
        
            [image: Haskell Cookbook]
        
    
        

            
            
                
Haskell Cookbook

 

 

 

 

 

 

 

 

Build functional applications using Monads, Applicatives, and Functors

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Yogesh Sajanikar
 






 

 

 

 

 

 

 

 

 



BIRMINGHAM - MUMBAI



            

            
        
    
        

            
            
                


            

            
        
    
        

                            
                    Haskell Cookbook

                
            
            
                
 

 

Copyright © 2017 Packt Publishing

 

 

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 

First published: September 2017

 

Production reference: 1210917

 

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.



ISBN 978-1-78646-135-3



 

www.packtpub.com



            

            
        
    
        

                            
                    Credits

                
            
            
                







	
Author



Yogesh Sajanikar


	
Copy Editor



Karuna Narayanan





	
Reviewer

Fabian Linzberger


	
Project Coordinator

Prajakta Naik





	
Commissioning Editor

Aaron Lazar


	
Proofreader

Safis Editing





	
Acquisition Editor

Karan Sadawana


	
Indexer

Francy Puthiry





	
Content Development Editor

Siddhi Chavan


	
Graphics

Abhinash Sahu





	
Technical Editor

Supriya Thabe


	
Production Coordinator

Nilesh Mohite











            

            
        
    
        

                            
                    About the Author

                
            
            
                
Yogesh Sajanikar has received his bachelor's degree in Mechanical Engineering from Shivaji University, India, along with a gold medal and a master's degree in Production Engineering from the Indian Institute of Technology, Bombay, India.

Yogesh has an experience of more than 20 years, and he has extensively worked with Product Lifecycle Management (PLM) and Computer Aided Design (CAD) software development firms, and architected solutions for domains such as Construction and Shipping Domain.

Having hooked on to functional programming, he moved into the Finance domain and worked as an enterprise architect; he has also worked with Scala/F# and Haskell. Currently, he is working as a CTO for a startup. He has also started local Haskell meetups and has been an active participant in meetups and functional conferences.

Yogesh believes in the open source movement, and believes in giving back to the open source community.

I would like to sincerely thank my wife, Rashmi, for her constant encouragement and sacrifice; Atharva, my son, who has now decided to learn Haskell at an early age. I would like to take a moment to thank my mom, Geeta, and my late dad, Mukund, for enabling me in my life’s journey.

Last, but nonetheless, I would sincerely thank my friends and colleagues at work. In the end, all the thanks to the wonderful staff at Packt, especially Siddhi and Supriya, who worked really hard to bring this book to reality. Their perseverance and pursuance really helped me complete the book despite the delays on my side.



            

            
        
    
        

                            
                    About the Reviewer

                
            
            
                


Fabian Linzberger is a functional programming enthusiast and practitioner. He discovered Haskell in 2010 and it has been his favorite programming language ever since. You can find some of his code (some of it in Haskell) on GitHub (https://github.com/lefant/) or visit his personal homepage and check out his blog (https://e.lefant.net/).



            

            
        
    
        

                            
                    www.PacktPub.com

                
            
            
                
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.



https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.



            

            
        
    
        

                            
                    Why subscribe?

                
            
            
                

	Fully searchable across every book published by Packt

	Copy and paste, print, and bookmark content

	On demand and accessible via a web browser





            

            
        
    
        

                            
                    Customer Feedback

                
            
            
                
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help us improve, please leave us an honest review on this book's Amazon page at https://www.amazon.com/dp/1786461358.



If you'd like to join our team of regular reviewers, you can e-mail us at customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be relentless in improving our products!



            

            
        
    
        
            
                Table of Contents

            

            
                
                    	
    Preface
    	
    What this book covers
    


	
    What you need for this book
    


	
    Who this book is for
    


	
    Sections
    	
    Getting ready
    


	
    How to do it…
    


	
    How it works…
    


	
    There's more…
    


	
    See also
    






	
    Conventions
    


	
    Reader feedback
    


	
    Customer support
    	
    Downloading the example code
    


	
    Errata
    


	
    Piracy
    


	
    Questions
    










	
    Foundations of Haskell
    	
    Introduction
    


	
    Getting started with Haskell
    	
    How to do it...
    


	
    How it works…
    	
    Dissecting Hello World
    






	
    There's more…
    






	
    Working with data types
    	
    How to do it…
    


	
    How it works...
    


	
    There's more…
    






	
    Working with pure functions and user-defined data types
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    	
    Source formatting
    










	
    Working with list functions
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    	
    List creation
    


	
    Enumerated list
    


	
    Head and tail of a list
    


	
    Operations on a list
    


	
    Indexed access
    


	
    Checking whether an element is present
    


	
    Pattern matching on list
    


	
    List concatenation
    


	
    Strings are lists
    






	
    There's more…
    










	
    Getting Functional
    	
    Introduction
    


	
    Working with recursive functions
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    


	
    There's more...
    






	
    Reversing a list - Recursive worker function pattern
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    


	
    There's more...
    






	
    Creating maps and filters
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    	
    Map function
    


	
    Filter function
    






	
    There's more...
    






	
    Working with laziness and recursion
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    






	
    Working with folds
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    


	
    There's more...
    






	
    Sorting a list
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    


	
    There's more...
    






	
    Implementing merge sort
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    






	
    Implementing Eratosthenes Sieve
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    


	
    There's more...
    










	
    Defining Data
    	
    Introduction
    


	
    Defining a product type
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    






	
    Defining a sum type
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    






	
    Defining a binary tree and traversing it
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    






	
    Defining data with functions
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    






	
    Using Maybe
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    






	
    Using Either
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    






	
    Working with type classes
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    






	
    Working with Monoid
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    










	
    Working with Functors, Applicatives, and Monads
    	
    Introduction
    


	
    Working with Functors
    	
    How to do it...
    


	
    How it works...
    






	
    Binary tree as Functor
    	
    How to do it...
    


	
    How it works...
    






	
    Working with Applicatives
    	
    How to do it...
    


	
    How it works...
    






	
    Binary tree as Applicative
    	
    How to do it...
    


	
    How it works...
    






	
    Working with monad
    	
    How to do it...
    


	
    How it works...
    


	
    There's more...
    






	
    List as monad
    	
    How to do it...
    


	
    How it works...
    






	
    Working with IO monad
    	
    How to do it...
    


	
    How it works...
    






	
    Writing INI parser
    	
    How to do it...
    


	
    How it works...
    






	
    Errors and exception handling
    	
    How to do it...
    


	
    How it works...
    










	
    More about Monads
    	
    Introduction
    


	
    Writing a State Monad
    	
    How to do it...
    


	
    How it works...
    






	
    Computing a fibonacci number with State Monad
    	
    How to do it...
    


	
    How it works...
    






	
    Writing a State Monad transformer
    	
    How to do it...
    


	
    How it works...
    






	
    Working with the Reader monad transformer
    	
    How to do it...
    


	
    How it works...
    






	
    Working with the Writer monad transformer
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    






	
    Combining monad transformers
    	
    How to do it...
    


	
    How it works...
    










	
    Working with Common Containers and Strings
    	
    Introduction
    


	
    Working with sets
    	
    How to do it...
    


	
    How it works...
    






	
    Shopping cart as a set
    	
    How to do it...
    


	
    How it works...
    






	
    Working with maps
    	
    How to do it...
    


	
    How it works...
    






	
    Log analysis with map
    	
    How to do it...
    


	
    How it works...
    






	
    Working with vector
    	
    How to do it...
    


	
    How it works...
    






	
    Working with text and bytestring
    	
    How to do it...
    


	
    How it works...
    






	
    Creating and testing a priority queue
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    






	
    Working with Foldable and Traversable
    	
    How to do it...
    


	
    How it works...
    










	
    Working with Relational and NoSQL Databases
    	
    Introduction
    


	
    Working with Persistent
    	
    How to do it...
    


	
    How it works...
    






	
    Managing migrations
    	
    How to do it...
    


	
    How it works...
    






	
    Creating custom data types
    	
    How to do it...
    


	
    How it works...
    






	
    Using Esqueleto to do advanced SQL queries
    	
    How to do it...
    


	
    How it works...
    






	
    Using hedis to work with redis (key-value, list and hash)
    	
    Getting ready...
    


	
    How to do it...
    


	
    How it works...
    






	
    Using hashsets and sorted sets in redis to create a Trie
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    










	
    Working with HTML and Templates
    	
    Introduction
    


	
    Using blaze to create an HTML template
    	
    How to do it...
    


	
    How it works...
    






	
    Using blaze to reverse engineer an HTML page
    	
    How to do it...
    


	
    How it works...
    






	
    Use blaze-html with Bootstrap to create HTML template
    	
    How to do it... 
    


	
    How it works...
    






	
    Using heist as a template engine
    	
    How to do it...
    


	
    How it works...
    






	
    Working with splice in Heist
    	
    How to do it...
    


	
    How it works...
    










	
    Working with Snap Framework
    	
    Introduction
    


	
    Getting started with Snap
    	
    How to do it...
    


	
    How it works...
    






	
    Routing in Snap
    	
    How to do it...
    


	
    How it works...
    






	
    Serving static contents in Snap
    	
    How to do it...
    


	
    How it works...
    






	
    Form handling in Snap
    	
    How to do it...
    


	
    How it works...
    






	
    Creating and composing snaplets
    	
    How to do it...
    


	
    How it works...
    






	
    Session handling in Snap
    	
    How to do it...
    


	
    How it works...
    






	
    Authentication in Snap
    	
    How to do it...
    


	
    How it works...
    






	
    File upload with Snap
    	
    How to do it...
    


	
    How it works...
    










	
    Working with Advanced Haskell
    	
    Introduction
    


	
    Working with existentially quantified type
    	
    How to do it...
    


	
    How it works...
    






	
    Working with Rank-N type
    	
    How to do it...
    


	
    How it works...
    






	
    Working with type family
    	
    How to do it...
    


	
    How it works...
    






	
    Working with GADTs
    	
    How to do it...
    


	
    How it works...
    










	
    Working with Lens and Prism
    	
    Introduction
    


	
    Creating lenses
    	
    How to do it...
    


	
    How it works...
    






	
    Working with lenses
    	
    How to do it...
    


	
    How it works...
    






	
    Working with Traversal
    	
    How to do it...
    


	
    How it works...
    






	
    Working with Iso
    	
    How to do it...
    


	
    How it works...
    






	
    Working with Prism
    	
    How to do it...
    


	
    How it works...
    






	
    Working with predefined lenses
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    










	
    Concurrent and Distributed Programming in Haskell
    	
    Introduction
    


	
    Working with IORef
    	
    How to do it...
    


	
    How it works...
    






	
    Working with MVar
    	
    How to do it...
    


	
    How it works...
    






	
    Working with STM
    	
    How it works...
    


	
    How it works...
    






	
    Working with strategies
    	
    How to do it...
    


	
    How it works...
    






	
    Working with monad-par
    	
    How to do it...
    


	
    How it works...
    






	
    Working with Cloud Haskell
    	
    Getting ready
    


	
    How to do it...
    


	
    How it works...
    






	
    Using Cloud Haskell to start master and slave nodes
    	
    How to do it...
    


	
    How it works...
    






	
    Using closure to communicate between nodes
    	
    How to do it...
    


	
    How it works...
    












                
            

            
        
    
        

                            
                    Preface

                
            
            
                
Functional programming has been gaining lot of momentum recently. We are seeing different paradigms of functional programming creeping into imperative languages such as C++, C#, and Python. There are languages such as Scala that try to offer best of both worlds, that is, object-oriented programming and functional programming.

As Haskell is a pure and non-strict language, and strictly separates pureness from effect-full computations, it really stands out among these languages. Its strong theoretical basis, such as an elaborate type system, combined with concise and expressive syntax, gives Haskell a unique flavor. It really helps in programming declaratively by specifying what rather than how! In this book, we will focus on practical aspects of the language.

Haskell Cookbook is meant for programmers who have a programming background. Most of the readers should be acquainted with an imperative language, such as Java/Python or C++.

This cookbook can be logically divided into two parts, the first five chapters serve as building blocks for programming in Haskell. These chapters cover syntactical and semantic details of the language by describing how to use and define functions and data types. In these chapters, we also cover type classes and the Functor, Applicative, and Monads concepts.

The last seven chapters will introduce you to the practical aspects of usage of Haskell and its rich set of libraries. These chapters will take you through containers in Haskell and backend development (developing with database) to frontend development (web framework). The last three chapters focus on advanced concepts, such as doing parallel and distributed programming in Haskell.

Each recipe is self-sufficient, and, wherever possible, the recipe will try to build a concept (such as Monad) from scratch, before moving on to a recipe that will use the concept from the existing library. This is especially true in the first five chapters.

Use this book to dive into Haskell and Functional Programming in general. Start building small toy programs by using recipes, and move on to bigger programs to create your own web application or a distributed system. Even if you are not planning to use Haskell in your day-to-day work, I can assure you that it will change the way you look at programming, even when programming with other languages.

This book is not possible without encouragements from my family and the constant pursuance and perseverance of the staff at Packt. These people believed in me even when I was delayed or transgressed. 



            

            
        
    
        

                            
                    What this book covers

                
            
            
                
Chapter 1, Foundations of Haskell, introduces you to Haskell and helps you setup the environment for Haskell using the stack as a tool. In this chapter, you will write your first Haskell program, and then analyze its parts.

Chapter 2, Getting Functional, warms you up to Haskell by introducing recursion, maps, filters, and folds. It ends up by implementing a prime sieve.

Chapter 3, Defining Data, explores the rich data types that Haskell provides. You will be exposed to product and sum types. This chapter further introduces standard type classes in Haskell.

Chapter 4, Working with Functors, Applicatives, and Monads, dives deeper into Haskell by exploring the rich type classes and their instances. The recipes in this chapter allow the reader to build their own monad, and introduces IO monad.

Chapter 5, More about Monads, builds on the previous chapter by further creating and using monad transformers, and finally building a parser with Attoparsec.

Chapter 6, Working with Common Containers and Strings, looks at common containers and introduces Foldable and Traversals. In this chapter, you will also cook your own container and test it using Quickcheck. This chapter also looks at an alternate representation of String, that is, Text and ByteString.

Chapter 7, Working with Relational and NoSQL Databases, uses the Haskell based model declaration template and queries using persistent library. We will also use redis to work with NoSQL databases.

Chapter 8, Working with HTML and Templates, works with the Heist template framework along with the Blaze HTML library to create composable HTML documents.

Chapter 9, Working with Snap Framework, explores various web application development aspects, such as routing, templating, authentication, and sessions using the Snap Framework.

Chapter 10, Working with Advanced Haskell, introduces you to advanced concepts such as Existentially Quantified Type, Rank-N-Type, type family, and GADT.

Chapter 11, Working with Lens and Prism, explores the lens library to look at the concept of Lens and Prism. This chapter explains the concept of lens by building one itself. The rest of the chapter explains rich features of the Lens library.

Chapter 12, Concurrent and Distributed Programming in Haskell, introduces the building blocks of concurrent programming, such as IORef, MVar, and STM. The later part introduces Cloud Haskell to create distributed applications.



            

            
        
    
        

                            
                    What you need for this book

                
            
            
                

	You will need a fairly recent operating system, such as Windows, Linux, or Mac OS.

	You should set up the stack tool from https://www.haskellstack.org/. Use the Stack setup to download GHC (Haskell Compiler) on your machine. Stack is an extremely useful tool to work with different versions of GHC and packages.

	You will need a good editor. Vi and Emacs have very good support for Haskell. Eclipse and Sublime also have support for Haskell.





            

            
        
    
        

                            
                    Who this book is for

                
            
            
                
This book is targeted at readers who wish to learn the Haskell language. If you are a beginner, Haskell Cookbook will get you started. If you are experienced, it will expand your knowledge base. A basic knowledge of programming will be helpful.



            

            
        
    
        

                            
                    Sections

                
            
            
                
In this book, you will find several headings that appear frequently (Getting ready, How to do it, How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
This section tells you what to expect in the recipe, and describes how to set up any software or any preliminary settings required for the recipe.



            

            
        
    
        

                            
                    How to do it…

                
            
            
                
This section contains the steps required to follow the recipe.



            

            
        
    
        

                            
                    How it works…

                
            
            
                
This section usually consists of a detailed explanation of what happened in the previous section.



            

            
        
    
        

                            
                    There's more…

                
            
            
                
This section consists of additional information about the recipe in order to make the reader more knowledgeable about the recipe.



            

            
        
    
        

                            
                    See also

                
            
            
                
This section provides helpful links to other useful information for the recipe.



            

            
        
    
        

                            
                    Conventions

                
            
            
                
In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Conditionally import Prelude, hiding the reverse function."

A block of code is set as follows:

    reverse :: [a] -> [a]
    reverse xs = reverse' xs []
    where
      reverse' :: [a] -> [a] -> [a]
      reverse' [] rs = rs
      reverse' (x:xs) rs = reverse' xs (x:rs)

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

    main-is: Main.hs
    default-language: Haskell2010
    build-depends: base >= 4.7 && < 5
      , mtl
      , containers

Any command-line input or output is written as follows:

stack build
stack exec -- state-monad

New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and tricks appear like this.



            

            
        
    
        

                            
                    Reader feedback

                
            
            
                
Feedback from our readers is always welcome. Let us know what you think about this book--what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.



            

            
        
    
        

                            
                    Customer support

                
            
            
                
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.



            

            
        
    
        

                            
                    Downloading the example code

                
            
            
                
You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:


	Log in or register to our website using your e-mail address and password.

	Hover the mouse pointer on the SUPPORT tab at the top.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box.

	Select the book for which you're looking to download the code files.

	Choose from the drop-down menu where you purchased this book from.

	Click on Code Download.



Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:


	WinRAR / 7-Zip for Windows

	Zipeg / iZip / UnRarX for Mac

	7-Zip / PeaZip for Linux



The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/HaskellCookbook. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!



            

            
        
    
        

                            
                    Errata

                
            
            
                
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books--maybe a mistake in the text or the code--we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.



            

            
        
    
        

                            
                    Piracy

                
            
            
                
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.



            

            
        
    
        

                            
                    Questions

                
            
            
                
If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and we will do our best to address the problem.



            

            
        
    
        

                            
                    Foundations of Haskell

                
            
            
                
In this chapter, we will cover the following recipes:


	Getting started with Haskell

	Working with data types

	Working with pure functions and user-defined data types

	Working with list functions





            

            
        
    
        

                            
                    Introduction

                
            
            
                
We all love programs! On one side, there are surgical programming languages such as C and C++, which can solve the problem with clinical efficiency. This can be good and bad at the same time. A very experienced programmer can write a very efficient code; at the same time, it is also possible to write code that is unintelligible and very difficult to understand. On the other side, there are programs that are elegant, composable, and not only easier to understand, but also easier to reason with, such as Lisp, ML, and Haskell.

It is the second kind of programs that we will be looking at in this book. Not that efficiency is not important to us, nor does it mean that we cannot write elegant programs in C/C++. However, we will concentrate more on expressiveness, modularity, and composability of the programs. We will be interested more on the what of the program and not really on the how of the program.

Understanding the difference between what and how is very critical to understand the expressiveness, composability, and reasoning power of functional languages. Working with functional languages involves working with expressions and evaluations of expressions. The programmer builds functions consisting of expressions and composes them together to solve a problem at hand. Essentially, a functional programmer is working towards construction of a function to solve the problem that they are working on.

We will look at a program written in Haskell. The program adds two integers and returns the result of addition as follows:

    add :: Int -> Int -> Int
    add a b = a + b

Here, the add function takes two arguments, which are applied to the expression on the right-hand side. Hence, the expression add a b is equivalent to a + b. Unlike programming languages such as C/C++, add a b is not an instruction, but expressions and application of the values a and b to the expression on the right-hand side and the value of the expression. In short, one can say that add a b is bound to value of the expression a + b. When we call add 10 20, the expression is applied to the values 10 and 20, respectively. In this way, the add function is equivalent to a value that evaluates to an expression to which two values can be applied.

The functional program is free to evaluate the expression in multiple ways. One possible execution in a functional context is shown in the following diagram. You can see that add a b is an expression with two variables a and b as follows:



When value 10 is bound to variable b, the expression substitutes the value of b in the expression on the right-hand side:



Now, the whole expression is reduced to an expression in a:



When value 20 is bound to variable a, the expression again substitutes the value of a in the expression on the right-hand side:



Finally, the expression is reduced to a simple expression:



Note that in the expression add a b, a and b can both be expressions. We can either evaluate the expressions before substitution, or we can substitute the expressions first and then reduce them. For example, an expression add (add 10 20) 30 can be substituted in the expression a + b as follows:

    add (add 10 20) 30 = (10 + 20) + 30

Alternatively, it can be substituted by evaluating add 10 20 first and then substituting in the expression as follows:

    add (add 10 20) 30 = add (10 + 20) 30
                       = add 30 30
                       = 30 + 30

The first approach is called call by name, and the second approach is called call by value. Whichever approach we take, the value of the expression remains the same. In practice, languages such as Haskell take an intelligent approach, which is more geared towards efficiency. In Haskell, expressions are typically reduced to weak-headed normal form in which not the whole expression is evaluated, but rather a selective reduction is carried out and then is substituted in the expression.



            

            
        
    
        

                            
                    Getting started with Haskell

                
            
            
                
In this recipe, we will work with Glasgow Haskell Compiler (GHC) and its interpreter GHCi. Then, we will write our first Haskell program and run it in the interpreter.

We will use GHC throughout the book. GHC (https://www.haskell.org/ghc/) is the most widely used Haskell compiler. GHC supports Haskell 2010 language specifications (https://wiki.haskell.org/Definition). The current book is based on Haskell 2010 specifications. GHC supports an extensive range of language extensions.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                
We will install Stack, a modern tool to maintain different versions of GHC and to work with different packages. Perform the following steps:


	Install Stack. Visit https://docs.haskellstack.org/en/stable/README/ and follow the instructions for your operating system.

	Check that Stack works for your system by running the command stack --version at the command prompt.





Check the latest GHC version by visiting https://www.haskell.org/ghc/. Set up GHC on your box by providing the GHC version number:





	
If you have already set up GHC on your box, then you will see the following output:



	Pick up your editor. You can set up your favorite editor to edit Haskell code. Preferable editors are Emacs, Vi, and Sublime. Once you have picked up your favorite editor, ensure that the executables for the editor remain in your path or note down the full path to the executable.



Let's create a new project, hello. Create the new project hello by running the following command in the command prompt in an empty directory:




Stack will select the latest package resolver. Stack will create a folder with the project name.


	
Change to project directory (hello) and run stack setup. When run from the new project directory, Stack automatically downloads the corresponding GHC and sets it up.



	Compile and build the project:






	You can now run the project using the following command:






	You should see the reply someFunc printed on the console. It means that the program compilation and execution was successful.




	Inspect the hello project by opening an explorer (or file finder) and exploring the hello directory:




	The project contains two main directories, app and src. The library code goes into the src folder, whereas the main executable producing code goes into the app folder.

	We are interested in the app/Main.hs file.





	Now, we will set an editor. You can set the editor by defining environment variable EDITOR to point to the full path of the editor's executable.

	Run the GHC interpreter by opening the command prompt and traversing to the hello project directory. Then, execute the command stack ghci. You will see the following output:







Set an editor if you haven't done so already. We are using Vi editor:

      *Main Lib> :set editor gvim


	Open the Main.hs file in the editor:

*Main Lib> :edit app/Main.hs

This will open the app/Main.hs file in the window:








	Enter the following source in the editor:



      module Main where

      -- Single line comment!
      main :: IO ()
      main = putStrLn "Hello World!"


	Save the source file and exit. You will see that GHCi has successfully loaded the saved file:



      [2 of 2] Compiling Main            
      ( d:\projects\hello\app\Main.hs, interpreted )
      Ok, modules loaded: Lib, Main.
      *Main>

You can also load the file by running :load app/Main.hs in the command prompt.


	Now, you can run the main function that we have defined in the source file, and you will see the Hello World message:



        *Main> main
        Hello World!

Exit the GHCi by running :quit in the prompt.


	You can now rebuild and run the program by running the following commands:



      stack build
      stack exec -- hello-exe

You will again see the output Hello World as shown in the following screenshot:






            

            
        
    
        

                            
                    How it works…

                
            
            
                
This recipe demonstrated the usage of Stack to create a new project, build it, set up the corresponding GHC version, build the project, and run it. The recipe also demonstrated the use of the Haskell command prompt, aka GHCi, to load and edit the file. GHCi also allows us to run the program in the command prompt.

The recipe also shows the familiar Hello World! program and how to write it. The program can be interpreted in the following way.



            

            
        
    
        

                            
                    Dissecting Hello World

                
            
            
                
We will now look at different parts of the Main.hs program that we just created to understand the structure of a typical Haskell program. For convenience, the screenshot of the program is attached here:



The first line means that we are defining a module called Main. The source that follows where is contained in this module. In the absence of any specifications, all the functions defined in the module are exported, that is, they will be available to be used by  importing the Main module.

The line number 3 (in the screenshot) that starts with -- is a comment. -- is used to represent a single-line comment. It can appear anywhere in the source code and comments on everything until the end of the line.

The next line is this:

    main :: IO ()

This is a declaration of a function. :: is a keyword in Haskell, and you can read :: as has type. IO is a higher order data type as it takes a parameter (IO is a special data type called IO monad; we will see more of it at the later). () is an empty tuple and is a parameter to IO. An empty tuple in Haskell is equivalent to Unit Type. One can say that it is equivalent to void in imperative languages.

Hence, main :: IO () should be interpreted as follows:

    main has a type IO ()

The next line actually defines the function:

    main = putStrLn "Hello World"

It simply means that main is a function whose value is equivalent to an expression on the right-hand side, putStrLn "Hello World".

The putStrLn is a function defined in Prelude, and you can look up the type of the function by entering the following command in the prompt:

Prelude> :type putStrLn
putStrLn :: String -> IO ()

Here, putStrLn has a type String -> IO (). It means that putStrLn is a function that, when applied and when the argument is of String type, will have the resultant type IO (). Note how it matches with our type declaration of the main function.

The function declaration in the source code in Haskell is not compulsory, and the Haskell compiler can figure out the type of the function all by itself by looking at the definition of the function. You can try this by again editing the source file and removing declaration.

To edit the same file again, you can just issue the :edit command without any parameter. GHCi will open the editor with the previously opened file. To reload the file again, you can issue the :reload command and GHCi will load the file.

Now, you can verify the type of main function by issuing :t main (:t is equivalent to :type). Verify that the type of main is IO ().



            

            
        
    
        

                            
                    There's more…

                
            
            
                
If you visit the Stack website at https://www.stackage.org/, you will notice that Stack publishes nightly packages and Long Term Support (LTS) packages. While creating a new project, Stack downloads the latest LTS package list. It is also possible to provide the name of the LTS package explicitly by providing stack new –resolver lts-9.2.

In the project directory, you will notice two files:


	<project>.yaml

	<project>.cabal



The YAML file is created by Stack to specify various things, including LTS version, external packages, and so on. The .cabal file is the main project file for the Haskell package. The cabal is the tool that Stack uses internally to build, package, and so on. However, there are several advantages of using Stack as Stack also supports pre-built packages and manages cabal well. Furthermore, Stack also supports the Docker environment.



            

            
        
    
        

                            
                    Working with data types

                
            
            
                
In this recipe, we will work with basic data types in Haskell. We will also define our own data types.



            

            
        
    
        

                            
                    How to do it…

                
            
            
                

	Create a new project data-types using Stack new data types. Change into the directory data-types and build the new project using stack build.



In the command prompt, run stack ghci. You will see the prompt. Enter this =:type (5 :: Int) =: command:

      *Main Lib> :type (5 :: Int)
        (5 :: Int) :: Int

:type is a GHCi command to show the type of the expression. In this case, the expression is 5. It means that the expression (5 :: Int) is Int. Now, enter this :type 5 command:

      *Main Lib> :type 5
        5 :: Num t => t


	GHCi will interpret 5 as 5 :: Num t => t, which means that Haskell identified 5 as some numerical type t. Num t => t shows that the type is t and that it has an extra qualification, Num. Num t denotes that t is an instance of a type class Num. We will see type classes later. The Num class implements functions required for numerical calculation. Note that the result of :type 5 is different from :type (5::Int).

	Now, enter :type (5 :: Double). You will see (5 :: Double) :: Double. Do the same thing with 5::Float:



      *Main Lib> :type (5 :: Double)
      (5 :: Double) :: Double

Note the difference between 5, 5::Int, 5::Float, and 5::Double. Without a qualification type (such as :: Int), Haskell interprets the type as a generic type Num t => t, that is, 5 is some type t, which is a Num t or numerical type.

Now enter following boolean types at the prompt:

      *Main Lib> :type True
      True :: Bool
      *Main Lib> :type False
      False :: Bool

True and False are valid boolean values, and their type is Bool. In fact, True and False are the only valid Bool values in Haskell. If you try 1 :: Bool, you will see an error:

      *Main Lib> 1 :: Bool

      <interactive>:9:1: error:
      * No instance for (Num Bool) arising from the literal 
        ‘1’
      * In the expression: 1 :: Bool
        In an equation for ‘it’: it = 1 :: Bool

Haskell will complain that 1 is a numerical type and Bool is not a numerical type, which would somehow represent it (value 1).


	Now, type :type 'C' in the prompt. GHCi will report its type to be 'C' :: Char. Char is another data type and represents a Unicode character. A character is entered within single quotes.




	Get more information about each type. To do this, you can enter :info <type> in the prompt:



      *Main Lib> :info Bool
      data Bool = False | True
      -- Defined in ‘ghc-prim-0.5.0.0:GHC.Types’
      instance Bounded Bool -- Defined in ‘GHC.Enum’
      instance Enum Bool -- Defined in ‘GHC.Enum’
      instance Eq Bool -- Defined in ‘ghc-prim-0.5.0.0:GHC.Classes’
      instance Ord Bool -- Defined in ‘ghc-prim-0.5.0.0:GHC.Classes’
      instance Read Bool -- Defined in ‘GHC.Read’
      instance Show Bool -- Defined in ‘GHC.Show’

This will show more information about the type. For Bool, Haskell shows that it has two values False | True and that it is defined in ghc-prim-0.5.0.0:GHC.Types. Here, ghc-prim is the package name, which is followed by its version 0.5.0.0 and then Haskell tells that GHC.Types is the module in which it is defined.



            

            
        
    
        

                            
                    How it works...

                
            
            
                
We have seen four basic types Int, Double, Char, and Float. More information about these types is given in the following table:




	Type
	Description
	Remarks



	Int
	Fixed precision integer type
	
Range [-9223372036854775808 to

9223372036854775807] for 64-bit Int.





	Float
	Single precision (32-bit) floating point number
	



	Double
	Double precision (64-bit) floating point number
	



	Char
	Character
	



	Bool
	Boolean values
	True or False





Note that all types start with a capital letter.

In previous sections of this recipe, when we ran the command :info Bool, at GHCi prompt, Haskell also showed various instances of information. It shows more about the behavior of the type. For example, instance Eq Bool means that the type Bool is an instance of some type class Eq. In Haskell, type class should be read as a type that is associated with some behavior (or function). Here, the Eq type class is used in Haskell for showing equality.



            

            
        
    
        

                            
                    There's more…

                
            
            
                
You can get more information about type classes by exploring :info Eq. GHCi will tell you which types have instances of the Eq type class. GHCi will also tell you which are the methods defined for Eq.



            

            
        
    
        

                            
                    Working with pure functions and user-defined data types

                
            
            
                
In this recipe, we will work with pure functions and define simple user-defined data types. We will represent a quadratic equation and its solution using user-defined data types. We will then define pure functions to find a solution to the quadratic equation.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                

	Create a new project quadratic using the following command:



      stack new quadratic

Change into the project folder.


	Delete src/Lib.hs and create a new file src/Quadratic.hs to represent the quadratic equation and its solution.




	Open the quadratic.cabal file, and in the section library, replace Lib by Quadratic in the tag exposed-modules:



      library
        hs-source-dirs:      src
        exposed-modules:     Quadratic
        build-depends:       base >= 4.7 && < 5
        default-language:    Haskell2010



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Open Quadratic.hs and add a module definition to it:



       module Quadratic where


	Import the standard module Data.Complex to help us represent a complex solution to the quadratic equation.

	Define the data type to represent the quadratic equation:



      data Quadratic = Quadratic { a :: Double, b :: Double, 
        c :: Double } 
        deriving Show

This represents the quadratic equation of the form a∗x2+b∗x+c=0a∗x2+b∗x+c=0.  a, b, and c represent the corresponding constants in the equation.


	Define the data type for representing the root:



      type RootT = Complex Double

This represents that the complex data type parameterized by Double. RootT is synonymous to type Complex Double (similar to typedef in C/C++).


	A quadratic equation has two roots, and hence we can represent both the roots as follows:



      import Data.Complex
        type RootT = Complex Double
        data Roots = Roots RootT RootT deriving Show


	Implement the solution. We will take a top-down approach to create a solution. We will define a top-level function where we will implement a function assuming lower level details:



      roots :: Quadratic -> Roots

This shows that the roots function takes one argument of type Quadratic, and returns Roots.


	Implement three cases mentioned next:



      -- | Calculates roots of a polynomial and return set of roots
      roots :: Quadratic -> Roots

      -- Trivial, all constants are zero, error roots are not defined
      roots (Quadratic 0 0 _) = error "Not a quadratic polynomial"

      -- Is a polynomial of degree 1, x = -c / b
      roots (Quadratic 0.0 b c) = let root = ( (-c) / b :+ 0)
                            in Roots root root

      -- b^2 - 4ac = 0
      roots (Quadratic a b c) =
      let discriminant = b * b - 4 * a * c
      in rootsInternal (Quadratic a b c) discriminant

We have referred to the rootsInternal function, which should handle case A, B, and C for the case III.


	Implement the rootsInternal function to find all roots of the quadratic equation:



      rootsInternal :: Quadratic -> Double -> Roots
      -- Discriminant is zero, roots are real
      rootsInternal q d | d == 0 = let r = (-(b q) / 2.0 / (a q))
                                 root = r :+ 0
                             in Roots root root

      -- Discriminant is negative, roots are complex
      rootsInternal q d | d < 0 = Roots (realpart :+ complexpart)    
     (realpart :+ (-complexpart))
      where plusd = -d
        twoa = 2.0 * (a q)
        complexpart = (sqrt plusd) / twoa
        realpart = - (b q) / twoa

      -- discriminant is positive, all roots are real
      rootsInternal q d = Roots (root1 :+ 0) (root2 :+ 0)
      where plusd = -d
        twoa = 2.0 * (a q)
        dpart = (sqrt plusd) / twoa
        prefix = - (b q) / twoa
        root1 = prefix + dpart
        root2 = prefix - dpart

Open src/Main.hs. We will use the Quadratic module here to solve a couple of quadratic equations. Add the following lines of code in Main.hs:

      module Main where

      import Quadratic
      import Data.Complex

      main :: IO ()
      main = do
        putStrLn $ show $ roots (Quadratic 0 1 2)
        putStrLn $ show $ roots (Quadratic 1 3 4)
        putStrLn $ show $ roots (Quadratic 1 3 4)
        putStrLn $ show $ roots (Quadratic 1 4 4)
        putStrLn $ show $ roots (Quadratic 1 0 4)


	Execute the application by building the project using stack build and then executing with stack exec – quadratic-exe in the command prompt. You will see the following output:



      Roots ((-2.0) :+ 0.0) ((-2.0) :+ 0.0)
      Roots ((-1.5) :+ 1.3228756555322954) ((-1.5) :+  
      (-1.3228756555322954))
      Roots ((-1.5) :+ 1.3228756555322954) ((-1.5) :+
      (-1.3228756555322954))
      Roots ((-2.0) :+ 0.0) ((-2.0) :+ 0.0)
      Roots ((-0.0) :+ 2.0) ((-0.0) :+ (-2.0))



            

            
        
    
        

                            
                    How it works...

                
            
            
                
A quadratic equation is represented by ax^2 + bx + c = 0. There are three possible cases that we have to handle:




	Case
	Condition
	Root 1
	Root 2
	Remarks



	I
	a = 0 and b = 0
	ERROR
	ERROR
	



	II
	a = 0
	x = -c/b
	Not applicable
	Linear equation



	III
	a and b are non-zero, delta = b2 - 4ac
	
	
	



	III-A
	delta = 0
	-b/(2a)
	-b/(2a)
	Perfect square



	III-B
	delta > 0
	(-b+sqrt(delta))/(2a)
	(-b-sqrt(delta))/(2a)
	Real roots



	III-C
	delta < 0
	(-b+sqrt(delta))/(2a)
	(-b-sqrt(delta))/(2a)
	Complex roots





 

We will define a module at the top of the file with the Quadratic module where the name of the module matches file name, and it starts with a capital letter. The Quadratic module is followed by the definition of module (data types and functions therein). This exports all data types and functions to be used by importing the module.

We will import the standard Data.Complex module. The modules can be nested. Many useful and important modules are defined in the base package. Every module automatically includes a predefined module called Prelude. The Prelude exports many standard modules and useful functions. For more information on base modules, refer to https://hackage.haskell.org/package/base.

The user-defined data is defined by the keyword data followed by the name of the data type. The data type name always start with a capital letter (for example, data Quadratic).

Here, we will define Quadratic as follows:

    data Quadratic = Quadratic { a :: Double, b :: 
      Double, c :: Double  } 
      deriving Show

There are several things to notice here:


	The name on the left-hand side, Quadratic, is called type constructor. It can take one or more data types. In this case, we have none.

	The name Quadratic on the right-hand is called data constructor. It is used to create the value of the type defined on the left-hand side.

	{a :: Double, b :: Double, c :: Double } is called the record syntax for defining fields. a, b and c are fields, each of type Double.

	Each field is a function in itself that takes data type as the first argument and returns the value of the field. In the preceding case, a will have the function type Quadratic -> Double, which means a will take the value of type Quadratic as the first argument and return the field a of type Double.

	The definition of data type is followed by deriving Show. Show is a standard type class in Haskell and is used to convert the value to String. In this case, Haskell can automatically generate the definition of Show. However, it is also possible to write our own definition. Usually, the definition generated by Haskell is sufficient.



We will define root as type Complex Double. The data type Complex is defined in the module Data.Complex, and its type constructor is parameterized by a type parameter a. In fact, the Complex type is defined as follows:

    data Complex a = a :+ a

There are several things to notice here. First, the type constructor of Complex takes an argument a. This is called type argument, as the Complex type can be constructed with any type a.

The second thing to note is how the data constructor is defined. The data constructor's name is not alphanumeric, and it is allowed.

Note that the data constructor takes two parameters. In such a case, data constructor can be used with infix notation. That is, you can use the constructor in between two arguments.

The third thing to note is that the type parameter used in the type constructor can be used as a type while defining the data constructor.

Since our quadratic equation is defined in terms of Double, the complex root will always have a type Complex Double. Hence, we will define a type synonym using the following command:

    type RootT = Complex Double

We will define two roots of the equation using the following command:

data Roots = Roots RootT RootT deriving Show

Here, we have not used the record syntax, but just decided to create two anonymous fields of type RootT with data constructor Roots.

The roots function is defined as follows:

    roots :: Quadratic -> Roots

It can be interpreted as the roots function has a type Quadratic -> Roots, which is a function that takes a value of type Quadratic and returns a value of type Roots:


	Pattern matching: We can write values by exploding data constructor in the function arguments. Haskell matches these values and then calls the definition on the right-hand side. In Haskell, we can separate the function definition using such matching. Here, we will use pattern matching to separate cases I, II, and III, defined in the preceding section. The case I can be matched with value (Quadratic 0 0 _) where the first two zeros match fields a and b, respectively. The last field is specified by  _, which means that we do not care about this value, and it should not be evaluated.

	Raising an error: For the first case, we flag an error by using function error. The function error takes a string and has a signature (error :: String -> a) which means that it takes a String and returns value of any type a. Here, it raises an exception.

	let .. in clause: In the case II as mentioned in the preceding section, we use let ... in clause. 



        let root = ( (-c) / b :+ 0)
        in Roots root root

Here, the let clause is used to bind identifiers (which always start with a lowercase letter; so do function names). The let clause is followed by the in clause. The in clause has the expression that is the value of the let…in clause. The in expression can use identifiers defined in let. Furthermore, let can bind multiple identifiers and can define functions as well.

We defined rootsInternal as a function to actually calculate the roots of a quadratic equation. The rootsInternal function uses pattern guards. The pattern guards are explained as follows:


	Pattern guards: The pattern guards are conditions that are defined after a vertical bar | after the function arguments. The pattern guard defines a condition. If the condition is satisfied, then the expression on the right-hand side is evaluated:



        rootsInternal q d | d == 0 = ...

In the preceding definition, d == 0 defines the pattern guard. If this condition is satisfied, then the function definition is bound to the expression on the right-hand side.


	where clause: The rootsInternal function also uses the where clause. This is another form of the let…in clause:



        let <bindings>
        in <expression>

It translates to the following lines of code:

        <expression>
        where 
        <bindings>

In Main.hs, we will import the Quadratic module and use the functions and data type defined in it. We will use the do syntax, which is used in conjunction with the IO type, for printing to the console, reading from the console, and, in general, for interfacing with the outside world.

The putStrLn function prints the string to the console. The function converts a value to a string. This is enabled because of auto-definition due to deriving Show.

We will use a data constructor to create values of Quadratic. We can simply specify all the fields in the order such as, Quadratic 1 3 4, where a = 1, b = 3, and c = 4. We can also specify the value of Quadratic using record syntax, such as Quadratic { a = 10, b = 30, c = 5 }.

Things are normally put in brackets, as shown here:

   putStrLn (show (roots (Quadratic 0 1 2)))

However, in this case, we will use a special function $, which simplifies the application of brackets and allows us to apply arguments to the function from right to left as shown:

    putStrLn $ show $ roots (Quadratic 0 1 2)



            

            
        
    
        

                            
                    Source formatting

                
            
            
                
You must have also noticed how the Haskell source code is formatted. The blocks are indented by white spaces. There is no hard and fast rule for indenting; however, it must be noted that there has to be a significant white space indent for a source code block, such as the let clause or the where clause. A simple guideline is that any block should be indented in such a way that it is left aligned and increases the readability of the code. A good Haskell source is easy to read.



            

            
        
    
        

                            
                    Working with list functions

                
            
            
                
In this recipe, we will work with the list data type in Haskell. The list function is one of the most widely used data types in Haskell.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Use Stack to create a new project, list functions, and change into the project directory. Build the project with stack build.

Remove the contents of src/Lib.hs and add the module heading:

    module Lib where



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create an empty list:



        emptyList = []


	Prepend an element to the list:



        prepend = 10 : []


	Create a list of five integers:



        list5 = 1 : 2 : 3 : 4 : 5 : []


	Create a list of integers from 1 to 10:



        list10 = [1..10]


	Create an infinite list:



        infiniteList = [1..]


	This is the head of a list:



        getHead = head [1..10]


	This is the tail of a list:



        getTail = tail [1..10]


	This is all but the last element:



        allbutlast = init [1..10]


	Take 10 elements:



        take10 = take 10 [1..]


	Drop 10 elements:



        drop10 = drop 10 [1..20]


	Get nth element:



        get1331th = [1..] !! 1331


	Check if a value is the element of the list.



        is10element = elem 10 [1..10]


	Do pattern matching on the list. Here we check whether the list is empty or not:



        isEmpty [] = True
        isEmpty _ = False


	Do more pattern matching. Here we do pattern matching on elements present in the list. 



        isSize2 (x:y:[]) = True
        isSize2 _ = False


	Concatenate two lists:



         cat2 = [1..10] ++ [11..20]


	String is actually a list. Check this by creating a list of characters:



        a2z = ['a'..'z']


	Since string is a list, we can use all list functions on string. Here we get the first character of a string:



        strHead = head "abc"


	Zip two lists:



        zip2 = zip ['a'..'z'] [1.. ]


	Open app/Main.hs and use the preceding functions from the list, and also print values:



        module Main where

        import Lib

        main :: IO ()
        main = do
          putStrLn $ show $ (emptyList :: [Int])
          putStrLn $ show $ prepend
          putStrLn $ show $ list5
          putStrLn $ show $ list10
          putStrLn $ show $ getHead
          putStrLn $ show $ getTail
          putStrLn $ show $ allbutlast
          putStrLn $ show $ take10
          putStrLn $ show $ drop10
          putStrLn $ show $ get1331th
          putStrLn $ show $ is10element
          putStrLn $ show $ isEmpty [10]
          putStrLn $ show $ isSize2 []
          putStrLn $ show $ cat2
          putStrLn $ show $ a2z
          putStrLn $ show $ strHead


	Build the project using stack build and run it using stack run list-functions-exe. Note that Main does not use the infiniteList snippets and does not print them.





            

            
        
    
        

                            
                    How it works...

                
            
            
                
List is defined as follows:

    data [] a = []       -- Empty list or
       | a : [a]  -- An item prepended to a list, is also a list

There are two data constructors. The first data [] constructor shows an empty list, and a list with no elements is a valid list. The second data constructor tells us that an item prepended to a list is also a list.

Also, notice that the type constructor is parameterized by a type parameter a. It means that the list can be constructed with any type a.



            

            
        
    
        

                            
                    List creation

                
            
            
                
The first three snippets in the previous section are created using list's data constructors. The third example shows recursive application of the second constructor.



            

            
        
    
        

                            
                    Enumerated list

                
            
            
                
The fourth and fifth snippets show how to create a list from enumerated values. Enumerated values are those that implement type class Enum and are implemented by ordered types such as Int, Double, Float, Char, and so on. The enumerated type allows us to specify a range using '..' (for example, 1..10, which means numerals 1 to 10,  including 10). It is also possible to drop the to value. For example, 1.. will create an infinite list. It is also possible to specify an increment by specifying consecutive values. For example, 1,3,..10 will expand to 1,3,5,7,9 (note that the last value 10 is not part of it as it does not belong to the sequence).



            

            
        
    
        

                            
                    Head and tail of a list

                
            
            
                
From the definition of a list, any element, when prepended to a list, is also a list. For example, 1:[2,3] is also a list. Here, 1 is called the head of the list, and 2 is called the tail of the list.

The functions head and tail return head and tail, respectively, of the list. The snippets 6 and 7 show an example of head and tail. Head has a signature - head :: [a] -> a and tail has a signature :: [a] -> [a] .



            

            
        
    
        

                            
                    Operations on a list

                
            
            
                
Once we have a list, we can do various operations, such as the following ones:


	init :: [a] -> [a]: Take all but the last element of the list. This is shown in snippet 8.

	take :: Int -> [a] -> [a]: Take, at the most, the first n elements of the list (shown as the Int argument). If the list has less than n elements, then it will consume the entire list. This is shown in snippet 9.
In snippet 9, we worked on an infinite list and took only the first 10 elements. This works in Haskell, because in Haskell, nothing is evaluated until computation needs a value. Hence, even if we have an infinite list, when we take the first 10 elements, only 10 elements of the list are evaluated. Such things are not possible in strict languages. Haskell is not a strict language.



	drop :: Int -> [a] -> [a]: Similar to take, but the drop function drops the first n elements. It will drop the whole list if the list has less than n elements. If we operate on an infinite list, then we will get an infinite list back. Snippet 10 shows an example of drop.





            

            
        
    
        

                            
                    Indexed access

                
            
            
                
The function names in Haskell do not necessarily start with alphabets. Haskell allows us to use a combination of other characters as well. Many collections, including list, define !! as an indexing function. Snippet 11 uses this.

The function !! takes a list and an index n, and returns the nth element, starting 0. The signature of !! is  (!!) :: Int -> [a] -> a.

It is important to note that an access to an indexed element in the list is not random. It is sequential and is directly proportional to the index value. Hence, care should be taken to use this function.



            

            
        
    
        

                            
                    Checking whether an element is present

                
            
            
                
The elem function checks whether a given element is present in the list. The elem function must be able to equate itself with another of its own type. This is done by implementing type Eq class, which allows checking whether two values of a type are equal or not.



            

            
        
    
        

                            
                    Pattern matching on list

                
            
            
                
Once we know that a list has two data constructors, we can use them in the function argument for pattern matching. Hence, we can use [] for empty list matching, and we can use x:y:[] to match two elements followed by an empty list.

In the snippet 13, we used an empty list pattern for checking whether a list is empty or not.

In the snippet 14, we used x:y:[] to check whether the list has length 2 or not. This might not be a very good thing if we want to check the larger size. There, we might use the length function to get the size of the list. However, be aware of the fact that the length function is not a constant time function, but proportional to the size of the list.



            

            
        
    
        

                            
                    List concatenation

                
            
            
                
It is possible to concatenate two lists by using the ++ function. The running time of this function is directly proportional to the size of the first list.



            

            
        
    
        

                            
                    Strings are lists

                
            
            
                
It is important to note that the type String in Haskell is implemented as a list of Char:

    type String = [Char]

Hence, all list operations are valid string operations as well. The snippets 17 and 18 show this by applying list functions on String. Since list is not a random access collection and operations such as concatenation are not constant time operations, strings in Haskell are not very efficient. There are libraries such as text that implement strings in a very efficient way.



            

            
        
    
        

                            
                    There's more…

                
            
            
                
The preceding list of operations on Haskell list is not exhaustive. You can refer to the Data.List module in the base package (which is installed as a part of GHC). It provides documentation to all the functions that operate on list.



            

            
        
    
        

                            
                    Getting Functional

                
            
            
                
In this chapter, we will look at the following recipes:


	Working with recursive functions

	Reversing a list - Recursive worker function pattern

	Creating maps and filters

	Working with laziness and recursion

	Working with folds

	Sorting a list 

	Implementing merge sort

	Implementing Eratosthenes Sieve





            

            
        
    
        

                            
                    Introduction

                
            
            
                
In functional programming, functions are first class values. It means that functions can be returned as values, and one can pass functions as arguments. In this chapter, we will start with recursive functions and gradually move to higher order functions, functions that take other functions as arguments. Our goal is to be able to write functions that are correct and tested. Haskell is a lazy language. We can take advantage of this fact, and write interesting and compact functions to take advantage of its laziness. 

We will start with recursive functions, and see how recursion works. We will then move to tail recursive functions. We will explore a useful worker pattern while working with tail recursion. Next we will take advantage of laziness while calculating Fibonacci numbers recursively. 

We will then work with maps and filters, which are very useful in many situations. We will then move to folds, which are important generalizations of recursions. We will move to more complex examples, such as implementing a bottoms-up merge sort, and a recursive implementation of Eratosthenes Sieve for finding out prime numbers.



            

            
        
    
        

                            
                    Working with recursive functions

                
            
            
                
In this recipe, we will calculate fibonacci numbers by writing a simple recursive function. Fibonacci numbers are the numbers appearing in the fibonacci sequence.

Fibonacci numbers are calculated as follows:

Fn = Fn-1 + Fn-2

We need to provide the first two seed fibonacci numbers in the sequence so that we can calculate the next set of fibonacci numbers. We will seed the sequence with 0 and 1. Our sequence will look like this:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 ....

We will start indexing with 0. Hence, the 0th fibonacci number is 0, 1st fibonacci number is 1, .. 5th fibonacci number is 5 ... and so on.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Create a new project, fibonacci, using stack with the simple template:

    stack new fibonacci simple

This will create a fibonacci directory and will add only Main.hs in the src folder. If you build the project, it will create the executable fibonacci. The default implementation will print hello world. 



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Open src/Main.hs. The file will define the Main module with the function main :: IO (). 

	Here is the module definition. Add declaration of our function, fib. The function takes an integer to denote the index of the fibonacci number and returns the fibonacci number at the given index:



        fib :: Integer -> Integer


	Handle the base cases using pattern matching and pattern guards. We have three cases:




	Case I--Index is negative. This is an error case:



        fib n | n < 0 = error "invalid index"


	Case II--Index is zero. We provide the 0th value as a seed value:



        fib 0 = 0


	Case III-- Index is one. We provide the 1st value as the seed value:



        fib 1 = 1


	Handle the generic case, that is, calculate the nth fibonacci number from the n-1th and n-2th numbers by writing a simple recursive definition:



        fib n = fib (n-1) + fib (n-2)


	Modify the main function to use the fib function to print fibonacci numbers at indices 0, 1, 5, 10, and 20:



        main :: IO ()
        main = do
          putStrLn $ "f(0) = " ++ show (fib 0)
          putStrLn $ "f(1) = " ++ show (fib 1)
          putStrLn $ "f(5) = " ++ show (fib 5)
          putStrLn $ "f(10) = " ++ show (fib 10)
          putStrLn $ "f(20) = " ++ show (fib 20)


	Build the project and run it:



        stack build
        stack exec fibonacci


	You should see following output. Verify that we have indeed printed the correct results. You can to refer the fibonacci sequence at https://oeis.org/A000045:



       f(0) = 0
       f(1) = 1
       f(5) = 5
       f(10) = 55
       f(20) = 6765



            

            
        
    
        

                            
                    How it works...

                
            
            
                
The heart of the definition is as follows:

    fib n = fib (n-1) + fib (n-2)

Simple recursion involves calling the same function we are defining. In the definition of fib n, we will call fib (n-1) and fib (n-2) and add their results. 

The evaluation of the fibonacci number by this recursive definition is shown in the following diagram. The diagram shows the evaluation of fib 5. Note how at each stage, the fib function gradually reduces the argument and recursively calculates the value of the 5th fibonacci number:





The preceding function is a simple recursive function. One can also implement mutually recursive functions. For example, we can implement functions isEven and isOdd that check whether a number is even or odd, respectively, in a mutually recursive way. We will use 1 and 2 as seed values for odd and even tests, respectively. In a mutually recursive function definition, one function, f1, calls the other function, f2, whereas the other function, f2, calls this function, f1:

    isEven 2 = True
    isEven n = isOdd (n-1)
    isOdd 1 = True
    isOdd n = isEven (n-1)

Note how recursive calls are made. Each recursive call is breaking down the problem into a smaller problem. Also, at a certain stage, one has to handle a basic condition to avoid infinite recursion.



            

            
        
    
        

                            
                    There's more...

                
            
            
                
The recursive functions are sometimes ridiculously easy to write, and lead to a very simple and elegant function definition. However, one has to exercise caution to avoid infinite recursion and even a long recursion. For example, the evaluation of fib 5, as shown in the preceding diagram, denotes that each fibonacci value is calculated multiple times. fib 2 is called three times, fib 3 is called twice, and fib 4 is calculated once. 

The preceding implementation of the fibonacci number is very simple and looks very elegant. However, values are calculated multiple times, and in fact, the evaluation order for calculating the nth fibonacci number is directly proportional to the fibonacci series itself. Hence, if you try to evaluate the fibonacci number more than 100th index, it will not complete the execution.



            

            
        
    
        

                            
                    Reversing a list - Recursive worker function pattern

                
            
            
                
In the previous recipe, we saw implementation using a simple recursive definition. In this recipe, we will use a commonly found recursive function implementation pattern called worker pattern. 

The list does not have random access. We have to access elements of a list sequentially to be able to do something with it. When reversing a list, we need to remember this fact.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Create a new project, reverse, using Stack and the simple template. Also, build the project:

      stack new reverse simple
      stack build



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Change directory to reverse, and open src/Main.hs. This file defines the Main module.

	Conditionally import Prelude, hiding the reverse function:



        import Prelude hiding (reverse)

Note that Prelude is imported automatically unless it is explicitly imported. Since we will write our own reverse function, we need to hide the reverse function while importing Prelude. 


	Write the signature of a reverse function:



        reverse :: [a] -> [a]

This function takes a list of any type, a, and returns the reversed list.


	Implement the reverse function using recursion:



        reverse :: [a] -> [a]
        reverse xs = reverse' xs []
        where
          reverse' :: [a] -> [a] -> [a]
          reverse' [] rs = rs
          reverse' (x:xs) rs = reverse' xs (x:rs)

Note that we have a written recursive function. However, this recursive function is an internal function reverse' that takes two arguments.


	Use the reverse function in main to test it. Here, we will check whether the function has successfully reversed the list [1..10]:



         main :: IO ()
         main = do
         let inp = [1..10]
           rs = reverse inp
           putStrLn $ "Reverse of " ++ (show inp) ++ " is " ++ (show
           rs)


	If you build the project using stack build and execute it with the command stack exec reverse, you will see the following output:



        Reverse of [1,2,3,4,5,6,7,8,9,10] is [10,9,8,7,6,5,4,3,2,1]



            

            
        
    
        

                            
                    How it works...

                
            
            
                
The reverse function is implemented as follows:

    reverse xs = reverse' xs []

Here, we used an internal reverse' function with an extra argument.

The internal function reverse' is a worker function that actually does the work. Its signature is as follows:

    reverse' :: [a] -> [a] -> [a]

It takes two arguments--the first one is the list that needs to be reversed and the second argument is where we store the result, that is, the reversed list. The recursion is implemented for the worker function reverse'.

There are two base cases for the input list: 


	Case I--List is empty--Here, we will simply return the second argument, which is where we have stored the result:



        reverse' [] rs = rs


	Case II--List is not empty--The first element of the list is taken and is added at the start of the result list. The recursion is called with the input list, without the first element, and the result list, where we have added the first element taken from the input:



        reverse' (x:xs) rs = reverse' xs (x:rs)

We need to give an initial value for the result list when we call reverse' in the reverse function. The initial value has to be an empty list [].

We can verify that the implementation works by running the reverse' function ourselves:


	Case I--List is empty--The reverse' function will be called as follows:



        reverse' [] []

Since the input is an empty list, we will simply return the result []. This is the correct result!


	Case II--List is not empty--Let's take a sample list [1,2,3,4,5] and pass it to the reverse' function and carry out the steps ourselves. The reverse' function will be called as follows:



        reverse' [1,2,3,4,5] []

As per our implementation, since the input is a non-empty list, we will take the first element and add it to the result list, and continue with the recursion. Hence, the recursed call will look like this: 

        reverse' [2,3,4,5] [1]

The recursion will continue this way until the input list is empty, which is case I, and we will simply return the result list:

        reverse' [3,4,5] [2,1]
         = reverse' [4,5] [3,2,1]
         = reverse' [5] [4,3,2,1]
         = reverse' [] [5,4,3,2,1] -- Input is empty, return the result
         = [5,4,3,2,1]

As you have noticed, the reverse' function takes N steps, where N is the number of elements in the input list. This pattern, where we use a worker function and store the result as an argument, is called a worker pattern.



            

            
        
    
        

                            
                    There's more...

                
            
            
                
The interesting thing about this solution is that it uses an internal function that does the recursion. The result of the recursion is stored as an argument. When a special case is hit (such as the list being empty in our example), the result of the recursion is returned. 

The recursion is tail recursion. It means that whenever we recurse, we ensure that the last function that is evaluated is exactly the same function that we are defining. In our example, we always called reverse' function as a top expression. The compiler optimizes the tail recursive functions such that they are executed in constant space and without adding them to stack.

The following diagram shows how a tail recursive function works. The diagram shows how a tail recursive reverse' function works. You can see that at each step, the recursion does the same operation till it reaches a point where recursion can be stopped. Since each operation in a tail recursion is same, the compiler can run recursion without incurring an overhead on stack. Please refer to the following diagram:





The following snippet to calculate the length of a list will highlight this fact:


	Implementation without tail recursion:



        length [] = 0
        length (_:xs) = 1 + length xs


	Implementation with tail recursion:



        length xs = length' xs 0
          where
          length' [] len = len
          length' (_:xs) len = length' xs (1+len)



            

            
        
    
        

                            
                    Creating maps and filters

                
            
            
                
In this recipe, we will continue working with recursive functions. In addition to recursion, we will introduce higher order functions. Higher order functions are functions that take other functions as an argument. Higher order functions introduce a layer of abstraction over other functions. If you see a certain pattern repeated over and over again, then you might have hit a situation that can be abstracted as a higher order function.

Though provided by default by Haskell's Prelude module, we will write our own version of two important higher order functions, map and filter. 



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Using stack, create a new project, map-filter, using the simple template. Change to the project folder and build the application:

      stack new map-filter simple
      stack build



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Open src/Main.hs, and import Prelude, hiding two functions map and filter. These are the very functions we will implement:



        import Prelude hiding (map, filter)


	Write the declaration of map. A map is a function that takes a function, applies it to each member of the list, and returns the transformed list:



        map :: (a -> b) -> [a] -> [b]

Note the brackets around (a -> b). It denotes that it is a function that takes an argument of type a and returns a value of type b. Without the brackets, Haskell will interpret the function declaration differently.

The map function takes two arguments and a return value, as described:


	The first argument (a -> b) is a transformer function


	The second argument [a] is a list of a

	The return type of the function is a list of b, [b]




	Handle different cases to define map. The input list can be empty. Handle this case first. For the empty list, we do not need any transformation:



        map mapper [] = []


	When the input list is non-empty, we will take the first element of the list. Apply the mapping function to it and finally, put it in front of the mapped remaining list using recursion:



        map mapper (x:xs) = mapper x : map mapper xs

Note that the preceding definition is not tail recursive. We can also write a tail recursive version of map. We will call it map' using the worker pattern as follows:

        map' :: (a -> b) -> [a] -> [b]
        map' mapper xs = map1 xs []
        where
          map1 [] rs = reverse rs
          map1 (x:xs) rs = map1 xs (mapper x : rs)


	Let's implement filter now. The filter function, as the name suggests, filters the elements of the input list using the given criteria. The criteria is given in terms of a function that checks whether an element of the list qualifies for the criteria. If the element qualifies, the function should return True for each such element which satisfies the criteria.




	The criteria should work with the element of the input list. Its type is (a -> Bool). The input is a list [a]. The return type is the subset of the input list, so the return type should also be [a]. Write down the declaration of the filter function:



        filter :: (a -> Bool) -> [a] -> [a]


	When the input list is empty, we do not have to do anything:



        filter f [] = []


	When the input list is non-empty, we will check the first element with the criteria function f. Then, put it in front of the filtered list, which is obtained by applying the filter to the remaining of the list:



        filter f (x:xs)
        | f x = x : filter f xs
        | otherwise = filter f xs


	Note that the preceding implementation is not tail-recursive. We can also implement a tail-recursive version of filter filter' as follows:



        filter' :: (a -> Bool) -> [a] -> [a]
        filter' f xs = filter1 xs []
        where
         filter1 [] rs = reverse rs
         filter1 (x:xs) rs 
         | f x = filter1 xs (x : rs)
        | otherwise = filter1 xs rs


	Now, we will use map and filter, which we defined earlier. In the main function, we will use map, its tail-recursive version map', filter, and its tail-recursive version filter'. We will take [1..10] as input, and apply the square function on each element of the list using map and map'. We will then filter the odd elements of the same list using filter and filter':




        main :: IO ()
        main = do
        let input = [1..10]
         squares = map (\x -> x * x) input
         squares' = map' (\x -> x * x) input
         odds = filter odd input
         odds' = filter' odd input
         putStrLn "Squaring [1..10]"
         putStrLn "Squares using map"
         putStrLn (show squares)
         putStrLn "Squares using tail recursive map"
         putStrLn (show squares')
         putStrLn "Filtering odd numbers in [1..10]"
         putStrLn "Using filter"
         putStrLn (show odds)
         putStrLn "Using tail recursive filter"
         putStrLn (show odds')


	If you run the executable, you will see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this recipe, we have worked with two functions, map and filter. These functions are described in the next section.



            

            
        
    
        

                            
                    Map function

                
            
            
                
In the recipe, we have implemented map in two ways. Both implementations are described here as follows:


	The map function is defined as map f (x:xs) = f x : map f xs. Here, the mapping function f is applied to the first element, and then we will recurse using the remaining list and then join the result. Suppose the input list is [1,2,3,4,5], and we apply f to it. Then, our map will work in the following way. (Note that the function f is categorically not defined concretely to simplify the explanation of map.) As you can see, the result list keeps expanding towards the right (for example, f 1 : <rest of the list expanded here>):



        map f [1,2,3,4,5] = f 1 : map f [2,3,4,5]
                  = f 1 : (f 2 : map f [3,4,5])
                  = f 1 : (f 2 : (f 3 : map f [4,5]))
                  = f 1 : (f 2 : (f 3 : (f 4 : map f [5])))
                  = f 1 : (f 2 : (f 3 : (f 4 : (f 5 : map f []))))
                  = f 1 : (f 2 : (f 3 : (f 4 : (f 5 : []))))
                  -- reducing further
                  = f 1 : f 2 : f 3 : f 4 : f 5 : []


	The tail recursive function map' is defined using the worker pattern. Instead of building a stack during recursion such as implemented in preceding section, it builds the argument. The worker function map1 that is used by map' is shown here:



        map' f [1,2,3,4,5] = map1 [1,2,3,4,5] []
                   = map1 [2,3,4,5] [f 1]
                   = map1 [3,4,5] [f 2, f 1]
                   = map1 [4,5] [f 3, f 2, f 1]
                   = map1 [5] [f 4, f 3, f 2, f 1]
                   = map1 [] [f 5, f 4, f 3, f 2, f 1]
                    -- When input is empty, the result is reversed and
                    returned
                   = [f 1, f 2, f 3, f 4, f 5]


	In the tail-recursive version, the list builds up, but in the reversed order. Hence, when we return the final value, we have to reverse the list.





            

            
        
    
        

                            
                    Filter function

                
            
            
                
The filter function is implemented similarly to map. However, there are some differences, which are given as follows:


	The filter behavior is similar to map as explained earlier. However, notice the use of multiple pattern guards:



        filter f (x:xs)
        | f x = x : filter f xs
        | otherwise = filter f xs


	Each guard is evaluated, and if it is evaluated to True, then the expression on the right-hand side is evaluated. 

	Note the use of otherwise in the guard. The function otherwise always evaluates to True and is used to represent default behavior when everything in the guard evaluates to False.



We have used the library function odd to test whether a number is odd. Also, notice the use of let in the do block. In the do block, let is used to bind identifiers to value. This let function is different from the let..in block.



            

            
        
    
        

                            
                    There's more...

                
            
            
                
We have implemented two very commonly used higher order functions in Haskell. You will notice subtle differences between recursive and tail-recursive functions. There is another important difference that must be highlighted. The non-tail-recursive version of map and filter can work with the infinite list because the first element is evaluated and the rest of the list is evaluated only when it is required. In, for the tail-recursive version, the whole list has to be evaluated, as we need to push the whole list in to the result argument and then reverse it.

You can also refer to the Hackage source of Data.List and its implementation of map and filter. 



            

            
        
    
        

                            
                    Working with laziness and recursion

                
            
            
                
So far, we have seen a simple recursion; recursion using worker pattern. Haskell adds laziness to the mix. We can use laziness to our advantage while working with recursion. 

In this recipe, we will again calculate the fibonacci number. However, this time, we will do it with infinite lists. By taking advantage of Haskell's laziness to evaluate an expression only when it is required, we can really create a linear time algorithm (O(n)) for the fibonacci number.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Create a new project, fibonacci-infinite, by running Stack. Change into the project directory and build it using Stack:

      stack new fibonacci-infinite simple
      stack build



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Open src/Main.hs in an editor. After the module definition, we will add the definition for our fibonacci number.

	Add the function declaration for fib. Let's assume that we have an infinite list of fibonacci numbers, fiblist. Finding the nth fibonacci number in the list is easy using the List index function (!!):



        fib :: Int -> Integer
        fib n = fiblist !! n


	Implement the function fiblist. The function fiblist is obviously a list of integers. Define fiblist as follows:



        fiblist :: [Integer]
        fiblist = 0 : 1 : zipWith (+) fiblist (tail fiblist)


	This is an efficient implementation (O(n)) of the fibonacci number calculator. We can test it by calculating the 10000th fibonacci number:



        main :: IO ()
        main = do
         let fib10k = fib 10000
         putStrLn $ "10000th fibonacci number is " ++ (show fib10k)


	If you build and run the application, it will print a very large number (thanks to big integer support in Haskell):






	You can check whether our number is correct by checking the 1000th fibonacci number at http://www.bigprimes.net/archive/fibonacci/10000/.





            

            
        
    
        

                            
                    How it works...

                
            
            
                
The preceding implementation looks deceptively simple, and it works! This is one of the highlights of Haskell. It provides a very elegant language construct to write such compact and meaningful programs in.

The heart of fiblist is the use of the zipWith function. The zipWith has the following signature:

    zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

The zipWith function takes a function f and two lists. The zipWith function takes out an element from each list and applies the funcion f on these two elements. The zipWith function recursively continues this operation until either of the input lists are exhausted. In fact, zipWith is implemented in Prelude as follows:

    zipWith f [] _ = [] -- Either input is empty, the result is empty
    zipWith f _ [] = [] -- 
    zipWith f (x:xs) (y:ys) = f x y : zipWith xs ys

Let's see how fiblist is able to represent an infinite number of fibonacci numbers. fiblist is defined as follows:

    fiblist = 0 : 1 : zipWith (+) fiblist (tail fiblist)

The first two elements are the initial fibonacci numbers, 0, and 1, respectively. The rest of the elements are evaluated only when asked for. Otherwise, it remains as an unevaluated expression. For example, if we need to evaluate fiblist until five fibonacci numbers, it will be done as follows. The inputs to zipList is fiblist itself and the tail of fiblist (all but the first element). Since the first two elements are already there, we can use them. Hence, they are the only numbers highlighted in the initial fiblist expression. Hence, using Haskell's laziness carefully and cleverly, we can write an elegant routine to calculate fibonacci numbers:

    fiblist = 0 : 1 : zipWith (+) [0,1...] [1,...]
    -- Use first two elements of the list passed to zipWith and add
     them
        = 0 : 1 : (0 + 1) : zipWith (+) [1,1...] [1,..]
    -- zipWith now recurses to process remaining elements of fiblist 
    -- and tail of fiblist.
        = 0 : 1 : 1 : (1 + 1) : zipWith (+) [1,2..] [2..]
    -- Thus zipWith keeps on supplying elements to fiblist, and it 
    itself uses -- this list to evaluate further.
        = 0 : 1 : 1 : 2 : (1 + 2) : zipWith (+) [2,3...] [3..]
        = 0 : 1 : 1 : 2 : 3 : (2 + 3) : zipWith (+) [3, 5...] [5...]
        = 0 : 1 : 1 : 2 : 3 : 5 : zipWith (+) [3, 5...] [5..]

Note how zipWith uses initial values to evaluate and feed fibonacci numbers to itself. 

The evaluation of lazy list can be shown graphically here:







            

            
        
    
        

                            
                    Working with folds

                
            
            
                
In this recipe, we will look at two of the most important high-order functions, called foldr and foldl. These functions carry out the following activities:


	Abstract iterative process over a collection such as a list

	Give a way to work with each of the elements within the collection

	Give a way to summarize elements and combine them with user-supplied values



Depending on the way elements are combined, the functions are called foldr (fold right) or foldl (fold left). Many higher order functions such as map or filter can be expressed in terms of foldr or foldl. 

In this recipe, we will write sum and product functions to calculate the sum and product of numbers in the input list respectively. We will also use folds to implement map and filter. 



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Use Stack to create a new project, folds, with the simple template, and build it, after changing directory to the project folder:

      > stack new folds simple
      > stack build



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Open src/Main.hs and add the following definitions to it. For each function such as sum, we will create two versions--sumr, which uses foldr, and suml, which uses foldl.

	Use both, right and left folds to sum up the numerical contents of a list to write functions sumr and suml  as follows:



        sumr :: Num a => [a] -> a
        sumr xs = foldr (+) 0 xs

        suml :: Num a => [a] -> a
        suml xs = foldl (+) 0 xs


	Similarly, use right and left folds to calculate product of all elements in the list. This should results in functions productr and productl respectively:



        productr :: Num a => [a] -> a
        productr xs = foldr (*) 1 xs

        productl :: Num a => [a] -> a
        productl xs = foldl (*) 1 xs


	Define map using the folds mapr and mapl:



        mapr :: (a -> b) -> [a] -> [b]
        mapr f xs = foldr (\x result -> f x : result) [] xs

        mapl :: (a -> b) -> [a] -> [b]
        mapl f xs = foldl (\result x -> f x : result) [] xs

Note how an anonymous function is defined (\x result -> f x : result). This is called lambda function. Its syntax is \ arg1 arg2 ... -> <body of the lambda>. The backslash \' is an abbreviation of the Greek letter lambda!


	Define the filter using the folds filterr and filterl:



        filterr :: (a -> Bool) -> [a] -> [a]
        filterr f xs = foldr filtered [] xs
        where
          filtered x result
          | f x       = x : result
          | otherwise = result
          filterl :: (a -> Bool) -> [a] -> [a]
          filterl f xs = foldl filtered [] xs
          where
             filtered result x
             | f x = x : result
             | otherwise = result
          Test the functions that we defined in the main function:
          main :: IO ()
          main = do
          let input = [1..10]
            square x = x * x
          putStrLn "Calculating sum of [1..10]"
          putStrLn "  Using foldr"
          putStrLn (show $ sumr input)
          putStrLn "  Using foldl"
          putStrLn (show $ suml input)

          putStrLn "Calculating product of [1..10]"
          putStrLn "  Using foldr"
          putStrLn (show $ productr input)
          putStrLn "  Using foldl"
          putStrLn (show $ productl input)

          putStrLn "Squaring [1..10] using map"
          putStrLn "  Using foldr"
          putStrLn (show $ mapr square input)
          putStrLn "  Using foldl"
          putStrLn (show $ mapl square input)

          putStrLn "Filtering odd elements [1..10] using filter"
          putStrLn "  Using foldr"
          putStrLn (show $ filterr odd input)
          putStrLn "  Using foldl"
          putStrLn (show $ filterl odd input)


	Build the project using stack build and run it. You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
Foldr has a type declaration as shown here:

    foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

Whereas, foldl has a type declaration as shown here:

    foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b

The part of the declaration Foldable t denotes that folds can be implemented by any data type that would declare itself to be Foldable (Foldable is a type class). In the context of list, the preceding function can be adapted as follows:

    foldr :: (a -> b -> b) -> b -> [a] -> b
    foldl :: (b -> a -> b) -> b -> [a] -> b

Foldr takes three arguments, which are described here:


	(a -> b -> b): This is the function that takes the element of type a of the list (or Foldable), another value of type b, and produces b

	b: This is the default value that needs to be applied when we exhaust the input list (or Foldable)

	[a]: This is the input list (or Foldable)

	b: This is the result type



 Foldr expression evaluation can be shown by taking an example. Let's take sumr as an example. We will find the sum of [1..5] and show how foldr evaluates it:

    sumr [1..5] = foldr (+) 0 [1..5]
    -- take the first element, use (+) to add this to 
    -- result of foldr applied to tail of the list
            = (+ 1 (foldr (+) 0 [2..5])) 
    -- Applying above step repeatedly...
            = (+ 1 (+ 2 (foldr (+) 0 [3..5])))
            = (+ 1 (+ 2 (+ 3 (foldr (+) 0 [4,5]))))
            = (+ 1 (+ 2 (+ 3 (+ 4 (foldr (+) 0 [5])))))
            = (+ 1 (+ 2 (+ 3 (+ 4 (+ 5 (foldr (+) 0 []))))))
    -- The input is exhausted, this is where we use the supplied value 
     0
            = (+ 1 (+ 2 (+ 3 (+ 4 (+ 5 0)))))
    -- Now we can reduce the expression, starting with the innermost 
    bracket
            = (+ 1 (+ 2 (+ 3 (+ 4 5))))
            = (+ 1 (+ 2 (+ 3 9)))
            = (+ 1 (+ 2 12))
            = (+ 1 14)
            = 15 -- This is our result

Note how foldr keeps folding from the right-hand side. Actually, the preceding expression is equivalent to (1 + (2 + (3 + (4 + (5 + 0))))). The chain of combining function (+) groups towards right.

Similarly, foldl takes three arguments, which are described here: 


	(b -> a -> b): This is the function that takes the value of result type b, an element of type a of the list (or Foldable), and produces b

	b: This is the default value that needs to be applied when we exhaust the input list (or Foldable) 

	[a]: This is the input list (or Foldable)

	b: This is the result type



We will explain foldl using an example. Let's take the same input [1..5] and take its sum using suml, which is implemented using foldl:

    suml [1..5] = foldl (+) 0 [1..5]
    -- We start with initial value and combine it with first element
            = foldl (+) (+ 0 1) [2..5]
    -- Repeating the process
            = foldl (+) (+ (+ 0 1) 2) [3..5]
            = foldl (+) (+ (+ (+ 0 1) 2) 3) [4,5]
            = foldl (+) (+ (+ (+ (+ 0 1) 2) 3) 4) [5]
            = foldl (+) (+ (+ (+ (+ (+ 0 1) 2) 3) 4) 5) []
    -- We exhausted the input, and we have result ready..
            = (+ (+ (+ (+ (+ 0 1) 2) 3) 4) 5)
    -- Reducing 
            = (+ (+ (+ (+ 1) 2) 3) 4) 5)
            = (+ (+ (+ 3) 3) 4) 5)
            = (+ (+ 6) 4) 5)
            = (+ 10 5)
            = 15

Note how the expression reduces from the left-hand side. The chain of combining functions (+) gathers towards the left.

productl, productr, mapl, and mapr can be similarly explained.



            

            
        
    
        

                            
                    There's more...

                
            
            
                
The functions suml and sumr produce similar results because the combining function (+) is commutative, that is, a + b = b + a. However, when applied to map and filter, the results are different for mapr and mapl. This is because the list concatenation operator used for mapr and mapl is not commutative. Hence, the application of concatenation (:) to foldr and foldl produces different results. In fact, foldl would produce a reversed list. It is shown here (with elements [1..3]):

    -- Note both foldr and foldl are passed a function that adds an
    element to the list.
    foldr (:) [] [1..3] = 1 : foldr [] [2..3]
                    = 1 : 2 : foldr [] [3]
                    = 1 : 2 : 3 : []
                    = [1,2,3] -- Produces same list

    foldl (\result x -> x : result) [1..3] = foldl (1 : []) [2..3]
                                       = foldl (2 : 1 : []) [3]
                                       = foldl (3 : 2 : 1 : []) []
                                       = 3 : 2 : 1 : []
                                       = [3,2,1]



            

            
        
    
        

                            
                    Sorting a list

                
            
            
                
In this recipe, we will write a pseudo-quick sort using recursion. We call it pseudo-quick sort because it looks deceptively such as quick sort, but does not have a performance anywhere near it. 



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Use Stack to create a new project, pseudo-qsort, with the simple template and build it, after changing directory to the project folder:

      > stack new pseudo-qsort simple
      > stack build



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Open src/Main.hs and write the qsort implementation. The qsort involves the following:

	Choosing an element of the list to be sorted

	Using the chosen element as a pivot, divide the input list into two parts:

	Subset of the list smaller than the pivot element

	Subset of the list greater than or equal to the pivot element





	Recursively sorting two parts in a similar way





	 In Haskell, we can implement a method like quick sort quite easily. Ord a in the qsort declaration signifies that the elements of the list [a] can be compared for inequality, and it is possible to use the operators <, >, <=, and >=:



        qsort :: Ord a => [a] -> [a]
        qsort [] = []
        qsort (x:xs) = qsort ys ++ [x] ++ qsort zs
        where
          ys = filter (\y -> y < x) xs
          zs = filter (\z -> z >= x) xs


	Test quick sort using a randomly shuffled list (in the sample, we will take ten elements within the range 0..10):



        main :: IO ()
        main = do
        let input = [5,2,3,1,7,9,8,4,6,0]
         sorted = qsort input
         putStrLn $ "input: " ++ (show input)
         putStrLn $ "sorted: " ++ (show sorted)


	When built and executed, the program should produce the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
The crux of the preceding code lies in the following line:

    qsort ys ++ [x] ++ qsort zs

In the preceding statement, notice the following:


	We choose the first element of the list, x as the pivot.

	The list is then split into two parts ys and zs using the filter function.

	ys is the list of elements less than x, and zs is the list of elements greater than or equal to x.

	We recursively sort ys and zs, and combine the two parts and pivot to create a sorted list. We will use list concatenation (++) to do this.



At the outset, the implementation looks like an exact qsort. However, a closer look reveals that we use the filter function to partition the elements in the list. The filter function is an O(n) function. In the worst case, the performance of our algorithm will be O(n2), a far cry from the qsort specifications.



            

            
        
    
        

                            
                    There's more...

                
            
            
                
You might have noticed the lack of random access in the list. This is true for many functional collections in Haskell. Even if you have random access, the persistence in Haskell means that we cannot modify the element in place without sacrificing purity. Hence, it can be seen that at times, the functional algorithms are a tad bit slower than their imperative counterparts. However, designed carefully, we can almost always match the performance of imperative language with the elegance of functional programming.



            

            
        
    
        

                            
                    Implementing merge sort

                
            
            
                
In this recipe, we will implement merge sort.  The merge sort that we are implementing is bottoms-up merge sort. In bottoms-up merge sort, we start by sorting pairs of elements in the list. Then, gradually, we start merging them in pairs, until we have only one left. 



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Use Stack to create a new project, merge-sort, with the simple template and build it, after changing the directory to the project folder:

      > stack new merge-sort simple
      > stack build



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Open src/Main.hs; we will implement merge sort here.

	We will start with the implementation of two utility functions; group2 and merge.

	The group2 function is used to divide the input list in pairs. We will ensure that the pairs are sorted in the result. A single element is considered sorted:



        -- Group elements in groups of twos, but when we group it we 
        keep
        them
        -- sorted. 
        group2 :: Ord a => [a] -> [[a]]
        group2 [] = []
        -- A single element is already sorted.
        group2 (x:[]) = [[x]]
        -- Create groups of two and sort them
        group2 (x:y:xs) = (sortPair x y) : group2 xs
        where
         sortPair x y | x >= y    = y : x : []
                 | otherwise = x : y : []


	The merge function is used to merge two input lists. It is assumed that the input lists are already sorted. While merging, we look at the elements of two input lists one by one, and put them in correct order.



        -- Assume that two lists are sorted, and merge them in the 
        increasing
        -- order. 
        merge :: Ord a => [a] -> [a] -> [a]
        merge [] ys = ys  -- If one of the input is empty, the other 
        list is the result. 
        merge xs [] = xs
        merge (x:xs) (y:ys)  -- Compare heads of inputs while merging. 
        Continue recursively
        | x >= y    = y : merge (x:xs) ys
        | otherwise = x : merge xs (y:ys)


	We will continue merging until we have only one list left. We will use the worker pattern for recursion. We will implement an internal function mergeStep' to merge adjacent lists:



        mergeSort :: Ord a => [a] -> [a]
        mergeSort xs = mergeSort' (group2 xs)
        where
          mergeSort' :: Ord a => [[a]] -> [a]
          mergeSort' [] = []
          mergeSort' (xs:[]) = xs
          mergeSort' xss = mergeSort' (mergeStep' xss)
    
          mergeStep' :: Ord a => [[a]] -> [[a]]
          mergeStep' [] = []
          mergeStep' (xs:[]) = [xs]
          mergeStep' (xs:ys:xss) = (merge xs ys) : mergeStep' xss


	Test the implementation:



        main :: IO ()
        main = do
        let input = [5,2,3,1,7,9,8,4,6,0]
        sorted = mergeSort input
        putStrLn $ "input: " ++ (show input)
        putStrLn $ "sorted: " ++ (show sorted)


	Run the program, and check the output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
The mergeSort function is implemented in terms of a worker function mergeSort'. This function is given a grouped list. This grouped list is a pairwise sorted list of lists created from input using the function group2. If mergeSort' receives an empty list, or a list with a single element (single list inside a list), then it returns it as a result. 

If mergeSort' receives a lists of list that contains more than one list, then it calls mergeStep' to pairwise merge adjacent lists to create another list of lists.

This can be shown graphically as follows:





            

            
        
    
        

                            
                    Implementing Eratosthenes Sieve

                
            
            
                
In this recipe, we will look at a prime number calculator called Eratosthenes Sieve. It is an old algorithm for finding prime numbers. The prime numbers are found by crossing out composite numbers. The sieve works as follows: 


	Start with 2, a known prime. Strike out all the numbers that are multiples of 2.

	Start with the next unmarked number, which will be the next prime (since it is not divided by any prime before). Repeat the procedure of marking all the multiples.

	Repeat the procedure.



For more information, visit https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Create a new project, eratosthenes, using the simple Stack template. Change into the project directory and build it:

      stack new eratosthenes simple
      stack build



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Open src/Main.hs; we will add our prime number generator here.

	We will start with 2 as the initial prime number and continue with only odd numbers; this will remove all the factors of 2.

	We will assume that there are infinite prime numbers. We can write a list of primes as follows:



        primes :: [Integer]
        primes= 2 : filterMultiples allMultiples [3,5..]
        where
          allMultiples = mergeMultiples $ map multiples primes
          multiples i = map (i*) [i..]

Here, allMultiples are all multiples of all the primes; filterMultiples will weed out all those multiples from the list of odd numbers [3,5..]. All multiples are found out by lazily going over the primes that we are calculating and finding multiples of each.


	We need to implement filterMultiples to weed out composites, merge to merge two list of multiples, and mergeMultiples to recursively merge all multiples of primes:



        filterMultiples :: Ord a => [a] -> [a] -> [a]
        filterMultiples (f:fs) (x:xs) | f < x      = filterMultiples fs
        (x:xs)
          | f > x      = x : filterMultiples (f:fs) xs
          | otherwise  = filterMultiples fs xs

        merge :: Ord a => [a] -> [a] -> [a]
        merge (x:xs) (y:ys) | x < y     = x : merge xs     (y:ys)
                    | x > y     = y : merge (x:xs) ys
                    | otherwise = x : merge xs     ys

       mergeMultiples :: Ord a => [[a]] -> [a]
       mergeMultiples ((x:xs):xss) = x : merge xs (mergeMultiples xss)


	Finally, we can test our prime numbers by checking the 1000th prime number (https://en.wikipedia.org/wiki/List_of_prime_numbers#The_first_1000_prime_numbers):



        main :: IO ()
        main = do
        let prime1k = take 1000 primes
        prime1kth = prime1k !! 999
        putStrLn $ "1000th prime number is " ++ (show prime1kth)


	If you build the project and run it, then you should see the 1000th prime number: 





            

            
        
    
        

                            
                    How it works...

                
            
            
                
The preceding algorithm is inspired by Richard Bird's list-based algorithm for the sieve. The algorithm carefully uses laziness, recursion, and infinite lists to create an infinite list of prime numbers. The following diagram will help you visualize the algorithm:



 In the implementation, we carry out following steps:


	We will start with a prime 2. Then we construct an infinite list of primes 2-- filterMultiples allMultiples [3,5..]. The filterMultiples function remove all the multiples of primes from the infinite list of odd numbers.

	The allMultiples function is interesting; it lazily creates a list of multiples for each prime number currently in the sieve and merges them. Notice the following points in the implementation:

	We will take advantage of this laziness and use the fact that the first number is already calculated (it is the number 2). We will use this number to find multiples of 2 (4, 6, 8... ). We will also use the fact that the first element of the multiples list will always be less than the first element of the remaining multiples. This is because we are filtering with primes, which are arranged in the increasing order (2, 3, 5..), and the first multiple of the ith prime will always be less than the (i+1)th prime. This is shown in the diagram.

	This simplifies the merging, as we always take the first multiple as the first element in the merged list of multiples and then resume with merging the remaining list. Merging is done recursively.

	This helps in lazily defining prime numbers as we can take exactly one multiple of a single prime number before continuing with search for the next one.

	The next prime number is found when we remove multiples from the list of odd numbers and reach a stage where every remaining multiple in the multiples list is greater than the element in the list of odd numbers. We will term this number as a prime number and thus, continue our quest for prime numbers.









            

            
        
    
        

                            
                    There's more...

                
            
            
                
This version is inspired by Richard Bird's list-based implementation. For this implementation and other implementations of prime number sieve, refer to https://www.cs.hmc.edu/~oneill/papers/Sieve-JFP.pdf.

 



            

            
        
    
        

                            
                    Defining Data

                
            
            
                
In this chapter, we will look at following recipes:


	Defining a product type

	Defining a sum type

	Defining a binary tree and traversing it

	Defining data with functions

	Using Maybe

	Using Either

	Working with type classes

	Working with Monoid





            

            
        
    
        

                            
                    Introduction

                
            
            
                
In the last chapter, we looked at functions, recursions, and higher order functions. In this chapter, we will look at another important aspect of the Haskell language. The data types in Haskell are very expressive and are used to express very intuitive data structures. We have seen that Haskell works by reducing or computing the values from expressions (which are formed by applying functions to values and so on). For each value, there is some type associated with it. In fact, we can also say that each type represents a collection or a set of values. 

In this chapter, we will look at basic algebraic types. The term algebraic type came from the association between the values of a type and algebraic operations such as sum and product. We will also look at recursively defined types, where the type is included in the definition of the type itself. We will also look at parametric types. Moreover, we will look at two often used types in Haskell (Maybe and Either).

Finally, we will introduce the concept of type class. We will explain the very basic classes in Haskell, which are Show, Eq, Ord, and Read. We will also show how we can create an instance of a monoid, another very useful type class. 



            

            
        
    
        

                            
                    Defining a product type

                
            
            
                
In this recipe, we will look at product types. We will define simple data types with two parameters, and then will do different experiments with it.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Create a new project called product-type using the simple Stack template:

stack new product-type simple

Change the working directory to product-type. 



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Open src/Main.hs for editing. 

	Add the following data definitions for product types:



        data Product1 = Product1 Bool deriving Show
        data Product2 = Product2 Bool Bool deriving Show
        data Product3 a = Product3 a Bool deriving Show
        data Product4 a b = Product4 a b deriving Show


	Change the main function to use the product types defined earlier to create instances, and print their values:



        main :: IO ()
        main = do
        putStrLn "Product1: Simple product type"
        putStrLn $ show $ Product1 True
        putStrLn $ show $ Product1 False

        putStrLn "Product2: Product type with two fields"
        putStrLn "Product2 has two boolean fields. Each one can take 
         two values each"
        putStrLn $ show $ Product2 True True
        putStrLn $ show $ Product2 True False
        putStrLn $ show $ Product2 False True
        putStrLn $ show $ Product2 False False
 
        putStrLn "Product3: Product type with two fields, one 
          parametric (Int)"
        putStrLn "Cardinality of Product3 is cardinality of Int 
          multipled by two"
        putStrLn $ "which is " ++ (show (2 * (fromIntegral (maxBound :: 
          Int) - fromIntegral (minBound :: Int) + 1)))
        let product3 = Product3 10 True :: Product3 Int
        putStrLn $ show product3

        putStrLn "Product4: Product type parametrized by two types (Int 
          Bool)"
        putStrLn "Hence is equivalent to Product3 in these parameters"
        putStrLn $ show $ (Product4 10 True :: Product4 Int Bool)


	Build and run the project:



      stack build
      stack exec -- product-type

You should see the following output:





            

            
        
    
        

                            
                    How it works...

                
            
            
                

	We defined Product1 with one data constructor Product1 :: Bool -> Product1. How many values can we construct for Product1? Since it takes Bool, it can have two values Product1 True and Product1 False. This is the simplest product type that we have defined.




	Next, we defined a data type Product2. Product2's constructor takes two Bool values. For Product2, we can construct four values. Please refer to the following table:




	Product2 fields
	Bool
	Bool



	Product2
	True
	True



	Product2
	True
	False



	Product2
	False
	True



	Product2
	False
	True





Note that we have four values for Product2.  Also, note that we constructed Product2 by adding one more Bool field to Product1. For each possible value of Product1, we have two possible values for the added field in Product2. Hence, the total number of possible values for Product2 is equal to the product of possible values for each field that it has. This is why a data type with multiple fields is called a product type.



	
Next, we created a parametric data type Product3. Product3 takes a data type a and has an additional Bool field. In the example, we constructed an instance of Product3 Int. This type has two fields, one of type Int and another of type Bool. We already know that Bool has only two possible values. To find the possible values of Int, we used maxBound and minBound to get maximum and minimum values of Int (we have to specify type for maxBound, and minBound, for example, minBound::Int, to signify that we are interested in the minimum bounding value for type Int).  Maximum Int value is 9223372036854775807, and minimum Int value is -9223372036854775808. Hence, cardinality of Int is 18446744073709551616. Since for each Int value we can have two Bool values, the total number of possible values for Product3 is twice the amount, that is, 36893488147419103232.



	
For Product4, the type takes two type arguments, a and b. In the example, we use Int and Bool as type arguments. Hence, the number of possible values for Product4 Int Bool is same as Product3 Int.







            

            
        
    
        

                            
                    Defining a sum type

                
            
            
                
The sum types are equivalent to variant (or union in C). However, sum type in Haskell is much more than that. It is also called tagged union. The simplest sum type is Bool, which can take two values True and False. In this recipe, we will define simple sum types and use them in our example.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Create a project called sum-type using the Stack simple template:

    stack new sum-type simple



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Open src/Main.hs for editing.

	Add the following data type for representing the days in a week:



        data Days = Sunday | Monday | Tuesday | Wednesday | Thursday | 
        Friday | Saturday deriving Show


	Now, add the Variant type that takes five type arguments:



        data Variant a b c d e = Variant0 
                       | Variant1 a
                       | Variant2 b
                       | Variant3 c
                       | Variant4 d
                       | Variant5 e
                       deriving Show


	Now, use the preceding types in our main function:



        main :: IO ()
        main = do
        putStrLn $ "Sum Type 1 : Showing days of the week"
        putStrLn $ show [Sunday, Monday, Tuesday, Wednesday, Thursday,
        Friday, Saturday]
        putStrLn $ "Days type can have only 7 values"
        putStrLn ""
        putStrLn "Sum Type 2 : Variant with 5 possible data  
        constructors"
        putStrLn "Each constructor contribues number of possible
        values"
        putStrLn "of types a, b, c, d, e or f"

        let v0 = Variant0 :: Variant Int Float Double Char String
        v1 = Variant1 10 :: Variant Int Float Double Char String 
        v2 = Variant2 11.0 :: Variant Int Float Double Char String
        v3 = Variant3 12.0 :: Variant Int Float Double Char String
        v4 = Variant4 'A' :: Variant Int Float Double Char String
        v5 = Variant5 "Haskell" :: Variant Int Float Double Char String

        putStrLn "Showing all variants"
        putStrLn $ show [v0,v1,v2,v3,v4,v5]
        putStrLn "Variant0 has only one value, however its type is
        completely qualified"


	Now, build and run the project:



      stack build
      stack exec -- sum-type

The following output should be generated:





            

            
        
    
        

                            
                    How it works...

                
            
            
                

	First, we defined a data type called Days. It has seven alternative values (Sunday to Saturday). The Days type can take, at the most, seven values.




	Next, we defined a data type called Variant. The Variant data type is classified by five type arguments. In the example, we used Int, Float, Double, Char, and String. The data type defines constructors Variant1 ... Variant5 with a field each corresponding to one type. At the same type, we also have a constructor Variant0, which does not have a field at all. Hence, the number of possible types that Variant can take is the sum of all possible values that each type can take. Additionally, we have to add one value for Variant0. 

	Since the number of possible values is the sum of all alternatives, this is called sum type.

	Note that sum type is not generally found in languages such as C/C++ and so on. The union is the closest that one can have to sum type in these languages.





            

            
        
    
        

                            
                    Defining a binary tree and traversing it

                
            
            
                
In this recipe, we will look at a data type that is recursively defined. We will define a binary tree and then explore functions to traverse it.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Create a new project binary-tree-traverse using the simple Stack template. Change into this directory:

    stack new binary-tree-traverse simple



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Open src/Main.hs; we will be using this file for our recipe.

	Define a binary tree data type:



        data BinaryTree a = Leaf
          | BinaryTree { left :: BinaryTree a
                               , val :: a
                               , right :: BinaryTree a }
          deriving Show


	Write the helper functions empty, singleton, and node to create an empty tree and a tree with a single node, and compose the two trees with a value to create a new tree:



        empty :: BinaryTree a
        empty = Leaf

       singleton :: a -> BinaryTree a
       singleton x = BinaryTree Leaf x Leaf

       node :: BinaryTree a -> a -> BinaryTree a -> BinaryTree a
       node l x r = BinaryTree { left = l, val = x, right = r }


	Define in-order depth first traversal for the binary tree:



        dfTraverse :: BinaryTree a -> [a]
        dfTraverse Leaf = []
        dfTraverse tree = dfTraverse (left tree) ++ [val tree] ++ 
        dfTraverse (right tree)


	Now, define breadth first traversal for the binary tree:



        bfTraverse :: BinaryTree a -> [a]
        bfTraverse Leaf = []
        bfTraverse tree = bfTraverse1 [tree] [] []
        where
          bfTraverse1 [] [] xs = reverse xs
          bfTraverse1 [] q xs = bfTraverse1 (reverse q) [] xs
          bfTraverse1 (Leaf:ts) q xs = bfTraverse1 ts q xs
          bfTraverse1 (t:ts) q xs = bfTraverse1 ts (right t:left t:q)
         (val t:xs)


	Create a sample tree.



        sampleTree :: BinaryTree Int
        sampleTree = node l 1 r
        where
          l = node ll 2 rl
          r = node lr 3 rr
          ll = node lll 4 rll
          rl = node lrl 5 rrl
          lr = node llr 6 rlr
          rr = node lrr 7 rrr
          lll = singleton 8
          rll = singleton 9
          lrl = singleton 10
          rrl = singleton 11
          llr = singleton 12
          rlr = singleton 13
          lrr = singleton 14
          rrr = singleton 15


	Now use the sample tree for traversal. Do both breadth first as well as depth first traversal. 



        main :: IO ()
        main = do
        let tree = sampleTree
        inorder = dfTraverse tree
        bfs = bfTraverse tree
        putStrLn "In order depth first traversal"
        print inorder
  
        putStrLn "Breadth first traversal"
        print bfs


	Build and run the project:



      stack build
      stack exec -- binary-tree-traverse


	The output should print the following: 







            

            
        
    
        

                            
                    How it works...

                
            
            
                

	The binary tree can either be empty (no value, no children) or can have exactly two child trees and a value. 

	The binary tree is parameterized by a type argument. The type argument denotes the type of the value that each node stores.




	The binary tree is defined as a sum type. Following are the alternatives for the sum type:

	The empty tree is denoted by data constructor Leaf.

	The binary tree node is a product type (BinaryTree) implemented using record syntax, with the following fields:

	left: This denotes the left binary tree

	val: This indicates the value of the node

	right: This denotes the right binary tree





	Since left and right  are of type BinaryTree, this is a recursively defined data type.





	The helper function empty creates an empty tree, which is just a leaf without any value BinaryTree Leaf.

	The singleton function creates a node with two empty child trees.

	The node function takes in left and right binary trees, along with a value. 

	It is also possible to create values of BinaryTree by directly using data constructors. However, many a times it is easier to use helper functions such as the ones we defined.

	The sample tree that is created in the main function looks like this: 






	The recipe defines two traversals--depth first traversal and breadth first traversal. Both traversal functions return a list of values stored in the tree in the order of their traversal.




	The depth first traversal function defines in-order depth traversal. In the in-order depth first traversal following the steps are as follows:


	The left tree is traversed.

	Then, the parent node is visited.

	Then, the left tree is traversed again.





	The depth first traversal function dfTraverse uses two cases:

	The tree is empty (that is, it has value Leaf). In this case the empty list is returned, as there is no value to visit.

	The tree has a left tree, a value, and a right tree. In this case, we recursively call traversal for left tree and then append to it the value of the node and the result of right node traversal. Can you define pre-order and post-order traversal? 







If we traverse the sample tree shown in the preceding diagram, we should get the list

[8,4,9,2,10,5,11,1,12,6,13,3,14,7,15].


	In the breadth first traverse, all the node values at the same level are visited before visiting the nodes in the next level. 

	The breadth first traversal function bfTraverse is implemented using a worker pattern. It uses the worker, bfTravers1:

	bfTravers1 assumes that it is already traversing a set of nodes in the breadth first order at a certain level.

	As it visits nodes, it collects both children and pushes them in a queue.

	When the input set of nodes is exhausted, the queue is reversed and passed to bfTraverse1 in a recursion. The queue reversal is required, as the queue is implemented as a list, and the newest element is added and removed from the front of the list. 

	The breadth first order for the sample tree, created in our recipe, should be as follows:

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]









            

            
        
    
        

                            
                    Defining data with functions

                
            
            
                
So far, we looked at data types that take the values of other data types (both simple or complex). Since Haskell functions are also treated as first-class values, we can also use functions in our data type definition. In this recipe, we will define two data types that use functions as one of the field.

The first data type encapsulates a function f :: a -> b, whereas the second data type is an interesting recursive structure.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Use the simple stack template to create a new project called data-type-with-function, and change into this directory:

    stack new data-type-with-function simple



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Open src/Main.hs for editing.

	Add a new data type Func a b to represent the function f :: a -> b:



        newtype Func a b = Func (a -> b)


	Add a compose function. The compose function takes in two functions and  composes them together by giving an output of the first function to the next one:



       compose :: Func a b -> Func b c -> Func a c
       compose (Func f) (Func g) = Func (g . f)


	Now, add a apply function; this takes our data type Func and applies an argument to it:



        apply :: Func a b -> a -> b
        apply (Func f) a = f a


	Now, define a data type called Fix; it takes a function as an argument and tries to recursively define it by applying itself to the function:



        newtype Fix f = Fix (f (Fix f))


	Now, define a type Ghost; it takes an argument. However, it does not use it in its definition:



        data Ghost a = Ghost deriving Show


	We will now use these types in the main function. We will define two functions—square, which squares a given number, and sqrti, which is the square root for an integer.  We will wrap them in our Func data type and compose them. As a result of the application of the composition, we should get the same integer back. 

	Next, we will use the Fix data type in conjunction with Ghost to see how Fix recursively applies function f along with itself. 

	The main function should be written as follows:



        main :: IO ()
        main = do
         let square x = x * x
         sqrti = floor . sqrt . fromIntegral

         let squareF = Func square
         sqrtF = Func sqrti

         let idF = compose squareF sqrtF

         putStrLn "Composing square and square root functions"
         putStrLn "is an identity. Applying a value should not change
         it"
         print $ apply idF 3

         let x = Ghost
         y = Fix x
         Fix z = y

         putStrLn "Original value is "
         print x
         putStrLn "After fixing, "
         print z


	Build and execute the project:



      stack build
      stack exec -- data-type-with-function

The output should look like this:





            

            
        
    
        

                            
                    How it works...

                
            
            
                

	The first data type Func takes two arguments, a and b. The data definition simply encapsulates it inside as Func (a -> b). Here, (a -> b) represents the function type that takes a as an argument and produces a value of type b.

	The function compose simply extracts the functions encapsulated in Func a b and Func b c and composes them with the (.) function. 



The function (.) is called function composition, and it is used to compose functions without having to specify. It can be simply defined as (.) g f x = g (f x). Also, note when we use function composition, we do not have to specify an argument to the function. This is called a point-free style of programming. At times, a point-free style may be clearer to understand.


	The apply function extracts the function and applies an argument to it.

	The Fix data type is interesting. It is recursive and special because it applies the type argument to itself in its definition. Look carefully at the data type in our usage of Fix at every step. Note that the type argument a that Fix needs is not a simple type. It is a type that needs another type argument to it. You can inspect this by running the following lines of code:



        *Main> :i Fix
        type role Fix nominal
        newtype Fix (f :: * -> *) = Fix (f (Fix f))
        -- Defined at src\Main.hs:13:1


	The (f :: * -> *) data type in the GHCi output indicates that f is a type that needs another type as an input to it.



First, we will define x as a binding to the type Ghost and create a value of Fix by applying x to it:

        let x = Ghost
        y = Fix x


	Then, we will try to extract the field value in the definition of Fix, that is, the underlined part of the definition Fix f (Fix f). We can do that using the following code:



        let Fix z = y


	Then, if we check the type of z, then we get the following output:



        *Main> :t z
        z :: Ghost (Fix Ghost)

This can be surprising, but we can visually show this definition: 



The type Ghost that we passed to Fix is applied to itself, Fix Ghost. Thus, it produces a recursive type. 

The Fix type is inspired by its function counterpart fix :: (a -> a) -> a. It represents a fixed point and is a very useful function to understand recursion. For more information, you can visit https://en.wikibooks.org/wiki/Haskell/Fix_and_recursion.


	Finally, the Ghost type looks curious too. It takes a type argument but does not use it in its definition. Hence, this is called a Phantom Type. Phantom Types are very useful in programs as we can use them to add a type annotation to our definition.





            

            
        
    
        

                            
                    Using Maybe

                
            
            
                
Maybe is a sum type very often used to indicate a NULL value or nothing. In fact, it is a very type-safe way of representing a NULL value. Explicitly saying that we have either a value or nothing makes our life simpler during programming steps, which can fail, and we may not want to continue.

In this recipe, you will learn to use the Maybe data type. 



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Create a new project called using-maybe using the simple stack template. Change into the directory and build the solution:

    stack new using-maybe simple
    stack build



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Open src/Main.hs. We will experiment in the main function in this file. Replace the main function with following content:



        main :: IO ()
        main = do
        putStrLn "Using Maybe"


	Continue in the same function. Start defining various values of Maybe. Maybe is a sum type that may contain a value. The data constructor Just takes the value, whereas the constructor Nothing represents the absence of any value. Define three instances of the Maybe value, representing integral values 10, 2, and 0:



        let i = Just 10 :: Maybe Int
        j = Just 2 :: Maybe Int
        z = Just 0 :: Maybe Int


	Note the indentation. Since it is part of the same function main, the indentation should match the putStrLn "Using Maybe" line. 




	Use the isJust function to check if the Maybe value does contain some value. Use isNothing to check the absence of any value in the Maybe data:



        putStrLn $ "Does (Just 10) represent a value? " ++ (show $ 
        isJust i)
        putStrLn $ "Does (Nothing) represent a value? " ++ (show $ 
        isJust Nothing)
        putStrLn $ "Does (Nothing) is really Nothing? " ++ (show $ 
        isNothing Nothing)


	A singleton list is a list that contains a single element. The functions listToMaybe and maybeToList convert a singleton list to Maybe and Maybe to a singleton list, respectively. The empty list corresponds to Nothing, whereas the list with an element will put the the value of the element into Maybe: 



         putStrLn ""
         putStrLn $ "Singleton List and Maybe interoperability"
         putStrLn $ "Converting list [10] to Maybe : " ++ (show $ 
         listToMaybe [10])
         putStrLn $ "Converting empty list to Maybe (Nothing) : " ++
         (show $ (listToMaybe [] :: Maybe Int))
         putStrLn $ "Converting Maybe (Just 10) to list : " ++ (show $ 
         maybeToList (Just 10))
         putStrLn $ "Converting Maybe (Nothing) to list : " ++ (show $ 
         maybeToList (Nothing :: Maybe Int))


	Use function maybe :: b -> (a -> b) -> Maybe a -> b. The Maybe function takes a default value b and an function (a -> b). If the Maybe value is Nothing, it uses the default value b. Otherwise, it uses the function (a -> b)  to transform the Maybe value a to b:



        putStrLn ""
        putStrLn "Using default value for a transformation using
        'maybe'"
        putStrLn $ "Use NULL if Nothing, and convert a value to string 
        if Maybe holds a value"
        let defaultNull = "NULL"
        convertToString = maybe defaultNull show
        null = convertToString Nothing
        something = convertToString (Just 10)
        putStrLn $ "Converting Nothing to String : " ++ null
        putStrLn $ "Converting a value to String : " ++ something


	Here, we will use the default value NULL and convert a Maybe value to String. If Maybe contains some value, it is converted to its string representation using show. Otherwise, NULL is printed.

	Let's now look at using Maybe in an example to illustrate the usage of Maybe.  Define a separate function safeOperation, which defines a safe binary operation. If a certain condition is met, then we will evaluate the result as Nothing. We will use it to represent division by zero in the function safeDiv:



        safeOperation :: Num a => (a -> a -> Bool) -> (a -> a -> a) ->  
        Maybe a -> Maybe a -> Maybe a
        -- If any of the input is Nothing, then the output is Nothing
        safeOperation _ _ Nothing _ = Nothing
        safeOperation _ _ _ Nothing = Nothing
        -- If the condition is met, then the result is nothing.
        safeOperation c _ (Just i) (Just j) | c i j = Nothing
        -- Normally call the operation
        safeOperation c op (Just i) (Just j) = Just (i `op` j)

       -- Safe division, the condition is satisfied when denominator is 
       zero
       safeDiv :: Maybe Int -> Maybe Int -> Maybe Int
       safeDiv = safeOperation divCondition div
       where
        divCondition _ 0 = True
        divCondition _ _ = False


	Use the function safeDiv in the main function to check the result of division by zero. Append the following to the main function shown earlier. We will illustrate both legal division (that is, division by a non-zero number) and illegal division (that is, division by zero). When divided by zero, we should get Nothing: 



         putStrLn ""
         putStrLn $ "Getting value from (Just 10) = " ++ (show $ 
         fromJust i)
         putStrLn $ "Safe Division - 10 / 2"
         let safeAnswer1 = safeDiv i j
         putStrLn $ "Answer is " ++ (show safeAnswer1)
         putStrLn ""
         putStrLn $ "Safe Division by Zero - 10/0"
         let safeAnswer2 = safeDiv i z
         putStrLn $ "Answer is " ++ (show safeAnswer2)


	We can also define the safe division using the monadic do notation. Define the function safeDiv1 separately in the file src/Main.hs:



        safeDiv1 :: Maybe Int -> Maybe Int -> Maybe Int
        safeDiv1 i j = do
          xi <- i
          xj <- j
           if 0 == xj
             then
             Nothing
           else
             return (xi `div` xj)


	Note the use of return and (<-).  Use safeDiv1 in the main function. Add the following lines to the main function:



        putStrLn ""
        putStrLn $ "We can also use - do notation"
        let safeAnswer3 = safeDiv1 i z
        putStrLn $ "Safe Division by Zero using do notation - 10 / 0 = 
        " ++ (show safeAnswer3)




	Finally, use mapMaybe. This function is similar to map, except that it takes a function that produces the values of Maybe. All Nothing values are filtered out, and all remaining values are extracted in the list:



        putStrLn ""
        let evens = mapMaybe (\x -> if odd x then Nothing else (Just 
         x)) [1..10]
        putStrLn $ "Filtering out odd elements - mapMaybe (\\a -> if  
         odd a then Nothing else (Just a)) [1..10] = " ++ (show evens)


	In the preceding example, we will filter out odd numbers in the given input. For each odd value in the input list, we will produce Nothing; otherwise, we will just print Just x (where x is the input value). 

	Build the project and execute it:



      stack build
      stack exec -- using-maybe


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
The data type Maybe is defined as follows:

    data Maybe a = Just a
         | Nothing

This is a sum type, which either represents a value, using the Just data constructor, or Nothing.  The various functions such as isJust, isNothing, fromJust, listToMaybe, and maybeToList are used to check or extract the values from Maybe. 

The interesting function to note is safeOperation. This illustrates the main usage of Maybe. The Maybe value Nothing denotes a failure of some kind in an operation. As a result, all the remaining operations should produce Nothing. This saves us the effort of checking the result of an operation at every step. The safe operation signature is shown here:

    safeOperation :: Num a => (a -> a -> Bool) -> (a -> a -> a) -> 
    Maybe a -> Maybe a -> Maybe a

The first argument (a -> a -> Bool) denotes a condition. If this condition is evaluated to True, then the result produced is Nothing. The second argument (a -> a -> a) denotes an actual operation that works on two inputs of type a and produces an output of type a. The third and fourth arguments are of the Maybe type. They are the actual arguments passed to the safeOperation function. If any one of these arguments equals Nothing, the result is Nothing. Otherwise, if the condition is not True, the second argument (a -> a -> a) is used to carry out the actual underlying operation.

Using this function, we can convert a binary operation such as division and convert it to safe operations. At any point of time, if the condition is met or if any of the input is Nothing, all the operations produced thereafter are Nothing.

We also used the monadic notation to represent the safe division. This is interesting. The do notation allows us to extract values of Maybe using (<-), and then, we use return to represent Just. However, we will reserve the explanation for the next chapter where we will discuss the use and implementation of doing notation in detail.



            

            
        
    
        

                            
                    Using Either

                
            
            
                
Similar to Maybe, another data type that is used often in Haskell is Either. While Maybe decides to map something or nothing, Either goes with two types and keeps either of them. In this recipe, we will construct a safe division using the Either data type and will see how we can represent the error messages in a better way.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Use the following command to create a new project called using-either using the simple template:

    stack new using-either simple

Change into the newly created project directory.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Open src/Main.hs. 

	Import the Data.Either module:



        import Data.Either


	Define safe division, handling the division by zero case:



        safeDiv :: Either String Int -> Either String Int -> Either  
        String Int
        safeDiv (Left e) _ = Left e  -- Any Left _ is an error, we 
        produce the same
        safeDiv _ (Left e) = Left e  -- error as a result.
        safeDiv (Right i) (Right j) | j == 0 = Left "Illegal Operation:  
        Division by Zero"
        safeDiv (Right i) (Right j) = Right (i `div` j)


	Use safe division in the main function to illustrate usage of Either:



        main :: IO ()
        main = do
        let i = Right 10 :: Either String Int
        j = Right 2 :: Either String Int
        z = Right 0 :: Either String Int

        putStrLn $ "Safe division : 10 / 2 = " ++ (show $ safeDiv i j)
        putStrLn $ "Safe division : 10 / 0 = " ++ (show $ safeDiv i z)


	Build and execute the project:



      stack build
      stack exec -- using-either


	You should see the following output:








            

            
        
    
        

                            
                    How it works...

                
            
            
                
The Either data type has two data constructors and is defined as a sum type as follows:

    data Either a b = Left a | Right b

In our recipe, we used Either String Int, where the right value is of the Int type and the left value is of the String type. In many practical examples, the Left value is used as an error value and the Right value is used as an intended result value. 

In the function safeDiv, we stored the error value in Left as a String and stored the result in the Right value. 

Like Maybe, Either appears in many libraries on package and is a popular choice to represent result values with error, if any.



            

            
        
    
        

                            
                    Working with type classes

                
            
            
                
In this recipe, you will learn about type classes. The type classes provide a common behavior across data types. In this way, a type class abstracts the common behavior and can be implemented by a variety of data. One can relate type classes to interface in C# or C++. 

So far, whenever we defined data types we derived the data types from the Show type class without providing any explicit implementation for the type. In such cases, the default implementation is provided by GHC. In this recipe, we will provide explicit implementation for the standard Haskell type classes Show, Read, Enum, Eq, and Ord.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Create a new project called working-with-type-classes using the simple stack template and change into the working directory:

    stack new working-with-type-classes simple



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Open src/Main.hs for editing. We will use this file for using type classes. 

	Define a data type Month to describe a month in a year:



        data Month = January | February | March | April | May | June
           | July | August | September | October | November |    
           December deriving Show

Note that we have still used automatic derivation from Show. We will illustrate Show later in the recipe.


	Next, implement the Enum class. The Enum class is responsible for generating a list of consecutive integers and expressions such as [1..10].  The Enum class provides this behavior by associating with Integer. Create an instance of the Enum class for the data type Month. Essentially, we need to implement two functions, toEnum and fromEnum, to convert from and to Integers:



        instance Enum Month where
          toEnum 0 = January
          toEnum 1 = February
          toEnum 2 = March
          toEnum 3 = April
          toEnum 4 = May
          toEnum 5 = June
          toEnum 6 = July
          toEnum 7 = August
          toEnum 8 = September
          toEnum 9 = October
          toEnum 10 = November
          toEnum 11 = December
          toEnum n = toEnum $ n `rem` 12

          fromEnum January = 0
          fromEnum February = 1
          fromEnum March = 2
          fromEnum April = 3
          fromEnum May = 4
          fromEnum June = 5
          fromEnum July = 6
          fromEnum August = 7
          fromEnum September = 8
          fromEnum October = 9
          fromEnum November = 10
          fromEnum December = 11


	Implement the equality type class for our data type Month. It gives an ability to check equality among the values of our data type Month. Define the function (==). We will use the previous definition of Enum to convert the values to Integer and then compare them: 



        instance Eq Month where
        m1 == m2 = fromEnum m1 == fromEnum m2


	Now, implement the Ord type class. Ord stands for ordere, and it gives the ordering among the values of our the data type Month. We need to define a function compare and return the values of data type Ordering. We will again use the fact that we have already implemented the Enum type class and that Integers already implement the Ord type class. Hence, we will convert the values of Month to integers and then invoke its compare method:



        instance Ord Month where
         m1 `compare` m2 = fromEnum m1 `compare` fromEnum m2

Note how we implemented the compare function using the in-fix notation. 


	So far we have implemented a data type (in this, and earlier recipes) which uses auto implementation for Show provided by the compiler, GHC. Now, we will implement a data type where we provide explicit implementation for Show and Read. Implement a data type, RoseTree, which is a n-ary tree. 



        data RoseTree a = RoseTree a [RoseTree a]


	Now, implement the Show type class. For Show, we have to implement a function show :: a -> String: 



        toString :: Show a => RoseTree a -> String -> String
        toString (RoseTree a branches) =
        ( "<<" ++) . shows a . ('[':) . branchesToString branches . 
        (']':) . ( ">>" ++)
        where
         branchesToString [] r = r
         branchesToString (x:[]) r = branchesToString [] (toString x "" 
          ++ r)
         branchesToString (x:xs) r = branchesToString xs (',' : 
          toString x "" ++ r)

Use the preceding function to implement Show:

        instance Show a => Show (RoseTree a) where
        show tree = toString tree ""


	Now, implement a type class Read. The Read class does the reverse of the type class Show; it reads the String value returned by Show and converts it back to a value of a type. Here, we will implement an instance of type class for RoseTree: 



        instance Read a => Read (RoseTree a) where
        readsPrec prec ('<':'<':s) =
         case readsPrec prec s of
        [(a,t)] -> case readList t of
        [(as,ts)] -> case ts of
        ('>':'>':ss) -> [(RoseTree a as, ss)]
           _ -> []
           _ -> []
           _ -> []
        readsPrec prec _ = []

        readList xs = 
         let readList' ('[':ys) rs = 
              case readsPrec 0 ys of
                [(r,zs)] -> readList' zs (r:rs)
                _ -> readList' ys rs
 
         readList' (',':ys) rs = 
              case readsPrec 0 ys of
                [(r,zs)] -> readList' zs (r:rs)
                _ -> []

         readList' (']':ys) rs = [(rs,ys)]
         readList' _ _ = []
 
         in readList' xs []


	Now, use the implementation in the main function to use the preceding type classes:



        main :: IO ()
        main = do
        putStrLn "Enumerating months"
        putStrLn $ show [January ..December]
        putStrLn "Enumerating odd months"
        putStrLn $ show [January,March .. December]
        putStrLn $ "Equating months, January with itself : "
        ++ (show $ January == January)
        ++ " and January with February : "
        ++ (show $ January == February)
        putStrLn $ "Using /= function"
        putStrLn $ "Not equating months, January with itself : "
        ++ (show $ January /= January)
        ++ " and January with February : "
        ++ (show $ January /= February)
        putStrLn $ "Comparing months, January with itself : "
        ++ (show $ January `compare` January)
        ++ " and January with February : "
        ++ (show $ January `compare` February)

        putStrLn ""
        putStrLn "Creating a tree"

       let singleton = RoseTree 10 []
       tree = RoseTree 10 [RoseTree 13 [RoseTree 11 []], RoseTree 7 
       [], RoseTree 5 [RoseTree 3 []]]

       putStrLn ""
       putStrLn $ "Showing singleton tree : " ++ show singleton
       putStrLn $ "Showing tree : " ++ show tree

       putStrLn ""
       putStrLn $ "Read what you show -- show (read (show tree) )"
       putStrLn $ "Singleton Tree - " ++ show (read (show singleton) ::  
       RoseTree Int)
       putStrLn $ "Tree - " ++ show (read (show tree) :: RoseTree Int)


	Build and run the application:



      stack build
      stack exec -- working-with-type-classes


	The output should look like this:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
Type classes provide a very good abstraction for defining common behavior across data types. For example, the Eq type class is defined as follows:

    class Eq a where
     (==) :: a -> a -> Bool
     (/=) :: a -> a -> Bool

The preceding type class defines a set of behavior for type a. The behavior is a set of functions. The Eq class specifies two functions, equality (==) and non-equality (/=). Both functions take two arguments of type a and return Bool. 

The standard Haskell provides definition for both (==) and (/=) as follows:

    x == y = not (x /= y)  -- Note the definition of (==) by in-fix notation.
    x /= y = not (x == y)

You can see that the behavior of equality is defined in terms of non-equality and vice versa. To be able to provide a meaningful definition for our data type, it should be sufficient to provide definition for either (==) or (/=), as the default definition then would call another operator. In our case, we will provide the definition for (==) by converting the value to Int using the Enum class.  The definition of Eq requires the creation of instance as follows:

    instance Eq Month where
      (==) month1 month2 = (fromEnum month1) == (fromEnum month2)

The definition of Show and Read needs more attention. Show needs a function show :: a -> String. The string concatenation function (++) is proportional to the size of the string on the left-hand side, and hence is not efficient. To alleviate this problem, we will write a function toString :: a -> String -> String. It uses the second argument to accumulate the values converted to string and is similar to a worker pattern. The Read class similarly needs a definition of readsPrec. The readsPrec returns the type ReadS, which is equivalent to String -> [(a, String)]. The input is the String representation of the data type, and the result value is a singleton list (list with only one item), with a tuple. The result tuple contains the value of the data type and remaining string (after converting to the value). This allows us to continue parsing using the remaining tree. In the definition of the Read instance for RoseTree, we will define a function readsPrec, which starts by scanning the string for initial <<, which marks the start of RoseTree. Also, note the instance of Read for RoseTree: 

    instance Read a => Read (RoseTree a) where

This indicates that the Read instance of RoseTree a is defined only if the Read instance for a is also defined.



            

            
        
    
        

                            
                    Working with Monoid

                
            
            
                
Monoid is an important and very useful type class. A Monoid assumes two behaviors:


	There is a default or empty value of the data type.

	Given two values of the data type, they can be combined to create a single value. 



The simplest example of a Monoid is Integer. We can define an empty value of an Integer as 0. We can then use addition as an operation to combine two Integers. In this recipe, we will define a data type Option and define an instance for Monoid.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Create a new project called working-with-monoid with the simple template using Stack:

    stack new working-with-monoid simple

Change into the newly created project directory.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Start editing src/Main.hs. Add import Data.Monoid at the top. This module contains the definition of the Monoid type class. 

	Define a data type Option. The data contains a Boolean field and a list of String:



        data Option = Option { boolOption :: Bool, selections :: 
        [String] }
            deriving Show


	Define the instance of Monoid. The Monoid class needs to define at minimum two functions, mempty and mappend: 



        instance Monoid Option where
        mempty = Option False []
       (Option b1 s1) `mappend` (Option b2 s2) = Option (b1 || b2) (s1 
       ++ s2)


	Use the Option data type and its Monoid instance in the main function:



        main :: IO ()
        main = do
        putStrLn "Define default options"
        let defaultOptions = mempty :: Option
        putStrLn (show defaultOptions)
        let option1 = defaultOptions `mappend` (Option True [])
         option2 = option1 `mappend` (Option False ["haskell"])
         option3 = option2 `mappend` (Option True ["cookbook"])

       putStrLn $ "Adding True flag - " ++ show option1
       putStrLn $ "Adding False flag, and selection \"haskell\" - " 
       ++ show option2
       putStrLn $ "Adding True flag, and selection \"cookbook\" - " 
       ++ show option3

       putStrLn $ "Contatenating all options"
       putStrLn $ "Concatenation Result - " 
       ++ show (mconcat [defaultOptions, option1, option2 ])


	Build and execute the project:



      stack build
      stack exec -- working-with-monoid


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
The Monoid class is defined as follows:

    class Monoid a where
      mempty :: a
      mappend :: a -> a -> a
      mconcat :: [a] -> a

The mempty function defines a default value. The mappend function defines that as a result of combining two values of a, we will get a single value of type a. mconcat indicates that we can combine all the values in the list to produce a single value of type a. To define a Monoid instance, we need to define at least mempty and mappend functions: 

Laws of Monoid--The monoid instance should follow this law: 


	
mappend x mempty = x  (Appending the default value should not change the value)



	
mappend mempty x = x (Appending a value to the default value is the same as value)



	
mappend x (mappend y z) = mappend (mappend x y) z  (Associativity)



	
mconcat xs = foldr mappend mempty (Contatenation is equivalent to foldr with mempty as default value and mappend as combining operation)





For the Option data type, we defined mempty to be an Option with a False Boolean flag and an empty list of selections. When appended, we used the OR operation to combine boolean values, and selection strings are appended. You can confirm that this follows all laws of Monoid.

Monoids are very useful and appear at many places while programming. In fact, sometimes, there can be more than two definitions for a Monoid. For example, we can define Monoid for an Integer by using the default value 0 and addition as the append operation, or by using default value 1 and multiplication as the append operation. In such a case, we can wrap the data type in another data type and provide an alternative Monoid instance.



            

            
        
    
        

                            
                    Working with Functors, Applicatives, and Monads

                
            
            
                
In this chapter, we will look at the following recipes:


	Working with Functors

	Binary tree as Functor

	Working with Applicatives

	Binary tree as Applicative

	Working with monad

	List as monad

	Working with IO monad

	Writing INI Parser:

	Parser as Functor

	Parser as Applicative

	Parser as monad





	Errors and exception handling





            

            
        
    
        

                            
                    Introduction

                
            
            
                
We have worked on functions, higher order functions, and also worked with data types in Haskell. We have looked at functions such as map and filter in the context of the data type list. In many of these examples, we have taken a function that operates on data of type a and applied them in the context of the list of type a. Look at the following definition of map:

    map :: (a -> b ) -> [a] -> [b]

You can clearly see that we have taken a function that operates on data type a and produces b, and we converted it to a function that takes a list of a and produces a list of b (map :: (a -> b) -> ([a] -> [b])). Instead of the list of a, we can think of some parametric data type T a. Now, we can rewrite the declaration of map as follows:

    map :: (a -> b) -> T a -> T b

In short, the preceding definition of map applies to any data type T a, given a function that operates on a. But how do we define map? How does it know what to do to data type T a so that it produces T b? 

In this chapter, we will seek answers to such questions. Through these questions, you will discover that not only do such definitions create a generic concept, but, at the same time, they abstract the inherent property of a data type such as T a to adapt a function, such as a -> b to itself. 

Creation of such abstract structures inherently makes Haskell program easy to express and comprehend. The preceding map-like operation is a property of Functor. In this chapter, we will also see Applicatives and monads, which are few of the most used, important, and talked-about type classes in Haskell.



            

            
        
    
        

                            
                    Working with Functors

                
            
            
                
In this recipe, we will use the Functor type class to perform some easy tasks. We will see how Functor resembles a map of a list by applying it to a variety of data structures.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Use Stack to create a new project working-with-functors with the simple template:



        stack new working-with-functors simple


	Open src/Main.hs in the editor. We will use this file to demonstrate the usage of Functors.

	After initial module definition for Main, import the module that includes the Functor type class:



        import Data.Functor


	Define a function to square a number. We will use it to demonstrate application of this function over several data structures:



        -- Square a number
        square :: Num a => a -> a
        square x = x * x


	Functor f is a type class that needs  fmap :: (a -> b) -> f a -> f a. Data.Functor defines a function <$> synonymous to fmap. List defines an instance for Functor. We will use a square function to apply over a list. Add the following code to get a square of all the elements in the list:



        -- Mapping a list
        squareList :: Num a => [a] -> [a]
        squareList xs = square <$> xs


	Similarly, we can use <$> to apply over Maybe and Either data types. Maybe allows a function to be applied if the data is represented with Just. Otherwise, a function is not applied. The Either instance for Functor allows a function to be applied only when the Right constructor is used:



        -- Mapping a Maybe
        squareMaybe :: Num a => Maybe a -> Maybe a
        squareMaybe x = square <$> x

        -- Mapping an Either
        squareEither :: Num a => Either c a -> Either c a
        squareEither x = square <$> x


	Now, define a data type Function a b to represent a function a -> b. We will define this to be an instance of Functor. The Functor instance for this data type will create a composition by using the composition function (.): 



        data Function a b = Function (a -> b)

        instance Functor (Function a) where
        f `fmap` (Function g) = Function (f . g)


	Define another utility function double to double a given value. We will use it in the main function to demonstrate the function's composition:



        double :: Num a => a -> a
        double x = x + x


	Now, add the main function where we will put to test all the preceding definitions: 



        main :: IO ()
        main = do
         putStrLn "Mapping a list"
         putStrLn $ show $ squareList [1..10]

         putStrLn ""
         putStrLn "Mapping Maybe"
         putStrLn "Just 10 -> Just 100"
         putStrLn $ show $ squareMaybe (Just 10)
 
         putStrLn ""
         putStrLn "Nothing -> Nothing"
         putStrLn $ show $ squareMaybe Nothing

         putStrLn ""
         putStrLn "Mapping Either"
         putStrLn "Right 10 -> Right 100"
         putStrLn $ show $ squareEither (Right 10 :: Either String Int)
         putStrLn "Left String -> Left String"
         putStrLn $ show $ squareEither (Left "Left Value" ::
          Either String Int)

         let squareF = Function square
             doubleSquare = double <$> squareF

         -- Take the resultant function out of doubleSquare
         let Function dsq = doubleSquare
         putStrLn "Double the Square of X"
         print $ dsq 10


	Build and run the project:



        stack build
        stack exec -- working-with-functors


	The output should look like this:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
The Data.Functor module defines the type class Functor. The Functor class is available from Prelude, but defined in Data.Functor. The Functor type class is defined as follows:

    class Functor (f :: * -> *) where
      fmap :: (a -> b) -> f a -> f b
      (<$) :: a -> f b -> f a
      {-# MINIMAL fmap #-}

Minimal definition of Functor requires fmap to be defined. 

The function fmap takes a function a -> b and takes a data type f parameterised by a. It then applies the function to the content (of the type a) to produce b, thus producing f b. 

For example, we can take Maybe a, which is defined as Just a | Nothing. When we apply a function a -> b to Maybe a through fmap, we would like to apply only for the data in the constructor Just a, producing Just b. The data constructor Nothing need not be operated upon. 

Definition of Functor for Maybe and Either is defined in the following diagram:





Note how fmap is defined for Either c a. The function a -> b is applied only for Right a constructor; the Left c constructor is left as it is. In the case of List [a], fmap  is the same as the function map, that is, the function is applied to each element of the list.

Thus, when we apply the square function to the Maybe and Either data types, the square function will apply only when the data types are defined with data constructors Just and Right, respectively. 

Similarly, we defined the Functor definition for our data type as Function a b. The fmap definition takes in a function and composes it with the function pointed to by the data constructor Function (a -> b).

The type class Functor also defines the function (<$). This takes a value of type a and simply replaces b in f b. No definition is required for this function as it can be defined using the const function:

    (<$) :: a -> f b -> f a
    (<$)  a  fb = fmap  (const a) fb



            

            
        
    
        

                            
                    Binary tree as Functor

                
            
            
                
In the last recipe, we have Functor instances defined for Maybe, Either, and List. We even defined the Functor instance. In this recipe, we will create a data type Binary Tree and define a Functor instance for it.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new Haskell project binary-tree-functor using the simple Stack template:



        stack new binary-tree-functor simple


	Open src/Main.hs. This is the file that will be used for our purposes.

	After adding module definition for Main, add the following import:



        module Main where
        import Data.Functor


	Define the binary tree and utility functions to create the tree:



        -- The tree can be empty (Leaf) or a node with a 
        -- value, left and right trees.
        data Tree a = Leaf
            | Node (Tree a) a (Tree a) 
            deriving (Show, Eq)

        -- Create a tree given a value, left tree and a right tree
        node :: Tree a -> a -> Tree a -> Tree a
        node l x r = Node l x r

       -- Induct a value into a new tree (node with empty left and  
       right trees)
       singleton :: a -> Tree a
       singleton x = Node Leaf x Leaf


	Define an instance of a Functor for this binary tree. We have to consider two cases. The first one is what to do when the tree is empty. It is obvious that for an empty tree, the function application is vacuous and would return an empty tree. In the second case, we have a node with a value and two subtrees, that is, left tree and right tree. The function application for Functor will transform the value, and then we can use the definition of fmap recursively to transform the left and right subtrees as well:



        instance Functor Tree where
        fmap _ Leaf = Leaf
        fmap f (Node left value right) = 
        Node (fmap f left) (f value) (fmap f right)


	Write sample code to test our instance. First, we will create a sample integer tree:



        sampleTree :: Tree Int
        sampleTree = node l 1 r
        where
          l = node ll 2 rl     -- l means left, and r means right tree
          r = node lr 3 rr
          ll = node lll 4 rll  -- ll means left subtree of a left node
          rl = node lrl 5 rrl  -- rl means right subtree of a left 
          node.
          lr = node llr 6 rlr  -- and this naming convention continues
          rr = node lrr 7 rrr
          lll = singleton 8    -- we stop at lll. So lll is a 
          singleton.
          rll = singleton 9    -- all subtrees from this level are 
          empty
          lrl = singleton 10
          rrl = singleton 11
          llr = singleton 12
          rlr = singleton 13
          lrr = singleton 14
          rrr = singleton 15


	In the main function, we will use the show function through Functor to convert a binary tree of integers to a binary tree of strings. We will then use the read function to convert this tree back to a tree of integers. To check that our function implementation is correct, we will check that the original integer tree is the same as the one that we get back after converting from strings:



        main :: IO ()
        main = do
        let intTree = sampleTree
        -- Convert tree of int to tree of strings
        stringTree = fmap show intTree
        -- We use read to convert it back to tree of ints
        intTree1 = fmap (read :: String -> Int) stringTree
        putStrLn "Original Tree"
        print intTree
        putStrLn "Tree of integers to Tree of strings"
        print stringTree
        putStrLn "Tree of strings converted back to Tree of integers is 
        same as original tree?"
        print $ intTree == intTree1


	Build and run the project:



      stack build
      stack exec -- binary-tree-functor


	You will see the following output:








            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this recipe, we created an instance of Functor for the binary tree that we defined. When we create an instance of a Functor, we have to follow these laws of Functor:

Laws of Functor



An application of an identity function id should get the same data back:


 fmap id == id



Applying two functions to the same data type in a sequence should be the same as the application of a composition of two functions:


 fmap (p . q) == fmap p . fmap q

For the binary tree that we have defined, these laws are followed. If we apply the identity function id, then we apply it to the value in the node and subtrees. Since id does not change the value and we preserve the structure of the tree, an application of an identity function to our binary tree through fmap should get back the same tree. For the second law, we verified it through our sample code in the main function. The composition read . show is an identity function (since we are converting a data type to string and back). By successive application of fmap with show and read with tree we convert a tree of integers to tree of strings, and back again to a tree of integers. We check correctness of our implementation by checking that the original tree of integers and final tree of integers are indeed equal.



            

            
        
    
        

                            
                    Working with Applicatives

                
            
            
                
An Applicative is a type class that is somewhere between a Functor and a Monad. An Applicative takes a Functor one step further. A Functor talks about application of a function a -> b to a data type f a, whereas an Applicative talks about application of a data type of a function f (a -> b) to a data type f a.

In this recipe, we will work with Maybe and Either data types, and see how we can work with Applicative instances in the context of these data types.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project working-with-applicative with the simple Stack template:



        stack new working-with-applicative simple


	Open src/Main.hs and add the following imports after the initial module definition. The Applicative type class is defined in the module Control.Applicative:



        import Data.Functor
        import Control.Applicative


	We will use two operators, Functor application <$> (synonym for fmap) and Applicative application <*>. The Applicative function <*> is defined as <*> :: f (a -> b) -> f a -> f b. It takes a data type where values are functions of type (a -> b) and applies to a data type with values of type a, and gets back the data type with values of type b. In the first example, we will use a list: 



        -- Mapping a list
        multiplyLists :: Num a => [a] -> [a] -> [a]
        multiplyLists xs ys = (*) <$> xs <*> ys 

In the next application of Applicative, we will use Maybe:

        -- Mapping a Maybe
        tupleMaybe :: Maybe a -> Maybe b -> Maybe (a,b)
        tupleMaybe x y = (,) <$> x <*> y

We will now use Either in the context of Applicative. Here, instead of using Functor, we will use pure to induct a function into an Applicative:

        -- Mapping an Either
        addEither :: Num a => Either c a -> Either c a -> Either c a
        addEither x y = pure (+) <*> x <*> y


	We will now use the preceding functions in main with sample data:



        main :: IO ()
        main = do
          putStrLn "multiply lists"
          putStrLn $ show $ multiplyLists [1..3] [11..13]
          putStrLn ""
          putStrLn "Tuple of maybes"
          putStrLn "Just 10 -> Just \"String\" -> Just (10,\"String\")"
          putStrLn $ show $ tupleMaybe (pure 10) (Just "String")
          putStrLn ""
          putStrLn "Just 10 -> Nothing -> Nothing"
          putStrLn $ (show :: Maybe (Int,String) -> String) $ 
          tupleMaybe (Just 10) Nothing
          putStrLn ""
          putStrLn "Adding Either"
          putStrLn "Right 10 -> Right 100 -> Right 110"
          putStrLn $ (show :: Either String Int -> String) $ addEither 
          (Right 10) (Right 100)
 
          putStrLn "Left String -> Right 10 -> Left String"
          putStrLn $ (show :: Either String Int -> String) $ addEither
          (Left "String") (Right 10)


	Build and run the project:



      stack build
      stack exec -- working-with-applicative


	You should see the following output:








            

            
        
    
        

                            
                    How it works...

                
            
            
                
The Applicative type class is defined as follows: 

    class Functor f => Applicative (f :: * -> *) where
      pure :: a -> f a
      (<*>) :: f (a -> b) -> f a -> f b
      (*>) :: f a -> f b -> f b
      (<*) :: f a -> f b -> f a
      {-# MINIMAL pure, (<*>) #-}

The minimal definition of an Applicative instance requires at least pure and <*> to be defined. The definition also implies that we can define an instance of an Applicative for f only if f is also an instance of a Functor.

The pure function takes a value and creates a data type. For example, in the context of List, Maybe, and Either, the pure function will fetch the following values:

    pure 10 :: [Int] = [10]  -- in the context of List
    pure 10 :: Maybe Int = Just 10 -- in the context of Maybe
    pure 10 :: Either String Int = Right 10 -- in the context of Either

You can try the preceding code in the GHCi console for the project by running stack ghci in the project directory and trying out the preceding expressions.

Now we will look at the core of an Applicative, that is, the function <*>. As explained earlier, this function has the form as described:

    <*> :: Applicative f => f (a -> b) -> f a -> f b

Remember the definition of a Functor and fmap: 

    fmap :: (a -> b) -> f a -> f b

If we take a function (a -> b -> c) and call fmap on a Functor instance, we will get the following code:

    fmap :: (a -> b -> c) -> f a -> f (b -> c)

This is interesting because the application of fmap resulted in f (b -> c). Now, we can take f (b->c) and apply it to f b using <*> and get f c. Thus, we can use a function such as (*) :: a -> a -> a and use it in the conjunction of <$> and <*> to apply more complex things such as multiplication on a couple of Maybes:

    (*) <$> Just 10 <*> Just 2 -- Will produce Just 20
    (*) <$> Nothing <*> Just 2 -- Will produce Nothing

This way, one can see that the Applicative extends Functor by adding more expressiveness to it.

An Applicative does much more than just applying a function with multiple arguments to a data type. In the Applicative, we will encapsulate the function in the data type f (a -> b) and apply it to the data type with f a. This way, it is possible to carry more information in the structure f and apply it during the evaluation and application of the encapsulated function.  



For example, one can consider f a as an operation carried out in parallel; f (a -> b) denotes that it needs to wait for the value to be produced by f a and then apply the function. Furthermore, we can create an Applicative type that represents a thread pool and schedules f a on each one of them, retaining the composing power of functions.



            

            
        
    
        

                            
                    Binary tree as Applicative

                
            
            
                
In this example, we will define binary tree and define it as an instance of an Applicative type class. 



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project binary-tree-applicative using the simple Stack template.

	Open src/Main.hs; we will add our recipe to this file.

	After the initial module definition, add the following imports:



        module Main where

        import Data.Functor
        import Control.Applicative


	Define the binary tree and add the Functor instance too:



        data Tree a = Leaf
            | Node (Tree a) a (Tree a)
            deriving (Show, Eq)

        instance Functor Tree where
        fmap _ Leaf = Leaf
        fmap f (Node left value right) = Node (fmap f left) (f value) 
        (fmap f right)


	Now, define the Applicative instance for the binary tree. Note the recursive definition for pure, producing an infinite tree:



        instance Applicative Tree where
        pure x = let t = Node t x t
           in t

        (<*>) Leaf _ = Leaf
        (<*>) _ Leaf = Leaf
        (<*>) (Node lf f rf) (Node la a ra) = Node (lf <*> la) (f a) 
        (rf <*> ra)

The pure function creates an infinite tree, whereas for the <*> definition, we always return the empty tree if one of the arguments is empty. If the value is of the type Node left v right, then we apply function to the value and recursively apply the left encapsulated function lf to la and rf to ra. 


	Add a function to create a sample tree and the main function testing our instance of Applicative and laws of Applicative:



        singleton :: a -> Tree a
        singleton x = Node Leaf x Leaf

        node :: Tree a -> a -> Tree a -> Tree a
        node l x r = Node l x r

        sampleTree :: Int -> Tree Int
        sampleTree b = node l b r
        where
          l = node ll (b+1) rl
          r = node lr (b+2) rr
          ll = node lll (b+3) rll
          rl = node lrl (b+4) rrl
          lr = node llr (b+5) rlr
          rr = node lrr (b+6) rrr
          lll = singleton (b+7)
          rll = singleton (b+8)
          lrl = singleton (b+9)
          rrl = singleton (b+10)
          llr = singleton (b+11)
          rlr = singleton (b+12)
          lrr = singleton (b+13)
          rrr = singleton (b+14)


        main :: IO ()
        main = do
        let intTree1 = sampleTree 1
         intTree2 = sampleTree 15
         finalTree = (+) <$> intTree1 <*> intTree2
       putStrLn "First Tree"
       print intTree1
       putStrLn "Second Tree"
       print intTree2
       putStrLn "Final Tree"
       print finalTree
       putStrLn "Checking Applicatives Laws"
       putStrLn "Identity Law: pure id <*> v == v"
       putStrLn "pure id <*> intTree1 == intTree1"
       print $ (pure id <*> intTree1) == intTree1
       putStrLn "Homomorphism: pure f <*> pure x == pure (f x)"
       putStrLn "This property is not possible to test here, as pure
       produces infinite tree"
       putStrLn "Interchange: u <*> pure y == pure ($ y) <*> u"
       putStrLn "This property is not possible to test here, as pure
       produces infinite tree"
       putStrLn "Composition: pure (.) <*> u <*> v <*> w == u <*> (v 
       <*> w)"
       let square x = x * x
        double x = x + x
       putStrLn "(pure (.) <*> pure square <*> pure double <*> 
       intTree1) == (pure square <*> (pure double 
         <*> intTree1))"
       print $ (pure (.) <*> pure square <*> pure double <*> intTree1) 
       == (pure square <*> (pure double 
         <*> intTree1))


	Build and run the project:



      stack build
      stack exec -- binary-tree-applicative


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
The Applicative must follow these laws: 


	Identity Law: An application of identity should not change the data:



        pure id <*> v == v


	Homomorphism: An application of a function to a data (f x) is equivalent to the application of Applicative of the function applied to pure data (data inducted in Applicative):



       pure f <*> pure x == pure (f x)


	Interchange: This is equivalent to saying that 



f (a -> b) -> f a == f b, which should be equivalent to f ((a -> b) -> b) -> f (a -> b) == f b:



       u <*> pure y = pure ($ y) <*> u


	Composition: Stipulates that an Applicative compose operator is similar to the function composition (.): 



       pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

Here, the application of the composition pure (.) <*> u <*> v on w is the same as application of u on (v <*> w).

These are not just laws; they give a way to cross-check whether our implementation is correct. They also allow us to reason about an Applicative instance. These laws allow an Applicative to embed a computation and move it freely.

In the case of a binary tree, the first law pure id <*> v == v should hold. To be able to satisfy this law, we have to make the pure x instance of a binary tree an infinite recursively defined tree. In this, we will take the element and construct an infinite tree where all nodes have a value x and both left and right subtrees are the same as the root node. Hence, pure is defined as follows:

        pure x = let tree = Node tree x tree
         in tree

The definition of <*> is quite straight forward. It extracts the function from the first argument f (a -> b) and applies it to the value contained within the node. Then, it takes the left subtree of the first argument and applies it to the left subtree of the second argument. This is repeated with the right subtree. The process is continued recursively until Leaf is found in either subtree. Whenever Leaf is found, we need not take any action, and the result is Leaf:

        (<*>) Leaf _ = Leaf
        (<*>) _ Leaf = Leaf
        (<*>) (Node lf f rf) (Node la a ra) = Node (lf <*> la) (f a) 
        (rf <*> ra)

The recipe has an example to prove that our Applicative instance follows the first and fourth laws. However, since the definition of pure results in an infinite tree, we cannot execute it in a program. However, we can show that by equational reasoning, the homomorphism states the following:

       pure f <*> pure x == pure (f x)

Consider the binary tree definition in the recipe; we can write the preceding statement by substituting the definition of pure:

     tf <*> tx == tfx -- Note : this is not a Haskell code
     where
      tf = Node tf f tf 
      tx = Node tx x tx
      tfx = Node tfx (f x) tfx

     -- The above expression becomes
     Node tf f tf <*> Node tx x tx 
     = Node (tf <*> tx) (f x) (tf <*> tx) -- Recursive definition 
     evaluates to tfx
     = Node tfx (f x) tfx
     = tfx

Similarly, the interchange law can also be proved.

The important thing to note is that an Applicative allows sequencing, without needing to know about intermediate results. Hence, an Applicative is stronger than a Functor, but weaker than a monad. 



            

            
        
    
        

                            
                    Working with monad

                
            
            
                
In this recipe, we will define our own Maybe type. We will define the Functor and Applicative instances for our Maybe, which are prerequisites for creating a Monad instance. Then, we will continue to create an instance of Monad, and, finally, we will use them in an example.

Maybe is a simple type and its monad instance is simple to implement and understand. Hence, when we work with the Maybe monad, it becomes clearer why and how the monad works.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project working-with-monad using the simple Stack template:



        stack new working-with-monad simple


	Open src/Main.hs and edit it.




	After the initial module definition, add the following imports:



        import Prelude hiding(Maybe(..))

Note that we are importing otherwise implicitly imported module Prelude explicitly by hiding Maybe. This is because we are defining our own Maybe data type.


	Import other required headers now. The header for monad is Control.Monad:



        import Data.Functor
        import Control.Applicative
        import Control.Monad


	Now, define the Maybe data type. Also, define the instance for Functor and Applicative for it:



        data Maybe a = Nothing | Just a deriving Show

        instance Functor Maybe where

        fmap f (Just x) = Just (f x)
        fmap f Nothing  = Nothing

        instance Applicative Maybe where

        pure x = Just x

        (<*>) Nothing _ = Nothing
        (<*>) _ Nothing = Nothing
        (<*>) (Just f) (Just x) = Just (f x)


	Now, define the instance of Monad for Maybe. We need to implement two functions, return and >>= or the binding function:



        instance Monad Maybe where
  
        return = Just 

        Nothing  >>= _ = Nothing
        (Just x) >>= f = f x


	Add the following function add to demonstrate the do notation for monad:



        add :: Num a => Maybe a -> Maybe a -> Maybe a
        add x y = do
        i <- x
        j <- y
        return (i + j)


	The function liftM2 lifts a function to a monad and applies it to two arguments. The following example code shows that. Add it to src/Main.hs:



        multiply :: Num a => Maybe a -> Maybe a -> Maybe a
        multiply x y = liftM2 (*) x y


	Now, add some utility functions along with main and complete the recipe:



        fromOdd :: Integral a => a -> Maybe a
        fromOdd x | odd x = Just x
        fromOdd _ = Nothing

        isJust :: Maybe a -> Maybe Bool
        isJust (Just _) = Just True
        isJust Nothing  = Just False

        main :: IO ()
        main = do
          print $ multiply (Just 10) (Just 2)
          print $ multiply (Just 10) Nothing
          print $ add (Just 10) (Just 2)
          print $ add Nothing (Just 2)
          print $ forM [1..10] Just
          print $ forM [1..10] fromOdd
          print $ filterM (isJust . fromOdd) [1..10]
          print $ (pure 10 :: Maybe Int) >>= \x -> return (x * x)


	Build and run the project:



      stack build
      stack exec -- working-with-monad


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
One can look at Monad as a logical extension of Applicative, but with stronger implications. The monad type class is defined as follows:

    class Applicative m => Monad (m :: * -> *) where
     (>>=) :: m a -> (a -> m b) -> m b
     (>>) :: m a -> m b -> m b
     return :: a -> m a
     fail :: String -> m a
     {-# MINIMAL (>>=) #-}

To define the monad instance, one needs to define the binding function (>>=). In fact, the return function is equivalent to the Applicative pure function. 

The binding function is interesting, with the following signature:

    (>>=) :: m a -> (a -> m b) -> m b

To interpret the preceding function in the context of Maybe, consider the following illustration:



The return function that is equivalent to pure takes in a value and inserts the monad instance. In the context of Maybe, it means that we take some value x and create Just x. 

The binding function (>>=) takes the Just x, extracts the value x out of it, and feeds it to a function f :: a -> Maybe b. This function f takes the value x and may produce Just y or Nothing.  If instead we use Nothing  and then bind it using (>>=) to the function f,  the monad instance definition of (>>=) kicks in and produces Nothing without even considering f. This is apparent from our earlier implementation: 

    Nothing  >>= _ = Nothing
    (Just x) >>= f = f x 

Suppose now we want to use a function (+) to add contents in two Maybes, say Just 10 and Just 2 as we have used in our example. Using (>>=), we can write it as follows:

    (Just 10) >>= ( \x -> Just 2 >>= \y -> return x + y )
    -- x will get value from Just 10 i.e. 10 and 
    -- y will get value from Just 2 i.e. 2
    -- expanding further
    (Just 10) >>= ( \10 -> Just 2 >>= \2 -> return (10 + 2))
    -- return will create Just ... Hence we expand above we will get
    Just 12

This can be graphically shown as follows:



The first bind will associate Just 10 with a function that produces Just 2. The second bind will associate Just 2 with a function that adds ten from the first bind and two from the second bind. Note how the scope of the first bind is available to the second bind as well. Finally, the return (10 + 2) statement simply creates Just 2 back. If at any stage the binding results in a value Nothing, then all the remaining binding will not get called and will simply produce Nothing.

However, the syntax (Just 10) >>= ( \x -> Just 2 >>= \y -> return x + y ) is hard to understand and write; hence, the do... notation. The do notation makes it easier to work with monad and calls >>= internally. This is called syntactic sugar. The same expression now can be written as follows, with each line creating a binding:

    add :: Maybe a -> Maybe a -> Maybe a
    add m1 m2 = do
     x <- m1
     y <- m2
     return (x + y)

Note how the binding ensures that the previous computation has evaluated its result (for example, from Just 10 extracting ten) before moving to next binding (that is, Just 2 or addition as in the preceding example). This ensures that the steps in a monadic computation are evaluated in a sequence. The binding creates stronger implications for a monad. 



            

            
        
    
        

                            
                    There's more...

                
            
            
                
Once we understand how monad works and where the do notation originates, we can look at other functions in Control.Monad in conjunction with the monad that we have used in our recipe:


	liftM2: The liftM2 function takes a function with two arguments (like *) and two values of a data type for which the monad instance is defined. It lifts the function and applies to the monad. In this regard, it is similar to the add function that we have defined here:



        liftM2 (*) (Just 10) (Just 2)


	forM: The forM function takes a traversable (like a list that can traverse through its elements) and applies a function (a -> m b) to each of those elements to produce a traversable of b in the monad m. Here is an example:



        forM [1..10] Just == Just [1..10]
        forM [1..10] fromOdd == Nothing -- as fromOdd returns Nothing 
        for 2,4,6..


	filterM: The filterM function is similar to filter, except that it applies to monad. It takes a function (a -> m Bool) that produces a boolean value in the monad instance. It then filters out the elements in the list that do not return True:



        filterM (isJust . fromOdd) [1..10] == [1,3,5,7,9]



            

            
        
    
        

                            
                    List as monad

                
            
            
                
In this recipe, we will revisit list and look at it as a monad. List is a monad, and we will work with a few examples of how to work with a list with monadic syntax and functions.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project list-as-monad using the simple Stack template.

	Open src/Main.hs and edit it.

	Add the following import for monad:



        import Control.Monad


	Write a function that takes an integer x and returns a list of all integers starting with  x ([x, x+1, x+2,...]):



        nexts :: Num a => a -> [a]
        nexts x = do
        x : nexts (x+1)


	Write a function that takes two lists and returns all ordered pairs from this list:



        pairs :: [a] -> [b] -> [(a,b)]
        pairs xs ys = do
        x <- xs 
        y <- ys
        return (x,y)


	Write a partitioning function using list comprehension. The same function is also written using the monadic syntax:



        partition :: (a -> b -> Bool) -> [a] -> [b] -> [(a,b)]
        partition f xs ys = [ (x, y) | x <- xs, y <- ys, f x y]

        partition1 :: (a -> b -> Bool) -> [a] -> [b] -> [(a,b)]
        partition1 f xs ys = do
        x <- xs
        y <- ys
        if f x y then
          return (x,y)
        else
        []


	Use the preceding functions along with forM and filterM with list:



        main :: IO ()
        main = do
        putStrLn "Next 10 elements from 11"
        print $ take 10 (nexts 11)
        putStrLn "Filtering out even elements from [1..1]"
        print $ filterM (\x -> if odd x then [True] else [False]) 
        [1..10]
        putStrLn "Applying forM over a list and Maybe and embedding 
        them in a list"
        print $ forM [1..10] (:[])
        print $ forM (Just 10) (:[])
        putStrLn "All pairs between [1..5] and ['a'..'c']"
        print $ pairs [1..5] ['a'..'c']
        putStrLn "Partition the ordered pairs between [i] and [j] such
        that i > j"
        print $ partition (>) [1..10] [1..10]
        putStrLn "Partition the ordered pairs between [i] and [j] such 
        that i < j"
        print $ partition1 (<) [1..10] [1..10]


	Build and run the project:



      stack build
      stack exec -- list-as-monad


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
The first function nexts shows that list is a monad. It uses the do notation and uses recursion to infinitely define the list.

The pairs function shows how the list monad works. The function is defined as follows:

    pairs :: [a] -> [b] -> [(a,b)]
    pairs xs ys = do
    x <- xs 
    y <- ys
    return (x,y)

It should read as follows: 

    for each x in xs 
    for each y in ys
    create list of (x,y)
    concatenate lists to return a single list

The list monad binds each element of a list to the function, creating another list, and concatenates them back together. The return function creates a singleton list.

The partition function is implemented in two ways. The list comprehension for partition is [(x,y) | x <- xs, y <- ys, f x y], which is a short form for the monadic syntax implemented in the function partition1. Both functions are equivalent. The partition1 function uses the if .. else block, whereas list comprehension simply specifies the boolean condition with f x y.



            

            
        
    
        

                            
                    Working with IO monad

                
            
            
                
In the recipes that we saw earlier, we all worked with IO, and used functions such as putStrLn :: String -> IO () or print :: Show a => a -> IO (). We already know that these functions print the string or a value to standard output.

In this recipe, we will open a file, read it line by line, and output it on the stdout along with the line number. We will also understand how IO works as a monad and how IO allows a Haskell program to interact with the outside world.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project io-monad with the simple Stack template:



        stack new io-monad simple


	Open src/Main.hs; we will be editing this file.




	After initial module definition, add the following imports. Only those functions that are used in the program are imported from the corresponding module:



        import System.IO (hGetLine, hIsEOF, withFile, Handle, 
        IOMode(..))
        import System.Environment (getArgs)
        import Control.Monad
        import Data.List (intercalate)


	Write the function getLineSeq, which returns a list of lines when given a file handle:



         -- From the file handle, check if we have reached end of file,
         -- otherwise read the file line by line
         getLinesSeq :: Handle -> IO [String]
         getLinesSeq h = do
         eof <- hIsEOF h
         -- Use (:) to get the line and append remaining ...
        if eof then return [] else (:) <$> hGetLine h <*> getLinesSeq h


	Write the function printLine to print the line number and line in the format line number : line. It uses the intercalate function, which separates the items in the list by a given element:



         -- Print line number and string separated by :
         printLine :: (Int, String) -> IO ()
         printLine (lineno, line) = putStrLn $ intercalate " : " [show 
         lineno, line]


	Write the withLineNumbers function, which takes any monad that emits a list of strings and returns a list of tuple. Each tuple contains the line number and line itself: 



         -- Given a monad that gives us list of strings, return the 
         list of
         -- (int,string) where int is the line number, and string 
         represents
         -- the corresponding line.
         withLineNumbers :: Monad m => m [String] -> m [(Int,String)]
         withLineNumbers m = zip <$> pure [1..] <*> m


	Now, write the main function to open a file and print the contents along with the line number:



        main :: IO ()
        main = do
        -- Throw an error if number of arguments is not 1
        args <- getArgs
        when (length args /= 1) $ do
        putStrLn $ "Incorrect arguments " ++ (show args)
        error "Provide file name"
        -- Open the file and print the lines with line number
        withFile (head args) ReadMode (\h -> do
           -- Each line is zipped with line number
           lines <- withLineNumbers (getLinesSeq h)
           -- Print line
           forM_ lines printLine
           )


	Build and run the project. Note that we give the argument Setup.hs to the command prompt:



      stack build
      stack exec -- io-monad Setup.hs


	Upon running the project, you should see the following output--contents of Setup.hs along with the line number:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
We have been using IO and functions related to IO in a limited way in our previous recipes. The usage was limited to printing the output using either putStrLn or print. We should spend some time to understand what IO is and how it is inevitable for a Haskell program. 

Haskell works with pure functions without side effects. It means that the evaluation of pure functions does not affect the outside world in any way. To be able to interact with the outside world, the outside world would need to contain memory, a console, file I/O, networking, and so on. The IO monad enables a Haskell program to interact with the outside world. IO monad is the gateway for pure Haskell functions to the outside world. 

By interacting with IO, Haskell functions enforce side effects such as printing to a standard output, opening a file, or doing network operations. This is effectively shown here:



Since the IO operations are imperative, the first step is executed before the following ones. For example, we cannot write to a file without opening it first. It is, hence, logical that IO is an instance of a monad and implicitly Applicative and Functor.

Moving to the recipe, to open the file and print the lines along with the line numbers, the following points are to be noted. The function (getLinesSeq :: Handle -> IO [String]) takes a handle to the file and produces a list of strings in IO monad. We will first check whether we have reached the end of the file using the hIsEOF function. If we have reached the end of the file, we will just return []. Otherwise, we will use Applicative in a very interesting way:

    (:) <$> hGetLine h <*> getLinesSeq h 

This is a very interesting pattern, and Applicative fits perfectly in this. We used hGetLine :: Handle -> IO String to get a single line from the file. The rest of the lines can be retrieved using the getLinesSeq function recursively. Now, we need to put the single line ahead of the rest of the lines returned by getLinesSeq. For the pure list, we can achieve it by the (:) function. Using the Functor <$> and Applicative <*> functions, we can easily represent this pattern. If we use the monadic do notation, this can be written as follows:

    do
     line <- hGetLine h
     lines <- getLinesSeq h
     return (line : lines)

Using the Functor and Applicative patterns, the preceding code can be represented in a very succinct and expressive way.

The function withLineNumbers takes in a monad (any) that represents a list of strings. It again lifts the function zip :: [a] -> [b] -> [(a,b)] to the monad to add the line number to each input line. It again uses the Functor/Applicative pattern:

    -- In fact Monad m is not necessary here.. Applicative m should 
     suffice.
    withLineNumbers :: Monad m => m [String] -> m [(Int,String)] 
    withLineNumbers m = zip <$> pure [1..] <*> m

The preceding code can also be written in a monadic notation as follows:

    withLineNumbers m = do
      let linenumbers = [1..] -- infinite list [1,2,...]
      lines <- m -- Input monad represents a list of lines
      return (zip linenumbers lines) 

In the main function, we used getArgs to get the arguments to the function. The when function checks if the number of arguments is correct. When it is not correct, we raise an error Provide file name. If we run the program without an argument (or more than one argument), then the error causes an exception to be raised, and the program will terminate. You should see the following output:



We use the withFile :: FilePath -> IOMode -> (Handle -> IO a) -> IO a function. This function takes three arguments:


	The first argument is the path of the file, which we would like to open.

	The second is IOMode (ReadMode, WriteMode, ReadWriteMode ...), where we use ReadMode as we want to open the file only for reading.

	The third argument is the function that actually works with the opened handle. Once this function evaluates, the file handle is closed by withFile.



We use an anonymous function (\h -> ...) to work with the opened file. We call withLineNumbers along with getLinesSeq to get a list of lines with line numbers. We then use Control.Monad.forM_ to print each line using printLine.



            

            
        
    
        

                            
                    Writing INI parser

                
            
            
                
In this recipe, we will further build on the concepts of Functor, Applicative, and monad, and build a parser for the INI file from scratch. We will write a simple parser, and define its Functor, Applicative, and monad instances. Then, we will slowly build upon the concept to finally build an INI parser. 

The INI file is usually used as a configuration file. A typical INI file contains the number of sections, each section representing a set of name-value assignments. A sample INI file may look like this: 

    [Section]
    name1 = value1
    name2 = value2

    [Section2]
    name1 = value1
    name3 = value3



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project ini-parser using the simple Stack template:



        stack new ini-parser simple


	Open the file src/Main.hs for editing.

	After the initial module header, add the following imports:



        import Data.Functor
        import Control.Applicative
        import Control.Monad
        import Data.Map hiding (empty)
        import Data.Char


	Define the INI file data structure. Represent name-value pairs in each section (variables) as a map of name to values. Both name and values are represented by strings. The sections inside an INI file are a map between the section name and variables for each section:



        type Variables = Map String String
        type Sections = Map String Variables
        newtype INI = INI Sections


	Start defining the parser. A parser is defined as follows:



        data Parser a = Parser { runParser :: String -> Maybe (a, 
        String) }

The parser is represented as a data type around a function runParser that takes a string as input and generates a tuple (a String) where a is the type of the value parsed by the parser. The second member of the tuple, a string, represents the remaining input after parsing the value of type a. Since we can fail during parsing, we use Maybe so that we can represent either tuple or nothing. 


	If we have a parser of type a, then we can define a Functor instance. If we apply a function of type a -> b, we can convert Parser a into Parser b.  Define the Functor instance as follows:



        instance Functor Parser where
        fmap f (Parser p) =
        let parserfunc input = do
          (x, remaining) <- p input -- run supplied parser against 
          input
          return (f x, remaining)   -- apply function on parsed value
        in Parser parserfunc


	Similarly, we can define the Applicative instance for our parser as follows: 



        instance Applicative Parser where
        pure x = let parserfunc input = Just (x, input)
        in Parser parserfunc

        (Parser pf) <*> (Parser pa) =
        let parserfunc input = do
          (f, remaining) <- pf input
          (a, remaining2) <- pa remaining
          return (f a, remaining2)
          in Parser parserfunc

Do note how we create a parser function on the fly that takes input and produces certain output.


	Now, we can go ahead with the monad instance for our parser:



        instance Monad Parser where
        return = pure
        (Parser pa) >>= fab =
        let parsefunc input = do
        (a, remaining) <- pa input
        runParser (fab a) remaining
        in Parser parsefunc

It runs a parser on input, producing certain output. Then, it feeds this output to another parser, with the remaining input to continue parsing.


	We will now implement an Alternative instance for our parser. The Alternative is a logical extension of Applicative, where it allows us to define an empty (or complementary to pure) case for our data type, and if we have two values of data types, we can go with the second one if the first one is empty. Define the Alternative instance for our parser now:



        instance Alternative Parser where
        empty = Parser (\_ -> Nothing )

        (Parser pa) <|> (Parser pb) =
        let parsefunc input = case pa input of
                            Nothing -> pb input
                            Just (x, remaining) -> Just (x, remaining)
        in Parser parsefunc

        -- return a list of v for which v satisfies. The list should 
        satisfy at least one v.
        some v =
        let parsefunc input = do
          (x, remaining) <- runParser v input
          (xs, remaining2) <- runParser (many v) remaining
          return (x:xs, remaining2)
          in Parser parsefunc

       -- return a list of v for which v satisfies, the list can 
       satisfy zero or more v.
       many v =
       let parsefunc input = case runParser (some v) input of
                            Just (xs, remaining) -> Just (xs, 
                            remaining)
                            Nothing -> Just ([], input)
                            in Parser parsefunc

The definition of some and many is interesting. In the parsing context, some matches at least one value, whereas many matches zero or more values parsed by the supplied parser.


	The basic machinery for parsing is now done. Now, start writing concrete parsing functions. If the parser fails, the parser function should return Nothing; otherwise, it should return value successfully parsed and the remaining input. 




	The first function to be used is a conditional character parser. If the character meets certain criteria, we will return the character as a successfully parsed value:



        conditional :: (Char -> Bool) -> Parser Char
        conditional f =
        let parsefunc [] = Nothing  -- Input is empty, nothing to 
        produce
        parsefunc (x:xs) | f x = Just (x, xs)  -- We got a match, 
        produce output
        parsefunc _ = Nothing  -- No match, just fail.
        in Parser parsefunc

Use the conditional parser to implement a parser to match the given character:

        char :: Char -> Parser Char
        char c = conditional (== c) 


	We will implement the bracketed parser. We are interested in the enclosed value (such as within open and closed parenthesis and without parenthesis): 



        bracketed :: Parser a -> Parser b -> Parser c -> Parser b
        bracketed pa pb pc = do
        pa  -- match first parser, but ignore value
        b <- pb  -- interested in value parsed by pb
        pc  -- match end parser, again ignoring value
        return b -- return second value


	Now, implement a bunch of parsers to match square bracket characters, alpha-numeric characters, and white spaces.  We use many with white space to match one or more white spaces:



        bracketOpen :: Parser Char
        bracketOpen = char '['

        bracketClose :: Parser Char
        bracketClose = char ']'

        alphanum :: Parser Char
        alphanum = conditional isAlphaNum

        isWhiteSpace :: Char -> Bool
        isWhiteSpace ' ' = True
        isWhiteSpace '\t' = True
        isWhiteSpace _ = False

        whitespace :: Parser Char
        whitespace = conditional isWhiteSpace

        whitespaces :: Parser String
        whitespaces = many whitespace


	SectionHeader is the section name enclosed in brackets: 



        sectionName :: Parser String
        sectionName = bracketed whitespaces (some alphanum) whitespaces

        sectionHeader :: Parser String
        sectionHeader = bracketed bracketOpen sectionName bracketClose


	A name is some alpha-numeric identifier. The value can either be alpha numeric or may be a quoted value (which can have spaces):



        name :: Parser String
        name = (some alphanum)

        quote :: Parser Char
        quote = char '\"'

        -- allow alpha numeric and white space characters
        quotedchar :: Parser Char
        quotedchar = conditional (\c -> isAlphaNum c || isWhiteSpace c) 

        quotedvalue :: Parser String
        quotedvalue = bracketed quote (many quotedchar) quote

        value :: Parser String
        value = name <|> quotedvalue

An assignment is a name-value pair separated by the = character. We ignore the white spaces around these:

        assignment :: Parser (String,String)
        assignment = do
         whitespaces
         name <- name
         whitespaces
         char '='
         whitespaces
         value <- value
         return (name, value)


	Finally, write a parser for a section. A section has a section header and name-value pairs separated by newline:



        newline :: Parser Char
        newline = conditional (\c -> c == '\r' || c == '\n' )

        newlines :: Parser ()
        newlines = many newline >> return ()

        blank :: Parser ()
        blank = whitespaces >> newline >> return ()

        blanks :: Parser ()
        blanks = many blank >> return ()

        assignments :: Parser Variables
        assignments = fromList <$> many (blanks >> assignment)
 
        section :: Parser (String, Variables)
        section = do
         blanks
         whitespaces
         name <- sectionHeader
         blanks
         variables <- assignments
         return (name, variables)


	The INI file is a list of many sections. Use Functor fmap to do the job of converting many sections into the INI data type:



        ini :: Parser INI
        ini = (INI . fromList) <$> many section


	Finally, write the main function to parse an INI file:



        main :: IO ()
        main = do
        args <- getArgs
        contents <- readFile (head args)
        case runParser ini contents of
        Just inicontents -> print inicontents
        Nothing -> putStrLn "Could not parse INI file"


	Build the project. Then, create a sample.ini file with the following contents and run it against the project:



      stack build
      stack exec -- ini-parser sample.ini


	The sample file is shown here:



        [section]
        name = value
        name2 = "quoted value"
        [ section2]
        name = value
        name2 = "quoted value 2"


	The output should look like this:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
The INI parser is a combinatorial top-down recursive-descent parser. Its monad instance creates a composable function that can be run later with runParser with input. We used monad/Applicative and Functor to combine the parser combinatorially from smaller units such as char, quotedchar, quotedvalue, and so on until we build the whole INI file parser.

Every time we compose two parsers, we create a function that first runs one parser, evaluates its value and remaining input, and then invokes the second parser to again evaluate its value. Such nesting and sequencing of parsers gives rise to a composition of parsing functions. The resultant parser function can be run on input to get the desirable value. 

The parser is diagrammatically explained here:





            

            
        
    
        

                            
                    Errors and exception handling

                
            
            
                
We have been looking at Maybe and Either in earlier recipes and used them for conveying error. For example, Nothing :: Maybe a conveys that the evaluation has resulted in an error, and that is how we now have Nothing. Either is more informative than Maybe and conveys more information through its Left constructor.

In this recipe, we will work with three situations: 


	Working with error and catching it later

	Working with IO exception and catching it

	Creating a custom exception, raising it, and catching it





            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project exceptions with the simple Stack template.

	Open src/Main.hs and edit it.

	After the module declaration, add the following imports for Exception and for doing IO:



        import qualified Control.Exception as E
        import System.IO


	We will write a function div1 to divide one integer by another. However, when we encounter the division by zero situation, we use the error :: String -> a function to raise an error. This function takes and raises SomeException:



        div1 :: Int -> Int -> Int
        div1 x 0 = error "Division by zero"
        div1 x y = x `div` y


	Now, we will write safeDiv1 and safeDiv2 , which will catch the exception and will safely show the result of the division:



        safeDiv1 :: Int -> Int -> IO ()
        safeDiv1 x y = E.catch (putStrLn $ show $ div1 x y) (\e -> 
        putStrLn (show $ (e ::  
          E.SomeException)))

       safeDiv2 :: Int -> Int -> IO ()
       safeDiv2 x y = do
       result <- E.try (putStrLn $ show $ div1 x y)
       case result of
         Left e -> putStrLn $ show (e :: E.SomeException)
         Right r -> putStrLn $ show r


	Now, we will write a function, safeReadFile, which reads the contents of the file and returns it. If the file does not exist, it catches the error and returns it. In this case, it catches exceptions of type IOException:



        safeReadFile :: FilePath -> IO String
        safeReadFile filepath = do
        E.catch (readFile filepath)
        (\e -> do
        putStrLn $ "ERROR " ++ (show (e :: E.IOException))
        return "" )


	Now, we will a create custom exception. We will create a data type for representing Point and Line. We will also add a function to get the square of the distance between two points:



        data Point = Point Float Float deriving Show
        data Line = Line Point Point deriving Show

        distanceSq :: Point -> Point -> Float
        distanceSq (Point x1 y1) (Point x2 y2) = xx + yy
        where
          square t = t * t
          xx = square (x1 - x2)
          yy = square (y1 - y2)

       -- Minimum valid distance allowed between two points
       tolerance :: Float
       tolerance = 1e-6

We also added a function tolerance, which represents the minimum allowed length for a line.


	Now, define the custom exception GeometryException. It needs to be an instance of Show and Exception type class: 



        data GeometryException = ZeroLengthLine

        instance Show GeometryException where

        show ZeroLengthLine = "Line with zero or less than tolerance 
        length"

         instance E.Exception GeometryException


	Now, create a function safeLine to create a line. This function throws ZeroLengthLine whenever it encounters two points too close to each other. The function showLine catches the error and shows it, or it shows the contents of the line:



        safeLine :: Point -> Point -> Line
        safeLine p1 p2 | distanceSq p1 p2 < tolerance = E.throw  
        ZeroLengthLine
        safeLine p1 p2 = Line p1 p2

        showLine :: Line -> IO ()
        showLine line =
        E.catch (putStrLn $ show line)
        (\e -> do
          putStrLn $ "ERROR " ++ (show (e :: GeometryException))
          return ()
         )


	Now, use all the functions used earlier to test different situations, normal division, division by zero, opening a file that does not exist, and trying to create a line of zero length:



        main :: IO ()
        main = do
        -- Catch all exceptions
        safeDiv1 4 2
        safeDiv1 7 0
        -- Using try just
        safeDiv1 12 2
        safeDiv1 7 0

        -- Safe file read
        contents <- safeReadFile "some-arbitrary-name"
        putStrLn "The contents should be blank"
        putStr contents

        let p1 = Point 10 10
          p2 = Point 0 0

        putStrLn "Line with zero length"
        showLine (safeLine p1 p1)
        putStrLn "Valid line"
        showLine (safeLine p1 p2)


	Build and run the project:



      stack build
      stack exec -- exceptions


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                

	The error function takes a string, and creates an exception. However, this exception is realizable only in the IO monad. Hence, we catch it while we are printing the result of div1.

	The function catch runs an IO action and takes a handler to catch the exception. It is possible to catch all exceptions by specifying the type of exception as SomeException. 

	The try function also runs an IO action. However, it returns the result in Either e a where e is the exception and a is the result of the IO action. Thus, we can check using Either that we have a valid result. 

	Typically, IO functions such as readFile raise an exception of type IOException. 

	We can create custom exceptions by creating an instance of Show and Exception. The Show instance is required to show the exception in a user-friendly string. We can throw custom exceptions using the throw :: e -> a function. This is better than just error. 



One must differentiate between an error and an exception. An error is a programming error and must be handled by a programmer. It represents certain assumptions or a case that is not handled. Exceptions, on the other hand, should be extremely rare and raised because of external factors rather than the program. 



            

            
        
    
        

                            
                    More about Monads

                
            
            
                
In this chapter, we will cover the following recipes:


	Writing a State Monad

	Computing a fibonacci number with State Monad

	Writing a State Monad transformer

	Working with the Reader monad transformer

	Working with the Writer monad transformer

	Combining monad transformers





            

            
        
    
        

                            
                    Introduction

                
            
            
                
In the previous chapter, we looked at Functor, Applicative, and monads. In this chapter, we will look at State Monad, a monad where we can store a state and modify it. Once we understand monad, we will understand that we can implement a monad (or an Applicative) for a specific purpose.

It is very likely that a situation will arise where we would like to combine two monads to make a single monad. For example, consider a parser monad, Parser a and a State Monad State s a (where s is the state and a is the output of the parser). If we also would like to maintain a state along with the parsing output, then we can combine them together with Parser (State s a). With this, now, we can either operate in the outer Parser monad or internal State s a monad. 

Let's take an example of IO monad with Maybe:  

    foo :: IO (Maybe Int)
    foo = Just 10

    bar :: IO (Maybe Int)
    bar = Nothing

    add :: IO (Maybe Int) -> IO (Maybe Int) -> IO (Maybe Int)
    add xfoo ybar = do  -- We are in IO Monad
     x <- xfoo -- This will get us Maybe Int from xbar
     y <- ybar -- This will get us Maybe Int from ybar
     let z = do    -- Now we are in Maybe monad
      inx <- x    -- We will get data stored in x
      iny <- y    -- Data stored in y
      return $ x + y   -- Add if both x and y contained data, Nothing 
      otherwise.
      return z

    main :: IO ()
    main = do
    print $ add foo bar   -- Should print Nothing
    print $ add foo foo   -- Should print "Just 20"

You can see that we need to switch context from IO monad to the Maybe monad to be able to do the computation in the monad that we are interested in. 

In this chapter, we will look at a particular class of monads called monad transformers. These work by combining one monad with a base monad and providing the ability to transparently work with either of the monads. We will start with State Monad and convert the State Monad into a monad transformer. Then, we will look at mtl package (https://hackage.haskell.org/package/mtl), a monad transformer library. This is a very popular library that provides an array of useful monads and their transformers. We will look at reader and writer monads in particular. 



            

            
        
    
        

                            
                    Writing a State Monad

                
            
            
                
In this recipe, we will write our own State Monad. We will use the state monad to store the effect of cursor movements. 



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project state-monad using the stack command with the simple template:



        stack new state-monad simple


	Open the file src/Main.hs; we will add our code here after the initial module declaration.

	Import the following modules:



        import Prelude hiding (Either(..))
        import Data.Functor
        import Control.Applicative
        import Control.Monad


	Now, add the definition for the State Monad. A State Monad will store state s with the monad:



        data State s a = State { runState :: s -> (a, s) } 


	Now, we will write the Functor instance for the state. Writing the Functor instance is easy; we need to transform output a with the function f :: a -> b and produce b:



        instance Functor (State s) where
        fmap f (State stateFunc) = 
        let nextStateFunction s =
        let (xa, s1) = stateFunc s
        in (f xa, s1)
         in State nextStateFunction


	Now, we will write the Applicative instance for the state type:



        instance Applicative (State s) where


	Write the pure instance for the Applicative. This involves introducing the given input and introduces it in the state data type. The pure implementation involves grabbing input a to pure function and returning the state function, which returns state s along with input a:



        pure x = let pureState s = (x, s) in State pureState


	The Applicative function <*> involves taking in State s (a -> b) and applying it on State s a to produce State s b:



         sf <*> sa = 
         let stateFunc s = 
         let (f, s1) = runState sf s
          (a, s2) = runState sa s1
         in (f a, s2)
         in State stateFunc

Apply the state function with input s on sf, that is, State s (a-> b) first. We will retrieve state s1 in this step, along with the function f :: a -> b in this step.

Then, apply the state function on State s a. Use state s1 and then apply it to get a with state s2. Apply f to a to produce b and use s2 as the resultant state.


	Now, we will define the monad instance for the state:



        instance Monad (State s) where
        return = pure

        sa >>= fsb = let stateFunc s = 
          let (a, s1) = runState sa s
          in runState (fsb a) s1
          in State stateFunc


	Implement a function to get the state. Note how we implement it in the same monad:



        get :: State s s
        get = let stateFunc s = (s, s)
        in State stateFunc


	Now, implement a function to change the existing state:



        put :: s -> State s ()
        put s = let stateFunc _ = ((), s)
        in State stateFunc


	Define a data type to define a cursor. A cursor is a position from the top-left point on the screen:



        data Cursor = Cursor Int Int deriving Show


	Now, define the movement of the cursor in four directions, right, left, up, and down:



        data Move = Up Int | Down Int | Left Int | Right Int deriving 
        Show


	Define the function apply to apply a move on the current cursor. This will change the cursor position according to the move:



        apply :: Cursor -> Move -> Cursor
        apply (Cursor x y) (Up i) = Cursor x (y-i)
        apply (Cursor x y) (Down i) = Cursor x (y+i)
        apply (Cursor x y) (Right i) = Cursor (x + i) y
        apply (Cursor x y) (Left i) = Cursor (x -i) y


	Suppose we have many moves that need to be applied to the cursor position. Use State Monad, in which state the current position of the cursor is. Whenever we wish to apply a move to the cursor, we will get the current cursor in the current state, apply the move, and then put the changed cursor back into the state:



        applyMoves :: [Move] -> State Cursor ()
        applyMoves [] = return ()  - No moves are left
        applyMoves (x:xs) = do
         cursor <- get  -- Get the current cursor position
         let newcursor = apply cursor x 
         put newcursor  -- set the new cursor
         applyMoves xs  -- apply remaining move


	Define a list of moves. We will move the cursor in a square of 100 units and bring it back to the same position:



        moves :: [Move]
        moves = [Down 100, Right 100, Up 100, Left 100]


	Apply the moves to the function applyMoves to get a State Monad. Experiment with different initial states. Here, we have two initial cursor positions, which are cursor at the top-left position Cursor 0 0 and cursor at position Cursor 12 12. In both cases, the movement should result in the same position: 



        resultCursor :: ((), Cursor)
        resultCursor = runState (applyMoves moves) (Cursor 0 0)

        resultCursor1 :: ((), Cursor)
        resultCursor1 = runState (applyMoves moves) (Cursor 12 12)


	Write the main function to test the State Monad: 



        main :: IO ()
        main = do
        print (snd $ resultCursor)
        print (snd $ resultCursor1)


	Build and execute the project:



      stack build
      stack exec -- state-monad


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
A State Monad is a function that takes a state s and produces an output (a, s). Here, a is the result of monadic computation, and in all monad steps, the state s is threaded through each step. This is illustrated in the following diagram:



During the monadic bind operations, the result of the previous operation is taken and is fed into a function that produces the next output, as shown in the preceding diagram. 

It is important to note two specific operations that are defined in the context of the State Monad. These operations are get and put, used for getting the current state and saving a new state, respectively. 

In the get operation, we will create the State Monad function in such a way that state is the result of the monad:

    get :: State s s 
    get = let stateFunc \s -> (s, s)
      in State stateFunc

Similarly, in the put operation, we will create a State Monad function in such a way that the given input replaces the current state. In this case, we will produce the void() output: 

    put :: s -> State s ()
    put newstate = let stateFunc \_ -> ((), newstate)
      in State stateFunc



            

            
        
    
        

                            
                    Computing a fibonacci number with State Monad

                
            
            
                
In this recipe, we will use the State Monad as defined by the mtl library. The mtl library defines many useful, well-articulated monads. We will use the State Monad to calculate a fibonacci number. 



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project using the simple Stack template:



        stack new fibonacci-state simple


	Open fibonacci-state.cabal and add packages mtl and containers to the build-depends subsection of the executable section:



         executable fibonacci-state
         hs-source-dirs: src
         main-is: Main.hs
         default-language: Haskell2010
         build-depends: base >= 4.7 && < 5
                 , mtl
                 , containers


	Build the project so that the dependent packages will be pulled by stack:



        stack build


	Open src/Main.hs. We will be editing this file.

	Import the following modules after initial module declaration:



        import Control.Applicative
        import Control.Monad.State
        import Data.Map.Strict as M

The module Control.Monad.State defines the state, monad.Data.Map.Strict defines the strict version of an associative container. We will use Map for storing fibonacci numbers against their indices.


	Add type synonym for the fibonacci map. It is a map of the fibonacci index against the fibonacci number at the index:



        type FibMap a = Map a a


	Add type synonym for state where state is the fibonacci map:



        type FibState a b = State (FibMap a) b


	Now, define the function to get the fibonacci number stored in the state at the given index. If the number is found, we will get Just v (where v is the fibonacci number) or Nothing if the number was not previously found:



        getFib :: Integral a => a -> FibState a (Maybe a)
        getFib i = M.lookup i <$> get 

We get the state and lookup to see if something is placed at the given index.


	Now, define a function to add fibonacci number v at the index i and store it in the current map. We will fetch the map using get and then insert the new values in the map and return the value v:



        putFib :: Integral a => a -> a -> FibState a a
        putFib i v = do
        -- get the map, and insert given number into it.
        mp <- (pure $ M.insert i v) <*> get
        -- Put the map back into the state
        put mp
        -- Return the value 
        return v


	Now, define the function to calculate the fibonacci number. We will use state (map between index and fibonacci number) as a cache. We will first try to retrieve the number out of the cache; if we do not find the number, we will calculate it. We will insert a new number into the cache immediately:



        fibWithState :: Integral a => a -> FibState a a


	The first case is base case where the index can be 0 or 1. In this case, we will check if the map contains these values; otherwise, we will insert it into the map:



        fibWithState i | i == 0 || i == 1 = do
                   f <- getFib i
                   case f of
                     Just v -> return v
                     Nothing -> putFib i i


	The second and generic case is where we calculate the fibonacci number only if it is not in the cache:



        -- Handle generic case
        fibWithState n = do
        n_1 <- getFibOr (n-1)
        n_2 <- getFibOr (n-2)
        putFib n (n_1 + n_2)

        where
          getFibOr m = do
          fm <- getFib m
          case fm of
          Just fv -> return fv
          Nothing -> fibWithState m


	Now, we will use the preceding lines of code to calculate few fibonacci numbers in the main function:



        main :: IO ()
        main = do
        let mp = execState (fibWithState 30) M.empty
        putStrLn "Calling fibWithState 30, would sore fibonacci number 
        till 30 in the map"
        print mp
        putStrLn "Calling any fibonacci number till 30 is memoized, and 
        will be only looked up"
        print $ evalState (fibWithState 15) mp


	Run and execute the program:



      stack build
      stack exec -- fibonacci state


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
We have revisited fibonacci numbers in this recipe. Here, we used the State Monad to store the intermediate results while calculating the fibonacci number. We defined a map between the fibonacci index and its number as a state. Two functions getFib and putFib are defined. The getFib function uses State Monad function GET to get the map and checks if the result was previously cached. If the result was not cached before, then it proceeds by calculating the n-1th and n-2th fibonacci numbers and caching all intermediate results. In fact, since the n-1th number calculation will involve the n-2th number as well, the calculation will be quickly done (O(n) complexity). 

We used the function execState to run our fibonacci number calculation with state. The function execState does not return the result of the computation, but it results the last state. 

In our example, we calculated the 30th fibonacci number. The state should include all fibonacci numbers between 1 to 30. Next time, when we calculate the 15th fibonacci number using the preceding state, the calculation would involve only looking up the index in the map.

We used the evalState function to get the result of the computation (state will be thrown away). We can also use runState, which returns both the last state and the result of the computation.



            

            
        
    
        

                            
                    Writing a State Monad transformer

                
            
            
                
In this recipe, we will write our own State Monad transformer from scratch. In the state transformer, we embed another monad into a State Monad. Hence, all actions are performed in the embedded monad, whereas the state transformer is responsible for keeping state.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create new project state-monad-trans using the simple Stack template:



        stack new state-monad-trans simple


	Open src/Main.hs. We will be adding our state transformer here.

	Add the following imports after the initial module declaration:



        import Data.Functor
        import Control.Applicative
        import Control.Monad


	Define the State Monad transformer. Note how we embed middle m (monad) in the type:



        newtype StateT s m a = StateT { runStateT :: s -> m (a, s) }


	Define the Functor instance for our state transformer:



        instance Functor m => Functor (StateT s m) where
        fmap f (StateT func) = 
        let stateFunc s = (\(xa,xs) -> (f xa, xs)) <$> func s
        in StateT stateFunc


	Now, define an Applicative instance for our state transformer. We make use of the fact that the embedded monad is also an instance of Applicative and use it to lift the embedded Applicative instance, that is, m (a -> b ) -> m a -> m b  to our state related m ( (a, s) -> (b, s) ) -> m (a, s) -> m (b, s):



         instance Applicative m => Applicative (StateT s m) where

         -- Use the applicative instance of the embedded applicative to
         -- induce both x as well as state s into it.
         pure x = let stateFunc s = pure (x, s)
           in StateT stateFunc

         -- Get a function from State s m (a -> b) and apply it to
         -- State s m a to produce State s m b

         f <*> fa =
         let stateFunc s =
         let sf = runStateT f s -- m (f :: a -> b, s)
              sa = runStateT fa s -- m (a, s)
              -- Convert m (f :: a -> b, s) to
              -- m (f :: (a, s) -> (b, s) )
              func (fab, _) = (\(xa, st) -> (fab xa, st))
              in (func <$> sf) <*> sa
              in StateT stateFunc


	Now, implement the monad instance for our transformer:



        instance Monad m => Monad (StateT s m) where

        return = pure

        sma >>= smab =
        let stateFunc s =
          let ma = runStateT sma s -- m (a, s)
          in do 
            (a, s1) <- ma
            runStateT (smab a) s1
            in StateT stateFunc


	Now, define get (to get the current state) and put (to put a new state) for our transformer:



        get :: Monad m => StateT s m s
        get = let stateFunc s = pure (s, s)
        in StateT stateFunc

        put :: Monad m => s -> StateT s m ()
        put s = let stateFunc _ = pure ((), s)
        in StateT stateFunc


	We should allow an operation in the embedded monad in the context of our state transformer. Write the function lift to embed the action into our State Monad:



        lift :: Monad m => m a -> StateT s m a
        lift ma = let stateFunc s = do
          a <- ma
          return (a, s)
          in StateT stateFunc


	Now, write an example in which we embed IO monad in our state transformer. To demonstrate, we simply get the current state and modify it with the supplied argument:



        example :: Int -> StateT Int IO ()
        example j = do
        i <- get
        lift $ putStrLn $ "Current state is " ++ (show i)
        put j
        i' <- get
        lift $ putStrLn $ "Current state is " ++ (show i')


	Then, use the example function in our main function:



         main :: IO ()
         main = do
         (_, state) <- runStateT (example 10) 100
         putStrLn $ "Result state is " ++ (show state)
         (_, state1) <- runStateT (example 1234) 12
         putStrLn $ "Result state is " ++ (show state1)


	Build and execute the program:



      stack build
      stack exec -- state-monad-trans


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
The state transformer that we defined is a pretty powerful construct. It lets us use another monad in the context of State Monad. Implementation may look a little hard to get the first time. However, if you remember that all the actions are performed in the internal monad (whatever it might be). To do this, we took advantage of the do.. syntax for the monad (and that it is a Functor and an Applicative instance). All the internal monadic actions are modified from m a  to  m (a, s) and that is how we are able to achieve embedding of a monad inside a state transformer. All monad transformers follow a similar strategy. 

In the mtl implementation of state transformer, you will see two implementations, lazy and strict. In the strict version, the state actions are sequenced using seq. 



            

            
        
    
        

                            
                    Working with the Reader monad transformer

                
            
            
                
In the previous recipe, we implemented our own State Monad transformer. In this recipe, we will revisit the mtl library and use the Reader monad transformer. The Reader monad transformer is a restricted version of the State Monad transformer in which we are allowed only to get the state (but not modify it).



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project read-trans using the simple Stack template.

	Open read-trans.cabal and add the following dependencies in the build-depends subsection of the executable section:



        executable read-trans
        hs-source-dirs: src
        main-is: Main.hs
        default-language: Haskell2010
        build-depends: base >= 4.7 && < 5
               , mtl


	Open src/Main.hs. We will add our example over here. Import the following module after the initial module declaration:



       import Control.Monad.Reader


	Write an example in which we keep read from an integer state, and check if our state meets certain criteria:



        example :: ReaderT Int IO ()
        example = do
        s <- ask
        lift $ putStrLn $ "Current env state is " ++ (show s)

        s_is_10 <- asks (== 10)
        lift $ putStrLn $ "Current state is 10? " ++ (show s_is_10)


	Write another function where we will call the preceding example and call it again in a locally modified environment: 



        cover :: ReaderT Int IO ()
        cover = do
        example
        local (const 10) example


	Now, call the preceding function in main function: 



        main :: IO ()
        main = runReaderT cover 100


	Build and run the program:



      stack build
      stack exec -- read-trans


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
The Reader monad is a monad transformer with the purpose of providing an environment. We use the monad transformer ReaderT :: r m a, which is defined in the Control.Monad.Reader module. In the mtl library, usually, each transformer has an associated type class. The transformer ReaderT is an instance of MonadReader type class:

    class Monad m => MonadReader r (m :: * -> *) | m -> r where
     ask :: m r
     local :: (r -> r) -> m a -> m a
     reader :: (r -> a) -> m a

A special monad called Identity exists in Data.Functor.Identity, which is the simplest monad. Its only purpose is to embed a pure value into a monad. The Reader monad is defined as ReaderT with Identity as an embedded monad:

    type Reader r = ReaderT r Identity

MonadReader provides three functions. The ask :: MonadReader r m => m r function gets the current environment. The function asks :: MonadReader r m => (r -> a) -> m a can be used to use a function that takes the current environment and produces some value that can be used in the context of the monad. 

The function local is special, as shown here:

    local :: MonadReader r m => (r -> r) -> m a -> m a

It takes a function that produces another environment. The supplied computation is executed under the modified environment. However, the current environment is unaffected.



            

            
        
    
        

                            
                    Working with the Writer monad transformer

                
            
            
                
In the previous recipe, we worked with the Reader monad transformer. In this recipe, we will work with the Writer monad transformer. Like the Reader monad transformer, the Writer monad transformer is also a restricted version of a state transformer, in which we can only write (but cannot read).



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
In this example, we will use the Writer monad transformer to keep updating a balance sheet with transactions. We will keep pushing transactions to the Writer monad, finally yielding the balance after all transactions are processed.

We will work with the mtl library in this recipe.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project write-trans using the simple Stack template.




	Open write-trans.cabal and add the mtl dependency in the build-depends subsection of the executable section:



        executable write-trans
        hs-source-dirs: src
        main-is: Main.hs
        default-language: Haskell2010
        build-depends: base >= 4.7 && < 5
               , mtl


	Open src/Main.hs. We will edit this file for our purpose.

	Add the following imports after initial module declaration for the WriterT monad transformer:



        import Data.Monoid
        import Control.Monad.Writer


	Add the data type Transaction. We will also add a monoid instance for the Transaction: 



       newtype Transaction = Transaction Double deriving Show

Add the monoid instance. We will define an empty transaction as a transaction with 0 amount. Appending two transactions involves summing up the transaction values. A positive transaction indicates a credit, whereas a negative transaction indicates a debit:

        instance Monoid Transaction where
 
        mempty = Transaction 0

        (Transaction x) `mappend` (Transaction y) = Transaction (x + y)


	Add a utility to classify the transaction as either a credit or a debit: 



        printTransaction :: Transaction -> IO ()
        printTransaction (Transaction x) | x < 0 = putStrLn $ "Debiting   
        " ++ (show x)
        printTransaction (Transaction x) | x > 0 = putStrLn $ 
       "Crediting " ++ (show x)
        printTransaction (Transaction x) = putStrLn "No Change"


	Given a list of transactions, write a function to keep balancing using the Writer transformer:



        balanceSheet :: [Transaction] -> WriterT Transaction IO ()
        balanceSheet [] = lift $ putStrLn "Finished balancing"
        balanceSheet (b:bs) = do
        tell b
        lift $ printTransaction b
        balanceSheet bs


	Create some random transactions:



        transactions = [ Transaction (-10.0)
                       , Transaction 5
                       , Transaction 17
                       , Transaction (-29)
                       , Transaction 10]


	Write main to calculate these transactions, and print balance:



       main :: IO ()
       main = do
       (_, Transaction b) <- runWriterT (balanceSheet transactions)
       putStrLn $ "Balance is " ++ (show b)


	Build and execute the program:



      stack build
      stack exec -- write-trans


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
A Writer monad works with an assumption that the write state is an instance of a monoid. As a monoid, you will get two properties:


	mempty: This is a scratch value

	mappend: This is a way to combine two values



A Writer monad hence starts with an empty (or scratch) value. As we use the function tell in the context of Writer monad, the Writer monad keeps combining the existing value with a new value and updates the writer state. 

In our recipe, we used Transaction and its monoid instance to keep our balance sheet automatically updated.



            

            
        
    
        

                            
                    Combining monad transformers

                
            
            
                
So far, we have seen different monad transformers dedicated to specific causes. What if we would like to work with more than one transformer at the same time? In this recipe, we will be doing exactly that! We will work with Reader and Writer transformers with IO monad.

We will revisit the cursor example that we wrote earlier and then transform it to use it with multiple monad transformers.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project combine-trans with the simple Stack template.

	Add mtl to the build-depends subsection of the executable section:



        executable combine-trans
          hs-source-dirs: src
          main-is: Main.hs
          default-language: Haskell2010
          build-depends: base >= 4.7 && < 5
                 , mtl


	Open src/Main.hs and add the following imports after the initial module declaration. Import Prelude as well to avoid a clash with some names:



        import Prelude hiding (Either(..))
        import Control.Monad.Reader
        import Control.Monad.Writer
        import Data.Monoid


	Define Cursor data type to show Cursor position from top-left position of the screen:



        data Cursor = Cursor Int Int deriving Show


	Define monoid instance for Cursor. When we combine two cursors, we simply sum their positions:



        instance Monoid Cursor where

        mempty = Cursor 0 0

        (Cursor p q) `mappend` (Cursor r s) = Cursor (p + r) (q + s)


	Define data type Move to define the movement of the cursor:



         data Move = Up Int | Down Int | Left Int | Right Int deriving 
        Show


	Define the function toCursor to convertMove to the cursor movement. For example, we will convert the Up movement to result in a cursor with a negative second component to indicate that we will be moving up the screen:



        toCursor :: Move -> Cursor
        toCursor (Up p) = Cursor 0 (-p)
        toCursor (Down q) = Cursor 0 q
        toCursor (Left p) = Cursor (-p) 0
        toCursor (Right q) = Cursor q 0


	Write the function updateCursor. It uses tell to update the state. A composition tell . toCursor converts Move to Cursor and updates the state as well:



        updateCursor :: Monad m => Move -> WriterT Cursor m ()
        updateCursor = tell . toCursor


	Now, write the function moveCursor, which reads the current state from the Reader monad and uses IO and Writer actions to move the cursor according to the supplied moves:



        moveCursor :: [Move] -> ReaderT Cursor (WriterT Cursor IO) ()
        moveCursor ms = do
        c <- ask       -- Get the position from the environment
        lift $ tell c  -- Update the position
        lift $ moveCursor' ms -- Keep moving cursor

        where
        moveCursor' [] = lift $ return ()
        moveCursor' (m:ms) = do
        lift $ putStrLn $ "Applying move " ++ (show m)
        updateCursor m
        moveCursor' ms

Note how we use lift for moving from the outer monad to the inner monad.


	Create some random moves and write the main function to combine moves with Reader and Writer monad transformers:



        moves = [Up 10, Right 10, Down 20, Left 5]

        main :: IO ()
        main = do
        (_, cursor) <- runWriterT (runReaderT (moveCursor moves) 
        (Cursor 10 10))
        putStrLn "Final cursor position"
        print cursor


	Build and execute the program:



      stack build
      stack exec -- combine-trans


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
When we combine monad transformers, we embed one type into another. For example, for our current recipe, the type is shown here:

    ReaderT Cursor (WriterT Cursor IO) ()

It can be read as follows: 


	The innermost monad is IO.

	WriterT embeds IO into it. The writer state is the Cursor.

	ReaderT embeds WriterT (and IO) monads. The ReaderT has the environment Cursor.

	Essentially, we start from the innermost monad and keep wrapping it with another monad.



To run the preceding monad, we have unwrapped the outer most monad first. Here, is our example:


	Outermost monad is ReaderT. We will unwrap it with runReaderT.

	Then next monad is WriterT. We will unwrap it with runWriterT.

	The IO monad actions are embedded innermost. When we unwrap everything, we are left with IO monad, which we executed in the main function, which is IO monad itself.



Hence, for our recipe to be able to run the composition of monads, we need to run the outer most monad (Reader Monad) first and then run the inner the monad (Writer Monad).

    runWriterT (runReaderT (combined_monad) reader_state)

We can freely call actions from any monad. We need to remember to lift the actions. lift is a function which takes an action meant for one of the inner monads, and converts it into action in outer monad. For example, we need to lift $ putStrLn ... so that we can call the inner monad from the outer monad. 

Also, note that the IO monad always remains the innermost monad. This is obvious as the IO monad reflects the outside world, which we are going to affect, and should be the very first monad to embed (so that it becomes the innermost monad).



            

            
        
    
        

                            
                    Working with Common Containers and Strings

                
            
            
                
In this chapter, we will cover the following recipes:


	Working with sets

	Shopping cart as a set

	Working with maps

	Log analysis with map

	Working with vector

	Working with text and bytestring

	Creating and testing a priority queue

	Working with Foldable and Traversable





            

            
        
    
        

                            
                    Introduction

                
            
            
                
We have looked at the basics of Haskell data types, functions, higher order functions, and other abstractions such as type classes. We have also looked at important type classes and concepts such as Functors, Applicatives, and monads.

In this chapter, we will look at common container data types and will work with them. We will visit strings again in this chapter, but with the intention of working in an efficient way. The text and bytestring packages provide us with an opportunity to work with efficient string types. Furthermore, the containers being a collection such as list also provides a way to fold and traverse in a similar way. We will look at two type classes, Traversable and Foldable, which give a unified way of folding and traversing over a data type.

A set is an ordered collection of unique items. If we insert an item which is already present in the set, then we get the same set back. One important difference between collections in Haskell and other languages is that the collections in Haskell (as other data types) are immutable. The set is implemented as a binary tree.



            

            
        
    
        

                            
                    Working with sets

                
            
            
                
In this recipe, we will work with a set and its APIs. A set is a container that stores unique ordered values.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project working-with-set using the simple Stack template:



        stack new working-with-set simple


	In the project folder, open the working-with-set.cabal file. Add the new dependency containers in the subsection build-depends of section executable:



        executable working-with-set
          hs-source-dirs:      src
          main-is:             Main.lhs
         default-language:    Haskell2010
         build-depends:       base >= 4.7 && < 5
                            , Containers

The containers library is a commonly used library that implements containers such as set, map, and so on.


	Open src/Main.hs for editing. We will work with sets in this file:



        module Main where


	Import Data.Set for using set and related functions:



        import Data.Set as S


	Write main; we will write set examples in the main function:



        main :: IO ()
        main = do


	Create an empty set:



        let emptyS = S.empty :: S.Set String
        putStrLn "Empty String Set"
        print emptyS


	Create a singleton set:



        let singleS = S.singleton "Single"
        putStrLn "Singleton Set"
        print singleS


	Insert a string into a set:



        let insS = S.insert "Another" singleS
        putStrLn "Singleton with insertion"
        print insS


	Get the size of the set:



        putStrLn "Size of the set"
        print $ S.size insS


	Create a set from a list:



        let fromL = S.fromList [0..9] :: S.Set Int
        putStrLn "Set from list"
        print fromL


	Create the list from the set:



        let toL = S.toList fromL
        putStrLn "List from set"
        print toL


	Create the ascending and descending lists from the set:



        let toAscL = S.toAscList fromL
        let toDscL = S.toDescList fromL
        putStrLn "Set to ascending and descending lists"
        print toAscL
        print toDscL


	Remove the minimum and maximum elements:



        let removeMinS = S.deleteMin fromL
        let removeMaxS = S.deleteMax fromL
        putStrLn "Removing minimum and maximum elements"
        print removeMinS
        print removeMaxS


	Union and intersection of two sets:



        putStrLn "Take two sets [0..9] and [5..15]"
        let fS = S.fromList [0..9]
        let sS = S.fromList [5..15]
        let intS = S.intersection fS sS
        let uniS = S.union fS sS
        putStrLn "Printing intersection and union respectively"
        print intS
        print uniS


	Look up an element greater than and equal to an element:



        putStrLn "Construct set from list [1, 2, 4]"
        let exS = S.fromList [1,2,4] :: S.Set Int
        putStrLn "Find element greater than 2"
        print $ S.lookupGT 2 exS
        putStrLn "Find element greater than or equal to 2"
        print $ S.lookupGE 2 exS


	Check whether it is an item element of set:



        putStrLn "Find if 4 is part of the set from [0..9]"
        print $ S.member 4 fromL


	Fold over the set. In this case, we will use both foldr and foldl to fold over elements in the set. 



        putStrLn "Fold over the set using foldr and foldl"
        print $ S.foldr (:) [] fromL
        print $ S.foldl (flip (:)) [] fromL


	Build and run the project:



      stack build
      stack exec -- working-with-set


	You should see the following output:








            

            
        
    
        

                            
                    How it works...

                
            
            
                
A set is an ordered collection of unique items. If we insert an item which is already present in the set, then we will get the same set back. The set is implemented as a binary tree.



            

            
        
    
        

                            
                    Shopping cart as a set

                
            
            
                
In this recipe, we will create a shopping cart for books. The books are uniquely identified by ISBN numbers. If we add the same item in the shopping cart, we should be able to update the existing item or insert a new item in the shopping cart. We will use set as a container for shopping items.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project shopping-cart using the simple Stack template:



        stack new shopping-cart simple


	Open shopping-cart.cabal and add a dependency on the containers library in the build-depends subsection of the executable subsection:



        executable shopping-cart
         hs-source-dirs:      src
         main-is:             Main.lhs
         default-language:    Haskell2010
         build-depends:       base >= 4.7 && < 5
                       , containers


	Open src/Main.hs; we will add our code here. Import the module Data.Set:



        module Main where

        import Data.Set as Set


	Create a type to represent a book. The book contains the ISBN number, title of the book, and name of the author:



        data Book = Book { isbn :: String
                 , title :: String
                 , author :: String }
                   deriving Show


	Create the equality and ordering of the book solely by looking at the ISBN. We cannot use the default order instance, as it will also use other fields to create an order between two books. For our purpose, we will only consider ISBN as the primary key for creating an order:



        instance Eq Book where

        book1 == book2 = isbn book1 == isbn book2

        instance Ord Book where

        book1 `compare` book2 = isbn book1 `compare` isbn book2


	Now, create an item for the shopping cart. Each item contains a book and the quantity ordered for it. Also, define instances of Eq and Ord for the item, as we do not want the number of books to be considered during the ordering of the items:



        data Item = Item Book Int deriving Show

        instance Eq Item where
        (Item b1 _) == (Item b2 _) = b1 == b2

        instance Ord Item where
        (Item b1 _) `compare` (Item b2 _) = b1 `compare` b2


	The shopping cart is represented by a set of items:



        type ShoppingCart  = Set Item


	Create an empty shopping cart:



        emptyCart :: ShoppingCart
        emptyCart = Set.empty


	Add a book to the cart. We will create an item with 1 as the default quantity. We will add a new entry if the book is not present in the cart. If the book is already entered into the cart, we will increase the quantity by one:



        addBook :: Book -> ShoppingCart -> ShoppingCart
        addBook book cart =
        let item = Item book 1
        search = Set.lookupGE item cart
        in case search of
         Nothing -> Set.insert item cart
         Just (Item b i) -> if isbn b == isbn book then
             Set.insert (Item b (i+1)) cart
             else
             Set.insert (Item book 1) cart


	Similarly, remove a book from the cart; we will reduce the count of the book if it is already present in the cart. If the count goes down to zero, then we will remove the book from the cart. If the book is not present in the cart, then obviously, we do not need to do anything:



        removeBook book cart =
        let item = Item book 1
        search = Set.lookupGE item cart
        in case search of
        Nothing -> cart
        Just (Item b i) -> if isbn b == isbn book then
           if 0 >= (i -1) then
            Set.delete item cart
           else
            Set.insert (Item b (i-1)) cart
           else
            cart


	Now, create some books and add them to the cart. We will add few books and remove few books:



        main :: IO ()
        main = do
        let book1 = Book { isbn = "0262162091"
                   , author = "Pierce, Benjamin C."
                   , title = "Types and Programming Languages" }

        book2 = Book { isbn = "8173715270"
                   , author = "Abelson, Herold et. al."
                   , title = "Structure and Interpretation of Computer 
       Programs" }

        let cart = emptyCart
         cart1 = addBook book1 cart
         cart2 = addBook book2 cart1
         cart3 = addBook book1 cart2
         cart4 = addBook book1 cart3
         cart5 = removeBook book1 cart4
         cart6 = removeBook book2 cart5

        putStrLn "Empty Cart"
        print cart

        putStrLn "Add book 1 to cart"
        print cart1

        putStrLn "Add book 2 to cart"
        print cart2

        putStrLn "Add book 1 again"
        print cart3

        putStrLn "And add book 1 once more"
        print cart4

        putStrLn "Remove book 1 from cart"
        print cart5

        putStrLn "Remvoe book 2, this should delete the book from the 
        cart"
        print cart6


	Build and execute the project:



      stack build
      stack exec -- shopping-cart


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
The item in a set needs to be ordered, and being ordered also forces a definition of equality. Hence, we have defined Eq and Ord instances for our data type. Depending on the situation, we might want to create the order differently. For example, if you would like, you can make the search based on the book title or author.

In a case where a different type class behavior is expected than the implementation, a typical trick is to wrap the existing data type, for which type class instance is already defined, in another type, and then define the type class instance for it instead.



            

            
        
    
        

                            
                    Working with maps

                
            
            
                
In this recipe, we will look at Data.Map. A map keeps an association between the key and the corresponding value. The map stores the ordered keys and their values (dictionaries). There are two variants of Map in the container library, strict and lazy. In this recipe, we will look at the strict variant. The lazy variant has the same interface, except that the implementation is lazy.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	
Create a new project work-with-map using the simple stack template.



	Add the containers library to the build-depends subsection of the executable subsection:



        executable working-with-map
          hs-source-dirs:      src
          main-is:             Main.hs
          default-language:    Haskell2010
          build-depends:       base >= 4.7 && < 5
                         , containers


	Open src/Main.hs; we will use this as our playground for dealing with map:



        module Main where


	Import Data.Map to use the map functions. We will use the strict version of map:



        import Data.Map.Strict as M


	We will use the main function directly to work with map functions:



        main :: IO ()
        main = do  


	Map Construction--Create an empty map or a map with a single entry:



        let e = M.empty :: Map Int Int
        let s = M.singleton 1 "Haskell Curry" :: Map Int String
        putStrLn "Empty and singleton maps"
        print e
        print s


	It is also possible to create a map from the list of keys and values:



        let ml = M.fromList [(1, "Alphonso Church"), (2, "Haskell  
        Curry")] :: Map Int String
        putStrLn "Map from list"
        print ml


	Insert into Map.



While inserting, we have to deal with the fact that the key might be already there in the map. Map implementation deals with this fact by providing variants to manage different needs:

        let ml1 = M.insert 3 "Alan Turing" ml
        putStrLn "Inserting into map"
        print ml1
         -- [(1,"Alphonso Church"),(2, "Haskell Curry"), (3, "Alan 
       Turing")]


	Replace a value in a map:



        print $ M.insert 2 "Haskell Curry, Haskell inspiration" ml1
       -- [(1,"Alphonso Church"),(2, "Haskell Curry, Haskell 
       inspiration"), (3, "Alan Turing")]


	Use insertWith for insertion. It gives the ability to look at the old value in the map, and gives the chance to use the new value to construct the new value. In word count, we add the new value, equal to the addition of the old value and word count found since the last update:



        -- Word count in a para
        let iml = M.fromList [("a",10), ("an",2), ("the", 8)] :: Map 
        String Int
        print (M.insertWith (+) "a" 2 iml)
        -- [("a",12),("an",2),("the",8)]


	Delete from the map.



Remove the article "the" from the preceding map. We will provide a key to delete a key-value pair from the container.

        print (M.delete "the" iml)
        -- [("a",10),("an",2)]


	Update the map.



Use the variant updateWithKey. It takes a function that looks at a key, and the value, and possibly produces another value. This can result in either replacing a value or deleting the key-value pair in the map. Define the updater function. It changes value of "an" in the article map we created earlier. It also deletes the key the from the map. Everything else is kept the same:

        let updater "an" _ = Just 5
        updater "the" 8 = Nothing
        updater _  v   = Just v
        print $ M.updateWithKey updater "an" iml
        -- [("a",10),("an",5),("the",8)]
        print $ M.updateWithKey updater "the" iml
        -- [("a",10),("an",2)]


	Union and difference of maps.



Two maps can be combined to create a single map. We will use the unionWith variant here. We will create another word count map and combine it here. We will add the counts if duplicate entries are found. This is done by supplying the (+) function to unionWith:

        let iml1 = M.fromList [("a",3),("and",6)]
        print $ M.unionWith (+) iml iml1
        -- [("a",13),("an",2),("and",6),("the",8)]


	Similarly, we can find the difference between two maps. We use differenceWith where we can select whether to keep the value in the first map or not. Use differenceWith if you'd like to remove the duplicate keys. Note that the second map that the difference function takes does not have the same value type. The key type should be same, though:



         let iml2 = M.fromList [("an",False),("the",True)]
         let diff v False = Nothing
         diff v _     = Just v
         print $ M.differenceWith diff iml iml2
         -- [("a",10),("the",8)]


	Find the intersection of two maps by finding common keys. The intersection function prefers the value int the first map. If the key is present in both the maps, then the intersection function will keep the value in the first map. The intersectionWith function lets you decide what to do with the values. Here, we will use the intersection function:



        print $ M.intersection iml iml1
        -- [("a",10)]


	Build and execute the project:



      stack build
      stack exec -- working-with-map


	The program output should agree with our expected answers:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
We have seen common functions for dealing with map. Typically, the function without the suffix With or WithKey has default behavior. For example, in insert, the default behavior is to replace the existing value. The suffix With takes two values to produce a new value. The suffix WithKey also takes into consideration the key for which we are combining values.

There are two variants of map, Data.Map.Strict and Data.Map.Lazy. Both the modules export the same function names. These functions vary in their strictness. The strict map will immediately evaluate the resulting map, whereas the lazy map will do so lazily by storing the expressions and reducing them only when asked for. 

However, the functor and Applicative instances of both the maps are lazy. Hence, it is wiser to use functions in the strict map module (and not Functor or Applicative class functions) if efficiency is of importance.



            

            
        
    
        

                            
                    Log analysis with map

                
            
            
                
In this recipe, we will use map to analyze the access log for the Apache web server. The log contains access parameters for each host accessing the web server per line. The log looks like this:

    64.242.88.10 - - [07/Mar/2004:16:10:02 -0800] "GET
     /mailman/listinfo/hsdivision HTTP/1.1" 200 6291
    64.242.88.10 - - [07/Mar/2004:16:11:58 -0800] "GET 
     /twiki/bin/view/TWiki/WikiSyntax HTTP/1.1" 200 7352
    64.242.88.10 - - [07/Mar/2004:16:20:55 -0800] "GET 
     /twiki/bin/view/Main/DCCAndPostFix HTTP/1.1" 200 
     5253

The line starts with hostname or IP that is accessing the web server. The remaining part of the line includes date and time, method of access (GET, PUT, POST, and so on), and the path of the web server being accessed. The server also prints status information.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project log-parser with the simple Stack template:



        stack new log-parser simple


	Open log-parser.cabal and add the library containers as a dependent library in the subsection build-depends of the section executable:



        executable log-parser
        hs-source-dirs:      src
        main-is:             Main.hs
        default-language:    Haskell2010
        build-depends:       base >= 4.7 && < 5
                     , containers


	Open src/Main.hs and edit it. We will add log parsing and analysis here:



        module Main where


	Import modules for file IO and the strict map:



        import System.IO
        import qualified Data.Map.Strict as M
        import System.Environment
        import Control.Monad


	Read the file line by line:



        hLines :: Handle -> IO [String]
        hLines h = do
        isEOF <- hIsEOF h
        if isEOF then
          return []
        else
         (:) <$> hGetLine h <*> hLines h


	We are only interested in the host or IP. Grab it. Return an empty string if you are presented with an empty list:



        host :: [String] -> String
        host (h:_) = h
        host _     = ""


	Convert the list of lines into a list of host names using the functions words (to convert a line into words) and host (to take only the first of those words):



        hosts :: Handle -> IO [String]
        hosts h = fmap (host . words) <$> hLines h


	Given a hostname and a map, add the hostname to the map with access count one. If the host is already present in the map, then add the counts:



        updateAccessCount :: String -> M.Map String Int -> M.Map String 
          Int
        updateAccessCount h mp = M.insertWith (+) h 1 mp


	Fold over the list of hosts, starting with an empty map and adding the hostname with the access count. Use the function updateAccessCount to combine the hostname (or IP) with the access count map:



        foldHosts :: [String] -> M.Map String Int
        foldHosts = foldr updateAccessCount M.empty


	
Get the data from http://www.monitorware.com/en/logsamples/apache.php. The data is free to be used. We will give the relative path of the log file as an argument. Then, proceed to get a map. We will then convert the map to the list and then print the names of the hosts and their access count:





        main :: IO ()
        main = do
        (log:_) <- getArgs
        accessMap <- withFile log ReadMode (fmap foldHosts . hosts)
        let accesses = M.toAscList accessMap
        forM_ accesses $ \(host, count) -> do
        putStrLn $ host ++ "\t" ++ show count


	Build and run the project:



      stack build
      stack exec -- log-parser access_log/access_log


	The output should print the statistics of hostname or IP against its accesses:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
The recipe reads the file line by line. Each line is split into words using the function words. Since we are interested in only the host or its IP, we will take only the first word. Each host name / IP is considered as a tuple (hostname, 1), where 1 denotes that each entry corresponds to single access. We used the insertWith function to insert the preceding entry. If the entry already exists in the map, then we would use combining function to add 1 to the existing access count. We got hosts in the ascending order using the function toAscList. We used Control.Monad.forM_ to iterate over the list of accesses and print them to the console.



            

            
        
    
        

                            
                    Working with vector

                
            
            
                
In this recipe, we will look at Data.Vector from the vector package. So far, we have been extensively using lists. Though lists are ubiquitous in Haskell, they are not efficient where array-like access and operations are required. A vector supports arrays such as O(1) access to elements, as well as list-like incremental access. The vectors come in two flavors—immutable and mutable. We will look at both in this recipe.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project working-with-vector with the simple Stack template:



        stack new working-with-vector simple


	Add the dependency on the vector package in the build-depends subsection of the executable section:



        executable working-with-vector
          hs-source-dirs:      src
          main-is:             Main.hs
          default-language:    Haskell2010
          build-depends:       base >= 4.7 && < 5
                       , vector


	Open src/Main.hs and start coding there. We will experiment with vector in this file:



        module Main where


	Import both immutable and mutable vector modules:



        import qualified Data.Vector as V
        import qualified Data.Vector.Mutable as MV
        import Data.Vector ((//),(!),(!?))


	We will use smaller functions to demonstrate the vector and its abilities.

	Construction: We can construct immutable vectors either as empty, singleton, replicated, generated over input index, or combined with the previous value:



        constructVectors :: IO ()
        constructVectors = do
        let e = V.empty :: V.Vector Int
         s = V.singleton "one" :: V.Vector String
         r = V.replicate 10 "same" :: V.Vector String
         g = V.generate 10 (const "generated")  :: V.Vector String
         i = V.iterateN 10 ('x':) "o"
         putStrLn $ "Empty vector " ++ show e
         putStrLn $ "Singleton vector " ++ show s
         putStrLn $ "Replicated vector " ++ show r
         putStrLn $ "Generated vector " ++ show g
         putStrLn $ "Iterated vector " ++ show i


	Construct vectors through enumeration. The function enumFromTo can also be used, but it is slower than enumFromN:



        enumeratedVectors :: IO ()
        enumeratedVectors = do
          putStrLn "Create a list of 10 floats, 1.1, 2.1 ... etc"
          print $ (V.enumFromN 1.1 10 :: V.Vector Float)
          putStrLn "Create a list of 10 floats, incremented by 0.5"
          print $ (V.enumFromStepN 1.1 0.5 10 :: V.Vector Float)


	Vector as list: Vector supports many functions similar to list. Note that all operations are O(1):



        vectorAsList :: IO ()
        vectorAsList = do
        let vec = V.enumFromStepN 1 3 30 :: V.Vector Int
        putStrLn "All elements but the last"
        print $ V.init vec
        putStrLn "Head of the vector"
        print $ V.head vec
        putStrLn "Tail of the vector"
        print $ V.tail vec
        putStrLn "Take first five elements"
        print $ V.take 5 vec
        putStrLn "Drop first five elements"
        print $ V.drop 5 vec
        putStrLn "Prepend and Append an element"
        print $ V.cons 99 vec
        print $ V.snoc vec 99
        putStrLn "Concatenate two vectors"
        print $ vec V.++ (V.fromList [101,102,103])


	Bulk update of vectors:



        bulkOperations :: IO ()
        bulkOperations = do
        putStrLn "Replace elements by list of index and value."
        print $ (V.fromList [2,5,8]) // [(0,3),(1,6),(2,9)]
        putStrLn "Update with another vector with index and value"
        print $ (V.fromList [2,5,8]) `V.update` (V.fromList [(0,3),  
        (1,6),(2,9)])


	Indexing operations—access elements in vector randomly:



        indexing :: IO ()
        indexing = do
          let vec = V.enumFromStepN 1.1 0.5 20
          putStrLn "Input Vector"
          print vec
          putStrLn "Accessing 10 th element"
          print $ vec ! 9
          putStrLn "Safely accessing 10th element, and 100th one"
          print $ vec !? 9
          print $ vec !? 99


	Create a mutable vector. Mutable vectors are created either in IO or ST monad. Here, we will create it with IOVector:



        mutableVec :: IO (MV.IOVector Int)
        mutableVec = do
        v <- MV.new 2  -- Create a vector of size 2
        MV.write v 0 1 -- Assign all values
        MV.write v 1 2
        return v


	Use the mutable vector and freeze it to convert to immutable vector:



        useMutable :: IO ()
        useMutable = do
        mv <- mutableVec
        vec <- V.freeze mv
        putStrLn "Mutable to vector conversion"
        print vec


	Put all of the preceding code snippets together:



        main :: IO ()
        main = do
        putStrLn "Constructing Vectors"
        constructVectors
        putStrLn "Enumerating Vectors"
        enumeratedVectors
        putStrLn "Vector as fast lists"
        vectorAsList
        putStrLn "Bulk operations on vector"
        bulkOperations
        putStrLn "Accessing elements of vector"
        indexing
        putStrLn "Working with mutable, and converting it to vector"
        useMutable


	Build and run the project:



      stack build
      stack exec -- working-with-vector


	You should see following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
When compared to list, map, and set, vector proposes a very different approach. It is a very efficient collection and most access operations are done with O(1) access. The vector is used in many efficient libraries such as aeson ( a popular library for dealing with JSON), where efficiency and random access is required. The vector itself is immutable and provides effective subsetting through list-like operations.

The mutable vector, on the other hand ,works through monad, by allowing us to programmatically construct the vector and then freeze it to convert it to an immutable vector.



            

            
        
    
        

                            
                    Working with text and bytestring

                
            
            
                
In this recipe, we will look at alternative representations of string. The string is a list of Char and is not an efficient implementation. The text and bytestring packages are the most popular packages for alternative and efficient string implementations. While text implements unicode characters, bytestring is good for binary data. In this recipe, we will work with these data types and convert them into each other, and also explore a GHC extension for strings.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project working-with-text-and-bytestring with the simple Stack template:



        stack new working-with-text-and-bytestring simple


	Add dependency on the text and bytestring libraries in the build-depends subsection of the executable section:



        executable working-with-text-and-bytestring
        hs-source-dirs:      src
        main-is:             Main.hs
        default-language:    Haskell2010
        build-depends:       base >= 4.7 && < 5
                       , text
                       , bytestring


	Open src/Main.hs. We will add our source here.




	At the top of the file, add the following pragma for using overloaded strings before the Main module definition:



        {-# LANGUAGE OverloadedStrings #-}
         module Main where

This is the way an extension is enabled for the GHC. This particular extension allows us to use string of types string, text, and ByteString. In fact, you will notice that all these data types are instances of the class IsString. If a data type is an instance of IsString, then the extension OverloadedStrings can be applied in the context of that data type. One of the advantages of using the OverloadedStrings extension is that we can use a quoted string without having to explicitly convert it from the built-in string data type. We will see this in action when we are dealing with Text and ByteString.


	Add the following modules for working with Text and ByteString:



        import qualified Data.Text as T
        import qualified Data.Text.IO as TIO
        import qualified Data.ByteString.Char8 as B
        import qualified Data.Text.Encoding as TE
        import System.IO


	Create ByteString and Text:



        bString :: B.ByteString
        bString = "This is a bytestring"


	Create Text:



        tString :: T.Text
        tString = "This is a text string"


	Convert from string to Text and ByteString:



        stringToByteString :: B.ByteString
        stringToByteString = B.pack "Converted from string to   
        bytestring"

        stringToText :: T.Text
        stringToText = T.pack "Converted from string to text"


	Convert from ByteString and Text to String:



        bytestringToString :: String
        bytestringToString = B.unpack "From bytestring to string"

        textToString :: String
        textToString = T.unpack "From text to string"


	Convert between bytestring and text:



        bytestringToText :: T.Text
        bytestringToText = TE.decodeUtf8 "From bytestring to text"

        textToBytestring :: B.ByteString
        textToBytestring = TE.encodeUtf8 "From text to bytestring"


	List like operations on text and bytestring, most of the operations on string work on text and bytestring:



        textHead :: Char
        textHead = T.head "First" -- returns 'F'

        textTail :: T.Text
        textTail = T.tail "First" -- returns 'F'

        byteHead :: Char
        byteHead = B.head "First" -- should get "irst"

        byteTail :: B.ByteString
        byteTail = B.tail "First" -- should get "irst"


	Write the main function. In this recipe, we will not use all the preceding functions in main. Instead, we will only print bytestring and text using putStrLn. The text and bytestring modules define their own versions of the System.IO functions. In the following function, we will print ByteString and Text, respectively:



        main :: IO ()
        main = do
        TIO.putStrLn tString
        B.putStrLn bString
        -- Open a file and write both the strings into the same file.
        withFile "text-out.txt" WriteMode $ \h -> do
        TIO.hPutStrLn h tString
        B.hPutStrLn h bString


	Build and execute the project:



      stack build
      stack exec -- working-with-text-and-bytestring


	You should see the following output:







The program should also write an output to text-out.txt by writing the same lines.



            

            
        
    
        

                            
                    How it works...

                
            
            
                
Text and ByteString are very efficient implementations of String. We have already used ByteString in the recipe where we used Attoparsec to parse the INI files. We will use these types in many recipes to come.



            

            
        
    
        

                            
                    Creating and testing a priority queue

                
            
            
                
In this recipe, we will create and test our own collection priority queue based on a binary tree, and at the same time, we will test it based on its invariant. Many collections and data structures require binary tree as a basic ingredient. 

A priority queue that we will consider is a leftist heap. A leftist heap is implemented as a heap-ordered binary tree. In a heap-ordered binary tree, the value at the node is less than or equal to the values of children. A priority queue is used where we are always interested in the minimum element in the collection and would like to extract or remove it from the collection. The leftist priority queue obeys leftist property.

The leftist property says that the rank of a left child is greater than or equal to the rank of a right child. The rank of a node is the length of the rightmost path from the node to an empty node. This path is called the right spine of the node. As a result of the leftist property, we get a tree where the right spine of any node is always the shortest path to an empty node.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
We will be using QuickCheck as our testing infrastructure to help write tests for priority queue.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project priority-queue with the default Stack template:



        stack new priority-queue


	Delete the src/Lib.hs file. Create a directory src/Data/ and create a new file src/Data/PriorityQueue.hs. We will add implementation of priority queue here.

	Open priority-queue.cabal. Remove Lib from the exposed-modules subsection from the library section. Replace it with our new Data.PriorityQueue module:



        library
          hs-source-dirs:      src
          exposed-modules:     Data.PriorityQueue
          build-depends:       base >= 4.7 && < 5
          default-language:    Haskell2010


	Open src/Data/PriorityQueue.hs. We will implement the priority queue here.




	Add the module definition for Data.PriorityQueue:



        module Data.PriorityQueue where


	Let's define the Queue as a sum type. The Queue can either be empty or it can have two subqueues. We will also keep the rank information with the queue:



        data Queue a = Empty
             | Queue Int a (Queue a) (Queue a)
             deriving Show

Note that the queue is defined as heap-ordered. Automatically, it also follows that the values on the right spine are heap-ordered, as well. Since the priority queue that we are implementing obeys the leftist property, we will look at a problem where this property gets disturbed. There are two instances when the leftist property will be violated:



    1) When we are inserting a value

    2) When we are deleting a value (that is, extracting the minimum)



In both cases, we will have to find a subtree where we are inserting a value (or removing a value). This would result in a possible violation of the leftist property. Here, we have to take the violated path (where the rank of the left child is less than the rank of the right child) and readjust the elements. We will do this by merging two trees.


	Write a function to merge two trees, adjusting the rank along the way:



        mergeQs :: Ord a => Queue a -> Queue a -> Queue a
        mergeQs Empty q = q
        mergeQs q Empty = q
        mergeQs left@(Queue _ lv ll lr) right@(Queue _ rv rl rr) =
        if lv <= rv then
          swipe lv ll (mergeQs lr right)
        else
          swipe rv rl (mergeQs left rr)

Here, the swipe function checks the ranks for two trees being merged, and swaps them if they violate the leftist property. We will implement swipe later.


	Write the function to find the rank of the queue:



        rank :: Queue a -> Int
        rank Empty = 0
        rank (Queue r _ _ _) = r


	Write the swipe function to check the rank and swipe left and right branches to obey the leftist property:



       swipe :: a -> Queue a -> Queue a -> Queue a
       swipe v left right =
       if rank left >= rank right then
         Queue (rank right + 1) v left right
       else
         Queue (rank left + 1) v right left


	Now, write the interface functions for our Queue implementation. We need three functions insert, minimum, and deleteMin to manipulate the Queue. However, before that, we need to have helper functions to construct a Queue.

	Create an empty queue:



        emptyQ :: Queue a
        emptyQ = Empty


	Create a singleton queue from a value. The singleton node will have a rank 1:



        singletonQ :: a -> Queue a
        singletonQ v = Queue 1 v Empty Empty


	Implement the insert function. The insert operation is equivalent to merging a singleton into an existing queue:



        insert :: Ord a => a -> Queue a -> Queue a
        insert v q = mergeQs (singletonQ v) q


	Implement the minimum function. The minimum function returns Nothing if the queue is empty; otherwise, it returns the root value in the tree, which is guaranteed to be minimum:



         minimum :: Queue a -> Maybe a
         minimum Empty = Nothing
         minimum (Queue _ v _ _) = Just v


	Implement the deleteMin function. We will take out the root value and merge the two remaining trees:



        deleteMin :: Ord a => Queue a -> Queue a
        deleteMin Empty = Empty
        deleteMin (Queue _ _ l r) = mergeQs l r


	We are now done with implementation of the priority queue. Open app/Main.hs. Import the Data.PriorityQueue module:



        import Data.PriorityQueue as Q


	Open src/Main.hs. We will add our source here. In the main function, create an empty queue and keep adding a few integers:



        main :: IO ()
        main = do
        let e = emptyQ :: Queue Int
        q1 = insert 10 e
        q2 = insert 20 q1
        q3 = insert 15 q2
        q4 = insert 2 q3
        -- This should print 2 (minimum value)
        print (Q.minimum q4)
        -- This should remove minimum
        let q5 = deleteMin q4
        -- This should now print 10
        print (Q.minimum q5)


	Build and execute the project:



      stack build
      stack exec -- priority-queue-exe


	You should see the following output:







	We will add the tests to verify our claims about invariants in the priority queue. We will use the QuickCheck library to verify our claims. Open priority-queue.cabal and add the QuickCheck dependency to the build-depends subsection of the test-suite section. Note that the stack has already added the dependency on our library priority-queue here:



        test-suite priority-queue-test
        type:                exitcode-stdio-1.0
        hs-source-dirs:      test
        main-is:             Spec.hs
        build-depends:       base
                     , priority-queue
                     , QuickCheck
        ghc-options:         -threaded -rtsopts -with-rtsopts=-N
        default-language:    Haskell2010


	Import the QuickCheck module:



        import Test.QuickCheck
         import qualified Data.PriorityQueue as Q


	The QuickCheck library, contrary to other unit test libraries, generates tests. Here, we write properties that should be verified by QuickCheck. This saves us from a developer's bias, and at the same time, we get a minimum input (or steps) that would fail the property. We need to generate arbitrary instances of queue. Let's use the Arbitrary class to do that. We will take a list of values and generate a queue out of it using the Gen monad. The Arbitrary instance of Queue first generates the list of values and then inserts these values into a queue through foldr:



        qFromList :: Ord a => [a] -> Gen (Q.Queue a)
        qFromList xs = return (foldr Q.insert Q.emptyQ xs)

        instance (Arbitrary a, Ord a) => Arbitrary (Q.Queue a) where
        arbitrary = listOf arbitrary >>= qFromList


	We will first verify the claim about the leftist property of the tree. To be able to do this, we will write a function that takes a tree and verifies that each node follows the leftist property. We will also verify rankstored in the queue in the process:



        qrank :: Q.Queue a -> Int
        qrank Q.Empty = 0
        qrank (Q.Queue _ _ l r) = 1 + minimum [qrank l, qrank r]

        verifyLeftist :: Q.Queue a -> Bool
        verifyLeftist Q.Empty = True
        verifyLeftist q@(Q.Queue rnk v l r) =
        and [ qrank q == rnk
         , qrank l >= qrank r
         , verifyLeftist l
         , verifyLeftist r ]


	Now, test the heapOrdered property of the queue:



        heapOrdered :: Ord a => Q.Queue a -> Bool
        heapOrdered Q.Empty = True
        heapOrdered (Q.Queue _ _ Q.Empty Q.Empty) = True
        heapOrdered (Q.Queue _ v Q.Empty r@(Q.Queue _ rv _ _)) =
         and [ v <= rv, heapOrdered r ]
        heapOrdered (Q.Queue _ v l@(Q.Queue _ lv _ _) Q.Empty) =
         and [ v <= lv, heapOrdered l ]
        heapOrdered (Q.Queue _ v l@(Q.Queue _ lv _ _) r@(Q.Queue _ rv _ 
        _)) =
         and [ v <= lv, v <= rv, heapOrdered l, heapOrdered r]


	Now, we have two properties, verifyLeftist and heapOrdered, which take a queue and return a boolean. We will use these properties in conjunction with quickCheck to run the tests:



        main :: IO ()
        main = do
        putStrLn ""
        putStrLn "Verifying Leftist Property"
        quickCheck (verifyLeftist :: Q.Queue Int -> Bool)
        putStrLn "Verifying Heap Ordered Property"
        quickCheck (heapOrdered :: Q.Queue Int -> Bool)


	Build and execute the test. Run the stack build command with the --test argument:



      stack build --test


	You should be able to see the following output:





The preceding test result shows that it ran 100 tests with each property. We can introduce a bug (this time, in our testing code by modifying the qrank function not to add 1 to the children ranks). Define qrank as follows:

        qrank (Q.Queue _ _ l r) = minimum [qrank l, qrank r]


	If you now run the test by executing stack test, you should see following output! In case of failure, you should also see the input queue for which the test failed. This is really helpful and shows the strength of QuickCheck:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
We implemented a Leftist Tree here. This is a very good example of immutability, data persistence, and in general, how to implement a data structure in Haskell. We started with a representation for a queue, heap, and an invariant Leftist property. A typical leftist tree looks like the one shown in this diagram:



Then, we proceeded to implement a mergeQs function, which is at the heart of the implementation. The operations insert and deleteMin both result in an operation that changes the structure of the tree. This change can violate the leftist property or the heap order. The mergeQs function merges two trees and restores these invariants.

Most importantly, we tested our queue with QuickCheck, a generative approach towards testing. The QuickCheck works by generating random data and tries to zoom in to a problem in the case of a failure, by generating a smaller set of data. This is very helpful, and it is possible to catch subtle bugs with this approach. It also removes developer bias.

At the heart of QuickCheck is the class Arbitrary, which has an arbitrary function to generate random instances of data types. The core of QuickCheck comes from the following definition of Testable:

    class Testable prop where
    property :: prop -> Property

The data type Property is the result of testing prop. The real genius of QuickCheck comes from the following instance of Testable:

    instance [safe] (Arbitrary a, Show a, Testable prop) =>
                Testable (a -> prop)

The preceding instance tells us that if we have a Testable property and an Arbitrary instance of a, then we can test a function a -> prop. This fantastic definition helps us test our functions such as verifyLeftist :: Queue a -> Bool. The Bool is a testable property. Thus, our function also becomes testable. The QuickCheck library will generate arbitrary instances of Queue a and run the tests!



            

            
        
    
        

                            
                    Working with Foldable and Traversable

                
            
            
                
In this recipe, we will work with two type classes, Traversable, and Foldable. Both these classes are the generalization of the functions that we have seen when working with Lists. Traversable, as the name suggests, allows us to browse a data structure to traverse from left to right. Similarly, the Foldable type class allows us to fold the elements of a data type.

In fact, in previous versions of GHC, traversals and folding were defined for lists. In recent versions, those functions are generalized to include Traversable and Foldable, making them applicable to a wide range of data structures.

We will also define Traversable and Foldable instances for a tree.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project working-with-traversable-foldable-map with the simple Stack template:



        stack new working-with-traversable-foldable-map simple


	Add dependency on the containers library in the build-depends subsection of the executable section:



        executable working-with-traversable-foldable-map
        hs-source-dirs:      src
        main-is:             Main.hs
        default-language:    Haskell2010
        build-depends:       base >= 4.7 && < 5
                       , containers


	Open src/Main.hs. We will add our source here. Import the Map module:



        import Data.Map.Strict as M hiding (foldr)


	Create a list of tuple of Int and String:



        a2z :: [(Int,String)]
        a2z = zipWith (\i c -> (i,c:[])) [1..] ['a'..'z']


	Create a map from the preceding list:



        imap :: M.Map Int String
        imap = M.fromList a2z


	Map is an instance of Foldable. Use foldMap and foldr to concatenate and combine all the values. Use the id function in foldMap to just concatenate the strings:



        ifold :: M.Map Int String -> String
        ifold = foldMap id

        ifoldr :: M.Map Int String -> String
        ifoldr = foldr (\s t -> s ++ ", " ++ t) ""


	Use the Traversable instance to traverse over the map:



        itraverse :: M.Map Int String -> [Map Int String]
        itraverse = traverse (\x -> [x ++ "-travsered" ])


	Implement the Foldable and Traversable instances for a tree. Define the binary tree:



        data Tree a = Empty
            | Tree (Tree a) a (Tree a)
              deriving Show


	Implement the Foldable instance:



        instance Foldable Tree where

        foldMap f Empty = mempty
        foldMap f (Tree left v right) = (foldMap f left) `mappend` f v 
        `mappend` (foldMap f right)

        foldr f x Empty = x
        foldr f x (Tree left v right) = foldr_left
        where
         foldr_right = foldr f x right
         foldr_value = f v foldr_right
         foldr_left = foldr f foldr_value left


	Implement the Traversable instance for the Tree. For Travesable, a Functor instance is also required:



        instance Functor Tree where
        fmap f Empty = Empty
        fmap f (Tree left v right) = Tree (fmap f left) (f v) (fmap f 
        right)
        instance Traversable Tree where

        traverse f Empty = pure Empty
        traverse f (Tree left v right) = Tree <$> traverse f left <*> f 
        v <*> traverse f right


	Create sampleTree:



        sampleTree :: Tree Int
        sampleTree = Tree l 10 r
        where
          l = Tree ll 8 lr
          ll = Tree Empty 7 Empty
          lr = Tree Empty 9 Empty
          r = Tree rl 12 rr
          rl = Tree Empty 11 Empty
          rr = Tree Empty 13 Empty


	Fold the tree to find the sum of values of all the nodes:



        sampleSum :: Tree Int -> Int
        sampleSum = foldr (+) 0 


	Traverse the tree to create a list of all the values in the node:



        sampleTraverse :: Tree Int -> [Tree String]
        sampleTraverse = traverse (\x -> [show x])


	Use the map examples and tree to fold and traverse:



        main :: IO ()
        main = do
        putStrLn "Given the map"
        print imap

        putStrLn "Fold the map"
        print $ ifold imap
        print $ ifoldr imap

        putStrLn "Traverse the map"
        print $ itraverse imap

        putStrLn "Given a tree"
        print sampleTree

        putStrLn "Folding the tree (Find the sum)"
        print $ sampleSum sampleTree

        putStrLn "Traverse the tree (create a list)"
        print $ sampleTraverse sampleTree


	Build and execute the project:



      stack build
      stack exec -- working-with-traversable-foldable-map


	You should see the following output:








            

            
        
    
        

                            
                    How it works...

                
            
            
                
Foldable and Traversable are very generic and can be defined for a variety of data types. Instances of these type classes allow us to define traversal and foldable, and use common functions such as foldr, foldl, and so on, for a variety of data structures.



            

            
        
    
        

                            
                    Working with Relational and NoSQL Databases

                
            
            
                
In this chapter, we will work with the following recipes:


	Working with Persistent

	Managing migrations

	Creating custom data types

	Using Esqueleto to do advanced SQL queries

	Using hedis to work with redis (key-value, list, and hash)

	Using hashsets and sorted sets in redis to create a Trie





            

            
        
    
        

                            
                    Introduction

                
            
            
                
So far, we have looked at Haskell language features, type classes, and collections and worked with various examples. But all of those constructs were purely Haskell features. In this chapter, we will be interfacing with the outside world (apart from the console), by interacting with databases.

To be able to write a backend, or a storage service, it is imperative that we will at some time think about storing the data in a relational database, or a binary serializable format or a file such as JSON or YAML. In this chapter, we will use the persistent library to work with relational databases. Using the persistent model, we will define the relations, do a query, insert, update, and a deletion of the stored data. We will move on to Esqueleto for advanced queries. Esqueleto defines a DSL (Domain Specific Language) so that enables us to do advanced queries.

We will then move to hedis, a backend for the redis database. We will work with hedis queries, and work our way towards key-value pairs, sorted sets, and hashsets.



            

            
        
    
        

                            
                    Working with Persistent

                
            
            
                
In this recipe, we will work with the persistent library, which has been designed to abstract the concept of defining the schema (the data models and the relationships between them), and working with a storage backend (such as SQLite, and PostgreSQL).

In this recipe, we will create a model to store the following data:


	 User details (username, email)

	Stock that the user is interested in (exchange, symbol)



We will use SQLite as the backend, as it does not require any installation. But the model defined here can be worked out with any persistent backend, such as PostgreSQL. The model definition in the persistent library is created through Template Haskell. Template Haskell enables programmers to generate code at compile time. This involves writing macros and generating code.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project called working-with-persistent with the simple stack template:



        stack new working-with-persistent simple


	Add a dependency to persistent and persistent-sqlite, in the build-depends subsection of the executable section. Also add persistent-template, text, and mtl (monad transformers) in the same section:



        executable working-with-persistent
          hs-source-dirs:      src
          main-is:             Main.hs
          default-language:    Haskell2010
          build-depends:       base >= 4.7 && < 5
                              , persistent
                              , persistent-sqlite
                              , persistent-template
                              , text
                              , mtl


	Open src/Main.hs. We will be adding our source here.

	At the top, we need to enable many extensions that are required for the persistent backend:



        {-# LANGUAGE EmptyDataDecls             #-}
        {-# LANGUAGE FlexibleContexts           #-}
        {-# LANGUAGE FlexibleInstances          #-}
        {-# LANGUAGE GADTs                      #-}
        {-# LANGUAGE GeneralizedNewtypeDeriving #-}
        {-# LANGUAGE MultiParamTypeClasses      #-}
        {-# LANGUAGE OverloadedStrings          #-}
        {-# LANGUAGE QuasiQuotes                #-}
        {-# LANGUAGE TemplateHaskell            #-}
        {-# LANGUAGE TypeFamilies               #-}
        {-# LANGUAGE DeriveGeneric              #-}

These are some features that can be enabled by putting them in the pragmas as is done here. We have already seen OverloadedStrings in the last chapter. These features enable specific extensions in GHC. We will be looking at some extensions in upcoming chapters. The extension that is most relevant for this recipe is TemplateHaskell.


	Write the module declaration for the Main module:



        module Main where


	Import the modules that we will need for defining the entities and relations between them.



TH usually indicates that Template Haskell is required to use it:

        import Database.Persist.TH
        import Data.Text as T
        import Database.Persist.Sqlite
        import Database.Persist.Sql as S
        import Control.Monad.Reader
        import Control.Monad.IO.Class


	Define the model. We will define three tables, Stock, User, and UserStock. Stock stores information about stock, exchange, and symbol, whereas User stores information about the user's name and email ID. We will declare that the email ID should be unique. UserStock is an association between user and stock:




    share [mkPersist sqlSettings, mkMigrate "migrateAll"]    
    [persistLowerCase|
    Stock
     exchange Text
     symbol Text
     UniqueStockId exchange symbol
     deriving Show
   User
     name Text
     email Text
     UniqueEmailId email
     deriving Show
   UserStock
    userid UserId
    stockid StockId
    Primary userid stockid
    deriving Show
   |]




Note the Template Haskell syntax, where we enclose the expressions in square brackets, define tables by simply indenting, and specify the type of the data. Also note how we have created the foreign key reference to User and Stock in the UserStock table, where a composite key is defined with fields (userid, stockid). Here, userid and stockid refer to uid in the User table, and sid in the Stock table respectively.


	The preceding Template Haskell code will result in the following data types-- User, Stock and UserStock.

	Create the tables and schema. The database operations run in a Monad m, which supports IO as well (as denoted by MonadIO type class). Note that we write the query generically, and are oblivious as to which backend database will be used:



        createSchema :: (Monad m, MonadIO m) => ReaderT SqlBackend m ()
        createSchema = runMigration migrateAll


	Insert a few users and stocks. Associate the users and stocks:



        insertData :: (Monad m, MonadIO m) => ReaderT SqlBackend m (Key 
        User, Key User, Key Stock, Key Stock)
        insertData = do
        johnid <- insert $ User "John Broker" "john@example.com"
        liftIO $ putStrLn $ "Added user John" ++ show johnid 
        janeid <- insert $ User "Jane Investor" "jane@example.com"
        liftIO $ putStrLn $ "Added user Jane" ++ show janeid

        -- Insert few stocks
        dbsid <- insert $ Stock "XSES" "D05"
        liftIO $ putStrLn $ "Added Singapore Exchange DBS stock" ++ 
        show dbsid
        infyid <- insert $ Stock "XNSE" "INFY"
        liftIO $ putStrLn $ "Added NSE India, Infosys stock" ++ show 
        infyid

        -- Associate the user with stock
        john_d05 <- insert $ UserStock johnid dbsid
        liftIO $ putStrLn $ "John subscribed to DBS stock" ++ show 
        john_d05
        john_infy <- insert $ UserStock johnid infyid
        liftIO $ putStrLn $ "John subscribed to INFY stock" ++ show 
        john_infy
        jane_d05 <- insert $ UserStock janeid dbsid
        liftIO $ putStrLn $ "Jane subscribed to DBS stock" ++ show 
        jane_d05
         return (johnid, janeid, dbsid, infyid)


	Run a query to get the stocks associated with the user:



 queryUserStockCount :: MonadIO m => Key User -> ReaderT   
 SqlBackend m Int
 queryUserStockCount user = do
   S.count [UserStockUserid ==. user]


	Delete a stock from the user:



 deleteUserStock :: MonadIO m => UserId -> StockId -> ReaderT  
 SqlBackend m ()
 deleteUserStock user stock = do
   S.delete (UserStockKey user stock)


	Update the name of a user:



 updateUserName :: MonadIO m => UserId -> Text -> ReaderT  
 SqlBackend m ()
 updateUserName user newname =
   S.update user [UserName =. newname]


	Use the preceding functions to create the schema, add data to it, and manipulate it. We are running against an in-memory SQLite database:



 main :: IO ()
 main = runSqlite ":memory:" $ do
   createSchema
   (johnid, janeid, dbsid, infyid) <- insertData
   count <- queryUserStockCount johnid
   liftIO $ putStrLn $ "John has " ++ show count ++ " stocks"
   liftIO $ putStrLn $ "Delete John's DBS stock"
   deleteUserStock johnid dbsid
   count1 <- queryUserStockCount johnid
   liftIO $ putStrLn $ "Now John has " ++ show count1 ++ " 
   stocks"
   liftIO $ putStrLn $ "Change Jane's name"
   updateUserName janeid "Jane Quant"
   -- Retrieve new name
   jane <- get janeid
   liftIO $ putStrLn $ "Jane's name is now " ++ show jane
   return ()


	Build and execute the project:



   stack build
   stack exec -- working-with-persistent

               You should see the following output:





            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this recipe, we have touched upon many aspects of defining, storing, and querying the model. Let's us look at each aspect one by one.

The definition of the model starts with the following statement: 

    share [mkPersist sqlSettings, mkMigrate "migrateAll"] 

This definition shows how we would like to persist the model. sqlSettings denotes that we would like to use a SQL backend for storing the model. mkMigrate takes a string argument. This should be name of the function (in this case, migrateAll) that represents the creation of all the schemata defined in the model.

The model itself is defined within [persistLowerCase| ...]. It persists the names of tables and fields using lowercase letters. The following definition of Stock is converted into two representations - Haskell and its corresponding SQL representation:

   Stock
     exchange Text
     symbol Text
     UniqueStockId exchange symbol
     deriving Show

At the command prompt, run the following:

    stack ghci

It should open up a GHCi interactive prompt, inspect the types of User, Stock, and UserStock by using commands such as :i User. Note that the generated data types are defined using Generic Algebraic Data Types (GADTs). In the model definition, we use the following convention. The first unindented line specifies the name of the table (or data type). The next indented lines define the fields. For example, exchange Text defines an exchange field with the type Text. The persistent maps Haskell data types to compatible data types in the backend such as SQLite or Postgresql.

It is also possible to specify the constraints. In the definition of the Stock table, we have created unique constraints for two fields together, exchange and symbol. For the UserStock table, the primary key is a composite key comprising userid and stockid. In fact, both userid and stockid are foreign keys for the tables User and Stock:

    data User = User {userName :: !Text, userEmail :: !Text}
    data Stock = Stock {stockExchange :: !Text, stockSymbol :: !Text}
    data UserStock
      = UserStock {userStockUserid :: !Key User,
               userStockStockid :: !Key Stock}

Also note that for the User and Stock, we did not specify the key. The key type is generated automatically by Persistent as follows:

    newtype instance Key User = UserKey {...}
    newtype instance Key Stock = StockKey {...}
    data instance Key UserStock = UserStockKey {...}

You will notice that persistent also defines the key type for the user as UserId. This type is a synonym of Key User. In the definition of the UserStock userid field, we specify UserId as the type. This way, the foreign key constraint is automatically created. It is also possible to create a foreign key constraint by specifying Foreign in the model definition.

If the primary key is not given, then Persistent creates a default integer based, auto-incremented key.

For every field, a TableField type is created. For example, for the field name of User, a UserName type is created. This is used in the expressions for query, update, and delete functions. By using a specific type, we are indicating a specific field in a data structure. This way, we can do type -safe queries over the database.

For example,  in the following update command, we specify the key User table and then specify the expression [UserName =. newname], where UserName  is the entity field type, and in conjunction with newname (a string value), it creates a update statement:

    update user [UserName =. newname]

At the command prompt, in GHCi, you can also run runSqlite with user.db as an argument. (use :set -XOverloadedStrings to enable the overloaded strings extension at the command prompt):

*Main> runSqlite "user.db" createSchema

This will create a SQLite database called user.db in the current directory, and create the schema. You can open the database file using the SQLite executable. You can print the schema using the .schema command. It should print the following:



You can also run the main with this file, and later inspect the data created with SQL commands.



            

            
        
    
        

                            
                    Managing migrations

                
            
            
                
When you are working on the databases, and trying to abstract the model on the backend at the same time, you already know that you will need a change in the model, database, or both at some point in time. Catering to changes in the requirements, performance criteria, database schema, or the data model on the backend is inevitable. Changing the database schema without breaking the backend becomes an important and time-consuming task.

In this recipe, we will look at migrations and see how Persistent approaches this issue. We will create a simple model and make a change to the model and run migrations again. We will be using SQLite as the backend.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project called managing-migrations with the simple stack template:



        stack new managing-migrations simple


	Add dependencies on the persistent, persistent-template, persistent-sqlite, text, and mtl libraries in the build-depends sub-section of the executable section:



        executable manage-migrations
          hs-source-dirs:      src
          main-is:             Main.hs
          default-language:    Haskell2010
          build-depends:       base >= 4.7 && < 5
                             , persistent
                             , persistent-template
                             , persistent-sqlite
                             , text
                             , mtl


	
Open src/Main.hs. We will be adding our source here.



	Add the extensions required for invoking Persistent and persistent-template functions:



 {-# LANGUAGE EmptyDataDecls             #-}
 {-# LANGUAGE FlexibleContexts           #-}
 {-# LANGUAGE FlexibleInstances          #-}
 {-# LANGUAGE GADTs                      #-}
 {-# LANGUAGE GeneralizedNewtypeDeriving #-}
 {-# LANGUAGE MultiParamTypeClasses      #-}
 {-# LANGUAGE OverloadedStrings          #-}
 {-# LANGUAGE QuasiQuotes                #-}
 {-# LANGUAGE TemplateHaskell            #-}
 {-# LANGUAGE TypeFamilies               #-}
 {-# LANGUAGE DeriveGeneric              #-}


	Add the declaration for the Main module:



        module Main where


	Add the required imports:



 import Database.Persist.TH
 import Data.Text as T
 import Database.Persist.Sqlite
 import Database.Persist.Sql as S
 import Control.Monad.Reader
 import Control.Monad.IO.Class


	Create the model for the database. The following model represents a marine vessel that has structures and compartments arranged hierarchically:



 share [mkPersist sqlSettings, mkMigrate "migrateAll"]  
 [persistLowerCase|
 Asset
    name Text
 Structure
    name Text
    parent StructureId Maybe
    deriving Show
 Compartment
    name Text
    parent CompartmentId Maybe
 |]


	
The mkMigrate "migrateAll" function creates a migrateAll function that inspects the existing database for the tables, and emits the SQL statements required to change the existing schema to achieve the intended schema.



	Write the main function to run the migration. Create a database file called "ship.db" and run the migration against the database:



 main :: IO ()
 main = runSqlite "ship.db" $ runMigration migrateAll


	Build and execute the project:



        stack build
        stack exec -- managing-migrations

  You should see the following output:




	However, we realize that we have to maintain multiple assets in the database, and structures and compartments always belong to one and only one asset at a time. So, we have to add a reference to the asset in the Structure as well as the Compartment. At the same time, it is not necessary to have a name for a structure. Sometimes, internal structures in a ship are just given a number (primary key, in our case), and not a name. So, we make the name of each structure optional. Make the changes in the definition of the model. Change the preceding model to the following:



  share [mkPersist sqlSettings, mkMigrate "migrateAll"]  
  [persistLowerCase|
  Asset
    name Text
  Structure
    name Text Maybe
    parent StructureId Maybe
    owner AssetId
    deriving Show
  Compartment
    name Text
    owner AssetId
    parent CompartmentId Maybe
  |]


	Now again run main, but this time, instead of calling runMigration, call printMigration. You should see the following output after building and executing:



 CREATE TEMP TABLE "structure_backup"("id" INTEGER PRIMARY  
 KEY,"name" VARCHAR NULL,"parent" INTEGER NULL REFERENCES  
 "structure","owner" INTEGER NOT NULL REFERENCES "asset");
 INSERT INTO "structure_backup"("id","name","parent") SELECT  
 "id","name","parent" FROM "structure";
 DROP TABLE "structure";
 CREATE TABLE "structure"("id" INTEGER PRIMARY KEY,"name" VARCHAR  
 NULL,"parent" INTEGER NULL REFERENCES "structure","owner"  
 INTEGER NOT NULL REFERENCES "asset");
 INSERT INTO "structure" SELECT "id","name","parent","owner" FROM  
 "structure_backup";
 DROP TABLE "structure_backup";
 CREATE TEMP TABLE "compartment_backup"("id" INTEGER PRIMARY  
 KEY,"name" VARCHAR NOT NULL,"owner" INTEGER NOT NULL REFERENCES  
 "asset","parent" INTEGER NULL REFERENCES "compartment");
 INSERT INTO "compartment_backup"("id","name","parent") SELECT  
 "id","name","parent" FROM "compartment";
 DROP TABLE "compartment";
 CREATE TABLE "compartment"("id" INTEGER PRIMARY KEY,"name"  
 VARCHAR NOT NULL,"owner" INTEGER NOT NULL REFERENCES  
 "asset","parent" INTEGER NULL REFERENCES "compartment");
 INSERT INTO "compartment" SELECT "id","name","owner","parent"  
 FROM "compartment_backup";
 DROP TABLE "compartment_backup";

You can see that the migration has taken care to alter the schema by adding references to Asset. At the same time, it also creates the SQL statements to copy the data from the old tables to the modified ones.



            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this recipe, we ran the migration against an empty database, and the migration created the schema from the scratch. When we modified the model, and ran the migration against the existing ship.db database, the migration detected the change, and created the migration script. It is a better idea to print the migration than run the migration. It would give a chance to rectify any errors in the migration.

In fact, in the example that we have seen, we have added an extra reference to Asset as a foreign key in Structure and Compartment. This would create a problem during migration, as we will not have reference to an asset in the old data.

As the recipe is being written, using the runMigration function against the SQLite database produces an error. 



            

            
        
    
        

                            
                    Creating custom data types

                
            
            
                
In the model definition for Persistent, we can use data types such as Int, Text, and Int64. They are translated to proper SQL data types according to the SQL dialect that we are working with. Sometimes, the supported data types are not sufficient for our needs, and we might want to write a custom data type.

In this recipe, we will write a custom data type that represents email.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project called custom-datatype with the simple stack template:



        stack new custom-datatype simple


	Add dependencies on the persistent, persistent-template, persistent-sqlite, text, and mtl libraries in the build-depends sub-section of the executable section. Also add email-validate as a dependency. We will use it to store grammatically valid email addresses. Also add a Custom module to the other-modules subsection in the same section (you will have to add this subsection). Other-modules represents a set of modules that are part of the compilation but aren't exposed to the user. We will be adding the Custom module for defining a custom data type:



 executable custom-datatype
   hs-source-dirs:      src
   main-is:             Main.hs
   other-modules:       Custom
   default-language:    Haskell2010
   build-depends:       base >= 4.7 && < 5
                       , persistent
                       , persistent-template
                       , persistent-sqlite
                       , text
                       , mtl
                       , email-validate


	
Open src/Main.hs. We will be adding our source here.



	Add the extensions required for invoking persistent and persistent-template functions:



 {-# LANGUAGE EmptyDataDecls             #-}
 {-# LANGUAGE FlexibleContexts           #-}
 {-# LANGUAGE FlexibleInstances          #-}
 {-# LANGUAGE GADTs                      #-}
 {-# LANGUAGE GeneralizedNewtypeDeriving #-}
 {-# LANGUAGE MultiParamTypeClasses      #-}
 {-# LANGUAGE OverloadedStrings          #-}
 {-# LANGUAGE QuasiQuotes                #-}
 {-# LANGUAGE TemplateHaskell            #-}
 {-# LANGUAGE TypeFamilies               #-}
 {-# LANGUAGE DeriveGeneric              #-}


	Add the declaration for the Main module:



 module Main where


	Add the required imports:



 import Database.Persist.TH
 import Data.Text as T
 import Database.Persist.Sqlite
 import Database.Persist.Sql as S
 import Control.Monad.Reader
 import Control.Monad.IO.Class
 import Text.Email.Validate
 import Custom


	Open a new file in the same directory called Custom.hs. Add the customary extensions, module declarations, and so on to the file. Note that the custom file must be defined in a separate module, or the module definition produces an error:



 {-# LANGUAGE TemplateHaskell #-}
 module Custom where

 import Database.Persist.TH
 import Text.Email.Validate


	Add the user statuses, Active and Inactive. Use derivePersistField to create a custom data type:



 data Status = Active | Inactive
              deriving (Show, Eq, Read)

 derivePersistField "Status"


	Define the custom field for the email address:



 derivePersistField "EmailAddress"


	Close the file, and return to src/Main.hs. Write the model definition:



 share [mkPersist sqlSettings, mkMigrate "migrateAll"]  
 [persistLowerCase|
 User
   status Status
   email EmailAddress
 |]


	Add the data, and query it:



 sampleData :: MonadIO m => ReaderT SqlBackend m ()
 sampleData = do
   let Right jupitermail = validate "jupyter@planets.com"
       Right plutomail = validate "pluto@planets.com"
       Right earthmail = validate "earth@planets.com"
   insert $ User Custom.Active jupitermail
   insert $ User Custom.Active earthmail
   insert $ User Custom.Inactive plutomail
   return ()

 main :: IO ()
 main = runSqlite ":memory:" $ do
   runMigration migrateAll
   sampleData
   -- Get all users (provide empty filter for SQL *)
   all <- S.count ([] :: [Filter User])
   active <- S.count ([UserStatus ==. Custom.Active])
   liftIO $ putStrLn $ "There are " ++ show all ++ " users"
   liftIO $ putStrLn $ show active ++ " are active"


	Build and execute the project:



 stack build
 stack exec -- custom-datatype


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
Creating custom data types using Persistent is easy. You can make use of template Haskell to manufacture the custom data type. Template Haskell takes advantage of the Show and Read instances of the data to convert the data to and from the String representation.



            

            
        
    
        

                            
                    Using Esqueleto to do advanced SQL queries

                
            
            
                
We have used the Persistent library and SQL expressions using the Database.Persist.SQL module. We have used the generated types for each field in the filter, insert, and update expressions. But the complexity of the query can increase rapidly. Of course, there is a way to do a plain SQL query with the persistent library. Here, in this recipe, we will be using the Esqueleto library to do complex queries such as joins.

In this recipe, we will write a complex SQL query that is type-safe and easy to write. Being type-safe is good, because we will catch any major issues earlier on!



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project called using-esqueleto with a simple stack template:



        stack new using-esqueleto simple


	Add dependencies on the persistent, persistent-template, persistent-sqlite, text, and mtl libraries in the build-depends sub-section of the executable section. Also add esqueleto to the same sub-section:



 executable using-esqueleto
   hs-source-dirs:      src
   main-is:             Main.hs
   default-language:    Haskell2010
   build-depends:       base >= 4.7 && < 5
                       , persistent
                       , persistent-template
                       , persistent-sqlite
                       , text
                       , mtl
                       , esqueleto


	
Open src/Main.hs. We will be adding our source here.



	Add the extensions required for invoking Persistent and persistent-template functions:



 {-# LANGUAGE EmptyDataDecls             #-}
 {-# LANGUAGE FlexibleContexts           #-}
 {-# LANGUAGE FlexibleInstances          #-}
 {-# LANGUAGE GADTs                      #-}
 {-# LANGUAGE GeneralizedNewtypeDeriving #-}
 {-# LANGUAGE MultiParamTypeClasses      #-}
 {-# LANGUAGE OverloadedStrings          #-}
 {-# LANGUAGE QuasiQuotes                #-}
 {-# LANGUAGE TemplateHaskell            #-}
 {-# LANGUAGE TypeFamilies               #-}
 {-# LANGUAGE DeriveGeneric              #-}


	Add the declaration for the Main module:



 module Main where


	Add the required imports:



 import Database.Persist.TH
 import Data.Text as T hiding (count, groupBy)
 import Database.Persist.Sqlite (runSqlite)
 import Control.Monad.Reader
 import Control.Monad.IO.Class
 import Database.Esqueleto


	Create the model for the database. The following model represents a referral system in which one user can refer other users. This is usually used to award a user who can help pull in more users:



 share [mkPersist sqlSettings, mkMigrate "migrateAll"]  
 [persistLowerCase| 
 User
     email           Text
     UniqueEmail     email
     referredBy      UserId Maybe
     verified        Bool
     deriving Show
 |]

The preceding model represents a user with a unique email address. Users can register themselves, or can be referred by other users. Merely registering does not help; the user also has to validate their address (usually by clicking on the link sent for verification).


	Write a query to get users with referral greater than 0. Note that only verified users count:



 getAllRefCounts :: MonadIO m => SqlPersistT m [(Value Text,  
 Value Int)]
 getAllRefCounts = 
    select $ from $ \(p `InnerJoin` r) -> do
      on (r ^. UserReferredBy ==. just (p ^. UserId))
      where_ (r ^. UserVerified ==. val True)
      groupBy (p ^. UserEmail, p ^. UserId)
      let cr = count (r ^. UserId )
      orderBy [ desc cr ]
      return (p ^. UserEmail, cr)


	Add data to the referral system. Add users referred by others. One user hasn't verified their email yet:



 createData :: MonadIO m => SqlPersistT m ()
 createData = do
   a <- insert $ User "a@example.com" Nothing True
   b <- insert $ User "b@example.com" (Just a) True
   insert $ User "c@example.com" (Just a) True
   insert $ User "d@example.com" (Just b) True
   insert $ User "e@example.com" Nothing True
   insert $ User "f@example.com" (Just a) False
   return ()

 main :: IO ()
 main = runSqlite ":memory:" $ do
   runMigration migrateAll
   createData
   referrals <- getAllRefCounts
   liftIO $ putStrLn "Referral counts"
   liftIO $ print referrals


	Build and execute the project:



        stack build
        stack exec -- using-esqueleto


	You should see the following output:








            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this recipe, we did a self-join to get the referral count for the users. The query using esqueleto is as follows:

   select $ from $ \(p `InnerJoin` r) -> do
      on (r ^. UserReferredBy ==. just (p ^. UserId))
      where_ (r ^. UserVerified ==. val True)
      groupBy (p ^. UserEmail, p ^. UserId)
      let cr = count (r ^. UserId )
      orderBy [ desc cr ]
      return (p ^. UserEmail, cr)

The query looks very similar to SQL itself. Esqueleto uses a monadic DSL for writing queries in the tune of SQL. For example a  select * from users query will become the following in Esqueleto:

        select (from $ \user -> return user)

If we are searching for a particular user, then we can write the following:

        select (from $ \user -> do
          where_ (user ^. UserEmail ==. val "a@example.com")
          return user
        )

In our example, we have used InnerJoin on two tables. We have specified this with p InnerJoin q. We then added the criteria using the on, where_, groupBy, orderBy and count functions, which translate to the corresponding SQL keywords (ON, GROUPBY, ORDERBY and COUNT).



            

            
        
    
        

                            
                    Using hedis to work with redis (key-value, list and hash)

                
            
            
                
Redis (http://redis.io) is a key-value store and more. It offers facilities very different than relational databases. As a NoSQL database, one has to employ a different philosophy, such as duplicating keys across stores, maintaining reverse lookup, and so on.

In this recipe, we will be using redis to create key-value stores, sorted sets, and hash sets. We will be using the hedis library to connect to Redis and manipulate the data.



            

            
        
    
        

                            
                    Getting ready...

                
            
            
                

	Install Redis from http://redis.io. On Microsoft Windows, use the Windows port from the Microsoft Open Tech Group at https://github.com/MicrosoftArchive/redis.

	Start Redis in a default mode by simply running redis-server from the command line. You should see the following messages on successful start. You might want to go with the Windows service on Microsoft Windows or a daemonized mode on Unix flavoured systems. Optionally, you can also supply the configuration file:



d:\Tools\redis>redis-server.exe --maxheap 1G
                _._
           _.-``__ ''-._
      _.-``    `.  `_.  ''-._        Redis 2.8.2104 (00000000/0) 64 bit
  .-`` .-```.  ```\/    _.,_ ''-._
 (    '      ,       .-`  | `,    )     Running in stand alone mode
 |`-._`-...-` __...-.``-._|'` _.-'|     Port: 6379
 |    `-._   `._    /     _.-'    |     PID: 30944
  `-._    `-._  `-./  _.-'    _.-'
 |`-._`-._    `-.__.-'    _.-'_.-'|
 |    `-._`-._        _.-'_.-'    |           http://redis.io
  `-._    `-._`-.__.-'_.-'    _.-'
 |`-._`-._    `-.__.-'    _.-'_.-'|
 |    `-._`-._        _.-'_.-'    |
  `-._    `-._`-.__.-'_.-'    _.-'
      `-._    `-.__.-'    _.-'
          `-._        _.-'
              `-.__.-'

[30944] 01 Aug 09:21:07.275 # Server started, Redis version 2.8.2104
[30944] 01 Aug 09:21:07.275 * The server is now ready to accept connections on port 6379


	Usually, Redis starts on port 6379.





            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project called using-hedis with a simple stack template:



        stack new using-hedis simple


	Add a dependency on the hedis library in the build-depends sub-section of the executable section. Also add a dependency on the bytestring package:



 executable using-hedis
   hs-source-dirs:      src
   main-is:             Main.hs
   default-language:    Haskell2010
   build-depends:       base >= 4.7 && < 5
                       , hedis
                       , bytestring


	
Open src/Main.hs. We will be adding our source here.



	Add an initial module declaration and import the required headers. Enable OverloadedStrings as we will be dealing with ByteString in this recipe:



 {-# LANGUAGE OverloadedStrings #-}
 module Main where

 import Database.Redis
 import Data.ByteString.Char8 as B
 import Control.Monad
 import Control.Monad.IO.Class
 import Data.Maybe


	Work with the key-value store. hedis implements a composite data type called RedisCtx m f, where m is the context, and f is some sort of container. This way, we can apply the same code to both redis transactions (multiple commands sent atomically to redis) outside transactions. For the commands sent to outside transactions, the preceding type becomes Redis (Either Reply a) and when we apply it in the transactional scenario, it becomes RedisTx (Queued a). Here, we apply the commands to outside transactions.

	Let's work out setting up keys and values. A key is a ByteString key:



 createKV :: Redis ()
 createKV = do
   -- Add exchange codes and their names
   liftIO $ B.putStrLn "Setting stock exchange code and their  
   descriptions"
   set "XSES" "Singapore Stock Exchange"
   set "XBSE" "Bombay Stock Exchange"
   set "XNSE" "National Stock Exchange of India"
   -- Delete a key
   del ["XBSE"]
   -- Get the values back
   xses <- get "XSES"
   xbse <- get "XBSE"
   xnse <- get "XNSE"
   -- Delete a key
   let xchanges = (,,) <$> xses <*> xbse <*> xnse
   liftIO $ print xchanges


	Work with lists. You can create a list simply by pushing values to it. A list can have duplicate values. It is possible to retreive the list by specifying the range and you can also delete the elements:



 createList :: Redis ()
 createList = do
   -- Push symbols in a list of stocks
   liftIO $ B.putStrLn "Adding symbols to the stock list"
   lpush "STOCKS" ["AAPL"]
   lpush "STOCKS" ["GOOGL"]
   lpush "STOCKS" ["FB"]
   -- Get all symbols. (-1) indicates end of the range.
   symbols <- lrange "STOCKS" 0 (-1)
   liftIO $ print symbols
   liftIO $ B.putStrLn "Changing some stocks and removing some"
   -- Set a value to something else
   lset "STOCKS" 0 "GOOGLE"
   -- Remove all values for FB
   lrem "STOCKS" 0 "FB"
   symbols1 <- lrange "STOCKS" 0 3
   liftIO $ B.putStrLn "Printing new stock list"
   liftIO $ print symbols1


	Work with hash sets. You can create a hashset with a key and set different fields:



 createHash :: Redis ()
 createHash = do
   liftIO $ B.putStrLn "Set hashes for AAPL and FB"
   hset "AAPL" "CATEGORY" "TECH"
   hset "FB" "CATEGORY" "SOCIAL"
   hmset "AAPL" [("HINT", "BUY"),("SENTIMENT","POSITIVE")]
   -- Get FB Category
   fbcat <- hget "FB" "CATEGORY"
   liftIO $ B.putStrLn "Print FB Category"
   liftIO $ print fbcat
   -- Get multiple fields
   aapls <- hmget "AAPL" ["HINT","SENTIMENT"]
   liftIO $ B.putStrLn "What is suggestion for AAPL"
   liftIO $ print aapls


	Connect to the Redis server and run the preceding functions:



 main :: IO ()
 main = do
   -- Connect with default information
   conn <- checkedConnect defaultConnectInfo
   runRedis conn $ do
    createKV
    createList
    createHash
  return ()


	Build and execute the project:



 stack build
 stack exec -- using-hedis


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
Hedis wraps up the Redis commands in a monad called RedisCtx m f. At first, this seems complicated, but it helps us to run Redis commands individually or together in a transaction. In the transactions, however, it is not possible to use the result value of the command, as the commands are queued. The hedis library wraps redis commands with the functions with same names (but lowercase).

All the commands work with ByteString. Any serialization should be done to and from the ByteString.



            

            
        
    
        

                            
                    Using hashsets and sorted sets in redis to create a Trie

                
            
            
                
In this recipe, we will be using hedis to create simple trie in Redis. We will a use hashset to store an object, and store its searchable index in the sorted set in redis. We will be using the prefix trie to create a searchable index. For example, if we are searching for "APPLE", we will index all prefixes ("A","AP","APP","APPL", and "APPLE") in the index. Whenever a user enters a string to search, we will be able to look up our index and get the result.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Start the Redis server, and note down the connection info. In this recipe, we will assume that Redis is working on the same machine at the port 6379. This is what hedis assumes to connect to the Redis server using the default connection information.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project called hedis-trie with a simple stack template:



        stack new hedis-trie simple


	Add a dependency on the hedis library in the build-depends sub-section of the executable section:



        executable hedis-trie
          hs-source-dirs:      src
          main-is:             Main.hs
          default-language:    Haskell2010
          build-depends:       base >= 4.7 && < 5
                             , hedis
                             , bytestring


	
Open src/Main.hs. We will be adding our source here.






	Add the initial module declaration and import the required headers. Enable OverloadedStrings as we will be dealing with ByteString in this recipe:



 {-# LANGUAGE OverloadedStrings #-}
 module Main where

 import Prelude as P
 import Database.Redis
 import Data.ByteString.Char8 as B
 import Data.Char
 import Data.Monoid
 import Control.Monad
 import Control.Monad.IO.Class


	Write a function to take a sentence, break it into words, and return prefixes of all the words:



 prefixes :: B.ByteString -> [[B.ByteString]]
 prefixes = P.map (P.tail . B.inits) . B.words


	Write a function that take two input values, a list of prefixes for each word (a list of a list), and the key of the Redis hash set where we are storing data. . The function returns the number of keys updated. Since we are working with a list of lists, we use two foldM. Each prefix contributes a sorted set, and we add the input key to each of these sorted set with default score of 0.0:



 addKeys :: (RedisCtx m f, Applicative f) => [[B.ByteString]] ->   
 B.ByteString -> m (f Integer)
 addKeys prefixes hashkey = 
   let addtrie i p = do
         rs <- zadd p [(0.0, hashkey)]
         pure $ (+) <$> i <*> rs
       addtries ps = foldM addtrie (pure 0) ps
       addtriesS s ps = do
         rs <- addtries ps
         pure $ (+) <$> s <*> rs
    in foldM addtriesS (pure 0) prefixes


	Create a hash for the stock symbol and its name:



 addSymbol :: (RedisCtx m f, Applicative f) => B.ByteString ->   
 B.ByteString -> m (f Bool)
 addSymbol symbol name = do
   hset symbol "NAME" name


	Prepare some data to be added to Redis. We will add all symbols from the Singapore exchange. The symbols and their names are embedded in the code:



        stockData :: [(B.ByteString, B.ByteString)]
        stockData = [ ("MT1", "Dragon Group International Ltd")
                    , ("BKV", "Dukang Distillers Holdings Ltd")
                    ,("CZ4", "Dutech Holdings Ltd")
                    ,("5SO", "Duty Free International Ltd")
                    ,("NO4", "Dyna-Mac Holdings Ltd")
                    ,("D6U", "Dynamic Colours Ltd")
                    ,("BDG", "Eastern Holdings Ltd")
                    ,("BWCU", "EC World Real Estate Investment Trust")
                    ,("5CT", "EcoWise Holdings Ltd")
                    ,("5HG", "Edition Ltd")
                    ,("42Z", "Eindec Corporation Ltd")
                    ,("E16", "Elec & Eltek International Co Ltd")
                    ,("BIX", "Ellipsiz Ltd")]


	Take the preceding data and add it to the Redis server. The symbol and its name is added to the hash set, whereas all the prefixes for the name (by separating into words) are added to sorted sets. Each prefix will create a new sorted set:



 addData :: (RedisCtx m f, Applicative f) => [(B.ByteString,    
 B.ByteString)] -> m ()
 addData stocks = do
   forM_ stocks $ \(stock, name) -> do
     addSymbol stock name
     -- convert name into lower case so that we can do a 
     generic  
     search
     let nameL = B.map toLower name
         namePs  = prefixes nameL
     addKeys namePs stock


	Search the stock and return the list of stocks:



 searchStocks :: B.ByteString -> Redis [B.ByteString]
 searchStocks search = do
   stocks <- zrange search 0 (-1)
   case stocks of
     Right ss -> forM ss $ \s -> do
       n <- hget s "NAME"
       case n of
         Right (Just name) -> return $ s <> ": " <> name
        _                 -> return $ s <> ": name not found    
   ***error***"
  

 main :: IO ()
 main = do
  conn <- checkedConnect defaultConnectInfo
  runRedis conn $ do
    liftIO $ B.putStrLn "Adding stocks to the redis trie index"
    addData stockData
    liftIO $ B.putStrLn "Seaching for strings"
    found1 <- searchStocks "holdi"
    liftIO $ do
      B.putStrLn "Results for \"holdi\""
      forM_ found1 B.putStrLn
    found2 <- searchStocks "dyna"
    liftIO $ do
      B.putStrLn "Results for \"dyna\""
      forM_ found2 B.putStrLn


	Build and execute the project:



 stack build
 stack exec -- hedis-trie


	You should see the following output:









            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this recipe, we used a Redis sorted set for storing the search data. A sorted set stores the data sorted with a score. Each score should be attached with only a single value. Here, we get the name of the stock, such as EcoWise Holdings Ltd, or Eastern Holdings Ltd. We convert them into prefixes, as discussed earlier. Since both the names contain the word "Holdings", we will have a sorted set with a holdi key (remember that we convert all names to lowercase), and two values:

    holdi - score = 0.0, value = 5CT
    holdi - score = 0.0, value = BDT

When we search for the string hold, both the values should be returned. From the values, we find the name from the hash set, and return the set of names. We can further optimize the search by increasing the score for commonly searched stocks. Further, if multiple strings are searched, then we can also take the intersection of two sorted sets, and create a temporary sorted set (with TTL specifying time to live) and search from the new temporary set.



            

            
        
    
        

                            
                    Working with HTML and Templates

                
            
            
                
In this chapter, we will work with the following recipes:


	Using blaze to create an HTML template

	Using blaze to reverse engineer an HTML page

	Use blaze-html with Bootstrap to create HTML template

	Using heist as a template engine

	Working with splice in Heist





            

            
        
    
        

                            
                    Introduction

                
            
            
                
In this chapter, we will work with HTML. We will be looking at two libraries, blaze and heist, to author and manipulate HTML. While blaze is a generic HTML DSL, heist provides HTML templates for various purposes. We will look at how we can leverage both these libraries to manipulate HTML contents.



            

            
        
    
        

                            
                    Using blaze to create an HTML template

                
            
            
                
In this recipe, we will be using the blaze-html library to construct HTML documents. The blaze-html library provides very efficient and fast DSL for constructing HTML documents. It is very lightweight and supports efficient UNICODE support. Being that it is embedded inside Haskell, one can also take full advantage of Haskell while constructing HTML documents. It also supports HTML5 and HTML4 strict syntax.

Note that the aim of the recipe is not to showcase HTML, but the interoperability between Haskell and HTML through blaze-html.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project, working-with-blaze-html, with simple stack template:



        stack new working-with-blaze-html simple


	Add a dependency on the blaze-html library in the build-depends sub-section of the executable section:



        executable blaze-html
          hs-source-dirs:      src
          main-is:             Main.hs
          default-language:    Haskell2010
          build-depends:       base >= 4.7 && < 5
                             , blaze-html


	Open src/Main.hs. We will be adding our source here.

	Add the extension OverloadedStrings. This will enable us to work with many strings that we will use in this recipe. Also add the Main module definition:




 {-# LANGUAGE OverloadedStrings #-}
 module Main where



	Import blaze-html modules for creating HTML5 elements and attributes:




 import Control.Monad
 import Text.Blaze.Html5 as H hiding (main)
 import Text.Blaze.Html5.Attributes as A
 import Text.Blaze.Html.Renderer.Pretty (renderHtml)



	Create a data type to represent a user and his interest in equity stocks:




 data User = User { firstName :: String, lastName :: String }  
 deriving Show
 data Stock = Stock { symbol :: String, exchange :: String,  
 description :: String } deriving Show
 data UserStocks = UserStocks { user :: User, stocks :: [Stock] }  
 deriving Show



	Create some data:




 sampleUser :: User
 sampleUser = User "Jerry" "McQuire"

 sampleStocks :: [Stock]
 sampleStocks = [ Stock "D05" "SGX" "DBS Group"
                , Stock "GOOGL" "NASDAQ" "Alphabet Inc"
                , Stock "INFY" "BSE" "Infosys Ltd"
                ]

 sampleData :: UserStocks
 sampleData = UserStocks sampleUser sampleStocks



	Use the blaze HTML5 primitives to create an HTML. Use a CSS on cloud for styling. The user's stocks are represented by a table:




 sampleHtml (UserStocks user stocks) = html $ do
   header $ do
    H.title $ toHtml $ "Stock Data for " ++ lastName user ++ ",  
    " ++ firstName user
    link ! rel "stylesheet" ! type_ "text/css" ! href   
   "https://cdnjs.cloudflare.com/ajax/libs/aegis/1.3.3/aegis.css"
    body $ do
    h1 $ toHtml $ "Stock Data for " ++ lastName user ++ ", " ++  
    firstName user
    p $ table $ do
      thead $ do
        th $ H.span $ toHtml ("Stock"::String)
        th $ H.span $ toHtml ("Exchange"::String)
        th $ H.span $ toHtml ("Description"::String)
      forM_ stocks $ \s -> do
        tr $ do
          td $ toHtml $ symbol s
          td $ toHtml $ exchange s
          td $ toHtml $ description s
      



	Use main to create an HTML page:




 main :: IO ()
 main = do
  putStr $ renderHtml $ sampleHtml sampleData



	Build and execute the project:



        stack build
        stack exec -- working-with-blaze-html  > example.html


	If you open example.html in the browser, you should see the following HTML page:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
The blaze-html library is derived from blaze, an amazingly fast text builder library that constructs text data in chunks. The blaze-html library provides a DSL for representing HTML. In fact, it provides three HTML DSLs-- HTML5, HTML4 (Strict and Transitional), and XHTML.

All of them offer a monadic way of combining different HTML elements and creating an HTML as a structure represented by data type Html (an alias of Markup). Once created, one can render the Html element using different renderers (such as Pretty, String, Text, and Utf8).

The Html data type itself is an alias of Text.Blaze.Internal.Markup. Using Markup, it is possible to create custom HTML elements.

One of the important things to note in the recipe is how smoothly we can combine a user's data type into templates. We can create composable functions to render an Html element from the given data structure.



            

            
        
    
        

                            
                    Using blaze to reverse engineer an HTML page

                
            
            
                
In this recipe, we will use a package blaze-from-html to reverse engineer an existing HTML page, to create Haskell code that uses blaze-html. 



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Install blaze-from-html using stack. Here we use the resolver lts-9.1. Feel free to use the latest or your favorite resolver:



        stack --resolver lts-9.1 install blaze-from-html


	Check the location of the tool using stack:



        stack path --local-bin


	Use curl to download the home page from haskell.org (http://www.haskell.org/):



       curl -X GET http://www.haskell.org -o index.html


	Use blaze-from-html to engineer the blaze DSL from the HTML page:



        blaze-from-html -v html5 -s index.html > index.hs


	You will need to tweak the code.

	Correct the encoding of the copyright message in the footer class (find the code H.div ! class_ "footer"). Find the message "2014-2017 haskell.org". Either correct the encoding or remove the characters that create problems. 

	Add the module for rendering at the top:



        import Text.Blaze.Html.Renderer.Pretty (renderHtml)


	Hide the main function exported by the Html5 module at the top:



        import Text.Blaze.Html5 hiding (main)


	Add the main function to render the html page:



        main :: IO ()
        main = putStr $ renderHtml index


	Run the file using stack and runhaskell. The runhaskell utility runs the haskell file directly:



        stack --resolver lts-9.1 exec -- runhaskell index.hs > index- 
        out.html


	Open index-out.html in the browser. You will find that the links are still pointing to the relative path from the base URL, www.haskell.org. Change the URLs in index.hs to point to the fully qualified URL  http://www.haskell.org/static...

	Run the stack with runhaskell again. Open the HTML index-out.html in the browser. You will see something like the following:






	Not all elements will render as the original page. For example, the top will show that the code is not rendered correctly. But the reverse engineered page reflects the structure and contents of the original page very well.





            

            
        
    
        

                            
                    How it works...

                
            
            
                
Blaze-from-html is an extremely useful, though not a perfect, solution. It can be used with an advantage for capturing the skeleton of a page. For example, it can be used to capture the designs from the skeleton or bootstrap (http://getbootstrap.com) examples. 

Once reverse engineered, it is easier to hook user data types into it to render the page the way we want it. Other tools which are useful in this context are pandoc (https://pandoc.org - a generic document converter for many document types) and hakyll (https://jaspervdj.be/hakyll/ - static website generator).



            

            
        
    
        

                            
                    Use blaze-html with Bootstrap to create HTML template

                
            
            
                
In this recipe, we will use Blaze HTML to create bootstrap based HTML. In this recipe, we will create a Navbar (which is actually one of the examples at http://getbootstrap.com).



            

            
        
    
        

                            
                    How to do it... 

                
            
            
                

	Create a new folder blaze-html. We will not be creating a separate project. Instead, create a new file called index.hs file. Open the file and enable the extension OverloadedStrings for being able to use a generic string syntax for supporting text as well as ByteString: 




        {-# LANGUAGE OverloadedStrings #-}



	Add the necessary imports:



 import Prelude
 import qualified Prelude as P
 import Data.Monoid (mempty,(<>))

 import Text.Blaze.Html5 hiding (main)
 import qualified Text.Blaze.Html5 as H
 import Text.Blaze.Html5.Attributes
 import qualified Text.Blaze.Html5.Attributes as A
 import Text.Blaze.Html.Renderer.Utf8 (renderHtml)
 import qualified Data.ByteString.Lazy.Char8 as BC


	Define the functions to represent often used URLs:




 -- Attribute value
 -- Point to CDNJS library
 cdnjs :: AttributeValue
 cdnjs = "https://cdnjs.cloudflare.com/ajax/libs/"

 -- Bootstrap 4.0 base for example
 bootstrapUrl :: AttributeValue
 bootstrapUrl = "http://getbootstrap.com/docs/4.0/"



	We will be creating the navigation bar example from bootstrap, Create Header, for our purpose:




 -- Create Header 
 navHeader :: Html
 navHeader = H.head $ do
  meta ! charset "utf-8"
  meta ! name "viewport" ! content "width=device-width, initial-  
  scale=1, shrink-to-fit=no"
  meta ! name "description" ! content "Navigator example from  
  Bootstrap"
  meta ! name "author" ! content "Haskell Cookbook"
  H.title "Top navbar example for Bootstrap Using Blaze-Html"
  link ! href (cdnjs <> "twitter-bootstrap/4.0.0- 
  beta/css/bootstrap.min.css") ! rel "stylesheet"
  --  Point to bootstrap example css
  link ! href (bootstrapUrl <> "examples/navbar-top/navbar- 
  top.css") ! rel "stylesheet"



	Now create a body with the navigation bar and the container pointing to some text:




 navBody :: Html
 navBody = body $ do
   -- Create navigator bar
   nav ! class_ "navbar navbar-expand-md navbar-dark bg-dark mb- 
   4" $ do
    a ! class_ "navbar-brand" ! href "#" $ "Top navbar"
    button ! class_ "navbar-toggler" ! type_ "button" !  
   dataAttribute "toggle" "collapse" ! dataAttribute "target"   
   "#navbarCollapse" $ H.span ! class_ "navbar-toggler-icon" $  
   mempty
    H.div ! class_ "collapse navbar-collapse" ! A.id  
   "navbarCollapse" $ do
      ul ! class_ "navbar-nav mr-auto" $ do
        li ! class_ "nav-item active" $ a ! class_ "nav-link" !  
    href "#" $ do
          "Home"
          H.span ! class_ "sr-only" $ "(current)"
        li ! class_ "nav-item" $ a ! class_ "nav-link" ! href  
    "http://www.haskell.org" $ "Haskell"
        li ! class_ "nav-item" $ a ! class_ "nav-link disabled" !  
     href "#" $ "Disabled"
      H.form ! class_ "form-inline mt-2 mt-md-0" $ do
        input ! class_ "form-control mr-sm-2" ! type_ "text" !  
         placeholder "Search"
        button ! class_ "btn btn-outline-success my-2 my-sm-0" !  
     type_ "submit" $ "Search"

    H.div ! class_ "container" $ H.div ! class_ "jumbotron" $ do
    h1 $ do
      "Navbar example using "
      b $ "blaze-html"
      p ! class_ "lead" $ do
      "This example shows how to use blaze-html with bootstrap  
       framework using "
      i $ "Text.Blaze.Html5"
      " and bootstrap defined classes and tags"
     a ! class_ "btn btn-lg btn-primary" ! href ( bootstrapUrl <>  
      "components/navbar/") $ "View navbar docs"



	Combine the header and body with scripts in Html5 DSL:




 index :: Html
 index = docTypeHtml ! lang "en" $ do
   navHeader
   navBody
   --  Bootstrap core JavaScript
   --     ================================================== 
   --  Placed at the end of the document so the pages load faster 
   script ! src "https://code.jquery.com/jquery- 
   3.2.1.slim.min.js"  $ mempty
   script "window.jQuery || document.write('<script  
   src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.2.1/j
   query.min.js\"><\\/script>')"
   script ! src (cdnjs <> "popper.js/1.12.3/esm/popper.min.js") $  
   mempty
   script ! src (cdnjs <> "twitter-bootstrap/4.0.0- 
   beta/js/bootstrap.min.js") $ mempty



	Use a ByteString to render the HTML from the index function:




 main :: IO ()
 main = BC.putStr $ renderHtml index



	Run stack to create an HTML file. Use runhaskell to get the HTML content. The command runhaskell is used to run a Haskell file directly, without compilation. Here we use the resolver so that runhaskell is called for a specific version of GHC and packages:



 stack --resolver lts-9.1 exec -- runhaskell index.hs > index- 
 out.html


	Open index-out.html in the browser. You should see the following:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this very simple recipe, we have used blaze-html HTML5 DSL to create the Navbar example from bootstrap. Do note how we can compose different components (such as headers, body, and scripts) together to create a single HTML file. 



            

            
        
    
        

                            
                    Using heist as a template engine

                
            
            
                
In this recipe, we will work with heist, a templating framework that can work with HTML or XML documents. The heist framework is also a default templating framework used for the Snap web development framework. At the same time, heist does not have any dependency on Snap and can be used independently.

In this recipe, we will create a template and bind a value to the template.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project, working-with-heist, with a simple stack template.



        stack new working-with-heist simple


	Add a dependency on the heist library in the build-depends sub-section of the executable section:



 executable working-with-heist
   hs-source-dirs:      src
   main-is:             Main.hs
   default-language:    Haskell2010
   build-depends:       base >= 4.7 && < 5
                      , heist
                      , text
                      , bytestring
                      , lens
                      , xmlhtml


	The heist library does not exist in the stackage LTS. Thus, we need to run the following command to update the dependencies automatically:



        stack solver --update-config


	Open src/Main.hs. We will be adding our source here. Enable the OverloadedStrings extension, and define the Main module:




 {-# LANGUAGE OverloadedStrings #-}
 module Main where

 import Heist
 import Heist.Interpreted
 import Data.ByteString.Char8 as B
 import Data.ByteString.Builder
 import Data.Text as T
 import Control.Lens
 import System.IO
 import qualified Text.XmlHtml as X



	Now we will create a few heist templates. Heist templates are XML documents. Create a subdirectory templates in the project folder. Create a file HelloWorld.tpl (the tpl extension stands for template).



 <h1> Hello <name/> </h1>
 <p>
  In this example, we will look at templates and bindings. You,   
 <familyname/>, <name/> will be creating some templates, and then  
 using these templates to generate something wonderful.

  In heist, you can always bind with a tag.
 </p>

  Note the use of <name/> and <familyname/>. These are the parameters         which are filled at runtime.


	Create a configuration for loading the templates. We do not use any namespaces, so initialize the Heist configuration with an empty namespace. Load the templates from the "templates" directories. Set the loaded templates in the configuration. The name of the template file will serve as the name of the template. In this case, HelloWorld will be the name of the template.




 loadTemplateState :: IO (Either [String] (HeistState IO))
 loadTemplateState = do
  -- Load all templates in the directory "templates"
  loc <- loadTemplates "templates"
  -- Create a config without a namespace
  let ex  = over hcNamespace (const "") emptyHeistConfig
      ex1 = over hcTemplateLocations (const [return loc]) ex
  initHeist ex1



	HeistT is a monad for manipulating tests. We use HeistT with HeistState. In the HelloWorld template we need to evaluate two parameters--name and familyname. Let's bind their values with state:




 bindValues :: HeistState IO -> HeistState IO
 bindValues s = let s1 = bindString "name" "Tom" s
                   s2 = bindString "familyname" "Bombadil" s1
               in s2



	In the main function, load the templates to get the state, and then bind the values to the name and familyname tags. Finally, evaluate the template to produce the evaluated result which substitutes the values for name and familyname.




 main :: IO ()
 main = do
   Right st <- fmap bindValues <$> loadTemplateState
   -- Eval the template "HelloWorld" in the context 
   (Just template) <- evalHeistT (evalTemplate "HelloWorld")  
   (X.Element "html" [] []) st
   -- Get the evaluated template, and then render it on the  
  console
   let builder = X.renderHtmlFragment X.UTF8 template
   hPutBuilder stdout builder



	Build and execute the project:



        stack build
        stack exec -- working-with-heist


	You should see the following output, with the substituted values:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
This recipe looks at heist as a template framework where we loaded a template HelloWorld from a template directory. The template requires the arguments name and familyname. The values of these arguments or tags are inserted in the HeistState. Then we run the HeistT monad with the evalHeistT function by supplying the state.

The heist framework inserts the splices (named HeistT), and runs the evaluation for the template by using values supplied in the state.

In this recipe, we used the Heist.Interpreted module. The heist library also provides the Heist.Compiled library. The major difference is that the interpreted module evaluates the DOM at runtime, whereas the compiled module does DOM evaluation at the load time, reducing the overhead during the runtime. Both the Heist.Interpreted and Heist.Compiled modules export the same functions.



            

            
        
    
        

                            
                    Working with splice in Heist

                
            
            
                
In the previous recipe, we created a template and externally attached bindings to a tag, and rendered the template using these bindings. This is useful when we have simple bindings. But what if we have to do some calculation and bind the calculation to the tag, rather than a simple string binding? In this recipe, we will be binding a tag to the local time on the server (or actually, a place where the template will be rendered).



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project, working-with-splice, with a simple stack template:



        stack new working-with-splice simple


	Add a dependency on the heist library in the build-depends sub-section of the executable section. In addition, also add a dependency on additional libraries required for this recipe. In addition to text, bytestring, lens, and xmlhtml, also add the time library:



 executable working-with-splice
   hs-source-dirs:      src
   main-is:             Main.hs
   default-language:    Haskell2010
   build-depends:       base >= 4.7 && < 5
                      , heist
                      , text
                      , bytestring
                      , lens
                      , xmlhtml
                      , time


	Open src/Main.hs. We will be adding our source here. Add the support for OverloadedStrings. Also add the required modules after the definition of the Main module:




 {-# LANGUAGE OverloadedStrings #-}
 module Main where

 import Heist
 import Heist.Interpreted
 import Data.ByteString.Char8 as B
 import Data.ByteString.Builder
 import Data.Text as T
 import Control.Lens
 import System.IO
 import qualified Text.XmlHtml as X
 import Data.Time
 import Control.Monad.IO.Class
 import System.Info



	Create a splice for getting a time and returning a node as a result of processing:




 currentTime :: MonadIO m => Splice m
 currentTime = do
   formatnode <- getParamNode
   let format = T.unpack $ X.nodeText formatnode
   utc <- liftIO $ getCurrentTime
   let ctime = formatTime defaultTimeLocale format utc
   return [ X.TextNode $ T.pack ctime ]



	Write a splice to get the os name and architecture:




 osSpecs :: MonadIO m => Splice m
 osSpecs = do
   let specs = os ++ " : " ++ arch
   return [ X.Element "em" [] [X.TextNode (T.pack specs)]]



	Create a template welcome.tpl in the templates folder in the project directory. We will bind <currentTime/> with the current time:



 <html>
   <body>
     <h1> Heist Framework </h1>
 
     <p> Welcome to Haskell built on <b> <osspec/> </b> </p>

     <p> This page binds two tags, viz.,  &lt;osspec&gt; and  
  &lt;currenttime&gt; to the splices. The username is simply a  
  text node bound to current OS architecture, whereas currenttime  
  is bound to a splice that fetches the current time of the  
  system, and formats it using the format string specified in the  
  tag. 
    
     <p> This page was rendered on <b> <currenttime>%B %d,  
 %Y</currenttime> </b>. </p>
   </body>
 </html>


	Write a function to load the templates:




 loadTemplateState :: IO (Either [String] (HeistState IO))
 loadTemplateState = do
  -- Load all templates in the directory "templates"
  loc <- loadTemplates "templates"
  -- Create a config without a namespace
  let ex  = over hcNamespace (const "") emptyHeistConfig
      ex1 = over hcTemplateLocations (const [return loc]) ex
  initHeist ex1



	Bind the splice with the correct tags:




 bindLocalSplices :: MonadIO m => HeistState m -> HeistState m
 bindLocalSplices =
  bindSplice "osspec" osSpecs . bindSplice "currenttime"  
  currentTime



	Implement the main function to load and run the heist:




 main :: IO ()
 main = do
  Right st <- fmap bindLocalSplices <$> loadTemplateState
  Just (b, mimeType) <- renderTemplate st "welcome"
  hPutBuilder stdout b



	Build and execute the project:



        stack build
        stack exec -- working-with-splice > out.html


	When you open out.html in the browser, you should see following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this recipe, rather than binding to a static string, we created a splice (which is a monadic computation). We created a binding between a tag and the splice, and inserted this binding into a HeistState. The templates that are rendered in the given HeistState will dynamically apply these bindings and call the splice to create a resultant template.

It is thus possible to embed an arbitrary computation, such as doing a database query, calling a backend microservice, and so on, and populate the template using the splices. In this recipe, we bound a <currenttime/> tag. The contents of this tag serve as an input to the splice. In this case, it is a time format in which the time should be output.



            

            
        
    
        

                            
                    Working with Snap Framework

                
            
            
                
In this chapter, we will look at the Haskell-based web framework, Snap. We will look at the following recipes:


	Getting started with Snap

	Routing in Snap

	Serving static contents in Snap

	Form handling in Snap

	Creating and composing snaplets

	Session handling in Snap

	Authentication in Snap

	File upload with Snap





            

            
        
    
        

                            
                    Introduction

                
            
            
                
Haskell offers many choices to work with web programming. The most popular choices are listed here:


	Yesod (http://www.yesodweb.com/)

	Happstack (http://www.happstack.com/) 

	Snap (http://snapframework.com/)



Because of the modularity and compositional nature of Haskell, it is possible to easily use many libraries, including parts of web frameworks with other web frameworks, interoperably. In addition to this, the Web Application Interface (WAI) https://hackage.haskell.org/package/wai, allows for the sharing of code among different web frameworks with minimal changes. 

In this chapter, we will primarily work with Snap Framework. A Snap Framework consists of reusable blocks called snaplets. It is possible to compose snaplets together to create a web application. In this chapter, we will start with a Snap application generated from Snap templates. In later recipes, we will work with different aspects of a web application in the context of Snap Framework. We will look at routing, forms, sessions, and authentication in Snap Framework. Later, we will create our own snaplet, composing it with existing snaplets. In the end, we will look at uploading the data in parts. 

The recipe authentication in Snap is a complete web application, which shows integration between databases, session management, HTML template processing, and authentication.



            

            
        
    
        

                            
                    Getting started with Snap

                
            
            
                
In this recipe, we will install Snap and create our first Snap application. The Snap Framework is not (yet) part of the official list of packages on Stackage. Hence, to get started with Snap, we will have to build the Snap Framework ourselves. 



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Open a console, change the directory to the desired location, and clone the snap-templates framework, as follows:



        git clone https://github.com/snapframework/snap-templates.git


	The snap-templates package does not have a stack.yaml file generated. Generate a new one.



        stack --resolver lts-9.1 init --solver --ignore-subdirs

At the moment, lts-9.1 is the latest LTS available with stack. We also need to ignore the subdirectories, as otherwise, stack will include all the subdirectories and cabal files in the stack project file.


	Build and install the project using the following commands:



      stack build 
      stack install


	The snap executable will be installed in the local bin folder. On Unix systems, this path will be $HOME/.local/bin. You can also get this path by running the following command:  



      stack path --local-bin


	Add this path to the $PATH variable, or run snap by providing the full path.

	Change into a new directory, starting-with-snap and snap to create a default Snap application template. 



        snap init


	Again, since this project is not created with stack, we need to create a stack project, as follows:



        stack --resolver lts-9.1 init --solver

stack will show a warning, but should be able to use the resolver to create a project with some external dependencies added, as lts-9.1 will not be able to resolve the exact versions of some of the dependencies. 


	Build and run the project using these commands:



      stack build
      stack exec -- starting-with-snap


	Point the browser to http://localhost:8000. You should see the following screen:






	Create a new user, and log in. You should see the default page, as seen in this screenshot:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this recipe, we generated a default Snap application using snap-templates. The default application integrates the snaplets login, the session, and Snap's templating engine, Heist. A snaplet is a modular component of Snap, which allows us to add our own functionality and integrate with existing snaplets.

With Snap,  there are the following important components: 


	snap-core: This core defines the Snap monad and various web handlers

	snap-server: This is an HTTP web server with various handlers for running snap handlers

	snap: This is a utility package which allows you to work with the snap skeleton

	heist: This is a templating library for HTML/XML, based on the xmlhtml library



A unit in Snap is called a snaplet. A snaplet provides a unit functionality (such as templating, session, and so on). It is possible to compose multiple snaplets together to create a web application.



            

            
        
    
        

                            
                    Routing in Snap

                
            
            
                
In this recipe, we will add routes using the Snap Framework. We will add plain routes and routes with parameters.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project, routing-in-snap, with a simple stack template. We use lts-9.1 as a resolver package archive. You can use the latest one available on Stackage. Just make sure that you use the same resolver later to solve the dependency constraints:



        stack --resolver lts-9.1 new routing-in-snap simple


	Add a dependency on the following libraries in the build-depends subsection of the executable section, as follows:



        executable routing-in-snap
        hs-source-dirs:      src
        main-is:             Main.hs
        default-language:    Haskell2010
        build-depends:       base >= 4.7 && < 5
                       , snap-server
                       , snap-core
                       , snap
                       , lens
                       , bytestring
                       , text


	Use the following command to solve the dependency constraints to update the stack.yaml file:



      stack --resolver lts-9.1 solver --update-config


	Open src/Main.hs. We will add our source here. Add the imports for Snap:




 {-# LANGUAGE OverloadedStrings #-}
 module Main where

 import Data.Monoid
 import Control.Applicative
 import Snap
 import Snap.Core
 import Snap.Http.Server



	Add the routes. We will add two routes. The first route, hello, is where we will respond with a standard Hello World! greeting. The second route, greet/:nameparam, has a parameter embedded in the route. The parameter nameparam is embedded in the route path with a colon:




 routes = [ ("hello", writeBS "Hello World!")
         , ("greet/:nameparam", greetHandler)
         ]



	Next, we will add a handler for the greet/:nameparam route. We access the named parameter with the getParam function. This may fetch us the value of the parameter. We write an error message if the parameter value is not specified:




 greetHandler = do
  name <- getParam "nameparam"
  maybe (writeBS "nameparam not specified") (\n -> writeBS    
  ("Welcome " <>n)) name



	Compose the routes in a single site. The top route and other routes are combined with <|> (an instance of the Alternative type class), as shown here:




 site = 
  ifTop (writeBS "Serving from root") <|>
  route routes



	Use the quickHttpServe method to serve the site:




main :: IO ()
main = quickHttpServe site



	Build and execute the project. Also create a folder, log, in the project directory. The access/error logs are stored in this folder:



      stack build
      stack exec -- routing-in-snap


	The server will run at 0.0.0.0:8000; connect to the local host by pointing the browser to http://localhost:8000/greet/snap. You should see the following message:








            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this recipe, we explained how we can do routing. A URL (for example, http://example.com:8080/some/path?param) has these two main parts: 


	The first part locates the server and service, and is composed of a scheme (such as HTTP/HTTPS), a host name (example.com), and a port. 

	The second part is composed of a path or routes, and query parameters. (/some/path?param).



The generic schema is explained at https://en.wikipedia.org/wiki/URL.

In a web application, we are interested in the HTTP/HTTPS schema and path. Each path can be connected by a remote user through a verb such as GET, POST, PUT, or DELETE. Combined with HTTP verbs and paths, the web application delivers web content. 

In this recipe, we worked with GET requests (which are default ones) that are associated with different routes. In the Snap Framework, the route is a list of path/route names and the corresponding handlers. The route function takes this table and allows us to construct a site. The special function ifTop handles dealing with the root (/) path. 

In the REST (https://en.wikipedia.org/wiki/Representational_state_transfer) philosophy, the path acts as a state, and hence, the path fragment can be a parameter uniquely determining a state. In the Snap Framework, a parameter is identified by the prefix ':', and the string that follows this name (till the path separator or '/' character) is the parameter name. The Snap Framework allows us to access this parameter using the getParam function. 

We use the quickHttpServe function to run the built-in HTTP server. By default, it runs the HTTP server at port 8000.



            

            
        
    
        

                            
                    Serving static contents in Snap

                
            
            
                
A website consists of two types of contents, static contents and dynamic contents. The static contents are the HTML files, images, a folders containing these files. These contents do not change per request. The dynamic contents depend upon route, parameters, and request type. The Snap Framework allows us to serve static contents seamlessly with the dynamic contents. In this recipe, we will look at how we can serve static contents with the Snap Framework.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project, static-contents-in-snap, with the simple stack template:



        stack --resolver lts-9.1 new static-contents-in-snap simple


	Add a dependency on the following libraries in the build-depends subsection of the executable section:



   executable static-contents-in-snap
     hs-source-dirs:      src
     main-is:             Main.hs
     default-language:    Haskell2010
     build-depends:       base >= 4.7 && < 5
                       , snap-server
                       , snap-core
                       , snap
                       , lens
                       , bytestring
                       , text


	Add a directory, static, in the project folder. Add index.html in this directory, as follows:



 <!DOCTYPE HTML5>
 <html>
   <body>
     <p> This file is served as a static content. You may add
     links to subfolder as well. But the folder ".." and absolute
     path are not honoured while serving the directory. </p>

     <p> This is a link to <a href="subfolder">subfolder</a> </p>
    
   </body>
 </html>


	Also add a subfolder named subfolder, and add the following contents to the file subfolder/example.html:



 <!DOCTYPE HTML5>
 <html>
   <body>
     <p>
       This content is served from the folder <em>subfolder</em>
     </p>
   </body>
 </html>


	Open src/Main.hs. We will add our source here. Add the Main module and the necessary imports:




 {-# LANGUAGE OverloadedStrings #-}
 module Main where

 import Data.Monoid
 import Control.Applicative
 import Snap
 import Snap.Core
 import Snap.Http.Server
 import Snap.Util.FileServe



	Serve the static contents using the serveDirectory function. The directory listing will be stylized by fancyDirectoryConfig:




 main :: IO ()
 main = quickHttpServe $ serveDirectoryWith fancyDirectoryConfig   "static"



	Build and execute the project:



       stack build
       stack exec -- static-contents-in-snap


	Point the browser to http://localhost:8000/subfolder. You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this recipe, the static folder is served by quickHttpServe.

Note that in the absence of any route, the static folder serves the contents from the root path. The subfolders are automatically mapped to the subpath. 

Snap prevents access to the parent folder of the static directory, and the absolute paths are also not allowed. The defaultMimeTypes function in the module Snap.Util.FileServe gives a list of the default mime types. It is possible to add your own mime types to the list and serve the directory.

The fancyDirectoryConfig function uses its own built-in style for the listing directory. The defaultDirectoryConfig function shows the directory listing in a plain manner.

Note that the files index.html, index.htm, default.html, and others are automatically recognized as default indexes. In case these files are not present, Snap shows the directory contents with file types recognized with the mime types. 



            

            
        
    
        

                            
                    Form handling in Snap

                
            
            
                
In this recipe, we will look at how forms can be handled in the Snap Framework. We will also look at HTTP redirection and handling GET and POST methods.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project, form-handling-in-snap, with the simple stack template:



        stack --resolver lts-9.1 new form-handling-in-snap simple


	Add a dependency on the following libraries in the build-depends subsection of the executable section, as follows:



   executable form-handling-in-snap
    hs-source-dirs:      src
    main-is:             Main.hs
    default-language:    Haskell2010
    build-depends:       base >= 4.7 && < 5
                       , snap-server
                       , snap-core
                       , snap
                       , lens
                       , bytestring
                       , text
                       , containers

Once the dependency is added, solve the dependency constraints by using the same resolver and allowing stack to update the stack.yaml file:

      stack --resolver lts-9.1 solver --update-config


	Open src/Main.hs. We will add our source here. After the Main module header, add the necessary imports. Also enable the OverloadedStrings extension, as shown here:




{-# LANGUAGE OverloadedStrings #-}
module Main where

import Data.Monoid
import Control.Applicative
import Snap
import Snap.Core
import Snap.Http.Server
import Snap.Util.FileServe
import Data.Map.Lazy as M
import qualified Data.ByteString.Char8 as BC



	Create a folder, static, in the project directory, and add form.html to it with the following contents. The following HTML document shows a form where a user can enter his/her first and last names, and his/her favorite Haskell web framework to work with:



<!DOCTYPE HTML5>
<html>
  <body>
    <p> The form shown below takes the the input, and submits it to the action defined in Snap. Snap processes the action, and produces a page showing the processed input. </p>

    <form action="/survey" method="post">
      <fieldset>
        First Name : 
        <input type="text" name="firstname"><br>
        Last Name : 
        <input type="text" name="lastname"><br>
        Your favorite Haskell Web Framework 
        <select name="framework">
          <option value="snap">Snap Framework</option>
          <option value="yesod">Yesod Framework</option>
          <option value="happstack">Happstack </option>
        </select>
        <br><hr>
        <input type="submit" value="Complete Survey">
      </fieldset>
    </form>
  </body>
</html>

We will serve this preceding directory with static as the root folder.


	Next, add a handler for the GET method. We will redirect to the form defined earlier:




getSurvey :: MonadSnap m => m a
getSurvey = method GET (redirect "/form.html")



	Also add a handler for handling the POST method for the form. We will grab the contents of the form, and write them as text, as follows:




postSurvey :: MonadSnap m => m ()
postSurvey = method POST $ do
  rq <- getRequest
  params <- getParams
  let fullName = extractName params
  let favorite = extractFavorite params

  maybe (writeBS "Hello Anonymous") (\n -> writeBS ("Hello " <> n)) fullName
  maybe (writeBS "No preference") (\n -> writeBS ("Your favorite framework : " <> n)) favorite

  where
    extractName :: Params -> Maybe BC.ByteString
    extractName params = do
      firstname <- M.lookup "firstname" params
      lastname  <- M.lookup "lastname" params
      return $ (head firstname) <> " " <> (head lastname) <> "\n"

    extractFavorite = fmap head . M.lookup "framework" 



	Create routes for handling the survey. Add a separate route for handling the GET and POST methods:




routes = [ ("/survey", postSurvey)
         , ("/survey", getSurvey) ]



	Create a site for the combined static and survey handler, like this:




site = route routes <|> serveDirectoryWith fancyDirectoryConfig "static"



	Start the HTTP server with aforementioned site:




main :: IO ()
main = quickHttpServe site



	Build and execute the project:



       stack build
       stack exec -- form-handling-in-snap


	Point the browser to http://localhost:8000/survey. You should see the following form:






After submission, the output will show the selection done through the form, as seen in the following screenshot:





            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this recipe, the same route serves both GET and POST methods. We have used the same route twice, once with a GET handler (getSurvey) and another with the handler for the POST request (postSurvey). 

In the GET handler, we use the redirect function to redirect to another location. The redirect function generates an  HTTP 302 redirection request to another location. 

In the POST handler, we use getParams to get the form parameters. The getParams function extracts the parameters from the HTTP request and makes it available as a Map of parameter names against their values. The POST handler extracts the necessary parameters, and then prints the results.



            

            
        
    
        

                            
                    Creating and composing snaplets

                
            
            
                
In this recipe, we will create a snaplet and build the Snap application around it. We will also use the heist snaplet for serving the HTML templates. This recipe will demonstrate the following:


	How to create a snaplet

	How to use an existing snaplet inside another existing snaplet

	How the snaplet data is structured and placed

	How to access snaplet data





            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project, working-with-snaplets, with the simple stack template:



       stack new working-with-snaplets simple


	Add a dependency on the snap-core library in the build-depends subsection of the executable section, as follows:



  executable working-with-snaplets
    hs-source-dirs:      src
    main-is:             Main.hs
    default-language:    Haskell2010
    build-depends:       base >= 4.7 && < 5
                       , snap-core
                       , snap-server
                       , snap
                       , lens
                       , bytestring
                       , text
                       , mtl


	Open src/Main.hs. We will add our source here. After the initial Main module definition, add the necessary imports. Enable the OverloadedStrings and TemplateHaskell extensions, as Snap uses the Lens Template Haskell library:




{-# LANGUAGE TemplateHaskell, OverloadedStrings #-}
module Main where

import Control.Applicative
import Control.Lens
import Control.Lens.TH
import Control.Monad.State.Class (gets)
import Data.ByteString.Char8
import Data.Maybe
import Data.Monoid
import Snap
import Snap.Core
import Snap.Http.Server
import Snap.Snaplet.Session
import Snap.Snaplet.Heist



	Create a data type, MyData. It contains a ByteString list. This is done as follows:




data MyData = MyData { _someData :: [ByteString] }



	Create lenses for our data type. Note that lenses are covered in detail in Chapter 11, Working with Lens and Prism. In the context of this recipe, it is sufficient to know that while creating lenses, template haskell will remove an underscore ("_") from the record field and will create a lens. In the aforementioned type, MyData, a lens called someData will be created.




makeLenses ''MyData



	Create a Snaplet for MyData. We create a snaplet that can be used in other Snap applications, as follows:




-- Initialize the snaplet 
myDataInit :: SnapletInit b MyData
myDataInit = makeSnaplet "myData" "Snaplet with MyData" Nothing $ do
  return (MyData ["My Data is initialized"])



	Create an application composed of the Heist and MyData snaplets, as shown here:




data MyApp = MyApp { _heist :: Snaplet (Heist MyApp)
                   , _myData :: Snaplet MyData
                   }



	Create lenses for MyApp:




makeLenses ''MyApp



	Create a Snap handler function, snapletName, which will access the current snaplet name, and will print it as a text:




snapletName :: Handler b MyData ()
snapletName = method GET $ do
  name <- getSnapletName
  let snapletname = fromMaybe "Cannot get snaplet name" name
  writeText $ "Name of the snaplet : " <> snapletname



	Create a Snap handler function, snapletData, which will access the data stored in MyData, and print it as a text:




snapletData :: Handler b MyData ()
snapletData = method GET $ do
  mydata <- gets _someData
  writeBS $ mconcat mydata



	Now create the snaplet for MyApp. This snaplet will initialize the heist and MyData snaplets, and will also add routes for getting the name of the snaplet and for accessing the data inside MyDatasnaplet. It will also allow static serving of templates through heist:




myAppInit :: SnapletInit MyApp MyApp
myAppInit = makeSnaplet "myApp" "My First Snaplet" Nothing $ do
  hst <- nestSnaplet "heist" heist $ heistInit "templates"
  myd <- nestSnaplet "mydata" myData $ myDataInit
  addRoutes [ ("/mysnaplet", with myData snapletName)
            , ("/mysnaplet/data", with myData snapletData)
            ]
  wrapSite (<|> heistServe)
  return (MyApp hst myd)



	Create an instance of the HasHeist type class. This will simplify accessing heist for binding templates, and so on:




instance HasHeist MyApp where
  heistLens = subSnaplet heist



	Use the MyApp snaplet to be served as the web application, as follows:




main :: IO ()
main = serveSnaplet defaultConfig myAppInit



	We will still need to add some templates for Heist. Create a directory, snaplets, in the project directory, and create a heist/templates subpath inside the snaplets directory.

	Add the default template in the snaplets/heist/templates directory, as follows:



<html>
  <head>
    <title>Creating and composing Snaplets</title>
  </head>

  <apply-content/>
</html>


	Add the index template in the same templates directory. The index template uses the default template:



<apply template="default">
  <h1> Welcome to Heist </h1>
  <p>
    This page is displayed through <em>Heist</em> snaplet.
  </p>
</apply>


	Build and execute the project:



      stack build
      stack exec -- working-with-snaplets

The Snap server will serve at port 8000. Pointing the browser to http://localhost:8000, you should see the following HTML output:



If you enter http://localhost:8000/mysnaplet, you will see the name of the snaplet. The output should look like the following:







You can see the following output when you load the URL http://localhost:8000/mysnaplet/data:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this recipe, we created two snaplets for two data types: one for MyData, and another for MyApp. The following list shows the important aspects of creating and composing snaplets:


	
The MyData contains a list of strings. The field _someData starts with an underscore. This is done so that makeLenses (a Haskell Template function) can generate a lens for accessing and setting the field. More information about lenses is covered in Chapter 11, Working with Lens and Prism. Note that, in this recipe, we do not use lens as such, and the use of lenses is strictly restricted to only where Snap APIs demand.



	
The makeSnaplet function takes the snaplet name, description, and an optional data directory on the disc. Here we have used the default option (Nothing) for the data directory. The makeSnaplet function takes the initializer function. In the case of MyData, we have written myDataInit, which creates the initial data for MyData.



	
The data type MyApp represents the web application we are building. It has two fields--one points to Snaplet Heist, and another points to Snaplet MyData. This is how snaplets can be composed together. Also note that the names of the record fields in this data type start with an underscore so that a lens can be generated for each field.



	
In the initializer myAppInit for MyApp, notice the following things:



	
The nestSnaplet function is used for initializing and nesting snaplets.



	The nesting is done with the following syntax:  



       nestSnaplet "mydata" myData $ myDataInit  



	
Here, the first parameter, "mydata", is the name given for an instance of the snaplet. The second parameter, myData, is the lens generated for MyData for MyApp field _myData, and myDataInit is the snaplet initialization function for the MyData snaplet.






	
In the myAppInit function, we use addRoutes to add routes for the MyApp snaplet. Each snaplet can have its own set of routes.



	
We use wrapSite (<|> heistServe) in the myAppInit function. This is used for writing an initializer which has to be called before the site is served. Here, we use heistServe to serve heisttemplates.



	
In the handlers snapletName and snapletData, notice the signature of the function. The following is the type signature for these handlers: 





        Handler b MyData () 


In the preceding signature, b is the snaplet inside which we are working. In the current recipe, this is MyApp. The second type parameter, MyData, denotes the current Snaplet data type. The third parameter () is the return type of the Monad Handler b MyData.


	
Handlers in Snap are State monads, and it is possible for gets and puts to be used inside the Handler. Here we use getSnapletName to get the name of the snaplet, and gets to get the data _someData inside MyData.



	
Each snaplet can expect the data in the path snaplets/. In the current recipe, the heist data is located in the snaplets/heist directory. Heist has a convention to put all the templates in the templates subdirectory in its assigned path.



	
In the template, we use two templates--default and index. Notice that the index template defines only the specific data for the index page, whereas, default represents a generic HTML structure. The apply-content tag in the default template embeds the contents of the apply tag in the index template to serve the index file.



	Since we have not defined the root path handler, the default home page will be served through the index heist template. 





            

            
        
    
        

                            
                    Session handling in Snap

                
            
            
                
In this recipe, we will work with session manager data type, SessionManager in Snap. The HTTP is a connection-less protocol, and the concept of a session has to be built on top of  the interaction between client and server. The session is usually represented by some key-value pair that can be persisted across the interactions between a client and the server. In HTTP, this can be done in multiple ways--one of the most popular ways of handling a session is to set the session cookies. The session cookies are retained by the browser for a particular interaction duration.

In this recipe, we will set session cookies through cookie based the session manager in Snap.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project, session-in-snap, with a simple stack template:



        stack new session-in-snap simple


	Add a dependency on the snap-core library in the build-depends subsection of the executable section. Add the other libraries necessary for working with Snap:



  executable session-in-snap
    hs-source-dirs:      src
    main-is:             Main.hs
    default-language:    Haskell2010
    build-depends:       base >= 4.7 && < 5
                       , snap-core
                       , snap-server
                       , snap
                       , lens
                       , bytestring
                       , text


	Use the following command to solve the constraints within the current resolver. For this recipe, we have used lts-9.1 as a resolver:



  stack --resolver lts-9.1 solver --update-config


	Open src/Main.hs. We will add our source here. Enable the GHC extensions, OverloadedStrings and TemplateHaskell. After the Main module definition, add the necessary imports:




{-# LANGUAGE OverloadedStrings, TemplateHaskell #-}
module Main where

import Snap
import Snap.Core
import Snap.Http.Server
import Snap.Snaplet.Session
import Snap.Snaplet.Session.Backends.CookieSession
import Control.Lens



	Create our own application that nests the session manager:




data MyApp = MyApp { _session :: Snaplet SessionManager } 



	Use lens macros to create a lens for our application, as follows:




makeLenses ''MyApp



	Write a handler to print Hello World! as a text response. In addition to printing a message, we also use the withSession function to use the session inside our handler. We also use the handler also to set a key user inside the session:




greetings :: Handler MyApp MyApp ()
greetings = withSession session $ do
  with session $ setInSession "user" "Haskell Web Developer"
  writeBS "Hello World"



	Write a handler where we get the key stored in the session and show it as an output, like this:




welcome :: Handler MyApp MyApp ()
welcome = withSession session $ do
  message <- with session $ do
    name <- getFromSession "user"
    return $ maybe "You are not registered" id name
  writeText $ message
  writeText "\n"



	Initialize the application by providing the session manager. Initialize the cookie manager, and embed it as a session manager in our application, MyApp. Add two routes, greet and welcome, for the functions greetings and welcome, respectively:




initMyApp = makeSnaplet "sessionDemo" "Demonstrating session with Snaplet" Nothing $ do
  -- site_key is the name of the file where cookie session manager will store the site key.
  -- demo-session is the name of the session cookie
  sess <- nestSnaplet "session" session $ initCookieSessionManager "site_key.txt" "demo-session" Nothing (Just 3600)
  addRoutes [ ("/greet", greetings)
            , ("/welcome", welcome)]
  return (MyApp sess)



	Now serve the snaplet through the serveSnaplet function, as follows:




main :: IO ()
main = serveSnaplet defaultConfig initMyApp



	Build and execute the project. The server should run at port 8000:



      stack build
      stack exec -- session-in-snap

Open the browser, and point it to http://localhost:8000/welcome; you should see a message, You are not registered, as shown in the following screenshot:



Now, visit http://localhost:8000/greet. This should set the cookie in the session. If you now visit http://localhost:8000/welcome, you should see the message, Haskell Web Developer:





            

            
        
    
        

                            
                    How it works...

                
            
            
                
In the preceding recipe, we took the following steps to store information in a session:


	The withSession function introduces the session lens into the handler. At the end of the request, the withSession function commits the changes to the session.

	The with function allows us to use the session functions in the handler.

	The function setInSession allows us to set a key to the value that we would like.

	The function getFromSession allows us to get a key if it is present in the session.

	We use initCookieManager to initialize the cookie-based session manager supplied with the snap framework. The cookie manager is configured with site_key.txt, a file where a private encoding key for the session manager will be stored, the name of the session key, and the expiry time for the session.



You can use curl to see the cookie generated. Start the snap server as mentioned in the previous section, and connect to the greet endpoint using the following command:

      curl -X GET http://localhost:8000/greet --verbose --cookie-jar
      cookies.txt

You should see the following output:







The cookie that is acquired from the preceding interaction is stored by the user client, such as curl and browser. This session cookie is again shared with the server when interacting the next time. Hence, the next time, when you connect with the endpoint http://localhost:8000/welcome, the session cookie is decoded, and the embedded message is displayed.

To run the same endpoint with curl, run the next command:

  curl -X GET http://localhost:8000/welcome --verbose -b cookies.txt --
  cookie-jar cookies.txt

The curl command will show the following output. You can see that the cookie is now sent to the server, and we will get the welcome message from the endpoint, http://localhost:8000/welcome:





            

            
        
    
        

                            
                    Authentication in Snap

                
            
            
                
In this recipe, we will work with authentication with help of the built-in authentication manager in snap. Snap provides a framework that can be tied to HTML templates to provide a customizable authentication mechanism. In this recipe, we will have a few routes requiring authentication, and a few without it. We will see how transitioning from one route to another requiring authentication kicks in the authentication framework.

We will also work with the SQLite backend for storing user credentials.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project, auth-in-snap, with a simple stack template:



        stack new auth-in-snap simple


	Add a dependency on the snap-core library in the build-depends subsection of the executable section.



  executable auth-in-snap
    hs-source-dirs:      src
    main-is:             Main.hs
    default-language:    Haskell2010
    build-depends:       base >= 4.7 && < 5
                       , snap-core
                       , snap-server
                       , snaplet-sqlite-simple
                       , heist
                       , snap
                       , lens
                       , bytestring
                       , text
                       , map-syntax


	Use the following command to solve the constraints within the current resolver. For this recipe, we have used lts-9.1 as a resolver:



  stack --resolver lts-9.1 solver --update-config


	
Copy the archive from https://www.dropbox.com/s/hsprdjk5221r83c/auth-in-snap-templates.tar.gz?dl=0. It is a set of templates and heist templates to be used in this recipe. The archive contains templates for the index page and the login page. Expand the archive in the project folder.



	Open src/Main.hs. We will add our source here. Enable the extensions OverloadedStrings and TemplateHaskell for working with the snaplet:




{-# LANGUAGE OverloadedStrings, TemplateHaskell #-}
module Main where

import Snap
import Snap.Core
import Snap.Http.Server
import Snap.Snaplet.Session
import Snap.Snaplet.Session.Backends.CookieSession
import Snap.Snaplet.SqliteSimple
import Snap.Snaplet.Auth.Backends.SqliteSimple
import Control.Lens
import Snap.Snaplet.Heist
import Snap.Snaplet.Auth
import Snap.Util.FileServe
import Data.ByteString.Char8
import Data.Text
import Heist.Interpreted
import Data.Monoid
import Data.Map.Syntax ((##))
import Control.Applicative
import Control.Monad.IO.Class



	Create your own application that nests the session manager, auth manager, and heist snaplets. We use the SQLite database for storing user credentials:




data MyApp = MyApp { _heist :: Snaplet (Heist MyApp)
                   , _mysession :: Snaplet SessionManager
                   , _auth :: Snaplet (AuthManager MyApp)
                   , _authdb :: Snaplet Sqlite
                   }



	Let's create lenses for our application so that we can use them in the snaplet composition:




makeLenses ''MyApp



	For our convenience, we'll create the HasHeist instance for our application so that we can use heist transparently:




instance HasHeist MyApp where
  heistLens = subSnaplet heist



	Handle the logout event. After the logout, redirect the user to the home page:




signoutUser :: Handler MyApp (AuthManager MyApp) ()
signoutUser = logout >> redirect "/"



	Show the login form to the user. Take an additional parameter to show the error message in case there was an error logging in before:




signinUserForm :: Maybe Text -> Handler MyApp (AuthManager MyApp) ()
signinUserForm errorMsg =
  let errSplice msg = "loginError" ## textSplice msg
      err = maybe mempty errSplice errorMsg
  in heistLocal (bindSplices err) (render "signin")



	Handle the login form. The names of the input elements handling the user name and password need to be provided to the handler. Also note that we will provide a parameter as a route that we will be redirected to. Upon error, we show the form again, showing the login error:




signinUser :: ByteString -> Handler MyApp (AuthManager MyApp) ()
signinUser route = loginUser "username" "password" Nothing (const (signinUserForm err)) (redirect route)
  where
    err = Just "Invalid user name or password"



	Combine the sign-in form rendering and submitting together in a single handler. Display the form for the GET request, and submit the login request for the POST request:




signin :: ByteString -> Handler MyApp (AuthManager MyApp) ()
signin route = method GET (signinUserForm Nothing) <|> method POST (signinUser route)



	Handle new user sign up. After signing up, redirect the user to the home page:




signupUser :: Handler MyApp (AuthManager MyApp) ()
signupUser = method POST $ do
  registerUser "susername" "spassword"
  redirect "/"



	Add a protected route tour which can be accessed only if the user has signed in:




tour :: Handler MyApp (AuthManager MyApp) ()
tour = do
  authorised <- isLoggedIn
  if authorised
    then
      render "tourpage"
    else
      redirect "/signin"



	Construct the routes for signing in, signing out, signing up, and the home page. Also add a route for tour to display a custom page, and serve the directory static for serving static contents.




routes :: [(ByteString, Handler MyApp MyApp ())]
routes = [ ("signin", with auth (signin "/"))
         , ("signout", with auth signoutUser)
         , ("signup", with auth signupUser)
         , ("tour", with auth tour)
         , ("",  serveDirectory "static")
         ]



	Initialize the application with all the snaplets. For the session, use initCookieSessionManager:




initMyApp :: SnapletInit MyApp MyApp
initMyApp = makeSnaplet "myApp" "My snaplet with auth, db, session and auth" Nothing $ do
  hst <- nestSnaplet "" heist $ heistInit "templates"
  ses <- nestSnaplet "session" mysession $ initCookieSessionManager "site_key.txt" "session" Nothing (Just 3600)
  adb <- nestSnaplet "authdb" authdb sqliteInit
  ath <- nestSnaplet "auth" auth $ initSqliteAuth mysession adb
  addRoutes routes
  addAuthSplices hst auth
  return $ MyApp hst ses ath adb



	Serve the snaplet from the command line as follows:




      main :: IO ()
      main = serveSnaplet defaultConfig initMyApp



	Build and execute the project, like this:



      stack build
      stack exec -- auth-in-snap

The server will start at port 8000. If you point your browser to http://localhost:8000, you should see the following output:



The server will create default configurations for the SQLite database, and tables required for auth. If you click on the sign-up form, you can add the user.



After signing in, you can visit the X page. The web page should take cognizance of the fact that you have logged into the portal.





            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this last recipe, we combined a database, auth framework, a session backend, and heist templating together. We created a web application that renders heist templates based on https://purecss.io/CSS. The application stores user data in the SQLite database, test.db, located in the project directory.

When the application starts for the first time, the SQLite database snaplet and its auth backend create configuration files in the directories snaplets/sqlite-simple and snaplets/sqlite-auth, respectively. These directories contain the default configuration files for initializing databases and authorization. One can modify these files or create new ones for differentiating between development and production databases.

During the application initialization, we used addAuthSplices along with routes. This adds the required heist splices, such as ifLoggedIn and ifLoggedOut, which we have used in the default.tpl template to check if the user has already logged in.

The authentication happens through the loginUser and logout functions. The function registerUser is required for signing up the user. Both the loginUser and registerUser functions take the names of the usernames and passwords in the associated HTML form. In addition to verifying the user's credentials with the database backend, these functions also take advantage of the session and store the user login data in the session cookie; this allows us to implement the remember me feature (not implemented in this recipe).

All the handlers which require authentication have the signature with auth <>. This enables us to call the authentication functions that the Snap framework provides. Note that the auth framework also encapsulates the session, and hence, there is no separate need to pass session information to the with auth ... handlers.



            

            
        
    
        

                            
                    File upload with Snap

                
            
            
                
File upload is a very basic HTTP operation handled through Content-type: multipart/form-data. In this recipe, we will create an HTML form and upload a file through it. While the file is being uploaded, we will dynamically process the contents, and report the summary.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project, file-upload, with a simple stack template:



        stack new file-upload simple


	Add a dependency on the snap-core library in the build-depends subsection of the executable section, as follows:



  executable file-upload
    hs-source-dirs:      src
    main-is:             Main.hs
    default-language:    Haskell2010
    build-depends:       base >= 4.7 && < 5
                       , snap-core
                       , snap-server
                       , heist
                       , snap
                       , lens
                       , bytestring
                       , io-streams
                       , text


	Use the following command to solve the constraints within the current resolver. For this recipe, we have used lts-9.1 as a resolver:



  stack --resolver lts-9.1 solver --update-config


	Open src/Main.hs. We will add our source here. Enable the GHC extensions OverloadedStrings and TemplateHaskell. After the Main module definition, add the necessary imports:




{-# LANGUAGE OverloadedStrings, TemplateHaskell #-}
module Main where

import Snap
import Snap.Core
import Snap.Http.Server
import Control.Lens
import Data.ByteString.Char8 as B
import Snap.Util.FileUploads
import Snap.Util.FileServe
import Data.Monoid
import qualified System.IO.Streams as Streams



	Create a directory, static, in the project root folder. Create a form form.html in the static directory. Add the following contents to the form.html file:



<!DOCTYPE HTML5>
<html>
  <body>
    <form enctype="multipart/form-data" action="/upload" method="POST">
      <input name="file" type="file" />
      <input type="submit" value="Upload File" />
    </form>
  </body>
</html>


	Write a handler for processing the file contents. The file contents in parts are processed by the part handler, which is implemented later:




uploadHandler :: Snap ()
uploadHandler = do
  (_, lines) <- foldMultipart defaultUploadPolicy partHandler 0
  writeBS $ "Number of lines uploaded : " <> B.pack (show lines)



	Now implement the part handler for counting the number of lines in the uploaded file as it is being uploaded. The end of the input is signalled by Nothing, as returned by read function:




partHandler :: PartFold Int
partHandler info inp seed = do
  part <- Streams.read inp
  case part of
    Nothing -> return seed
    Just p  -> partHandler info inp (seed + Prelude.length (B.lines p))



	Create routes for uploading the file, and serving the form:




routes :: [(ByteString, Snap ())]
routes = [ ("/upload", uploadHandler)
         , ("", serveDirectory "static") ]



	Write the main function to start the server to serve the aforementioned routes:




main :: IO ()
main = quickHttpServe $ route routes



	Build and execute the project:



     stack build
     stack exec -- file-upload


	The server runs at http://localhost:8000. Point your browser to http://localhost:8000/form.html. You should see the following form:





Choose the file, say file-upload.cabal, and press the upload button. You should see the following lines printed in the browser window: 





            

            
        
    
        

                            
                    How it works...

                
            
            
                
The file uploader in the preceding recipe uses the function called foldMultipart. It handles Content-type: multipart/form-data, and handles each chunk. It takes PartFold as an argument. The type PartFold a is defined as follows: 

type PartFold a = PartInfo -> InputStream ByteString -> a -> IO a

The data type InputStream can be worked upon by a function read (System.IO.Streams module). This function waits for the data being uploaded, and spits out the contents in part. At the end of the data being uploaded, read produces Nothing, signalling the end of data.

In the preceding recipe, the function foldMultipart works similar to foldr, except that at each folding operation, we can use read to wait for the data being chunked and handed over to us. This kind of processing is very useful if we would like to parse the contents as the file is being uploaded. Indeed, the package io-streams, which provides the InputStream data type, also contains a module, Systems.IO.Streams.Attoparsec, for dynamically parsing the data as it is uploaded.

If the developer is interested in looking at all the data after it is uploaded, then there is a function, handleFileUploads, which can handle whole file uploads.



            

            
        
    
        

                            
                    Working with Advanced Haskell

                
            
            
                
In this chapter, we will be looking at following recipes:


	Working with existentially quantified type

	Working with Rank-N type

	Working with type family

	Working with GADTs





            

            
        
    
        

                            
                    Introduction

                
            
            
                
Haskell has numerous extensions (Visit https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/ for a comprehensive list of extensions and features), which can be used through {-# LANGUAGE <pragma> #-}. In this chapter, we will be looking at some advanced GHC extensions, and advanced language features such as type-families, rank-n-types, existential types and Generic Algebraic Data Types (GADT).  The selection is offered from a usefulness point of view, and it is in no way complete, but it should be representative. 



            

            
        
    
        

                            
                    Working with existentially quantified type

                
            
            
                
In this recipe, we will create a list of heterogeneous types which are instances of the type class Show. We will use an ExistentialQuantification extension to show the list. We will use StandaloneDeriving extension to derive a type class instance.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project working-with-existentials with a simple stack template:



       stack new working-with-existentials simple


	Open src/Main.hs. We will be adding our source here.

	Enable the existential support, and define the Main module. Also add StandaloneDeriving extension.




        {-# LANGUAGE ExistentialQuantification, StandaloneDeriving #-}

        module Main where



	Define an existential type:




        data Display = forall a . Show a => Display a



	Create a standalone instance of Show Display:




        deriving instance Show Display 



	Create a list of Displays, and, call it in the main function:




 displayList :: [Display]
 displayList = [ Display 10
              , Display ["One","Two","Three"]
              , Display 10.0
              , Display (Just "Something")
              , Display True ]



 main :: IO ()
 main = do
   putStrLn "Printing heterogenous showable list"
   print displayList



	Build and execute the project:



      stack build
      stack exec -- working-with-existentials


	You should see the following output:









            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this recipe, we have primarily used the ExistentialQuantification extension. Note how we have defined the data type, Display:

        data Display = forall a . Show a => Display a

An important thing to note here is that the type variable a does not appear on the left-hand side. It only appears on right-hand side expressions. It also appears with a construct forall a . Show a. It is a way of embedding information about the type class that is embedded inside the data type. In this case, it tells us that Display is defined for all a which are instances of Show. In this way, the data constructor Display a embeds a value of type a. But the only information that is available to us is about the type class Show. This means that we can only call functions of type class Show here. This is how we could encode, an Int, List, Maybe and so on, in the same list in the preceding example, and show it too!

We have also used another extension called StandaloneDeriving. Here, because, Display is an existential type, we cannot say deriving Show for Display. However, we can create a standalone deriving instance by saying deriving instance Show Display (without the where clause). The standalone deriving instance can be defined in another file as well. Also note that the standalone deriving instance can be for a specific data type (or constraint) as well.



            

            
        
    
        

                            
                    Working with Rank-N type

                
            
            
                
We will be using ST s a monad to convert imperative actions into pure actions. ST Monad provides a strictly isolated mutability. ST monad allows access to mutable memory to be strictly inside the ST monad itself. Once we run an ST monad, the mutability goes away, and we get a referentially transparent function. Thus ST monad is very useful in creating an efficient isolated computation where mutability is strictly isolated from outside world, and, by running it, we can embed it as a pure function.

To be able to isolate ST monad, we will use higher ranked data type in this recipe.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project working-with-rank-n-type with a simple stack template:



        stack new working-with-rank-n-type simple


	Open src/Main.hs. We will be adding our source here.

	Add the language extension Rank2Types, and define Main module:




        module Main where



	Import the ST monad module:




 import Control.Monad.ST
 import Data.STRef
 import Control.Monad



	Use the ST monad to calculate:




 factorialST :: (Num t, Eq t) => t -> STRef s t -> ST s t
 factorialST 0 x = readSTRef x
 factorialST n x = do
   x' <- readSTRef x
   writeSTRef x $! x' * n
   factorialST (n-1) x



	Convert the preceding factorial function from ST s t to a pure function:




 factorial n = runST $ do
   x <- newSTRef 1
   factorialST n x



	Call the factorial in main:




 main :: IO ()
 main = do
   putStr "100! = "
   print $ factorial 100
   putStrLn ""
   putStr "500! = "
   print $ factorial 500
   putStrLn ""



	Build and execute the project:



      stack build
      stack exec -- working-with-rank-n-type


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this recipe, we will use ST s a, which is defined as follows:

    newtype ST s a = GHC.ST.ST (GHC.ST.STRep s a)

The ST is a special monad that lets us update in place. But it allows us to do this without explicit IO, by allowing us to escape ST. This is done by using runST. The function runST has a peculiar type:

    runST :: (forall s. ST s a) -> a

This is a rank 2 type, as the function runST must take an argument of type ST s and this argument should be universal in terms of s. Also note that the quantification (forall s . ST s a) helps runST escape ST.

In fact, all functions of rank 1, such as map can be used with quantifiers for example

    map :: forall a b . (a -> b) -> [a] -> [b]

However, with runST, by specifying (forall s . ST s a), we increase the rank to 2, because now we need one more quantifier. The actual type of runST is as follows:

    runST :: forall a . (forall s . ST s a) -> a

We stop at the rank-2 level, but you can imagine how we can move up the rank.



            

            
        
    
        

                            
                    Working with type family

                
            
            
                
In this recipe, we will work with type family or associated types. In type family, we associate a data type with another data type. In this particular recipe, we will work with a package vector-space, which beautifully show the association between types which defining vector and scalar types.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project working-with-type-family with a simple stack template:



 stack new working-with-type-family simple


	Add a dependency on vector-space library in the build-depends sub-section of executable section:



 executable working-with-type-family
   hs-source-dirs:      src
   main-is:             Main.hs
   default-language:    Haskell2010
   build-depends:       base >= 4.7 && < 5
                      , vector-space


	Open src/Main.hs. We will be adding our source here.

	Define the module Main, and import Data.VectorSpace:




 module Main where

 import Data.VectorSpace



	Define vectors in three dimensions by using a tuple:




 diagonal :: (Double, Double, Double)
 diagonal = (1, 1, 1)



 xaxis :: (Double, Double, Double)
 xaxis = (1, 0, 0)



	Scale the diagonal vector, and take an inner product with xaxis:




 scaleanddotx :: Double -> (Double, Double, Double) -> (Double,  
 Double, Double) -> Double
 scaleanddotx s p q = (s *^ p) <.> q



	Print the values in main by invoking the preceding functions:




 main :: IO ()
 main = do
   putStrLn $ "Vector operation :- ((1,1,1) * 10) . (1,0,0)"
   print $ scaleanddotx 10.0 diagonal xaxis
   putStrLn $ "Midpoint of (1,1,1) and (1,0,0)"
   print $ lerp diagonal xaxis 0.5



	Build and execute the project:



stack build
stack exec -- working-with-type-family


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
The preceding example is rather simple, but it cleverly uses the type family. Look at the definition of VectorSpace type-class. We know that we can scale a vector by a scalar. The type class VectorSpace allows us to define our data structure as a vector. however, we should also be able to customize which scalar we would like to associate with this type.

The VectorSpace type class is defined as follows:

    class AdditiveGroup v => VectorSpace v where
      type Scalar v :: *
 

In the preceding class definition, the type Scalar is defined as type Scalar v :: *. The type Scalar v means that, for a data type v, which is an instance of VectorSpace, there is a scalar associated with it. And this type Scalar can be defined as we define the instance.

In the preceding recipe, we use (Double, Double, Double) as an instance of VectorSpace. This instance is defined as follows:

 instance ( VectorSpace u, s ~ Scalar u
          , VectorSpace v, s ~ Scalar v
          , VectorSpace w, s ~ Scalar w )
     => VectorSpace (u,v,w) where
   type Scalar (u,v,w) = Scalar u

This means that, if u, v, and w are vector spaces, and they share a common scalar value s, then we can define (u,v,w) as an instance of VectorSpace, and its Scalar value is s.



            

            
        
    
        

                            
                    Working with GADTs

                
            
            
                
In this recipe, we will work with GADTs. GADTs extend the data constructors, and allow us more expressivity for representing a complex structure such as a DSL. In this recipe, we will use GADTs to create an expression representation, and a simple parser.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project working-with-GADTs with simple stack template:



        stack new working-with-GADTs simple


	Open src/Main.hs. We will be adding our source here.

	Enable GADTs, and StandaloneDeriving:




 {-# LANGUAGE GADTs, StandaloneDeriving #-}
 module Main where

 import Control.Monad
 import Data.Char
 import Control.Applicative



	GADTs take an algebraic data type one step further, and allow us to write data constructors explicitly. For example, we can represent a set of expressions as follows:




 data Expr where
   Value :: Int -> Expr
   Add :: Expr -> Expr -> Expr
   Mult :: Expr -> Expr -> Expr

 deriving instance Show Expr 



	We can evaluate the preceding expression as follows:




 eval :: Expr -> Int
 eval (Value i) = i
 eval (Add e1 e2) = eval e1 + eval e2
 eval (Mult e1 e2) = eval e1 * eval e2



	Create some expression:




 sampleExpr :: Expr
 sampleExpr = Add (Value 10) (Mult (Add (Value 20) (Value 10))  
 (Value 20))



	In fact, we can also represent Parser monad with GADTs:




 data Parser a where
   Return :: a -> Parser a
   Unparser :: (String -> [(a,String)]) -> (a -> Parser b) ->  
 Parser b



	Instantiate a Functor, Applicative, and Monad instance for our Parser:




 instance Functor Parser where

  fmap f (Return x) = Return (f x)
  fmap f (Unparser parseFn afb) = Unparser parseFn (fmap f . afb) 
  



 instance Applicative Parser where

   pure = Return
 
   Return f <*> Return x = Return (f x)
   Return f <*> Unparser parseFn cfa = Unparser parseFn (fmap f .  
   cfa)
   Unparser pc cfab <*> pa = Unparser pc (\c -> cfab c <*> pa)



 instance Monad Parser where

   return = Return

   Return x >>= f = f x
   Unparser parseFn afb >>= f = Unparser parseFn ((>>= f) . afb)



	Similar to Expr, we can also write an evaluator for our Parser:




 parse :: Parser a -> String -> [(a, String)]
 parse (Return x) s = [(x, s)]
 parse (Unparser parseFn afb) s =
   case parseFn s of
     (a,s'):_ -> parse (afb a) s'
     _        -> []



	Write a set of parsing functions. Create a digit parser:




 conditional :: (Char -> Bool) -> String -> [(Char,String)]
 conditional _ [] = []
 conditional f (x:xs) | f x = [(x,xs)]
 conditional _ _ = []



 digit :: Parser Char
 digit = Unparser (conditional isDigit) Return 



	Use the preceding functions in main to evaluate Expr and run Parser:




 main :: IO ()
 main = do
  putStrLn $ "Sample Expression - " ++ (show sampleExpr) ++ " = " 
  print $ eval sampleExpr

  -- Create a parser for ditit
  putStrLn "Parsing digit from \"1abc\" should be successful"
  print $ parse digit "1abc"

  putStrLn "Parsing digit from \"abc\" should fail"
  print $ parse digit "abc"



	Build and execute the project:



        stack build
        stack exec -- working-with-GADTs


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
We have looked at Generalized Algebraic Data Types. They allows us to create a domain- specific language, and evaluate it the way we want it. We can use this DSL to simulate, or execute, or for any other purpose.

In the second part, we have created a Parser with GADTs. In fact we can generalize it to a generic monad:


  data Parser a where
   Return :: a -> Parser a
   Unparser :: (String -> [(a,String)]) -> (a -> Parser b) -> Parser  b


Here the data constructors Return and Unparser look very similar to return and bind >>= of a monad. In fact, we can actually represent a generic instance of a monad in terms of data constructors. This is equivalent to Free monad. For more information, have a look at (https://www.andres-loeh.de/Free.pdf).

 

 



            

            
        
    
        

                            
                    Working with Lens and Prism

                
            
            
                
In this chapter, we will be looking at the following recipes:


	Creating lenses

	Working with lenses

	Working with Traversal

	Working with Iso

	Working with Prism

	Working with predefined lenses





            

            
        
    
        

                            
                    Introduction

                
            
            
                
If you have worked with object-oriented programming, then you must be aware of the properties (such as in C# or Python, or even in managed C++). Usually, we can access the properties inside an object and also set the property to some value:

    Point point = Point(1.0, 2.0);
    double x = point.x; // Should be 1.0
    point.x = 3.0;      // Now point x is changed to 3.0

Though the preceding code mutates the data, it is very convenient to get and set a property. Imagine doing the same with Haskell:

    data Point = Point Double Double

    x :: Point -> Double
    x (Point xv _) = xv

    setx :: Point -> Double -> Point
    setx (Point _ y) x = Point x y

We need to de-construct a type, and reconstruct it again. If we had some generic way of accessing a field inside the data, and then accessing it back, then we will get the lost convenience of getting and setting a property back. 

It is said that Lens and Prism are some of the most complex pieces of code written in Haskell, thanks to the use of existential quantification, rank 2 types and many operators that can work with each other. Thankfully, working with Lens and Prism is not that hard, and definitely very productive due to their usefulness.

We will be using Edward Kmett's original lens library for this chapter. We will start by manufacturing our own lenses in the first recipe. We will quickly move on to the lens library, working with Lens, Traversal, Iso, and Prism. 



            

            
        
    
        

                            
                    Creating lenses

                
            
            
                
In this recipe, we will look at how we can define a generic property getter and setter. We will write a data type and we will write a generic type that will achieve both getting and setting a field inside the data type.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project creating-lenses, with a simple stack template:



        stack new creating-lenses simple


	Open src/Main.hs. We will be adding our source here. Define the Main module. Enable extension Rank2Types  before the Main module. Also, add StandaloneDeriving and DerivingFunctor.  We will use DerivingFunctor to automatically derive the Functor definition:



        {-# LANGUAGE Rank2Types, StandaloneDeriving, DeriveFunctor #-}
         module Main where


	Define a data type Point, which represents a two-dimensional point:



        data Point = Point Double Double deriving Show


	Now define a generic structure s, and we need to get a field of type a from the structure. Its type would be s -> a. Now imagine we need to change some property of structure s with value b, and the result will be another structure, t. This will have a type  s -> b -> t (actually, this is generic type for the specific setter s -> b -> s). Let's now define types for these getter and setter functions:



        type Getter s a = s -> a
        type Setter s b t = s -> b -> t


	We will combine getter and setter in one type, Lens :



        type Lens s t a b = forall f . Functor f => (a -> f b)
        -> s -> f t

The preceding type is a rank 2 type, as it should work for any Functor f, and f is not included on the left-hand side. Note that s is an input data type and, t is the output data type. a corresponds to some property of s, whereas b is some property type associated with t.


	Let's now see if we can combine getter and setter to create a combined lens:



        lens :: Getter s a -> Setter s b t -> Lens s t a b
        lens getter setter f x = fmap (setter x) $ f $ getter x


	Now define lenses for x and y coordinates in the Point. Since, in our case, we would like to have the output data type be the same as the input data type, with the same property type, we can define Lens' to be a restricted version of Lens: 



        type Lens' s a = Lens s s a a

         x :: Lens' Point Double
         x = lens getter setter
         where
         getter (Point xv _) = xv
         setter (Point _ yv) xv = Point xv yv

         y :: Lens' Point Double
         y = lens getter setter
         where
         getter (Point _ yv) = yv
         setter (Point xv _) yv = Point xv yv


	Define an identity functor:



        newtype Access a s = Access { access :: a } deriving Show


	Define an instance of Functor:



        deriving instance Functor (Access a)


	Define a function to get field, given a lens:



        view :: Lens' s a -> s -> a
        view l = access . l Access


	Similarly, define a generic function to set a field.



        newtype Binder a = Binder { bound :: a }

        deriving instance Functor Binder
        set :: Lens' s a -> a -> s -> s
        set l d = bound . l (const (Binder d))


	Use the preceding lenses in the main function:



        main :: IO ()
        main = do
         -- Create a point
         let p = Point 3 5
         putStrLn $ "Initial Point = " ++ show p
         putStrLn $ "Getting x and y coordinates using lenses x and y"
         print $ view x p
         print $ view y p
         putStrLn $ "Setting x and y coordinates alternatively using  
         lenses x and y"
         print $ set x 7 p
         print $ set y 7 p


	Build and execute the project:



        stack build
        stack exec -- creating-lenses


	You should see the following output:









            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this recipe, we have defined a generic lens Lens s t a b which expands to the following:

    fmap (setter x) $ f (getter x)

Here, x is some structure, getter x gets a field from x, and setter x is a function that takes an argument, sets the same field, and returns a modified x. In the lens, they are connected together by fmap, with f transforming the value of the field to a Functor.

Since, the lens is a rank 2 type, through the choice of f, if made wisely, we can achieve both generic get and set at the same time. Thus, when creating a generic getter view function, we use Access as a Functor. Access captures the field value, and ignores fmap mapping. On the other hand, the setter set function, uses Binder, which takes the input field value, and submits itself to the fmap by replacing the field value in the given input x.



            

            
        
    
        

                            
                    Working with lenses

                
            
            
                
In this recipe, we will be working with the lens library. This library provides a whole battery of functions. We will be using some of those functions. We will also create lenses for our own data type.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project working-with-lenses, with a simple stack template:



        stack new working-with-lenses simple


	Add a dependency on lens library in the build-depends sub-section of the executable section:



        executable working-with-lenses
         hs-source-dirs:      src
         main-is:             Main.hs
         default-language:    Haskell2010
         build-depends:       base >= 4.7 && < 5
                              , lens


	Open src/Main.hs. We will be adding our source here. Add a TemplateHaskell extension for creating lenses for the user-defined data types. Define the Main module, and import the necessary imports:



        {-# LANGUAGE TemplateHaskell #-}

        module Main where

        import Control.Lens.TH
        import Control.Lens


	Define a data type, Line, which is composed of two end Points. Note that we used *_* for naming the fields:



        data Point a = Point { _x :: a, _y :: a } deriving Show
        data Line a = Line { _start :: Point a, _end :: Point a }  
        deriving Show


	Create lenses for Point and Line. We use TemplateHaskell support in lens to automatically create the lenses for Point and Line:



        makeLenses ''Point
        makeLenses ''Line

   This will remove the underscores from the field names, and make lenses out of        them.


	Use the data types, and lenses in the main function:



        main :: IO ()
        main = do
         let line = Line (Point 5 7) (Point 11 13)
         putStrLn $ "Line " ++ show line
         putStrLn $ "Using lenses"

         -- Get the x coordinates of the start point
         putStrLn "Start point of line"
         print $ view start line
         putStrLn "Composing lenses"
         putStrLn "X of end of the line"
         print $ view (end . x) line

         putStrLn "Using setters"
         putStrLn "Setting Y coordinate of end of the line"
         -- Supply a function to modify the coordinate (const 17)
         print $ over (end . y) (const 17) line

         putStrLn "Making it fancier with ^."
         putStrLn "Access X of start of line"
         print $ line ^. (start . x)


	Build and execute the project:



        stack build
        stack exec -- working-with-lenses


	  You should see the following output:









            

            
        
    
        

                            
                    How it works...

                
            
            
                
In our last recipe, we manufactured our own lenses. A lens is defined as follows:

    type Lens s t a b = forall f . Functor f => (a -> f b) -> s -> f t

The creation of the lens is achieved via the creation of getter and setter for a particular field in a data type.

    lens :: (s -> a) -> (s -> b -> t) -> Lens s t a b
    lens getter setter f x = fmap (setter x) $ f (getter x)

We have to write getter and setter manually for each field to supply lenses. Using TemplateHaskell we can create these lenses. Also, note the use of "_" while defining the data type.



            

            
        
    
        

                            
                    Working with Traversal

                
            
            
                
In this recipe, we will work with traversals, where we can use lens for traversing many fields.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project working-with-traversal with a simple stack template.



        stack new working-with-traversal simple


	Add a dependency on the lens library in the build-depends sub-section of the executable section. Also add containers, as we will be using Map in this recipe:



        executable working-with-traversal
         hs-source-dirs:      src
         main-is:             Main.hs
         default-language:    Haskell2010
         build-depends:       base >= 4.7 && < 5
                              , containers
                              , lens


	Open src/Main.hs. We will be editing this file for this recipe. Add the module definition for Main. Also import the required modules. Enable TemplateHaskell  at the top, as we will be creating lenses using the template Haskell:




        {-# LANGUAGE TemplateHaskell #-}
        module Main where

        import Data.Map
        import Control.Lens
        import Control.Lens.TH



	Add a data type for maintaining list of exchanges and symbols. We keep symbols as a map between the unique symbol ID and generic symbol name:




 data Symbol = Symbol { _sid :: String, _sname :: String }     
 deriving Show
 type Symbols = Map String Symbol
 data Exchange = Exchange { _exchange :: String, _symbols ::   
 Symbols } deriving Show



	Make the lenses for the preceding data types:




        makeLenses ''Symbol
        makeLenses ''Exchange



	Populate symbols from two exchanges, viz., Singapore and National Stock Exchange, India:




 singExchange :: Exchange
 singExchange =
   let symbols = [ Symbol "1A1" "AGV Group Ltd"
                , Symbol "D05" "DBS Group Holding"
                , Symbol "CC3" "StarHub Ltd." ]
   in Exchange "SGX" $ fromList $ zip (_sid <$> symbols) symbols



 nseExchange :: Exchange
 nseExchange =
   let symbols = [ Symbol "3MINDIA" "3M India Ltd"
                , Symbol "HINDALCO" "Hindalco Industries Ltd"
                , Symbol "HCLTECH" "HCL Technologies Ltd" ]
   in Exchange "NSE" $ fromList $ zip (_sid <$> symbols) symbols



 exchanges :: [Exchange]
 exchanges = [singExchange, nseExchange]



	Use the preceding data types in the traversals:




 main :: IO ()
 main = do
   putStrLn $ "Just traverse the exchanges, should get back same  
   input"
   print $ toListOf traverse exchanges

   putStrLn $ "Traverse and modify names of the exchanges,  
   prepend 'X' to the exchange names"
   putStrLn $ "Traversal is a valid lens, and can be combined  
   with other lenses"
   print $ over (traverse . exchange) ('X':) exchanges

   putStrLn $ "Traverse and get combined list symbols across  
   exchanges"
   print $ view (traverse . symbols) exchanges

   putStrLn $ "Get all symbol IDs in all exchanges"
   print $ toListOf (traverse . symbols . traverse . sid )  
   exchanges

   putStrLn $ "Same as above but with 'view' rather than  
   'toListOf'"
   print $ view (traverse .symbols . traverse . sid ) exchanges
 
   putStrLn $ "Use 'set' to set everything in the traversal to  
   the same value"
   print $ set traverse 8 [1..10]



	Build and execute the project.



        stack build
        stack exec -- working-with-traversal


	  You should see the following output:









            

            
        
    
        

                            
                    How it works...

                
            
            
                
We have looked at lens in the preceding recipe. A lens applies to a field in a data structure. If we have a Traversable field type somewhere, then we can use traverse to browse over the collection. An important fact must be remembered, if we view the traverse, then the target field must be an instance of Monoid. For example, toListOf traverse exchanges will be successful, and will fetch same list of exchanges back but view traverse exchanges will fail with a complaint that Exchange is not an instance of Monoid. This happens because, traversal tries to summarize the target values by assuming that the target type is an instance of Monoid. Hence it starts with an empty value (mempty) and then starts appending values mappend/mconcat.

It is also possible combine traversal with lenses. In fact, to get to the list of all symbols we used the following lens:

    traverse . symbols . traverse . sid

Here first traverse applies to a list of exchanges, [Exchange], and the second element in the preceding composition symbols will lead us to symbol Map. Since Map is an instance of Traversable, we can also use traverse to browse through the map values. This is where the third element traverse comes from. In the end, we are interested in  the symbol ID of each symbol. Hence, the last element in the preceding composition is sid. Thus you can see that traversals can be easily composed with lenses. (You should read the preceding composition from left to right).

Since traversal is a valid lens, we can also use over to set or modify the value in the data structure. If we would like to change all the fields visited to a single value, then we can use set (as we have used earlier).



            

            
        
    
        

                            
                    Working with Iso

                
            
            
                
So far, we have looked at lens and traversals which are aimed at focusing on a particular field(s) from the context of accessing or changing its value. In this recipe, we will look at Iso which represents isomorphism between two types. It is possible to go back and forth between two types. For example, we can convert from Text to String and vice versa.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project working-with-iso with a simple stack template:



        stack new working-with-iso simple


	Add a dependency on the lens library in the build-depends sub-section of the executable section. Also, add a dependency on text and bytestring and add the quicklz library for compression utility:



 executable working-with-iso
   hs-source-dirs:      src
   main-is:             Main.hs
   default-language:    Haskell2010
   build-depends:       base >= 4.7 && < 5
                        , lens
                        , text
                        , bytestring

Note that, at the time of writing this recipe, the library quicklz is not included in the stack package repository. We need to add it explicitly to the stack.yaml in the project directory. Explicitly add the following packages in the extra-deps section in stack.yaml. We have used a lts-9.0 resolver for package resolution for this recipe.


 extra-deps:
   - quicklz-1.5.0.11



	Open src/Main.hs. We will be adding our source here. Add the OverloadedStrings extension before writing the Main module definition:




        {-# LANGUAGE OverloadedStrings #-}
        module Main where

        import Control.Lens
        import Data.Text.Strict.Lens
        import qualified Codec.Compression.QuickLZ as LZ
        import qualified Data.ByteString.Char8 as B
        import Data.ByteString.Lens



	Use Iso to convert between text, string:




 stringConvertTest :: IO ()
 stringConvertTest = do
   let str = "A string to text" :: String
      text = str ^. packed
      str1 = text ^. unpacked
   -- You can also do (from packed)
   let str2 = text ^. (from packed)

   putStrLn $ "String -> Text -> String round trip successful? "  
   ++ show (str == str2)



	Create a lens for the compression and decompression of a ByteString:




 compress :: Iso' B.ByteString B.ByteString
 compress = iso LZ.compress LZ.decompress


  This represents a one-to-one correspondence between the original string, its                   compression, and the uncompressed string


	Now convert string to bytestring. Compress it, and then convert it back to string by uncompressing it:




 strCompressRoundTrip :: String -> String
 strCompressRoundTrip s = s ^. (packedChars . compress . from   
 compress . unpackedChars)



	Now test it with some messages:




        -- Sample string for compression
        message :: String
        message = "The quick brown fox jumps over the lazy dog"



 strCompressRoundTripTest :: IO ()
 strCompressRoundTripTest = do
   let str1 = strCompressRoundTrip message
   putStrLn ("Compressing and uncompressing \"" ++ message ++   
   "\"")
   putStrLn ("Test Successful? " ++ show (str1 == message))



	Use the isos and lenses in the main function:




        main :: IO ()
        main = do
          stringConvertTest
          strCompressRoundTripTest



	Build and execute the project:



        stack build
        stack exec -- working-with-iso


	You should see following output:









            

            
        
    
        

                            
                    How it works...

                
            
            
                
Iso represent an isomorphic lens. It represents a bidirectional lens. So, if you can use Iso compress to convert from ByteString to a compressed ByteString, then you can use from compress to convert compressed ByteString back to original Bytestring. An Iso is also a lens, and it is possible to combine it with other lenses as we have done in the case of compress.

Isos are more convenient if we often convert between different string types (text, bytestring, and String).



            

            
        
    
        

                            
                    Working with Prism

                
            
            
                
Lens gives you the ability to focus on a particular field in a data type. Traversal will do the same thing for a traversable (something that you can traverse and collect). But these data types were product types.

In this recipe, we will work with Prism, where we will work with sum type data.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project working-with-prism with a simple stack template:



        stack new working-with-prism simple


	Add a dependency on the lens library in the build-depends sub-section of the executable section:



     executable working-with-prism
      hs-source-dirs:      src
      main-is:             Main.hs
      default-language:    Haskell2010
      build-depends:       base >= 4.7 && < 5
                           , lens


	Open src/Main.hs. We will be adding our source here. Enable TemplateHaskell, as we will produce Prism using the template Haskell. Add the Main module. Import the template haskell module for lens, alongwith other imports:




        {-# LANGUAGE TemplateHaskell #-}

        module Main where

        import Control.Lens
        import Control.Lens.TH



	Define the sum data type:




    data Point = Point { _x :: Double, _y :: Double } deriving Show
    data Shape = Rectangle { _leftTop :: Point, _rightBottom ::   
                | Point }
                  Circle { _centre :: Point, _radius :: Double }
                  deriving Show



	Make the lens and prism out of it:




        makeLenses ''Point
        makeLenses ''Shape
        makePrisms ''Shape



	Create some shapes. Write two functions, one to create a rectangle of some size, and another to make a circle, with some radius value and a center:




        makeRectangle :: Shape
        makeRectangle = Rectangle (Point 0 0) (Point 100 100)

        makeCircle :: Shape
        makeCircle = Circle (Point 0 0) 25.0



	Work with Shape using prism and lenses




 usePrism :: IO ()
 usePrism = do
  let rect = makeRectangle
      circ = makeCircle
  putStrLn "Create two shapes"
  print rect
  print circ

  -- Check if we are dealing with rectangle
  putStrLn "Are we dealing with a rectangle"
  print $ rect ^? _Rectangle

  putStrLn "Get first point of rectangle"
  print $ rect ^? _Rectangle . _1

  putStrLn "Get Y coordinate of the right bottom point of  
  rectangle"
  print $ rect ^? _Rectangle . _2 . y

  putStrLn "Get the rectangle back from two points"
  print $ _Rectangle # (Point (-1) (-1), Point 1 1)

  putStrLn "Get radius of a circle"
  print $ circ ^? _Circle . _2

  putStrLn "Create circle from center and point"
  print $ (Point 0 0, 10.0) ^. re _Circle

  putStrLn "Change radius of the circle (from 25 to 3)"
  print $ over (_Circle . _2) (const 3) circ

  putStrLn "Get details of rectangle back from rectangle by 
  traversing"
  print $ rect ^.. _Rectangle
  -- This is equivalent to toListOf
  print $ toListOf _Rectangle rect

  -- Create list of shapes
  let shapes = [rect, circ]

  putStrLn "Return result if all are rectangles"
  print $ shapes ^.. below _Rectangle

  putStrLn "Now try with all rectangles"
  let rects = [rect, rect]
  print $ rects ^.. below _Rectangle

  



	Use the lenses and prisms in the main function:




        main :: IO ()
        main = usePrism



	Build and execute the project:



        stack build
        stack exec -- working-with-prism


	You should see the following output:









            

            
        
    
        

                            
                    How it works...

                
            
            
                
Prism represents a traversal for a sum type. For a sum type, different alternatives are available for creating the data type. The Prism explores these alternatives. It also allows us to traverse to internals. Note the use of *_* for using makePrisms template. The generated prism will create a tupled representation (as we have the sum of product types). One can combine Prism and lens as Prism is a valid traversal. Similarly, we can also use over to change the internals of the data.



            

            
        
    
        

                            
                    Working with predefined lenses

                
            
            
                
In this recipe, we will work with predefined lenses. We will use a library lens-aeson for dealing with JSON data. The aeson library is a popular library for parsing and writing JSON instances for the user-defined data. Often, we have to deal with JSON, and parse it on the fly to extract the desired data.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
In this recipe, we will use the generic JSON parser provided by aeson, and then use lens-aeson to dig through the JSON to extract the data.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project, working-with-aeson-lens, with a simple stack template.



        stack new working-with-aeson-lens simple


	Add a dependency on the lens library in the build-depends sub-section of the executable section. Also add dependency on aeson and lens-aeson libraries. Also add bytestring and text, as aeson uses bytestring for parsing and text for string values. Add vector, as we need to work with arrays in JSON:



 executable working-with-aeson-lens
   hs-source-dirs:      src
   main-is:             Main.hs
   default-language:    Haskell2010
   build-depends:       base >= 4.7 && < 5
                        , lens
                        , lens-aeson
                        , aeson
                        , bytestring
                        , text
                        , vector


	Open src/Main.hs. We will be adding our source here. Use the OverloadedStrings extension and define the Main module. Import the required modules:




        {-# LANGUAGE OverloadedStrings #-}

        module Main where

        import Control.Lens
        import Data.Aeson.Lens
        import Data.Aeson
        import Data.ByteString.Lazy.Char8 as BC
        import Data.Vector hiding ((++))
        import Data.Text



	Let us consider a decoded JWT token (https://jwt.io/). We have added a few permissions to the JWT token:




        jwtToken :: ByteString
        jwtToken = "{ \"header\" : { \"alg\": \"HS256\", \"typ\":     
        \"JWT\" }, \"payload\" : { \"sub\": \"1234567890\", \"name\":     
         \"John Doe\", \"admin\": true, \"permissions\": [ \"status\",  
          \"user:read\", \"user:write\" ]} }"



	Now find the attributes for different fields:




        isJWT :: ByteString -> Bool
        isJWT tok = case (decode tok :: Maybe Value) of
                Nothing -> False
                Just v  -> let typ = v ^? key "header" . key "typ"
                           in typ == Just (String "JWT")



	In fact, we need not explicitly pass the JSON data:




        isAdmin :: AsValue v => v -> Bool
        isAdmin tok = (tok ^? key "payload" . key "admin") == Just 
        (Bool True)



	We can also access an element of an array:




        permission0 :: AsValue v => v -> Maybe Value
        permission0 tok = (tok ^? key "payload" . key "permissions" .   
        nth 0)



	Get all the permissions:




        permissions :: AsValue v => v -> [Text]
        permissions tok = Prelude.head (tok ^. key "payload" . key    
        "permissions" . _Array . to toList ^.. below  
         Data.Aeson.Lens._String)



	Use the token function to test our tokens to print permissions, admin access and type of token:




 main :: IO ()
 main = do
   BC.putStrLn "Analyzing token"
   BC.putStrLn jwtToken

   Prelude.putStrLn $ "Is JWT Token? " ++ (show $ isJWT jwtToken)
   Prelude.putStrLn $ "Is Admin? " ++ (show $ isAdmin jwtToken)

   Prelude.putStrLn $ "Permissions = " ++ (show $ permissions  
   jwtToken)



	Build and execute the project:



        stack build
        stack exec -- working-with-aeson-lens


	  You should see following output:









            

            
        
    
        

                            
                    How it works...

                
            
            
                
This recipe shows just one aspect of usefulness. Here we have used the lenses created for JSON using the aeson library. This helps us parse arbitrary JSON without actually writing an instance of FromJSON or ToJSON required to represent the user-defined data. The lens can be similarly used for simplifying the manipulation of large data structures required for certain libraries.



            

            
        
    
        

                            
                    Concurrent and Distributed Programming in Haskell

                
            
            
                
In this chapter, we will be looking at the following recipes: 


	Working with IORef

	Working with MVar

	Working with STM

	Working with strategies

	Working with monad-par

	Working with Cloud Haskell

	Using Cloud Haskell to start master and slave nodes

	Using closure to communicate between nodes





            

            
        
    
        

                            
                    Introduction

                
            
            
                
The fact that Haskell is a pure language, that is, there are no unintended side effects, helps a lot in parallel and concurrent programming. The library and compiler both have a lot of options for optimizing and tuning the performance since it can (mostly!) correctly guess the intention of the program and how a program can be tuned to run concurrently. 

Haskell gives a set of primitives for concurrent programming. These primitives enable programmers to build concurrency around them. These basic primitives are IORef, MVar, and STM. In this chapter, we will start with primitives, and then also work with strategies, and monad-par libraries which are built around these primitives to provide a higher-level abstraction for specifying concurrency within a program.

With the Cloud Haskell library, we move into the distributed world. In Cloud Haskell, we create logical nodes, which represent a logical process that may be present in a same physical process or can be spanned across multiple processes or even machines across a network. We will start with a logical node in the same process, and then move to communicating across the process boundary.



            

            
        
    
        

                            
                    Working with IORef

                
            
            
                
In this recipe, we will work with IORef, a mutable reference in the IO monad. We will use IORef Int as a counter for the progress that can be tracked from a separate thread, while we do the work in the main thread.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project called working-with-ioref with the simple stack template:



        stack new working-with-ioref simple


	Add the ghc-options subsection in the section executable. Add the -threaded option for GHC compilation. If it's not provided, any foreign call will block all Haskell threads. Foreign calls are calls made outside the Haskell runtime (typically by calling functions in external functions):



        executable working-with-type-family
          hs-source-dirs:      src
          main-is:             Main.hs
          ghc-options:         -threaded
          default-language:    Haskell2010
          build-depends:       base >= 4.7 && < 5


	Open src/Main.hs. We will be adding our source here. Define the Main module:




        module Main where



	Import the module Data.IORef for IORef, and multithreading (Control.Concurrent):




        import Data.IORef
        import Control.Concurrent



	Define the work function. The work function atomically modifies IORef by adding 1 to the existing counter. Also use threadDelay to wait for half a second after each modification. Note that the threadDelay function expects the time to be in microseconds. The work function is supplied a count. At every modification, the work function decreases the counter by 1. The work terminates when the count goes down to zero. The work function returns the value of the previous count:




        work :: Int -> IORef Int -> IO Int
        work count i = work' count 0
          where
            work' count retval | count <= 0 = return retval
            work' count _ = do
              retval <- atomicModifyIORef' i (\j -> (j+1,j))
              threadDelay (500*1000)
              putStrLn $ "Work: Modifying progress to " ++ show retval
              work' (count-1) retval



	Write a tracker function. It takes IORef and, after every second (by using threadDelay as a waiting time in-between), checks the value of the counter and prints it:




        tracker :: IORef Int -> IO ()
        tracker i = do
          threadDelay (1000*1000)
          counter <- readIORef i
          putStrLn $ "Tracker: Counting " ++ show counter
          tracker i



	In the main function, create a new IORef by using the newIORef function. Use forkIO to create a new thread for the tracker. Do the work in the main thread, and once we are done with the work, we kill the tracker using killThread function:




        main :: IO ()
        main = do
          counter <- newIORef 0
          trackerId <- forkIO (tracker counter)
          howmuch <- work 10 counter
          killThread trackerId
          putStrLn $ "Work completed with counter " ++ show howmuch



	Build and execute the project:



        stack build
        stack exec -- working-with-ioref


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
The IORef a represents a mutable reference in an the IO monad. In this recipe, we used forkIO run an IO() action for tracker in a separate thread. The function work runs in the main thread. It uses atomicModifyIORef' to atomically increment the counter. This function will prevent race conditions for one IORef. Note that there are two versions of atomicModifyIORef. The atomicModifyIORef version is a lazy version (the operation done may not be evaluated immediately), whereas atomicModifyIORef' is a strict version. Finally, we kill the tracker thread with the killThread function.



            

            
        
    
        

                            
                    Working with MVar

                
            
            
                
In this recipe, we will look at MVar and Chan as the basic ingredients of a concurrent pipeline. We will create a Forex Order processing system, in which the orders to buy or sell currency are sent to an exchange. The exchange backend will process the orders, and print the summary.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project called working-with-mvar with the simple stack template:



        stack new working-with-mvar simple


	Add dependencies on the containers and random libraries in the build-depends sub-section of the executable section. Also add the -threaded option to the ghc-options subsection:



        executable working-with-mvar
          hs-source-dirs:      src
          main-is:             Main.hs
          ghc-options:         -threaded
          default-language:    Haskell2010
          build-depends:       base >= 4.7 && < 5
                             , containers
                             , random


	Open src/Main.hs. We will be adding our source here. Define the main module, and import headers for using MVar and Chan:




        module Main where

        import Control.Concurrent
        import Control.Concurrent.Chan
        import Data.Map
        import Control.Monad
        import System.Random



	Represent an order as a Currency and the associated amount as Int. We represent a positive amount as buy and a negative amount as **sell. An Exchange* is a channel that can accept orders. We need to stop the Exchange at some point of time, hence we represent ProcessOrder as a message sent to the Exchange. If StopExchange is sent to the Exchange, the exchange stops processing orders:




        type Currency = String
        type Amount = Int

        data Order = Order Currency Amount deriving Show
        data ProcessOrder = ProcessOrder Order | StopExchange 
         deriving Show
        type Exchange = Chan ProcessOrder



	Define an backend for Exchange that will receive the order, and maintains a register of Currency and Amount showing the current status. We represent the current status with MVar. MVar stores a Map of Currency and Amount:




        type Catalog = Map Currency Amount
        type Register = MVar Catalog



	Add functions for managing the catalog. We would like to add currency and amount to the catalog. Add addOrder to add an order to a catalog. The modifyOrder function will do the same thing as addOrder, but will return the tuple of modified Catalog. This will be used further in modifying Register:




        addOrder :: Order -> Catalog -> Catalog
        addOrder (Order c a) = insertWith (+) c a

        modifyOrder :: Monad m => Order -> Catalog -> m (Catalog,
         Catalog)
        modifyOrder order cat = let cat' = addOrder order cat
         in return (cat',cat')



	Add a function to print the Catalog details:




        printCatalog :: Catalog -> IO ()
        printCatalog cat = forM_ (toAscList cat) $ \(c,a) -> do
          putStrLn $ "Currency : " ++ c ++ ", Amount : " ++ show a



	Once we receive an order, we open the Register and add the order into it. Use modifyOrder for extracting Catalog from Register and modifying an order. The processOrders function will continue to process orders and modify Reigster until the StopExchange message is received:




        processOrders :: Exchange -> Register -> IO ()
        processOrders exch reg = do
          po <- readChan exch
          case po of
            ProcessOrder o -> do
              cat' <- modifyMVar reg (modifyOrder o)
              putStrLn "Summary of orders"
              printCatalog cat'
              processOrders exch reg
            StopExchange -> return ()



	Prepare for random data generation. Let consider three currencies, AUD--Australian Doller, SGD--Singapore Dollar and USD--US Dollar:




        currencies :: [Currency]
        currencies = ["AUD","SGD","USD"]



	Generate a random sequence of currencies:




        currenciesM :: Int -> IO [Currency]
        currenciesM i | i <= 0 = return []
        currenciesM i = do
          c <- randomC
          cs <- currenciesM (i-1) 
          return (c : cs)
            where
              randomC = (currencies !!) <$> randomRIO (0,2) 



	Similarly, generate a set of order amounts (either sell or buy):




        amounts :: Int -> IO [Amount]
        amounts i | i <= 0 = return []
        amounts i = do
          sellOrBuy <- randomIO :: IO Bool
          amount <- randomRIO (1,1000)
          let orderAmount = if sellOrBuy then amount else (-1) * amount
          orderAmounts <- amounts (i-1)
          return (orderAmount:orderAmounts)



	Now get the set of random orders:




        orders :: Int -> IO [Order]
        orders i = zipWith Order <$> currenciesM i <*> amounts i



	Write a function to send orders every second to the Exchange:




        sendOrders :: [Order] -> Exchange -> IO ()
        sendOrders [] _ = return ()
        sendOrders (o:os) exch = do
          putStrLn $ "Sending order " ++ show o
          writeChan exch (ProcessOrder o)
          threadDelay (1000*1000)
          sendOrders os exch



	In the main function, create three order generators:




        main :: IO ()
        main = do
          exch <- newChan :: IO Exchange
          reg <- newMVar empty
          -- Start the order processing backend
          forkIO $ processOrders exch reg
          -- Start order generators
          forM_ [1..3] $ \_ -> forkIO $ do
            os <- orders 10
            sendOrders os exch

          -- Wait for all orders to finish, and stop the exchange
          threadDelay (1000*1000*15)
          writeChan exch StopExchange

          cat <- readMVar reg
          putStrLn "Printing Final Summary of orders"
          printCatalog cat



	Build and execute the project:



        stack build
        stack exec -- working-with-mvar

You should see the following output:





            

            
        
    
        

                            
                    How it works...

                
            
            
                
We use MVar t as a mutable location, that is either empty or contains a value of type t. We also use Chan which wraps up MVar as a stream. A Chan represents a FIFO stream. In this recipe, we use Chan to send orders simultaneously from multiple threads to a single channel Exchange. We then use backend processor processOrder which uses an MVar for aggregating all these orders by in a single Map. The following diagram, explains the order processing system:







            

            
        
    
        

                            
                    Working with STM

                
            
            
                
In this recipe, we will work with STM (Software Transactional Memory) which provides atomic blocks for executions. It provide more guarantees the about atomicity of the operation than MVars. We will work with an example of a bank account, where simultaneous transactions are trying to do the transaction with the same bank account.



            

            
        
    
        

                            
                    How it works...

                
            
            
                

	Create a new project called working-with-STM with the simple stack template:



        stack new working-with-STM simple


	Add the ghc-options subsection to the executable section. Set the option to -threaded. Also add stm to the build-depends subsection:



        executable working-with-STM
          hs-source-dirs:      src
          main-is:             Main.hs
          ghc-options:         -threaded
          default-language:    Haskell2010
          build-depends:       base >= 4.7 && < 5
                             , stm


	Open src/Main.hs. We will be adding our source here. Import Control.Concurrent.STM to importing STM module:




        module Main where

        import Control.Concurrent.STM
        import Control.Concurrent



	Define the account type which points to TVar Int, which represents the current balance:




        newtype Account = Account (TVar Int)



	Define a transact function where the balance in the account can be modified. The transaction is not permitted if the balance would become less than zero. In such a case, the transaction is retried:




        transact :: Int -> Account -> STM Int
        transact x (Account ac) = do
          balance <- readTVar ac
          let balance' = balance + x
          case balance' < 0 of
            True -> retry
            False -> writeTVar ac balance'
          return balance'



	Initialize the bank account with any amount:




        openAccount :: Int -> STM Account
        openAccount i = do
          balance <- newTVar i
          return (Account balance)



	Write a function to print the balance:




        printBalance :: Account -> IO ()
        printBalance (Account ac) = do
          balance <- atomically (readTVar ac)
          putStrLn $ "Current balance : " ++ show balance



	Do the bank transaction in the main function. Open an account with initial balance 100. Let's then try to debit 200 from a thread. Since we do not have that much balance, this should wait until there is a sufficient balance. From another thread, we do two credits of 75 each. After the sufficient balance has been made available, the debit should be allowed:




        main :: IO ()
        main = do
          ac <- atomically $ openAccount 100
          printBalance ac
          forkIO $ do
            balance <- atomically $ transact (-200) ac
            putStrLn $ "Balance after debit : " ++ show balance

          forkIO $ do
            balance1 <- atomically $ transact 75 ac
            putStrLn $ "Balance after credit of 75 : " ++ show balance1
            balance2 <- atomically $ transact 75 ac
            putStrLn $ "Balance after credit of 75 : " ++ show balance2

          threadDelay (1000*1000) -- Wait for above actins to finish
          printBalance ac 



	Build and execute the project:



        stack build
        stack exec -- working-with-STM


	You should see the following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
With MVar, where there is no control over the subsequent options as far as atomicity is concerned. For example, reading the account balance and doing a transaction have to be done separately with MVar and not together. STM on the other hand, fully guarantees the atomicity of transactions in an STM monad.

In the preceding recipe, we use TVar (which is like MVar but is used in the context of STM). We use readTVar and writeTVar for reading and writing TVars. But all operations are enclosed in an STM monad. We have to use function atomically to run STM in the IO context.

In the transact function, we use retry in the context of STM. This tells STM to retry the same action. In this case, it will result in a blocked action until it becomes successful.



            

            
        
    
        

                            
                    Working with strategies

                
            
            
                
In this recipe, we will use the parallel library. This library provides a set of strategies to allow us to program concurrent tasks easily.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project called working-with-eval with the simple stack template:



        stack new working-with-eval simple


	Add a dependency on the parallel library in the build-depends sub-section of the executable section. Also add -threaded and -fprof-auto -rtsopts -eventlog to enable multithreading and profiling:



        executable working-with-eval
          hs-source-dirs:      src
          main-is:             Main.hs
          ghc-options:         -threaded -fprof-auto -rtsopts -eventlog
          default-language: Haskell2010
          build-depends:       base >= 4.7 && < 5
                             , parallel


	Open src/Main.hs. We will be adding our source here. Add the Main module and import the relevant modules:




        module Main where

        import Control.Parallel.Strategies



	Create a data type for the binary tree:




        data BTree a = BTree (BTree a) a (BTree a) | Empty 
         deriving Show



	Add a function to split a list in the middle. We will partition the list into two two parts, a Left list, a right list and a middle element:




        split :: [a] -> ([a], Maybe a, [a])
        split xs     = split' xs xs []
          where
            split'  []       _        _   = ([], Nothing, [])
            split'  (x:xs)  (_:[])    ls  = (reverse ls, Just x, xs)
            split'  (x:xs)  (_:_:[])  ls  = (reverse ls, Just x, xs)
            split'  (x:xs)  (_:_:ys)  ls  = split' xs ys (x:ls)



	Now using a parallel strategy, build a balanced binary tree from the list:




        fromList :: [a] -> Eval (BTree a)
        fromList xs = do
          (ls,m,rs) <- rseq (split xs)
          ltree     <- rpar (runEval $ fromList ls)
          rtree     <- rpar (runEval $ fromList rs)
          case m of
            Just x   -> return (BTree ltree x rtree)
            Nothing  -> return Empty



	Use the code in the main function:




        main :: IO ()
        main = do
         let tree = runEval $ fromList [1..1000]
         print tree



	Build and execute the project. We run with a different runtime profiling output to generate an event log. We use four cores (-N2 options). You should feel free to modify this option to your hardware:



        stack build
        stack exec -- working-with-eval +RTS -N4 -l

Typically, you should see a working-with-eval.eventlog file. If this file is not generated (the sometimes happens on Windows), then you should run the executable directly by locating it in the .stack-work directory.

If you open the event log in the threadscope (https://wiki.haskell.org/ThreadScope), you should see the following output (or similar):



It should show all four cores being engaged. It also shows number of SPARKS generated. Though there is scope for improvement (as you can still see gaps in the activity), this is a good start point for us. Note that, initially, only one core is engaged when we split the list for the first time.



            

            
        
    
        

                            
                    How it works...

                
            
            
                
There are two primitives--rpar, which immediately returns, and rseq, which forces the argument into weak headed normal form (WHNF) . WHNF is related to lazy evaluation in Haskell, and usually points to a minimally evaluated thunk. In WHNF, only a part of the thunk is evaluated, whereas in normal form (NF), the whole thunk is evaluated (or reduced). Both rpar and rseq work as Strategies. We specify the work in terms of Strategies in an Eval monad. The runEval function takes the Eval monad and parallelizes the computation.

This recipe also shows how to profile the project, and look at the event log. This comes in very handy especially when dealing with concurrency.



            

            
        
    
        

                            
                    Working with monad-par

                
            
            
                
The monad-par library provides a way to specify the job in both pure as well as IO contexts. The monad-par library implements a work-stealing scheduler.  Using monad-par, we can define a future value, that is, a context where a value is expected to be evaluated sometime in future, and specify the point where to fork the computation. The monad-par library takes care of scheduling these computation on threads and fulfilling the context for where the computed value should be kept. 

In this recipe, we compute fibonacci number using two methods, first with a naive recursive method, and second implementing the same recursion using the monad-par library.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project called working-with-monad-par with the simple stack template:



        stack new working-with-monad-par simple


	Add a dependency on the monad-par library in the build-depends sub-section of the executable section. Also add -threaded -fprof-auto -rtsopts -eventlog to the ghc-options subsection:



  executable working-with-monad-par
    hs-source-dirs:      src
    main-is:             Main.hs
    ghc-options:         -threaded -fprof-auto -rtsopts -eventlog
    default-language:    Haskell2010
    build-depends:       base >= 4.7 && < 5
                       , monad-par


	Open src/Main.hs. We will be adding our source here. After the Main module, add the relevant imports:




        module Main where

        import Control.Monad.Par
        import Data.Int



	Write a simple fibonacci number calculator:




        fib :: Int64 -> Int64
        fib 0 = 0
        fib 1 = 1
        fib n = let x = fib (n-1)
                    y = fib (n-2)
                in (x `seq` x) + (y `seq` y)



	Now write a parallel fibonacci with a threshold. This implementation is taken from http://www.cse.chalmers.se/edu/year/2015/course/pfp/lectures/lecture2/Marlow14.pdf:




        pfib :: Int64 -> Int64 -> Par Int64
        pfib n threshold | n <= threshold = return (fib n)
        pfib n threshold = do
          n_1f <- spawn $ pfib (n-1) threshold
          n_2f <- spawn $ pfib (n-2) threshold
          n_1  <- get n_1f
          n_2  <- get n_2f
          return (n_1 + n_2)



	Try a parallel version, pfib in the main function:




        main :: IO ()
        main = do
          putStrLn "Run pfib 30 with some threshold"
          print $ runPar $ pfib 30 15



	Build and execute the project, with four cores, and with the -l option to produce an event log:



        stack build
        stack exec -- working-with-monad-par +RTS -N4 -l


	You should see the following output:





The threadscope should show the activity distributed throughout the cores:





            

            
        
    
        

                            
                    How it works...

                
            
            
                
monad-par defines the Par monad which defines the following primitives:


	new: Define a new empty IVar

	get: Wait for having some value in IVar

	put: Put some value into IVar

	fork: Signal that the input Par action can be run in parallel

	spawn: A function to run an action in parallel to produce an IVar



Internally, monad-par implements a way to balance these activities across threads by scheduling and balancing them. monad-par allows us to specify parallel tasks without getting into the nitty-gritty of actually scheduling tasks.

Also note that, in this recipe, we have used a threshold to run the task sequentially. This is to increase the granularity of the tasks. This speeds up more speedup when there is no threshold. As because when there is no threshold, the tasks become too small to gain any advantage from parallelism.



            

            
        
    
        

                            
                    Working with Cloud Haskell

                
            
            
                
So far, we have seen multi-threaded concurrency. In this recipe, we will look at distributed concurrency, where the concurrency can be achieved through multiple processes either on the same machine or a cluster of machines. In this recipe, we will create a local node and communicate with it using tcp transport.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
We will use cloud-haskell libraries for this.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project called working-with-cloud-haskell with the simple stack template:



        stack new working-with-cloud-haskell simple


	Add a dependency on the distributed-process library in the build-depends sub-section of executable section. Also add support libraries and the -threaded option to ghc-options:



        executable working-with-cloud-haskell
          hs-source-dirs:      src
          main-is:             Main.hs
          ghc-options:         -threaded
          default-language:    Haskell2010
          build-depends:       base >= 4.7 && < 5
                             , binary
                             , distributed-process
                             , network-transport
                             , network-transport-tcp

At the time of writing this recipe, the Cloud Haskell libraries are not part of LTS stack. Hence we need to add more dependencies to stack.yaml in the extra-deps section. Note that the version numbers may change in future, and you might have to adjust them:

        extra-deps:
          - distributed-process-0.6.6
          - syb-0.6
          - network-transport-tcp-0.5.1


	Open src/Main.hs. We will be adding our source here. Add the DeriveGeneric extension to auto-derive the Binary instance:




        {-# LANGUAGE DeriveGeneric #-}
        module Main where

        import Control.Concurrent
        import Control.Monad
        import Control.Distributed.Process
        import Control.Distributed.Process.Node
        import Network.Transport.TCP
        import Network.Transport (Transport)
        import Data.Binary (Binary)
        import GHC.Generics



	Create a transport serving on port 10501:




        localTransport :: IO Transport
        localTransport = do
          Right t <- createTransport "127.0.0.1" "10501" 
           defaultTCPParameters
          return t



	Create a Process to welcome the user with a greeting:




        type UserId = String

        data UserIntimation = UserIntimation ProcessId UserId deriving
        (Show, Generic)

        instance Binary UserIntimation 

        welcome :: UserIntimation -> Process ()
        welcome (UserIntimation pid uid) = send pid $ "Welcome to Cloud
         Haskell, " ++ uid



	Create a Process to define some distributed work. Accept a message and give back a reply:




        greet :: Process ()
        greet = forever $ receiveWait [match welcome]



	Run the nodes in the main function:




        main :: IO ()
        main = do
          t <- localTransport
          node <- newLocalNode t initRemoteTable

          runProcess node $ do
            self <- getSelfPid

            greetPid <- spawnLocal greet

            -- Continue with greetings
            say "Greeting Rudy!"
            send greetPid (UserIntimation self "Rudy")

            greeting <- expectTimeout 1000000
            case greeting of
              Nothing -> die "Greet server not up?"
              Just g  -> say $ "Greetings says : " ++ g

            -- Wait for all distributed messages to finish exchanging
             befor exiting
            liftIO $ threadDelay 1000000



	Build and execute the project:



        stack build
        stack exec -- working-with-cloud-haskell


	You should see following output:







            

            
        
    
        

                            
                    How it works...

                
            
            
                
You will notice a few peculiar things in this recipes:


	The UserIntimation data is required to be an instance of Binary. This is required for serialization between the calling process and called process.

	We first create a transport. In this case, we start the backend on a local server at port 10501.

	We create a node where we would like to run the processes.

	We use the Process monad to define what we want to do at the node.

	The runProcess function takes the Process monad and converts it to IO action.

	The receiveWait and match functions are used to wrap up the kind of messages we expect to run in Process.

	We declare our expectation using either expect or expectTimeout. We use expectTimeout to showcase that if we do not get a message within a certain period of time, we will start further processing.

	The say function is used for logging.





            

            
        
    
        

                            
                    Using Cloud Haskell to start master and slave nodes

                
            
            
                
In this recipe, we will use simplelocalnet to create master and slave nodes. We will start slave nodes and a master node, and use the master node learn about the slave nodes.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project called master-slave with the simple stack template:



        stack new master-slave simple


	Add a dependency on the distributed-process and distributed-process-localnet libraries in the build-depends sub-section of the executable section:



        executable master-slave
          hs-source-dirs:      src
          main-is:             Main.hs
          default-language:    Haskell2010
          build-depends:       base >= 4.7 && < 5
                             , distributed-process
                             , distributed-process-simplelocalnet


	Note that you might have to add the dependent library specifically to the extra-deps section, as these libraries are not part of stackage LTS at the time of writing this recipe. Add the following to stack.yaml:



        extra-deps:
          - distributed-process-0.6.6
          - distributed-process-simplelocalnet-0.2.3.3
          - syb-0.6


	Open src/Main.hs. We will be adding our source here. Add the Main module, and the relevant imports:




        module Main where

        import System.Environment (getArgs)
        import Control.Distributed.Process
        import Control.Distributed.Process.Node
        import Control.Distributed.Process.Backend.SimpleLocalnet



	Create the Process that we will run on the master node:




        masterTask :: Backend -> [NodeId] -> Process ()
        masterTask backend slaves = do
          liftIO $ putStrLn $ "Initial slaves: " ++ show slaves
          terminateAllSlaves backend



	Use main to start either the master or slave node:




        main :: IO ()
        main = do
          args <- getArgs

          case args of

            "-m":h:p:[] -> do
              backend <- initializeBackend h p initRemoteTable
              startMaster backend (masterTask backend)
            "-s":h:p:[] -> do
              backend <- initializeBackend h p initRemoteTable
              startSlave backend  



	Build and execute the project:



        stack build
        stack exec -- master-slave -s 127.0.0.1 10501 & 
        stack exec -- master-slave -s 127.0.0.1 10502 &
        stack exec -- master-slave -s 127.0.0.1 10503 &
        stack exec -- master-slave -s 127.0.0.1 10504 &
        stack exec -- master-slave -m 127.0.0.1 10505

You should see the following output:






            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this recipe, we use the simplelocalnet backend to start both master and slave nodes. It is possible to use different backends such as the p2p (peer to peer) or Azure backend. When we are closing the master, we close all slave nodes.



            

            
        
    
        

                            
                    Using closure to communicate between nodes

                
            
            
                
In this recipe, we will start two separate processes, one master and one slave. We will use the master process to spawn a subprocess on a slave node.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a new project called master-slave with the simple stack template:



        stack new using-closure simple


	Add a dependency on the distributed-process and distributed-process-localnet libraries in the build-depends sub-section of the executable section:



        executable using-closure
          hs-source-dirs:      src
          main-is:             Main.hs
          ghc-options:         -threaded
          default-language:    Haskell2010
          build-depends:       base >= 4.7 && < 5
                             , distributed-process
                             , distributed-process-simplelocalnet

At the time of writing this recipe, some of the dependencies are not resolved through stackage LTS. Add the following to stack.yaml:

        extra-deps:
          - distributed-process-0.6.6
          - distributed-process-simplelocalnet-0.2.3.3
          - syb-0.6


	Open src/Main.hs. We will be adding our source here. Add the Main module and the relevant imports. Enable TemplateHaskell:




        {-# LANGUAGE TemplateHaskell #-}
        module Main where

        import System.Environment (getArgs)
        import Control.Distributed.Process
        import Control.Distributed.Process.Closure
        import Control.Distributed.Process.Node
        import Control.Distributed.Process.Backend.SimpleLocalnet
        import Control.Monad
        import Control.Concurrent



	Create a Process. This process receives a message, and returns an acknowledgment:




        ack :: Int -> Process ()
        ack i = do
          self <- getSelfPid
          say $ "Started the process at " ++ show self
          forever $ do
            receiveWait [match (acknowledge self), matchAny (\_ -> say 
             "Message received") ]

          where
            acknowledge :: ProcessId -> (ProcessId, String) -> 
             Process ()
            acknowledge self (pid, message) = do
              liftIO $ threadDelay (i*1000*1000)
              send pid $ ("Ack from : " ++ show self ++ ", message : "
               ++ message :: String)



	Create a remote table. This table has entries that enables Cloud Haskell to spawn a process remotely:




        remotable ['ack]



	Create the master table. The remoteable macro creates the table in the current module. Let's combine initRemoteTable with the preceding table:




        masterTable :: RemoteTable
        masterTable = Main.__remoteTable initRemoteTable



	Create the Process that we will run on the master node. First create a closure around ack, so that we can serialize the Process along with any arguments:




        ackClosure :: Int -> Closure (Process ())
        ackClosure = $(mkClosure 'ack)

        masterTask :: Backend -> [NodeId] -> Process ()
        masterTask backend slaves = do
          liftIO $ putStrLn $ "Initial slaves: " ++ show slaves
          self <- getSelfPid
          case slaves of
            [] -> liftIO $ putStrLn $ "No slaves"
            (s:_) -> do
              pid <- spawn s $ ackClosure 1
              say $ "Spawned " ++ show pid ++ " on " ++ show s
              send pid (self, "Remote confirmation" :: String)
              m <- expectTimeout (1000000*3)
              case m of
                Nothing -> say "No message confirmation from 
                 remote node"
                Just r  -> say $ "Remote confirmation: " ++ r
                 terminateAllSlaves backend



	Use main to start either the master or slave node:




        main :: IO ()
        main = do
          args <- getArgs

          case args of

            "-m":h:p:[] -> do
              backend <- initializeBackend h p masterTable
              startMaster backend (masterTask backend)
            "-s":h:p:[] -> do
              backend <- initializeBackend h p masterTable
              startSlave backend



	Build and execute the project:



        stack build
        stack exec -- master-slave -s 127.0.0.1 10501 & 
        stack exec -- master-slave -m 127.0.0.1 10502

You should see the following output, showing that we are able to start the process on a remote node, and get an acknowledgment from it:





            

            
        
    
        

                            
                    How it works...

                
            
            
                
In this recipe, we uses the simplelocalnet backend to start both master and slave nodes. We then created a table using template Haskell based on the remoteable macro. In this table, we registered all the functions (resulting in Process) that need to be serialized across.

Cloud Haskell uses the static pointer extension, which allows Cloud Haskell to find a fingerprint of a function and then compose the serializable arguments along with the fingerprint. On the remote node, using the information contained in the closure, it is possible for the remote node to recreate the function call with arguments. The static pointer extension, however, can only be used for rank-1 types. For higher ranks, Cloud Haskell converts it in to the Data.Dynamic type so that it can cast the function back into the original function on the remote node with the help of remote table.



            

            
        
    assets/212fe8c7-b22e-48d5-b095-d5faa564d2a0.png
d:\projects\haskell\recipe\ch_6-Working_with_common_containers_and_strings\working-with-vector>stack exec -- working-with-vector
Constructing Vectors

Empty vector []

singleton vector ["one”

Replicated vector ["same”,"same”,"same","same”,"same" ,"same","same" ,"same" , "same" " same”
Generated vector ["generated","generated”,"generated", "generated"”, "generated”,"generated", "generated”, "generated" , "generated", "generated" ]
Tterated vector [*0","x0","Xx0","XXX0" , "XXXX0" ,"XHKXXD", "XXHHKXXO" , "XXHHKXXXO" ,"XIHNXKO” , "XAXXCOXXO" ]
Enumerating Vectors

Create a list of 10 floats, 1.1, 2.1 ... etc

[1.1,2.1,3.1,4.1,5.1,6.1,7.1,8.1,9.1,10.1]

Create a list of 10 floats, incremented by 0.5

[1.1,1.6,2.1,2.6,3.1,3.6,4.1,4.6,5.1,5.6]

Vector as fast lists

ALl elements but the last
[1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76,79,82,85]

Head of the vector

1

Tail of the vector
[4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76,79,82, 85,88,

Take first five elements

[1,4,7,10,13

Drop first five elements
[16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76,79,82,85,88]

Prepend and Append an element
[99,1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76,79,82,85,88]
[1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76,79,82,85, 88,99
Concatenate two vectors
[1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76,79,82,85,88,101,102,103]
Bulk operations on vector

Replace elements by list of index and value.

[3,6,9]

Update with another vector with index and value

[EX)]

Accessing elements of vector

Input vector
[1.1,1.6,2.1,2.6,3.1,3.6,4.1,4.6,5.1,5.6,6.1,6.6,7.1,7.6,8.1,8.6,9.1,9.6,10.1,10.6]
Accessing 10 th element

5.6

safely accessing 10th element, and 10eth one

hust 5.6

Nothing

Working with mutable, and converting it to vector

Mutable to vector conversion

[1,2]

d:\projects\haskell\recipe\Ch_6-Working_with_common_containers_and_strings\working-with-vectorsf]






assets/320c77f6-d399-46fa-a19e-ae1a036f786c.png
1. Proje

File Edit View T

d:\projects\haskell\recipe\ch_11-Working with_Lens_and_Prisms\working-with-prism>stack exec -- working-with-prism
Create two shapes

Rectangle {_leftTop = Point {_x = 0.0, _y = 0.0}, _rightBottom = Point {_x = 100.0, _y = 100.0}}
circle {_centre = Point { x = 0.0, _y = 0.8}, _radius = 25.0}

Are we dealing with a rectangle

Just (Point {_x = 0.0, _y = 0.0},Point {_x = 100.0, _y = 100.0})

Get first point of rectangle

Just (Point {_x = 0.0, _y = 0.0})

Get Y coordinate of the right bottom point of rectangle

Just 100.0

Get the rectangle back from two points

Rectangle {_leftTop = Point { x = -1.0, _y = -1.0}, _rightBottom = Point { x = 1.0, _y = 1.0}}
Get radius of a circle

Just 25.0

create circle from center and point

circle {_centre = Point { x = 0.0, _y = 0.0}, _radius = 10.0}

change radius of the circle (from 25 to 3)

circle {_centre = Point { x = 0.0, _y = 0.0}, _radius = 3.0}

Get details of rectangle back from rectangle by traversing

[(Point {_x = 0.0, _y = 0.0},Point {_x = 100.0, _y = 100.0})]

[(Point { x = 0.0, _y = 0.0},Point { _x = 100.0, _y = 100.0})]

Return result if all are rectangles

[1

Now try with all rectangles

[[(Point {_x = 0.0, _y = 0.0},Point {_x = 100.0, _y = 100.0}),(Point {_x = 0.0, _y = 0.0},Point {_x = 100.0, _y =

d:\projects\haskell\recipe\Ch_11-Working_with_Lens_and_Prisms\working-with-prism]|

100.0})11






assets/0cefee29-3f5b-4ae7-a21a-eae8754a808d.png
000 (< localhost

Number of lines uploaded : 28





assets/5efca824-4d58-40ce-98b9-9d7319747864.png
aybe

{ a [ remaining
building a parser through
monad/applicative/functor

Parsera

running a parser

b || remaining
Nothing

Maybe

Parser b






assets/26c0145a-bae1-4b7c-9c22-de56b3387c4e.png
list-as-monad — -bash — 136x19

list-as-monad $ stack exec — list-as-monad

Next 10 elements from 11

[11,12,13,14,15,16,17,18,19,20]

Filtering out even elements from [1..1]

[l1,3,5,7,911

Applying forM over a list and Maybe and embedding them in a list

[l1,2,3,4,5,6,7,8,9,10]]

[Just 10]

All pairs between [1..5] and ['a'..'c']
[(1,'a'),(1,'n"),(1,'c"),(2,'a'),(2,'b"),(2,'c"),(3,'a'),(3,'d'),(3,'c'),(4,'a"'),(4,'b"'), (4,'c'),(5,'a"),(5,'b"), (5, 'c")]
Partition the ordered pairs between [i] and [j] such that i > j
[z,1,(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),(6,1), (6,2),(6,3),(6,4), (6,5),(7,1),(7,2),(7,3),(7,4),(7,5),(7,6),(8,1), (8,
2),(8,3),(8,4),(8,5),(8,6),(8,7),(9,1),(9,2),(9,3),(9,4),(9,5),(9,6),(9,7),(9,8),(10,1), (10,2),(10,3), (10,4), (10,5), (10,6), (10,7),(10,8)
,(10,9)]1

Partition the ordered pairs between [i] and [j] such that i < j
[(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8), (
3,9),(3,10), (4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10), (6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10)
,(9,10)1
list-as-monad $ ||





assets/1857b91b-b7ba-4a14-a468-1dfeeb4c1f8c.png
B3 Dpaprojects\haskelivreciy X+ = [m] X

O x| = 4O

Heist Framework

Welcome to Haskell built on mingw32 : x86_64

This page binds two tags, viz., <osspec> and <currenttime> to the splices. The
username is simply a text node bound to current OS architecture, whereas currenttime
is bound to a splice that fetches the current time of the system, and formats it using the
format string specified in the tag.

This page was rendered on August 23,2017 .






assets/d5485a27-49e7-4d0b-85a0-e8b7f252c57f.png
Result of
Monad

monadic bind >

(G0






assets/480188e2-64cb-4495-8999-3a839ca70e5d.png
000 (< localhost

Hello Josh Kirby
Your favorite framework : yesod





assets/28e0865f-fcfc-4971-a2cb-e7fafcc95003.png
000 <

localhost

>

My Data is initialized






assets/992ce625-c7a3-4586-8151-0f3f7f821e50.png
(2 1. Projects

File Edit View T

d:\projects\haskell\recipe\Ch_11-Working_with_Lens_and_Prisms\working-with-traversal>stack exec -- working-with-traversal

Just traverse the exchanges, should get back same input

[Exchange {_exchange = "SGX", _symbols = fromList [(1A1",Symbol {_sid _sname = "AGV Group Ltd"}),("CC3",Symbol {_sid _sname =
“StarHub Ltd."}),("Des",Symbol { sid = "D@5", _sname = "DBS Group Holding"})]},Exchange { exchange = "NSE", _symbols = fromList [("3MINDIA",Sym

bol { sid = "3MINDIA", _sname = "3M India Ltd"}),("HCLTECH",Symbol { sid = "HCLTECH", _sname = "HCL Technologies Ltd"}),("HINDALCO",Symbol {_sid
= "HINDALCO", _sname = "Hindalco Industries Ltd"})]}]

Traverse and modify names of the exchanges, prepend 'X' to the exchange names

Traversal is a valid lens, and can be combined with other lenses

[Exchange {_exchange = "XSGX", _symbols = fromList [("1A1",Symbol {_sid = "1A1", _sname = "AGV Group Ltd"}),("CC3",Symbol { sid = "CC3", _sname
“StarHub Ltd."}),("Des",Symbol { sid = "De5", _: DBS Group Holding"})1},Exchange {_exchange = "XNSE", _symbols = fromList [("3MINDIA",S

ymbol { sid = "3MINDIA", _sname = "3M India Ltd"}),("HCLTECH",Symbol {_sid = "HCLTECH", _sname = "HCL Technologies Ltd"}),("HINDALCO",Symbol { s

id = "HINDALCO", _sname = "Hindalco Industries Ltd"})]}]

Traverse and get combined list symbols across exchanges

fromList [(“1A1",Symbol {_sid = "1A1", _sname = "AGV Group Ltd"}),("3MINDIA",Symbol {_sid = "3MINDIA", _sname = "3M India Ltd"}),("CC3",Symbol {

_sid = "CC3", _sname = “"StarHub Ltd."}),("D@5",Symbol {_sid = "D@5", _sname = "DBS Group Holding"}),("HCLTECH",Symbol {_sid = "HCLTECH", _sname
"HCL Technologies Ltd"}), ("HINDALCO",Symbol {_sid = "HINDALCO", _sname = "Hindalco Industries Ltd"})]

Get all symbol IDs in all exchanges

["1A1","CC3","DO5", "3MINDIA", "HCLTECH" , "HINDALCO" ]

Same as above but with 'view' rather than 'toListof'

"1A1CC3D053MINDIAHCLTECHHINDALCO"

Use 'set’ to set everything in the traversal to the same value

[8,8,8,8,8,8,8,8,8,8]

d:\projects\haskell\recipe\Ch_11-Working with_Lens_and_Prisms\working-with-traversal>]]






assets/04f982e7-5459-4e10-ac44-893d95726017.jpg
working-with-existentials — -bash — 96x7

workmg-w:Lth-ex:.stentlals $ stack exec workmg-wnh—ex:.stentlals

hree"],Display 10.0,Display (Just "Something"),Display True]






assets/4b83672e-4983-4848-9474-0276d2c0cd9d.png
a-> Maybe b

>

Just x

Justy

Nothing

Just x is
threaded to
another
function f

Nothing
produces
Nothing





assets/4b7376a6-ebb5-47ad-bec0-2aa502639fdf.png
custom-datatype — -bash — 139x18

custom-datatype $ stack exec — custom-datatype

Migrating: CREATE TABLE "user"("id" INTEGER PRIMARY KEY,"status" VARCHAR NOT NULL,"email" VARCHAR NOT NULL)
There are 3 users

2 are active

custom-datatype $ |





assets/ab44678b-87bd-451f-85b9-f189c684dc1e.jpg
working-with-set $ stack exec — working-with-set
Enpty String Set

fronList []

Singleton Set

fromList ["Single"]

Singleton with insertion
fromList ["Another","Single"]

Size of the set

2

Set from List

fronList [0,1,2,3,4,5,6,7,8,9]

List from set

[0,1,2,3,4,5,6,7,8,9]

Set to ascending and descending lists
10,1,2,3,4,5,6,7,8,91
[9,8,7,6,5,4,3,2,1,0]

Removing minimun and maximun elements
fronList [1,2,3,4,5,6,7,8,9]

fronList [0,1,2,3,4,5,6,7,8]

Take two sets [0..9] and [5..15]

Printing intersection and union respectively
fronList [5,6,7,8,9]

fronList [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
Construct set from List [1, 2, 4]

Find element greater than 2

Just 4

Find elenent greater than or equal to 2
Just 2

Find if 4 is part of the set from [0..9]
True

Fold over the set using foldr and foldl
10,1,2,3,4,5,6,7,8,9]

19,8,7,6,5,4,3,2,1,0]

wrkinrwith—set sl






assets/b7438b84-dc99-40a4-a4f2-50f76d465e74.png
d:\projects\haskell\recipe\Ch 2-Getting Functional\fibonacci-infinitesstack exec fibonacci-infinite

‘10000th fibonacci number is 336447648764317832666216120051075433103021484606800639065647699746800814421666623681555955136337340255820653326808361593737347904838
6526826304089246305643188735454436955982749160660209988418393386465273130008883026923567361313511757929743785441375213052050434770160226475831890652789085515436
6159582987279682987510631200575428783453215515103870818298969791613127856265033195487140214287532698187962046936097879900350962302291026368131493195275630227837
6284415403605844025721143349611800230912082870460889239623288354615057765832712525460935911282039252853934346209042452489294039017062338889910858410651831733604
3747073790855263176432573399371287193758774689747992630583706574283016163740896917842637862421283525811282051637029808933209990570792006436742620238978311147005
4074998450250360633560933883831923386783056136435351892133279732908133732642652633989763922723407882928177953580570993691049175470808931841056146322338217465637
‘3212482263830921032977016A805A72624384237486241145309381220656A91403275108664339A5175121615265453613331113140424368548051067658434935238369596534280717687753283
4823434555736671973139274627362910821067928078471803532913117677892465908993863545932789452377767440619224033763867400402133034329749690202832814593341882681768
3893072003634795623117103101291953169794607632737589253530772552375943788434504067715555779056450443016640119462580972216729758615026968443146952034614932291105
9706762432685159928347098912847067408620085871350162603120719031720860940812983215810772820763531866246112782455372085323653057759564300725177443150515396009051
6860322034916322264088524885243315805153484962243484829938090507048348244932745373262456775587908918719080366205800959474315005240253270974699531877072437682590
7419939632265984147498193609285223945039707165443156421328157688908058783183404917434556270520223564846495196112460268313970975069382648706613264507665074611512
6775227486215986425307112984411826226610571635150692600298617049454250474913781151541399415506712562711971332527636319396069028956502882686083622410820505624307
01794976171121233066073310059947366875

d:\projects\haskell\recipe\Ch_2-Getting_Functional\fibonacci-infinite>J|





assets/251c8167-9d5d-4b47-9dc0-5c0fce525f13.png
File Edit Vi

mom-=nwzaE 17 EE O 7w

d:\projects\haskell\recipe\ch_12-Concurrent_and_parallel_programming\working-with-sTM>stack exec -- working-with-sTM
Current balance : 100

Balance after credit of 75 : 175

Balance after debit : 5@

Balance after credit of 75 : 250

Current balance : 50

d:\projects\haskell\recipe\Ch_12-Concurrent_and_parallel_programming\working-with-str>

145x14  145x





assets/e0a51ab6-8fc5-4de2-9ba8-84ed2965a31f.png
. zipWith (+)






assets/78536409-7869-43d9-90c9-cb51ae3a8225.png
:\projects\haskell\recipe\Ch_11-Working_with_Lens_and_Prisms\working-with-aeson-lens>stack exec -- working-with-aeson-lens
Analyzing token
{ "header™ : { "alg": "HS256", "typ": "JIWT" }, "payload" : { "sub": "1234567890", "name": "John Doe", "admin": true, "permissions": [ "|
status”, "user:read"”, "user:write” 1} }

Is JWT Token? True

Is Admin? True
Permissions = ["status

user:read", "user:write"]

projects\haskell\recipe\Ch_11-Working_with_Lens_and_Prisms\working-with-aeson-lens>






assets/c0981bea-2a0d-402f-9293-533dd03bbcf6.png
[ BON ) i J [Em] localhost [ ] (w]]

HASKELL RECIPES - SNAP FRAMEWORK

DOLORE MAGNA ALIQUA. UIS AUTE IRURE.

Your Email Contact Us

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
Your Password P : 9 q
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea

commodo consequat.

Sign Up More Information

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua






assets/4fbb2708-5e0f-4dce-b9a4-aa3eed3f9cc0.png





assets/aaa14c36-09e9-49c9-b05c-17a9c3d9a3d1.png
[ hello — -bash — 92x8

[hello $ stack exec -- hello-exe
Hello World!
hello s I





assets/e2119c96-eda9-4d43-bb85-7296717d69ac.png
[ combine-trans — -bash — 118x20

combine-trans $stack exec -- combine-trans
Applying move Up 10

Applying move Right 10

Applying move Down 20

Applying move Left 5

Final cursor position

Cursor 15 20

combine-trans $ji






assets/ef9fe6cf-7bb2-4644-81a5-96df689c71e8.png
d:\projects\haskell\recipe\Ch_12-Concurrent_and_parallel_programming\working-with-ioref>stack exec -- working-with-ioref
Modifying progress

Tracker: Counting 2

Work: Modifying progress to
Modifying progress to

Tracker: Counting 4

Work: Modifying progress to
Modifying progress to

Tracker: Counting 6
Modifying progress to
Modifying progress to

Tracker: Counting 8
Modifying progress to

Work: Modifying progress to

Tracker: Counting 10

Work: Modifying progress to

Work completed with counter

d:\projects\haskell\recipe\Ch_12-Concurrent_and_parallel_programming\working-with-ioref>]]






assets/f15a8d5d-2a88-4462-9d0a-1f75917f8178.png
[ BON ] [ sum-type — -bash — 94x14

[sum-type $ stack exec -- sum-type

Sum Type 1 : Showing days of the week

[Sunday,Monday, Tuesday, Wednesday, Thursday,Friday, Saturday]
Days type can have only 7 values

Sum Type 2 : Variant with 5 possible data constructors

Each constructor contribues number of possible values

of types a, b, ¢, d, e or £

Showing all variants

[Variant0,Variantl 10,Variant2 11.0,Variant3 12.0,Variant4 'A',Variant5 "Haskell"]
Variant0 has only one value, however its type is completely qualified

sum-type $ I






assets/cf39914c-b734-4410-9ea5-10f541d49374.jpg
master-slave $ stack e
11 8417

ec

master-slave $ stack exec — master-slave -5 127.0.0.1 10502 &

[2] 8424 i
master-slave $ stack exec —— master-slave -s 127.0.0.1 10503 &
3] 8428 M

master-slave $ stack exec — master-slave -s 127.0.0.1 10504 &
4] 8432

master-slave $ stack exec — master-slave -m 127.0.0.1 10505
Initial slaves: [nid://127.0.0.1:10501:0,ni

5 127.0.0.1 10501 &

10,nid://127.0.0.

1]  Done stack exec — master-slave -s 127.0.0.1 10501
2] Done stack exec — master-slave 0.1 10502
[31- Done stack exec — master-slave -s 127.0.0.1 10503
[4]+ Done stack exec — master-slave -5 127.0.0.1 10504

master-slave $ [

0503:0,nid://127.0.0.

10504:0]





assets/86226c58-6cd9-4b0d-8c24-d2f6d58d73e3.png
d:\projects\haskell\recipe\Ch_3-Defining_Data\product-type>stack exec -- product-type
Product1: Simple product type

Productl True

Productl False

Product2: Product type with two fields

Product2 has two boolean fields. Each one can take two values each
Product2 True True

Product2 True False

Product2 False True

Product2 False False

Product3: Product type with two fields, one parametric (Int)
cardinality of Product3 is cardinality of Int multipled by two
which is 36893488147419103232

Product3 10 True

Producta: Product type parametrized by two types (Int Bool)

Hence is equivalent to Product3 in these parameters

Product4 10 True

d:\projects\haskell\recipe\Ch_3-Defining_Data\product-type>]





assets/54395534-0e6b-4440-8541-fb17d073c325.png
[ BON ] [ session-in-snap — -bash — 126x30

[session-in-snap $ curl -X GET http://localhost:8000/welcome --verbose -b cookies.txt --cookie-jar cookies.txt
Note: Unnecessary use of -X or --request, GET is already inferred.

Trying ::1...
Connection failed
connect to ::1 port 8000 failed: Connection refused

Trying 127.0.0.1...
Connected to localhost (127.0.0.1) port 8000 (#0)
GET /welcome HTTP/1.1
Host: localhost:8000
User-Agent: curl/7.49.0
Accept: */*
Cookie: demo-session=LORoyeL5COHOCBpU+R6gQpdUj3wNEUIWA2WruNyl4Ax2tvgeMgiEGYT1HXD80uR/eqw4MilirllmYdCvuz1220izZ8D6k1lp+YQ2L.P/a8
MsDZIpPEC1t34XWbq7/JxPpwbHuQGZS2xJFSkvrkWCGBOSdVagjJ2iVTX6swOv8Cc482FYnnl.nQgqJdpws/s4FGtL5CuIV/GEiPDMwhemd2vb0=
>
< HTTP/1.1 200 OK
* Replaced cookie demo-session="YCKVvUUrCMPky5BTOt5nJUHXx/JjFX0bUNeEMp/cfPFfROgGFpuCilA0y63mfipJoIRiINSbAILY/ppc621Et7sljrxmLWuTU
TolIZsOpdOgY7EhhDgnVvldekoTT/4T7/GaqA8q3eqsRDnUSNFOBW5SF/p5Q03f607rSiRDveIwKiySzJ1Fqa0yGENHrAyFBMAr390np79xXYDpUOxHkVtw8=" for do
main localhost, path /, expire 1505165626
< set-cookie: demo-session=YCKVvUUrCMPky5BTO0t5nJUHXx/jFX0bUNeEMp/cfPFfROgFpuCilA0y63mfipJo9RiNSbAILY/ppc621Et7sljrxmLWuTUTO1IZ
sOpdOgY7EhhDgnVv1dekoTT/4T7/GagA8g3eqsRDnUSNFOBW5F/p503£607rSiRDveIwKiySzJ1Fqa0yGENHrAyFBMAr390np79xYDpUOXHkVtw8=; path=/; exp
ires=Mon, 11-Sep-2017 21:33:46 GMT; HttpOnly
< server: Snap/1.0.3.0
< date: Mon, 11 Sep 2017 20:33:46 GMT
< transfer-encoding: chunked
<
Haskell Web Developer
* Connection #0 to host localhost left intact

VVVVV % x * % %

session-in-snap $ I





assets/badbb774-f781-42c7-9fb4-b1d610ae29a0.png
- me=sPpHEHTET

d:\projects\haskell\recipe\Ch_3-Defining_Data\binary-tree-traverse>stack exec -- binary-tree-traverse
In order depth first traversal

[8,4,9,2,10,5,11,1,12,6,13,3,14,7,15]
Breadth first traversal

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

d:\projects\haskell\recipe\Ch_3-Defining_Data\binary-tree-traverse>]]






assets/3ad111c1-41da-49cb-abcb-dc4901fdbeb0.png
000 < localhost & ] » 5

The form shown below takes the the input, and submits it to the action
defined in Snap. Snap processes the action, and produces a page showing
the processed input.

First Name : Josh

Last Name : Kirby
Your favorite Haskell Web Framework = Yesod Framework

Complete Survey






assets/6efe670f-f768-43a9-87a8-00e6a9ddfbce.png
exceptions — -bash — 136x19

exceptions $ stack exec — exceptions
2
Division by zero
CallStack (from HasCallStack):
error, called at src/Main.hs:7:12 in main:Main
6
Division by zero
CallStack (from HasCallStack):
error, called at src/Main.hs:7:12 in main:Main
ERROR some-arbitrary-name: openFile: does not exist (No such file or directory)
The contents should be blank
Line with zero length
ERROR Line with zero or less than tolerance length
Valid line
Line (Point 10.0 10.0) (Point 0.0 0.0)
exceptions $ ||





assets/00f7f6d6-c934-4f53-adab-88048c19f3a7.png
AUTHORIZED
TOUR

LOREM IPSUM DOLOR SIT AMET, CONSECTETUR
ADIPISICING ELIT.

GET STARTED

View the source of this layout to learn more. Made with love by the YUl Team.





assets/9c2a5f16-c761-4d77-a040-2f44bf69f17a.png
0O (< g file:///Users/yogeshsajanikar/pr [ \'I'l [l

Stock Data for McQuire, Jerry

Stock Exchange Description
D05 SGX DBS Group
GOOGL NASDAQ Alphabet Inc
INFY BSE Infosys Ltd





assets/46e479a4-23bb-4f78-8d4d-e7ae83e8cc25.png





assets/63cf821f-c14d-4b52-b71c-3b80a3cfb692.png
m o omo-=BN 2H|E 7 N 7

d:\projects\haskell\recipe\Ch_11-Working_with_Lens_and_Prisms\working-with-iso>stack exec -- working-with-iso
String -> Text -> String round trip successful? True

Compressing and uncompressing “The quick brown fox jumps over the lazy dog"

Test Successful? True

d:\projects\haskell\recipe\Ch_11-Working_with_Lens_and_Prisms\working-with-iso>]






assets/c81fcd47-44ac-4a49-956c-08022b4d2433.png





assets/b812fb59-dd88-4e2b-b7ce-8b86abac88d6.png
working-with-rank-n-type — -bash — 169x14

working-with-rank-n-type $ stack exec working-with-rank-n-type
100! = 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000

500! = 122013682599111006870123878542304692625357434280319284219241358838584537315388199760549644750220328186301361647714820358416337872207817720048078520515932928547790
7571939330603772960859086270429174547882424912726344305670173270769461062802310452644218878789465754777149863494367781037644274033827365397471386477878495438489595537537
9904232410612713269843277457155463099772027810145610811883737095310163563244329870295638966289116589747695720879269288712817800702651745077684107196243903943225364226052
3494585012991857150124870696156814162535905669342381300885624924689156412677565448188650659384795177536089400574523894033579847636394490531306232374906644504882466507594
6735862074637925184200459369692981022263971952597190945217823331756934581508552332820762820023402626907898342451712006207714640979456116127629145951237229913340169552363
8509428855920187274337951730145863575708283557801587354327688886801203998823847021514676054454076635359841744304801289383138968816394874696588175045069263653381750554781
28640000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

working-with-rank-n-type $ ||





assets/dcf318df-206c-4981-a4b6-1c1176d255a6.png
= m==pNEAE| T

T -

d:\projects\haskell\recipe\Ch_8-Working_with HTML_and_Templates\working-with-heist>stack exec working-with-heist
<h1> Hello Tom </h1>
<p>
In this example, we will look at templates and bindings. You, Bombadil, Tom will be creating some templates, and then using thes
e templates to generate something wonderful.

In heist, you can always bind with a tag.
</p>

d:\projects\haskell\recipe\Ch_8-Working_with_HTML_and_Templates\working-with-heist>]






assets/06d690ef-6065-48d9-be6a-2cd17ab26471.png
d:\projects\haskell\recipe\Ch_3-Defining_Data\data-type-with-function>stack exec -- data-type-with-function
composing square and square root functions

is an identity. Applying a value should not change it
3

original value is
Ghost

After fixing,
Ghost

d:\projects\haskell\recipe\Ch_3-Defining_Data\data-type-with-function>]]






assets/cafe623d-76f2-447d-a316-f5fcc3004470.png
[ NON ] [ ] state-monad-trans — -bash — 118x20

state-monad-trans $stack exec -- state-monad-trans
Current state is 100

Current state is 10

Result state is 10

Current state is 12

Current state is 1234

Result state is 1234

state-monad-trans $J






assets/8f20bca3-a77a-477c-94f5-04312e1d3a3d.png
add | a

O~






assets/1270b9d8-89b6-4709-a5cf-a2e17ff44fc6.png
[ state-monad — -bash — 118x12

state-monad $stack build

state-monad $stack exec -- state-monad
Cursor 0 @

Cursor 12 12

state-monad $J






assets/62c7c8ab-6f63-4501-b75e-993f7fa44df0.jpg
working-with-cloud-haskell — -bash —136x8

wnrking—with»c\nud haskell ; ‘stack exec — working-with-cloud: ﬁaskeu C






assets/059f6a85-2aa2-4cab-b32d-d343391bf4ea.png
binary-tree-functor — -bash — 96x15

binary-tree-functor $ stack exec —— binary-tree-functor

Original Tree

Node (Node (Node (Node Leaf 8 Leaf) 4 (Node Leaf 9 Leaf)) 2 (Node (Node Leaf 10 Leaf) 5 (Node Le

af 11 Leaf))) 1 (Node (Node (Node Leaf 12 Leaf) 6 (Node Leaf 13 Leaf)) 3 (Node (Node Leaf 14 Lea

f) 7 (Node Leaf 15 Leaf)))

Tree of integers to Tree of strings

Node (Node (Node (Node Leaf "8" Leaf) "4" (Node Leaf "9" Leaf)) "2" (Node (Node Leaf "10" Leaf)

"5" (Node Leaf "11" Leaf))) "1" (Node (Node (Node Leaf "12" Leaf) "6" (Node Leaf "13" Leaf)) "3"
(Node (Node Leaf "14" Leaf) "7" (Node Leaf "15" Leaf)))

Tree of strings converted back to Tree of integers is same as original tree?

True

binary-tree-functor $ [





assets/aca4f850-0df1-42a8-8e96-5deafa0a67d2.png
000 <

localhost

>

Welcome snap






assets/7416a8d6-70ca-4101-b76a-250d671659a1.png
[ NON ] [ hello — -bash — 107x23

hello $ stack build

hello-0.1.0.0: configure (lib + exe)
Configuring hello-0.1.0.0...
[hello-0.1.0.0: build (lib + exe)
Preprocessing library hello-0.1.0.0...

[1 of 1] Compiling Lib ( src/Lib.hs, .stack-work/dist/x86_64-osx/Cabal-1.24.2.0/build/Lib.o )
Preprocessing executable 'hello-exe' for hello-0.1.0.0...
[1 of 1] Compiling Main ( app/Main.hs, .stack-work/dist/x86_64-osx/Cabal-1.24.2.0/build/hello-e

xe/hello-exe-tmp/Main.o )

Linking .stack-work/dist/x86_ 64-osx/Cabal-1.24.2.0/build/hello-exe/hello-exe ...

hello-0.1.0.0: copy/register

Installing library in

/Users/yogeshsajanikar/projects/haskell/haskell_cookbook/Ch_1l-Foundations_of Haskell/projects/hello/.stack-
work/install/x86_64-osx/1ts-9.2/8.0.2/1ib/x86_64-osx-ghc-8.0.2/hello-0.1.0.0-KwseWzXCZphlLcfBbJuRhm
Installing executable(s) in

/Users/yogeshsajanikar/projects/haskell/haskell_cookbook/Ch_1l-Foundations_of Haskell/projects/hello/.stack-
work/install/x86_64-osx/1ts-9.2/8.0.2/bin

Registering hello-0.1.0.0...

hello s I






assets/87f6156c-5ba1-46c4-aca5-53b3a0babf78.png
add | 20 | 10 }—»@HD






assets/48a98cc8-5fb6-4d60-bb12-4d8ae5ff8cdc.png
[ BON ] [ session-in-snap — -bash — 126x30

[session-in-snap $ curl -X GET http://localhost:8000/greet --verbose --cookie-jar cookies.txt

Note: Unnecessary use of -X or --request, GET is already inferred.
Trying ::1...

Connection failed

connect to ::1 port 8000 failed: Connection refused
Trying 127.0.0.1...

Connected to localhost (127.0.0.1) port 8000 (#0)

GET /greet HTTP/1.1

Host: localhost:8000

User-Agent: curl/7.49.0

Accept: */*

HTTP/1.1 200 OK

Added cookie demo-session="LORoyeL5COHOCBpU+R6gQpdUj3wNEUIWA2WruNyl4Ax2tvgeMgiEGYT1HXD80uR/eqw4MilirllmYdCvuz1220iZ8D6k1lp+YQ
2LP/a8MsDZIPEC1t34XWbq7/JxPpwbHuQGZS2xJFSkvrkWCGBOSdVagjJ2iVTX6swOv8Cc482FYnnLnQgJdpws /s4FGtL5CuIV/GEiPDMwhcmd2vb0=" for domai
n localhost, path /, expire 1505165548

< set-cookie: demo-session=LORoyeL5COHOCBpU+R6gQpdUj3wNEUIWA2WruNyl4Ax2tvgeMgiEGYT1HXD80uUR/eqw4MilirllmYdCvuz1Z20i%8D6k1lp+YQ2L.
P/a8MsDZIpPEC1t34XWbq7/JxPpwbHUQGZS2xJFSkvrkWCGBOSdVagjJ2ivVTX6swOv8Cc482FYnnl.nQgJdpws/s4FGtL5CuIV/GEiPDMwhemd2vb0=; path=/; exp
ires=Mon, 11-Sep-2017 21:32:28 GMT; HttpOnly

< server: Snap/1.0.3.0

< date: Mon, 11 Sep 2017 20:32:28 GMT

< transfer-encoding: chunked
<

*

* AVVV VYV % % % % %

Connection #0 to host localhost left intact
Hello World
session-in-snap $ I





assets/62a23665-2ffa-4457-b90c-c05ded2fe976.png
working-with-traversable-foldable-map — -bash — 107x28

working-with-traversable-foldable-map $ stack exec —— working-with-traversable-foldable-map El
Given the map

fromList [(1,"a"),(2,"b"),(3,"c"),(4,"d"),(5,"e"),(6,"f"),(7,"g"),(8,"h"),(9,"i"),(10,"j"),(11,"k"),(12,"1"
),(13,"m"), (14,"n"), (15,"0"), (16,"p"), (17,"q"), (18,"r"), (19,"s"), (20,"t"), (21,"u"), (22,"v"), (23,"w"), (24,"x
"),(25,"y"),(26,"2z")]

Fold the map

"abcdefghijklmnopgrstuvwxyz"

"a, b, ¢, d, e, f, g, h, 1, j, kK, L, m, n, 0, p, q, 1, S, L, U, Vv, W, X, ¥, 2,
Traverse the map

[fromList [(1,"a-travsered"),(2,"b-travsered"), (3,"c-travsered"), (4,"d-travsered"), (5,"e-travsered"), (6,"f-
travsered"), (7,"g-travsered"), (8,"h-travsered"), (9,"i-travsered"), (10,"j-travsered"), (11,"k-travsered"), (12
,"1-travsered"), (13,"m-travsered"), (14,"n-travsered"), (15,"o-travsered"), (16, "p-travsered"), (17,"q-travsere
d"), (18,"r-travsered"), (19,"s-travsered"), (20,"t-travsered"), (21, "u-travsered"), (22,"v-travsered"), (23, "w-t
ravsered"), (24,"x-travsered"), (25,"y-travsered"), (26,"z-travsered")]]

Given a tree

Tree (Tree (Tree Empty 7 Empty) 8 (Tree Empty 9 Empty)) 10 (Tree (Tree Empty 11 Empty) 12 (Tree Empty 13 Em
pty))

Folding the tree (Find the sum)

70

Traverse the tree (create a list)

[Tree (Tree (Tree Empty "7" Empty) "8" (Tree Empty "9" Empty)) "10" (Tree (Tree Empty "11" Empty) "12" (Tre
e Empty "13" Empty))]

working-with—traversable-foldable-map $ ||






assets/8f8b444f-d88b-4d3f-a5d7-f72f8dcdbc3f.png
Functional
Program

10 World





assets/97748f49-a661-4709-bddd-caa1ec892ca9.png
[ BON ] 7 yogeshsajanikar — -bash — 80x24

[~ $ stack --version
Version 1.4.0 x86_64
Compiled with:

- Cabal-1.24.2.0

- Glob-0.7.14

- HUnit-1.5.0.0

- MonadRandom-0.5.1

- QuickCheck-2.9.2

- SHA-1.6.4.2

- Statevar-1.1.0.4

- aeson-1.0.2.1

- aeson-compat-0.3.6

- annotated-wl-pprint-0.7.0
- ansi-terminal-0.6.2.3
- ansi-wl-pprint-0.6.7.3
- array-0.5.1.1

- asnl-encoding-0.9.4

- asnl-parse-0.9.4

- asnl-types-0.3.2

- async-2.1.1

- attoparsec-0.13.1.0

- auto-update-0.1.4

- base-4.9.1.0

- base-compat-0.9.1






assets/f76bbb5e-397c-4a9b-9777-fab58d69a1aa.png
shopping-cart $ stack exec —— shopping-cart
Empty Cart

fromList []

Add book 1 to cart

fromList [Item (Book {isbn = "0262162091",
Add book 2 to cart

fromList [Item (Book {isbn = "0262162091",
sbn = "8173715270", title = "Structure and
Add book 1 again

fromList [Item (Book {isbn = "0262162091",
sbn = "8173715270", title = "Structure and
And add book 1 once more

fromList [Item (Book {isbn = "0262162091",
sbn = "8173715270", title = "Structure and
Remove book 1 from cart

fromList [Item (Book {isbn = "0262162091",
sbn = "8173715270", title = "Structure and
Remvoe book 2, this should delete the book
fromList [Item (Book {isbn = "0262162091",
shopping-cart $ I

shopping-car

title = "Types

title = "Types
Interpretation

title = "Types
Interpretation

title = "Types
Interpretation

title = "Types
Interpretation
from the cart
title = "Types

and Programming Languages", author = "Pierce, Benjamin C."}) 1]

and Programming Languages", author = "Pierce, Benjamin C."}) 1,Item
of Computer Programs", author = "Abelson, Herold et. al."}) 1]

and Programming Languages", author = "Pierce, Benjamin C."}) 2,Item
of Computer Programs", author = "Abelson, Herold et. al."}) 1]

and Programming Languages", author = "Pierce, Benjamin C."}) 3,Item
of Computer Programs", author = "Abelson, Herold et. al."}) 1]

and Programming Languages", author = "Pierce, Benjamin C."}) 2,Item
of Computer Programs", author = "Abelson, Herold et. al."}) 1]

and Programming Languages", author = "Pierce, Benjamin C."}) 2]

(Book {i

(Book {i

(Book {i

(Book {i






assets/ff1d8d13-c165-4ed2-bce6-a4b24f41d2aa.png
‘using-either$ stack exec —— using-either |
Safe division : 10 / 2 = Right 5

Safe division : 10 / @ = Left "Illegal Operation: Division by Zero"

using-eithers$ [






assets/6f6fa552-1452-4cc2-8ec9-45242e553890.png
priority-queue — -bash — 145x28

priority-queue $ stack build —test

priority—-queue-0.1.0.0: unregistering (dependencies changed)

priority-queue-0.1.0.0: configure (lib + exe + test)

Configuring priority-queue-0.1.0.0...

priority-queue-0.1.0.0: build (lib + exe + test)

Preprocessing library priority-queue-0.1.0.0...

Preprocessing executable 'priority-queue-exe' for priority-queue-0.1.0.0...

Preprocessing test suite 'priority-queue-test' for priority-queue-0.1.0.0...

priority-queue-0.1.0.0: copy/register

Installing library in
/Users/yogeshsajanikar/projects/haskell/haskell_cookbook/Ch_6-Working_with_common_containers_and_strings/priority-queue/.stack-work/install/x86_6
4-0sx/1t5-9.0/8.0.2/1ib/x86_64-0sx-ghc-8.0.2/priority-queue-0.1.0.0-DIjEbi7Df rt7 ltmmNe@VVW

Installing executable(s) in
/Users/yogeshsajanikar/projects/haskell/haskell_cookbook/Ch_6-Working_with_common_containers_and_strings/priority-queue/.stack-work/install/x86_6
4-0sx/1ts-9.0/8.0.2/bin

Registering priority-queue-0.1.0.0...

priority-queue-0.1.0.0: test (suite: priority-queue-test)

Progress: 1/2

Verifying Leftist Property

+++ OK, passed 100 tests.
Verifying Heap Ordered Property
+++ 0K, passed 100 tests.

Completed 2 action(s).
priority-queue $ [





assets/4864768c-9064-4417-a253-81e89224c1f1.png
000 (< localhost

Name of the snaplet : myData





assets/a5d8bc9b-99ca-4ef3-b8a4-461f306031d7.png
(5 1. Projects
File

Edit View Tabs Help

d:\projects\haskell\recipe\ch_2-Getting_Functional\folds>stack build

folds-0.1.0.0: configure (exe)

Configuring folds-0.1.0.0...

folds-0.1.0.0: build (exe)

Preprocessing executable 'folds' for folds-0.1.0.0...

[1 of 1] Compiling Main ( src\Main.hs, .stack-work\dist\casodeab\build\folds\folds-tmp\Main.o )
Linking .stack-work\dist\ca59deab\build\folds\folds.exe ...

folds-0.1.0.0: copy/register

Installing executable(s) in
D:\projects\haskell\recipe\Ch_2-Getting_Functional\folds\.stack-work\install\a9453259\bin

:\projects\haskell\recipe\ch_2-Getting Functional\folds>stack exec folds

calculating sum of [1..10]
Using foldr

55
Using foldl

55

calculating product of [1..10]
Using foldr

3628800
Using foldl

3628800

Squaring [1..10] using map
Using foldr

[1,4,9,16,25,36,49,64,81,100]
Using foldl

[100,81,64,49,36,25,16,9,4,1]

Filtering odd elements [1..10] using filter
Using foldr

[1,3,5,7,9]
Using foldl

[9,7,5,3,1]

d:\projects\haskell\recipe\Ch_2-Getting_Functional\folds>f]





assets/faeb257c-d258-441b-af32-572d695aa350.png
(o)





assets/5fa69df4-861c-4a3f-9b71-21ce90d68929.png
Packh





assets/683e6c77-92bf-409a-9739-0aba6bd521ff.png
working-with-type-classes — -bash — 119x20

working-with-type-classes$ stack exec —— working-with-type-classes

Enumerating months

[January, February,March,April,May, June, July,August, September, October,November, December]
Enumerating odd months

[January,March,May, July, September,November]

Equating months, January with itself : True and January with February : False

Using /= function

Not equating months, January with itself : False and January with February : True
Comparing months, January with itself : EQ and January with February : LT

Creating a tree

Showing singleton tree : <<10[]>>
Showing tree : <<10[<<5[<<3[]>>]>>,<<7[]>>,<<13[<<11[]>>]>>]>>

Read what you show — show (read (show tree) )
Singleton Tree - <<10[]1>>

Tree - <<10[<<5[<<3[]>>]>>,<<7[]>>,<<13[<<11[]>>]>>]>>
working-with—type-classes$ ||





assets/2184ea6f-1ddb-4091-9e6d-e44a19f39a6c.png
e HaskellLangusge  x \Q

<« C ) | @ file///D/projects/haskell/recipe/Ch_8-Working_with_HTML_and_Templates/using-blaze-html/index-outhtm!

Try it! Got 5 minutes?

Type Haskell expressions in here. Type (help to start the tutorial.

Or try typing these out and see what happens (click o insert):

23 % 36 Or reverse “hello” or foldr (:) [1 [1,2,3] or do line <- getLine;
putStrin Line or readFile */welcone”

10 actions are supported in this sandbox.

Functional Reactive Conquering Hadoop Using Lenses to GHCJS: Bringing J@rgen Cito Abstractions for the
Programming for with Haskell and Structure State with Haskell to the presents todo- Functional

Musical User Ozgun Ataman Nathan Bouscal Browser, by Luite example, a Roboticist with
Interfaces by Paul Stegeman lightweight webapp Anthony Cowley
Hudak in Haskell

Features

Statically typed Purely functional

Every expression in Haskell has a type which is determined at compile time. Allthe  Every function in Haskell is a function in the mathematical sense (i.e., “pure"). Even
types composed together by function application have to match up. If they don't, side-effecting 10 operations are but a description of what to do, produced by pure
the program will be rejected by the compiler. Types become not only a form of code. There are no statements or instructions, only expressions which cannot
guarantee, but alanguage for expressing the construction of programs. mutate variables (local or global) nor access state like time or random numbers.

Clickto expand Clickto expand





assets/11c41a40-feb9-457e-9daf-80de7cbe1253.png
Empty
Output

Empty Input
End

recursion

recufsion






assets/75a998c7-1248-46d1-94e9-736fbf1c497f.png
Remove
multiples

Multiples

BT[]
=[]

All Multiples






assets/8b107975-2a84-4c8c-a4d8-e089d5853002.png
*Main> runsdlite "user.db" createSchema

Migrating: CREATE TABLE "stock"("id" INTEGER PRIMARY KEY,"exchange" VARCHAR NOT NULL,"symbol" VARCHAR NOT NULL,CONSTRAINT "unique_stock_id" UNIQUE ("exchange","
symbol™))

Migrating: CREATE TABLE "user"("id" INTEGER PRIMARY KEY,"name" VARCHAR NOT NULL,"email" VARCHAR NOT NULL,CONSTRAINT "unique_email_id" UNIQUE ("email"))
Migrating: CREATE TABLE "user_stock"("userid" INTEGER NOT NULL REFERENCES "user","stockid" INTEGER NOT NULL REFERENCES "stock", PRIMARY KEY ("userid","stockid")

)

*Main> |





assets/3462d4fc-938d-4b81-99bd-f0a1ef29e11f.png
working-with-GADTs — -bash — 169x14

working-with-GADTs $ stack exec —- working-with-GADTs

Sample Expression — Add (Value 10) (Mult (Add (Value 20) (Value 10)) (Value 20)) =
610

Parsing digit from "labc" should be successful
[(*1',"abc")]

Parsing digit from "abc" should fail

[1

working-with-GADTs $ !





assets/ae62f79f-fc86-401a-a0ac-efd27f91e772.png
[ BON ] 7 yogeshsajanikar — -bash — 80x15

[~ § stack setup 8.2.1

Preparing to install GHC to an isolated location.

This will not interfere with any system-level installation.
Downloaded ghc-8.2.1.

Installed GHC.

stack will use a sandboxed GHC it installed

For more information on paths, see 'stack path' and 'stack exec env'
To use this GHC and packages outside of a project, consider using:
stack ghc, stack ghci, stack runghc, or stack exec

..sl






assets/3e0b50d1-61f0-41fa-a735-42e5a4202b83.png
me= R =R E T

>stack exec -- ini-parser sample.ini

(INI (fromList [(“section”,fromList [(“name”,"value"),("name2","quoted value")]),("section2",from.ist [("name",
“value"),(“name2","quoted value 2")]1)]),"\n\n")

]

NUM





assets/1c9d141b-8cd4-4c9b-8c93-4d4b7a67fb5e.png
25ms  ams 3sms  dms 45ms  5ms 55ms  6ms

|1 M CE— 1 1
| CES— |
O CE— ]





assets/64f96e81-6935-4a1b-bc0f-99f90d08ee28.png
£ 1. Proj
File Edit View

° | | I
Currency : USD, Amount : 159
summary of orders
Currency : AUD, Amount : 1696
Currency : SGD, Amount : -1536
Currency : USD, Amount : 606
Sending order Order "AUD" 14
Sending order Order "AUD" (-408)
Sending order Order "USD" 871
summary of orders
Currency : AUD, Amount : 1710
Currency : SGD, Amount : -1536
Currency : USD, Amount : 606
summary of orders
Currency : AUD, Amount : 1302
Currency : SGD, Amount : -1536
Currency : USD, Amount : 606
summary of orders
Currency : AUD, Amount : 1302
Currency : SGD, Amount : -1536
Currency : USD, Amount : 1477
Sending order Order "sGD" (-719)
summary of orders
Currency : AUD, Amount : 1302
Currency : SGD, Amount : -2255
Currency : USD, Amount : 1477
Sending order Order "SGD" (-855)
Sending order Order "SGD" 617
summary of orders
Currency : AUD, Amount : 1302
Currency : SGD, Amount : -3110
Currency : USD, Amount : 1477
summary of orders
Currency : AUD, Amount : 1302
Currency : SGD, Amount : -2493
Currency : USD, Amount : 1477
Printing Final Summary of orders
Currency : AUD, Amount : 1302
Currency : SGD, Amount : -2493
Currency : USD, Amount : 1477

d:\projects\haskell\recipe\Ch_12-Concurrent_and_parallel_programming\working-with-mvars]]

. 2 141341 141x5( 1





assets/85054efd-44e3-47c4-8307-66f632b29eb6.png
working-with-text-and-bytestring — -bash — 107x16

working-with-text-and-bytestring $ stack exec —— working-with—text-and-bytestring
This is a text string

This is a bytestring
working-with-text-and-bytestring $ [





assets/bd18a451-e6c8-4f08-8df5-33384ba42de9.png
working-with-functors — -bash — 120x20

working-with-functors $stack exec — working-with-functors
Mapping a list
[1,4,9,16,25,36,49,64,81,100]

Mapping Maybe
Just 10 —> Just 100
Just 100

Nothing —> Nothing
Nothing

Mapping Either

Right 10 -> Right 100
Right 100

Left String —> Left String
Left "Left Value"
working-with-functors $!





assets/0b0bfee9-70e2-49dc-9342-9a45b8e1785a.png
000 (< localhost

Welcome to Heist

This page is displayed through Heist snaplet.

>





assets/dbd82ae7-4643-401b-94df-12904aba8807.png
[ hello — -bash — 92x8

[hello $ stack exec -- hello-exe
Hello World!
hello s I





assets/1349a677-9dc9-4320-a736-4be130eb2a5a.png
Order

Generator

Thread :

Order *

Generator ot | 02|

Thread
Exchange readChan
(Channel)

Order
Generator
Thread

writeChan

MVar
(modifyMVar)





assets/cc1166bd-6318-4b7f-a202-fc8ed3ea0346.png
® < localhost ] M > +

Directory Listing: /subfolder/

File Name Type Last Modified
DIR

Sun, 27 Aug 2017
example.html text/html 17:56:47 GMT

Snap





assets/e5b953f0-2383-4070-9fe7-3082b5c66ca8.png
working-with-monad $ stack exec —— working-with-monad
Just 20

Nothing

Just 12

Nothing

Just [1,2,3,4,5,6,7,8,9,10]

Nothing

Just [1,3,5,7,9]1

Just 100

working-with-monad $





assets/2acdd031-be2a-48e0-ba1c-0581cf78e734.png
000 (< localhost &

Snap Example App Login

Login:
Password:

Login

Don't have a login yet? Create a new user





assets/12631504-27d6-4348-8428-f79c1c032fe2.png
B oo e o

v
10
1






assets/884b1ca5-3635-485f-829c-b29824d56963.png
Tour Sign in Sign Up

BIG BOLD TEXT

LOREM IPSUM DOLOR SIT AMET, CONSECTETUR
ADIPISICING ELIT.

GET STARTED

out to learn more. M: by the YUl Team





assets/cc0fedf6-e58e-47cb-ae2b-d1366a73afd2.png
2222

oURWN R

module Main where

—— Single line comment!
main :: I0 ()
main = putStrLn "Hello World!"

6,0-1

Main.hs (~/projects/haskell/haskell_cook...1-Foundation...

All





assets/14c36097-84d0-4ad7-afaf-3e763c741b1b.png
, - omom e oo
. Bm o mom omm omom

n . Om_ mmom s omom

O OO e o e





assets/bf3a0ba3-421e-4a5d-aa4b-e5ce2a02214f.png
me= R =R E T

>stack exec -- io-monad
Incorrect arguments []
io-monad.EXE: Provide file name
callstack (from HasCallstack):
error, called at src\Main.hs:32:5 in main:Main

NUM 15232





assets/bcd53ef1-997e-46be-85ac-de16ee3d4ee1.png
map-filter — -bash — 41x38

map-filter $ stack exec map-filter
Squaring [1..10]

Squares using map
[1,4,9,16,25,36,49,64,81,100]
Squares using tail recursive map
[1,4,9,16,25,36,49,64,81,100]
Filtering odd numbers in [1..10]
Using filter

[1,3,5,7,9]

Using tail recursive filter
[1,3,5,7,9] o





assets/957b3f2b-4273-4e84-9ecf-943100fb37ef.png
Just 10

First Bind

v

>{ Just (10 + 2)

Second Bind






assets/d78603eb-29d1-4bef-b99c-650b9de92654.png
using-esquleto — -bash — 139x18

using-esquleto $ stack exec — using-esquleto

Migrating: CREATE TABLE "user"("id" INTEGER PRIMARY KEY,"email" VARCHAR NOT NULL,"referred_by" INTEGER NULL REFERENCES "user","verified" BO
OLEAN NOT NULL,CONSTRAINT "unique_email" UNIQUE ("email"))

Referral counts

[(value "a@example.com",Value 2),(Value "b@example.com",Value 1)]

using-esquleto $ ||





assets/65bc2728-f9b3-4ca3-9839-5bc4278f255d.png
10}—»6






assets/d0209f20-248c-40a1-b96e-565beaf57d94.png
working-with-type-family — -bash — 169x14

working-with-type-family $ stack exec —— working-with-type-family A
Vector operation :- ((1,1,1) * 10) . (1,0,0)
10.0

Midpoint of (1,1,1) and (1,0,0)
(1.0,0.5,0.5)
working-with-type-family $ [





assets/1a5f19b8-c643-4a74-bf35-8764fca3af2f.png
el

a+10






assets/c52f0873-2487-4720-947b-059cfa26cd7e.png
(2 1. Projects

File Edit Viey

d:\projects\haskell\recipe\Ch_7-Working_with_Relational_and_NoSQL_databases\hedis-trie>stack exec -- hedis-trie
Adding stocks to the redis trie index
Seaching for strings
Results for "holdi"
: EcoWise Holdings Ltd
: Eastern Holdings Ltd
: Dukang Distillers Holdings Ltd
: Dutech Holdings Ltd
NO4: Dyna-Mac Holdings Ltd
Results for “dyna”
D6U: Dynamic Colours Ltd
NO4: Dyna-Mac Holdings Ltd

d:\projects\haskell\recipe\Ch_7-Working_with_Relational_and_NoSQL_databases\hedis-trie>]]






assets/d89f8230-09fa-4f8a-b1e4-c40db3cc6c09.png
working-with-lenses — -bash — 139x19

working-with-lenses $ stack exec —— working-with-lenses

Line Line {_start = Point {_ x =5, _y = 7}, _end = Point {_x = 11, _y = 13}}
Using lenses

Start point of line

Point { x =5, _y = 7}

Composing lenses

X of end of the line

11

Using setters

Setting Y coordinate of end of the line

Line {_start = Point { x =5, _y = 7}, _end = Point {_x = 11, _y = 17}}
Making it fancier with ~.

Access X of start of line

5

working-with-lenses $ ||





assets/35385239-c3d5-41c3-99d0-f46bccd1ca75.png
d:\projects\haskell\recipe\Ch_7-Working_with_Relational_and_NoSQL_databases\working-with-persistent>stack exec -- working-with-persistent

Migrating: CREATE TABLE "stock”("id" INTEGER PRIMARY KEY,"exchange" VARCHAR NOT NULL,"symbol™ VARCHAR NOT NULL,CONSTRAINT "unique_stock_id" UNIQUE (“"exchange","
symbol®))

Migrating: CREATE TABLE “"user”("id" INTEGER PRIMARY KEY,"name" VARCHAR NOT NULL,"email™ VARCHAR NOT NULL,CONSTRAINT “unique_email id" UNIQUE ("email"™))

Migrating: CREATE TABLE user”,"stockid" INTEGER NOT NULL REFERENCES “stock", PRIMARY KEY ("userid”,"stockid")

)

Added user JohnUserkey {unUserkey = SqlBackendKey {unsqlBackendkey = 1}}

Added user JaneUserkey {unUserkey = SqlBackendKey {unsqlBackendkey = 2}}

Added Singapore Exchange DBS stockstockkey {unstockkey = SqlBackendKey {unsqlBackendkey = 1}}

Added NSE India, Infosys stockStockkey {unStockkey = SqlBackendkey {unsqlBackendKey = 2}}

John subscribed to DBS stockUserStockKey {userStockkeyuserid = Userkey {unUserkey = SqlBackendkey {unsqlBackendkey = 1}}, userStockkeystockid = StockKey {unStoc
kkey = SqlBackendkey {unsqlBackendkey = 1}}}

John subscribed to INFY stockUserstockkey {userStockKeyuserid = Userkey {unUserkey = SqlBackendkey {unsqlBackendkey = 1}}, userStockKeystockid = Stockkey {unsto
ckkey = SqlBackendkey {unsqlBackendkey = 2}}}

Jane subscribed to DBS stockUserStockKey {userStockkeyuserid = Userkey {unUserkey = SqlBackendkey {unsqlBackendkey = 2}}, userStockkeystockid = Stockkey {unstoc
kkey = sqlBackendkey {unsqlBackendkey = 1}}}

John has 2 stocks

Delete John's DBS stock

Now John has 1 stocks

Change Jane's name

Jane's name is now Just (User {userName = “Jane Quant”, userEmail = “jane@example.com"})

user_stock”("userid" INTEGER NOT NULL REFERENCES

d:\projects\haskell\recipe\Ch_7-Working_with_Relational_and_NoSQL_databases\working-with-persistent>]|






assets/f92d42e8-737c-4750-ae44-3cee15eaffc1.png
Edit Vie

""‘Il.l.m i

>stack exec -- io-monad Setup.hs
1 : import Distribution.Simple
2 : main = defaultMain

NUM

1






assets/4e57a01c-be5f-4284-bf12-1a27202f20a1.png
(2 1. Projects

File Edit Viey

d:\projects\haskell\recipe\ch_7-Working with Relational_and_NoSQL_databases\using-hedis>stack exec -- using-hedis
setting stock exchange code and their descriptions

Right (Just "Singapore Stock Exchange”,Nothing,Just "National Stock Exchange of India")
Adding symbols to the stock list

Right ["FB","GOOGL","AAPL"]

changing some stocks and removing some

printing new stock list

Right "GOOGL", "AAPL"]

Set hashes for AAPL and FB

Print FB Category

Right (Just "SOCIAL")

what is suggestion for AAPL

Right [Just "BUY",Just "POSITIVE"]

d:\projects\haskell\recipe\Ch_7-Working_with_Relational_and_NosQL_databases\using-hedissi






assets/f366945e-f5c4-4a72-8de5-e3815d00bfc9.png
creating-lenses — -bash — 139x19

creating-lenses $ stack exec —— creating-lenses

Initial Point = Point 3.0 5.0

Getting x and y coordinates using lenses x and y

3.0

5.0

Setting x and y coordinates alternatively using lenses x and y
Point 7.0 5.0

Point 3.0 7.0

creating-lenses $ |





assets/d9c9b9ce-ce1c-420a-8ea3-ea611b21cf21.png
working-with-applicaive — -bash — 96x18

working-with-applicaive $ stack exec — working-with-applicaive
multiply lists
[11,12,13,22,24,26,33,36,39]

Tuple of maybes
Just 10 -> Just "String" -> Just (10,"String")
Just (10,"String")

Just 10 -> Nothing -> Nothing
Nothing

Adding Either

Right 10 -> Right 100 —> Right 110
Right 110

Left String —> Right 10 —> Left String
Left "String"

working-with-applicaive $ ||





assets/9206b1db-a3ac-4e3d-8314-f34010a35cec.png
[ write-trans — -bash — 118x20

write-trans $stack exec write-trans
Debiting -10.0

Crediting 5.0

Crediting 17.0

Debiting -29.0

Crediting 10.0

Finished balancing

Balance is -7.0

write-trans s






assets/2e11dea0-0d82-4c51-a569-4c4383620535.png
00 <

Top navbar

file:///Users/yogeshsajanikar/projects/haskell/haskell_coc &

Navbar example using blaze-html

This example shows how to use blaze-html with bootstrap framework
using Text.Blaze.Html5 and bootstrap defined classes and tags

View navbar docs






assets/4c93f3e3-bf13-48df-bbd1-15c121d1ecce.png
> I stack-work
" app
I sie
T test





assets/963bc72c-8413-42dd-9a34-e20aa3ef7cd2.png
%

LN





assets/83085795-d804-4de3-a6ff-9562659ddc09.png
working-with-map — -bash — 101x20

working-with-map $ stack exec —— working-with-map El
Empty and singleton maps

fromList []

fromList [(1,"Haskell Curry")]

Map from list

fromList [(1,"Alphonso Church"),(2,"Haskell Curry")]

Inserting into map

fromList [(1,"Alphonso Church"),(2,"Haskell Curry"),(3,"Alan Turing")]

fromList [(1,"Alphonso Church"),(2,"Haskell Curry, Haskell inspiration"),(3,"Alan Turing")]
fromList [("a",12),("an",2),("the",8)]

fromList [("a",10),("an",2)]

fromList [("a",10),("an",5),("the",8)]

fromList [("a",10),("an",2)]

fromList [("a",13),("an",2),("and",6),("the",8)]

fromList [("a",1@),("the",8)]

fromList [("a",10)]

working-with-map $ I






assets/a37a3baa-c5d3-45fe-be33-7e7baf8f8443.png
binary-tree-applicative — -bash — 136x26

binary-tree-applicative $ stack exec — binary-tree-applicative

First Tree

Node (Node (Node (Node Leaf 8 Leaf) 4 (Node Leaf 9 Leaf)) 2 (Node (Node Leaf 10 Leaf) 5 (Node Leaf 11 Leaf))) 1 (Node (Node (Node Leaf 1
2 Leaf) 6 (Node Leaf 13 Leaf)) 3 (Node (Node Leaf 14 Leaf) 7 (Node Leaf 15 Leaf)))

Second Tree

Node (Node (Node (Node Leaf 22 Leaf) 18 (Node Leaf 23 Leaf)) 16 (Node (Node Leaf 24 Leaf) 19 (Node Leaf 25 Leaf))) 15 (Node (Node (Node
Leaf 26 Leaf) 20 (Node Leaf 27 Leaf)) 17 (Node (Node Leaf 28 Leaf) 21 (Node Leaf 29 Leaf)))

Final Tree

Node (Node (Node (Node Leaf 30 Leaf) 22 (Node Leaf 32 Leaf)) 18 (Node (Node Leaf 34 Leaf) 24 (Node Leaf 36 Leaf))) 16 (Node (Node (Node
Leaf 38 Leaf) 26 (Node Leaf 4@ Leaf)) 20 (Node (Node Leaf 42 Leaf) 28 (Node Leaf 44 Leaf)))

Checking Applicatives Laws

Identity Law: pure id <x> v == v

pure id <k> intTreel == intTreel

True

Homomorphism: pure f <> pure x == pure (f x)

This property is not possible to test here, as pure produces infinite tree

Interchange: u <> pure y == pure ($ y) <> u

This property is not possible to test here, as pure produces infinite tree

Composition: pure (.) <k> U <k> vV <> W == U <> (V <k> W)

(pure (.) <x> pure square <x> pure double <x> intTreel) == (pure square <x> (pure double <x> intTreel))

True

binary-tree-applicative $ ||





assets/5562fd93-8252-4a46-ab96-89031a549ecf.png
000 <

localhost

>

You are not registered






assets/193a2ecd-1764-415c-866b-67867125e25b.png
log-parser — -bash — 106x37

log-parser $ stack exec —— log-parser access_log/access_log =
0x503e4fce.virnxx2.adsl-dhcp.tele.dk 3
1-320.cnc.bc.ca 4

1-729.cnc.bc.ca 7

10.0.0.153 270

12.22.207.235 1

128.227.88.79 14

142.27.64.35 7

145.253.208.9 7

1513.cps.virtua.com.br 1

194.151.73.43 4

195.11.231.210 1

195.230.181.122 1

195.246.13.119 12

2-110.cnc.bc.ca 11

2-238.cnc.bc.ca 1
200-55-104-193.dsl.prima.net.ar 13
200.160.249.68.bmf.com.br 2
200.222.33.33 1

203.147.138.233 13

206-15-133-153.dialup.ziplink.net 1
206-15-133-154.dialup.ziplink.net 1
206-15-133-181.dialup.ziplink.net 1
207.195.59.160 20

208-186-146-13.nrp3.brv.mn. frontiernet.net P
208-38-57-205.ip.cal.radiant.net 11

208.247.148.12 4
212.21.228.26 1
212.92.37.62 14
213.181.81.4 1
216-160-111-121. tukw.qwest.net 12
216.139.185.45 1
219.95.17.51 1
3_343_1t_someone 10
4.37.97.186 1
61.165.64.6 4
61.9.4.61 3






assets/f356193a-fc45-4ca2-acb5-e37e86070f6f.png
E G

Cookbook

Build functional applications using Monads, Applicatives,
and Functors

1]






assets/6fec64f4-d83e-47af-aa08-66594fb6021a.png
b
Just a Just b
Nothing Nothing

Maybe a Maybe a
Right a Right b
Left c Left c

Either ca Either c b

Something a

>{ Something b ‘






assets/d6c6fe86-412f-4045-aae8-1a4c292abc50.png
working-with-monoid — -bash — 119x14

working-with-monoid$ stack exec —— working-with-monoid

Define default options

Option {boolOption = False, selections = []}

Adding True flag - Option {boolOption = True, selections = []}
Adding False flag, and selection "haskell" - Option {boolOption
Adding True flag, and selection "cookbook" - Option {boolOption
Contatenating all options

Concatenation Result - Option {boolOption = True, selections = ["haskell"]}
working-with-monoids$ ||

["haskell"]}
["haskell", " cookbook"]}

True, selections
True, selections





assets/77014872-b500-4c88-a14c-717985bdc641.png
add | a

O CO—CD






assets/d9ecff0b-05ab-4a21-b3d1-9c8ee61709e8.png
[ NON ] fibonacci-state — -bash — 118x20

fibonacci-state $stack exec -- fibonacci-state

Calling fibWithState 30, would sore fibonacci number till 3@ in the map

fromList [(e,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),(7,13),(8,21),(9,34),(10,55),(11,89), (12,144),(13,233),(14,377),(1
5,610),(16,987),(17,1597),(18,2584),(19,4181),(20,6765), (21,10946), (22,17711), (23,28657), (24,46368) , (25,75025), (26,121
393),(27,196418),(28,317811), (29,514229), (30,832040) ]

Calling any fibonacci number till 30 is memoized, and will be only looked up

610

fibonacci-state $fi






assets/0fd573b0-3872-4074-b43b-73386aa71a47.png
d:\projects\haskell\recipe\Ch_2-Getting_Functional\pseudo-gsort>stack build
pseudo-qsort-.1.0.0: configure (exe)

Configuring pseudo-gsort-0.1.0.0...

pseudo-qsort-0.1.0.0: build (exe)

Preprocessing executable ‘pseudo-gsort' for pseudo-qsort-0.1.0.0...

[1 of 1] Compiling Main ( src\Main.hs, .stack-work\dist\ca59deab\build\pseudo-gsort\pseudo-gsort-
tmp\Main.o )

Linking .stack-work\dist\ca59deab\build\pseudo-gsort\pseudo-gsort.exe ...

pseudo-gsort-0.1.0.0: copy/register

Installing executable(s) in
D:\projects\haskell\recipe\ch_2-Getting_Functional\pseudo-gsort\.stack-work\install\a9453259\bin

d:\projects\haskell\recipe\ch_2-Getting_Functional\pseudo-gsort>stack exec pseudo-gsort
input: [5,2,3,1,7,9,8,4,6,0]
sorted: [0,1,2,3,4,5,6,7,8,9]

d:\projects\haskell\recipe\Ch_2-Getting_Functional\pseudo-gsort>]

NUM





assets/5957dec7-85a9-4cc2-a20b-d5536b1ba1e9.png
File Edit View

d:\projects\haskell\recipe\Ch_6-Working_with_common_containers_and_strings\priority-queue>stack test
priority-queue-0.1.0.0: test (suite: priority-queue-test)

Verifying Leftist Property

+++ OK, passed 100 tests.
Verifying Heap Ordered Property
+++ OK, passed 100 tests.

d:\projects\haskell\recipe\Ch_6-Working_with_common_containers_and_strings\priority-queue>]]

104x15 104





assets/0990265d-4da2-442e-a22f-833548402032.png
000 <

localhost

>

Haskell Web Developer






assets/4e5394e3-d3e8-462d-b90d-e9ecf3782751.png
File Edit Jools Syntax Buffers Window Help
a ale @ BRRR(SGSA I T[22

odule Main where

main :: 10 ()
main = putStrln "Hello lorld!"






assets/1e6001f1-84b5-4278-8428-9102d1605d9a.jpg





assets/609459b5-fbc8-4dca-891a-777a5aa25617.png
priority-queue — -bash — 103x13
El

priority-queue $ stack exec — priority-queue-exe
Just 2

Just 10

priority-queue $ ||






assets/21dba612-3959-422c-9d5b-8b2624bb3adf.png
d:\projects\haskell\recipe\Ch_2-Getting_Functional\merge-sort>stack build
merge-sort-0.1.0.0: configure (exe)

Configuring merge-sort-0.1.0.0...

merge-sort-0.1.0.0: build (exe)

Preprocessing executable ‘merge-sort' for merge-sort-0.1.0.0...

[1 of 1] Compiling Main ( src\Main.hs, .stack-work\dist\ca59deab\build\merge-sort\merge-sort-tmp\Main.o )
Linking .stack-work\dist\ca5odeab\build\merge-sort\merge-sort.exe ...

merge-sort-0.1.0.0: copy/register

Installing executable(s) in
D:\projects\haskell\recipe\ch_2-Getting_Functional\merge-sort\.stack-work\install\a9453259\bin

d:\projects\haskell\recipe\Ch_2-Getting_Functional\merge-sort>stack exec merge-sort
input: [5,2,3,1,7,9,8,4,6,0]
sorted: [0,1,2,3,4,5,6,7,8,9]

d:\projects\haskell\recipe\Ch_2-Getting_Functional\merge-sort>]]

NUM





assets/642fb3f3-d25f-4a6a-b9e0-fd250cf8c68c.png
manage-migrations — -bash —139x18

manage-migrations $ stack exec manage-migrations

Migrating: CREATE TABLE "asset"("id" INTEGER PRIMARY KEY,'"name" VARCHAR NOT NULL)

Migrating: CREATE TABLE "structure"("id" INTEGER PRIMARY KEY,'name" VARCHAR NOT NULL,"parent" INTEGER NULL REFERENCES "structure")
Migrating: CREATE TABLE "compartment"("id" INTEGER PRIMARY KEY,'"name" VARCHAR NOT NULL,"parent" INTEGER NULL REFERENCES "compartment")
manage-migrations $ 1s -1 ship.db

—-rw—r—r— 1 yogeshsajanikar staff 16384 Jul 31 20:25 ship.db

manage-migrations $






assets/138b1045-79ac-4e07-b7ae-35b96be234f9.png
[ AON ] ~ hello— ghc « stack ghci — 92x19

[hello $ stack ghci

The following GHC options are incompatible with GHCi and have not been passed to it: -thread
ed

Configuring GHCi with the following packages: hello

Using main module: 1. Package “hello' component exe:hello-exe with main-is file: /Users/yoge
shsajanikar/projects/haskell/haskell cookbook/Ch_l-Foundations_ of_ Haskell/projects/hello/app
/Main.hs

GHCi, version 8.0.2: http://www.haskell.org/ghc/ :? for help

Loaded GHCi configuration from /Users/yogeshsajanikar/.ghc/ghci.conf

[1 of 1] Compiling Lib ( /Users/yogeshsajanikar/projects/haskell/haskell cookbo
ok/Ch_l-Foundations_of_ Haskell/projects/hello/src/Lib.hs, interpreted )

Ok, modules loaded: Lib.

[2 of 2] Compiling Main ( /Users/yogeshsajanikar/projects/haskell/haskell cookbo
ok/Ch_l-Foundations_of_ Haskell/projects/hello/app/Main.hs, interpreted )

Ok, modules loaded: Lib, Main.

Loaded GHCi configuration from /private/var/folders/hj/t11zhf4x31n8zclw3ph6gphw0000gn/T/ghci
4494/ghci-script

*Main Lib> [I






assets/fbe5823d-d50c-401a-b484-e977b53eadcc.png
up input into pairwise sorted list

“

2|s 1 9 a|s 6 merg Step'-ﬁrstu@
12 5 al7|s]|o mergestep'-sewudm@
“ oy
203 fa|s]|7]s]o

s ‘mergeSort complee - siugleD

o






assets/8003a53e-acf8-4455-ac73-3d504a96e878.png
[ read-trans — -bash — 118x20

read-trans $stack exec -- read-trans
Current env state is 100

Current state is 10? False

Current env state is 10

Current state is 107 True

read-trans $f






assets/429ae988-a6f8-4986-a00d-c751eba2fbbe.png
000 (< localhost

Choose File @ file-upload.cabal Upload File






assets/497d10fa-e568-4aef-a61c-65b0bd2e7670.png
using-maybe — -bash — 106x30

Yogeshs-MBP:using-maybe yogeshsajanikar$ stack exec —— using-maybe
Using Maybe

Does (Just 10) represent a value? True

Does (Nothing) represent a value? False

Does (Nothing) is really Nothing? True

Singleton List and Maybe interoperability
Converting list [10] to Maybe : Just 10
Converting empty list to Maybe (Nothing) : Nothing
Converting Maybe (Just 10) to list : [10]
Converting Maybe (Nothing) to list : []

Using default value for a transforamtion using 'maybe’

Use NULL if Nothing, and convert a value to string if Maybe holds a value
Converting Nothing to String : NULL

Converting a value to String : 10

Getting value from (Just 10) = 10
Safe Division - 10 / 2
Answer is Just 5

Safe Division by Zero - 10/0
Answer is Nothing

We can also use - do notation
Safe Division by Zero using do notation - 10 / @ = Nothing

Filtering out odd elements - mapMaybe (\a -> if odd a then Nothing else (Just a)) [1..10] = [2,4,6,8,10]
Yogeshs-MBP:using-maybe yogeshsajanikar$ ||

-





assets/164b3f65-59fa-4970-a037-5a0b55a4f1df.jpg
working-with-monad-par — -bash — 136x7

working-with-onad-par $ stack exec — working-w; h-vnnnad—par~+RTS N4
n pfib 30 with some threshold

32040

working-with-monad-par $

-RTS






assets/2ee1f4ac-7d4e-4558-b946-f412cb556350.jpg
using-closure — -bash — 136x21

using-closure $ stack exec — using-closure -s 127.0.0.1 10501 & L
[1] 10241
using-closure $ stack exec — using-closure - 127.0.0.1 10562

Initial slaves: [nid://127.0.0.1:10501:0]
Tue Aug 15 19:56:04 UTC 2017 pid: /127 0.0.1:10502

Spawned pid://127.0.0. :11 on nid://127.0.0.1:10501:0
Started the process at pid://127.0.0.1:10501:0:11
Remote confirmation: Ack from : pid://127.0.0.1:1050:

0501

Tue Aug 15 19156185 UTC 2017 pid:
nfirmation

[1]+ Done stack exec — using-closure -s 127.0.0.1 10501
using-closure $ [|

0:11, message : Remote co





assets/ce05537d-277a-4e64-89d5-e11ac17a08da.png
0O (< localhost & ] [l +

This is a simple demo page served using Heist and the Snap web framework.

Congrats! You're logged in as 'snap-admin’

Logout





assets/12962658-0f5e-467a-bd60-60a59775b3cf.png
[ NON ] [ projects — -bash — 80x34

[projects $ stack new hello
Downloading template "new-template" to create project "hello" in hello/ ...

The following parameters were needed by the template but not provided: category
You can provide them in /Users/yogeshsajanikar/.stack/config.yaml, like this:
templates:
params:
category: value
Or you can pass each one as parameters like this:
stack new hello new-template -p "category:value"

Looking for .cabal or package.yaml files to use to init the project.
Using cabal packages:
- hello/hello.cabal

Selecting the best among 11 snapshots...

Downloaded 1lts-9.2 build plan.

Missing some cabal revision files, updating indices

Selected mirror https://s3.amazonaws.com/hackage.fpcomplete.com/
Downloading timestamp

Downloading snapshot

Updating index

Updated package list downloaded

Populated index cache.

* Matches 1lts-9.2

Selected resolver: lts-9.2

Initialising configuration using resolver: lts-9.2
Total number of user packages considered: 1
Writing configuration to file: hello/stack.yaml
All done.

projects §$ I





