.h.

Open ipc1.cpp in your editor. Add an include directive for the6.
generated message_generated.h file after the mqueue.h include:

#include <mqueue.h>

#include "message_generated.h"

Now, get rid of the Message struct declared in our code. We are going to use the7.
structure generated in the FlatBuffers schema file instead.

https://codeload.github.com/google/flatbuffers/zip/master
https://codeload.github.com/google/flatbuffers/zip/master
https://codeload.github.com/google/flatbuffers/zip/master
https://codeload.github.com/google/flatbuffers/zip/master
https://codeload.github.com/google/flatbuffers/zip/master
https://codeload.github.com/google/flatbuffers/zip/master
https://codeload.github.com/google/flatbuffers/zip/master
https://codeload.github.com/google/flatbuffers/zip/master
https://codeload.github.com/google/flatbuffers/zip/master
https://codeload.github.com/google/flatbuffers/zip/master
https://codeload.github.com/google/flatbuffers/zip/master
https://codeload.github.com/google/flatbuffers/zip/master
https://codeload.github.com/google/flatbuffers/zip/master
https://codeload.github.com/google/flatbuffers/zip/master
https://codeload.github.com/google/flatbuffers/zip/master
https://codeload.github.com/google/flatbuffers/zip/master

Communication and Serialization Chapter 8

[228]

Since FlatBuffers uses getter methods instead of direct access to the structure8.
fields, we need to modify the body of the redefined operator<< operation we
used to print point data to the console. The changes are minimal—we only add
parentheses to each data field:

 std::ostream& operator<<(std::ostream& o, const Message& m) {
 o << "(x=" << m.x() << ", y=" << m.y() << ")";
}

The code modifications are done. Now, we need to update the build rules to link9.
with the FlatBuffers library. Open CMakeLists.txt and put in the following
lines:

cmake_minimum_required(VERSION 3.5.1)
project(flat)
add_executable(flat ipc1.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS_RELEASE "--std=c++11")
SET(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_RELEASE} -g -DDEBUG")
target_link_libraries(flat rt flatbuffers)

set(CMAKE_C_COMPILER /usr/bin/arm-linux-gnueabi-gcc)
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)

Switch to the build console, then change to the user shell:10.

su - user
$

Build and run the application.11.

Communication and Serialization Chapter 8

[229]

How it works...
FlatBuffers is an external library that is not available in the Ubuntu repository of packages,
which is why we need to download, build, and install it first. After the installation is done,
we can use it in our application.

We use an existing application we created for the Using C++ lambdas for callbacks recipe as a
starting point. In that application, we defined a structure, called Message, to represent a
type of data we use for IPC. We are going to replace it with a new data type provided by
FlatBuffers. This new data type will perform all the necessary serialization and
deserialization transparently for us.

We remove the definition of the Message struct from our code completely. Instead, we
generate a new header file, called message_generated.h. This file is generated from
the message.fbs FlatBuffers schema file. This schema file defines a structure with two
integer fields—x and y:

 x: int;
 y: int;

This definition is identical to our preceding definition; the only difference is the
syntax—FlatBuffers' schema uses a colon to separate field names from the field types.

Once message_generated.h is created by the flatc command invocation, we can use it
in our code. We add the proper include as follows:

#include "message_generated.h"

The generated message is identical to the message structure we used before but as we
discussed earlier, FlatBuffers stores data in serialized form and needs to deserialize it on the
fly. That is why, instead of direct access to the data fields, we have to use the x() accessor
method instead of just x and the y() accessor method instead of just y.

The only place we use direct access to the message data field is in the overridden
operator<< operation. We add parentheses to turn direct field access into the invocation
of the FlatBuffers getter methods:

 o << "(x=" << m.x() << ", y=" << m.y() << ")";

Communication and Serialization Chapter 8

[230]

Let's build and run the application. We will see the following output:

The output is the same as for our custom message data type. With only a few modifications
in our code, we migrated our messages to FlatBuffers. Now, we can run our publishers and
subscribers on multiple computers—which can have different architectures—and be sure
that each of them interprets messages correctly.

There's more...
Besides FlatBuffers, there are a number of other serialization libraries and techniques, each
having its own pros and cons. Refer to the C++ Serialization FAQ at https:/ /isocpp. org/
wiki/faq/serialization for a better understanding of how to design serialization in your
applications.

https://isocpp.org/wiki/faq/serialization
https://isocpp.org/wiki/faq/serialization
https://isocpp.org/wiki/faq/serialization
https://isocpp.org/wiki/faq/serialization
https://isocpp.org/wiki/faq/serialization
https://isocpp.org/wiki/faq/serialization
https://isocpp.org/wiki/faq/serialization
https://isocpp.org/wiki/faq/serialization
https://isocpp.org/wiki/faq/serialization
https://isocpp.org/wiki/faq/serialization
https://isocpp.org/wiki/faq/serialization
https://isocpp.org/wiki/faq/serialization

9
Peripherals

Communication with peripheral devices is an essential part of any embedded application.
Applications need to check the availability and status and send data to and receive data
from a variety of devices.

Each target platform is different and many ways of connecting peripheral devices to the
computing unit exist. There are, however, several hardware and software interfaces that
have become industry standard for communication with peripheral devices. In this chapter,
we will learn how to work with peripheral devices connected directly to processor pins or
over serial interfaces. This chapter covers the following topics:

Controlling devices connected via GPIO
Exploring pulse-width modulation
Using ioctl to access a real-time clock in Linux
Using libgpiod to control GPIO pins
Controlling I2C peripheral devices

The recipes in this chapter involve interaction with real hardware and are intended to be
run on a real Raspberry Pi board.

Controlling devices connected via GPIO
General Purpose Input-Output (GPIO) is the simplest way of connecting peripheral
devices to the CPU. Every processor usually has some number of pins reserved for general
purposes. These pins can be electrically connected directly to the pins of a peripheral
device. An embedded application can control the device by changing the signal level of the
pins configured for output or by reading the signal level of the input pins.

The interpretation of the signal levels does not follow any protocol and is determined by
the peripheral device. Developers need to consult the device datasheet to be able to
program the communication properly.

Peripherals Chapter 9

[232]

This type of communication is usually done on the kernel side using a dedicated device
driver. This is, however, not always a requirement. In this recipe, we will learn how to use
the GPIO interface on a Raspberry Pi board from a user-space application.

How to do it...
We are going to create a simple application that controls a Light Emitting Diode (LED)
connected to a general-purpose pin on a Raspberry Pi board:

In your ~/test working directory, create a subdirectory called gpio.1.
Use your favorite text editor to create a gpio.cpp file in the gpio subdirectory.2.
Put the following code snippet into the file:3.

#include <chrono>
#include <iostream>
#include <thread>
#include <wiringPi.h>

using namespace std::literals::chrono_literals;
const int kLedPin = 0;

int main (void)
{
 if (wiringPiSetup () <0) {
 throw std::runtime_error("Failed to initialize wiringPi");
 }

 pinMode (kLedPin, OUTPUT);
 while (true) {
 digitalWrite (kLedPin, HIGH);
 std::cout << "LED on" << std::endl;
 std::this_thread::sleep_for(500ms) ;
 digitalWrite (kLedPin, LOW);
 std::cout << "LED off" << std::endl;
 std::this_thread::sleep_for(500ms) ;
 }
 return 0 ;
}

Create a CMakeLists.txt file containing the build rules for our program:4.

cmake_minimum_required(VERSION 3.5.1)
project(gpio)
add_executable(gpio gpio.cpp)
target_link_libraries(gpio wiringPi)

Peripherals Chapter 9

[233]

Connect an LED to your Raspberry Pi board using the instructions from the5.
WiringPI example section at http:// wiringpi. com/ examples/ blink/ .
Set up an SSH connection to your Raspberry Pi board. Follow the instructions6.
from the Raspberry Pi documentation section at https:/ /www. raspberrypi. org/
documentation/ remote- access/ ssh/ .
Copy the contents of the gpio folder to the Raspberry Pi board over SSH.7.
Log in to the board over SSH, then build and run the application:8.

$ cd gpio && cmake . && make && sudo ./gpio

Your application should run and you should be able to observe the LED blinking.

How it works...
Raspberry Pi boards have 40 pins (26 in the first models) that can be programmed using
a Memory-Mapped Input-Output (MMIO) mechanism. MMIO allows developers to query
or set the state of pins by reading or writing specific addresses in the physical memory of
the system.

In the Using specialized memory recipe in Chapter 6, Memory Management, we learned how to
access MMIO registers. In this recipe, we are going to offload the MMIO address's
manipulations to the specialized library, wiringPi. It hides all the complexities of memory
mapping and finding proper offsets under the hood, exposing a clean API instead.

This library is pre-installed on Raspberry Pi boards, so to simplify the build process, we are
going to build the code directly on the board instead of using cross-compilation. Unlike
other recipes, our build rules do not mention a cross compiler—we are going to use the
native ARM compiler on the board. We only add a dependency to the wiringPi library:

target_link_libraries(gpio wiringPi)

The code of this example is a modification of the wiringPi example for blinking an LED.
Firstly, we initialize the wiringPi library:

if (wiringPiSetup () < 0) {
 throw std::runtime_error("Failed to initialize wiringPi");
}

Next, we enter the endless loop. On each iteration, we set the pin to the HIGH state:

 digitalWrite (kLedPin, HIGH);

http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/

Peripherals Chapter 9

[234]

After the 500 ms delay, we set the same pit to the LOW state and add another delay:

 digitalWrite (kLedPin, LOW);
 std::cout << "LED off" << std::endl;
 std::this_thread::sleep_for(500ms) ;

We configured our program to use pin 0, which corresponds to GPIO.0 or pin 17 of the
BCM2835 chip of Raspberry Pi:

const int kLedPin = 0;

If an LED is connected to this pin, it will blink, turning on for 0.5 seconds and then off for
another 0.5 seconds. By tweaking the delays in the loop, you can change the blinking
pattern.

Since the program enters an endless loop, we can terminate it at any time by pressing Ctrl +
C in the SSH console; otherwise, it will run forever.

When we run the application, we only see the following output:

Peripherals Chapter 9

[235]

We log when we turn the LED on or off, but to check that the program actually works, we
need to look at the LED connected to the pin. If we follow the wiring instructions, we can
see how it works. While the program is running, the LED on the boards blinks
synchronously with the program output:

We are able to control simple devices connected directly to the CPU pins without writing
complicated device drivers.

Exploring pulse-width modulation
Digital pins can only be in one of two states: either HIGH or LOW. An LED connected to a
digital pin can also only be in one of two states: on or off, correspondingly. But is there a
way to control the brightness of this LED? Yes, we can use a method called Pulse-width
Modulation (PWM).

The idea behind PWM is simple. We limit the amount of power delivered by the electrical
signal by turning it on or off periodically. This makes the signal pulse with some frequency
and the amount of power is proportional to the width of the pulse—the time when the
signal was HIGH.

For example, if we turn a pin to HIGH for 10 microseconds and then LOW for another 90
microseconds in a loop, a device connected to that pin receives 10% of the power that
would be delivered if the pin were always HIGH.

In this recipe, we will learn how to use PWM to control the brightness of an LED connected
to a digital GPIO pin on the Raspberry Pi board.

Peripherals Chapter 9

[236]

How to do it...
We are going to create a simple application that gradually changes the brightness of an
LED connected to a general-purpose pin on a Raspberry Pi board:

In your ~/test working directory, create a subdirectory called pwm.1.
Use your favorite text editor to create a pwm.cpp file in the pwm subdirectory.2.
Let's put in the required include functions and define a function called Blink:3.

#include <chrono>
#include <thread>

#include <wiringPi.h>

using namespace std::literals::chrono_literals;

const int kLedPin = 0;

void Blink(std::chrono::microseconds duration, int percent_on) {
 digitalWrite (kLedPin, HIGH);
 std::this_thread::sleep_for(
 duration * percent_on / 100) ;
 digitalWrite (kLedPin, LOW);
 std::this_thread::sleep_for(
 duration * (100 - percent_on) / 100) ;
}

This is followed by a main function:4.

int main (void)
{
 if (wiringPiSetup () <0) {
 throw std::runtime_error("Failed to initialize wiringPi");
 }

 pinMode (kLedPin, OUTPUT);

 int count = 0;
 int delta = 1;
 while (true) {
 Blink(10ms, count);
 count = count + delta;
 if (count == 101) {
 delta = -1;
 } else if (count == 0) {
 delta = 1;
 }

Peripherals Chapter 9

[237]

 }
 return 0 ;
}

Create a CMakeLists.txt file containing the build rules for our program:5.

cmake_minimum_required(VERSION 3.5.1)
project(pwm)
add_executable(pwm pwm.cpp)
target_link_libraries(pwm wiringPi)

Connect an LED to your Raspberry Pi board using the instructions from6.
the WiringPI example section at http:/ /wiringpi. com/examples/ blink/ .
Set up an SSH connection to your Raspberry Pi board. Follow instructions from7.
the Raspberry PI documentation section at https:/ /www. raspberrypi. org/
documentation/ remote- access/ ssh/ .
Copy the contents of the pwm folder to the Raspberry Pi board over SSH.8.
Log in to the board over SSH, then build and run the application:9.

$ cd pwm && cmake . && make && sudo ./pwm

Your application should now run and you can observe the LED blinking.

How it works...
This recipe reuses the code to blink an LED and the schematics from the preceding recipe.
We moved this code from the main function to a new function, Blink.

The Blink function accepts two parameters—duration and percent_on:

void Blink(std::chrono::microseconds duration, int percent_on)

duration determines the total width of the pulse in microseconds. percent_on defines a
ratio of the time when the signal is HIGH to the total duration of the pulse.

The implementation is straightforward. When Blink is invoked, it turns the pin to HIGH
and waits for the amount of time proportional to percent_on:

 digitalWrite (kLedPin, HIGH);
 std::this_thread::sleep_for(
 duration * percent_on / 100);

http://wiringpi.com/examples/blink/.
http://wiringpi.com/examples/blink/.
http://wiringpi.com/examples/blink/.
http://wiringpi.com/examples/blink/.
http://wiringpi.com/examples/blink/.
http://wiringpi.com/examples/blink/.
http://wiringpi.com/examples/blink/.
http://wiringpi.com/examples/blink/.
http://wiringpi.com/examples/blink/.
http://wiringpi.com/examples/blink/.
http://wiringpi.com/examples/blink/.
http://wiringpi.com/examples/blink/.
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/

Peripherals Chapter 9

[238]

After that, it turns the pin to LOW and waits for the remaining time:

 digitalWrite (kLedPin, LOW);
 std::this_thread::sleep_for(
 duration * (100 - percent_on) / 100);

Blink is the main building block for implementing PWM. We can control the brightness by
changing percent_on from 0 to 100, and if we pick duration short enough, we will not
see any flickering.

A duration that is equal to or shorter than the refresh rate of a TV or monitor is good
enough. For 60 Hz, the duration is 16.6 milliseconds. We use 10 milliseconds for simplicity.

Next, we wrap everything up in another endless loop, but now it has another parameter,
count:

 int count = 0;

It is updated with each iteration and bounces between 0 and 100. The delta variable
defines the direction of change—either a decrease or increase—as well as the amount of
change, which is always 1 in our case:

 int delta = 1;

When the count reaches 101 or 0, the direction changes:

 if (count == 101) {
 delta = -1;
 } else if (count == 0) {
 delta = 1;
 }

On each iteration, we invoke Blink, passing 10ms as a pulse and count as a ratio that
defines the amount of time when LED is on, hence its brightness (as shown in the following
image):

 Blink(10ms, count);

Peripherals Chapter 9

[239]

Due to the high frequency of updates, we cannot tell when the LED turns from on to off.

When we wire everything up and run the program, we can see that the LED gets brighter
or dimmer smoothly.

There's more...
PWM is widely used in embedded systems for a variety of purposes. It is a common
mechanism for servo control and voltage regulation. Use the Pulse-width modulation
Wikipedia page, available at https:/ /en. wikipedia. org/ wiki/ Pulse- width_ modulation,
as a starting point to learn more about this technique.

Using ioctl to access a real-time clock in
Linux
In our preceding recipes, we used MMIO to access peripheral devices from user-space
Linux applications. This interface, however, is not the recommended way of
communication between user-space applications and device drivers.

In Unix-like operating systems such as Linux, most of the peripheral devices can be
accessed in the same way as regular files using so-called device files. When an application
opens a device file, it can read from it, fetching data from the corresponding device, or
write to it, sending data to the device.

https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation

Peripherals Chapter 9

[240]

In many cases, device drivers cannot work with unstructured data streams. They expect
data exchange organized in the form of requests and responses, where each request and
response has a specific and fixed format.

This kind of communication is covered by the ioctl system call. It accepts a device-
dependant request code as its parameter. It may also contain other parameters that encode
the request data or provide storage for the output data. These parameters are specific to a
particular device and request code.

In this recipe, we will learn how to use ioctl in user-space applications for data exchange
with device drivers.

How to do it...
We will create an application that reads the current time from the Real-Time Clock (RTC)
connected to the Raspberry Pi board:

In your ~/test working directory, create a subdirectory called rtc.1.
Use your favorite text editor to create a rtc.cpp file in the rtc subdirectory.2.
Let's put the required include functions into the rtc.cpp file:3.

#include <iostream>
#include <system_error>

#include <time.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/rtc.h>

Now, we define a class called Rtc that encapsulates the communication to the4.
real-clock device:

class Rtc {
 int fd;
 public:
 Rtc() {
 fd = open("/dev/rtc", O_RDWR);
 if (fd < 0) {
 throw std::system_error(errno,
 std::system_category(),
 "Failed to open RTC device");
 }
 }

Peripherals Chapter 9

[241]

 ~Rtc() {
 close(fd);
 }

 time_t GetTime(void) {
 union {
 struct rtc_time rtc;
 struct tm tm;
 } tm;
 int ret = ioctl(fd, RTC_RD_TIME, &tm.rtc);
 if (ret < 0) {
 throw std::system_error(errno,
 std::system_category(),
 "ioctl failed");
 }
 return mktime(&tm.tm);
 }
};

Once the class is defined, we put a simple usage example into the main function: 5.

int main (void)
{
 Rtc rtc;
 time_t t = rtc.GetTime();
 std::cout << "Current time is " << ctime(&t)
 << std::endl;

 return 0 ;
}

Create a CMakeLists.txt file containing the build rules for our program:6.

cmake_minimum_required(VERSION 3.5.1)
project(rtc)
add_executable(rtc rtc.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

Build your application and copy the resulting rtc binary to our Raspberry Pi7.
emulator.

Peripherals Chapter 9

[242]

How it works...
We are implementing an application that talks directly to the hardware RTC connected to
the system. There is a difference between the system clock and the RTC. The system clock is
active and maintained only when the system is running. When the system is powered off or
goes into sleep mode, the system clock becomes invalid. The RTC is active even when the
system is off. It maintains the actual time that is used to configure the system clock when
the system is up. Moreover, it can be programmed to wake up the system at a specific time
when in sleep mode.

We encapsulate all communication with the RTC driver into a class called Rtc. All data
exchange with the driver goes through the /dev/rtc special device file. In the Rtc class
constructor, we open the device file and store the resulting file descriptor in the fd instance
variable:

 fd = open("/dev/rtc", O_RDWR);

Similarly, a destructor is used to close the file:

 ~Rtc() {
 close(fd);
 }

Since the device is closed in the destructor as soon as the Rtc instance is destroyed, we can
use the Resource Acquisition is Initialization (RAII) idiom to throw exceptions when
something goes wrong without leaking the file descriptors:

 if (fd < 0) {
 throw std::system_error(errno,
 std::system_category(),
 "Failed to open RTC device");
 }

Our class defines only one member function—GetTime. It is a wrapper on top of
the RTC_RD_TIME ioctl call. This call expects a rtc_time structure to return the current
time. It is almost identical to the tm structure that we are going to use to convert the time
returned by the RTC driver into a POSIX timestamp format, so we place both of them into
the same memory location as a union data type:

 union {
 struct rtc_time rtc;
 struct tm tm;
 } tm;

Peripherals Chapter 9

[243]

This way, we avoid copying identical fields from one structure to another.

Once the data structure is ready, we invoke the ioctl call, passing the RTC_RD_TIME
constant as a request ID and a pointer to our structure as an address to store data to:

 int ret = ioctl(fd, RTC_RD_TIME, &tm.rtc);

Once successful, ioctl returns 0. In this case, we convert the resulting data structure into
the time_t POSIX timestamp format using the mktime function:

 return mktime(&tm.tm);

In the main function, we create an instance of the Rtc class and then invoke the GetTime
method:

 Rtc rtc;
 time_t t = rtc.GetTime();

Since the POSIX timestamp represents the number of seconds since January 1, 1970, we
convert it into a human-friendly representation using the ctime function and output the
result to the console:

 std::cout << "Current time is " << ctime(&t)

When we run our application, we can see the following output:

We were able to read the current time directly from the hardware clock using ioctl. The
ioctl API is widely used in Linux embedded applications to communicate with devices.

Peripherals Chapter 9

[244]

There's more
In our simple example, we learned how to use only one ioctl request. RTC devices
support many other requests that can be used to set the alarm, update the time, and control
RTC interrupts. More details can be found in the RTC ioctl documentation section available
at https://linux. die. net/ man/ 4/rtc.

Using libgpiod to control GPIO pins
In the preceding recipe, we learned how to access the RTC using the ioctl API. Can we
use it to control GPIO pins as well? The answer is yes. Recently, a generic GPIO driver was
added to Linux, along with a user-space library, libgpiod, to simplify access to devices
connected to GPIO by adding a convenience layer on top of the generic ioctl API. This
interface allows embedded developers to manage their devices on any Linux-based
platform without writing device drivers. Additionally, it provides bindings for C++ out of
the box.

As a result, the wiringPi library has been deprecated, despite still being widely used
because of its easy-to-use interface.

In this recipe, we will learn how to use the libgpiod C++ bindings. We are going to use the
same LED blinking example to see the differences and similarities in the wiringPi and
libgpiod approaches.

How to do it...
We will create an application that blinks an LED connected to the Raspberry Pi board using
a new libgpiod API:

In your ~/test working directory, create a subdirectory called gpiod.1.
Use your favorite text editor to create a gpiod.cpp file in2.
the gpiod subdirectory.
Put the code for the application into the rtc.cpp file:3.

#include <chrono>
#include <iostream>
#include <thread>

#include <gpiod.h>
#include <gpiod.hpp>

https://linux.die.net/man/4/rtc
https://linux.die.net/man/4/rtc
https://linux.die.net/man/4/rtc
https://linux.die.net/man/4/rtc
https://linux.die.net/man/4/rtc
https://linux.die.net/man/4/rtc
https://linux.die.net/man/4/rtc
https://linux.die.net/man/4/rtc
https://linux.die.net/man/4/rtc
https://linux.die.net/man/4/rtc
https://linux.die.net/man/4/rtc
https://linux.die.net/man/4/rtc
https://linux.die.net/man/4/rtc
https://linux.die.net/man/4/rtc
https://linux.die.net/man/4/rtc

Peripherals Chapter 9

[245]

using namespace std::literals::chrono_literals;

const int kLedPin = 17;

int main (void)
{

 gpiod::chip chip("gpiochip0");
 auto line = chip.get_line(kLedPin);
 line.request({"test",
 gpiod::line_request::DIRECTION_OUTPUT,
 0}, 0);

 while (true) {
 line.set_value(1);
 std::cout << "ON" << std::endl;
 std::this_thread::sleep_for(500ms);
 line.set_value(0);
 std::cout << "OFF" << std::endl;
 std::this_thread::sleep_for(500ms);
 }

 return 0 ;
}

Create a CMakeLists.txt file containing the build rules for our program:4.

cmake_minimum_required(VERSION 3.5.1)
project(gpiod)
add_executable(gpiod gpiod.cpp)
target_link_libraries(gpiod gpiodcxx)

Connect an LED to your Raspberry Pi board using the instructions from5.
the WiringPI example section at http:/ /wiringpi. com/examples/ blink/ .
Set up an SSH connection to your Raspberry Pi board. Follow the instructions6.
from the Raspberry PI documentation section at https:/ /www. raspberrypi. org/
documentation/ remote- access/ .
Copy the contents of the gpio folder to the Raspberry Pi board over SSH.7.
Install the libgpiod-dev package:8.

$ sudo apt-get install gpiod-dev

http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
http://wiringpi.com/examples/blink/
https://www.raspberrypi.org/documentation/remote-access/
https://www.raspberrypi.org/documentation/remote-access/
https://www.raspberrypi.org/documentation/remote-access/
https://www.raspberrypi.org/documentation/remote-access/
https://www.raspberrypi.org/documentation/remote-access/
https://www.raspberrypi.org/documentation/remote-access/
https://www.raspberrypi.org/documentation/remote-access/
https://www.raspberrypi.org/documentation/remote-access/
https://www.raspberrypi.org/documentation/remote-access/
https://www.raspberrypi.org/documentation/remote-access/
https://www.raspberrypi.org/documentation/remote-access/
https://www.raspberrypi.org/documentation/remote-access/
https://www.raspberrypi.org/documentation/remote-access/
https://www.raspberrypi.org/documentation/remote-access/
https://www.raspberrypi.org/documentation/remote-access/

Peripherals Chapter 9

[246]

Log in to the board over SSH, then build and run the application:9.

$ cd gpiod && cmake . && make && sudo ./gpiod

Your application should run and you can observe the LED blinking.

How it works...
Our application uses a new, recommended way of accessing GPIO devices in Linux. Since it
was added only recently, it requires the latest version of the Raspbian distributive, buster,
to be installed.

The gpiod library itself provides high-level wrappers to communicate with GPIO kernel
modules using the ioctl API. This interface is designed for C languages and on top of it,
there is an additional layer for C++ bindings. This layer lives in the libgpiocxx library,
which is part of the libgpiod2 package along with the libgpiod library for C.

The library uses exceptions to report errors, so the code is simple and not cluttered with
checks of return codes. Also, we do not need to bother with releasing the capture's
resources; it is done automatically via C++ RAII mechanisms.

When the application starts, it creates an instance of the class chip, which works as an entry
point for GPIO communication. Its constructor accepts the name of the device to work with:

 gpiod::chip chip("gpiochip0");

Next, we create an instance of the line, which represents a particular GPIO pin:

 auto line = chip.get_line(kLedPin);

Note that unlike the wiringPi implementation, we pass a 17 pin number because
libgpiod uses native Broadcom SOC Channel (BCM) pin numbering:

const int kLedPin = 17;

After the line instance is created, we need to configure the desired access mode. We
construct an instance of the line_request structure, passing the name of a consumer
("test") and a constant indicating that the pin is configured for output:

 line.request({"test",
 gpiod::line_request::DIRECTION_OUTPUT,
 0}, 0);

Peripherals Chapter 9

[247]

After that, we can change the pin state using the set_value method. As in the wiringPi
example, we set the pin to 1 or HIGH for 500ms, then back to 0 or LOW for another 500ms in
a loop:

 line.set_value(1);
 std::cout << "ON" << std::endl;
 std::this_thread::sleep_for(500ms);
 line.set_value(0);
 std::cout << "OFF" << std::endl;
 std::this_thread::sleep_for(500ms);

The output of this program is identical to the output of the program from the Controlling
devices connected via GPIO recipe. The code may look more complex, but the new API is
more generic and can work on any Linux board, not just Raspberry Pi.

There's more...
More information about libgpiod and the GPIO interface, in general, can be found at
https://github.com/ brgl/ libgpiod.

Controlling I2C peripheral devices
Connecting devices over GPIO has one downside. A processor has a limited and relatively
small number of pins available for GPIO. When you need to work with numerous devices
or devices that provide complex functionality, you can run out of pins easily.

A solution is using one of the standard serial buses to connect peripheral devices. One of
them is Inter-Integrated Circuit (I2C). This is widely used to connect various low-speed
devices because of its simplicity and because a device can be connected with only two wires
on the host controller.

The bus is well supported both on hardware and software levels. By using I2C peripherals,
developers can control them from user-space applications without writing complex device
drivers.

In this recipe, we will learn how to work with an I2C device on a Raspberry Pi board. We
will use a popular and inexpensive LCD display. It has 16 pins, which makes it difficult to
connect to the Raspberry board directly. However, with an I2C backpack, it only needs four
wires to connect.

https://github.com/brgl/libgpiod
https://github.com/brgl/libgpiod
https://github.com/brgl/libgpiod
https://github.com/brgl/libgpiod
https://github.com/brgl/libgpiod
https://github.com/brgl/libgpiod
https://github.com/brgl/libgpiod
https://github.com/brgl/libgpiod
https://github.com/brgl/libgpiod
https://github.com/brgl/libgpiod
https://github.com/brgl/libgpiod

Peripherals Chapter 9

[248]

How to do it...
We will create an application that displays text on a 1602 LCD display attached to our
Raspberry Pi board:

In your ~/test working directory, create a subdirectory called i2c.1.
Use your favorite text editor to create an i2c.cpp file in the i2c subdirectory.2.
Put the following include directives and constants' definitions into3.
the i2c.cpp file:

#include <thread>
#include <system_error>

#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <linux/i2c-dev.h>

using namespace std::literals::chrono_literals;

enum class Function : uint8_t {
 clear = 0x01,
 home = 0x02,
 entry_mode_set = 0x04,
 display_control = 0x08,
 cursor_shift = 0x10,
 fn_set = 0x20,
 set_ddram_addr = 0x80
};

constexpr int En = 0b00000100;
constexpr int Rs = 0b00000001;

constexpr int kDisplayOn = 0x04;
constexpr int kEntryLeft = 0x02;
constexpr int kTwoLine = 0x08;
constexpr int kBacklightOn = 0x08;

Peripherals Chapter 9

[249]

Now, we define a new class, Lcd, which encapsulates the display control logic.4.
We start with the data fields and the public methods:

class Lcd {
 int fd;

 public:
 Lcd(const char* device, int address) {
 fd = open(device, O_RDWR);
 if (fd < 0) {
 throw std::system_error(errno,
 std::system_category(),
 "Failed to open RTC device");
 }
 if (ioctl(fd, I2C_SLAVE, address) < 0) {
 close(fd);
 throw std::system_error(errno,
 std::system_category(),
 "Failed to aquire bus address");
 }
 Init();
 }

 ~Lcd() {
 close(fd);
 }

 void Clear() {
 Call(Function::clear);
 std::this_thread::sleep_for(2000us);
 }

 void Display(const std::string& text,
 bool second=false) {
 Call(Function::set_ddram_addr, second ? 0x40 : 0);
 for(char c : text) {
 Write(c, Rs);
 }
 }

They are followed by the private methods. Low-level helper methods go first:5.

private:

 void SendToI2C(uint8_t byte) {
 if (write(fd, &byte, 1) != 1) {
 throw std::system_error(errno,
 std::system_category(),

Peripherals Chapter 9

[250]

 "Write to i2c device failed");
 }
 }

 void SendToLcd(uint8_t value) {
 value |= kBacklightOn;
 SendToI2C(value);
 SendToI2C(value | En);
 std::this_thread::sleep_for(1us);
 SendToI2C(value & ~En);
 std::this_thread::sleep_for(50us);
 }

 void Write(uint8_t value, uint8_t mode=0) {
 SendToLcd((value & 0xF0) | mode);
 SendToLcd((value << 4) | mode);
 }

Once the helper functions are defined, we add higher-level methods:6.

 void Init() {
 // Switch to 4-bit mode
 for (int i = 0; i < 3; i++) {
 SendToLcd(0x30);
 std::this_thread::sleep_for(4500us);
 }
 SendToLcd(0x20);

 // Set display to two-line, 4 bit, 5x8 character mode
 Call(Function::fn_set, kTwoLine);
 Call(Function::display_control, kDisplayOn);
 Clear();
 Call(Function::entry_mode_set, kEntryLeft);
 Home();
 }

 void Call(Function function, uint8_t value=0) {
 Write((uint8_t)function | value);
 }

 void Home() {
 Call(Function::home);
 std::this_thread::sleep_for(2000us);
 }
};

Peripherals Chapter 9

[251]

Add the main function that uses the Lcd class:7.

int main (int argc, char* argv[])
{
 Lcd lcd("/dev/i2c-1", 0x27);
 if (argc > 1) {
 lcd.Display(argv[1]);
 if (argc > 2) {
 lcd.Display(argv[2], true);
 }
 }
 return 0 ;
}

Create a CMakeLists.txt file containing the build rules for our program:8.

cmake_minimum_required(VERSION 3.5.1)
project(i2c)
add_executable(i2c i2c.cpp)

Connect the pins on the i2c backpack of your 1602LCD display to the pins on9.
your Raspberry Pi board according to this table:

Raspberry Pi pin name Physical pin number 1602 I2C pin
GND 6 GND
+5v 2 VSS
SDA.1 3 SDA
SCL.1 5 SCL

Set up an SSH connection to your Raspberry Pi board. Follow the instructions10.
from the Raspberry PI documentation section at https:/ /www. raspberrypi. org/
documentation/ remote- access/ ssh/ .
Log in to the Raspberry board and run the raspi-config tool to enable i2c:11.

sudo raspi-config

In the menu, select Interfacing Options | I2C | Yes.12.
Reboot the board to activate the new settings.13.
Copy the contents of the i2c folder to the Raspberry Pi board over SSH.14.
Log in to the board over SSH, then build and run the application:15.

$ cd i2c && cmake . && make && ./i2c Hello, world!

Your application should run and you can observe the LED blinking.

https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/

Peripherals Chapter 9

[252]

How it works...
In this recipe, our peripheral device—an LCD screen—is connected to the board over the
I2C bus. It is a form of a serial interface, so the connection only requires four physical wires.
An LCD screen, however, can do much more than a simple LED. This means that the
communication protocol used to control it is also more complex.

We will use only a fraction of the functionality provided by the 1602 LCD screen. The
communication logic is loosely based on the LiquidCrystal_I2C library for Arduino,
adapted for Raspberry Pi.

We define an Lcd class that hides all the complexities of I2C communication and the
specifics of the 1602 control protocol in its private methods. Besides a constructor and a
destructor, it exposes only two public methods: Clear and Display.

In Linux, we communicate to I2C devices via device files. To start working with a device,
we need to open a device file corresponding to an I2C controller using the regular open call:

fd = open(device, O_RDWR);

There may be multiple devices attached to the same bus. We need to select the device we
what to communicate to. We do this with an ioctl call:

if (ioctl(fd, I2C_SLAVE, address) < 0) {

At this point, the I2C communication is configured and we can issue I2C commands by
writing data to the open file descriptor. The commands, however, are specific for each
peripheral device. So, after generic I2C initialization, we need to proceed with the LCD
initialization.

We put all the LCD-specific initialization into the Init private function. It configures the
operation modes, the number of rows, and the size of the displayed characters. To do this,
we define the helper methods, data types, and constants.

The basic helper function is SendToI2C. It is a simple method that writes a byte of data into
the file descriptor configured for I2C communication and throws an exception in the case of
an error:

 if (write(fd, &byte, 1) != 1) {
 throw std::system_error(errno,
 std::system_category(),
 "Write to i2c device failed");
 }

Peripherals Chapter 9

[253]

On top of SendToI2C, we define another helper method, SendToLcd. It sends a sequence of
bytes to I2C, forming a command that the LCD controller can interpret. This involves
setting different flags and taking care of delays required between chunks of data:

 SendToI2C(value);
 SendToI2C(value | En);
 std::this_thread::sleep_for(1us);
 SendToI2C(value & ~En);
 std::this_thread::sleep_for(50us);

The LCD is working in 4-bit mode, which means that each byte sent to the display requires
two commands. We define the Write method to do it for us:

 SendToLcd((value & 0xF0) | mode);
 SendToLcd((value << 4) | mode);

Finally, we define all possible commands supported by the device and put them into the
Function enum class. A Call helper function can be used to invoke the functions in a
type-safe way:

 void Call(Function function, uint8_t value=0) {
 Write((uint8_t)function | value);
 }

Finally, we use these helper functions to define public methods to clear the screen and
display a string.

Since all the complexity of the communication protocol is encapsulated in the Lcd class, our
main function is relatively simple.

It creates an instance of the class, passing in a device filename and a device address that we
are going to use. By default, a 1620 LCD with an I2C backpack has a 0x27 address:

 Lcd lcd("/dev/i2c-1", 0x27);

The constructor of the Lcd class performs all initialization and as soon as the instance is
created, we can invoke the Display function. Instead of hardcoding the string to display,
we use data passed by a user through the command-line parameters. The first parameter is
displayed in the first row. If the second parameter is provided, it is also displayed in the
second row of the display:

 lcd.Display(argv[1]);
 if (argc > 2) {
 lcd.Display(argv[2], true);
 }

Peripherals Chapter 9

[254]

Our program is ready and we can copy it over to the Raspberry Pi board and build it there.
But before running it, we need to wire the display to the board and enable I2C support.

We use the raspi-config tool to enable I2C. We need to do it only once, but a reboot is
required unless I2C has not been previously enabled:

Finally, we can run our application. It will display the following output on the LCD
display:

Now, we know how to control devices connected via an I2C bus from Linux user-space
programs.

There's more...
More information about working with I2C devices can be found at the Interfacing with I2C
devices page, available at https:/ /elinux. org/Interfacing_ with_ I2C_Devices.

https://elinux.org/Interfacing_with_I2C_Devices.
https://elinux.org/Interfacing_with_I2C_Devices.
https://elinux.org/Interfacing_with_I2C_Devices.
https://elinux.org/Interfacing_with_I2C_Devices.
https://elinux.org/Interfacing_with_I2C_Devices.
https://elinux.org/Interfacing_with_I2C_Devices.
https://elinux.org/Interfacing_with_I2C_Devices.
https://elinux.org/Interfacing_with_I2C_Devices.
https://elinux.org/Interfacing_with_I2C_Devices.
https://elinux.org/Interfacing_with_I2C_Devices.
https://elinux.org/Interfacing_with_I2C_Devices.
https://elinux.org/Interfacing_with_I2C_Devices.
https://elinux.org/Interfacing_with_I2C_Devices.
https://elinux.org/Interfacing_with_I2C_Devices.
https://elinux.org/Interfacing_with_I2C_Devices.

10
Reducing Power Consumption

There are many applications for embedded systems that require them to be battery
powered. From small IoT (short for internet of things) devices collecting data from
sensors, pushing it into the cloud for processing, to autonomous vehicles and robots—these
systems should be as power efficient as possible so that they can operate for a long time
without a steady external power supply.

Power efficiency means the smart control of the power consumption of all parts of a system,
from the peripheral devices to the memory and the processor. The efficiency of power
control depends significantly on the choice of hardware components and the system
design. If a processor does not support dynamic voltage control or a peripheral device
cannot enter power-saving mode when idle, then not much can be done on the software
side. If, however, hardware components implement standard specifications, such as
an advanced configuration and power interface (ACPI), then a lot of the burden of power
management can be offloaded to the operating system kernel.

In this chapter, we will explore different power-saving modes of modern hardware
platforms and how they can be utilized. We will learn how to manage the power state of
external devices and reduce the power consumption of processors by writing more efficient
software.

We will cover the following topics:

Exploring power-saving modes in Linux
Waking up using RTC (short for real-time clock)
Controlling the autosuspend of USB devices
Configuring CPU frequency
Using events for waiting
Profiling power consumption with PowerTOP

The recipes from this chapter will help you efficiently utilize the power-saving capabilities
of modern operating systems and write code that is optimized for battery-powered devices.

Reducing Power Consumption Chapter 10

[256]

Technical requirements
For running code examples in this chapter, you need to have a Raspberry PI box revision 3
or above.

Exploring power-saving modes in Linux
When a system is in the idle state and does not have work to do, it can be put in a sleep
state to save power. Similar to human sleep, it cannot do anything until it is woken up by
external event, for example an alarm clock.

Linux supports multiple sleep modes. The choice of sleep mode and the amount of power it
can save depends on the hardware support and the time it takes to enter the mode and
wake up from it.

The supported modes are as follows:

Suspend-to-idle (S2I): This is a light sleep mode that can be implemented purely
in software and does not require any support from the hardware. The devices are
put into low-power mode and time keeping is suspended to let the processor
spend more time in a power-efficient idle state. A system is woken up by an
interrupt from any of the peripheral devices.
Standby: This is similar to S2I, but provides more power saving by taking all non
boot CPUs offline. Interruption from some devices can wake the system up.
Suspend-to-RAM (STR or S3): All components of the system (except memory),
including CPUs, go into low-power mode. The system state is maintained in
memory until it is woken up by an interrupt from a limited set of devices. This
mode requires hardware support.
Hibernation or suspend-to-disk: This provides the greatest power saving, since
all the system components can be powered off. When entering this state, a
snapshot of the memory is taken and written to persistent storage (disk or flash).
After that, the system can be turned off. As part of the boot process, on wake up,
the saved snapshot is restored and the system resumes its work.

In this recipe, we will learn how to query the sleep modes supported on a particular system
and how to switch to one of them.

Reducing Power Consumption Chapter 10

[257]

How to do it...
In this recipe, we will use simple bash commands to access sleep modes supported by a
Linux system running in QEMU (short for quick emulator).

Run the Raspberry Pi QEMU as described in Chapter 3, Working with Different1.
Architectures.
Log in as user pi, using the password raspberry.2.
Run sudo to gain root access:3.

$ sudo bash
#

To get the list of supported sleep modes, run the following command:4.

 # cat /sys/power/state

Now switch to one of the supported modes:5.

 # echo freeze > /sys/power/state

The system goes to sleep, but we have not instructed it as to how to wake up.6.
Close the QEMU window now.

How it works...
Power management is part of the Linux kernel; that is why we cannot use a Docker
container to work with it. Docker virtualization is lightweight and uses the kernel of the
host operating system.

We cannot use the real Raspberry Pi board either, because it does not provide any sleep
modes at all because of hardware limitations. QEMU, however, provides full virtualization,
including power management in the kernel we use to emulate Raspberry Pi.

Linux provides access to its power management functions through the sysfs interface.
Applications can read and write text files in the /sys/power directory. Access to power-
management functions is limited for the root user; that is why we need to get the root shell
once we log into the system:

$ sudo bash

Reducing Power Consumption Chapter 10

[258]

Now we can get the list of supported sleep modes. To do this, we read the
/sys/power/state file:

$ cat /sys/power/state

The file consists of a single line of text. Each word represents a sleep mode that is
supported, with the modes separated by spaces. We can see that the QEMU kernel supports
two modes: freeze and mem:

Freeze represents the S2I state we discussed in the preceding section. The meaning of mem is
defined by the content of the /sys/power/mem_sleep file. In our system, it contains only
[s2idle], representing the same S2I state as freeze.

Let's switch our emulator to freeze mode. We write the word freeze to
/sys/power/state, and immediately the QEMU window turns black and frozen:

Reducing Power Consumption Chapter 10

[259]

We were able to put the emulated Linux system to sleep, but cannot wake it up—there are
no sources of interrupts that it can understand. We learned about different sleep modes and
the kernel API to work with them. Based on the requirements of your embedded system,
you can use these modes to reduce power consumption.

There's more...
More information about sleep modes can be found in the corresponding section of
the Linux Kernel Guide at https:/ /www. kernel. org/ doc/ html/ v4. 19/admin- guide/ pm/
sleep-states.html.

Waking up using RTC
In the preceding recipe, we were able to put our QEMU system to sleep but were not able to
wake it up. We need a device that can send an interrupt to the system when most of its
internal components are powered off.

The RTC (Real-time clock) is one such device. One of its functions is to keep the internal
clock running when the system is off, and to do this, it has its own battery. RTC power
consumption is similar to an electronic watch; it uses the same 3 V battery and can function
on its power for years.

RTC can work as an alarm clock, sending an interrupt to the CPU at a given time. This
makes it an ideal device for waking up a system on schedule.

In this recipe, we will learn how to wake up a Linux system at a specific time using the
built-in RTC.

How to do it...
In this recipe, we will set a wake-up time to 1 minute in advance and put the system to
sleep:

Log in to any Linux system that has an RTC clock—any Linux laptop can work.1.
Unfortunately, Raspberry Pi does not have an onboard RTC, and cannot be
woken up without additional hardware.

https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/sleep-states.html.

Reducing Power Consumption Chapter 10

[260]

Get root permissions using sudo:2.

$ sudo bash
#

Instruct RTC to wake up the system in 1 minute:3.

date '+%s' -d '+1 minute' > /sys/class/rtc/rtc0/wakealarm

Put the system to sleep:4.

echo freeze > /sys/power/state

Wait for a minute. Your system will wake up.5.

How it works...
Like many other functions exposed by the Linux kernel, RTC can be accessed via sysfs
interfaces. To set an alarm that will send a wake-up interrupt to the system, we need to
write a POSIX (short for Portable Operating System Interface) timestamp to
the /sys/class/rtc/rtc0/wakealarm file.

The POSIX timestamp, which we discuss in more detail in Chapter 11, Time Points and
Intervals, is defined as the number of seconds elapsed since the Epoch, or 00:00 January 1,
1970.

Though we can write a program to read the current timestamp using the time function,
add 60, and write the result to the wakealarm file, we can do this in one line using the Unix
shell and the date command, which is available on any modern Unix system.

The date utility can not only format the current time using different formats, but it can also
interpret dates and times in different formats.

We instruct date to interpret the time string +1 minute and use the formatting pattern %s
to output it as a POSIX timestamp. We redirect its standard output to the wakealarm file,
effectively passing it to the RTC driver:

date '+%s' -d '+1 minute' > /sys/class/rtc/rtc0/wakealarm

Now, knowing that in 60 seconds the alarm will go off, we can put the system to sleep. As
in the previous recipe, we write the desired sleep mode to the /sys/power/state file:

echo freeze > /sys/power/state

Reducing Power Consumption Chapter 10

[261]

The system goes to sleep. You will notice that the screen turns off. If you connected to the
Linux box using Secure Shell (SSH), the command line freezes. However, in one minute it
wakes up, the screen turns on, and the Terminal is responsive again.

This technique is very efficient for tasks such as gathering data from sensors on a regular,
infrequent basis, such as hourly or daily. The system spends most of the time powered off,
waking up only to collect data and store it or send it to the cloud, and then it goes to sleep
again.

There's more...
An alternative way to set RTC alarms is by using the rtcwake utility.

Controlling the autosuspend of USB devices
Turning an external device off is one of the most efficient ways to save power. It is,
however, not always easy to understand when a device can be turned off safely. Peripheral
devices such as network cards or memory cards can perform internal data processing;
otherwise, the caching and powering off of the device at an arbitrary point can cause data
loss.

To mitigate this problem, many external devices that are connected over the USB can switch
themselves into low-power consumption mode when requested by the host. This way, they
can perform all necessary steps to handle internal data safely before entering the suspended
state.

Since Linux provides access to peripheral devices only through its API, it knows when a
device is in use by applications and kernel services. If a device is not in use for a certain
amount of time, the power-management system within the Linux kernel can instruct the
device to enter power-saving mode automatically—explicit requests from userspace
applications are not needed. This feature is called autosuspend. The kernel, however,
allows applications to control the device's idle time, after which autosuspend kicks in.

In this recipe, we will learn how to enable autosuspend and modify the autosuspend
interval for a particular USB device.

Reducing Power Consumption Chapter 10

[262]

How to do it...
We are going to enable autosuspend and modify its autosuspend time for a USB device
connected to your Linux box:

Log in to your Linux box (Raspberry Pi, Ubuntu, and Docker containers won't1.
work).
Switch to the root account:2.

$ sudo bash
#

Get the current autosuspend status for all USB devices that are connected:3.

for f in /sys/bus/usb/devices/*/power/control; do echo "$f"; cat
$f; done

Enable autosuspend for one of the devices:4.

echo auto > /sys/bus/usb/devices/1-1.2/power/control

Read the autosuspend interval for the device:5.

cat /sys/bus/usb/devices/1-1.2/power/autosuspend_delay_ms

Modify the autosuspend interval:6.

echo 5000 > /sys/bus/usb/devices/1-1.2/power/autosuspend_delay_ms

Check the current power mode of the device:7.

cat /sys/bus/usb/devices/1-1.2/power/runtime_status

The same operations can be programmed in C++ using the standard file API.

How it works...
Linux exposes its power management API via the sysfs filesystem, which makes it possible
to read the current status and modify the settings of any device using standard file read
and write operations. As a result, we can use any programming language that supports
basic file operations to control peripheral devices in Linux.

Reducing Power Consumption Chapter 10

[263]

To simplify our examples, we are going to use the Unix shell, but exactly the same logic can
be programmed in C++ when necessary.

First, we check the autosuspend settings for all attached USB devices. In Linux, the
parameters of each USB device are exposed as a directory under
the /sysfs/bus/usb/devices/ folder. Each device directory, in turn, has a set of files
that represent the device parameters. All parameters related to power management are
grouped in the power subdirectory.

To read the status of autosuspend, we need to read the control file in the power
directory of a device. Using Unix shell wildcard substitution, we can read this file for all
USB devices:

for f in /sys/bus/usb/devices/*/power/control; do echo "$f"; cat $f; done

For each directory matching the wildcard, we display the full path of the control file and its
content. The result depends on the devices that are connected and may look like the
following:

The reported status may either be autosuspend or on. If the status is reported as
autosuspend, then the automatic power management is enabled; otherwise, the device is
always kept on.

In our case, devices usb1, 1-1.1, and 1-1.2 are on. Let's modify the configuration of
1-1.2 to use autosuspend. To do it, we just write a string _auto_ to the corresponding
control file.

echo auto > /sys/bus/usb/devices/1-1.2/power/control

Reducing Power Consumption Chapter 10

[264]

Running the read loop over all devices again shows that the 1-1.2 device is now in
autosuspend mode:

When is it going to be suspended? We can read this from the autosuspend_delay_ms file
in the power subdirectory:

cat /sys/bus/usb/devices/1-1.2/power/autosuspend_delay_ms

It shows that the device will be suspended after 2000 milliseconds of idleness:

Let's change it to 5 seconds. We write 5000 in the autosuspend_delay_ms file:

echo 5000 > /sys/bus/usb/devices/1-1.2/power/autosuspend_delay_ms

Reducing Power Consumption Chapter 10

[265]

Reading it again shows that the new value is accepted:

Now let's check the current power state of the device. We can read it from the
runtime_status file:

cat /sys/bus/usb/devices/1-1.2/power/runtime_status

The status is reported as active:

Please note that the kernel does not control the power state of devices
directly; it only requests them to change the state. Even if a device is
requested to switch into suspend mode, it may refuse to do it for various
reasons—for example, it may not support the power-saving mode at all.

Accessing the power-management setting of any device through the sysfs interface is a
powerful way to tweak the power consumption of the embedded system running Linux
OS.

There's more...
There is no direct way to turn a USB device off immediately; however, in many cases, it can
be done by writing 0 into the autosuspend_delay_ms file. A zero autosuspend interval is
interpreted by the kernel as an immediate suspend request to the device.

More details on the USB power management in Linux can be found in the corresponding
section of the Linux kernel documentation, available at https:/ /www. kernel. org/doc/
html/v4.13/driver- api/ usb/ power- management. html

https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/power-management.html

Reducing Power Consumption Chapter 10

[266]

Configuring CPU frequency
The CPU frequency is an important parameter of the system that determines its
performance and its power consumption. The higher the frequency, the more instructions
the CPU can perform per second. But it comes with a cost. Higher frequency implies a
higher power consumption that, in turn, means more heat that needs to be dissipated to
avoid the processor overheating.

Modern processors are able to use different operating frequencies depending on their load.
For computationally intense tasks, they use their maximum frequency to achieve the
maximum performance, but when the system is mostly idle, they switch to lower
frequencies to reduce both the power consumption and thermal impact.

Proper frequency selection is managed by the operating system. In this recipe, we will learn
how to set the CPU frequency range and select a frequency governor in Linux to fine-tune
the CPU frequency to your needs.

How to do it...
We are going to use simple shell commands to adjust the parameters of CPU frequency on
a Raspberry PI box:

Log in to a Raspberry Pi or another nonvirtualized Linux system.1.
Switch to the root account:2.

$ sudo bash
#

Get the current frequency of all CPU cores available in the system:3.

cat /sys/devices/system/cpu/*/cpufreq/scaling_cur_freq

Get all of the frequencies supported by the CPU:4.

cat
/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies

Get the available CPU-frequency governors:5.

cat
/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors

Reducing Power Consumption Chapter 10

[267]

Now let's check which frequency governor is currently in use:6.

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

Adjust the minimum frequency of the CPU to the highest supported:7.

echo 1200000 >
/sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq

Display the current frequencies again to understand the effect:8.

cat /sys/devices/system/cpu/*/cpufreq/scaling_cur_freq

Adjust the minimum frequency to the lowest supported:9.

echo 600000 >
/sys/devices/system/cpu/cpu0/cpufreq/scaling_min_fre

Now let's check how the CPU frequency depends on the governor in use. Select a10.
performance governor and get the current frequency:

echo performance >
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
cat /sys/devices/system/cpu/*/cpufreq/scaling_cur_freq

Select the powersave governor and observe the result:11.

echo powersave >
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
cat /sys/devices/system/cpu/*/cpufreq/scaling_cur_freq

You can use a regular file API to implement the same logic in C++.

How it works...
Similar to USB power management, the CPU-frequency management system API is
exposed via sysfs. We can read and modify its parameters as regular text files.

We can find all settings related to CPU cores under the /sys/devices/system/cpu/
directory. Configuration parameters are grouped by CPU cores in subdirectories named
after each code index, such as cpu1, cpu2, and so on.

Reducing Power Consumption Chapter 10

[268]

We are interested in several parameters related to CPU frequencies management that live in
the cpufreq subdirectory of each core. Let's read the current frequency of all available
cores:

cat /sys/devices/system/cpu/*/cpufreq/scaling_cur_freq

We can see that all cores have the same frequency, 600 MHz (the cpufreq subsystem uses
KHz as a measurement unit for frequency):

Next, we figure out all the frequencies supported by our CPU:

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies

The ARM processor of Raspberry Pi 3 supports only two frequencies, 600 MHz and 1.2
GHz:

Reducing Power Consumption Chapter 10

[269]

We cannot set the desired frequency directly. Linux manages the CPU frequencies
internally through a so-called governor, and only allows us to adjust two parameters:

A range of frequencies available for the governor
The type of governor

Though this looks like a limitation, these two parameters give enough flexibility to
implement fairly complex policies. Let's check how the modification of both of these
parameters affects the CPU frequency.

First, let's figure out which governors are supported and which is currently in use:

The current governor is ondemand. It adjusts the frequency based on the system load. At
the moment, the Raspberry Pi board is pretty idle, and so it uses the lowest frequency, 600
MHz. But what if we make the lowest frequency equal to the highest frequency?

echo 1200000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq

Reducing Power Consumption Chapter 10

[270]

After we updated the scaling_min_freq parameter of one core, the frequency of all cores
was changed to the maximum:

Since all four cores belong to the same CPU, we cannot change their frequencies
independently; changing the frequency of one core affects all cores. We can, however,
control the frequencies of separate CPUs independently.

Now we revert the minimum frequency back to 600 MHz and change the governor. Instead
of the ondemand governor that adjusts the frequency, we selected the performance
governor, aiming to deliver maximal performance unconditionally:

echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_g;overnor

It's no surprise that it raised the frequency up to the maximum supported frequency:

Reducing Power Consumption Chapter 10

[271]

On the other hand, the powersave governor aims to save as much power as possible as it
always sticks to the lowest-supported frequency regardless of the load:

Reducing Power Consumption Chapter 10

[272]

As you can see, adjusting both the frequency ranges and the frequency governor allows you
to flexibly fine-tune the frequency depending on the nature of the system and reduce the
power consumed by the CPU.

There's more...
Besides ondemand, performance, and powersave, there are other governors that provide
even more flexible tuning of CPU frequency from userspace applications. You can find
more details about the available governors and their properties in the corresponding
section of Linux CPUFreq at https:/ /www. kernel. org/ doc/ Documentation/ cpu- freq/
governors.txt

Using events for waiting
Waiting is an extremely common pattern in software development. Applications have to
wait for user input or for data to be ready for processing. Embedded programs
communicate with peripheral devices and need to know when data can be read from the
device and when the device is ready to accept data.

Often, developers use variations of the polling technique for waiting. They check a device-
specific availability flag in a loop, and when it is set to true by the device, they proceed with
reading or writing data.

Though this approach is easy to implement, it is inefficient from the perspective of power
consumption. When a processor is constantly busy looping around a flag check, it cannot be
put into a more power-efficient mode by the operating system power manager. Based on
the load, the Linux ondemand frequency governor that we discussed earlier can even decide
to increase the CPU frequency despite the fact that it is a wait in disguise. Additionally,
polling requests may prevent the target device or the device bus from staying in power-
saving mode until data is ready.

That is why instead of polling programs that care about energy efficiency, it should rely on
interrupts and events generated by the operating system.

In this recipe, we will learn how to use the operating system events to wait for a specific
USB device to be connected.

https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

Reducing Power Consumption Chapter 10

[273]

How to do it...
We are going to create an application that can monitor USB devices and wait until a specific
device appears:

In your working ~/test directory create a subdirectory called udev.1.
Use your favorite text editor to create a udev.cpp file in the udev subdirectory.2.
Put the essential includes and the namespace definition into the udev.cpp file:3.

#include <iostream>
#include <functional>

#include <libudev.h>
#include <poll.h>

namespace usb {

Now, let's define the Device class:4.

class Device {
 struct udev_device *dev{0};

 public:
 Device(struct udev_device* dev) : dev(dev) {
 }

 Device(const Device& other) : dev(other.dev) {
 udev_device_ref(dev);
 }

 ~Device() {
 udev_device_unref(dev);
 }

 std::string action() const {
 return udev_device_get_action(dev);
 }

 std::string attr(const char* name) const {
 const char* val = udev_device_get_sysattr_value(dev,
 name);
 return val ? val : "";
 }
};

Reducing Power Consumption Chapter 10

[274]

After that, add the definition of the Monitor class:5.

class Monitor {
 struct udev_monitor *mon;

 public:
 Monitor() {
 struct udev* udev = udev_new();
 mon = udev_monitor_new_from_netlink(udev, "udev");
 udev_monitor_filter_add_match_subsystem_devtype(
 mon, "usb", NULL);
 udev_monitor_enable_receiving(mon);
 }

 Monitor(const Monitor& other) = delete;

 ~Monitor() {
 udev_monitor_unref(mon);
 }

 Device wait(std::function<bool(const Device&)> process) {
 struct pollfd fds[1];
 fds[0].events = POLLIN;
 fds[0].fd = udev_monitor_get_fd(mon);

 while (true) {
 int ret = poll(fds, 1, -1);
 if (ret < 0) {
 throw std::system_error(errno,
 std::system_category(),
 "Poll failed");
 }
 if (ret) {
 Device d(udev_monitor_receive_device(mon));
 if (process(d)) {
 return d;
 };
 }
 }
 }
};
};

Reducing Power Consumption Chapter 10

[275]

After Device and Monitor are defined in the usb namespace, add a6.
simple main function that shows how to use them:

int main() {
 usb::Monitor mon;
 usb::Device d = mon.wait([](auto& d) {
 auto id = d.attr("idVendor") + ":" +
 d.attr("idProduct");
 auto produce = d.attr("product");
 std::cout << "Check [" << id << "] action: "
 << d.action() << std::endl;
 return d.action() == "bind" &&
 id == "8086:0808";
 });
 std::cout << d.attr("product")
 << " connected, uses up to "
 << d.attr("bMaxPower") << std::endl;
 return 0;
}

Create a CMakeLists.txt file containing the build rules for our program:7.

cmake_minimum_required(VERSION 3.5.1)
project(udev)
add_executable(usb udev.cpp)
target_link_libraries(usb udev)

Copy the udev directory into your home directory on your Linux box using ssh.8.
Log in to your Linux box, change the directory to udev, and build the program9.
using cmake:

$cd ~/udev; cmake. && make

You can now build and run the application.

How it works...
To get system notifications about events on USB devices, we are using a library called
libudev. It provides only a plain C interface, and so we created simple C++ wrappers to
make coding easier.

For our wrapper classes, we declared a namespace named usb:

namespace usb {

Reducing Power Consumption Chapter 10

[276]

It contains two classes. The first class is Device, which gives us a C++ interface to a low-
level libudev object called udev_device.

We defined a constructor that created an instance of Device from a udev_device pointer
and a destructor to release the udev_device. Internally, libudev uses reference counting
for its object, and so our destructor calls a function to decrease the reference count of the
udev_device:

 ~Device() {
 udev_device_unref(dev);
 }

 Device(const Device& other) : dev(other.dev) {
 udev_device_ref(dev);
 }

This way, we can copy the Device instances without memory or file descriptor leaks.

Besides the constructors and the destructor, the Device class has only two
methods: action and attr. The action method returns the most recent USB device
action:

 std::string action() const {
 return udev_device_get_action(dev);
 }

The attr method returns any sysfs attribute associated with the device:

 std::string attr(const char* name) const {
 const char* val = udev_device_get_sysattr_value(dev,
 name);
 return val ? val : "";
 }

The Monitor class also has a constructor and a destructor, but we made it noncopyable by
disabling the copy constructor:

 Monitor(const Monitor& other) = delete;

The constructor initializes the libudev instance using a static variable to ensure it is
initialized only once:

 struct udev* udev = udev_new();

Reducing Power Consumption Chapter 10

[277]

It also sets up the monitoring filter and enables monitoring:

 udev_monitor_filter_add_match_subsystem_devtype(
 mon, "usb", NULL);
 udev_monitor_enable_receiving(mon);

The wait method contains the most important monitoring logic. It accepts a function-like
process object that is called each time an event is detected:

Device wait(std::function<bool(const Device&)> process) {

The function should return true if the event and the device it originates from are what we
need; otherwise, it returns false to indicate that wait should keep working.

Internally, the wait function creates a file descriptor that is used to deliver device events to
the program:

 fds[0].fd = udev_monitor_get_fd(mon);

Then it sets up the monitoring loop. Despite its name, the poll function does not check the
status of devices constantly; it waits for events on the specified file descriptors. We pass -1
as a timeout, indicating that we intend to wait for events forever:

int ret = poll(fds, 1, -1);

The poll function returns only in the case of an error or a new USB event. We handle an
error condition by throwing an exception:

 if (ret < 0) {
 throw std::system_error(errno,
 std::system_category(),
 "Poll failed");
 }

For each event, we create a new instance of Device and pass it to the process. If process
returns true, we exit the wait loop, returning the instance of Device to the caller:

 Device d(udev_monitor_receive_device(mon));
 if (process(d)) {
 return d;
 };

Reducing Power Consumption Chapter 10

[278]

Let's see how we can use these classes in our application. In the main function, we create an
instance of Monitor and invoke its wait function. We use a lambda function to process
each action:

usb::Device d = mon.wait([](auto& d) {

In the lambda function, we print information about all of the events:

 std::cout << "Check [" << id << "] action: "
 << d.action() << std::endl;

We also check for the specific action and device id:

 return d.action() == "bind" &&
 id == "8086:0808";

Once found, we display information about its function and power requirements:

 std::cout << d.attr("product")
 << " connected, uses up to "
 << d.attr("bMaxPower") << std::endl;

Running this application initially does not produce any output:

However, once we insert a USB device (a USB microphone in my case), we can see the
following output:

Reducing Power Consumption Chapter 10

[279]

The application can wait for a specific USB device and handle it after it is connected. It does
this without busy looping, relying on the information provided by the operating system. As
a result, the application spends most of the time sleeping while the poll call is blocked by
the operating system.

There's more...
There are a number of C++ wrappers for libudev. You can use one of these or create your
own using the code from the recipe as a starting point.

Profiling power consumption with
PowerTOP
In complex operating systems such as Linux that run multiple userspace and kernel space
services and control many peripheral devices at once, it is not always easy to find
components that can cause excessive power drain. Even when inefficiency is identified,
fixing it may be difficult.

One of the solutions is to use a power profiler tool, such as PowerTOP. It can diagnose
issues with power consumption in a Linux system and allows the user to tweak system
parameters that can save power.

In this recipe, we will learn how to install and use PowerTOP on a Raspberry Pi system.

How to do it...
In this recipe, we will run PowerTOP in interactive mode and analyze its output:

Log in to your Raspberry Pi system as user pi, using the password raspberry.1.
Run sudo to gain root access:2.

$ sudo bash
#

Install PowerTOP from the repository:3.

 # apt-get install powertop

Reducing Power Consumption Chapter 10

[280]

Staying in a root shell, run PowerTOP:4.

 # powertop

The PowerTOP UI will show up in your Terminal. Use the Tab key to navigate
between its screens.

How it works...
PowerTOP is a tool created by Intel to diagnose power issues in a Linux system. It is part of
the Raspbian distribution and can be installed using the apt-get command:

apt-get install powertop

When we run it without parameters, it starts in an interactive mode and lists all of the
processes and kernel tasks, ordered by their power usage and the frequency of the events
they generate. As we discussed in the Using events for waiting recipe, the more often a
program has to wake up the processor, the less energy efficient it is:

Reducing Power Consumption Chapter 10

[281]

Using the Tab key, we can switch to other reporting modes. For example, Device stats
shows how much energy or CPU time the devices consume:

Another interesting tab is Tunab. PowerTOP can check a number of settings that affect
power consumption and flags those that are suboptimal:

Reducing Power Consumption Chapter 10

[282]

As you can see, two of the USB devices are marked as Bad because they do not use
autosuspend. By pressing the Enter key, PowerTOP enables autosuspend, displaying a
command line that can be used from a script to make it permanent. After autosuspend is
enabled, the tunable status changes to Good:

A number of system parameters can be tuned to save power. Sometimes they are obvious,
like using autosuspend on USB devices. Sometimes they are not, such as using timeout on
the kernel that is used to flush the file cache to disk. Using power diagnostic and
optimization tools such as PowerTOP helps you to tune your system for maximum power
efficiency.

There's more...
Besides its interactive mode, PowerTOP has other modes to help you optimize power use,
such as calibration, workload, and auto-tune. More information about PowerTOP features,
usage scenarios, and the interpretation of results can be found in the PowerTOP User Guide
at https://01.org/ sites/ default/ files/ page/ powertop_ users_ guide_ 201412. pdf.

https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf

11
Time Points and Intervals

Embedded applications handle events and control processes happening in the physical
world—that is why the correct handling of time and delays is crucial for them. Switching
traffic lights; generation of sound tones; synchronization of data from multiple sensors—all
these tasks rely on proper time measurements.

Plain C does not provide any standard functions to work with time. It is expected that
application developers will use a time API specific for the target operating
system—Windows, Linux, or macOS. For bare-metal embedded systems, developers have
to create custom functions to work with time, based on a low-level timer API specific for
the target platform. As a result, the code is hard to port to other platforms.

To overcome the portability issue, C++ (starting with C++11) defines data types and
functions to work with time and time intervals. This API, referenced as an std::chrono
library, helps developers work with time in a uniform way in any environment and on any
target platform.

In this chapter, we will learn how to work with timestamps, time intervals, and delays in
our applications. We will discuss some of the common pitfalls related to time management,
along with the proper workarounds for them.

We will cover the following topics:

Exploring the C++ Chrono library
Measuring time intervals
Working with delays
Using the monotonic clock
Using Portable Operating System Interface (POSIX) timestamps

Using these recipes, you will be able to write portable code for time handling that works on
any embedded platform.

Time Points and Intervals Chapter 11

[284]

Exploring the C++ Chrono library
Starting from C++11, the C++ Chrono library provides standardized data types and
functions to work with clocks, time points, and time intervals. In this recipe, we will
explore the basic capabilities of the Chrono library, and learn how to work with time points
and intervals.

We will also learn how to use C++ literals for a more readable representation of time
intervals.

How to do it...
We are going to create a simple application that creates three time points and compares
them to each other.

In your ~/test working directory, create a subdirectory called chrono.1.
Use your favorite text editor to create a chrono.cpp file in2.
the chrono subdirectory.
Put the following code snippet into the file:3.

#include <iostream>
#include <chrono>

using namespace std::chrono_literals;

int main() {
 auto a = std::chrono::system_clock::now();
 auto b = a + 1s;
 auto c = a + 200ms;

 std::cout << "a < b ? " << (a < b ? "yes" : "no") << std::endl;
 std::cout << "a < c ? " << (a < c ? "yes" : "no") << std::endl;
 std::cout << "b < c ? " << (b < c ? "yes" : "no") << std::endl;

 return 0;
}

Create a CMakeLists.txt file containing build rules for our program:4.

cmake_minimum_required(VERSION 3.5.1)
project(chrono)
add_executable(chrono chrono.cpp)

set(CMAKE_SYSTEM_NAME Linux)

Time Points and Intervals Chapter 11

[285]

set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++14")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can now build and run the application.

How it works...
Our application creates three different time points. The first one is created using
the now function of the system clock:

auto a = std::chrono::system_clock::now();

Two others are derived from the first one by adding fixed time intervals of 1 second and
200 milliseconds:

auto b = a + 1s;
auto c = a + 200ms;

Please note how we specified the time units next to the numeric values. We used a feature
called C++ literals. The Chrono library defines such literals for basic time units. To use these
definitions, we added the following:

using namespace std::chrono_literals;

This was added before our main function.

Next, we compared these time points to each other:

std::cout << "a < b ? " << (a < b ? "yes" : "no") << std::endl;
std::cout << "a < c ? " << (a < c ? "yes" : "no") << std::endl;
std::cout << "b < c ? " << (b < c ? "yes" : "no") << std::endl;

When we run the application, we see the following output:

Time Points and Intervals Chapter 11

[286]

As expected, time point a is earlier than both b and c, where time point c—which is a + 200
milliseconds—is earlier than b (a + 1 second). String literals help write more readable code,
and C++ Chrono provides a rich set of functions to work with time. We will learn how to
work with them in the next recipes.

There's more...
Information about all data types, templates, and functions defined in the Chrono library
can be found in the Chrono reference at https:/ /en. cppreference. com/w/ cpp/ chrono

Measuring time intervals
Every embedded application interacting with peripheral hardware or responding to
external events has to deal with timeouts and reaction times. To do this properly,
developers need the ability to measure time intervals with sufficient precision.

The C++ Chrono library provides an std::chrono::duration templated class for
handling durations of arbitrary span and precision. In this recipe, we will learn how to use
this class to measure the time interval between two timestamps and check it against a
reference duration.

How to do it...
Our application will measure the duration of simple console output and compare it to the
previous values in the loop.

In your ~/test working directory, create a subdirectory called intervals.1.
Use your favorite text editor to create an intervals.cpp file in2.
the intervals subdirectory.
Copy the following code snippet into the intervals.cpp file:3.

#include <iostream>
#include <chrono>

int main() {
 std::chrono::duration<double, std::micro> prev;
 for (int i = 0; i < 10; i++) {
 auto start = std::chrono::steady_clock::now();
 std::cout << i << ": ";

https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono

Time Points and Intervals Chapter 11

[287]

 auto end = std::chrono::steady_clock::now();
 std::chrono::duration<double, std::micro> delta = end - start;
 std::cout << "output duration is " << delta.count() <<" us";
 if (i) {
 auto diff = (delta - prev).count();
 if (diff >= 0) {
 std::cout << ", " << diff << " us slower";
 } else {
 std::cout << ", " << -diff << " us faster";
 }
 }
 std::cout << std::endl;
 prev = delta;
 }
 return 0;
}

Finally, create a CMakeLists.txt file containing build rules for our program:4.

cmake_minimum_required(VERSION 3.5.1)
project(interval)
add_executable(interval interval.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can now build and run the application.

How it works...
On each iteration of the application loop, we measure the performance of one output
operation. To do so, we capture a timestamp before the operation and another timestamp
after the operation is complete:

 auto start = std::chrono::steady_clock::now();
 std::cout << i << ": ";
 auto end = std::chrono::steady_clock::now();

Time Points and Intervals Chapter 11

[288]

We use C++11 auto to let the compiler infer data types for the timestamps. Now, we need
to calculate a time interval between these timestamps. Subtracting one timestamp from
another does the job. We explicitly define the result variable as
an std::chrono::duration class that tracks a microsecond in a double value:

 std::chrono::duration<double, std::micro> delta = end - start;

We use another duration variable of the same type to hold the previous value. On each
iteration except the first one, we calculate the difference between these two durations:

 auto diff = (delta - prev).count();

The duration and the difference are printed to the Terminal on each iteration. When we run
the application, we get this output:

As we can see, modern C++ provides convenient ways of handling time intervals in
applications. Thanks to overloaded operators, it is easy to get a duration between two time
points and add, subtract, or compare durations.

There's more...
Starting from C++20, the Chrono library supports direct writing of durations into output
streams and parsing durations from input streams. There is no need to serialize durations
into integer or float values explicitly. This makes handling durations even more convenient
for C++ developers.

Time Points and Intervals Chapter 11

[289]

Working with delays
Periodic data processing is a common pattern in many embedded applications. The code
does not need to work all the time. If we know in advance when processing is needed, an
application or a worker thread can be inactive most of the time, waking up and processing
data only when needed. It saves power consumption or lets other applications running on
the device use the CPU resources when the application is idle.

There are several techniques to organize periodic processing. A worker thread that runs a
loop with a delay in it is one of the simplest and most common of them.

C++ provides standard functions to add a delay to the current execution thread. In this
recipe, we will learn two ways of adding a delay into an application and discuss their pros
and cons.

How to do it...
We are going to create an application with two processing loops. These loops use different
functions to pause the execution of the current thread.

In your ~/test working directory, create a subdirectory called delays.1.
Use your favorite text editor to create a delays.cpp file in2.
the delays subdirectory.
Let's start by adding a first function, sleep_for, along with the necessary3.
inclusions:

#include <iostream>
#include <chrono>
#include <thread>

using namespace std::chrono_literals;

void sleep_for(int count, auto delay) {
 for (int i = 0; i < count; i++) {
 auto start = std::chrono::system_clock::now();
 std::this_thread::sleep_for(delay);
 auto end = std::chrono::system_clock::now();
 std::chrono::duration<double, std::milli> delta = end - start;
 std::cout << "Sleep for: " << delta.count() << std::endl;
 }
}

Time Points and Intervals Chapter 11

[290]

It is followed by a second function, sleep_until:4.

void sleep_until(int count,
 std::chrono::milliseconds delay) {
 auto wake_up = std::chrono::system_clock::now();
 for (int i = 0; i < 10; i++) {
 wake_up += delay;
 auto start = std::chrono::system_clock::now();
 std::this_thread::sleep_until(wake_up);
 auto end = std::chrono::system_clock::now();
 std::chrono::duration<double, std::milli> delta = end - start;
 std::cout << "Sleep until: " << delta.count() << std::endl;
 }
}

Next, add a simple main function that invokes them:5.

int main() {
 sleep_for(10, 100ms);
 sleep_until(10, 100ms);
 return 0;
}

Finally, create a CMakeLists.txt file containing the build rules for our6.
program:

cmake_minimum_required(VERSION 3.5.1)
project(delays)
add_executable(delays delays.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++14")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can now build and run the application.

How it works...
In our application, we created two functions, sleep_for and sleep_until. They are
almost identical, except sleep_for uses std::this_thread::sleep_for to add a delay,
while sleep_until uses std::this_thread::sleep_until.

Time Points and Intervals Chapter 11

[291]

Let's take a closer look at the sleep_for function. It takes two parameters—count and
delay. The first parameter defines a number of iterations in its loop, and the second
parameter specifies a delay. We use auto as a data type of the delay parameter, letting C++
infer the actual data type for us.

The function body consists of a single loop:

 for (int i = 0; i < count; i++) {

On each iteration, we run the delay and measure its actual duration by taking timestamps
before and after the delay. The std::this_thread::sleep_for function accepts a time
interval as a parameter:

 auto start = std::chrono::system_clock::now();
 std::this_thread::sleep_for(delay);
 auto end = std::chrono::system_clock::now();

The actual delay is measured in milliseconds, and we use a double value as a milliseconds
counter:

std::chrono::duration<double, std::milli> delta = end - start;

The wait_until function is only slightly different. It uses the
std::current_thred::wait_until function, which accepts a time point to wake up
instead of a time interval. We introduce an additional wake_up variable to track the wake-
up time point:

auto wake_up = std::chrono::system_clock::now();

Initially, it is set to the current time, and on each iteration, it adds the delay passed as a
function parameter to its value:

wake_up += delay;

The rest of the function is identical to the sleep_for implementation, except the delay
function:

std::this_thread::sleep_until(wake_up);

Time Points and Intervals Chapter 11

[292]

We run both functions, using the same number of iterations and the same delay. Please note
how we use C++ string literals to pass milliseconds into the functions to make the code
more readable. To use string literals, we added the following:

sleep_for(10, 100ms);
sleep_until(10, 100ms);

This was done above the function definitions, like so:

using namespace std::chrono_literals;

Do different delay functions make any difference? We use the same delay in both
implementations, after all. Let's run the code and compare the results:

Interestingly, we can see that all actual delays for sleep_for are greater than 100
milliseconds, while some results for sleep_until fall below this value. Our first function,
delay_for, does not account for the time needed to print data to the console. sleep_for
is a good choice when you know exactly how long you need to wait. However, if your goal
is to wake up with specific periodicity, sleep_until might be a better choice.

Time Points and Intervals Chapter 11

[293]

There's more...
There are other subtle differences between sleep_for and sleep_until. The system
timer is often not too precise and might be adjusted by time synchronization services such
as Network Time Protocol daemon (ntpd). These clock adjustments do not affect
sleep_for, but sleep_until takes them into account. Use it if your application relies on
a specific time rather than a time interval; for example, if you need to redraw the digits on a
clock display every second.

Using the monotonic clock
The C++ Chrono library provides three types of clocks:

System clock
Steady clock
High-resolution clock

The high-resolution clock is often implemented as an alias of the system clock or the steady
clock. The system clock and the steady clock, however, are quite different.

The system clock reflects the system time and hence is not monotonic. It can be adjusted at
any time by time synchronization services such as Network Time Protocol (NTP), and, as a
result, can even go backward.

This makes the system clock a poor choice for dealing with precise durations. The steady
clock is monotonic; it is never adjusted and never goes backward. This property has its
cost—it is not related to wall clock time and is usually represented as the time since the last
reboot.

The steady clock should not be used for persistent timestamps that need to remain valid
after reboots—for example, serialized into a file or saved into a database. Also, the steady
clock should not be used for any time calculations involving time from different sources,
such as remote systems or peripheral devices.

In this recipe, we will learn how to use the steady clock to implement a simple software
watchdog. When running a background worker thread, it is important to know if it works
correctly or hangs because of a coding error or an unresponsive peripheral device. The
thread periodically updates a timestamp, while a monitoring routine compares the
timestamp with the current time, and, if the threshold is exceeded, performs a certain
recovery action.

Time Points and Intervals Chapter 11

[294]

How to do it...
In our application, we are going to create a simple iterative function that runs in the
background, along with the monitoring loop running in the main thread.

In your ~/test working directory, create a subdirectory called monotonic.1.
Use your favorite text editor to create a monotonic.cpp file in2.
the monotonic subdirectory.
Let's add headers and define global variables used by our routines:3.

#include <iostream>
#include <chrono>
#include <atomic>
#include <mutex>
#include <thread>

auto touched = std::chrono::steady_clock::now();
std::mutex m;
std::atomic_bool ready{ false };

They are followed by the code of the background worker thread routine:4.

void Worker() {
 for (int i = 0; i < 10; i++) {
 std::this_thread::sleep_for(
 std::chrono::milliseconds(100 + (i % 4) * 10));
 std::cout << "Step " << i << std::endl;
 {
 std::lock_guard<std::mutex> l(m);
 touched = std::chrono::steady_clock::now();
 }
 }
 ready = true;
}

Add the main function that contains the monitoring routine:5.

int main() {
 std::thread t(Worker);
 std::chrono::milliseconds threshold(120);
 while(!ready) {
 auto now = std::chrono::steady_clock::now();
 std::chrono::milliseconds delta;
 {
 std::lock_guard<std::mutex> l(m);
 auto delta = now - touched;
 if (delta > threshold) {

Time Points and Intervals Chapter 11

[295]

 std::cout << "Execution threshold exceeded" << std::endl;
 }
 }
 std::this_thread::sleep_for(std::chrono::milliseconds(10));

 }
 t.join();
 return 0;
}

Finally, create a CMakeLists.txt file containing build rules for our program:6.

cmake_minimum_required(VERSION 3.5.1)
project(monotonic)
add_executable(monotonic monotonic.cpp)
target_link_libraries(monotonic pthread)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can now build and run the application.

How it works...
Our application is multithreaded—it consists of the main thread that runs the monitoring
and the background worker thread. We use three global variables for their synchronization.

The touched variable is holding the timestamp that is to be periodically updated by the
Worker thread. Since the timestamp is accessed by both threads, access needs to be
protected. We use an m mutex for this purpose. Finally, to indicate that the worker thread
has finished its job, an atomic variable, ready, is used.

The worker thread is a loop that contains artificial delays inside. The delay is calculated
based on the step number, resulting in delays from 100 milliseconds to 130 milliseconds:

std::this_thread::sleep_for(
 std::chrono::milliseconds(100 + (i % 4) * 10));

Time Points and Intervals Chapter 11

[296]

On each iteration, the Worker thread updates the timestamp. A lock guard is used to
synchronize access to the timestamp:

 {
 std::lock_guard<std::mutex> l(m);
 touched = std::chrono::steady_clock::now();
 }

The monitoring routine runs in a loop while the Worker thread is running. On each
iteration, it calculates the time interval between the current time and the last update:

 std::lock_guard<std::mutex> l(m);
 auto delta = now - touched;

If it is larger than the threshold, the function prints a warning message, as shown:

 if (delta > threshold) {
 std::cout << "Execution threshold exceeded" << std::endl;
 }

In many cases, applications may invoke a recovery function to reset a peripheral device or
restart the thread. We add a delay of 10 milliseconds in the monitoring loop:

 std::this_thread::sleep_for(std::chrono::milliseconds(10));

This helps us to reduce resource consumption yet achieve an acceptable reaction time.
Running the application produces the following output:

Time Points and Intervals Chapter 11

[297]

We can see several warnings in the output, indicating that some iterations in the worker
thread took more time than the threshold of 120 milliseconds. It is predictable since the
worker function is written this way. It is important that we use a monotonic
std::chrono::steady_clock function for monitoring purposes. Using the system clock
could lead to the spurious invocations of the recovery function during the clock
adjustments.

There's more...
C++20 defines several other types of clocks, such as gps_clock, representing Global
Positioning System (GPS) time, or file_clock, to work with file timestamps. These
clocks may, or may not, be steady, or monotonic. Use an is_steady member function to
check if a clock is monotonic or not.

Using POSIX timestamps
POSIX timestamps are a traditional internal representation of time in Unix-based operating
systems. A POSIX timestamp is defined as the number of seconds since the epoch,
or 00:00:00 Coordinated Universal Time (UTC), January 1, 1970.

Because of its simplicity, this representation is widely used in network protocols, file
metadata, or serialization.

In this recipe, we will learn how to convert C++ time points to POSIX timestamps, and
create C++ time points from POSIX timestamps.

How to do it...
We are going to create an application that converts a time point into a POSIX timestamp
and then recovers a time point from this timestamp.

In your ~/test working directory, create a subdirectory called timestamps.1.
Use your favorite text editor to create a timestamps.cpp file in2.
the timestamps subdirectory.
Put the following code snippet into the file:3.

#include <iostream>
#include <chrono>

Time Points and Intervals Chapter 11

[298]

int main() {
 auto now = std::chrono::system_clock::now();

 std::time_t ts = std::chrono::system_clock::to_time_t(now);
 std::cout << "POSIX timestamp: " << ts << std::endl;

 auto restored = std::chrono::system_clock::from_time_t(ts);

 std::chrono::duration<double, std::milli> delta = now - restored;
 std::cout << "Recovered time delta " << delta.count() <<
std::endl;
 return 0;
}

Create a CMakeLists.txt file containing build rules for our program:4.

cmake_minimum_required(VERSION 3.5.1)
project(timestamps)
add_executable(timestamps timestamps.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can now build and run the application.

How it works...
Firstly, we create a time point object for the current time, using the system clock:

auto now = std::chrono::system_clock::now();

Since POSIX timestamps represent the time since the epoch, we cannot use the steady clock.
The system clock, however, knows how to convert its internal representation into POSIX
format. It provides a to_time_t static function for this purpose:

std::time_t ts = std::chrono::system_clock::to_time_t(now);

The result is defined as having type std::time_t, but this is an integral integer type, not
an object. Unlike a time point instance, we can write it directly into an output stream:

std::cout << "POSIX timestamp: " << ts << std::endl;

Time Points and Intervals Chapter 11

[299]

Let's try to recover a time point from this integer timestamp. We use a from_time_t static
function:

auto restored = std::chrono::system_clock::from_time_t(ts);

Now, we have two timestamps. Are they the same? Let's calculate and display the
difference:

std::chrono::duration<double, std::milli> delta = now - restored;
std::cout << "Recovered time delta " << delta.count() << std::endl;

When we run the application, we get the following output:

The timestamps are different, but the difference is always less than 1,000. Since POSIX
timestamps are defined as the number of seconds since the epoch, we lost the fine
granularity time, such as milliseconds and microseconds.

Despite such limitations, POSIX timestamps remain an important and widely used
transport representation of time, and we learned how to convert them into an internal C++
representation when needed.

There's more...
In many cases, it is sufficient to work with POSIX timestamps directly. Since they are
represented as numbers, a simple numeric comparison can be used to decide which
timestamp is newer or older. Similarly, subtracting one timestamp from another gives a
time interval in seconds between them. If performance is a bottleneck, this approach can be
preferable to comparing to native C++ time points.

12
Error Handling and Fault

Tolerance
It is hard to overestimate the importance of error handling in regards to embedded
software. Embedded systems should work without supervision in varying physical
conditions, such as controlling external peripheral devices that may fail over or not always
provide reliable communication lines. And in many cases, a failure of the system is either
expensive or plain unsafe.

In this chapter, we will learn about common strategies and best practices that will help you
write reliable and fault-tolerant embedded applications.

We will cover the following recipes in this chapter:

Working with error codes
Using exceptions for error handling
Using constant references when catching exceptions
Tackling static objects
Working with watchdogs
Exploring heartbeats for highly available systems
Implementing software debouncing logic

These recipes will help you understand the importance of error handling design, learn best
practices, and avoid pitfalls in this domain.

Working with error codes
When designing a new function, developers often need a mechanism to indicate that the
function can't accomplish its work because of some kind of error. It might be invalid, an
unexpected result being received from a peripheral device, or a resource allocation issue.

Error Handling and Fault Tolerance Chapter 12

[301]

One of the most traditional and widespread ways to report an error condition is through
error codes. This is an efficient and ubiquitous mechanism that does not depend on the
programming language or the operating system. Due to its efficiency, versatility, and
ability to cross various platform boundaries, it is highly used in embedded software
development.

Designing a function interface that returns either a value or an error code may be tricky,
especially if the value and the error code have different types. In this recipe, we will explore
several approaches to designing such types of function interfaces.

How to do it...
We are going to create a simple program with three implementations of a function
called Receive. All three implementations have identical behavior but a different interface.
Follow these steps:

In your working directory, that is, ~/test, create a subdirectory called errcode.1.
Use your favorite text editor to create a file called errcode.cpp in2.
the errcode subdirectory.
Add the implementation of the first function to the errcode.cpp file:3.

#include <iostream>
int Receive(int input, std::string& output) {
 if (input < 0) {
 return -1;
 }

 output = "Hello";
 return 0;
}

Next, we add the second implementation:4.

std::string Receive(int input, int& error) {
 if (input < 0) {
 error = -1;
 return "";
 }
 error = 0;
 return "Hello";
}

Error Handling and Fault Tolerance Chapter 12

[302]

The third implementation of the Receive function is as follows:5.

std::pair<int, std::string> Receive(int input) {
 std::pair<int, std::string> result;
 if (input < 0) {
 result.first = -1;
 } else {
 result.second = "Hello";
 }
 return result;
}

Now, we define a helper function called Display to display a result:6.

void Display(const char* prefix, int err, const std::string&
result) {
 if (err < 0) {
 std::cout << prefix << " error: " << err << std::endl;
 } else {
 std::cout << prefix << " result: " << result << std::endl;
 }
}

Then, we add a function called Test that invokes all three implementations:7.

void Test(int input) {
 std::string outputResult;
 int err = Receive(input, outputResult);
 Display(" Receive 1", err, outputResult);

 int outputErr = -1;
 std::string result = Receive(input, outputErr);
 Display(" Receive 2", outputErr, result);

 std::pair<int, std::string> ret = Receive(input);
 Display(" Receive 3", ret.first, ret.second);
}

The main function ties everything together:8.

int main() {
 std::cout << "Input: -1" << std::endl;
 Test(-1);
 std::cout << "Input: 1" << std::endl;
 Test(1);

 return 0;
}

Error Handling and Fault Tolerance Chapter 12

[303]

Finally, we create a CMakeLists.txt file containing the build rules for our9.
program:

cmake_minimum_required(VERSION 3.5.1)
project(errcode)
add_executable(errcode errcode.cpp)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can now build and run the application. 10.

How it works...
In our application, we defined three different implementations of a function that receives
data from some device. It should return the received data as a string, but in the case of an
error, it should return an integer error code representing the reason for the error.

Since the result and the error code have different types, we can't reuse the same value for
both. To return multiple values in C++, we either need to use output parameters or create a
compound data type.

Our implementations explore both these strategies. We use C++ function overloading to
define the Receive function with the same name, but different types of arguments and
return values.

The first implementation returns an error code and stores the result in an output parameter
result:

int Receive(int input, std::string& output)

The output parameter is a string passed by reference to let the function modify its content.
The second implementation flips the parameters around. It returns a received string as a
result and accepts an error code as an output parameter:

std::string Receive(int input, int& error)

Error Handling and Fault Tolerance Chapter 12

[304]

Since we want the error code to be set from within the function, we also pass it by
reference. Finally, the third implementation combines and returns both the result and the
error code in a C++ pair:

std::pair<int, std::string> Receive(int input)

The function always creates an std::pair<int, std::string> instance. Since we do
not pass any values to its constructor, the object is default-initialized. The integer element is
set to 0, and the string element is set to an empty string.

This approach does not require an output parameter and is more readable, but has a
slightly higher overhead to construct and then destroy a pair object.

When all three implementations are defined, we test all of them in the Test function. We
pass the same parameter to each of the implementations and display the result. We expect
each of them to generate the same result.

There are two invocations of Test. First, we pass -1 as a parameter, which should trigger
an error path, and then we pass 1, which activates a normal operation path:

 std::cout << "Input: -1" << std::endl;
 Test(-1);
 std::cout << "Input: 1" << std::endl;
 Test(1);

When we run our program, we see the following output:

All three implementations correctly return either the result or error code based on the input
parameters. You can use any of the approaches in your applications based on the overall
design guidelines or your personal preferences.

Error Handling and Fault Tolerance Chapter 12

[305]

There's more...
As part of the C++17 standard, a template called std::optional was added to the
standard library. It can represent an optional value that may be missing. It can be used as a
return value from a function that may fail. However, it can't represent a reason for failure,
only a Boolean value indicating whether the value is valid or not. For more information,
please check the std::optional reference at https:/ /en. cppreference. com/ w/cpp/
utility/optional.

Using exceptions for error handling
While the error codes remain the most widespread technique of error handling in
embedded programming, C++ offers another mechanism for this purpose, called
exceptions.

Exceptions aim to simplify error handling and make it more reliable. When using error
codes, developers have to check the result of each function for errors and propagate the
result to the calling functions. This clutters the code with lots of if-else constructs, making
the function logic more obscure.

When using exceptions, developers do not need to check for errors after every function
invocation. Exceptions propagate through the call stack automatically, until they reach the
code that can handle it properly by logging, retrying, or terminating the application.

While exceptions are the default error handling mechanism of the C++ standard library,
communicating with peripheral devices or the underlying operating system layer still
involves error codes. In this recipe, we will learn how to bridge the low-level error handling
to the C++ exceptions using the std::system_error exception class.

How to do it...
We are going to create a simple application that communicates to a device over a serial link.
Follow these steps:

In your working directory, that is, ~/test, create a subdirectory called except.1.
Use your favorite text editor to create a file called except.cpp in2.
the except subdirectory.

https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional

Error Handling and Fault Tolerance Chapter 12

[306]

Put the required includes in the except.cpp file:3.

#include <iostream>
#include <system_error>
#include <fcntl.h>
#include <unistd.h>

Next, we define a Device class that abstracts the communication to the device.4.
We start with the constructor and the destructor:

class Device {
 int fd;

 public:
 Device(const std::string& deviceName) {
 fd = open(deviceName.c_str(), O_RDWR);
 if (fd < 0) {
 throw std::system_error(errno, std::system_category(),
 "Failed to open device file");
 }
 }

 ~Device() {
 close(fd);
 }

Then, we add a method that sends data to the device, as follows:5.

 void Send(const std::string& data) {
 size_t offset = 0;
 size_t len = data.size();
 while (offset < data.size() - 1) {
 int sent = write(fd, data.data() + offset,
 data.size() - offset);
 if (sent < 0) {
 throw std::system_error(errno,
 std::system_category(),
 "Failed to send data");
 }
 offset += sent;
 }
 }
};

Error Handling and Fault Tolerance Chapter 12

[307]

After our class has been defined, we add the main function, which uses it:6.

int main() {
 try {
 Device serial("/dev/ttyUSB0");
 serial.Send("Hello");
 } catch (std::system_error& e) {
 std::cout << "Error: " << e.what() << std::endl;
 std::cout << "Code: " << e.code() << " means \""
 << e.code().message()
 << "\"" << std::endl;
 }

 return 0;
}

Finally, we create a CMakeLists.txt file containing the build rules for our7.
program:

cmake_minimum_required(VERSION 3.5.1)
project(except)
add_executable(except except.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can now build and run the application. 8.

How it works...
Our application communicates with an external device connected over a serial link. In
POSIX operating systems, communication to devices is similar to operations with regular
files and uses the same API; that is, the open, close, read, and write functions.

All these functions return error codes to indicate various error conditions. Instead of using
them directly, we wrap the communication in a class called Device.

Error Handling and Fault Tolerance Chapter 12

[308]

Its constructor tries to open a file referred to by the deviceName constructor parameter.
The constructor checks for the error code and, if it indicates an error, creates and throws an
std::system_error exception:

 throw std::system_error(errno, std::system_category(),
 "Failed to open device file");

We construct the std::system_error instance using three parameters. The first one is an
error code we want to wrap in an exception. We use the value of the errno variable that's
set by the open function when it returns an error. The second parameter is an error
category. Since we use an error code specific to the operating system, we use an instance of
std::system_category. The first parameter is a message we want to associate with the
exception. It can be anything that helps us identify the error if it occurs.

In a similar way, we define the Send function, which sends data to the device. It is a
wrapper around the write system function, and if write returns an error, we create and
throw an std::system_error instance. The only difference is the message string since we
want to differentiate between these two cases in our logs:

throw std::system_error(errno, std::system_category(),
 "Failed to send data");
}

After the Device class has been defined, we can use it. Instead of opening a device and
checking for errors, and then writing to the device and checking for errors again, we just
create an instance of the Device class and send data to it:

Device serial("/dev/ttyUSB0");
serial.Send("Hello");

All error handling lies in the catch block after the main logic. If a system error is thrown,
we log it to the standard output. Additionally, we print information about the error code,
embedded in the exception:

 } catch (std::system_error& e) {
 std::cout << "Error: " << e.what() << std::endl;
 std::cout << "Code: " << e.code() << " means \"" << e.code().message()
 << "\"" << std::endl;
 }

Error Handling and Fault Tolerance Chapter 12

[309]

When we build and run the application, it shows the following output, if no device is
connected as /dev/ttyUSB0:

As expected, the error condition was detected and we can see all the required details,
including the underlying operating system error code and its description. Note that the
code that communicates with the device using the wrapper class is uncluttered and
readable.

There's more...
The C++ standard library comes with a number of predefined exceptions and error
categories. For more details, check the C++ error handling reference at https:/ /en.
cppreference.com/ w/ cpp/ error.

Using constant references when catching
exceptions
C++ exceptions provide a powerful foundation for exception handling design. They are
flexible and may be used in multiple different ways. You can throw exceptions of any type,
including pointers and integers. You can catch exceptions by value or by reference. A
wrong choice when it comes to selecting a data type may lead to performance hits or
resource leaks.

In this recipe, we will analyze potential pitfalls and learn how to use constant references in
catch blocks for efficient and safe error handling.

https://en.cppreference.com/w/cpp/error
https://en.cppreference.com/w/cpp/error
https://en.cppreference.com/w/cpp/error
https://en.cppreference.com/w/cpp/error
https://en.cppreference.com/w/cpp/error
https://en.cppreference.com/w/cpp/error
https://en.cppreference.com/w/cpp/error
https://en.cppreference.com/w/cpp/error
https://en.cppreference.com/w/cpp/error
https://en.cppreference.com/w/cpp/error
https://en.cppreference.com/w/cpp/error
https://en.cppreference.com/w/cpp/error
https://en.cppreference.com/w/cpp/error
https://en.cppreference.com/w/cpp/error

Error Handling and Fault Tolerance Chapter 12

[310]

How to do it...
We are going to create a sample application that throws and catches a custom exception
and analyze how the data type choice affects efficiency. Follow these steps:

In your working directory, that is, ~/test, create a subdirectory called catch.1.
Use your favorite text editor to create a file called catch.cpp in2.
the catch subdirectory.
Put the definition of the Error class in the catch.cpp file:3.

#include <iostream>

class Error {
 int code;

 public:
 Error(int code): code(code) {
 std::cout << " Error instance " << code << " was created"
 << std::endl;
 }
 Error(const Error& other): code(other.code) {
 std::cout << " Error instance " << code << " was cloned"
 << std::endl;
 }
 ~Error() {
 std::cout << " Error instance " << code << " was destroyed"
 << std::endl;
 }
};

Next, we add helper functions to test three different ways of throwing and4.
handling errors. We start with the function that catches exceptions by value:

void CatchByValue() {
 std::cout << "Catch by value" << std::endl;
 try {
 throw Error(1);
 }
 catch (Error e) {
 std::cout << " Error caught" << std::endl;
 }
}

Error Handling and Fault Tolerance Chapter 12

[311]

Then, we add a function that throws a pointer and catches the exception by5.
pointer, as follows:

void CatchByPointer() {
 std::cout << "Catch by pointer" << std::endl;
 try {
 throw new Error(2);
 }
 catch (Error* e) {
 std::cout << " Error caught" << std::endl;
 }
}

Next, we add a function that uses a const reference to catch exceptions:6.

void CatchByReference() {
 std::cout << "Catch by reference" << std::endl;
 try {
 throw Error(3);
 }
 catch (const Error& e) {
 std::cout << " Error caught" << std::endl;
 }
}

After all the helper functions have been defined, we add the main function to tie7.
everything together:

int main() {
 CatchByValue();
 CatchByPointer();
 CatchByReference();
 return 0;
}

We put the build rules for our application into a CMakeLists.txt file:8.

cmake_minimum_required(VERSION 3.5.1)
project(catch)
add_executable(catch catch.cpp)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")

set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

We can now build and run the application. 9.

Error Handling and Fault Tolerance Chapter 12

[312]

How it works...
In our application, we defined a custom class called Error that we are going to use when
throwing and catching exceptions. This class provides a constructor, a copy constructor,
and a destructor that only logs information to the console. We need it to evaluate the
efficiency of different exception catching approaches.

The Error class only contains the code data field, which is used to differentiate between
instances of the class:

class Error {
 int code;

We evaluate three approaches for exception handling. The first one, CatchByValue, is the
most straightforward. We create and throw an instance of the Error class:

throw Error(1);

Then, we catch it by value:

catch (Error e) {

The second implementation, CatchByPointer, creates an instance of Error dynamically
using the new operator:

throw new Error(2);

We use a pointer to catch the exception:

catch (Error* e) {

Finally, CatchByReference throws an exception similar to CatchByValue, but it uses
a const reference to Error when catching it:

catch (const Error& e) {

Error Handling and Fault Tolerance Chapter 12

[313]

Does it make any difference? When we run our program, we get the following output:

As you can see, when catching an object by value, a copy of the exception object was
created. Though not critical in a sample application, this inefficiency can cause performance
issues in a high-load application.

There is no inefficiency when catching exceptions by pointer, but we can see that the object
destructor was not invoked, causing a memory leak. This can be avoided by calling delete
from the catch block, but this is error-prone since it is not always clear who is responsible
for destroying an object referenced by a pointer.

The reference approach is the safest and most efficient one. There is no memory leak and
unnecessary copying. Also, making the reference constant gives the compiler a hint that it is
not going to be changed and thus can be better optimized under the hood.

There's more...
Error handling is a complex area with a number of best practices, hints, and
recommendations. Consider reading the C++ exceptions and error handling FAQ at
https://isocpp.org/ wiki/ faq/ exceptions to master your exception handling skills.

Tackling static objects
In C++, object constructors throw exceptions if an object can't be instantiated properly.
Normally, this does not cause any issues. An exception originating from an object
constructed on the stack, or an object created dynamically using the new keyword, can be
handled by the try-catch block around the code where the object was created.

https://isocpp.org/wiki/faq/exceptions
https://isocpp.org/wiki/faq/exceptions
https://isocpp.org/wiki/faq/exceptions
https://isocpp.org/wiki/faq/exceptions
https://isocpp.org/wiki/faq/exceptions
https://isocpp.org/wiki/faq/exceptions
https://isocpp.org/wiki/faq/exceptions
https://isocpp.org/wiki/faq/exceptions
https://isocpp.org/wiki/faq/exceptions
https://isocpp.org/wiki/faq/exceptions
https://isocpp.org/wiki/faq/exceptions
https://isocpp.org/wiki/faq/exceptions
https://isocpp.org/wiki/faq/exceptions

Error Handling and Fault Tolerance Chapter 12

[314]

It gets more complicated for static objects, though. Such objects are instantiated before the
execution enters the main function, so they cannot be wrapped in a try-catch block of the
program. The C++ compiler handles this situation by calling the std::terminate function,
which prints an error message and terminates the program. Even if the exception is non-
fatal, there is no way to recover.

There are several ways to not get into this pitfall. As a general rule, only simple, integral
data types should be allocated statically. If you still need to have a complex static object,
make sure its constructor does not throw exceptions.

In this recipe, we will learn how to implement a constructor for static objects.

How to do it...
We will create a custom class that allocates a specified amount of memory and statically
allocates two instances of the class. Follow these steps:

In your working directory, that is, ~/test, create a subdirectory called static.1.
Use your favorite text editor to create a file called static.cpp in2.
the static subdirectory.
Let's define a class named Complex. Put its private field and the constructor in3.
the static.cpp file:

#include <iostream>
#include <stdint.h>
class Complex {
 char* ptr;

 public:
 Complex(size_t size) noexcept {
 try {
 ptr = new(std::nothrow) char[size];
 if (ptr) {
 std::cout << "Successfully allocated "
 << size << " bytes" << std::endl;
 } else {
 std::cout << "Failed to allocate "
 << size << " bytes" << std::endl;
 }
 } catch (...) {
 // Do nothing
 }
 }

Error Handling and Fault Tolerance Chapter 12

[315]

Then, define a destructor and the IsValid method:4.

 ~Complex() {
 try {
 if (ptr) {
 delete[] ptr;
 std::cout << "Deallocated memory" << std::endl;
 } else {
 std::cout << "Memory was not allocated"
 << std::endl;
 }
 } catch (...) {
 // Do nothing
 }
 }

 bool IsValid() const { return nullptr != ptr; }
};

After the class has been defined, we define two global objects, small and large,5.
and the main function, which uses them:

Complex small(100);
Complex large(SIZE_MAX);
int main() {
 std::cout << "Small object is "
 << (small.IsValid()? "valid" : "invalid")
 << std::endl;
 std::cout << "Large object is "
 << (large.IsValid()? "valid" : "invalid")
 << std::endl;

 return 0;
}

Finally, we create a CMakeLists.txt file containing the build rules for our6.
program:

cmake_minimum_required(VERSION 3.5.1)
project(static)
add_executable(static static.cpp)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can now build and run the application. 7.

Error Handling and Fault Tolerance Chapter 12

[316]

How it works...
Here, we defined the Complex class, and we intend to allocate instances of this class
statically. To be safe, we need to make sure that neither the constructor nor the destructor
of this class can throw exceptions.

However, both the constructor and the destructor invoke operations that may potentially
throw exceptions. The constructor performs memory allocation, while the destructor writes
logs to standard output.

The constructor allocates memory using the new operator, which throws an
std::bad_alloc exception if memory can't be allocated. We use an std::nothrow
constant to select a non-throwing implementation of new. Instead of throwing an exception,
new will return nullptr if it can't allocate any memory:

ptr = new(std::nothrow) char[size];

We wrap the body of the constructor in the try block to catch all exceptions. The catch
block is empty – if the constructor fails, we can't do much:

} catch (...) {
 // Do nothing
}

Since we do not allow any exceptions to propagate to the upper level, we mark our
constructor as non-throwing using a C++ keyword, that is, noexcept:

Complex(size_t size) noexcept {

However, we need to know whether an object was created properly. For this purpose, we
define a method called IsValid. It returns true if the memory was allocated, or false
otherwise:

bool IsValid() const { return nullptr != ptr; }

The destructor does the reverse. It deallocates the memory and logs the status of
deallocation to the console. As for the constructor, we do not want any exceptions to be
propagated to the upper level, so we wrap the destructor body in a try-catch block:

 try {
 if (ptr) {
 delete[] ptr;
 std::cout << "Deallocated memory" << std::endl;
 } else {
 std::cout << "Memory was not allocated" << std::endl;
 }

Error Handling and Fault Tolerance Chapter 12

[317]

 } catch (...) {
 // Do nothing
 }

Now, we declare two global objects, small and large. Global objects are allocated
statically. The size of the objects is artificially selected in a way that the small object will be
allocated properly, but the allocation of the large object should fail:

Complex small(100);
Complex large(SIZE_MAX);

In our main function, we check and print whether the objects are valid or not:

 std::cout << "Small object is " << (small.IsValid()? "valid" : "invalid")
 << std::endl;
 std::cout << "Large object is " << (large.IsValid()? "valid" : "invalid")
 << std::endl;

When we run our program, we see the following output:

As we can see, the small object was allocated and deallocated properly. Initialization of the
large object failed, but since it was designed to not throw any exceptions, it did not cause
the abnormal termination of our application. You can use a similar technique for statically
allocated objects to write robust and safe applications.

Working with watchdogs
Embedded applications are built to work without supervision. This includes the ability to
recover from errors. If an application crashes, it can be restarted automatically. But what
should we do if an application hangs by entering an endless loop or due to a deadlock?

Error Handling and Fault Tolerance Chapter 12

[318]

Hardware or software watchdogs are used to prevent such situations. Applications should
periodically notify or feed them to indicate that they keep operating normally. If a watchdog
is not fed within a specific time interval, it terminates an application or restarts the system.

Many different implementations of watchdogs exist, but their interfaces are essentially the
same. They provide a function that applications can use to reset the watchdog timer.

In this recipe, we will learn how to create a simple software watchdog on top of POSIX
signals subsystems. The same technique can be used to work with hardware watchdog
timers or more sophisticated software watchdog services.

How to do it...
We will create an application that will define the Watchdog class and provide an example
of its usage. Follow these steps:

In your working directory, that is, ~/test, create a subdirectory1.
called watchdog.
Use your favorite text editor to create a file called watchdog.cpp in2.
the watchdog subdirectory.
Put the required includes in the watchdog.cpp file:3.

#include <chrono>
#include <iostream>
#include <thread>

#include <unistd.h>

using namespace std::chrono_literals;

Next, we define the Watchdog class itself:4.

class Watchdog {
 std::chrono::seconds seconds;

 public:
 Watchdog(std::chrono::seconds seconds):
 seconds(seconds) {
 feed();
 }

 ~Watchdog() {
 alarm(0);
 }

Error Handling and Fault Tolerance Chapter 12

[319]

 void feed() {
 alarm(seconds.count());
 }
};

Add the main function, which serves as a usage example for our watchdog:5.

int main() {
 Watchdog watchdog(2s);
 std::chrono::milliseconds delay = 700ms;
 for (int i = 0; i < 10; i++) {
 watchdog.feed();
 std::cout << delay.count() << "ms delay" << std::endl;
 std::this_thread::sleep_for(delay);
 delay += 300ms;
 }
}

Add a CMakeLists.txt file containing the build rules for our program:6.

cmake_minimum_required(VERSION 3.5.1)
project(watchdog)
add_executable(watchdog watchdog.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++14")

set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can now build and run the application. 7.

How it works...
We need a mechanism to terminate our application when it hangs. Though we could spawn
a special monitoring thread or process, there is another, simpler way to do this—POSIX
signals.

Any process running in a POSIX operating system can receive a number of signals. To
deliver a signal to the process, the operating system stops the normal execution of the
process and invokes a corresponding signal handler.

Error Handling and Fault Tolerance Chapter 12

[320]

One of the signals that can be delivered to the process is called alarm and, by default, its
handler just terminates the application. This is exactly what we need to implement a
watchdog.

The constructor of our Watchdog class accepts one parameter, seconds:

Watchdog(std::chrono::seconds seconds):

It is a time interval for our watchdog and it is immediately passed into the feed method to
activate the watchdog timer:

feed();

The feed method invokes a POSIX function alarm that sets the timer. If the timer is
already set, it updates it with a new value:

void feed() {
 alarm(seconds.count());
}

Finally, we invoke the same alarm function in the destructor to disable the timer by
passing a value of 0:

alarm(0);

Now, each time we invoke the feed function, we shift the time when the process will
receive the alarm signal. If, however, we do not invoke this function before the timer
expires, it triggers the alarm handler, which terminates our process.

To check it out, we've created a simple example. It is a loop that has 10 iterations. On each
iteration, we display a message and sleep for a specific interval. The interval is initially 700
ms and on each iteration, it increases by 300 ms; for example, 700 ms, 1,000 ms, 1,300 ms,
and so on:

delay += 300ms;

Our watchdog is set to a 2-second interval:

Watchdog watchdog(2s);

Error Handling and Fault Tolerance Chapter 12

[321]

Let's run the application and check how it works. It produces the following output:

As we can see, the application was terminated after the sixth iteration, after the delay
exceeded the watchdog interval. Moreover, since it was terminated abnormally, its return
code is non-zero. If the application is spawned by another application or script, this is an
indicator that the application needs to be restarted.

The watchdog technique is a simple and efficient way to build robust embedded
applications.

Exploring heartbeats for highly available
systems
In the preceding recipe, we learned how to prevent software from hanging using watchdog
timers. A similar technique can be used to implement a highly available system, which
consists of one or more software or hardware components that can perform the same
function. If one of the components fails, another one can take over.

The component that is currently active should periodically advertise its health status to
other, passive components using messages that are called heartbeats. When it reports an
unhealthy status or doesn't report it within a specific amount of time, a passive component
detects it and activates itself. When the failed component recovers, it can either transition
into passive mode, monitoring the now active component for failures, or initiate a failback
procedure to claim the active status back.

In this recipe, we will learn how to implement a simple heartbeat monitor in our
application.

Error Handling and Fault Tolerance Chapter 12

[322]

How to do it...
We will create an application that defines a Watchdog class and provide an example of its
usage. Follow these steps:

In your working directory, that is, ~/test, create a subdirectory1.
called heartbeat.
Use your favorite text editor to create a file called heartbeat.cpp in2.
the heartbeat subdirectory.
Put the required includes in the heatbeat.cpp file: 3.

#include <chrono>
#include <iostream>
#include <system_error>
#include <thread>

#include <unistd.h>
#include <poll.h>
#include <signal.h>

using namespace std::chrono_literals;

Next, we define an enum to report the health status of the active worker:4.

enum class Health : uint8_t {
 Ok,
 Unhealthy,
 ShutDown
};

Now, let's create a class that encapsulates the heartbeat reporting and5.
monitoring. We start with the class definition, its private fields, and its
constructor:

class Heartbeat {
 int channel[2];
 std::chrono::milliseconds delay;

 public:
 Heartbeat(std::chrono::milliseconds delay):
 delay(delay) {
 int rv = pipe(channel);
 if (rv < 0) {
 throw std::system_error(errno,
 std::system_category(),
 "Failed to open pipe");

Error Handling and Fault Tolerance Chapter 12

[323]

 }
 }

Next, we add a method to report the health status:6.

 void Report(Health status) {
 int rv = write(channel[1], &status, sizeof(status));
 if (rv < 0) {
 throw std::system_error(errno,
 std::system_category(),
 "Failed to report health status");
 }
 }

This is followed by a health monitoring method:7.

 bool Monitor() {
 struct pollfd fds[1];
 fds[0].fd = channel[0];
 fds[0].events = POLLIN;
 bool takeover = true;
 bool polling = true;
 while(polling) {
 fds[0].revents = 0;
 int rv = poll(fds, 1, delay.count());
 if (rv) {
 if (fds[0].revents & (POLLERR | POLLHUP)) {
 std::cout << "Polling error occured"
 << std::endl;
 takeover = false;
 polling = false;
 break;
 }

 Health status;
 int count = read(fds[0].fd, &status,
 sizeof(status));
 if (count < sizeof(status)) {
 std::cout << "Failed to read heartbeat data"
 << std::endl;
 break;
 }
 switch(status) {
 case Health::Ok:
 std::cout << "Active process is healthy"
 << std::endl;
 break;
 case Health::ShutDown:

Error Handling and Fault Tolerance Chapter 12

[324]

 std::cout << "Shut down signalled"
 << std::endl;
 takeover = false;
 polling = false;
 break;
 default:
 std::cout << "Unhealthy status reported"
 << std::endl;
 polling = false;
 break;
 }
 } else if (!rv) {
 std::cout << "Timeout" << std::endl;
 polling = false;
 } else {
 if (errno != EINTR) {
 std::cout << "Error reading heartbeat data, retrying"
<< std::endl;
 }
 }
 }
 return takeover;
 }
};

Once the heartbeat logic has been defined, we create some functions so that we8.
can use it in our test application:

void Worker(Heartbeat& hb) {
 for (int i = 0; i < 5; i++) {
 hb.Report(Health::Ok);
 std::cout << "Processing" << std::endl;
 std::this_thread::sleep_for(100ms);
 }
 hb.Report(Health::Unhealthy);
}

int main() {
 Heartbeat hb(200ms);
 if (fork()) {
 if (hb.Monitor()) {
 std::cout << "Taking over" << std::endl;
 Worker(hb);
 }
 } else {
 Worker(hb);
 }
}

Error Handling and Fault Tolerance Chapter 12

[325]

Next, we add a CMakeLists.txt file containing the build rules for our program:9.

cmake_minimum_required(VERSION 3.5.1)
project(heartbeat)
add_executable(heartbeat heartbeat.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++14")

set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can now build and run the application. 10.

How it works...
The heartbeats mechanism needs some kind of communication channel to let one
component report its status to other components. In a system that is built around multiple
processing units, the best choice would be network-based communication over sockets. Our
application is running on a single node, and we can use one of the local IPC mechanisms
instead.

We are going to use POSIX pipes mechanisms for our heartbeat transport. When a pipe is
created, it provides two file descriptors for communication—one is used to read data, while
the other is used to write data.

Besides the communication transport, we need to choose the time interval for taking over. If
a monitoring process does not receive a heartbeat message within this interval, it should
consider another component as unhealthy or failed, and perform some takeover action.

We start by defining the possible health statuses of our applications. We use the C++ enum
class to make the stats strictly typed, as follows:

enum class Health : uint8_t {
 Ok,
 Unhealthy,
 ShutDown
};

Our application is simple and has only three statuses: Ok, Unhealthy, and ShutDown. The
ShutDown status is an indicator that the active process is going to shut down normally and
that no takeover action is needed.

Error Handling and Fault Tolerance Chapter 12

[326]

Then, we define the Heartbeat class, which encapsulates all message exchange, health
reporting, and monitoring functions.

It has two data fields that represent the monitoring time interval and the POSIX pipe that's
being used for message exchange:

 int channel[2];
 std::chrono::milliseconds delay;

The constructor creates the pipe and throws an exception in the event of a failure:

 int rv = pipe(channel);
 if (rv < 0) {
 throw std::system_error(errno,
 std::system_category(),
 "Failed to open pipe");

The health reporting method is a simple wrapper around the write function. It writes the
status, represented as an unsigned 8-bit integer value, to the write file descriptor of the
pipe:

int rv = write(channel[1], &status, sizeof(status));

The monitoring method is more complex. It uses the POSIX poll function to wait for data
in one or more file descriptors. In our case, we are interested in data from only one file
descriptor—the read side of the pipe. We fill the fds structure used by pol with file
descriptors and the types of events we are interested in:

 struct pollfd fds[1];
 fds[0].fd = channel[0];
 fds[0].events = POLLIN | POLLERR | POLLHUP;

Two Boolean flags control the polling loop. The takeover flag indicates whether the
takeover action should be performed when we exit the loop, while the polling flag
indicates whether the loop should exist or not:

 bool takeover = true;
 bool polling = true;

On each iteration of the loop, we poll for new data in the socket using the poll function.
We use a monitoring interval passed into the constructor as a polling timeout:

 int rv = poll(fds, 1, delay.count());

Error Handling and Fault Tolerance Chapter 12

[327]

The result of the poll function indicates one of three possible outcomes:

If it is greater than zero, we have new data available to read from the
communication pipe. We read the status from the communication channel and
analyze it.
If the status is Ok, we log it and go to the next iteration of polling.
If the status is ShutDown, we need to exit the polling loop, but also prevent the
takeover action. To do this, we set our Boolean flags accordingly:

 case Health::ShutDown:
 std::cout << "Shut down signalled"
 << std::endl;
 takeover = false;
 polling = false;

For any other health status, we break from the loop with the takeover flag set to true:

 std::cout << "Unhealthy status reported"
 << std::endl;
 polling = false;

poll returns zero in the case of a timeout. Similar to the Unhealthy status, we need to
break from the loop and perform the takeover action:

 } else if (!rv) {
 std::cout << "Timeout" << std::endl;
 polling = false;

Finally, if the value returned by poll is less than zero, it indicates an error. There are
several reasons why a system call can fail, with a very common one being when it is
interrupted by a signal. This is not a real error; we only need to call poll again. For all
other cases, we write a log message and keep polling.

The monitoring method blocks while the monitoring loop is running, and it returns a
Boolean value to let the caller know whether the takeover action should be performed or
not:

 bool Monitor() {

Now, let's try to use this class in a toy example. We'll define a Worker function that accepts
a reference to the Heartbeat instance and represents the job to be done:

void Worker(Heartbeat& hb) {

Error Handling and Fault Tolerance Chapter 12

[328]

On each iteration of the inner loop, the Worker reports its health status:

hb.Report(Health::Ok);

At some point, it reports its status as Unhealthy:

 hb.Report(Health::Unhealthy);

In the main function, we create an instance of the Heartbeat class with a 200 ms polling
interval:

 Heartbeat hb(200ms);

Then, we spawn two independent processes. A parent process starts monitoring and, if a
takeover is needed, runs the Worker method:

 if (hb.Monitor()) {
 std::cout << "Taking over" << std::endl;
 Worker(hb);
 }

The child simply runs the Worker method. Let's run the application and check how it
works. It produces the following output:

As we can see, the Worker method reports that it processes data, and the monitor detects its
status as healthy. However, after the Worker method reports its status as Unhealthy, the
monitor detects it immediately and reruns the worker again to keep processing. This
strategy can be used to build a more elaborate health monitoring and failure recovery logic
to implement high availability in a system you have designed and developed.

Error Handling and Fault Tolerance Chapter 12

[329]

There's more...
In our example, we used two identical components that run simultaneously and monitor
each other. However, if one of the components contains a software bug that, under certain
conditions, causes the component to malfunction, there's a high chance that another
identical component could suffer from this issue too. In safety-critical systems, you may
need to develop two completely different implementations. This approach increases the
cost and development time but results in the higher reliability of the system.

Implementing software debouncing logic
One of the common tasks of embedded applications is interacting with external physical
controls such as buttons or switches. Though such objects have only two states – on and
off – detecting the moment a button or switch changes state is not as simple as it may look.

When a physical button is pressed, it takes some time before the contact is established
firmly. During this time, spurious interrupts can be triggered as if the button is bouncing
between on and off states. Instead of reacting to every interrupt, an application should be
able to filter out the spurious transitions. This is called debouncing.

Though it can be implemented at the hardware level, the most common approach is to do
this through software. In this recipe, we will learn how to implement a simple and generic
debouncing function that can be used with any type of input.

How to do it...
We will create an application that defines a generic debouncing function along with a test
input. This function can be used for any practical purpose by replacing the test input with
real input. Follow these steps:

In your working directory, that is, ~/test, create a subdirectory1.
called debounce.
Use your favorite text editor to create a file called debounce.cpp in2.
the debounce subdirectory.
Let's add includes and a function called debounce to the debounce.cpp file:3.

#include <iostream>
#include <chrono>
#include <thread>

Error Handling and Fault Tolerance Chapter 12

[330]

using namespace std::chrono_literals;

bool debounce(std::chrono::milliseconds timeout, bool
(*handler)(void)) {
 bool prev = handler();
 auto ts = std::chrono::steady_clock::now();
 while (true) {
 std::this_thread::sleep_for(1ms);
 bool value = handler();
 auto now = std::chrono::steady_clock::now();
 if (value == prev) {
 if (now - ts > timeout) {
 break;
 }
 } else {
 prev = value;
 ts = now;
 }
 }
 return prev;
}

Then, we add the main function, which shows how to use it:4.

int main() {
 bool result = debounce(10ms, []() {
 return true;
 });
 std::cout << "Result: " << result << std::endl;
}

Add a CMakeLists.txt file containing the build rules for our program:5.

cmake_minimum_required(VERSION 3.5.1)
project(debounce)
add_executable(debounce debounce.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++14")

set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can now build and run the application. 6.

Error Handling and Fault Tolerance Chapter 12

[331]

How it works...
Our goal is to detect when a button has stopped bouncing between on and off states. We
assume that if all consecutive attempts to read the button state return the same value (either
on or off) within a specific interval of time, we can tell whether the button is really on or off.

We use this logic to implement the debounce function. Since we want to make the
debouncing logic as generic as possible, the function should not know how to read the state
of a button. That is why the function accepts two arguments:

bool debounce(std::chrono::milliseconds timeout, bool (*handler)(void)) {

The first argument, timeout, defines that specific interval of time we need to wait to report
a state change. The second argument, handler, is a function or a function-like object that
knows how to read the state of the button. It is defined as a pointer to a Boolean function
without arguments.

The debounce function runs a loop. On each iteration, it calls the handler to read the state
of the button and compares it with the previous value. If the values are equal, we check the
time since the most recent state change. If it exceeds the timeout, we exit the loop and
return:

auto now = std::chrono::steady_clock::now();
 if (value == prev) {
 if (now - ts > timeout) {
 break;
 }

If the values are not equal, we reset the time for the most recent state change and keep
waiting:

} else {
 prev = value;
 ts = now;
 }

To minimize the CPU load and let other processes do some work, we add a 1-millisecond
delay between reads. If the function is intended to be used on a microcontroller that does
not run a multitasking operating system, this delay is not needed:

std::this_thread::sleep_for(1ms);

Error Handling and Fault Tolerance Chapter 12

[332]

Our main function contains a usage example for the debounce function. We use the C++
lambda to define a simple rule to read the button. It always returns true:

 bool result = debounce(10ms, []() {
 return true;
 });

We pass 10ms as a debounce timeout. If we run our program, we will see the following
output:

The debounce function works for 10 ms and returns true since there were no spurious
state changes in the test input. In the case of real input, it may take more time until the
button state stabilizes. This simple yet efficient debouncing function can be applied to a
variety of real inputs.

13
Guidelines for Real-Time

Systems
Real-time systems are a class of embedded systems where the time of reaction is critical.
The consequences of not reacting in time vary between different applications. Based on
severity, real-time systems are classified as follows:

Hard real time: Missing a deadline is not acceptable and considered a system
failure. These are usually mission-critical systems in airplanes, cars, and power
plants.
Firm real time: Missing a deadline is acceptable in rare cases. The usefulness of
the result is zero after the deadline. Think about a live streaming service. A video
frame delivered too late can only be discarded. This is tolerable provided it
happens infrequently.
Soft real time: Missing a deadline is acceptable. The usefulness of results
degrades after the deadline, causing degradation of the overall quality, and
should be avoided. Such an example is capturing and synchronizing data from
multiple sensors.

Real-time systems are not necessarily required to be super fast. What they need is
predictable reaction time. If a system can normally respond to an event within 10
milliseconds, but it often takes much longer, it is not a real-time system. If a system
responds within 1 second guaranteed, this constitutes hard real time.

Determinism and predictability are the main traits of real-time systems. In this chapter, we
will explore potential sources of unpredictable behavior and ways to mitigate them.

Guidelines for Real-Time Systems Chapter 13

[334]

This chapter covers the following topics:

Using real-time schedulers in Linux
Using statically allocated memory
Avoiding exceptions for error handling
Exploring real-time operating systems

The recipes in this chapter will help you better understand the specifics of real-time
systems and learn some best practices of software development for this kind of embedded
system.

Using real-time schedulers in Linux
Linux is a general-purpose operating system that is commonly used in various embedded
devices because of its versatility. It can be tailored to the particular hardware and is free.

Linux is not a real-time operating system and is not the best choice for implementing a hard
real-time system. However, it can be used efficiently to build a soft real-time system, since
it provides a real-time scheduler for time-critical applications.

In this recipe, we will learn how to use the real-time scheduler in Linux in our application.

How to do it...
We are going to create an application that uses the real-time scheduler:

In your working directory, ~/test, create a subdirectory called realtime.1.
Use your favorite text editor to create a realtime.cpp file in2.
the realtime subdirectory.
Add all the necessary includes and namespaces:3.

#include <iostream>
#include <system_error>
#include <thread>
#include <chrono>

#include <pthread.h>

using namespace std::chrono_literals;

Guidelines for Real-Time Systems Chapter 13

[335]

Next, add a function that configures a thread to use the real-time scheduler:4.

void ConfigureRealtime(pthread_t thread_id, int priority) {
 sched_param sch;
 sch.sched_priority = 20;
 if (pthread_setschedparam(thread_id,
 SCHED_FIFO, &sch)) {
 throw std::system_error(errno,
 std::system_category(),
 "Failed to set real-time priority");
 }
}

Next, we define a thread function that we want to run with normal priority:5.

void Measure(const char* text) {
 struct timespec prev;
 timespec_get(&prev, TIME_UTC);
 struct timespec delay{0, 10};
 for (int i = 0; i < 100000; i++) {
 nanosleep(&delay, nullptr);
 }
 struct timespec ts;
 timespec_get(&ts, TIME_UTC);
 double delta = (ts.tv_sec - prev.tv_sec) +
 (double)(ts.tv_nsec - prev.tv_nsec) / 1000000000;
 std::clog << text << " completed in "
 << delta << " sec" << std::endl;
}

This is followed by a real-time thread function and a main function that starts6.
both threads:

void RealTimeThread(const char* txt) {
 ConfigureRealtime(pthread_self(), 1);
 Measure(txt);
}

int main() {
 std::thread t1(RealTimeThread, "Real-time");
 std::thread t2(Measure, "Normal");
 t1.join();
 t2.join();
}

Guidelines for Real-Time Systems Chapter 13

[336]

Finally, we create a CMakeLists.txt file containing build rules for our7.
program:

cmake_minimum_required(VERSION 3.5.1)
project(realtime)
add_executable(realtime realtime.cpp)
target_link_libraries(realtime pthread)

SET(CMAKE_CXX_FLAGS "--std=c++14")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabihf-g++)

You can now build and run the application. 8.

How it works...
Linux has several scheduling policies that it applies to application processes and threads.
SCHED_OTHER is the default Linux time-sharing policy. It is intended for all threads and
does not provide real-time mechanisms.

In our application, we use another policy, SCHED_FIFO. This is a simple scheduling
algorithm. All threads that use this scheduler can only be preempted by a thread with a
higher priority. If the thread goes to sleep, it is placed at the back of the queue of those
threads with the same priority.

The priority of a thread with a SCHED_FIFO policy is always higher than the priority of any
thread with a SCHED_OTHER policy, and as soon as a SCHED_FIFO thread becomes
runnable, it immediately preempts a running SCHED_OTHER thread. From a practical
standpoint, if there is only one SCHED_FIFO thread running in the system, it can use as
much CPU time as it requires. The deterministic behavior and high priority of
the SCHED_FIFO scheduler make it a good fit for real-time applications.

To assign a real-time priority to a thread, we define a ConfigureRealtime function. This
accepts two parameters—a thread ID and the desired priority:

void ConfigureRealtime(pthread_t thread_id, int priority) {

The function populates data for the pthread_setschedparam function that uses the low-
level API of the operating system to change the scheduler and the priority of a thread:

 if (pthread_setschedparam(thread_id,
 SCHED_FIFO, &sch)) {

Guidelines for Real-Time Systems Chapter 13

[337]

We define a Measure function that runs a busy loop, invoking a nanosleep function with
parameters requiring it to sleep for 10 nanoseconds – way too short to yield execution to
another thread:

 struct timespec delay{0, 10};
 for (int i = 0; i < 100000; i++) {
 nanosleep(&delay, nullptr);
 }

This function captures timestamps before and after the loop and calculates the elapsed time
in seconds:

 struct timespec ts;
 timespec_get(&ts, TIME_UTC);
 double delta = (ts.tv_sec - prev.tv_sec) +
 (double)(ts.tv_nsec - prev.tv_nsec) / 1000000000;

Next, we define the RealTimeThread function as a wrapper around the
Measure function. This sets the priority of the current thread to real time and immediately
invokes Measure:

 ConfigureRealtime(pthread_self(), 1);
 Measure(txt);

In the main function, we start two threads, passing text literals as parameters to
differentiate their output. If we run the program on a Raspberry Pi device, we can see the
following output:

Real-time threads took four times lesser time because this was not preempted by normal
threads. This technique can be efficiently used to meet the soft real-time requirements in the
Linux environment.

Guidelines for Real-Time Systems Chapter 13

[338]

Using statically allocated memory
As has already been discussed in Chapter 6, Memory Management, dynamic memory
allocation should be avoided in real-time systems because generic memory allocators are
not time-bound. While, in most cases, memory allocation does not take much time, it is not
guaranteed. It is not acceptable for real-time systems.

The most straightforward way to avoid dynamic memory allocation is to replace it with
static allocation. C++ developers often use std::vector to store sequences of elements. On
account of its similarity with C arrays, it is efficient and easy to use and its interface is
consistent with other containers in the standard library. Since vectors have a variable
number of elements, they use dynamic memory allocation extensively. In many situations,
however, the std::array class can be used instead of std::vector. It has the same
interface, except that the number of its elements is fixed and so its instances can be
allocated statically. This makes it a good alternative to std::vector when memory
allocation time is critical.

In this recipe, we will learn how std::array can be efficiently used to represent a
sequence of elements of fixed size.

How to do it...
We are going to create an application that uses the power of the C++ standard library
algorithms to generate and process fixed data frames without using dynamic memory
allocation:

In your working directory, ~/test, create a subdirectory called array.1.
Use your favorite text editor to create a array.cpp file in2.
the array subdirectory.
Add includes and a new type definition to the array.cpp file:3.

#include <algorithm>
#include <array>
#include <iostream>
#include <random>

using DataFrame = std::array<uint32_t, 8>;

Guidelines for Real-Time Systems Chapter 13

[339]

Next, we add a function that generates data frames:4.

void GenerateData(DataFrame& frame) {
 std::random_device rd;
 std::generate(frame.begin(), frame.end(),
 [&rd]() { return rd() % 100; });
}

This is followed by the function to process data frames:5.

void ProcessData(const DataFrame& frame) {
 std::cout << "Processing array of "
 << frame.size() << " elements: [";
 for (auto x : frame) {
 std::cout << x << " ";
 }
 auto mm = std::minmax_element(frame.begin(),frame.end());
 std::cout << "] min: " << *mm.first
 << ", max: " << *mm.second << std::endl;
}

Add a main function that ties data generation and processing together:6.

int main() {
 DataFrame data;

 for (int i = 0; i < 4; i++) {
 GenerateData(data);
 ProcessData(data);
 }
 return 0;
}

Finally, we create a CMakeLists.txt file containing build rules for our7.
program:

cmake_minimum_required(VERSION 3.5.1)
project(array)
add_executable(array array.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS_RELEASE "--std=c++17")
SET(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_RELEASE} -g -DDEBUG")

set(CMAKE_C_COMPILER /usr/bin/arm-linux-gnueabihf-gcc)
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabihf-g++)

Guidelines for Real-Time Systems Chapter 13

[340]

set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)

You can now build and run the application. 8.

How it works...
We use the std::array template to declare a custom DataFrame data type. For our
sample application, a DataFrame is a sequence of eight 32-bit integers:

using DataFrame = std::array<uint32_t, 8>;

Now, we can use the new data type in functions to generate and process data frames. Since
the data frame is an array, we pass it by reference to the GenerateData function to avoid
extra copying:

void GenerateData(DataFrame& frame) {

GenerateData fills the data frame with random numbers. Since std::array has the same
interface as other containers in the standard library, we can use standard algorithms to
make the code shorter and more readable:

 std::generate(frame.begin(), frame.end(),
 [&rd]() { return rd() % 100; });

We define the ProcessData function in a similar manner. It also accepts a DataFrame, but
it is not supposed to modify it. We use a constant reference to explicitly state that data will
not be modified:

void ProcessData(const DataFrame& frame) {

ProcessData prints all values in the data frame, and then finds the minimum and the
maximum values in the frame. Unlike built-in arrays, std::arrays do not decay to raw
pointers when passed to functions, so we can use range-based loop syntax. You may notice
that we do not pass the size of the array into the function, and do not use any global
constant to query it. It is part of the std::array interface. It not only reduces the number
of parameters to the function, but also ensures that we cannot pass an incorrect size when
calling it:

 for (auto x : frame) {
 std::cout << x << " ";
 }

Guidelines for Real-Time Systems Chapter 13

[341]

To find the minimum and maximum values, we use the std::minmax_ element function of
the standard library instead of writing a custom loop:

auto mm = std::minmax_element(frame.begin(),frame.end());

In the main function, we create an instance of DataFrame:

DataFrame data;

Then, we run a loop. On each iteration, a new data frame is generated and processed:

GenerateData(data);
ProcessData(data);

If we run the application, we get the following output:

Our application generated four data frames and processed its data with only a few lines of
code and using only statically allocated data. This makes std::array a good choice for
developers of real-time systems. Moreover, unlike built-in arrays, our functions are type-
safe and we can detect and fix a number of coding errors at build time.

There's more...
The C++20 standard introduced a new function, to_array, that allows developers to create
instances of std::array from one-dimensional built-in arrays. See more details and
examples on the to_array reference page (https:/ /en. cppreference. com/ w/cpp/
container/array/ to_ array).

https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array
https://en.cppreference.com/w/cpp/container/array/to_array

Guidelines for Real-Time Systems Chapter 13

[342]

Avoiding exceptions for error handling
A mechanism of exceptions is an integral part of the C++ standard. It is a recommended
way to design error handling in C++ programs. It does, however, have limitations that do
not always make it acceptable for real-time systems, especially safety-critical ones.

C++ exception handling depends heavily on stack unwinding. Once an exception is thrown,
it propagates by the call stack up to the catch block that can handle it. This means that
destructors of all local objects in all stack frames in its path are invoked, and it is hard to
determine and formally prove the worst-case time of this process.

That is why coding guidelines for safety-critical systems, such as MISRA or JSF, explicitly
forbid the use of exceptions for error handling.

This does not mean that C++ developers have to revert to the traditional plain C error
codes. In this recipe, we will learn how to use C++ templates to define data types that can
hold either the result or the error code of a function call.

How to do it...
We are going to create an application that uses the power of the C++ standard library
algorithms to generate and process fixed data frames without using dynamic memory
allocation:

In your working directory, ~/test, create a subdirectory called expected.1.
Use your favorite text editor to create an expected.cpp file in2.
the expected subdirectory.
Add includes and a new type definition to the expected.cpp file:3.

#include <iostream>
#include <system_error>
#include <variant>

#include <unistd.h>
#include <sys/fcntl.h>

template <typename T>
class Expected {
 std::variant<T, std::error_code> v;

public:
 Expected(T val) : v(val) {}
 Expected(std::error_code e) : v(e) {}

Guidelines for Real-Time Systems Chapter 13

[343]

 bool valid() const {
 return std::holds_alternative<T>(v);
 }

 const T& value() const {
 return std::get<T>(v);
 }

 const std::error_code& error() const {
 return std::get<std::error_code>(v);
 }
};

Next, we add a wrapper for the open POSIX function:4.

Expected<int> OpenForRead(const std::string& name) {
 int fd = ::open(name.c_str(), O_RDONLY);
 if (fd < 0) {
 return Expected<int>(std::error_code(errno,
 std::system_category()));
 }
 return Expected<int>(fd);
}

Add the main function that shows how to use the OpenForRead wrapper:5.

int main() {
 auto result = OpenForRead("nonexistent.txt");
 if (result.valid()) {
 std::cout << "File descriptor"
 << result.value() << std::endl;
 } else {
 std::cout << "Open failed: "
 << result.error().message() << std::endl;
 }
 return 0;
}

Finally, we create a CMakeLists.txt file containing build rules for our6.
program:

cmake_minimum_required(VERSION 3.5.1)
project(expected)
add_executable(expected expected.cpp)

set(CMAKE_SYSTEM_NAME Linux)
#set(CMAKE_SYSTEM_PROCESSOR arm)

Guidelines for Real-Time Systems Chapter 13

[344]

SET(CMAKE_CXX_FLAGS "--std=c++17")

#set(CMAKE_C_COMPILER /usr/bin/arm-linux-gnueabihf-gcc)
#set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabihf-g++)

set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)

You can now build and run the application. 7.

How it works...
In our application, we create a data type that can hold either an expected value or an error
code in a type-safe way. C++17 provides a type-safe union class, std::variant, which we
are going to use as an underlying data type for our templated class, Expected.

The Expected class encapsulates an std::variant field that can hold one of two data
types, either templated type T or std::error_code, which is a standard C++
generalization of error codes:

 std::variant<T, std::error_code> v;

Although it is possible to work with std::variant directly, we expose public methods
that make it more convenient. The valid method returns true if the result holds the
templated type, otherwise false:

 bool valid() const {
 return std::holds_alternative<T>(v);
 }

The value and error methods are used to access returned values or error code,
respectively:

 const T& value() const {
 return std::get<T>(v);
 }

 const std::error_code& error() const {
 return std::get<std::error_code>(v);
 }

Guidelines for Real-Time Systems Chapter 13

[345]

Once the Expected class is defined, we create an OpenForReading function that uses it.
This invokes the open system function and, based on the return value, creates an instance of
Expected that holds either a file descriptor or error code:

 if (fd < 0) {
 return Expected<int>(std::error_code(errno,
 std::system_category()));
 }
 return Expected<int>(fd);

In the main function, when we call OpenForReading for non-existing files, it is expected to
fail. When we run the application, we can see the following output:

Our Expected class allows us to write functions that may return error codes, and do it in a
type-safe way. Compile time-type validation helps developers to avoid many issues
common to traditional error codes, making our applications more robust and safe.

There's more...
Our implementation of the Expected data type is a variation of the std::expected class
(http://www.open- std. org/ jtc1/ sc22/ wg21/ docs/ papers/ 2018/ p0323r7. html) proposed
for standardization, but not approved. One of the implementations of std::expected can
be found on GitHub at https:/ / github. com/TartanLlama/ expected.

Exploring real-time operating systems
As has already been discussed in this chapter, Linux is not a real-time system. It is a good
choice for soft real-time tasks, but despite the fact that it provides a real-time scheduler, its
kernel is too complex to guarantee the level of determinism needed for hard real-time
applications.

Time-critical applications require either a real-time operating system to run, or are designed
and implemented to run on bare metal, with no operating system at all.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0323r7.html
https://github.com/TartanLlama/expected
https://github.com/TartanLlama/expected
https://github.com/TartanLlama/expected
https://github.com/TartanLlama/expected
https://github.com/TartanLlama/expected
https://github.com/TartanLlama/expected
https://github.com/TartanLlama/expected
https://github.com/TartanLlama/expected
https://github.com/TartanLlama/expected
https://github.com/TartanLlama/expected
https://github.com/TartanLlama/expected

Guidelines for Real-Time Systems Chapter 13

[346]

Real-time operating systems are usually much simpler than general-purpose operating
systems such as Linux. Also, they require tailoring to the particular hardware platform,
usually a microcontroller.

There are a number of real-time operating systems, with most of them being proprietary
and not free. FreeRTOS is a good starting point to explore the capabilities of real-time
operating systems. Unlike most of the alternatives, it is open source and free to use since it
is distributed under the MIT license. It is ported to a number of microcontrollers and small
microprocessors, but even if you do not have the specific hardware, Windows and POSIX
simulators are available.

In this recipe, we will learn how to download and run the FreeRTOS POSIX simulator.

How to do it...
We are going to download and build a FreeRTOS simulator in our build environment:

Switch to your Ubuntu Terminal and change the current directory to /mnt:1.

$ cd /mnt

Download the source code of the FreeRTOS simulator:2.

$ wget -O simulator.zip
http://interactive.freertos.org/attachments/token/r6d5gt3998niuc4/?
name=Posix_GCC_Simulator_6.0.4.zip

Extract the downloaded archive:3.

$ unzip simulator.zip

Change the current directory to4.
Posix_GCC_Simulator/FreeRTOS_Posix/Debug:

$ cd Posix_GCC_Simulator/FreeRTOS_Posix/Debug

Fix the minor mistake in makefile by running the following command:5.

$ sed -i -e 's/\(.*gcc.*\)-lrt\(.*\)/\1\2 -lrt/' makefile

Guidelines for Real-Time Systems Chapter 13

[347]

Build the simulator from the source code:6.

$ make

Start it:7.

$./FreeRTOS_Posix

At this point, the simulator is running.

How it works...
As we already know, the kernels of real-time operating systems are usually much simpler
than the kernels of general-purpose operating systems. The same is also true for FreeRTOS.

As a consequence of this simplicity, the kernel can be built and run as a process in a
general-purpose operating system, such as Linux or Windows. When used from within
another operating system, it stops being truly real time, but can be used as a starting point
to explore the FreeRTOS API and start working on applications that can later be run in the
real-time environment of the target hardware platform.

In this recipe, we downloaded and built the FreeRTOS kernel for the POSIX operating
system.

The build stage is straightforward. Once the code has been downloaded and extracted from
the archive, we run make, and this builds a single executable, FreeRTOS-POSIX. Before
running the make command, we fix a mistake in makefile by placing the -lrt option at
the end of the GCC command line. We do this by running sed:

$ sed -i -e 's/\(.*gcc.*\)-lrt\(.*\)/\1\2 -lrt/' makefile

Guidelines for Real-Time Systems Chapter 13

[348]

Running the application starts the kernel and pre-packaged applications:

We were able to run FreeRTOS in our build environment. You can dive deeper into its code
base and documentation to get a better understanding of the internals and APIs of real-time
operating systems.

There's more...
If you work in the Windows environment, there is a better supported Windows version of
the FreeRTOS simulator. It can be downloaded from https:/ / www.freertos. org/
FreeRTOS-Windows- Simulator- Emulator- for-Visual- Studio- and- Eclipse- MingW. html,
along with documentation and tutorials.

https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html
https://www.freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual-Studio-and-Eclipse-MingW.html

14
Guidelines for Safety-Critical

Systems
The requirements for the code quality of embedded systems are usually higher than in
other software domains. Since lots of embedded systems work without supervision or
control expensive industrial equipment, the cost of error is high. It becomes even higher in
safety-critical systems where software or hardware failure may lead to injuries or even
death. Software for such systems must follow specific guidelines that aim to minimize the
chances of bugs not being found during the debugging and testing stages.

In this chapter, we'll explore some of the requirements and best practices for safety-critical
systems through the following recipes:

Using the return values of all functions
Using static code analyzers
Using preconditions and postconditions
Exploring formal validation of code correctness

These recipes will help you understand the requirements and guidelines for safety-critical
systems, as well as the tools and methods used for certification and conformance testing.

Using the return values of all functions
Neither the C nor C++ languages require developers to use the value returned by any
function. It is totally acceptable to define a function that returns an integer and then invoke
it in the code, ignoring its return value.

Such flexibility often causes software errors that may be difficult to diagnose and fix. Most
commonly, it happens for functions returning error code. Developers may forget to add
error condition checks for functions that are used often and rarely fail, such as close.

Guidelines for Safety-Critical Systems Chapter 14

[350]

One of the most widely used coding standards for safety-critical systems is MISRA. It
defines requirements for C and C++ languages—MISRA C and MISRA C++, respectively. A
recently introduced Adaptive AUTOSAR defines coding guidelines for the automotive
industry. It is expected that the Adaptive AUTOSAR guidelines will be used as a base for
the updated MISRA C++ guidelines in the near future.

Both MISRA and AUTOSAR coding guidelines (https:/ /www. autosar. org/ fileadmin/
user_upload/standards/ adaptive/ 17- 03/ AUTOSAR_ RS_ CPP14Guidelines. pdf) for C++
require developers to use values returned by all non-void functions and methods. The
corresponding rule is defined as follows:

"Rule A0-1-2 (required, implementation, automated): The value returned by a function
having a non-void return type that is not an overloaded operator shall be used."

In this recipe, we will learn how to use this rule in our code.

How to do it...
We are going to create two classes that save two timestamps in a file. One timestamp
indicates when an instance was created, while the other indicates when the instance was
destroyed. This is useful for code profiling, to measure how much time we have spent in a
function or any other code block of interest. Follow these steps:

In your working directory, that is, ~/test, create a subdirectory called returns.1.
Use your favorite text editor to create a file called returns.cpp in2.
the returns subdirectory.
Add the first class to the returns.cpp file:3.

#include <system_error>

#include <unistd.h>
#include <sys/fcntl.h>
#include <time.h>

[[nodiscard]] ssize_t Write(int fd, const void* buffer,
 ssize_t size) {
 return ::write(fd, buffer, size);
}

class TimeSaver1 {
 int fd;

public:

https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf

Guidelines for Safety-Critical Systems Chapter 14

[351]

 TimeSaver1(const char* name) {
 int fd = open(name, O_RDWR|O_CREAT|O_TRUNC, 0600);
 if (fd < 0) {
 throw std::system_error(errno,
 std::system_category(),
 "Failed to open file");
 }
 Update();
 }

 ~TimeSaver1() {
 Update();
 close(fd);
 }

private:
 void Update() {
 time_t tm;
 time(&tm);
 Write(fd, &tm, sizeof(tm));
 }
};

Next, we add the second class:4.

class TimeSaver2 {
 int fd;

public:
 TimeSaver2(const char* name) {
 fd = open(name, O_RDWR|O_CREAT|O_TRUNC, 0600);
 if (fd < 0) {
 throw std::system_error(errno,
 std::system_category(),
 "Failed to open file");
 }
 Update();
 }

 ~TimeSaver2() {
 Update();
 if (close(fd) < 0) {
 throw std::system_error(errno,
 std::system_category(),
 "Failed to close file");
 }
 }

Guidelines for Safety-Critical Systems Chapter 14

[352]

private:
 void Update() {
 time_t tm = time(&tm);
 int rv = Write(fd, &tm, sizeof(tm));
 if (rv < 0) {
 throw std::system_error(errno,
 std::system_category(),
 "Failed to write to file");
 }
 }
};

The main function creates instances of both classes:5.

int main() {
 TimeSaver1 ts1("timestamp1.bin");
 TimeSaver2 ts2("timestamp2.bin");
 return 0;
}

Finally, we create a CMakeLists.txt file containing the build rules for our6.
program:

cmake_minimum_required(VERSION 3.5.1)
project(returns)
add_executable(returns returns.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++17")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can now build and run the application. 7.

How it works...
We have now created two classes, TimeSaver1 and TimeSaver2, which look almost
identical and do identical jobs. Both classes open a file in their constructors and call the
Update function, which writes a timestamp into an open file.

Similarly, their destructors invoke the same Update function to add a second timestamp
and close the file descriptor.

Guidelines for Safety-Critical Systems Chapter 14

[353]

TimeSaver1, however, breaks the A0-1-2 rule and is unsafe. Let's take a closer look at this.
Its Update function invokes two functions, time and write. Both functions may fail,
returning proper error code, but our implementation ignores it:

 time(&tm);
 Write(fd, &tm, sizeof(tm));

Also, the destructor of TimeSaver1 closes the open file by calling the close function. This
may also fail, returning an error code, which we ignore:

 close(fd);

The second class, TimeSaver2, complies with the requirement. We assign the result of the
time call to the tm variable:

 time_t tm = time(&tm);

If Write returns an error, we throw an exception:

 int rv = Write(fd, &tm, sizeof(tm));
 if (rv < 0) {
 throw std::system_error(errno,
 std::system_category(),
 "Failed to write to file");
 }

Similarly, we throw an exception if close returns an error:

 if (close(fd) < 0) {
 throw std::system_error(errno,
 std::system_category(),
 "Failed to close file");
 }

To mitigate this kind of issue, the C++17 standard introduced a special attribute
called [[nodiscard]]. If a function is declared with this attribute, or it returns a class or
enumeration marked as nodiscard, the compiler should display a warning if its return
value is discarded. To use this feature, we created a custom wrapper around the
write function and declared it nodiscard:

[[nodiscard]] ssize_t Write(int fd, const void* buffer,
 ssize_t size) {
 return ::write(fd, buffer, size);
}

Guidelines for Safety-Critical Systems Chapter 14

[354]

We can see this in the compiler output when we build our application, which also means
we have the opportunity to fix it:

In fact, the compiler was able to recognize and report another issue in our code that we will
discuss in the next recipe.

If we build and run the application, we won't see any output since all writes go to files. We
can run the ls command to check that the program produces a result, as follows:

$ ls timestamp*

From this, we get the following output:

As expected, two files are created by our program. They should be identical, but they are
not. The file created by TimeSaver1 is empty, meaning its implementation has an issue.

Guidelines for Safety-Critical Systems Chapter 14

[355]

The file generated by TimeSaver2 is valid, but does that mean that its implementation is
100 percent correct? Not necessarily, as we'll see in the next recipe.

There's more...
More information about the [[nodiscard]] attribute can be found on its reference page
(https://en.cppreference. com/ w/cpp/ language/ attributes/ nodiscard). Starting from
C++20, the nodiscard attribute can include a string literal, explaining why the value
should not be discarded; for example, [[nodiscard("Check for write errors")]].

It is important to understand that compliance with safety guidelines does make your code
safer, but does not guarantee it. In our implementation of TimeSaver2, we use the value
returned by time, but we do not check whether it is valid. Instead, we write to the output
file unconditionally. Similarly, if write returns a non-zero number, it can still write less
data to the file than requested. Even if your code formally matches the guidelines, it may
contain related issues.

Using static code analyzers
All safety guidelines are defined as extensive sets of specific requirements to the source
code or design of the application. Many of these requirements can be checked automatically
by using static code analyzers.

Static code analyzers are tools that can analyze the source code and warn developers if
they detect code patterns that violate code quality requirements. They are extremely
efficient when it comes to error detection and prevention. Since they can be run before the
code is built, a lot of errors are fixed at the earliest stage of development, without involving
the time-consuming testing and debugging process.

Besides error detection and prevention, static code analyzers are used to prove that the
code complies with target requirements and guidelines during the certification process.

In this recipe, we will learn how to use a static code analyzer in our applications.

https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard
https://en.cppreference.com/w/cpp/language/attributes/nodiscard

Guidelines for Safety-Critical Systems Chapter 14

[356]

How to do it...
We are going to create a simple program and run one of the many open source code
analyzers that are available to check for potential issues. Follow these steps:

Go to the ~/test/returns directory, which we created as part of the previous1.
recipe.
Install the cppcheck tool from the repository. Make sure you are under the root2.
account, not user:

apt-get install cppcheck

Change to the user account again:3.

su - user
$

Run cppcheck against the returns.cpp file:4.

$ cppcheck --std=posix --enable=warning returns.cpp

Analyze its output. 5.

How it works...
The code analyzer can parse the source code of our applications and test it against a
number of patterns representing bad coding practices.

A lot of code analyzers exist, from open source and free to use to expensive commercial
products for enterprise use.

The MISRA coding standard that was mentioned in Using the Return Values of All Functions
recipe is a commercial standard. This means that you need to buy a license to use it and,
similarly, buy a certified code analyzer that can test code for MISRA compliance.

For learning purposes, we will use an open source code analyzer called cppcheck. It is
widely used and already included in the Ubuntu repository. We can install it in the same
way as any other Ubuntu package:

apt-get install cppcheck
$ cppcheck --std=posix --enable=warning returns.cpp

Guidelines for Safety-Critical Systems Chapter 14

[357]

Now, we pass the source filename as a parameter. The check is fast and generates the
following report:

As we can see, it has detected two issues in our code, even before we have tried to build it.
The first issue is in our safer, enhanced TimeSaver2 class! To make it comply with A0-1-2
requirements, we need to check for the status code returned by close and throw an
exception if an error occurs. However, we do this in a destructor, breaking C++ error
handling mechanisms.

The second issue that was detected by the code analyzer is a resource leak. This explains
why TimeSaver1 generates empty files. When opening a file, we accidentally assign the
file descriptor to the local variable instead of the instance variable, that is, fd:

int fd = open(name, O_RDWR|O_CREAT|O_TRUNC, 0600);

Now, we can fix them and rerun cppcheck to make sure the issues have gone and that no
new issues are introduced. Using code analyzers as part of the development workflow
makes your code safer and your performance faster since you can detect and prevent issues
in the early stages of the development cycle.

There's more...
Though cppcheck is an open source tool, it supports a number of MISRA checks. This does
not make it a certified tool for the validation of conformance to MISRA guidelines but
allows you to understand how close your code is to the MISRA requirements and how
much effort might be needed to make it compliant.

The MISRA check is implemented as an add-on; you can run it according to the instructions
that can be found in the add-ons section of the GitHub repository for cppcheck (https:/ /
github.com/danmar/ cppcheck/ tree/ master/ addons).

https://github.com/danmar/cppcheck/tree/master/addons
https://github.com/danmar/cppcheck/tree/master/addons
https://github.com/danmar/cppcheck/tree/master/addons
https://github.com/danmar/cppcheck/tree/master/addons
https://github.com/danmar/cppcheck/tree/master/addons
https://github.com/danmar/cppcheck/tree/master/addons
https://github.com/danmar/cppcheck/tree/master/addons
https://github.com/danmar/cppcheck/tree/master/addons
https://github.com/danmar/cppcheck/tree/master/addons
https://github.com/danmar/cppcheck/tree/master/addons
https://github.com/danmar/cppcheck/tree/master/addons
https://github.com/danmar/cppcheck/tree/master/addons
https://github.com/danmar/cppcheck/tree/master/addons
https://github.com/danmar/cppcheck/tree/master/addons
https://github.com/danmar/cppcheck/tree/master/addons
https://github.com/danmar/cppcheck/tree/master/addons

Guidelines for Safety-Critical Systems Chapter 14

[358]

Using preconditions and postconditions
In the previous recipe, we learned how to use static code analyzers to prevent coding errors
at the early stages of development. Another powerful tool for error prevention is
programming by contract.

Programming by contract is a practice in which developers explicitly define contracts or
expectations for input values of a function or module, its results, and intermediate states.
While intermediate states depend on implementation, the contracts for the input and
output values can be defined as part of the public interface. These expectations are called
preconditions and preconditions, respectively, and help avoid programming errors caused
by vaguely defined interfaces.

In this recipe, we will learn how to define preconditions and postconditions in our C++
code.

How to do it...
To test how preconditions and postconditions work, we will partially reuse the code of
the TimeSaver1 class we used in the previous recipe. Follow these steps:

In your working directory, that is, ~/test, create a subdirectory called assert.1.
Use your favorite text editor to create a file called assert.cpp in2.
the assert subdirectory.
Add the modified version of the TimeSaver1 class to the assert.cpp file:3.

#include <cassert>
#include <system_error>

#include <unistd.h>
#include <sys/fcntl.h>
#include <time.h>

class TimeSaver1 {
 int fd = -1;

public:
 TimeSaver1(const char* name) {
 assert(name != nullptr);
 assert(name[0] != '\0');

 int fd = open(name, O_RDWR|O_CREAT|O_TRUNC, 0600);
 if (fd < 0) {

Guidelines for Safety-Critical Systems Chapter 14

[359]

 throw std::system_error(errno,
 std::system_category(),
 "Failed to open file");
 }
 assert(this->fd >= 0);
 }

 ~TimeSaver1() {
 assert(this->fd >= 0);
 close(fd);
 }
};

This is followed by a simple main function:4.

int main() {
 TimeSaver1 ts1("");
 return 0;
}

Put the build rules into the CMakeLists.txt file:5.

cmake_minimum_required(VERSION 3.5.1)
project(assert)
add_executable(assert assert.cpp)

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)

SET(CMAKE_CXX_FLAGS "--std=c++11")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)

You can now build and run the application. 6.

How it works...
Here, we reused some of the code from the TimeSaver1 class from the previous recipe. For
simplicity, we removed the Update method, leaving only its constructor and destructor.

We intentionally kept the same error that was discovered by the static code analyzer in the
previous recipe to check whether precondition and postcondition checks can be used to
prevent such issues.

Guidelines for Safety-Critical Systems Chapter 14

[360]

Our constructor accepts a filename as a parameter. We do not have any particular
restrictions on the filename, except that it should be valid. Two obviously invalid filenames
are as follows:

A null pointer as a name
An empty name

We put these rules as preconditions using the assert macro:

assert(name != nullptr);
assert(name[0] != '\0');

To use this macro, we need to include a header file, that is, csassert:

#include <cassert>

Next, we use the filename to open the file and store it in the fd variable. We assign it to the
local variable, that is, fd, instead of the instance variable, fd. This is a coding error we want
to detect:

int fd = open(name, O_RDWR|O_CREAT|O_TRUNC, 0600);

Finally, we put postconditions in the constructor. The only postcondition, in our case, is
that the instance variable, fd, should be valid:

assert(this->fd >= 0);

Note how we prefix it with this to disambiguate it from local variables. In the same way, we
add a precondition to the destructor:

assert(this->fd >= 0);

We don't add any postconditions here because after the destructor returns, the instance is
not valid anymore.

Now, let's test our code. In the main function, we create an instance of TimeSaver1,
passing an empty filename as a parameter:

TimeSaver1 ts1("");

Guidelines for Safety-Critical Systems Chapter 14

[361]

After we've built and run our program, we will see the following output:

The precondition check in the constructor has detected the violation of contracts and
terminated the application. Let's change the filename to a valid one:

TimeSaver1 ts1("timestamp.bin");

We build and run the application once again and get a different output:

Now, all the preconditions have been met, but we violated the postcondition since we
failed to update the instance variable, fd. Change line 16 by removing the type definition
before fd, like so:

fd = open(name, O_RDWR|O_CREAT|O_TRUNC, 0600);

Rebuilding and running the program again yields an empty output:

This indicates that all the expectations for the input parameters and results have been met.
Even in a rudimentary form, programming using the contract helped us prevent two
coding issues. That is why this technique is widely used in all areas of software
development and in safety-critical systems in particular.

Guidelines for Safety-Critical Systems Chapter 14

[362]

There's more...
More elaborate support for programming by contract was expected to be added to the
C++20 standard. However, it has been deferred to a later standard. A description of the
proposal can be found in the paper A Contract Design (http:/ / www.open- std. org/ jtc1/
sc22/wg21/docs/papers/ 2016/ p0380r1. pdf) by G. Dos Reis, J. D. Garcia, J. Lakos, A.
Meredith, N. Myers, B. Stroustrup.

Exploring the formal validation of code
correctness
Static code analyzers and the programming-by-contract methodology help developers
significantly reduce the number of coding errors in their code. However, this is not
sufficient in safety-critical software development. It is important to formally prove that the
design of a software component is correct.

There are a number of fairly complex methods to do this, along with tools to automate this
process. In this recipe, we will explore one of the tools for formal software validation, called
CPAchecker (https:/ / cpachecker. sosy- lab. org/ index. php).

How to do it...
We are going to download and install CPAcheck to our build environment, and then run it
against a sample program. Follow these steps:

Open a Terminal with your build environment included.1.
Make sure you have root permissions. If not, press Ctrl + D to exit from the user2.
session back to the root session.
Install the Java runtime:3.

apt-get install openjdk-11-jre

Switch to the user session and change directory to /mnt:4.

su - user
$ cd /mnt

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php

Guidelines for Safety-Critical Systems Chapter 14

[363]

Download and unpack the CPACheck archive, as follows:5.

$ wget -O -
https://cpachecker.sosy-lab.org/CPAchecker-1.9-unix.tar.bz2 | tar
xjf -

Change directory to CPAchecker-1.9-unix:6.

$ cd CPAchecker-1.9-unix

Run CPAcheck against an example file:7.

./scripts/cpa.sh -default doc/examples/example.c

Download the example file that intentionally contains a bug:8.

$ wget
https://raw.githubusercontent.com/sosy-lab/cpachecker/trunk/doc/exa
mples/example_bug.c

Run the checker against the new example:9.

./scripts/cpa.sh -default example_bug.c

Switch to your web browser and open the ~/test/CPAchecker-1.9-10.
unix/output/Report.html report file that was generated by the tool.

How it works...
To run CPAcheck, we need to install the Java runtime. This is available in the Ubuntu
repository, and we use apt-get to install it.

The next step is to download CPAcheck itself. We use the wget tool to download the
archive file and feed it to tar utility immediately to extract it. When completed, the tool can
be found in the CPAchecker-1.9-unix directory.

We use one of the pre-packaged example files to check how the tool works:

./scripts/cpa.sh -default doc/examples/example.c

Guidelines for Safety-Critical Systems Chapter 14

[364]

It generates the following output:

We can see, the tool has not discovered any issues with this file. There is no similar file that
contains bugs in the CPAcheck archive, but we can download it from its site:

$ wget
https://raw.githubusercontent.com/sosy-lab/cpachecker/trunk/doc/examples/ex
ample_bug.c

We run the tool again and get the following output:

Guidelines for Safety-Critical Systems Chapter 14

[365]

Now, the result is different: an error was detected. We can open an HTML report generated
by the tool for further analysis. Besides logs and statistics, it also displays a flow
automation graph:

Formal validation methods and tools are complex and can deal with relatively simple
applications, but they guarantee the correctness of application logic in all cases.

There's more...
You can find more information about CPAchecker on its website (https:/ /cpachecker.
sosy-lab.org/index. php).

https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php
https://cpachecker.sosy-lab.org/index.php

15
Microcontroller Programming

In previous chapters, we mostly covered topics applicable to relatively powerful embedded
systems that have megabytes of memory and run Linux operating systems. Now, we are
going to explore the other side of the embedded system spectrum—microcontrollers.

As we discussed in the introduction, microcontrollers are commonly used to perform
simple, often real-time tasks, such as collecting data or providing a high-level API to a
specific device. Microcontrollers are inexpensive, consume little energy, and can work in a
wide range of environmental conditions, making them a perfect choice for IoT applications.

The other side of their low cost is their capabilities. Normally, they have onboard memory
that is measured in kilobytes and do not have hardware memory mapping. They do not run
any operating system at all, or run a simple real-time operating system like FreeRTOS.

There are many models of microcontrollers, tailored for specific applications. In this
chapter, we will learn how to use the Arduino development environment. The recipes were
created for the Arduino UNO board built on top of an ATmega328 microcontroller, which
is widely used for education and prototyping purposes, but they will work for other
Arduino boards as well.

We will cover the following topics:

Setting up the development environment
Compiling and uploading a program
Debugging microcontroller code

These recipes will help with setting up the environment and starting development for
microcontrollers.

Microcontroller Programming Chapter 15

[367]

Setting up the development environment
The Arduino UNO board comes with an integrated development environment, or IDE,
called the Arduino IDE. It can be downloaded for free from https:/ / www.arduino. cc/
 website.

In this recipe, we will learn how to set it up and connect your Arduino board.

How to do it...
We are going to install the Arduino IDE, connect the Arduino UNO board to your
computer, and then establish the communication between the IDE and the board:

In your browser, open the downloads (https:/ /www. arduino. cc/ en/ Main/1.
Software) page and choose an installation option that matches your operating
system.
Once the download is complete, follow the installation instructions from the2.
Getting started (https:/ /www. arduino. cc/ en/Guide/ HomePage) page.
Connect your Arduino board to your computer using a USB cable. It will power3.
on automatically.
Run the Arduino IDE.4.
Now, we need to establish communication between the IDE and the board.5.
Switch to the Arduino IDE window. In the application menu, select Tools -> Port.
This will open a sub-menu with serial port options available. Choose the one that
has Arduino in its name.
In the Tools menu, click the Board item and then select a model of your Arduino6.
board.
Select the Tools -> Board Info menu item.7.

How it works...
Arduino boards come with a free IDE that can be downloaded from the manufacturer's site.
The IDE installation is straightforward and is not different from the installation of any other
software for your platform.

All code is written, compiled, and debugged in the IDE, but the resulting compiled images
should be flashed to the target board and executed there. For this, the IDE should be able to
communicate with the board.

https://www.arduino.cc/
https://www.arduino.cc/
https://www.arduino.cc/
https://www.arduino.cc/
https://www.arduino.cc/
https://www.arduino.cc/
https://www.arduino.cc/
https://www.arduino.cc/
https://www.arduino.cc/
https://www.arduino.cc/
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Guide/HomePage

Microcontroller Programming Chapter 15

[368]

The board is connected to the computer running the IDE via USB. The USB cable provides
not only communication but also power for the board. As soon as the board is connected to
the computer, it turns on and starts working.

The IDE uses a serial interface for communication with the board. Since there can be
multiple serial ports already configured on your computer, one of the steps to set up the
communication is to choose one of the available ports. Usually, it is the one that has
Arduino in its name:

Finally, once the port has been selected, we let the IDE know the type of Arduino board we
use. Once done, we can check whether communication between the board and the IDE
actually works. When we invoke the Board Info menu item, the IDE displays a dialog
window with information pertaining to the connected board:

If the dialog does not show up, this indicates a problem. The board may be disconnected or
damaged, or the wrong port may have been selected. Otherwise, we are ready to build and
run our first program.

Microcontroller Programming Chapter 15

[369]

There's more...
If something goes wrong, consider reading the troubleshooting section (https:/ /www.
arduino.cc/en/Guide/ Troubleshooting) on the Arduino site.

Compiling and uploading a program
In the previous recipe, we learned how to set up the development environment. Now, let's
compile and run our first program.

The Arduino UNO board itself does not have a screen, but we need some way to know that
our program is doing something. It does, however, have a built-in LED that we can control
from our program without connecting any peripherals to the board.

In this recipe, we will learn how to compile and run a program that blinks a built-in LED on
an Arduino UNO board.

How to do it...
We are going to compile and upload to the board an existing example application that
comes with the IDE:

Connect the Arduino board to your computer and open the Arduino IDE.1.
In the Arduino IDE, open the File menu and choose Examples -> 01. Basics ->2.
Blink.
A new window will open. In this window, click the Upload button.3.
Observe how the built-in LED on the board starts flashing.4.

How it works...
Arduino is a platform widely used for educational purposes. It is designed to be easy to use
and comes with a bunch of examples. For our first program, we have chosen an application
that does not require the board to be wired with external peripherals. Once we launch the
IDE, we select the Blink application from the examples available, as follows:

https://www.arduino.cc/en/Guide/Troubleshooting
https://www.arduino.cc/en/Guide/Troubleshooting
https://www.arduino.cc/en/Guide/Troubleshooting
https://www.arduino.cc/en/Guide/Troubleshooting
https://www.arduino.cc/en/Guide/Troubleshooting
https://www.arduino.cc/en/Guide/Troubleshooting
https://www.arduino.cc/en/Guide/Troubleshooting
https://www.arduino.cc/en/Guide/Troubleshooting
https://www.arduino.cc/en/Guide/Troubleshooting
https://www.arduino.cc/en/Guide/Troubleshooting
https://www.arduino.cc/en/Guide/Troubleshooting
https://www.arduino.cc/en/Guide/Troubleshooting
https://www.arduino.cc/en/Guide/Troubleshooting
https://www.arduino.cc/en/Guide/Troubleshooting

Microcontroller Programming Chapter 15

[370]

This opens a window with the program code:

Microcontroller Programming Chapter 15

[371]

Aside from the source code of the program, we can also see a black console window and a
status bar, indicating that the Arduino UNO board is connected via the
/dev/cu.usbmodem14101 serial port. The device name depends on the board model, and
the port name may look different in Windows or Linux.

Above the source code, we can see several buttons. The second button, a right-pointing
arrow, is the Upload button. Once we press it, the IDE starts building the application and
then uploads the resulting binary to the board. We can see the build status in the console
window:

The application starts immediately after uploading. If we take a look at the board, we can
see that the built-in yellow LED has started blinking. We were able to build and run our
first Arduino application.

Microcontroller Programming Chapter 15

[372]

There's more...
After uploading, your program is stored in the flash memory on the board. If you power off
your board and then power it on again, the program starts running even if you do not have
an IDE running.

Debugging microcontroller code
Compared with more powerful embedded platforms, such as the Raspberry PI, the
debugging capabilities of Arduino are limited. The Arduino IDE does not provide an
integrated debugger, and the Arduino board itself does not have a built-in screen. It does,
however, have UART, and provides a serial interface that can be used for debugging
purposes.

In this recipe, we will learn how to use the Arduino serial interface for debugging and
reading user input.

How to do it...
We will implement a simple program for the Arduino controller that waits for user input
on the serial port and turns the built-in LED on or off depending on the data:

Open Arduino IDE and select New in its File menu. A new Sketch window will1.
show up.
Paste the following code snippet into the Sketch window:2.

void setup() {
 pinMode(LED_BUILTIN, OUTPUT);
 Serial.begin(9600);
 while (!Serial);
}

void loop() {
 if (Serial.available() > 0) {
 int inByte = Serial.read();
 if (inByte == '1') {
 Serial.print("Turn LED on\n");
 digitalWrite(LED_BUILTIN, HIGH);
 } else if (inByte == '0') {
 Serial.print("Turn LED off\n");
 digitalWrite(LED_BUILTIN, LOW);
 } else {

Microcontroller Programming Chapter 15

[373]

 Serial.print("Ignore byte ");
 Serial.print(inByte);
 Serial.print("\n");
 }
 delay(500);
 }
}

Click the Upload button to build and run the code.3.
Select Serial Monitor in the Tools menu of the Arduino IDE. A Serial Monitor4.
window will appear.
In the Serial Monitor window, enter 1010110.5.

How it works...
We create a new Arduino sketch that consists of two functions. The first function, setup, is
invoked on the program startup and is used to provide the initial configuration of the
application.

In our case, we need to initialize the serial interface. The most important parameter of serial
communication is its speed in bits per second. Both the microcontroller and the IDE should
agree to use the same speed, otherwise the communication will not work. By default, the
serial monitor uses 9,600 bits per second, and we use this value in our program:

Serial.begin(9600);

It is possible to use higher communication speeds though. The serial monitor has a
dropdown in the bottom-right corner of the screen that allows other speeds to be selected.
If you decide to use other speeds, the code should be modified accordingly.

We also configure pin 13, corresponding to the built-in LED, for output:

pinMode(LED_BUILTIN, OUTPUT);

We use the constant, LED_BUILTIN, instead of 13, to make the code more understandable.
The second function, loop, defines an endless loop of the Arduino program. For each
iteration, we read a byte from the serial port:

if (Serial.available() > 0) {
 int inByte = Serial.read();

Microcontroller Programming Chapter 15

[374]

It the byte is 1, we turn the LED on and write a message back to the serial port:

 Serial.print("Turn LED on\n");
 digitalWrite(LED_BUILTIN, HIGH);

Similarly, for 0, we turn the LED off:

 Serial.print("Turn LED off\n");
 digitalWrite(LED_BUILTIN, LOW);

All other values are ignored. After each byte read from the port, we add a 500 microsecond
delay. This way, we can define different blinking patterns. For example, if we send
1001001, the LED will turn on for 0.5 seconds, then off for 1 second, on for 0.5 seconds, off
for 1 second, and finally, on again.

If we run the code and enter 1001001 in the serial monitor, we can see the following
output:

The LED is blinking as expected and, apart from that, we can see debug messages in the
serial monitor. In this way, we can debug real, more complex applications.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Embedded Programming with C++17
Maya Posch

ISBN: 978-1-78862-930-0

Choose the correct type of embedded platform to use for a project
Develop drivers for OS-based embedded systems
Use concurrency and memory management with various microcontroller units
(MCUs)
Debug and test cross-platform code with Linux
Implement an infotainment system using a Linux-based single board computer
Extend an existing embedded system with a Qt-based GUI
Communicate with the FPGA side of a hybrid FPGA/SoC system

https://www.packtpub.com/application-development/hands-embedded-programming-c17

Other Books You May Enjoy

[376]

Hands-On Embedded Programming with Qt
John Werner

ISBN: 978-1-78995-206-3

Understand how to develop Qt applications using Qt Creator on Linux
Explore various Qt GUI technologies to build resourceful and interactive
applications
Understand Qt’s threading model to maintain a responsive UI
Get to grips with remote target load and debug using Qt Creator
Become adept at writing IoT code using Qt
Learn a variety of software best practices to ensure that your code is efficient

https://www.packtpub.com/in/application-development/hands-embedded-programming-qt

Other Books You May Enjoy

[377]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

5
5 kHz square signal
 generating, 8-bit auto-reload used 92, 93, 95

8
8-bit auto-reload
 used, for generating 5 kHz square signal 92, 93,

95

8051 microcontroller interrupts 87, 88

A
Acorn RISC Machine (ARM) 35, 69
alignment 14
Application Program Interface (API) 201
application programming interface (API) 166
application-specific integrated circuits (ASICs) 13
Arduino development environment
 setting up 367, 369
 working 367, 368
Arduino IDE
 about 367
 download link 367
Arduino sketch
 creating 373, 374
Arduino troubleshooting
 reference link 369
Arduino UNO board
 program, compiling 369, 370, 371
 program, uploading 369, 370, 371
async function
 exploring 195, 197, 198, 199
 futures 195, 197, 198, 199
atomic compare-exchange
 reference link 185
atomic variables
 reference link 181

 using 177, 179, 180, 181
 using, in shared memory 189, 190, 191, 192,

193, 194, 195
AUTOSAR coding guidelines
 reference link 350
autosuspend
 about 261
 controlling, of USB devices 261, 262, 263, 264,

265

B
boost library
 reference link 226
Boost.Log
 reference link 130
breakpoints
 working with 112, 113, 115, 116, 117, 118, 119

C
C++ Chrono library
 exploring 284, 285, 286
 reference link 286
C++ condition variable class
 reference link 176
C++ error handling
 reference link 309
C++ lambda functions
 used, for defining callbacks 218, 220, 221
C++ memory model
 using 182, 183
 worker threads, creating 183, 184, 185
C++ serialization
 reference link 230
C++, using for embedded development
 about 18, 19
 exceptions 23, 24, 25
 object-oriented programming, to code complexity

[379]

21

 payment 19
 powerful standard library 25
 resource acquisition, is initialization 22, 23
 threads and memory model, as language

specification 26
C++
 thread support, exploring 166, 167, 168
cache lines
 data, aligning with 80, 81, 82, 83, 84
callbacks
 defining, C++ lambda used 218, 220, 221
cereal library
 reference link 226
CMake toolchains documentation
 reference link 59
CMake
 installing, to build system 56, 57, 58, 59
 using, as build system 54, 55
CMakeLists.txt file 170
Compare And Swap (CAS) 185
condition variables
 using 172, 173, 174, 175, 176
configurable logic blocks (CLBs) 13
Consistency, Availability, and Partition tolerance

(CAP) 188
controlling devices
 connecting, via GPIO 231, 232, 233, 234, 235
Coordinated Universal Time (UTC) 297
core dumps
 analyzing, with GDB 124
 working with 120, 121, 122, 123, 124
CPAchecker
 reference link 362, 365
cppcheck 357
CPU frequency
 configuring 266, 267
 working 268, 269, 270, 271, 272
cross-compilation
 about 39
 C++ program, creating 39, 40
 working 41, 42, 43
cyclic redundancy check (CRC) 18

D
data alignment
 working with 74, 75, 76, 77
data exchange
 implementing, with interrupts 98, 99, 100
data locality 78
data polling 86
data serialization
 advantages 224
 exploring 221, 222, 223, 224, 225, 226
data synchronization
 exploring 169, 170, 171, 172
data
 aligning, with cache lines 80, 81, 82, 83, 84
debouncing 329
debug and release builds
 working with 131, 132, 133, 135
debug logging
 adding 126, 127, 128, 129, 130
delays
 working with 289, 290, 291, 292
desktop
 versus embedded systems 10
Device tree blob 37
device tree blob
 reference link 36
direct memory access (DMA) 164
Docker container
 build system, setting up 32, 33, 34, 35
dynamic memory allocation
 using 137, 138
 working 139, 140

E
embedded applications
 debugging 47, 48, 49, 50
embedded system resources
 working with 13
embedded system, types
 application-specific integrated circuits (ASICs)

13

 field programmable gate arrays (FPGAs) 13
 microcontroller units (MCUs) 11
 System on Chip (SoC) 11, 12

[380]

embedded system
 connecting 43
 connecting to 44
 diagnostics 29, 30
 exploring 10
 logging 29, 30
 performance, implications 14
 software, deploying 27, 28
 software, running 28, 29
 types 11
 versus desktop 10
 versus web applications 10
 working 45, 46
emulators
 working with 35, 37, 38
endianness of platform
 detecting 66, 68, 69
endianness, types
 bi-endian 15
 big-endian 15
 little-endian 15
endianness
 about 14, 15, 64
 converting 69, 70, 72, 73, 74
Error class 312
error codes
 working with 301, 302, 303, 304, 305
error handling FAQ
 reference link 313
error handling
 exceptions, avoiding 342, 343, 344, 345
 exceptions, using 305, 306, 307
events
 using 272, 273, 275, 276, 278, 279
exception handling
 constant references, using 309, 310, 311
 working 312, 313
exceptions
 used, for error handling 305, 306, 307
 working 307, 308, 309

F
field programmable gate arrays (FPGAs) 13
firmware 10
fixed-width integer types

 about 17
 exploring 61, 62
 working 63
FlatBuffers library
 download link 227
 using 226, 227
 working 229, 230
flatc 226
formal validation, of correctness
 exploring 362, 363, 364, 365
FreeRTOS simulator
 reference link 348
function objects
 reference link 221
functions
 return values, using of 349, 351, 352, 354

G
GDB commands
 using 111
gdbserver
 about 50
 used, for debugging 125, 126
 using, for remote debugging 50, 51, 52, 53
General Purpose Input-Output (GPIO)
 used, for connecting controlling devices 231,

232, 233, 234, 235
getter methods 226
Global Positioning System (GPS) 297
GNU Compiler Collection (GCC) 80
GNU Project Debugger (GDB)
 about 101
 application, running in 102, 103, 104, 105, 106,

107, 108, 109, 110, 111
 used, for analyzing core dumps 124
governor 269
governor, properties
 reference link 272
GPIO pins
 controlling, with libgpiod 244, 245, 246, 247

H
hardware architecture
 alignment 16, 17
 endianness 14, 15

[381]

 fixed-width integer types 17
 working with 14
Hardware Definition Language (HDL) 13
hardware errors
 influence, of environmental conditions 18
 unreliable 18
 versions 18
 working with 17
heartbeats
 about 321
 exploring, for highly available system 321, 322,

324, 325, 326, 327, 328, 329

I
I2C peripheral devices
 controlling 247, 248, 249, 251, 252, 253, 254
 reference link 254
Integrated Development Environment (IDE) 102
Inter-Integrated Circuit (I2C) 247
inter-process communication (IPC)
 mechanisms, exploring 207, 208, 209, 210
 using, in applications 201, 203, 204, 205, 207
Interface Definition Language (IDL) 226
Internet of Things (IoT) 12
interrupt 86
Interrupt Enable (EA) 88
interrupt request lines (IRQ) 86
Interrupt Service Routine (ISR)
 about 86, 87, 146
 considerations 87
Interrupt Service Routine
 implementing 88, 90, 92
ioctl
 used, to accessing real-time clock in Linux 239,

240, 241, 242, 243

J
Joint Test Action Group (JTAG) 47

K
Kernel image
 reference link 36

L
libgpiod
 used, for controlling GPIO pins 244, 245, 246,

247

libudev library 275
Light Emitting Diode (LED) 232
Linux kernel 37
Linux root filesystem 37
Linux
 power-saving modes, exploring 256, 257, 258
 real-time clock, accessing ioctl used 239, 240,

241, 242, 243
 real-time schedulers, using 334, 335, 336, 337
lock-free synchronization
 exploring 185, 187, 188, 189

M
memory management unit (MMU) 153
memory words 16
Memory-Mapped Input-Output (MMIO) 160, 233
message queue
 about 211
 learning 212, 214, 215, 216, 217, 218
microcontroller 10
microcontroller code
 debugging 372
Microcontroller Unit (MCU) 85
microcontroller units (MCUs) 11, 47
Microprocessor without Interlocked Pipelined

Stages (MIPS) 38
MISRA check 357
MISRA coding standard 356
monotonic clock
 using 293, 294, 295, 296, 297

N
Network Time Protocol (NTP) 293
Network Time Protocol daemon (ntpd) 293
nodiscard attribute
 reference link 355

O
object pools
 exploring 140, 141, 142, 146

[382]

 working 143, 145
Over-the-Air (OTA) 27

P
packed structures
 working with 78, 79, 80
polling 86
Portable Operating System Interface (POSIX) 83,

157, 193, 207, 260
POSIX timestamps
 using 297, 298, 299
postconditions
 using 358, 359, 361
power consumption
 profiling, with PowerTOP 279, 280, 281, 282
Power-On Self-Test (POST) 30
power-saving modes
 exploring, in Linux 256, 257, 258
 hibernation 256
 reference link 259
 standby 256
 suspend-to-disk 256
 suspend-to-idle (S2I) 256
 Suspend-to-RAM (STR/S3) 256
powerful standard library 25
PowerTOP
 executing 279
 power consumption, profiling 279, 280, 281,

282

 reference link 282
preconditions
 about 358
 using 358, 359, 361
Programmable Interface Controller (PIC) 11
Protocol (TCP/IP) network 221
publisher-subscriber (pub-sub) model
 learning 211, 212, 214, 215, 216, 217, 218
 using 211
pulse-width modulation (PWM)
 about 235
 exploring 235, 236, 237, 238, 239
 using 239

Q
Quick EMUlator (QEMU)
 about 31, 257
 download link 36

R
Raspberry Pi
 reference link 237
Raspbian Lite zip-archive
 reference link 36
real-time clock (RTC)
 about 240, 259
Real-Time Clock (RTC)
 accessing, in Linux with ioctl 243
real-time clock (RTC)
 accessing, in Linux with ioctl 239, 240, 241,

242, 243
 using 259, 260
real-time operating systems
 exploring 345, 346, 347, 348
real-time schedulers
 using, in Linux 334, 335, 336, 337
remote debugging
 gdbserver, using 50, 51, 52, 53
Resource Acquisition Is Initialization (RAII) 19, 23,

157, 171, 215, 242
return values
 using, of functions 349, 351, 352, 354
ring buffer, public methods
 has_data() 150
 pull() 150
 push() 150
ring buffer
 implementing 149, 151, 152, 153
 using 146, 147, 148, 149

S
Secure Shell (SSH) 261
secure shell (SSH) 28
Serial Control (SCON) 98
Serial Control Register (SCON) 100
Serial Peripheral Interface (SPI)
 about 221
 obstacles 221

serialized 15
service modes 30
Set-Top-Box (STB) 27
setter methods 226
shared memory
 atomic variables, using 189, 190, 191, 192,

193, 194, 195
 using 153, 154, 155
 working 157, 158, 160
SharedMem class 193
size_t type
 working with 64, 65, 66
socket API
 reference link 210
software debouncing logic
 implementing 329, 330, 331, 332
spdlog
 reference link 130
Special Function Register (SFR) 98
specialized memory
 using 160, 161, 162, 163, 164
ss keys
 reference link 47
Stack class
 operations 187
static code analyzers
 using 355, 356, 357
static objects
 tackling 313, 315
 working 316, 317
statically allocated memory
 using 338, 339, 340, 341
std optional

 reference link 305
System on Chip (SoC) 11, 12, 101

T
thread constructors
 parameters 167
thread support
 exploring, in C++ 166, 167, 168
time intervals
 measuring 286, 287, 288
Timer 1
 using, as event counter 95, 97, 98
Timer Mode (TMOD) 92
to_array
 reference link 341
toolchain files 59

U
Universal Asynchronous Receiver Transmitter

(UART) 98
USB devices
 autosuspend, controlling 261
USB power management, in Linux
 reference link 265

W
watchdogs
 working with 318, 319, 320, 321
web applications
 versus embedded system 10

Z
ZeroMQ 218

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Fundamentals of Embedded Systems
	Exploring embedded systems
	How are they different from desktop or web applications?
	Types of embedded systems
	Microcontrollers
	System on Chip
	Application-specific integrated circuits
	Field programmable gate arrays

	Working with limited resources
	Looking at performance implications
	Working with different architectures
	Endianness
	Alignment
	Fixed-width integer types

	Working with hardware errors
	Early versions of hardware
	Hardware is unreliable
	The influence of environmental conditions

	Using C++ for embedded development
	You don't pay for what you don't use
	Object-oriented programming to time the code complexity
	Resource acquisition is initialization
	Exceptions
	The powerful standard library
	Threads and a memory model as part of the language specification

	Deploying software remotely
	Running software remotely
	Logging and diagnostics
	Summary

	Chapter 2: Setting Up the Environment
	Setting up the build system in a Docker container
	How to do it...
	How it works...
	There's more...

	Working with emulators
	How to do it...
	How it works...
	There's more...

	Cross-compilation
	Getting ready
	How to do it...
	How it works...
	There's more...

	Connecting to the embedded system
	Getting ready
	How to do it...
	How it works...
	There's more...

	Debugging embedded applications
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using gdbserver for remote debugging
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using CMake as a build system
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 3: Working with Different Architectures
	Exploring fixed-width integer types
	How to do it...
	How it works...
	There's more...

	Working with the size_t type
	How to do it...
	How it works...
	There's more...

	Detecting the endianness of the platform
	How to do it...
	How it works...
	There's more...

	Converting the endianness
	How to do it...
	How it works...

	Working with data alignment
	How to do it...
	How it works...
	There's more...

	Working with packed structures
	How to do it...
	How it works...
	There's more...

	Aligning data with cache lines
	How to do it...
	How it works...
	There's more...

	Chapter 4: Handling Interrupts
	Data polling
	Interrupt service routines
	General considerations for ISRs
	8051 microcontroller interrupts
	Implementing an interrupt service routine
	How to do it...
	How it works...

	Generating a 5 kHz square signal using 8-bit auto-reload mode
	How to do it...
	How it works...

	Using Timer 1 as an event counter to count a 1 Hz pulse
	How to do it...
	How it works...
	There's more...

	Receiving and transmitting data serially
	How to do it...
	How it works...
	There's more...

	Chapter 5: Debugging, Logging, and Profiling
	Technical requirements
	Running your applications in the GDB
	How to do it...
	How it works...
	There's more...

	Working with breakpoints
	How to do it...
	How it works...
	There's more...

	Working with core dumps
	How to do it...
	How it works...
	There's more...

	Using gdbserver for debugging
	Getting ready...
	How to do it...
	How it works...

	Adding debug logging
	How to do it...
	How it works...
	There's more...

	Working with debug and release builds
	How to do it...
	How it works...
	There's more...

	Chapter 6: Memory Management
	Using dynamic memory allocation
	How to do it...
	How it works...

	Exploring object pools
	How to do it...
	How it works...
	There's more...

	Using ring buffers
	How to do it...
	How it works...

	Using shared memory
	How to do it...
	How it works...
	There's more...

	Using specialized memory
	How to do it...
	How it works...
	There's more...

	Chapter 7: Multithreading and Synchronization
	Exploring thread support in C++
	How to do it...
	How it works...

	Exploring data synchronization
	How to do it...
	How it works...
	There's more...

	Using condition variables
	How to do it...
	How it works...
	There's more...

	Using atomic variables
	How to do it...
	How it works...
	There's more...

	Using the C++ memory model
	How to do it...
	How it works...
	There's more...

	Exploring lock-free synchronization
	How to do it...
	How it works...
	There's more...

	Using atomic variables in shared memory
	How to do it...
	How it works...

	Exploring async functions and futures
	How to do it...
	How it works...
	There's more...

	Chapter 8: Communication and Serialization
	Using inter-process communication in applications
	How to do it...
	How it works...
	There's more...

	Exploring the mechanisms of inter-process communication
	Getting ready
	How to do it...
	How it works...
	There's more...

	Learning about message queue and publisher-subscriber models
	How to do it...
	How it works...
	There's more...

	Using C++ lambdas for callbacks
	How to do it...
	How it works...
	There's more...

	Exploring data serialization
	How to do it...
	How it works...
	There's more...

	Using the FlatBuffers library
	How to do it...
	How it works...
	There's more...

	Chapter 9: Peripherals
	Controlling devices connected via GPIO
	How to do it...
	How it works...

	Exploring pulse-width modulation
	How to do it...
	How it works...
	There's more...

	Using ioctl to access a real-time clock in Linux
	How to do it...
	How it works...
	There's more

	Using libgpiod to control GPIO pins
	How to do it...
	How it works...
	There's more...

	Controlling I2C peripheral devices
	How to do it...
	How it works...
	There's more...

	Chapter 10: Reducing Power Consumption
	Technical requirements
	Exploring power-saving modes in Linux
	How to do it...
	How it works...
	There's more...

	Waking up using RTC
	How to do it...
	How it works...
	There's more...

	Controlling the autosuspend of USB devices
	How to do it...
	How it works...
	There's more...

	Configuring CPU frequency
	How to do it...
	How it works...
	There's more...

	Using events for waiting
	How to do it...
	How it works...
	There's more...

	Profiling power consumption with PowerTOP
	How to do it...
	How it works...
	There's more...

	Chapter 11: Time Points and Intervals
	Exploring the C++ Chrono library
	How to do it...
	How it works...
	There's more...

	Measuring time intervals
	How to do it...
	How it works...
	There's more...

	Working with delays
	How to do it...
	How it works...
	There's more...

	Using the monotonic clock
	How to do it...
	How it works...
	There's more...

	Using POSIX timestamps
	How to do it...
	How it works...
	There's more...

	Chapter 12: Error Handling and Fault Tolerance
	Working with error codes
	How to do it...
	How it works...
	There's more...

	Using exceptions for error handling
	How to do it...
	How it works...
	There's more...

	Using constant references when catching exceptions
	How to do it...
	How it works...
	There's more...

	Tackling static objects
	How to do it...
	How it works...

	Working with watchdogs
	How to do it...
	How it works...

	Exploring heartbeats for highly available systems
	How to do it...
	How it works...
	There's more...

	Implementing software debouncing logic
	How to do it...
	How it works...

	Chapter 13: Guidelines for Real-Time Systems
	Using real-time schedulers in Linux
	How to do it...
	How it works...

	Using statically allocated memory
	How to do it...
	How it works...
	There's more...

	Avoiding exceptions for error handling
	How to do it...
	How it works...
	There's more...

	Exploring real-time operating systems
	How to do it...
	How it works...
	There's more...

	Chapter 14: Guidelines for Safety-Critical Systems
	Using the return values of all functions
	How to do it...
	How it works...
	There's more...

	Using static code analyzers
	How to do it...
	How it works...
	There's more...

	Using preconditions and postconditions
	How to do it...
	How it works...
	There's more...

	Exploring the formal validation of code correctness
	How to do it...
	How it works...
	There's more...

	Chapter 15: Microcontroller Programming
	Setting up the development environment
	How to do it...
	How it works...
	There's more...

	Compiling and uploading a program
	How to do it...
	How it works...
	There's more...

	Debugging microcontroller code
	How to do it...
	How it works...

	Other Books You May Enjoy
	Index

