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Preface

Python Feature Engineering Cookbook covers well-demonstrated recipes focused on solutions
that will assist machine learning teams in identifying and extracting features to develop
highly optimized and enriched machine learning models. This book includes recipes to
extract and transform features from structured datasets, time series, transactions data and
text. It includes recipes concerned with automating the feature engineering process, along
with the widest arsenal of tools for categorical variable encoding, missing data imputation
and variable discretization. Further, it provides different strategies of feature
transformation, such as Box-Cox transform and other mathematical operations and
includes the use of decision trees to combine existing features into new ones. Each of these
recipes is demonstrated in practical terms with the help of NumPy, SciPy, pandas, scikit-
learn, Featuretools and Feature-engine in Python.

Throughout this book, you will be practicing feature generation, feature extraction and
transformation, leveraging the power of scikit-learn’s feature engineering arsenal,
Featuretools and Feature-engine using Python and its powerful libraries.

Who this book is for

This book is intended for machine learning professionals, Al engineers, and data scientists
who want to optimize and enrich their machine learning models with the best features.
Prior knowledge of machine learning and Python coding is expected.

What this book covers

Chapter 1, Foreseeing Variable Problems in Building ML Models, covers how to identify the
different problems that variables may present and that challenge machine learning
algorithm performance. We'll learn how to identify missing data in variables, quantify the
cardinality of the variable, and much more besides.

Chapter 2, Imputing Missing Data, explains how to engineer variables that show missing
information for some observations. In a typical dataset, variables will display values for
certain observations, while values will be missing for other observations. We'll introduce
various techniques to fill those missing values with some additional values, and the code to
execute the techniques.
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Chapter 3, Encoding Categorical Variables, introduces various classical and widely used
techniques to transform categorical variables into numerical variables and also
demonstrates a technique for reducing the dimension of highly cardinal variables as well as
how to tackle infrequent values. This chapter also includes more complex techniques for
encoding categorical variables, as described and used in the 2009 KDD competition.

Chapter 4, Transforming Numerical Variables, uses various recipes to transform numerical
variables, typically non-Gaussian, into variables that follow a more Gaussian-like
distribution by applying multiple mathematical functions.

Chapter 5, Performing Variable Discretization, covers how to create bins and distribute the
values of the variables across them. The aim of this technique is to improve the spread of
values across a range. It also includes well established and frequently used techniques like
equal width and equal frequency discretization and more complex processes like
discretization with decision trees and many more.

Chapter 6, Working with Outliers, teaches a few mainstream techniques to remove outliers
from the variables in the dataset. We'll also learn how to cap outliers at a given arbitrary
minimum/maximum value.

Chapter 7, Deriving Features from Dates and Time Variables, describes how to create features
from dates and time variables. Date variables can't be used as such to build machine
learning models for multiple reasons. We'll learn how to combine information from
multiple time variables, like calculating time elapsed between variables and also,
importantly, working with variables in different time zones.

Chapter 8, Performing Feature Scaling, covers the methods that we can use to put the
variables within the same scale. We'll also learn how to standardize variables, how to scale
to minimum and maximum value, how to do mean normalization or scale to vector norm,
among other techniques.

Chapter 9, Applying Mathematical Computations to Features, explains how to create new
variables from existing ones by utilizing different mathematical computations. We'll

learn how to create new features through the addition/difference/multiplication/division of
existing variables and more. We will also learn how to expand the feature space with
polynomial expansion and how to combine features using decision trees.

Chapter 10, Creating Features with Transactional and Time Series Data, covers how to create
static features from transactional information, so that we obtain a static view of a customer,
or client, at any point in time. We'll learn how to combine features using math operations,
across transactions, in specific time windows and capture time between transactions. We'll
also discuss how to determine time between special events. We'll briefly dive into signal
processing and learn how to determine and quantify local maxima and local minima.

[2]
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Chapter 11, Extracting Features from Text Variables, explains how to derive features from text
variables. We'll learn to create new features through the addition of existing variables. We
will learn how to capture the complexity of the text by capturing the number of characters,
words, sentences, the vocabulary and the lexical variety. We will also learn how to create
Bag of Words and how to implement TE-IDF with and without n-grams

To get the most out of this book

Python Feature Engineering Cookbook will help machine learning practitioners improve their
data preprocessing and manipulation skills, empowering them to modify existing variables
or create new features from existing data. You will learn how to implement many feature
engineering techniques with multiple open source tools, streamlining and simplifying code
while adhering to coding best practices. Thus, to make the most of this book, you are
expected to have an understanding of machine learning and machine learning algorithms,
some previous experience with data processing, and a degree of familiarity with datasets.
In addition, working knowledge of Python and some familiarity with Python numerical
computing libraries such as NumPy, pandas, Matplotlib, and scikit-learn will be beneficial.
You are required to be experienced in the use of Python through Jupyter Notebooks, in
iterative Python through a Python console or Command Prompt, or have experience using
a dedicated Python IDE, such as PyCharm or Spyder.

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the Support tab.
Click on Code Downloads.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

[3]
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Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Python—Feature—Engineering—Cookbook.hicasethenfsanilpdatetothe
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packt-cdn.com/downloads/
9781789806311_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The nunique () method ignores missing values by default."

A block of code is set as follows:

import pandas as pd

from sklearn.datasets import load_boston

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

X_train['A7'] = np.where(X_train['A7'].isin(frequent_cat), X_train['A7'],
'Rare')

X_test['A7'] = np.where(X_test['A7'].isin(frequent_cat), X_test['AT7'],
'Rare')

[4]
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Any command-line input or output is written as follows:

$ pip install feature-engine

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click the Download button."

0 Warnings or important notes appear like this.
9 Tips and tricks appear like this.

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There’s more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

[5]
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There's more...

This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[6]
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Foreseeing Variable Problems
When Building ML Models

A variable is a characteristic, number, or quantity that can be measured or counted. Most
variables in a dataset are either numerical or categorical. Numerical variables take numbers
as values and can be discrete or continuous, whereas for categorical variables, the values
are selected from a group of categories, also called labels.

Variables in their original, raw format are not suitable to train machine learning algorithms.
In fact, we need to consider many aspects of a variable to build powerful machine learning
models. These aspects include variable type, missing data, cardinality and category
frequency, variable distribution and its relationship with the target, outliers, and feature
magnitude.

Why do we need to consider all these aspects? For multiple reasons. First, scikit-learn, the
open source Python library for machine learning, does not support missing values or
strings (the categories) as inputs for machine learning algorithms, so we need to convert
those values into numbers. Second, the number of missing values or the distributions of the
strings in categorical variables (known as cardinality and frequency) may affect model
performance or inform the technique we should implement to replace them by numbers.
Third, some machine learning algorithms make assumptions about the distributions of the
variables and their relationship with the target. Finally, variable distribution, outliers, and
feature magnitude may also affect machine learning model performance. Therefore, it is
important to understand, identify, and quantify all these aspects of a variable to be able to
choose the appropriate feature engineering technique. In this chapter, we will learn how to
identify and quantify these variable characteristics.

This chapter will cover the following recipes:

e Identifying numerical and categorical variables
¢ Quantifying missing data
¢ Determining cardinality in categorical variables
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e Pinpointing rare categories in categorical variables

Identifying a linear relationship

Identifying a normal distribution

Distinguishing variable distribution

Highlighting outliers
e Comparing feature magnitude

Technical requirements

Throughout this book, we will use many open source Python libraries for numerical
computing. I recommend installing the free Anaconda Python distribution (https://www.
anaconda.com/distribution/), which contains most of these packages. To install the
Anaconda distribution, follow these steps:

1. Visit the Anaconda website: https://www.anaconda.com/distribution/ .
2. Click the Download button.

3. Download the latest Python 3 distribution that's appropriate for your operating
system.

4. Double-click the downloaded installer and follow the instructions that are
provided.

The recipes in this book were written in Python 3.7. However, they should
work in Python 3.5 and above. Check that you are using similar or higher
versions of the numerical libraries we'll be using, that is, NumPy, pandas,
scikit-learn, and others. The versions of these libraries are indicated in the
requirement.txt file in the accompanying GitHub repository (https://
github.com/PacktPublishing/Python-Feature-Engineering-Cookbook).

In this chapter, we will use pandas, NumPy, Matplotlib, seaborn, SciPy, and scikit-learn.
pandas provides high-performance analysis tools. NumPy provides support for large,
multi-dimensional arrays and matrices and contains a large collection of mathematical
functions to operate over these arrays and over pandas dataframes. Matplotlib and seaborn
are the standard libraries for plotting and visualization. SciPy is the standard library for
statistics and scientific computing, while scikit-learn is the standard library for machine
learning.
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To run the recipes in this chapter, I used Jupyter Notebooks since they are great for
visualization and data analysis and make it easy to examine the output of each line of code.
I recommend that you follow along with Jupyter Notebooks as well, although you can
execute the recipes in other interfaces.

The recipe commands can be run using a . py script from a command
prompt (such as the Anaconda Prompt or the Mac Terminal) using an IDE
such as Spyder or PyCharm or from Jupyter Notebooks, as in the
accompanying GitHub repository (https://github.com/
PacktPublishing/PythoaneaturefEngineerinngookbook).

In this chapter, we will use two public datasets: the KDD-CUP-98 dataset and the Car
Evaluation dataset. Both of these are available at the UCI Machine Learning Repository.

Dua, D. and Graff, C. (2019). UCI Machine Learning Repository (http://
archive.ics.uci.edu/ml). Irvine, CA: University of California, School of
Information and Computer Science.

To download the KDD-CUP-98 dataset, follow these steps:

1. Visit the following website: https://archive.ics.uci.edu/ml/machine-

learning-databases/kddcup98-mld/epsilon_mirror/.

2. Click the cup981rn.zip link to begin the download:

&« > C & https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup98-mld/epsilon_mirror/

Index of /ml/machine-learning-databases/kddcup98-mld/epsilon_mirror

e Parent Directory,
o cup98dic.txt

e cup98doc.txt
cup98lm.txt.Z
cup98lm.zip
cup98que. txt
cup98val.txt.Z
e cup98val.zip

e instruct.txt

¢ readme

* testing ixt

o valtargt.readme
* valtargf.txt

Apache/2.4.6 (CentOS) OpenSSL/1.0.2k-fips SVN/1.7.14 Phusion_Passenger/4.0.53 mod_perl/2.0.10 Peri/v5.16.3 Server at archive.ics.uci.edu Port 443

3. Unzip the file and save cup98LRN. txt in the same folder where you'll run the
commands of the recipes.
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To download the Car Evaluation dataset, follow these steps:

1. Go to the UCI website: https://archive.ics.uci.edu/ml/machine-learning-

databases/car/.

2. Download the car.data file:

< - C @ https://archive.ics.uci.edu/ml/machine-learning-databases/car/

Index of /ml/machine-learning-databases/car

o Parent Directory,
e car.c45-names

o cardata

e carnames

Apache/2.4.6 (CentOS) OpenSSL/1.0.2k-fips SVN/1.7.14 Phusion_Passenger/4.0.53 mod perl/2.0.10 Perl/v5.16.3 Server at archive.ics.uci.edu Port 443

3. Save the file in the same folder where you'll run the commands of the recipes.

We will also use the Titanic dataset that's available at http://www.openML.org. To
download and prepare the Titanic dataset, open a Jupyter Notebook and run the following
commands:

import numpy as np
import pandas as pd

def get_first_cabin(row) :
try:
return row.split () [0]
except:
return np.nan

url = "https://www.openml.org/data/get_csv/16826755/phpMYEkM1"
data = pd.read_csv(url)

data = data.replace('?', np.nan)

data['cabin'] = data['cabin'].apply(get_first_cabin)
data.to_csv ('titanic.csv', index=False)

The preceding code block will download a copy of the data from http://www.openML.org
and storeitas a titanic.csv file in the same directory from where you execute the
commands.
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There is a Jupyter Notebook with instructions on how to download and
prepare the titanic dataset in the accompanying GitHub

repository: https://github.com/PacktPublishing/Python-Feature-
Engineering-Cookbook/blob/master/Chapter0l/DataPrep_Titanic.
ipynb.

Identifying numerical and categorical
variables

Numerical variables can be discrete or continuous. Discrete variables are those where the
pool of possible values is finite and are generally whole numbers, such as 1, 2, and 3.
Examples of discrete variables include the number of children, number of pets, or

the number of bank accounts. Continuous variables are those whose values may take any
number within a range. Examples of continuous variables include the price of a product,
income, house price, or interest rate. Categorical variables are values that are selected from
a group of categories, also called labels. Examples of categorical variables include gender,
which takes values of male and female, or country of birth, which takes values

of Argentina, Germany, and so on.

In this recipe, we will learn how to identify continuous, discrete, and categorical variables
by inspecting their values and the data type that they are stored and loaded with in pandas.

Getting ready

Discrete variables are usually of the int type, continuous variables are usually of the

float type, and categorical variables are usually of the object type when they're stored in
pandas. However, discrete variables can also be cast as floats, while numerical variables can
be cast as objects. Therefore, to correctly identify variable types, we need to look at the data
type and inspect their values as well. Make sure you have the correct library versions
installed and that you've downloaded a copy of the Titanic dataset, as described in the
Technical requirements section.

[11]
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How to do it...

First, let's import the necessary Python libraries:

1. Load the libraries that are required for this recipe:

import pandas as pd
import matplotlib.pyplot as plt

2. Load the Titanic dataset and inspect the variable types:

data = pd.read_csv('titanic.csv')
data.dtypes

The variable types are as follows:

pclass int64
survived int64
name object
sex object
age float64
sibsp int64
parch int64
ticket object
fare float64
cabin object
embarked object
boat object
body float64
home.dest object

dtype: object

In many datasets, integer variables are cast as f1oat. So, after inspecting
the data type of the variable, even if you get f1oat as output, go ahead

and check the unique values to make sure that those variables are discrete
and not continuous.

3. Inspect the distinct values of the sibsp discrete variable:
data['sibsp'] .unique ()

The possible values that sibsp can take can be seen in the following code:

array ([0, 1, 2, 3, 4, 5, 8], dtype=int64)

[12]
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4. Now, let's inspect the first 20 distinct values of the continuous variable fare:

data['fare'].unique () [0:20]

The following code block identifies the unique values of fare and displays the first 20:

array([211.3375, 151.55 , 26.55 , 77.9583, 0. , 51.4792,

49.5042, 227.525 , 69.3 , 78.85 , 30. , 25.925 ,

247.5208, 76.2917, 75.2417, 52.5542, 221.7792, 26. ,
91.0792, 135.6333])

Go ahead and inspect the values of the embarked and cabin variables by using the
command we used in step 3 and step 4.

The embarked variable contains strings as values, which means it's
categorical, whereas cabin contains a mix of letters and numbers, which
means it can be classified as a mixed type of variable.

How it works...

In this recipe, we identified the variable data types of a publicly available dataset by
inspecting the data type in which the variables are cast and the distinct values they take.
First, we used pandas read_csv () to load the data from a CSV file into a dataframe. Next,
we used pandas dtypes to display the data types in which the variables are cast, which can
be float for continuous variables, int for integers, and object for strings. We observed
that the continuous variable fare was cast as float, the discrete variable sibsp was cast
as int, and the categorical variable embarked was cast as an object. Finally, we
identified the distinct values of a variable with the unique () method from pandas. We
used unique () together with a range, [0:20], to output the first 20 unique values for
fare, since this variable shows a lot of distinct values.

There's more...

To understand whether a variable is continuous or discrete, we can also make a histogram:

1. Let's make a histogram for the sibsp variable by dividing the variable value
range into 20 intervals:

data['sibsp'] .hist (bins=20)

[13]
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The output of the preceding code is as follows:

BOO -
600 1
400 4
200 1
0 B == =
0 1 2 3 4 5 & 7 il

Note how the histogram of a discrete variable has a broken, discrete shape.

2. Now, let's make a histogram of the fare variable by sorting the values into 50
contiguous intervals:

data['fare'] .hist (bins=50)

The output of the preceding code is as follows:

400 1

300 1

200

100 4

The histogram of continuous variables shows values throughout the variable value range.

[14]
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See also

For more details on pandas and variable types, check out https://pandas.pydata.org/
pandas—-docs/stable/getting_started/basics.html#basics—-dtypes.

For details on other variables in the Titanic dataset, check the accompanying Jupyter
Notebook in this book's GitHub repository (https://github.com/PacktPublishing/
Python—Feature—Engineering—Cookbook)

Quantifying missing data

Missing data refers to the absence of a value for observations and is a common occurrence
in most datasets. Scikit-learn, the open source Python library for machine learning, does not
support missing values as input for machine learning models, so we need to convert these
values into numbers. To select the missing data imputation technique, it is important to
know about the amount of missing information in our variables. In this recipe, we will
learn how to identify and quantify missing data using pandas and how to make plots with
the percentages of missing data per variable.

Getting ready

In this recipe, we will use the KDD-CUP-98 dataset from the UCI Machine Learning
Repository. To download this dataset, follow the instructions in the Technical requirements
section of this chapter.

How to do it...

First, let's import the necessary Python libraries:
1. Import the required Python libraries:

import pandas as pd
import matplotlib.pyplot as plt

2. Let's load a few variables from the dataset into a pandas dataframe and inspect
the first five rows:

cols = ['AGE', 'NUMCHLD', 'INCOME', 'WEALTH1', 'MBCRAFT',
'MBGARDEN', 'MBBOOKS', 'MBCOLECT', 'MAGFAML', 'MAGFEM', 'MAGMALE']

[15]
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data = pd.read_csv('cup98LRN.txt', usecols=cols)
data.head()

After loading the dataset, this is how the output of head () looks like when we
run it from a Jupyter Notebook:

AGE NUMCHLD INCOME WEALTH1 MBCRAFT MBGARDEN MBBOOKS MBCOLECT MAGFAML MAGFEM MAGMALE

0 60.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 46.0 1.0 6.0 9.0 0.0 0.0 3.0 1.0 1.0 1.0 0.0
2 NaN NaN 3.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
3 700 NaN 1.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 78.0 1.0 3.0 2.0 1.0 0.0 9.0 0.0 4.0 1.0 0.0

3. Let's calculate the number of missing values in each variable:

data.isnull () .sum{()

The number of missing values per variable can be seen in the following output:

AGE 23665
NUMCHLD 83026
INCOME 21286
WEALTH1 44732
MBCRAFT 52854
MBGARDEN 52854
MBBOOKS 52854
MBCOLECT 52914
MAGFAML 52854
MAGFEM 52854
MAGMALE 52854

dtype: int64
4. Let's quantify the percentage of missing values in each variable:
data.isnull () .mean ()

The percentages of missing values per variable can be seen in the following
output, expressed as decimals:

AGE 0.248030
NUMCHLD 0.870184
INCOME 0.223096
WEALTH1 0.468830
MBCRAFT 0.553955
MBGARDEN 0.553955
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MBBOOKS 0
MBCOLECT 0.
MAGFAML 0
MAGFEM 0.

.553955

554584

.553955

553955

MAGMALE 0.553955

dtype: floaté64

5. Finally, let's make a bar plot with the percentage of missing values per variable:

data.isnull () .mean ()
plt.ylabel ('Percentage of missing values')
plt.xlabel ('Variables')
plt.title('Quantifying missing data')

.plot.bar (figsize=(12,6))

The bar plot that's returned by the preceding code block displays the percentage of missing
data per variable:

Percentage of missing values

0.3

06

JJIIIIllIJ

0.4

02

00

Quantifying missing data

NUMCHLD
INCOME

WEALTH1

MBCRAFT

d
Z 2 5 z = =
g 5] = i 5] =
g 2 g g = g
g = g = =
Variables

We can change the figure size using the figsize argument within pandas
plot.bar () and we can add x and y labels and a title with the

plt.xlabel (), plt.ylabel ()

,and plt.title () methods from

Matplotlib to enhance the aesthetics of the plot.
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How it works...

In this recipe, we quantified and displayed the amount and percentage of missing data of a
publicly available dataset.

To load data from the txt file into a dataframe, we used the pandas read_csv () method.
To load only certain columns from the original data, we created a list with the column
names and passed this list to the usecols argument of read_csv (). Then, we used the
head () method to display the top five rows of the dataframe, along with the variable
names and some of their values.

To identify missing observations, we used pandas isnull (). This created a boolean vector
per variable, with each vector indicating whether the value was missing (True) or not
(False) for each row of the dataset. Then, we used the pandas sum () and mean ()

methods to operate over these boolean vectors and calculate the total number or the
percentage of missing values, respectively. The sum () method sums the True values of the
boolean vectors to find the total number of missing values, whereas the mean () method
takes the average of these values and returns the percentage of missing data, expressed as
decimals.

To display the percentages of the missing values in a bar plot, we used pandas isnull ()
and mean (), followed by plot.bar (), and modified the plot by adding axis legends and a
title with the x1abel (), ylabel (), and title () Matplotlib methods.

Determining cardinality in categorical
variables

The number of unique categories in a variable is called cardinality. For example, the
cardinality of the Gender variable, which takes values of female and male, is 2, whereas
the cardinality of the Civil status variable, which takes values of married, divorced,
singled, and widowed, is 4. In this recipe, we will learn how to quantify and create plots
of the cardinality of categorical variables using pandas and Matplotlib.

Getting ready

In this recipe, we will use the KDD-CUP-98 dataset from the UCI Machine Learning
Repository. To download this dataset, follow the instructions in the Technical requirements
section of this chapter.

[18]
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How to do it...

Let's begin by importing the necessary Python libraries:
1. Import the required Python libraries:
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

2. Let's load a few categorical variables from the dataset:

cols = ['GENDER', 'RFA_2', 'MDMAUD_ A', 'RFA_2', 'DOMAIN', 'RFA_15']
data = pd.read_csv('cup98LRN.txt', usecols=cols)

3. Let's replace the empty strings with NaN values and inspect the first five rows of

the data:
data = data.replace(' ', np.nan)
data.head ()

After loading the data, this is what the output of head () looks like when we run
it from a Jupyter Notebook:

DOMAIN GENDER RFA_2 RFA_15 MDMAUD_A
0 T2 F L4E S4E X
1 $1 M L2G NaN X
2 R2 M L4E S4F X
3 R2 F L4E S4E X
4 S2 F L2F NaN X

4. Now, let's determine the number of unique categories in each variable:

data.nunique ()

The output of the preceding code shows the number of distinct categories per
variable, that is, the cardinality:

DOMAIN 16
GENDER 6
RFA_2 14
RFA_15 33
MDMAUD_A 5

dtype: int64
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The nunique () method ignores missing values by default. If we want to
consider missing values as an additional category, we should set the

dropna argument to False: data.nunique (dropna=False).

5. Now, let's print out the unique categories of the GENDER variable:
data['GENDER'] .unique ()
We can see the distinct values of GENDER in the following output:
array(['F', 'M', nan, 'Cc', 'U', 'J', 'A'], dtype=object)

pandas nunique () can be used in the entire dataframe. pandas

unique (), on the other hand, works only on a pandas Series. Thus, we
need to specify the column name that we want to return the unique values

for.

6. Let's make a plot with the cardinality of each variable:

data.nunique () .plot.bar (figsize=(12,6))
plt.ylabel ("Number of unique categories')
plt.xlabel ('Variables')
plt.title('Cardinality')

The following is the output of the preceding code block:

Cardinality

& ] ]

Mumber of unigue categories

s

| -
L]

N

DOMAIN
GENDER
RFA_2

RFA 15
MDMAUD A

Variables
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We can change the figure size with the figsize argument and also add x
and y labels and a title with p1t.xlabel (), plt.ylabel (), and
plt.title () to enhance the aesthetics of the plot.

How it works...

In this recipe, we quantified and plotted the cardinality of the categorical variables of a
publicly available dataset.

To load the categorical columns from the dataset, we captured the variable names in a list.
Next, we used pandas read_csv () toload the data from a txt file onto a dataframe and
passed the list with variable names to the usecols argument.

Many variables from the KDD-CUP-98 dataset contained empty strings which are, in
essence, missing values. Thus, we replaced the empty strings with the NumPy
representation of missing values, np . nan, by utilizing the pandas replace () method.
With the head () method, we displayed the top five rows of the dataframe.

To quantify cardinality, we used the nunique () method from pandas, which finds and
then counts the number of distinct values per variable. Next, we used the unique ()
method to output the distinct categories in the GENDER variable.

To plot the variable cardinality, we used pandas nunique (), followed by pandas
plot.bar (), to make a bar plot with the variable cardinality, and added axis labels and a
figure title by utilizing the Matplotlib x1abel (), ylabel (), and title () methods.

There's more...

The nunique () method determines the number of unique values for categorical and
numerical variables. In this recipe, we only used nunique () on categorical variables to
explore the concept of cardinality. However, we could also use nunique () to evaluate
numerical variables.

We can also evaluate the cardinality of a subset of the variables in a dataset by slicing the
dataframe:

data[['RFA_2', 'MDMAUD_A', 'RFA_2']].nunique ()

[21]
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The following is the output of the preceding code:

RFA_2 14
MDMAUD_A 5
RFA_2 14

dtype: int64

In the preceding output, we can see the number of distinct values each of these variables
can take.

Pinpointing rare categories in categorical
variables

Different labels appear in a variable with different frequencies. Some categories of a
variable appear a lot, that is, they are very common among the observations, whereas other
categories appear only in a few observations. In fact, categorical variables often contain a
few dominant labels that account for the majority of the observations and a large number of
labels that appear only seldom. Categories that appear in a tiny proportion of the
observations are rare. Typically, we consider a label to be rare when it appears in less than
5% or 1% of the population. In this recipe, we will learn how to identify infrequent labels in
a categorical variable.

Getting ready

To follow along with this recipe, download the Car Evaluation dataset from the UCI
Machine Learning Repository by following the instructions in the Technical requirements
section of this chapter.

How to do it...

Let's begin by importing the necessary libraries and getting the data ready:

1. Import the required Python libraries:

import pandas as pd
import matplotlib.pyplot as plt

[22]



Foreseeing Variable Problems When Building ML Models Chapter 1

2. Let's load the Car Evaluation dataset, add the column names, and display the
first five rows:

data = pd.read_csv('car.data', header=None)

data.columns = ['buying', 'maint', 'doors', 'persons', 'lug_boot',
'safety', 'class']
data.head()

We get the following output when the code is executed from a Jupyter Notebook:

buying maint doors persons lug_boot safety class

0 vhigh  vhigh 2 2 small low unacc
1 vhigh  vhigh 2 2 small med unacc
2 vhigh  vhigh 2 2 small high unacc
3 vhigh  vhigh 2 2 med low unacc
4 vhigh  vhigh 2 2 med med unacc

By default, pandas read_csv () uses the first row of the data as the
column names. If the column names are not part of the raw data, we need
to specifically tell pandas not to assign the column names by adding the
header = None argument.

3. Let's display the unique categories of the variable class:
data['class'].unique ()
We can see the unique values of class in the following output:
array (['unacc', 'acc', 'vgood', 'good'], dtype=object)

4. Let's calculate the number of cars per category of the class variable and then
divide them by the total number of cars in the dataset to obtain the percentage of
cars per category. Then, we'll print the result:

label_freq = data['class'].value_counts() / len(data)
print (label_freq)

[23]
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The output of the preceding code block is a pandas Series, with the percentage of
cars per category expressed as decimals:

unacc 0.700231
acc 0.222222
good 0.039931
vgood 0.037616
Name: class, dtype: float64

5. Let's make a bar plot showing the frequency of each category and highlight the
5% mark with a red line:

fig = label_freqg.sort_values (ascending=False) .plot.bar ()
fig.axhline (y=0.05, color='red')

fig.set_ylabel ('percentage of cars within each category')
fig.set_xlabel ('Variable: class')
fig.set_title('Identifying Rare Categories')

plt.show ()

The following is the output of the preceding block code:

Identifying Rare Categories

07 1

0.6 -

05 1

04 4

0.3

0.2 1

01 A

percentage of cars within each category

0 -

%)
a

g:"]d I
vgood <F

unacc

Variable: class

The good and vgood categories are present in less than 5% of cars, as indicated by the red
line in the preceding plot.
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How it works...

In this recipe, we quantified and plotted the percentage of observations per category, that
is, the category frequency in a categorical variable of a publicly available dataset.

To load the data, we used pandas read_csv () and set the header argument to None, since
the column names were not part of the raw data. Next, we added the column names
manually by passing the variable names as a list to the columns attribute of the dataframe.

To determine the frequency of each category in the class variable, we counted the number
of cars per category using pandas value_counts () and divided the result by the total cars
in the dataset, which is determined with the Python built-in 1en method. Python's 1en
method counted the number of rows in the dataframe. We captured the returned
percentage of cars per category, expressed as decimals, in the 1abel_freq variable.

To make a plot of the category frequency, we sorted the categories in 1abel_freqg from
that of most cars to that of the fewest cars using the pandas sort_values () method. Next,
we used plot.bar () to produce a bar plot. With axhline (), from Matplotlib, we added a
horizontal red line at the height of 0.05 to indicate the 5% percentage limit, under which we
considered a category as rare. We added x and y labels and a title with p1t.x1label (),
plt.ylabel(),and plt.title () from Matplotlib.

Identifying a linear relationship

Linear models assume that the independent variables, X, take a linear relationship with the
dependent variable, Y. This relationship can be dictated by the following equation:

Y ~ B0+ f1X1 + f2X2+...4+OnXn

Here, X specifies the independent variables and f are the coefficients that indicate a unit
change in Y per unit change in X. Failure to meet this assumption may result in poor model
performance.

Linear relationships can be evaluated by scatter plots and residual plots. Scatter plots
output the relationship of the independent variable X and the target Y. Residuals are the
difference between the linear estimation of Y using X and the real target:

error = target — predictions
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If the relationship is linear, the residuals should follow a normal distribution centered at
zero, while the values should vary homogeneously along the values of the independent

variable. In this recipe, we will evaluate the linear relationship using both scatter and
residual plots in a toy dataset.

How to do it...

Let's begin by importing the necessary libraries:

1. Import the required Python libraries and a linear regression class:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.linear_model import LinearRegression

To proceed with this recipe, let's create a toy dataframe with an x variable that
follows a normal distribution and shows a linear relationship with a y variable.

2. Create an x variable with 200 observations that are normally distributed:

np.random.seed(29)
x = np.random.randn (200)

Setting the seed for reproducibility using np.random. seed () will help
you get the outputs shown in this recipe.

3. Create a y variable that is linearly related to x with some added random noise:
y = x * 10 + np.random.randn (200) * 2
4. Create a dataframe with the x and y variables:

data = pd.DataFrame([x, y]).T
data.columns = ['x', 'y']

[26]
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5. Plot a scatter plot to visualize the linear relationship:
sns.lmplot (x="x", y="y", data=data, order=1)
plt.ylabel ('Target')
plt.xlabel ('Independent variable')

The preceding code results in the following output:

Target

-3 -2 -1 o 1 2
Independent variable

To evaluate the linear relationship using residual plots, we need to carry out a
few more steps.

6. Build a linear regression model between x and y:

linreg = LinearRegression ()

linreg.fit (data['x'].to_frame (), datal'y'])

Scikit-learn predictor classes do not take pandas Series as arguments.

Because data['x'] is a pandas Series, we need to convert it into a
dataframe using to_frame ().

Now, we need to calculate the residuals.

[27]
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7. Make predictions of y using the fitted linear model:
predictions = linreg.predict (datal['x'].to_frame())

8. Calculate the residuals, that is, the difference between the predictions and the
real outcome, y:

residuals = data['y'] - predictions

9. Make a scatter plot of the independent variable x and the residuals:
plt.scatter (y=residuals, x=datal['x'])
plt.ylabel ('Residuals"')

plt.xlabel ('Independent variable x')

The output of the preceding code is as follows:

.l .
. .
ol *
. .. % *e e *
21 ¥, !'“'io

Residuals
i
ty!‘
).
s.
‘l
‘ .
'.

7 1!r
™ .‘l‘
3 a®
—4 A L ] L]
. L ]
T T T T T T
-3 -2 -1 0 1 2

Independent variable x

10. Finally, let's evaluate the distribution of the residuals:

sns.distplot (residuals, bins=30)
plt.xlabel ('Residuals')
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In the following output, we can see that the residuals are normally distributed and centered
around zero:

0251

020 4

015 4

010

005 4

000 -

Residuals

Check the accompanying Jupyter Notebook for examples of scatter and

residual plots in variables from a real dataset which can be found at
https://github.com/PacktPublishing/Python-Feature-Engineering-
Cookbook/blob/master/Chapter0l/Recipe-5-Identifying-a-linear—

relationship.ipynb.

How it works...

In this recipe, we identified a linear relationship between an independent and a dependent
variable using scatter and residual plots. To proceed with this recipe, we created a toy
dataframe with an independent variable x that is normally distributed and linearly related
to a dependent variable y. Next, we created a scatter plot between x and y, built a linear
regression model between x and y, and obtained the predictions. Finally, we calculated the
residuals and plotted the residuals versus the variable and the residuals histogram.

To generate the toy dataframe, we created an independent variable x that is normally
distributed using NumPy's random. randn (), which extracts values at random from a
normal distribution. Then, we created the dependent variable y by multiplying x 10 times
and added random noise using NumPy's random. randn () . After, we captured x and y in
a pandas dataframe using the pandas DataFrame () method and transposed it using the

T method to return a 200 row x 2 column dataframe. We added the column names by
passing them in a list to the columns dataframe attribute.

[29]
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To create the scatter plot between x and y, we used the seaborn 1mplot () method, which
allows us to plot the data and fit and display a linear model on top of it. We specified the
independent variable by setting x="x", the dependent variable by setting y="y"', and the
dataset by setting data=data. We created a model of order 1 that is a linear model, by
setting the order argument to 1.

Seaborn 1mplot () allows you to fit many polynomial models. You can
indicate the order of the model by utilizing the order argument. In this
recipe, we fit a linear model, so we indicated order=1.

Next, we created a linear regression model between x and y using the

LinearRegression () class from scikit-learn. We instantiated the model into a variable
called 1inreg and then fitted the model with the fit () method with x and vy as
arguments. Because data['x'] was a pandas Series, we converted it into a dataframe with
the to_frame () method. Next, we obtained the predictions of the linear model with the
predict () method.

To make the residual plots, we calculated the residuals by subtracting the predictions from
y. We evaluated the distribution of the residuals using seaborn's distplot (). Finally, we
plotted the residuals against the values of x using Matplotlib scatter () and added the
axis labels by utilizing Matplotlib's x1abel () and ylabel () methods.

There's more...

In the GitHub repository of this book (https://github.com/PacktPublishing/Python-
Feature-Engineering-Cookbook), there are additional demonstrations that use variables
from a real dataset. In the Jupyter Notebook, you will find the example plots of variables
that follow a linear relationship with the target, variables that are not linearly related.

See also

For more details on how to modify seaborn's scatter and distplot, take a look at the
following links:

e distplot (): https://seaborn.pydata.org/generated/seaborn.distplot.html
e Implot ():https://seaborn.pydata.org/generated/seaborn.lmplot.html

For more details about the scikit-learn linear regression algorithm, visit: https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html.
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Identifying a normal distribution

Linear models assume that the independent variables are normally distributed. Failure to
meet this assumption may produce algorithms that perform poorly. We can determine
whether a variable is normally distributed with histograms and Q-Q plots. In a Q-Q plot,
the quantiles of the independent variable are plotted against the expected quantiles of the
normal distribution. If the variable is normally distributed, the dots in the Q-Q plot should
fall along a 45 degree diagonal. In this recipe, we will learn how to evaluate normal
distributions using histograms and Q-Q plots.

How to do it...

Let's begin by importing the necessary libraries:
1. Import the required Python libraries and modules:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import seaborn as sns
import scipy.stats as stats

To proceed with this recipe, let's create a toy dataframe with a single variable, x,
that follows a normal distribution.

2. Create a variable, x, with 200 observations that are normally distributed:

np.random.seed (29)
x = np.random.randn (200)

Setting the seed for reproducibility using np.random. seed () will help
you get the outputs shown in this recipe.

3. Create a dataframe with the x variable:

data = pd.DataFrame([x]).T
data.columns = ['x']
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4. Make a histogram and a density plot of the variable distribution:
sns.distplot (data['x'], bins=30)

The output of the preceding code is as follows:

05

0.4 1

0.3

0.2 1

01 A

00 T T T T T T T

We can also create a histogram using the pandas hist () method, that
is, data['x'] .hist (bins=30).

5. Create and display a Q-Q plot to assess a normal distribution:

stats.probplot (data['x'], dist="norm", plot=plt)
plt.show ()
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The output of the preceding code is as follows:

Probability Plot

Ordered Values

-2 -1 0 1 2
Theoretical quantiles

Since the variable is normally distributed, its values follow the theoretical quantiles and
thus lie along the 45-degree diagonal.

How it works...

In this recipe, we determined whether a variable is normally distributed with a histogram
and a Q-Q plot. To do so, we created a toy dataframe with a single independent variable, x,
that is normally distributed, and then created a histogram and a Q-Q plot.

For the toy dataframe, we created a normally distributed variable, %, using the NumPy
random. randn () method, which extracted 200 random values from a normal distribution.
Next, we captured x in a dataframe using the pandas DataFrame () method and
transposed it using the T method to return a 200 row x 1 column dataframe. Finally, we
added the column name as a list to the dataframe's columns attribute.
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To display the variable distribution as a histogram and density plot, we used

seaborn's distplot () method. By setting the bins argument to 30, we created 30
contiguous intervals for the histogram. To create the Q-Q plot, we used

stats.probplot () from SciPy, which generated a plot of the quantiles for our x variable
in the y-axis versus the quantiles of a theoretical normal distribution, which we indicated
by setting the dist argument to norm, in the x-axis. We used Matplotlib to display the plot
by setting the plot argument to p1t. Since x was normally distributed, its quantiles
followed the quantiles of the theoretical distribution, so that the dots of the variable values
fell along the 45-degree line.

There's more...

For examples of Q-Q plots using real data, visit the Jupyter Notebook in this book's GitHub
repository (https://github.com/PacktPublishing/Python-Feature-Engineering-
Cookbook/blob/master/Chapter0l/Recipe-6-Identifying—a-normal-distribution.

ipynb)

See also

For more details about seaborn's distplot or SciPy's Q-Q plots, take a look at the
following links:

e distplot ():https://seaborn.pydata.org/generated/seaborn.distplot.html

® stats.probplot (): https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.probplot.html

Distinguishing variable distribution

A probability distribution is a function that describes the likelihood of obtaining the
possible values of a variable. There are many well-described variable distributions, such as
the normal, binomial, or Poisson distributions. Some machine learning algorithms assume
that the independent variables are normally distributed. Other models make no
assumptions about the distribution of the variables, but a better spread of these values may
improve their performance. In this recipe, we will learn how to create plots to distinguish
the variable distributions in the entire dataset by using the Boston House Prices dataset
from scikit-learn.

[34]
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Getting ready

In this recipe, we will learn how to visualize the distributions of the variables in a dataset
using histograms. For more details about different probability distributions, visit the
fOHOVVﬁq;gaHery:https://www.itl.nist.gov/div898/handbook/eda/section3/eda366.

htm.

How to do it...

Let's begin by importing the necessary libraries:
1. Import the required Python libraries and modules:

import pandas as pd
import matplotlib.pyplot as plt

2. Load the Boston House Prices dataset from scikit-learn:

from sklearn.datasets import load_boston

boston_dataset = load_boston()

boston = pd.DataFrame (boston_dataset.data,
columns=boston_dataset.feature_names)

3. Visualize the variable distribution with histograms:

boston.hist (bins=30, figsize=(12,12), density=True)
plt.show ()
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The output of the preceding code is shown in the following screenshot:
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Most of the numerical variables in the dataset are skewed.

[36]



Foreseeing Variable Problems When Building ML Models Chapter 1

How it works...

In this recipe, we used pandas hist () to plot the distribution of all the numerical variables
in the Boston House Prices dataset from scikit-learn. To load the data, we imported the
dataset from scikit-learn datasets and then used load_boston () to load the data. Next,
we captured the data into a dataframe using pandas DataFrame (), indicating that the data
is stored in the data attribute and the variable names in the feature_names attribute.

To display the histograms of all the numerical variables, we used pandas hist (), which
callsmatplotlib.pyplot.hist () on each variable in the dataframe, resulting in one
histogram per variable. We indicated the number of intervals for the histograms using
the bins argument, adjusted the figure size with figsize, and normalized the histogram
by setting density to True. If the histogram is normalized, the sum of the area under the
curveis 1.

See also

For more details on how to modify a pandas histogram, visit https://pandas.pydata.org/

pandas—-docs/stable/reference/api/pandas.DataFrame.hist.html.

Highlighting outliers

An outlier is a data point that is significantly different from the remaining data. On
occasions, outliers are very informative; for example, when looking for credit card
transactions, an outlier may be an indication of fraud. In other cases, outliers are rare
observations that do not add any additional information. These cases may also affect the
performance of some machine learning models.

" An outlier is an observation which deviates so much from the other observations as to
arouse suspicions that it was generated by a different mechanism.” [D. Hawkins.
Identification of Outliers, Chapman and Hall, 1980.]
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Getting ready

In this recipe, we will learn how to identify outliers using boxplots and the inter-quartile
range (IQR) proximity rule. According to the IQR proximity rule, a value is an outlier if it
falls outside these boundaries:

Upper boundary = 75th quantile + (IQR * 1.5)

Lower boundary = 25th quantile - (IQR * 1.5)

Here, IQR is given by the following equation:

IQR = 75th quantile - 25th quantile

Typically, we calculate the IQR proximity rule boundaries by multiplying
the IQR by 1.5. However, it is also common practice to find extreme

values by multiplying the IQR by 3.

How to do it...

Let's begin by importing the necessary libraries and preparing the dataset:
1. Import the required Python libraries and the dataset:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.datasets import load_boston

2. Load the Boston House Prices dataset from scikit-learn and retain three of its
variables in a dataframe:
boston_dataset = load_boston()

boston = pd.DataFrame (boston_dataset.data,
columns=boston_dataset.feature_names) [['RM', 'LSTAT', 'CRIM']]

3. Make a boxplot for the RM variable:

sns.boxplot (y=boston['RM'])
plt.title('Boxplot')
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The output of the preceding code is as follows:

Boxplot
'

We can change the final size of the plot using the figure () method from
Matplotlib. We need to call this command before making the plot with
seaborn:

plt.figure(figsize=(3,6))

sns.boxplot (y=boston['RM'])

plt.title ('Boxplot')

To find the outliers in a variable, we need to find the distribution boundaries
according to the IQR proximity rule, which we discussed in the Getting ready
section of this recipe.

4. Create a function that takes a dataframe, a variable name, and the factor to use in
the IQR calculation and returns the IQR proximity rule boundaries:

def find_boundaries (df, variable, distance):

IQR = df[variable].quantile (0.75) - df[variable].quantile (0.25)

lower_boundary
upper_boundary

df [variable] .quantile (0.25) - (IQR * distance)
df [variable] .quantile (0.75) + (IQR * distance)

return upper_boundary, lower_boundary

[39]
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5. Calculate and then display the IQR proximity rule boundaries for the RM variable:

upper_boundary, lower_boundary = find_boundaries (boston, 'RM', 1.5)
upper_boundary, lower_boundary

The find_boundaries () function returns the values above and below which we
can consider a value to be an outlier, as shown here:

(7.730499999999999, 4.778500000000001)

If you want to find very extreme values, you can use 3 as the distance of
find_boundaries () instead of 1.5.

Now, we need to find the outliers in the dataframe.

6. Create a boolean vector to flag observations outside the boundaries we
determined in step 5:

outliers = np.where (boston['RM'] > upper_boundary, True,
np.where (boston['RM'] < lower_boundary, True, False))

7. Create a new dataframe with the outlier values and then display the top five
rows:

outliers_df = boston.loc[outliers, 'RM']
outliers_df.head()

We can see the top five outliers in the RM variable in the following output:

97 8.069
98 7.820
162 7.802
163 8.375
166 7.929

Name: RM, dtype: floaté64

To remove the outliers from the dataset, execute boston.loc[~outliers, 'RM'].

[40]
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How it works...

In this recipe, we identified outliers in the numerical variables of the Boston House Prices
dataset from scikit-learn using boxplots and the IQR proximity rule. To proceed with this
recipe, we loaded the dataset from scikit-learn and created a boxplot for one of its
numerical variables as an example. Next, we created a function to identify the boundaries
using the IQR proximity rule and used the function to determine the boundaries of the
numerical RM variable. Finally, we identified the values of RM that were higher or lower
than those boundaries, that is, the outliers.

To load the data, we imported the dataset from sklearn.datasets and used
load_boston (). Next, we captured the data in a dataframe using pandas DataFrame (),
indicating that the data was stored in the data attribute and that the variable names were
stored in the feature_names attribute. To retain only the RM, LSTAT, and CRIM variables,
we passed the column names in double brackets [ []] at the back of pandas DataFrame ().

To display the boxplot, we used seaborn's boxplot () method and passed the pandas
Series with the RM variable as an argument. In the boxplot displayed after step 3, the IQR is
delimited by the rectangle, and the upper and lower boundaries corresponding to either,
the 75th quantile plus 1.5 times the IQR, or the 25th quantile minus 1.5 times the IQR. This
is indicated by the whiskers. The outliers are the asterisks lying outside the whiskers.

To identify those outliers in our dataframe, in step 4, we created a function to find the
boundaries according to the IQR proximity rule. The function took the dataframe and the
variable as arguments and calculated the IQR and the boundaries using the formula
described in the Getting ready section of this recipe. With the pandas quantile ()

method, we calculated the values for the 25th (0.25) and 75th quantiles (0.75). The function
returned the upper and lower boundaries for the RM variable.

To find the outliers of RM, we used NumPy's where () method, which produced a boolean
vector with True if the value was an outlier. Briefly, where () scanned the rows of the RM
variable, and if the value was bigger than the upper boundary, it assigned True, whereas if
the value was smaller, the second where () nested inside the first one and checked whether
the value was smaller than the lower boundary, in which case it also assigned True,
otherwise False. Finally, we used the 1oc [] method from pandas to capture only those
values in the RM variable that were outliers in a new dataframe.

[41]
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Comparing feature magnitude

Many machine learning algorithms are sensitive to the scale of the features. For example,
the coefficients of linear models are directly informed by the scale of the feature. In
addition, features with bigger value ranges tend to dominate over features with smaller
ranges. Having features within a similar scale also helps algorithms converge faster, thus
improving performance and training times. In this recipe, we will explore and compare
feature magnitude by looking at statistical parameters such as the mean, median, standard
deviation, and maximum and minimum values by leveraging the power of pandas.

Getting ready

For this recipe, you need to be familiar with common statistical parameters such as mean,
quantiles, maximum and minimum values, and standard deviation. We will use the Boston
House Prices dataset included in scikit-learn to do this.

How to do it...

Let's begin by importing the necessary libraries and loading the dataset:
1. Import the required Python libraries and classes:

import pandas as pd
from sklearn.datasets import load_boston

2. Load the Boston House Prices dataset from scikit-learn into a dataframe:
boston_dataset = load_boston ()
data = pd.DataFrame (boston_dataset.data,

columns=boston_dataset.feature_names)

3. Print the main statistics for each variable in the dataset, that is, the mean, count,
standard deviation, median, quantiles, and minimum and maximum values:

data.describe ()

[42]
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The following is the output of the preceding code when we run it from a Jupyter

Notebook:

CRIM ZN INDUS CHAS NOX RM AGE Dis RAD TAX PTRATIO B
count 506.000000 S506.000000 506.000000 506.000000 S506.000000 506.000000 506.000000 S506.000000 506.000000 506.000000 S506.000000 S506.000000 !
mean 3.813524 11.363636 11.136779 0.069170 0.554695 6.284834 BB.574901 3.795043 9.549407 408.237154 18.455534 356.674032

std 8601545 23322453 6.860353 0.253994 0.115878 0.702617  28.1488861 2105710 8707259 168537116 2164946  91.2904864
min 0.006320 0.000000 0.480000 0.000000 0.385000 3.561000 2.900000 1.128800 1.000000 187.000000 12.600000 0.320000
25% 0.082045 0.000000 5.190000 0.000000 0.445000 5.885500 45.025000 2.100175 4.000000 279.000000 17.400000 375.377500
50% 0.256510 0.000000 9.690000 0.000000 0.538000 6.208500  77.500000 3.207450 5.000000 330.000000 19.050000 381.440000
75% 3677083 12500000 18.100000 0.000000 0.624000 6.623500 94.075000 5.188425 24.000000 666.000000 20.200000 396.225000
max B88,976200 100,000000 27.740000 1.000000 0.871000 8.780000 100,000000 12.126500 24000000 711.000000 22.000000 396.900000

4. Calculate the value range of each variable, that is, the difference between the
maximum and minimum value:

data.max ()

— data.min ()

The following output shows the value ranges of the different variables:

CR
ZN

M

INDUS
CHAS
NOX

RM

AGE

DI

S

RAD
TAX

PTRATIO

B
LS

TAT

dtype:

88.
100.
27.
1.
0.
5.
97.
10.
23.
524.
9.
396.
36.
float64

96988
00000
28000
00000
48600
21900
10000
99690
00000
00000
40000
58000
24000

The value ranges of the variables are quite different.
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How it works...

In this recipe, we used the describe () method from pandas to return the main statistical
parameters of a distribution, namely, the mean, standard deviation, minimum and
maximum values, 25th, 50th, and 75th quantiles, and the number of observations (count).

We can also calculate these parameters individually using the
pandas mean (), count (), min (), max (), std (), and
quantile () methods.

Finally, we calculated the value range by subtracting the minimum from the maximum
value in each variable using the pandas max () and min () methods.

[44]



Imputing Missing Data

Missing data refers to the absence of values for certain observations and is an unavoidable
problem in most data sources. Scikit-learn does not support missing values as input, so we
need to remove observations with missing data or transform them into permitted values.
The act of replacing missing data with statistical estimates of missing values is

called imputation. The goal of any imputation technique is to produce a complete

dataset that can be used to train machine learning models. There are multiple imputation
techniques we can apply to our data. The choice of imputation technique we use will
depend on whether the data is missing at random, the number of missing values, and the
machine learning model we intend to use. In this chapter, we will discuss several missing
data imputation techniques.

This chapter will cover the following recipes:

¢ Removing observations with missing data

¢ Performing mean or median imputation

¢ Implementing mode or frequent category imputation

¢ Replacing missing values with an arbitrary number

¢ Capturing missing values in a bespoke category

¢ Replacing missing values with a value at the end of the distribution
¢ Implementing random sample imputation

¢ Adding a missing value indicator variable

¢ Performing multivariate imputation by chained equations
¢ Assembling an imputation pipeline with scikit-learn

¢ Assembling an imputation pipeline with Feature-engine
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Technical requirements

In this chapter, we will use the Python libraries: pandas, NumPy and scikit-learn. I
recommend installing the free Anaconda Python distribution (https://www.anaconda.com/
distribution/), which contains all these packages.

For details on how to install the Python Anaconda distribution, visit the
Technical requirements section in Chapter 1, Foreseeing Variable Problems
When Building ML Models.

We will also use the open source Python library called Feature-engine, which I created and
can be installed using pip:

pip install feature-engine
To learn more about Feature-engine, visit the following sites:

e Home page: www.trainindata.com/feature-engine
e Docs: https://feature-engine.readthedocs.io
e GitHub: https://github.com/solegalli/feature_engine/

Check that you have installed the right versions of the numerical Python
libraries, which you can find in the requirement . txt file in the
accompanying GitHub repository: https://github.com/
PacktPublishing/Python-Feature-Engineering-Cookbook.

We will also use the Credit Approval Data Set, which is available in the UCI Machine
Learning Repository (https://archive.ics.uci.edu/ml/datasets/credit+approval).

Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [nttp://
archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of
Information and Computer Science.

To prepare the dataset, follow these steps:

1. Visit http://archive.ics.uci.edu/ml/machine-learning-databases/credit—

screening/.
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2. Click on crx.data to download the data:

& > C' @ Notsecure | archive.ics.uci.edu/ml/machine-learning-databases/credit-screening/

Index of /ml/machine-learning-databases/credit-screening

o Parent Directory,
¢ Index

o credit.lisp

o credit.names

o crx.data

e crx.names

Apache/2.4.6 (CentOS) OpenSSL/1.0.2k-fips SVN/1.7.14 Phusion_Passenger/4.0.53 mod_perl/2.0.10 Perl/v5.16.3 Server at archive.ics.uci.edu Port 80

3. Save crx.data to the folder where you will run the following commands.

After you've downloaded the dataset, open a Jupyter Notebook or a Python IDE
and run the following commands.

i~

. Import the required Python libraries:
import random
import pandas as pd
import numpy as np
5. Load the data with the following command:
data = pd.read_csv('crx.data', header=None)
6. Create a list with variable names:
varnames = ['A'+str(s) for s in range(l1,17)]
7. Add the variable names to the dataframe:
data.columns = varnames
8. Replace the question marks (?) in the dataset with NumPy NaN values:
data = data.replace('?', np.nan)
9. Recast the numerical variables as f1oat data types:

data['A2'] = data['A2'].astype('float"')
data['Al14'] = data['Al4'].astype('float"')
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10. Recode the target variable as binary:
data['Al6'] = data['Al6'].map({'+':1, '-':0})

To demonstrate the recipes in this chapter, we will introduce missing data at
random in four additional variables in this dataset.

11. Add some missing values at random positions in four variables:

random.seed (9001)

values = set ([random.randint (0, len(data)) for p in range (0, 100)17)
for var in ['A3', 'A8', 'A9', 'A10']:
data.loc[values, var] = np.nan

With random. randint (), we extracted random digits between 0 and the number
of observations in the dataset, which is given by len (data), and used these
digits as the indices of the dataframe where we introduce the NumPy NaN
values.

Setting the seed, as specified in step 11, should allow you to obtain the
results provided by the recipes in this chapter.

12. Save your prepared data:

data.to_csv ('creditApprovalUCI.csv', index=False)

Now, you are ready to carry on with the recipes in this chapter.

Removing observations with missing data

Complete Case Analysis (CCA), also called list-wise deletion of cases, consists

of discarding those observations where the values in any of the variables are missing. CCA
can be applied to categorical and numerical variables. CCA is quick and easy to implement
and has the advantage that it preserves the distribution of the variables, provided the data
is missing at random and only a small proportion of the data is missing. However, if data is
missing across many variables, CCA may lead to the removal of a big portion of the
dataset.
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How to do it...
Let's begin by loading pandas and the dataset:

1. First, we'll import the pandas library:
import pandas as pd
2. Let's load the Credit Approval Data Set:
data = pd.read_csv('creditApprovalUCI.csv')

3. Let's calculate the percentage of missing values for each variable and sort them in
ascending order:

data.isnull () .mean () .sort_values (ascending=True)

The output of the preceding code is as follows:

All 0.000000
Al2 0.000000
Al3 0.000000
Al5 0.000000
Ale 0.000000
A4 0.008696
A5 0.008696
A6 0.013043
A7 0.013043
Al 0.017391
A2 0.017391
Al4 0.018841
A3 0.133333
A8 0.133333
A9 0.133333
Al0 0.133333

dtype: floato64
4. Now, we'll remove the observations with missing data in any of the variables:
data_cca = data.dropna ()

To remove observations where data is missing in a subset of variables, we
can execute data.dropna (subset=["'A3', 'A4']).Toremove
observations if data is missing in all the variables, we can execute
data.dropna (how='all'").

[49]
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5. Let's print and compare the size of the original and complete case datasets:

print ('Number of total observations: {}'.format (len(data)))
print ('Number of observations with complete cases:
{}'.format (len(data_cca)))

Here, we removed more than 100 observations with missing data, as shown in the
following output:

Number of total observations: 690
Number of observations with complete cases: 564

We can use the code from step 3 to corroborate the absence of missing data in the complete
case dataset.

How it works...

In this recipe, we determined the percentage of missing data for each variable in the Credit
Approval Data Set and removed all observations with missing information to create a
complete case dataset.

First, we loaded the data from a CSV file into a dataframe with the pandas read_csv ()
method. Next, we used the pandas isnull () and mean () methods to determine the
percentage of missing observations for each variable. We discussed these methods in

the Quantifying missing data recipe in Chapter 1, Foreseeing Variable Problems When Building
ML Models. With pandas sort_values (), we ordered the variables from the one with the
fewest missing values to the one with the most.

To remove observations with missing values in any of the variables, we used the pandas
dropna () method, thereby obtaining a complete case dataset. Finally, we calculated the
number of observations we removed using the Python built-in method 1en, which returned
the number of rows in the original and complete case datasets. Using format, we included
the 1len output within the {} in the print statement, thereby displaying the number of
missing observations next to the text.

See also

TO]earnInoreaboutdropna(),gotohttps://pandas.pydata.org/pandas—docs/stable/

reference/api/pandas.DataFrame.dropna.html.
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Performing mean or median imputation

Mean or median imputation consists of replacing missing values with the variable mean or
median. This can only be performed in numerical variables. The mean or the median is
calculated using a train set, and these values are used to impute missing data in train and
test sets, as well as in future data we intend to score with the machine learning model.
Therefore, we need to store these mean and median values. Scikit-learn and Feature-engine
transformers learn the parameters from the train set and store these parameters for future
use. So, in this recipe, we will learn how to perform mean or median imputation using the
scikit-learn and Feature-engine libraries and pandas for comparison.

Use mean imputation if variables are normally distributed and median
imputation otherwise. Mean and median imputation may distort the
distribution of the original variables if there is a high percentage of
missing data.

How to do it...
Let's begin this recipe:

1. First, we'll import pandas and the required functions and classes from scikit-
learn and Feature-engine:
import pandas as pd
from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer
from feature_engine.missing_data_imputers import MeanMedianImputer

2. Let's load the dataset:

data = pd.read_csv('creditApprovalUCI.csv"')

3. In mean and median imputation, the mean or median values should be
calculated using the variables in the train set; therefore, let's separate the data
into train and test sets and their respective targets:

X_train, X_test, y_train, y_test = train_test_split (
data.drop('Al6', axis=1), data['Al6'], test_size=0.3,
random_state=0)
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You can check the size of the returned datasets using pandas' shape:
X_train.shape, X_test.shape.

4. Let's check the percentage of missing values in the train set:

X_train.isnull () .mean ()

The following output shows the percentage of missing values for each variable:

Al 0.008282
A2 0.022774
A3 0.140787
A4 0.008282
A5 0.008282
A6 0.008282
A7 0.008282
A8 0.140787
A9 0.140787
A10 0.140787
Al11 0.000000
Al12 0.000000
A13 0.000000
Al4 0.014493
Al15 0.000000

dtype: float64

5. Let's replace the missing values with the median in five numerical variables
using pandas:

for var in ['A2', 'A3', 'A8', 'All', 'Al5']:

value = X_train[var] .median ()
X_train[var] = X_train[var].fillna (value)
X_test[var] = X_test[var].fillna(value)

Note how we calculate the median using the train set and then use this value to
replace the missing data in the train and test sets.

To impute missing data with the mean, we use pandas' mean () :value =
X_train[var] .mean ().

If you run the code in step 4 after imputation, the percentage of missing values for
the A2, A3, A8, A11, and A15 variables should be 0.
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The pandas' £illna () returns a new dataset with imputed values by
default. We can set the inplace argument to True to replace missing data
in the original dataframe: X_train[var].fillna (inplace=True).

Now, let's impute missing values by the median using scikit-learn so that we can
store learned parameters.

6. To do this, let's separate the original dataset into train and test sets, keeping only
the numerical variables:

X_train, X_test, y_train, y_test = train_test_split (

datal['A2', 'A3', 'A8', 'Al1', 'Al15']], datal['Al6'],
test_size=0.3, random_state=0)

SimpleImputer () from scikit-learn will impute all variables in the
dataset. Therefore, if we use mean or median imputation and the dataset
contains categorical variables, we will get an error.

7. Let's create a median imputation transformer using SimpleImputer () from
scikit-learn:

imputer = SimpleImputer (strategy='median')

To perform mean imputation, we should set the st rategy to mean:
imputer = SimpleImputer (strategy = 'mean').

8. Let's fit the SimpleImputer () to the train set so that it learns the median values
of the variables:

imputer.fit (X_train)
9. Let's inspect the learned median values:
imputer.statistics_

The imputer stores median values in the statistics_ attribute, as shown in the
following output:

array([28.835, 2.75 , 1. , 0. , 6. 1)
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10. Let's replace missing values with medians:

X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

SimpleImputer () returns NumPy arrays. We can transform the array

into a dataframe using pd.DataFrame (X_train, columns = ['A2',
"A3', 'A8', 'All', 'A15']).Be mindful of the order of the
variables.

Finally, let's perform median imputation using MeanMedianImputer () from
Feature-engine. First, we need to load and divide the dataset, just like we did in
step 2 and step 3. Next, we need to create an imputation transformer.

11. Let's set up a median imputation transformer using MeanMedianImputer ()
from Feature-engine specifying the variables to impute:

median_imputer = MeanMedianImputer (imputation_method='median',
variables=['A2', 'A3', 'A8', 'Al1l', 'Al5'])

To perform mean imputation, change the imputation method, as follows:
MeanMedianImputer (imputation_method="'mean').

12. Let's fit the median imputer so that it learns the median values for each of the
specified variables:

median_imputer.fit (X_train)
13. Let's inspect the learned medians:
median_imputer.imputer_dict_

With the previous command, we can visualize the median values stored in a
dictionary in the imputer_dict_ attribute:

{'A2': 28.835, 'A3': 2.75, 'A8': 1.0, 'All': 0.0, 'Al5': 6.0}

14. Finally, let's replace the missing values with the median:

X_train = median_imputer.transform(X_train)
X_test = median_imputer.transform(X_test)
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Feature-engine's MeanMedianImputer () returns a dataframe. You can check that the
imputed variables do not contain missing values using X_train[['A2', 'A3', 'A8"',
'A11', 'A15']].isnull() .mean{().

How it works...

We replaced the missing values in the Credit Approval Data Set with the median estimates
of the variables using pandas, scikit-learn, and Feature-engine. Since the mean or median
values should be learned from the train set variables, we divided the dataset into train and
test sets. To do so, in step 3, we used scikit-learn's train_test_split () function, which
takes the dataset with predictor variables, the target, the percentage of observations to
retain in the test set, and a random_state value for reproducibility as arguments. To
obtain a dataset with predictor variables only, we used pandas drop () with the target
variable A16 as an argument. To obtain the target, we sliced the dataframe on the target
column, A16. By doing this, we obtained a train set with 70% of the original observations
and a test set with 30% of the original observations.

We calculated the percentage of missing data for each variable using pandas isnull (),
followed by pandas mean (), which we described in the Quantifying missing data recipe

in chapter 1, Foreseeing Variable Problems When Building ML Models. To impute missing data
with pandas in multiple numerical variables, in step 5 we created a for loop over the A2,
A3, A8,A11, and A15 variables. For each variable, we calculated the median with

pandas’' median () in the train set and used this value to replace the missing values with
pandas’ fillna () in the train and test sets.

To replace the missing values using scikit-learn, we divided the Credit Approval data into
train and test sets, keeping only the numerical variables. Next, we created an imputation
transformer using SimpleImputer () and set the strategy argument to median. With the
fit () method, SimpleImputer () learned the median of each variable in the train set and
stored them in its statistics_ attribute. Finally, we replaced the missing values using the
transform () method of SimpleImputer () in the train and test sets.

To replace missing values via Feature-engine, we set up MeanMedianImputer () with
imputation_method set to median and passed the names of the variables to impute in a
list to the variables argument. With the fit () method, the transformer learned and
stored the median values of the specified variables in a dictionary in its

imputer_dict_ attribute. With the transform () method, the missing values were
replaced by the median in the train and test sets.
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SimpleImputer () from scikit-learn operates on the entire dataframe and
returns NumPy arrays. In contrast, MeanMedianImputer () from Feature-
engine can take an entire dataframe as input and yet it will only impute
the specified variables, returning a pandas dataframe.

There's more...

Scikit-learn's SimpleImputer () imputes all the variables in the dataset but, with scikit-
learn's ColumnTransformer (), we can select specific variables we want to impute. For
details on how to use ColumnTransformer () with SimpleImputer (), see the
Assembling an imputation pipeline with scikit-learn recipe or check out the Jupyter Notebook
for this recipe in the accompanying GitHub repository: https://github.com/
PacktPublishing/Python-Feature-Engineering-Cookbook

See also

To learn more about scikit-learn transformers, take a look at the following websites:

e SimpleImputer (): https://scikit-learn.org/stable/modules/generated/
sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer

e ColumnTransformer (): https://scikit-learn.org/stable/modules/
generated/sklearn.compose.ColumnTransformer.html

e Stackoverflow: https://stackoverflow.com/questions/54160370/how-to-us
e-sklearn-column-transformer

To learn more about mean or median imputation with Feature-engine, go to https://

feature-engine.readthedocs.io/en/latest/imputers/MeanMedianImputer.html.

Implementing mode or frequent category
imputation

Mode imputation consists of replacing missing values with the mode. We normally use this
procedure in categorical variables, hence the frequent category imputation name. Frequent
categories are estimated using the train set and then used to impute values in train, test,
and future datasets. Thus, we need to learn and store these parameters, which we can do
using scikit-learn and Feature-engine's transformers; in the following recipe, we will learn
how to do so.
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If the percentage of missing values is high, frequent category imputation
may distort the original distribution of categories.

How to do it...

To begin, let's make a few imports and prepare the data:

1. Let's import pandas and the required functions and classes from scikit-learn and
Feature-engine:

import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer

from feature_engine.missing_data_imputers import
FrequentCategoryImputer

2. Let's load the dataset:

data = pd.read_csv('creditApprovalUCI.csv')

3. Frequent categories should be calculated using the train set variables, so let's
separate the data into train and test sets and their respective targets:

X_train, X_test, y_train, y_test = train_test_split (
data.drop('Al6', axis=1), data['Al6'], test_size=0.3,
random_state=0)

Remember that you can check the percentage of missing values in the
train set with X_train.isnull () .mean ().

4. Let's replace missing values with the frequent category, that is, the mode, in four
categorical variables:

for var in ['A4', 'A5', 'Ao6', 'AT7']:
value = X_train[var] .mode () [0]
X_train[var] = X_train[var].fillna (value)
X_test[var] = X_test[var].fillna(value)

Note how we calculate the mode in the train set and use that value to replace the
missing data in the train and test sets.
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The pandas' £illna () returns a new dataset with imputed values by
default. Instead of doing this, we can replace missing data in the original
da&ﬁnﬂnebyexecuﬁngx_train[var].fillna(inplace=TrueL

Now, let's impute missing values by the most frequent category using scikit-learn.

5. First, let's separate the original dataset into train and test sets and only retain the
categorical variables:

X_train, X_test, y_train, y_test = train_test_split(

data[['RA4', 'A5', 'A6', 'A7']], data['Al6'], test_size=0.3,
random_state=0)

6. Let's create a frequent category imputer with SimpleImputer () from scikit-
learn:

imputer = SimplelImputer (strategy='most_frequent')

SimpleImputer () from scikit-learn will learn the mode for numerical
and categorical variables alike. But in practice, mode imputation is done
for categorical variables only.

7. Let's fit the imputer to the train set so that it learns the most frequent values:
imputer.fit (X_train)

8. Let's inspect the most frequent values learned by the imputer:
imputer.statistics_

The most frequent values are stored in the statistics_ attribute of the imputer,
as follows:

array(['u', 'g', 'c', 'v'], dtype=object)
9. Let's replace missing values with frequent categories:

X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

Note that SimpleImputer () will return a NumPy array and not a pandas
dataframe.
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Finally, let's impute missing values using Feature-engine. First, we need to load
and separate the data into train and test sets, just like we did in step 2 and step 3 in
this recipe.

10. Next, let's create a frequent category imputer with
FrequentCategoryImputer () from Feature-engine, specifying the categorical
variables that should have missing data removed:

mode_imputer = FrequentCategoryImputer (variables=['A4', 'A5', 'A6',
'AT7'])

FrequentCategoryImputer () will select all categorical variables in the
train set by default; that is, unless we pass a list of variables to impute.

11. Let's fit the imputation transformer to the train set so that it learns the most
frequent categories:

mode_imputer.fit (X_train)
12. Let's inspect the learned frequent categories:
mode_imputer. imputer_dict_
We can see the dictionary with the most frequent values in the following output:

{IA4I: lul’ "A5' . lgl, "AG': lcl’ AT, lvl}

13. Finally, let's replace the missing values with frequent categories:

X_train = mode_imputer.transform(X_train)
X_test = mode_imputer.transform(X_test)

FrequentCategoryImputer () returns a pandas dataframe with the imputed
values.

Remember that you can check that the categorical variables do not contain
missing values by using X_train[['A4', 'A5', 'A6',
'A7']].isnull () .mean().
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How it works...

In this recipe, we replaced the missing values of the categorical variables in the Credit
Approval Data Set with the most frequent categories using pandas, scikit-learn, and
Feature-engine. Frequent categories should be learned from the train set, so we divided the
dataset into train and test sets using train_test_split () from scikit-learn, as described
in the Performing mean or median imputation recipe.

To impute missing data with pandas in multiple categorical variables, in step 4 we created a
for loop over the categorical variables 24 to A7, and for each variable, we calculated the
most frequent value using the pandas mode () method in the train set. Then, we used this
value to replace the missing values with pandas £illna () in the train and test sets. Pandas
fillna () returned a pandas Series without missing values, which we reassigned to the
original variable in the dataframe.

To replace missing values using scikit-learn, we divided the data into train and test sets but
only kept categorical variables. Next, we set up SimpleImputer () and

specified most_frequent as the imputation method in the st rategy. With the fit ()
method, imputer learned and stored frequent categories in its statistics_ attribute.
With the transform () method, the missing values in the train and test sets were replaced
with the learned statistics, returning NumPy arrays.

Finally, to replace the missing values via Feature-engine, we set up
FrequentCategoryImputer (), specifying the variables to impute in a list. With fit (),
the FrequentCategoryImputer () learned and stored frequent categories in a dictionary
in the imputer_dict_ attribute. With the transform () method, missing values in the
train and test sets were replaced with stored parameters, which allowed us to obtain
pandas dataframes without missing data.

Note that, unlike SimpleImputer () from scikit-learn,
FrequentCategoryImputer () will only impute categorical variables
and ignores numerical ones.

See also

To learn more about scikit-learn's SimpleImputer () go to https://scikit-learn.org/
stable/modules/generated/sklearn.impute.SimpleImputer.htmlf#sklearn.impute.

SimpleImputer.

[60]


https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer

Imputing Missing Data Chapter 2

To learn more about Feature-engine's FrequentCategoryImputer (), g0 to https://
feature-engine.readthedocs.io/en/latest/imputers/FrequentCategoryImputer.html.

Replacing missing values with an arbitrary
number

Arbitrary number imputation consists of replacing missing values with an arbitrary value.
Some commonly used values include 999, 9999, or -1 for positive distributions. This method
is suitable for numerical variables. A similar method for categorical variables will be
discussed in the Capturing missing values in a bespoke category recipe.

When replacing missing values with an arbitrary number, we need to be careful not to
select a value close to the mean or the median, or any other common value of the
distribution.

Arbitrary number imputation can be used when data is not missing at
random, when we are building non-linear models, and when the
percentage of missing data is high. This imputation technique distorts the
original variable distribution.

In this recipe, we will impute missing data by arbitrary numbers using pandas, scikit-learn,
and Feature-engine.

How to do it...
Let's begin by importing the necessary tools and loading and preparing the data:

1. Import pandas and the required functions and classes from scikit-learn and
Feature-engine:

import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer

from feature_engine.missing_data_imputers import
ArbitraryNumberImputer

2. Let's load the dataset:

data = pd.read_csv('creditApprovalUCI.csv')
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3. Let's separate the data into train and test sets:
X_train, X_test, y_train, y_test = train_test_split(
data.drop('Al6', axis=1l), data['Al6'], test_size=0.3,

random_state=0)

Normally, we select arbitrary values that are bigger than the maximum value of
the distribution.

4. Let's find the maximum value of four numerical variables:
X_train[['A2','A3', 'A8', 'Al11']].max()

The following is the output of the preceding code block:

A2 76.750
A3 26.335
A8 20.000
Al1l 67.000

dtype: float64

5. Let's replace the missing values with 99 in the numerical variables that we
specified in step 4:
for var in ['A2','A3', 'A8', 'Al1l']:
X_train([var].fillna (99, inplace=True)
X_test[var].fillna (99, inplace=True)

We chose 99 as the arbitrary value because it is bigger than the maximum
value of these variables.

We can check the percentage of missing values using X_train[['A2"', 'A3",
'A8', 'Al11']].isnull() .mean (), which should be 0 after step 5.

Now, we'll impute missing values with an arbitrary number using scikit-learn
instead.

6. First, let's separate the data into train and test sets while keeping only the
numerical variables:

X_train, X_test, y_train, y_test = train_test_split (
datal[['A2', 'A3', 'A8', 'Al1l1']], data['Al6'], test_size=0.3,
random_state=0)
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7. Let's set up SimpleImputer () so that it replaces any missing values with 99:

imputer =

SimpleImputer (strategy="'constant', fill_value=99)

If your dataset contains categorical variables, SimpleImputer () will add
99 to those variables as well if any values are missing.

8. Let's fit the imputer to the train set:

imputer.fit (X_train)

9. Let's replace the missing values with 99:

X_train =

imputer.transform(X_train)
X_test =

imputer.transform (X_test)

Note that SimpleImputer () will return a NumPy array. Be mindful of

the order of the variables if you're transforming the array back into a
dataframe.

To finish, let's impute missing values using Feature-engine. First, we need to load
the data and separate it into train and test sets, just like we did in step 2 and step 3.

10. Next, let's create an imputation transformer with Feature-engine's
ArbitraryNumberImputer () in order to replace any missing values with
99 and specify the variables from which missing data should be imputed:

imputer = ArbitraryNumberImputer (arbitrary_number=99,

variables=['A2','A3', 'A8', 'All'])
ArbitraryNumberImputer () will automatically select all numerical

variables in the train set; that is, unless we specify which variables to
impute in a list.
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11. Let's fit the arbitrary number imputer to the train set:
imputer.fit (X_train)
12. Finally, let's replace the missing values with 99:

X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

The variables specified in step 10 should now have missing data replaced with the number
99.

How it works...

In this recipe, we replaced missing values in numerical variables in the Credit Approval
Data Set with an arbitrary number, 99, using pandas, scikit-learn, and Feature-engine. We
loaded the data and divided it into train and test sets using t rain_test_split () from
scikit-learn, as described in the Performing mean or median imputation recipe.

To determine which arbitrary value to use, we inspected the maximum values of four
numerical variables using the pandas max () method. Next, we chose a value, 99, that was
bigger than the maximum values of the selected variables. In step 5, we used a for loop
over the numerical variables to replace any missing data with the pandas fillna ()
method while passing 99 as an argument and setting the inplace argument to True in
order to replace the values in the original dataframe.

To replace missing values using scikit-learn, we called SimpleImputer (), set strategy to
constant, and specified 99 as the arbitrary value in the £i11_value argument. Next, we
fitted the imputer to the train set with the fit () method and replaced missing values using
the transform () method in the train and test sets. SimpleImputer () returned a NumPy
array with the missing data replaced by 99.

Finally, we replaced missing values with ArbitraryvValueImputer () from Feature-
engine, specifying a value, 99, in the arbitrary_number argument. We also included the
variables to impute in a list to the variables argument. Next, we applied the fit ()
method. ArbitraryNumberimputer () checked that the selected variables were numerical
after applying the fit () method. With the transform () method, the missing values in
the train and test sets were replaced with 99, thus returning dataframes without missing
values in selected variables.
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There's more...

Scikit-learn released the ColumnTransformer () object, which allows us to select specific
variables so that we can apply a certain imputation method. To learn how to use
ColumnTransformer (), check out the Assembling an imputation pipeline with scikit-

learn recipe.

See also

To learn more about Feature-engine's ArbitraryValueImputer (), g0 to https://

feature-engine.readthedocs.io/en/latest/imputers/ArbitraryValueImputer.html.

Capturing missing values in a bespoke
category

Missing data in categorical variables can be treated as a different category, so it is common
to replace missing values with the Missing string. In this recipe, we will learn how to do so
using pandas, scikit-learn, and Feature-engine.

How to do it...

To proceed with the recipe, let's import the required tools and prepare the dataset:

1. Import pandas and the required functions and classes from scikit-learn and
Feature-engine:

import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer

from feature_engine.missing_data_imputers import
CategoricalVariableImputer

2. Let's load the dataset:

data = pd.read_csv('creditApprovalUCI.csv')
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3. Let's separate the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(

data.drop('Al6', axis=1l), data['Al6'], test_size=0.3,
random_state=0)

4. Let's replace missing values in four categorical variables by using
the Missing string:

for var in ['A4', 'AS5', 'A6', 'AT7']:
X_train([var].fillna('Missing',

inplace=True)
X_test[var].fillna('Missing',

inplace=True)

Alternatively, we can replace missing values with the Missing string using scikit-
learn as follows.

5. First, let's separate the data into train and test sets while keeping only categorical
variables:

X_train, X_test, y_train, y_test = train_test_split (

datal[['R4', 'A5', 'R6', 'A7']], data['Al6'], test_size=0.3,
random_state=0)

6. Let's set up SimpleImputer () so that it replaces missing data with the Missing
string and fit it to the train set:

imputer = SimpleImputer (strategy='constant',
imputer.fit (X_train)

fill value='Missing')
SimpleImputer () from scikit-learn will replace missing values
with Missing in both numerical and categorical variables. Be careful of

this behavior or you will end up accidentally casting your numerical
variables as objects.

7. Let's replace the missing values:

X_train = imputer.transform(X_train)

X_test = imputer.transform(X_test)

Remember that SimpleImputer () returns a NumPy array, which you
can transform into a dataframe using pd.DataFrame (X_train,
columns ['A4', 'AL', 'A6', 'AT']).

To finish, let's impute missing values using Feature-engine. First, we need to
separate the dataset, just like we did in step 3 of this recipe.
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8. Next, let's set up the CategoricalvariableImputer () from Feature-engine,
which replaces missing values with the Mi ssing string, specifying the
categorical variables to impute, and then fit the transformer to the train set:

imputer = CategoricalVariableImputer (variables=['A4', 'A5', 'A6',
'AT7'])
imputer.fit (X_train)

If we don't pass a list with categorical variables,
FrequentCategoryImputer () will select all categorical variables in the
train set.

9. Finally, let's replace the missing values:

X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

Remember that you can check that missing values have been replaced with
pandas' isnull (), followed by sum ().

How it works...

In this recipe, we replaced the missing values in categorical variables in the Credit
Approval Data Set by using the Missing string using pandas, scikit-learn, and Feature-
engine. First, we loaded the data and divided it into train and test sets using
train_test_split (), as described in the Performing mean or median imputation recipe. To
impute missing data with pandas, we used the fillna () method, passed the

Missing string as an argument and set inplace=True to replace the values directly in the
original dataframe.

To replace missing values using scikit-learn, we called SimpleImputer (), set strategy to
constant, and added the Missing string to the £i11_value argument. Next, we fitted the
imputer to the train set and replaced missing values using the t ransform () method in the
train and test sets, which returned NumPy arrays.

Finally, we replaced missing values with FrequentCategoryImputer () from Feature-
engine, specifying the variables to impute in a list. With the £it () method,
FrequentCategoryImputer () checked that the variables were categorical, and with
transform () missing values were replaced with the Missing string in both train and test
sets, thereby returning pandas dataframes.
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Note that, unlike SimpleImputer (), CategoricalVariableImputer ()
will not impute numerical variables.

See also

To learn more about Feature-engine's CategoricalVariableImputer (), g0 to https://
feature-engine.readthedocs.io/en/latest/imputers/CategoricalVariableImputer.

html.

Replacing missing values with a value at the
end of the distribution

Replacing missing values with a value at the end of the variable distribution is equivalent
to replacing them with an arbitrary value, but instead of identifying the arbitrary values
manually, these values are automatically selected as those at the very end of the variable
distribution. The values that are used to replace missing information are estimated using
the mean plus or minus three times the standard deviation if the variable is normally
distributed, or the inter-quartile range (IQR) proximity rule otherwise. According to the
IQR proximity rule, missing values will be replaced with the 75th quantile + (IQR * 1.5) at
the right tail or by the 25th quantile - (IQR * 1.5) at the left tail. The IQR is given by the 75th
quantile - the 25th quantile.

Some users will also identify the minimum or maximum values of the
variable and replace missing data as a factor of these values, for example,
three times the maximum value.

The value that's used to replace missing information should be learned from the train set
and stored to impute train, test, and future data. Feature-engine offers this functionality. In
this recipe, we will implement end-of-tail imputation using pandas and Feature-engine.

End-of-tail imputation may distort the distribution of the original
variables, so it may not be suitable for linear models.
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How to do it...

To complete this recipe, we need to import the necessary tools and load the data:

1. Let's import pandas, the train_test_split function from scikit-learn, and the
EndTailImputer function from Feature-engine:

import pandas as pd
from sklearn.model_selection import train_test_split
from feature_engine.missing_data_imputers import EndTailImputer

2. Let's load the dataset:

data = pd.read_csv('creditApprovalUCI.csv')

The values at the end of the distribution should be calculated from the variables
in the train set.

3. Let's separate the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(
data.drop('Al6', axis=1l), data['Al6'], test_size=0.3,
random_state=0)

Remember that you can check the percentage of missing values
using X_train.isnull () .mean().

4. Let’s loop over five numerical variables, calculate the IQR, determine the value of
the 75th quantile plus 1.5 times the IQR, and replace the missing observations in
the train and test sets with that value:

for var in ['A2', 'A3', 'A8', 'All', 'Al5']:

IQR = X_train[var].quantile(0.75) - X_train([var].quantile (0.25)
value = X_train[var].quantile(0.75) + 1.5 * IQR

X _train[var] = X_train[var].fillna (value)
X_test[var] = X_test[var].fillna(value)
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If we want to use the Gaussian approximation instead of the IQR
proximity rule, we can calculate the value to replace missing data using
value = X_train[var].mean() + 3*X_train[var].std().Some
users also calculate the value as X_train[var] .max () *3.

Note how we calculated the value to impute the missing data using the variables
in the train set and then used this to impute train and test sets.

We can also place replace missing data with values at the left tail of the
distribution using value = X_train[var].quantile(0.25) - 1.5 *
IQROr value = X_train[var].mean() - 3*X_ train([var].std().

To finish, let's impute missing values using Feature-engine. First, we need to load
and separate the data into train and test sets, just like in step 2 and step 3 of this
recipe.

5. Next, let's set up EndTailImputer () so that we can estimate a value at the right
tail using the IQR proximity rule and specify the variables we wish to impute:

imputer = EndTailImputer (distribution='skewed', tail='right',
variables=['A2', 'A3', 'A8', 'Al1l', 'Al1l5'])

To use mean and standard deviation to calculate the replacement values,
we need to set distribution="gaussian'. We canuse 'left' or
'right' in the tail argument to specify the side of the distribution
where we'll place the missing values.

6. Let's fit the EndTailImputer () to the train set so that it learns the parameters:

imputer.fit (X_train)

7. Let's inspect the learned values:
imputer.imputer_dict_
We can see a dictionary with the values in the following output:

{'A2"': 88.18,

'A3': 27.31,
'A8': 11.504999999999999,
'All1': 12.0,

'A15': 1800.0}
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8. Finally, let's replace the missing values:

X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

Remember that you can corroborate that the missing values were replaced after step 4 and
St€p8byusingx_train[ ['A2','A3', 'A8', 'All', 'A15']].isnull () .mean().

How it works...

In this recipe, we replaced the missing values in numerical variables with a value at the end
of the distribution using pandas and Feature-engine. These values were calculated using
the IQR proximity rule or the mean and standard deviation. First, we loaded the data and
divided it into train and test sets using train_test_split (), as described in the
Performing mean or median imputation recipe.

To impute missing data with pandas, we calculated the values at the end of the
distributions using the IQR proximity rule or the mean and standard deviation according to
the formulas we described in the introduction to this recipe. We determined the quantiles
using pandas quantile () and the mean and standard deviation using pandas mean () and
std (). Next, we used pandas' fillna () to replace the missing values.

We can set the inplace argument of £illna () to True to replace
missing values in the original dataframe, or leave it as False to return a
new Series with the imputed values.

Finally, we replaced missing values with EndTailImputer () from Feature-engine. We set
the distribution to 'skewed' to calculate the values with the IQR proximity rule and
the tail to 'right ' to place values at the right tail. We also specified the variables to
impute in a list to the variables argument.

If we don't specify a list of numerical variables in the argument variables,
EndTailImputer () will select all numerical variables in the train set.

With the fit () method, imputer learned and stored the values in a dictionary in the
imputer_dict_ attribute. With the transform () method, the missing values were
replaced, returning dataframes.
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See also

To learn more about Feature-engine's EndTailImputer (), g0 to https://feature-
engine.readthedocs.io/en/latest/imputers/EndTailImputer.html.

Implementing random sample imputation

Random sampling imputation consists of extracting random observations from the pool of
available values in the variable. Random sampling imputation preserves the original
distribution, which differs from the other imputation techniques we've discussed in this
chapter and is suitable for numerical and categorical variables alike. In this recipe, we will
implement random sample imputation with pandas and Feature-engine.

How to do it...

Let's begin by importing the required libraries and tools and preparing the dataset:

1. Let's import pandas, the train_test_split function from scikit-learn,
and RandomSampleImputer from Feature-engine:

import pandas as pd

from sklearn.model_selection import train_test_split
from feature_engine.missing_data_imputers import
RandomSampleImputer

2. Let's load the dataset:

data = pd.read_csv('creditApprovalUCI.csv')

3. The random values that will be used to replace missing data should be extracted
from the train set, so let's separate the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(
data.drop('Al6', axis=1l), data['Al6'], test_size=0.3,
random_state=0)

First, we will run the commands line by line to understand their output. Then, we
will execute them in a loop to impute several variables. In random sample
imputation, we extract as many random values as there is missing data in the
variable.
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4. Let's calculate the number of missing values in the A2 variable:
number_na = X_train['A2'].isnull () .sum()

5. If you print the number_na variable, you will obtain 11 as output, which is the
number of missing values in A2. Thus, let's extract 11 values at random from A2
for the imputation:

random_sample_train = X_train['A2'].dropna () .sample (number_na,
random_state=0)

6. We can only use one pandas Series to replace values in another pandas Series if
their indexes are identical, so let's re-index the extracted random values so that
they match the index of the missing values in the original dataframe:

random_sample_train.index = X_train[X_train['A2'].isnull()].index

7. Now, let's replace the missing values in the original dataset with randomly
extracted values:

X_train.loc[X_train['A2'].isnull (), 'A2'] = random_sample_train

8. Now, let's combine step 4 to step 7 in a loop to replace the missing data in the
variables in various train and test sets:

for var in ['Al', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8']:
# extract a random sample

random_sample_train = X_train[var].dropna () .sample (
X_train[var].isnull() .sum(), random_state=0)

random_sample_test = X_train[var].dropna () .sample (
X_test([var].isnull().sum(), random_state=0)

# re-index the randomly extracted sample
random_sample_train.index = X_train|

X _train[var].isnull()].index
random_sample_test.index = X_test[X_test[var].isnull()].index
# replace the NA
X_train.loc[X_train[var].isnull (), var] = random_sample_train
X_test.loc[X_test[var].isnull(), var] = random_sample_test
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Note how we always extract values from the train set, but we calculate the
number of missing values and the index using the train or test sets,
respectively.

To finish, let's impute missing values using Feature-engine. First, we need to
separate the data into train and test, just like we did in step 3 of this recipe.

9. Next, let's set up RandomSamplemputer () and fit it to the train set:

imputer = RandomSampleImputer ()
imputer.fit (X_train)

RandomSampleImputer () will replace the values in all variables in the
dataset by default.

We can specify the variables to impute by passing variable names in a list
to the imputer using imputer = RandomSamplelmputer (variables =
['A2', 'A3']).

10. Finally, let's replace the missing values:

X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

To obtain reproducibility between code runs, we can set the
random_state to a number when we initialize the
RandomSampleImputer (). It will use the random_state at each run of
the transform () method.

How it works...

In this recipe, we replaced missing values in the numerical and categorical variables of the
Credit Approval Data Set with values extracted at random from the same variables using
pandas and Feature-engine. First, we loaded the data and divided it into train and test
sets using train_test_split (), as described in the Performing mean or median
imputation recipe.
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To perform random sample imputation using pandas, we calculated the number of missing
values in the variable using pandas isnull (), followed by sum (). Next, we used pandas
dropna () to drop missing information from the original variable in the train set so that we
extracted values from observations with data using pandas sample (). We extracted as
many observations as there was missing data in the variable to impute. Next, we re-indexed
the pandas Series with the randomly extracted values so that we could assign those to the
missing observations in the original dataframe. Finally, we replaced the missing values
with values extracted at random using pandas' 1oc, which takes the location of the rows
with missing data and the name of the column to which the new values are to be assigned
as arguments.

We also carried out random sample imputation with RandomSampleImputer () from
Feature-engine. With the fit () method, the RandomSampleImputer () stores a copy of
the train set. With transform (), the imputer extracts values at random from the stored
dataset and replaces the missing information with them, thereby returning complete
pandas dataframes.

See also

To learn more about Feature-engine's RandomSampleImputer (), go to https://feature-
engine.readthedocs.io/en/latest/imputers/RandomSampleImputer.html. Pay particular
attention to the different ways in which you can set the seed to ensure reproducibility.

Adding a missing value indicator variable

A missing indicator is a binary variable that specifies whether a value was missing for an
observation (1) or not (0). It is common practice to replace missing observations by the
mean, median, or mode while flagging those missing observations with a missing
indicator, thus covering two angles: if the data was missing at random, this would be
contemplated by the mean, median, or mode imputation, and if it wasn't, this would be
captured by the missing indicator. In this recipe, we will learn how to add missing
indicators using NumPy, scikit-learn, and Feature-engine.
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Getting ready

For an example of the implementation of missing indicators, along with mean imputation,
check out the Winning the KDD Cup Orange Challenge with Ensemble Selection article, which
was the winning solution in the KDD 2009 cup: http://www.mtome.com/Publications/

CiML/CiML-v3-book.pdf.

How to do it...

Let's begin by importing the required packages and preparing the data:
1. Let's import the required libraries, functions and classes:

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split
from sklearn.impute import MissingIndicator

from feature_engine.missing_data_imputers import
AddNaNBinaryImputer

2. Let's load the dataset:

data = pd.read_csv('creditApprovalUCI.csv"')

3. Let's separate the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(
data.drop('Al6', axis=1l), data['Al6'], test_size=0.3,
random_state=0)

4. Using NumPy, we'll add a missing indicator to the numerical and categorical
variables in a loop:

for var in ['Al1', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8']:
X_train[var + '_NA'] = np.where(X_train[var].isnull(), 1, 0)
X_test[var + '"_NA'] = np.where(X_test([var].isnull(), 1, 0)

Note how we name the new missing indicators using the original variable
name, plus _NA.
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5. Let's inspect the result of the preceding code block:

X_train.head ()

We can see the newly added variables at the end of the dataframe:

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 .. A13 A14 A15 A1_NA A3_NA A4_NA A5_NA A6_NA A7_NA A8_NA

596 a 4608 3000 u g c¢ v 2375 t t o g 396.0 4159 0 0 0 0 0 0 0
303 a 1592 2875 u g gq v 008 f o g 1200 0 0 0 0 0 0 0 0
204 b 3633 2125 y p w v 0.085 t t o g 500 1187 0 0 0 0 0 0 0
3%1 b 2217 0585 'y p ff ff 0.000 f o g 100.0 0 0 0 0 0 0 0 0
118 b 5783 7040 u g m v 14000 t to g 360.0 1332 0 0 0 0 0 0 0

The mean of the new variables and the percentage of missing values in the
original variables should be the same, which you can corroborate by
executing X_train['A3'].isnull () .mean (),
X_train['A3_NA'].mean ().

Now, let's add missing indicators using Feature-engine instead. First, we need to
load and divide the data, just like we did in step 2 and step 3 of this recipe.

6. Next, let's set up a transformer that will add binary indicators to all the variables
in the dataset using AddNaNBinaryImputer () from Feature-engine:

imputer = AddNaNBinaryImputer ()

We can specify the variables which should have missing indicators by
passing the variable names in a list: imputer =

AddNaNBinaryImputer (variables = ['A2', 'A3']). Alternatively,
the imputer will add indicators to all the variables.

7. Let's fit AddNaNBinaryImputer () to the train set:
imputer.fit (X_train)

8. Finally, let's add the missing indicators:
X_train = imputer.transform(X_train)

X_test = imputer.transform(X_test)

We can inspect the result using X_train.head (); it should be similar to
the output of step 5 in this recipe.

[77 ]



Imputing Missing Data

Chapter 2

We can also add missing indicators using scikit-learn's MissingIndicator ()

class. To do this, we need to load and divide the dataset, just like we did in step 2
and step 3.

9. Next, we'll set up a MissingIndicator (). Here, we will add indicators only to
variables with missing data:

indicator = MissingIndicator (features='missing-only")

10. Let's fit the transformer so that it finds the variables with missing data in the
train set:

indicator.fit (X_train)

Now, we can concatenate the missing indicators that were created by
MissingIndicator () to the train set.

11. First, let's create a column name for each of the new missing indicators with a list
comprehension:

indicator_cols = [c+'_NA' for c in

X_train.columns[indicator.features_]]

The features_ attribute contains the indices of the features for which

missing indicators will be added. If we pass these indices to the train set
column array, we can get the variable names.

12. Next, let's concatenate the original train set with the missing indicators, which
we obtain using the t rans form method:

X_train =

pd.concat ([

X_train.reset_index (),

pd.DataFrame (indicator.transform(X_train),
columns =

indicator_cols) ], axis=1)

Scikit-learn transformers return NumPy arrays, so to concatenate them

into a dataframe, we must cast it as a dataframe using pandas
DataFrame ().

The result of the preceding code block should contain the original variables, plus the
indicators.
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How it works...

In this recipe, we added missing value indicators to categorical and numerical variables in
the Credit Approval Data Set using NumPy, scikit-learn, and Feature-engine. To add
missing indicators using NumPy, we used the where () method, which created a new
vector after scanning all the observations in a variable, assigning the value of 1 if there was
a missing observation or 0 otherwise. We captured the indicators in columns with the name
of the original variable, plus _NA.

To add a missing indicator with Feature-engine, we created an instance of
AddNaNBinaryImputer () and fitted it to the train set. Then, we used the t ransform ()
method to add missing indicators to the train and test sets. Finally, to add missing
indicators with scikit-learn, we created an instance of MissingIndicator () so that we
only added indicators to variables with missing data. With the £it () method, the
transformer identified variables with missing values. With transform (), it returned a
NumPy array with binary indicators, which we captured in a dataframe and then
concatenated to the original dataframe.

There's more...

We can add missing indicators using scikit-learn's SimpleImputer () by setting the
add_indicator argument to True. For example, imputer =

SimpleImputer (strategy=mean’, add_indicator=True) will return a NumPy array
with missing indicators, plus the missing values in the original variables were replaced by
the mean after using the fit () and transform() methods.

See also

To learn more about the transformers that were discussed in this recipe, take a look at the
following links:

e Scikit-learn's MissingIndicator (): https://scikit-learn.org/stable/
modules/generated/sklearn.impute.MissingIndicator.html

e Scikit-learn's SimpleImputer ():https://scikit-learn.org/stable/modules/
generated/sklearn.impute.SimpleImputer.html

¢ Feature-engine's AddNaNBinaryImputer (): https://feature-engine.
readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html

[79]


https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html
https://feature-engine.readthedocs.io/en/latest/imputers/AddNaNBinaryImputer.html

Imputing Missing Data Chapter 2

Performing multivariate imputation by
chained equations

Multivariate imputation methods, as opposed to univariate imputation, use the entire set of
variables to estimate the missing values. In other words, the missing values of a variable are
modeled based on the other variables in the dataset. Multivariate imputation by chained
equations (MICE) is a multiple imputation technique that models each variable with
missing values as a function of the remaining variables and uses that estimate for
imputation. MICE has the following basic steps:

1. A simple univariate imputation is performed for every variable with missing
data, for example, median imputation.

2. One specific variable is selected, say, var_1, and the missing values are set back
to missing.

3. A model that's used to predict var_1 is built based on the remaining variables in
the dataset.

4. The missing values of var_1 are replaced with the new estimates.

5. Repeat step 2 to step 4 for each of the remaining variables.

Once all the variables have been modeled based on the rest, a cycle of imputation is
concluded. Step 2 to step 4 are performed multiple times, typically 10 times, and the
imputation values after each round are retained. The idea is that, by the end of the cycles,
the distribution of the imputation parameters should have converged.

Each variable with missing data can be modeled based on the remaining
variable by using multiple approaches, for example, linear regression,
Bayes, decision trees, k-nearest neighbors, and random forests.

In this recipe, we will implement MICE using scikit-learn.

Getting ready
To learn more about MICE, take a look at the following links:
o A multivariate technique for multiplying imputing missing values using a sequence of

regression models: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.405.4540rep=repltype=pdf
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o Multiple Imputation by Chained Equations: What is it and how does it work?: https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/

o Scikit-learn: https://scikit-learn.org/stable/modules/impute.html

In this recipe, we will perform MICE imputation using IterativeImputer () from scikit-
learn: https://scikit-learn.org/stable/modules/generated/sklearn.impute.
IterativeImputer.html#sklearn.impute.IterativeImputer.

To follow along with this recipe, prepare the Credit Approval Data Set, as specified in the
Technical requirements section of this chapter.

For this recipe, make sure you are using scikit-learn version 0.21.2 or
above.

How to do it...

To complete this recipe, let's import the required libraries and load the data:

1. Let's import the required Python libraries and classes:

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.linear_model import BayesianRidge

from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer

2. Let's load the dataset with some numerical variables:

variables = ['A2','A3','A8', 'Al11l', 'A14', 'A1l5', 'Ale']
data = pd.read_csv('creditApprovalUCI.csv', usecols=variables)

The models that will be used to estimate missing values should be built on the
train data and used to impute values in the train, test, and future data:

3. Let's divide the data into train and test sets:
X_train, X_test, y_train, y_test = train_test_split (

data.drop('Al6', axis=1l),data['Al6' ], test_size=0.3,
random_state=0)
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4. Let's create a MICE imputer using Bayes regression as an estimator,
specifying the number of iteration cycles and setting random_state for
reproducibility:

imputer = IterativeImputer (estimator = BayesianRidge(),
max_iter=10, random_state=0)

IterativeImputer () contains other useful arguments. For example, we
can specify the first imputation strategy using the initial_strategy
parameter and specify how we want to cycle over the variables either
randomly, or from the one with the fewest missing values to the one with
the most.

5. Let's fit IterativeImputer () to the train set so that it trains the estimators to
predict the missing values in each variable:

imputer.fit (X_train)
6. Finally, let's fill in missing values in both train and test set:

X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

Remember that scikit-learn returns NumPy arrays and not dataframes.

How it works...

In this recipe, we performed MICE using IterativeImputer () from scikit-learn. First, we
loaded data using pandas read_csv () and separated it into train and test sets using scikit-
learn's train_test_split (). Next, we created a multivariate imputation object using the
IterativeImputer () from scikit-learn. We specified that we wanted to estimate missing
values using Bayes regression and that we wanted to carry out 10 rounds of imputation
over the entire dataset. We fitted IterativeImputer () to the train set so that each
variable was modeled based on the remaining variables in the dataset. Next, we
transformed the train and test sets with the t ransform () method in order to replace
missing data with their estimates.
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There's more...

Using IterativeImputer () from scikit-learn, we can model variables using multiple
algorithms, such as Bayes, k-nearest neighbors, decision trees, and random forests. Perform
the following steps to do so:

1. Import the required Python libraries and classes:

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.linear_model import BayesianRidge

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import ExtraTreesRegressor
from sklearn.neighbors import KNeighborsRegressor

2. Load the data and separate it into train and test sets:

variables = ['A2','A3','A8', 'Al1', 'Al4', 'A15', 'Al6']
data = pd.read_csv('creditApprovalUCI.csv', usecols=variables)

X_train, X_test, y_train, y_test = train_test_split(
data.drop('Al6', axis=1l), data['Al6'], test_size=0.3,
random_state=0)

3. Build MICE imputers using different modeling strategies:

imputer_bayes = IterativeImputer (
estimator=BayesianRidge (),
max_iter=10,
random_state=0)

imputer_knn = IterativeImputer (
estimator=KNeighborsRegressor (n_neighbors=5),
max_iter=10,
random_state=0)

imputer_nonLin = IterativeImputer (
estimator=DecisionTreeRegressor (
max_features='sqrt', random_state=0),
max_iter=10,
random_state=0)

imputer_missForest = IterativelImputer (
estimator=ExtraTreesRegressor (
n_estimators=10, random_state=0),
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max_iter=10,
random_state=0)

Note how, in the preceding code block, we create four different MICE imputers,
each with a different machine learning algorithm which will be used to model
every variable based on the remaining variables in the dataset.

4. Fit the MICE imputers to the train set:

imputer_bayes.fit (X_train)
imputer_knn.fit (X_train)
imputer_nonLin.fit (X_train)
imputer_missForest.fit (X_train)

5. Impute missing values in the train set:
X_train_bayes = imputer_bayes.transform(X_train)
X_train_knn = imputer_knn.transform(X_train)
X_train_nonLin = imputer_nonLin.transform(X_train)

X_train_missForest = imputer_missForest.transform(X_train)

Remember that scikit-learn transformers return NumPy arrays.

6. Convert the NumPy arrays into dataframes:

predictors = [var for var in variables if var !='Al6']
X_train_bayes = pd.DataFrame (X_train_bayes, columns = predictors)
X_train_knn = pd.DataFrame (X_train_knn, columns = predictors)
X_train_nonlin = pd.DataFrame (X_train_nonLin, columns = predictors)
X_train_missForest = pd.DataFrame (X_train_missForest, columns =
predictors)

7. Plot and compare the results:

fig = plt.figure ()
ax = fig.add_subplot (111)

X_train['A3'].plot (kind='kde', ax=ax, color='blue')

X_train_bayes['A3'].plot (kind='kde', ax=ax, color='green')
X_train_knn['A3'].plot (kind='kde', ax=ax, color='red')
X_train_nonLin['A3'].plot (kind='kde', ax=ax, color='black'")
X_train_missForest['A3'].plot (kind='kde', ax=ax, color='orange')

# add legends
lines, labels = ax.get_legend_handles_labels ()
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labels = ['A3 original', 'A3 bayes', 'A3 knn', 'A3 Trees', 'A3
missForest']
ax.legend(lines, labels, loc='best')

plt.show ()

The output of the preceding code is as follows:

0,00 +

A3 original
A3 bayes

A3 knn

A3 Trees

A3 missForest

—10

In the preceding plot, we can see that the different algorithms return slightly different
distributions of the original variable.

Assembling an imputation pipeline with

scikit-learn

Datasets often contain a mix of numerical and categorical variables. In addition, some
variables may contain a few missing data points, while others will contain quite a big
proportion. The mechanisms by which data is missing may also vary among variables.
Thus, we may wish to perform different imputation procedures for different variables. In
this recipe, we will learn how to perform different imputation procedures for different

feature subsets using scikit-learn.
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How to do it...

To proceed with the recipe, let's import the required libraries and classes and prepare the
dataset:
1. Let's import pandas and the required classes from scikit-learn:
import pandas as pd
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline

from sklearn.impute import SimpleImputer
from sklearn.model_selection import train_test_split

2. Let's load the dataset:
data = pd.read_csv('creditApprovalUCI.csv"')
3. Let's divide the data into train and test sets:
X_train, X_test, y_train, y_test = train_test_split (
data.drop('Al6', axis=1), data['Al6'], test_size=0.3,

random_state=0)

4. Let's group a subset of columns to which we want to apply different imputation
techniques in lists:

features_num_arbitrary = ['A3', 'A8']
features_num_median = ['A2', 'Al4']
features_cat_frequent = ['A4', 'A5', 'A6', 'AT7']
features_cat_missing = ['Al', 'A9', 'Al10']

5. Let's create different imputation transformers using SimpleImputer () within
the scikit-learn pipeline:

imputer_num_arbitrary = Pipeline (steps=][
("imputer', SimplelImputer (strategy='constant', fill_value=99)),

1)

imputer_num_median = Pipeline (steps=][
("imputer', SimplelImputer (strategy='median')),
1)
imputer_cat_frequent = Pipeline (steps=][
("imputer', SimplelImputer (strategy='most_frequent')),

1)
imputer_cat_missing = Pipeline (steps=]|

("imputer', SimplelImputer (strategy='constant',
fill_value='Missing')),

1)
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We have covered all these imputation strategies in dedicated recipes
throughout this chapter.

6. Now, let's assemble the pipelines with the imputers within
ColumnTransformer () and assign them to the different feature subsets we
created in step 4:

preprocessor = ColumnTransformer (transformers=|[
("imp_num_arbitrary', imputer_num_arbitrary,
features_num_arbitrary),
("imp_num_median', imputer_num_median, features_num_median),
("imp_cat_frequent', imputer_cat_frequent,
features_cat_frequent),
("imp_cat_missing', imputer_cat_missing, features_cat_missing),
], remainder='passthrough')

7. Next, we need to fit the preprocessor to the train set so that the imputation
parameters are learned:

preprocessor.fit (X_train)

8. Finally, let's replace the missing values in the train and test sets:

X_train = preprocessor.transform(X_train)
X_test = preprocessor.transform(X_test)

Remember that scikit-learn transformers return NumPy arrays. The beauty of this
procedure is that we can save the preprocessor in one object to perpetuate all the
parameters that are learned by the different transformers.

How it works...

In this recipe, we carried out different imputation techniques over different variable groups
using scikit-learn's SimpleImputer () and ColumnTransformer ().

After loading and dividing the dataset, we created four lists of features. The first list
contained numerical variables to impute with an arbitrary value. The second list contained
numerical variables to impute by the median. The third list contained categorical variables
to impute by a frequent category. Finally, the fourth list contained categorical variables to
impute with the Missing string.
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Next, we created multiple imputation objects using SimpleImputer () in a scikit-learn
pipeline. To assemble each Pipeline (), we gave each step a name with a string. In our
example, we used imputer. Next to this, we created the imputation object with
SimpleImputer (), varying the strategy for the different imputation techniques.

Next, we arranged pipelines with different imputation strategies within
ColumnTransformer (). To set up ColumnTransformer (), we gave each step a name
with a string. Then, we added one of the created pipelines and the list with the features
which should be imputed with said pipeline.

Next, we fitted ColumnTransformer () to the train set, where the imputers learned the
values to be used to replace missing data from the train set. Finally, we imputed the
missing values in the train and test sets, using the transform () method of
ColumnTransformer () to obtain complete NumPy arrays.

See also

To learn more about scikit-learn transformers and how to use them, take a look at the
following links:

e SimpleImputer ():https://scikit-learn.org/stable/modules/generated/
sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer

® ColumnTransformer (): https://scikit-learn.org/stable/modules/
generated/sklearn.compose.ColumnTransformer.html

e Stack

Overflow: https://stackoverflow.com/questions/54160370/how-to-use-skle
arn-column-transformer

Assembling an imputation pipeline with
Feature-engine

Feature-engine is an open source Python library that allows us to easily implement
different imputation techniques for different feature subsets. Often, our datasets contain a
mix of numerical and categorical variables, with few or many missing values. Therefore, we
normally perform different imputation techniques on different variables, depending on the
nature of the variable and the machine learning algorithm we want to build. With Feature-
engine, we can assemble multiple imputation techniques in a single step, and in this recipe,
we will learn how to do this.
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How to do it...
Let's begin by importing the necessary Python libraries and preparing the data:

1. Let's import pandas and the required function and class from scikit-learn, and
the missing data imputation module from Feature-engine:
import pandas as pd
from sklearn.model_selection import train_test_split

from sklearn.pipeline import Pipeline
import feature_engine.missing_data_imputers as mdi

2. Let's load the dataset:
data = pd.read_csv('creditApprovalUCI.csv"')
3. Let's divide the data into train and test sets:
X_train, X_test, y_train, y_test = train_test_split (

data.drop('Al6', axis=1), data['Al6'], test_size=0.3,
random_state=0)

4. Let's create lists with the names of the variables that we want to apply specific
imputation techniques to:

features_num_arbitrary = ['A3', 'A8']
features_num_median = ['A2', 'Al4']
features_cat_frequent = ['A4', 'A5', 'A6', 'AT7']
features_cat_missing = ['Al', 'A9', 'Al10']

5. Let's assemble an arbitrary value imputer, a median imputer, a frequent category
imputer, and an imputer to replace any missing values with the Missing string
within a scikit-learn pipeline:

pipe = Pipeline (steps=][
('"imp_num_arbitrary', mdi.ArbitraryNumberImputer (
variables = features_num_arbitrary)),
("imp_num_median', mdi.MeanMedianImputer (
imputation_method = 'median',
variables=features_num_median)),
("imp_cat_frequent', mdi.FrequentCategoryImputer (
variables = features_cat_frequent)),
("imp_cat_missing', mdi.CategoricalVariableImputer (
variables=features_cat_missing))

1)
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Note how we pass the feature lists we created in step 4 to the imputers.

6. Let's fit the pipeline to the train set so that each imputer learns and stores the
imputation parameters:

pipe.fit (X_train)
7. Finally, let's replace missing values in the train and test sets:

X_train = pipe.transform(X_train)
X_test = pipe.transform(X_test)

We can store the pipeline after fitting it as an object to perpetuate the use of the learned
parameters.

How it works...

In this recipe, we performed different imputation techniques on different variable groups
from the Credit Approval Data Set by utilizing Feature-engine within a single scikit-learn
pipeline.

After loading and dividing the dataset, we created four lists of features. The first list
contained numerical variables to impute with an arbitrary value. The second list contained
numerical variables to impute by the median. The third list contained categorical variables
to impute with a frequent category. Finally, the fourth list contained categorical variables to
impute with the Missing string.

Next, we assembled the different Feature-engine imputers within a single scikit-learn
pipeline. With ArbitraryNumberImputer (), we imputed missing values with the number
999; with MeanMedianImputer (), we performed median imputation; with
FrequentCategoryImputer (), we replaced the missing values with the mode; and with
CategoricalVariableImputer (), we replaced the missing values with the

Missing string. We specified a list of features to impute within each imputer.
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When assembling a scikit-learn pipeline, we gave each step a name using
a string, and next to it we set up each of the Feature-engine imputers,
specifying the feature subset within each imputer.

With the £it () method, the imputers learned and stored parameters and with
transform() the missing values were replaced, returning complete pandas dataframes.

We can store the scikit-learn pipeline with Feature-engine's transformers
as one object in order to perpetuate the learned parameters.

See also
To learn more about Feature-engine, take a look at the following links:
o Feature—engine: www.trainindata.com/feature-engine

e Docs: https://feature-engine.readthedocs.io/en/latest/
e GitHub I‘epOSitOI'y: https://github.com/solegalli/feature_engine/
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