Python

for Finance
Cookbook

- v
' ' ;.\"'-‘ By,

\
. &
4 T

Python for Finance Cookbook

Over 50 recipes for applying modern Python libraries to
financial data analysis

Eryk Lewinson

BIRMINGHAM - MUMBAI

Python for Finance Cookbook

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Joshua Nadar

Content Development Editor: Nathanya Dias
Senior Editor: Ayaan Hoda

Technical Editor: Utkarsha S. Kadam

Copy Editor: Safis Editing

Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Production Designer: Shraddha Falebhai

First published: January 2020
Production reference: 1300120
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78961-851-8

www.packt.com

http://www.packt.com

To my father. Your love for books was truly inspiring. You will always remain in our
hearts

Packh

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author

Eryk Lewinson received his master's degree in quantitative finance from Erasmus
University Rotterdam (EUR). In his professional career, he gained experience in the
practical application of data science methods while working for two "Big 4" companies and
a Dutch FinTech scale-up. In his work, he focuses on using machine learning to provide
business value to his company. In his spare time, he enjoys writing about topics related to
data science, playing video games, and traveling with his girlfriend.

Writing this book was quite a journey for me and I learned a lot during it, both in terms of
knowledge and about myself. However, it was not easy, as life showed a considerable
number of obstacles. Thankfully, with the help of the people closest to me, I managed to
overcome them. I would like to thank my family for always being there for me, my brother
for his patience and constructive feedback at random times of the day and night, my
girlfriend for her undeterred support and making me believe in myself. I also greatly
appreciate all the kind words of encouragement from my friends and colleagues. Without
all of you, completing this book would not have been possible. Thank you.

About the reviewers

Ratanlal Mahanta is currently working as a Managing Partner at bittQsrv, a global
quantitative research company offering quant models for its investors. He has several years'
experience in the modeling and simulation of quantitative trading. Ratanlal holds a
master's degree in science in computational finance, and his research areas include quant
trading, optimal execution, and high-frequency trading. He has over 9 years' work
experience in the finance industry, and is gifted at solving difficult problems that lie at the
intersection of the market, technology, research, and design.

Jiri Pik is an artificial intelligence architect and strategist who works with major investment
banks, hedge funds, and other players. He has architected and delivered breakthrough
trading, portfolio, and risk management systems, as well as decision support systems,
across numerous industries.

Jiri's consulting firm, Jiri Pik — RocketEdge, provides its clients with certified expertise,
judgment, and execution at the drop of a hat.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface 1
Chapter 1: Financial Data and Preprocessing 8
Getting data from Yahoo Finance 9
How to do it... 10
How it works... 10
There's more... 11
Getting data from Quandi 11
Getting ready 11
How to do it... 12
How it works... 12
There's more... 13
See also 13
Getting data from Intrinio 13
Getting ready 14
How to do it... 14
How it works... 15
There's more... 16
Converting prices to returns 16
How to do it... 17
How it works... 18
There's more... 18
Changing frequency 20
Getting ready 21
How to do it... 21
How it works... 23
Visualizing time series data 23
Getting ready 24
How to do it... 24
The plot method of pandas 24

plotly and cufflinks 26

How it works... 27
The plot method of pandas 27

plotly and cufflinks 27
There's more... 28
See also 28
Identifying outliers 29
Getting ready 29
How to do it... 29

How it works... 31

Table of Contents

There's more... 31
Investigating stylized facts of asset returns 32
Getting ready 32
How to do it... 32
Non-Gaussian distribution of returns 33
Volatility clustering 35
Absence of autocorrelation in returns 35
Small and decreasing autocorrelation in squared/absolute returns 36
Leverage effect 38
How it works... 39
Fact 1 40
Fact 2 41
Fact 3 41
Fact 4 42
Fact 5 42
There's more... 42
See also 44
Chapter 2: Technical Analysis in Python 45
Creating a candlestick chart 46
Getting ready 47
How to do it... 47
How it works... 48
See also 49
Backtesting a strategy based on simple moving average 49
How to do it... 50
Signal 50
Strategy 52
How it works... 56
Common elements 56
Signal 57
Strategy 58
There's more... 59
See also 60
Calculating Bollinger Bands and testing a buy/sell strategy 61
How to do it... 61
How it works... 67
Calculating the relative strength index and testing a long/short
strategy 68
How to do it... 68
How it works... 71
Building an interactive dashboard for TA 71
Getting ready 72
How to do it... 72
How it works... 77
There's more... 78

[ii]

Table of Contents

Chapter 3: Time Series Modeling
Decomposing time series
How to do it...
How it works...
See also
Decomposing time series using Facebook's Prophet
How to do it...
How it works...
There's more...
Testing for stationarity in time series
Getting ready
How to do it...
How it works...
Correcting for stationarity in time series
How to do it...
How it works...
There's more...
Modeling time series with exponential smoothing methods
Getting ready
How to do it...
How it works...
There's more...
Modeling time series with ARIMA class models
How to do it...
How it works...
There's more...
See also
Forecasting using ARIMA class models
Getting ready
How to do it...
How it works...
There's more...

Chapter 4: Multi-Factor Models

Implementing the CAPM in Python
How to do it...
How it works...
There's more...
See also

Implementing the Fama-French three-factor model in Python
How to do it...
How it works...
There's more...
See also

Implementing the rolling three-factor model on a portfolio of assets

79
79
81
83
84
84
85
88
89
90
91
91
94
94
94
100
100
102
103
103
108
109
111
113
118
119
122
123
123
123
125
126

127
127
129
130
131
134
135
136
139
139
141
141

[iii]

Table of Contents

How to do it... 142
How it works... 144
Implementing the four- and five-factor models in Python 145
How to do it... 146
How it works... 151
See also 152
Chapter 5: Modeling Volatility with GARCH Class Models 153
Explaining stock returns’ volatility with ARCH models 154
How to do it... 156
How it works... 159
There's more... 159
See also 160
Explaining stock returns’ volatility with GARCH models 160
How to do it... 161
How it works... 162
There's more... 163
Conditional mean model 163
Conditional volatility model 163
Distribution of errors 164
See also 164
Implementing a CCC-GARCH model for multivariate volatility
forecasting 165
How to do it... 166
How it works... 169
See also 170
Forecasting the conditional covariance matrix using DCC-GARCH 170
Getting ready 171
How to do it... 171
How it works... 175
There's more... 176
See also 178
Chapter 6: Monte Carlo Simulations in Finance 179
Simulating stock price dynamics using Geometric Brownian Motion 180
How to do it... 181
How it works... 184
There's more... 186
See also 187
Pricing European options using simulations 188
How to do it... 188
How it works... 190
There's more... 191
Pricing American options with Least Squares Monte Carlo 192
How to do it... 193
How it works... 195

[iv]

Table of Contents

See also

Pricing American options using Quantlib

How to do it...
How it works...
There's more...

Estimating value-at-risk using Monte Carlo

How to do it...
How it works...
There's more...

Chapter 7: Asset Allocation in Python

Evaluating the performance of a basic 1/n portfolio

How to do it...
How it works...
There's more...
See also

Finding the Efficient Frontier using Monte Carlo simulations

How to do it...
How it works...
There's more...

Finding the Efficient Frontier using optimization with scipy

Getting ready
How to do it...
How it works...
There's more...

Finding the Efficient Frontier using convex optimization with cvxpy

Getting ready
How to do it...
How it works...
There's more...

Chapter 8: Identifying Credit Default with Machine Learning
Loading data and managing data types

How to do it...

How it works...

There's more...

See also

Exploratory data analysis

How to do it...

How it works...

There's more...

Splitting data into training and test sets

How to do it...
How it works...
There's more...
Dealing with missing values

[v]

196
196
197
198
200
201
202
205
206

208
209
210
211
215
217
217
217
220
222
224
225
225
228
231
232
233
233
236
237

242
243
243
244
245
249
250
251
257
259
260
260
261
262
263

Table of Contents

How to do it... 264
How it works... 266
There's more... 268
See also 268
Encoding categorical variables 268
How to do it... 270
How it works... 271
There's more... 272
Using pandas.get_dummies for one-hot encoding 272
Specifying possible categories for OneHotEncoder 272
Category Encoders library 273

See also 275
Fitting a decision tree classifier 275
How to do it... 277
How it works... 279
There's more... 281
See also 282
Implementing scikit-learn's pipelines 283
How to do it... 284
How it works... 286
There's more... 287
Tuning hyperparameters using grid searches and cross-validation 291
Getting ready 292
How to do it... 293
How it works... 296
There's more... 298
See also 299
Chapter 9: Advanced Machine Learning Models in Finance 300
Investigating advanced classifiers 301
Getting ready 302
How to do it... 302
How it works... 306
There's more... 307
See also 311
Using stacking for improved performance 311
How to do it... 312
How it works... 314
There's more... 315
See also 315
Investigating the feature importance 316
Getting ready 318
How to do it... 318
How it works... 324
There's more... 326
See also 327

[vil

Table of Contents

Investigating different approaches to handling imbalanced data 327
How to do it... 328
How it works... 330
There's more... 332
See also 335

Bayesian hyperparameter optimization 336
How to do it... 338
How it works... 341
There's more... 342
See also 346

Chapter 10: Deep Learning in Finance 347

Deep learning for tabular data 349
How to do it... 350
How it works... 355
There's more... 359
See also 360

Multilayer perceptrons for time series forecasting 361
How to do it... 362
How it works... 368
There's more... 373
See also 376

Convolutional neural networks for time series forecasting 377
How to do it... 379
How it works... 385
There's more... 388
See also 390

Recurrent neural networks for time series forecasting 391
How to do it... 392
How it works... 398
There's more... 400
See also 401

Other Books You May Enjoy 403
Index 406

[vii]

Preface

This book begins by exploring various ways of downloading financial data and preparing it
for modeling. We check the basic statistical properties of asset prices and returns, and
investigate the existence of so-called stylized facts. We then calculate popular indicators
used in technical analysis (such as Bollinger Bands, Moving Average Convergence
Divergence (MACD), and Relative Strength Index (RSI)) and backtest automatic trading
strategies built on their basis.

The next section introduces time series analysis and explores popular models such as
exponential smoothing, AutoRegressive Integrated Moving Average (ARIMA),

and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) (including
multivariate specifications). We also introduce you to factor models, including the famous
Capital Asset Pricing Model (CAPM) and the Fama-French three-factor model. We end
this section by demonstrating different ways to optimize asset allocation, and we use Monte
Carlo simulations for tasks such as calculating the price of American options or estimating
the Value at Risk (VaR).

In the last part of the book, we carry out an entire data science project in the financial
domain. We approach credit card fraud/default problems using advanced classifiers such
as random forest, XGBoost, LightGBM, stacked models, and many more. We also tune the
hyperparameters of the models (including Bayesian optimization) and handle class
imbalance. We conclude the book by demonstrating how deep learning (using PyTorch)
can solve numerous financial problems.

Who this book is for

This book is for financial analysts, data analysts/scientists, and Python developers who
want to learn how to implement a broad range of tasks in the financial domain. This book
should also be helpful to data scientists who want to devise intelligent financial strategies
in order to perform efficient financial analytics. Working knowledge of the Python
programming language is mandatory.

Preface

What this book covers

Chapter 1, Financial Data and Preprocessing, explores how financial data is different from
other types of data commonly used in machine learning tasks. You will be able to use the
functions provided to download financial data from a number of sources (such as Yahoo
Finance and Quandl) and preprocess it for further analysis. Finally, you will learn how to
investigate whether the data follows the stylized facts of asset returns.

Chapter 2, Technical Analysis in Python, demonstrates some fundamental basics of technical
analysis as well as how to quickly create elegant dashboards in Python. You will be able to
draw some insights into patterns emerging from a selection of the most commonly used
metrics (such as MACD and RSI).

Chapter 3, Time Series Modeling, introduces the basics of time series modeling (including
time series decomposition and statistical stationarity). Then, we look at two of the most
widely used approaches of time series modeling—exponential smoothing methods and
ARIMA class models. Lastly, we present a novel approach to modeling a time series using
the additive model from Facebook's Prophet library.

Chapter 4, Multi-Factor Models, shows you how to estimate various factor models in
Python. We start with the simplest one-factor model and then explain how to estimate more
advanced three-, four-, and five-factor models.

Chapter 5, Modeling Volatility with GARCH Class Models, introduces you to the concept of
volatility forecasting using (G)ARCH class models, how to choose the best-fitting model,
and how to interpret your results.

Chapter 6, Monte Carlo Simulations in Finance, introduces you to the concept of Monte Carlo
simulations and how to use them for simulating stock prices, the valuation of
European/American options, and for calculating the VaR.

Chapter 7, Asset Allocation in Python, introduces the concept of Modern Portfolio

Theory and shows you how to obtain the Efficient Frontier in Python. Then, we look at how
to identify specific portfolios, such as minimum variance or the maximum Sharpe ratio. We
also show you how to evaluate the performance of such portfolios.

Chapter 8, Identifying Credit Default with Machine Learning, presents a case of using machine
learning for predicting credit default. You will get to know the state-of-the-art classification
algorithms, learn how to tune the hyperparameters of the models, and handle problems
with imbalanced data.

[2]

Preface

Chapter 9, Advanced Machine Learning Models in Finance, introduces you to a selection of
advanced classifiers (including stacking multiple models). Additionally, we look at how to
deal with class imbalance, use Bayesian optimization for hyperparameter tuning, and
retrieve feature importance from a model.

Chapter 10, Deep Learning in Finance, demonstrates how to use deep learning techniques for
working with time series and tabular data. The networks will be trained using PyTorch
(with possible GPU acceleration).

To get the most out of this book

For this book, we assume that you have the following;:

¢ A good understanding of programming in Python and machine/deep learning
models

¢ Knowledge of how to use popular libraries, such as NumPy, pandas, and
matplotlib

¢ Knowledge of basic statistics and quantitative finance

In this book, we attempt to give you a high-level overview of various techniques; however,
we will focus on the practical applications of these methods. For a deeper dive into the
theoretical foundations, we provide references for further reading.

The best way to learn anything is by doing. That is why we highly encourage you to
experiment with the code samples provided (the code can be found in the accompanying
GitHub repository), apply the techniques to different datasets, and explore possible
extensions.

The code for this book was successfully run on a MacBook; however, it should work on any
operating system. Additionally, you can always use online services such as Google Colab.

At the very beginning of each notebook (available on the book's GitHub repository), we run
a few cells that import and set up plotting with matplot1lib. We will not mention this later
on, as this would be repetitive, so at any time, assume that matplotlib is imported.

In the first cell, we first set up the backend of matplotlib to inline:

$matplotlib inline
$config InlineBackend.figure_format = 'retina'

By doing so, each plotted figure will appear below the cell that generated it and the
plot will also be visible in the Notebook should it be exported to another format (such as
PDF or

[3]

Preface

HTML). The second line is used for MacBooks and displays the plot in higher resolution for
Retina displays.
The second cell appears as follows:

import matplotlib.pyplot as plt
import warnings

plt.style.use('seaborn')

plt.rcParams|['figure.figsize'] = [16, 9]
plt.rcParams|['figure.dpi'] = 300
warnings.simplefilter (action='ignore', category=FutureWarning)

In this cell, we import matplotlib and warnings, set up the style of the plots to
'seaborn' (this is a personal preference), as well as default plot settings, such as figure
size and resolution. We also disable (ignore) some warnings. In some chapters, we might
modify these settings for better readability of the figures (especially in black and white).

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www . packtpub. com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the Support tab.
Click on Code Downloads.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Book-Name. In case there's an update to the code, it will be updated on
the existing GitHub repository.

[4]

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing

Preface

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packtcdn.com/downloads/
9781789618518_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "Finally, we took the natural logarithm of the divided values by using np.10g."

A block of code is set as follows:

df_yahoo = yf.download ('AAPL',
start='2000-01-01",
end='2010-12-31",
progress=False)

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"A single candlestick (typically corresponding to one day, but a higher frequency is
possible) combines the open, high, low, and close prices (OHLC)."

Warnings or important notes appear like this.

Tips and tricks appear like this.

[5]

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781789618518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789618518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789618518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789618518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789618518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789618518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789618518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789618518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789618518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789618518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789618518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789618518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789618518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789618518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789618518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789618518_ColorImages.pdf

Preface

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There’s more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...

This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

[6]

Preface

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[7]

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

Financial Data and
Preprocessing

The first chapter of this book is dedicated to a very important (if not the most important)
part of any data science/quantitative finance project—gathering and working with data. In
line with the "garbage in, garbage out" maxim, we should strive to have data of the highest
possible quality, and correctly preprocess it for later use with statistical and machine
learning algorithms. The reason for this is simple—the results of our analyses highly
depend on the input data, and no sophisticated model will be able to compensate for that.

In this chapter, we cover the entire process of gathering financial data and preprocessing it
into the form that is most commonly used in real-life projects. We begin by presenting a
few possible sources of high-quality data, show how to convert prices into returns (which
have properties desired by statistical algorithms), and investigate how to rescale asset
returns (for example, from daily to monthly or yearly). Lastly, we learn how to investigate
whether our data follows certain patterns (called stylized facts) commonly observed in
financial assets.

One thing to bear in mind while reading this chapter is that data differs among sources, so
the prices we see, for example, at Yahoo Finance and Quandl will most likely differ, as the
respective sites also get their data from different sources and might use other methods to
adjust the prices for corporate actions. The best practice is to find a source we trust the most
concerning a particular type of data (based on, for example, opinion on the internet) and
then use it for downloading data.

In this chapter, we cover the following recipes:

¢ Getting data from Yahoo Finance
¢ Getting data from Quandl

¢ Getting data from Intrinio

¢ Converting prices to returns

Financial Data and Preprocessing Chapter 1

Changing frequency

Visualizing time series data

Identifying outliers
e Investigating stylized facts of asset returns

The content presented in the book is valid for educational purposes
only—we show how to apply different statistical/data science techniques
to problems in the financial domain, such as stock price prediction and
asset allocation. By no means should the information in the book be
considered investment advice. Financial markets are very volatile and you
should invest only at your own risk!

Getting data from Yahoo Finance

One of the most popular sources of free financial data is Yahoo Finance. It contains not only
historical and current stock prices in different frequencies (daily, weekly, monthly), but also
calculated metrics, such as the beta (a measure of the volatility of an individual asset in
comparison to the volatility of the entire market) and many more. In this recipe, we focus
on retrieving historical stock prices.

For a long period of time, the go-to tool for downloading data from Yahoo Finance was

the pandas-datareader library. The goal of the library was to extract data from a variety
of sources and store it in the form of a pandas DataFrame. However, after some changes to
the Yahoo Finance API, this functionality was deprecated. It is still good to be familiar with
this library, as it facilitates downloading data from sources such as FRED (Federal Reserve
Economic Data), the Fama/French Data Library or the World Bank, which might come in
handy for different kinds of analyses (some of them are presented in the following
chapters).

As of now, the easiest and fastest way of downloading historical stock prices is to use

the yfinance library (formerly known as fix_yahoo_finance), which can be used on top
of pandas-datareader or as a standalone library for downloading stock prices from
Yahoo Finance. We focus on the latter use case.

For the sake of this example, we are interested in Apple's stock prices from the years
2000-2010.

[9]

Financial Data and Preprocessing Chapter 1

How to do it...
Execute the following steps to download data from Yahoo Finance.
1. Import the libraries:

import pandas as pd
import yfinance as yf

2. Download the data:

df_yahoo = yf.download('AAPL',
start='2000-01-01",
end='2010-12-31",
progress=False)

We can inspect the downloaded data:

+ Open % High = Low # Close # AdjClose # Volume %

Date % s s * L4 s s
1999-12-31 3.604911 3.674107 3.553571 3.671875 3.194901 40952800
2000-01-03 3.745536 4.017857 3.631696 3.997768 3.478462 133949200
2000-01-04 3.866071 3.950893 3.613839 3.660714 3.185191 128094400
2000-01-05 3.705357 3.948661 3.678571 3.714286 3.231803 194580400

2000-01-06 3.790179 3.821429 3.392857 3.392857 2.952128 191993200

The result of the request is a DataFrame (2,767 rows) containing daily Open,

High, Low, and Close (OHLC) prices, as well as the adjusted close price and
volume.

How it works...

The download function is very intuitive; in the most basic case, we just need to provide the
ticker (symbol), and it will try to download all data since 1950.

In the preceding example, we downloaded data from a specific range (2000-2010).

[10]

Financial Data and Preprocessing Chapter 1

There's more...

Some additional features of the download function:

e We can pass a list of multiple tickers, such as ['AAPL', 'MSFT'].
e We can set auto_adjust=True to download only the adjusted prices.
e We can additionally download dividends and stock splits by

setting actions="inline"'.

e Setting progress=False disables the progress bar.

Another popular library for downloading data from Yahoo Finance is yahoofinancials.

Getting data from Quandl

Quandl is a provider of alternative data products for investment professionals, and offers
an easy way to download data, also via a Python library.

A good starting place for financial data would be the WIKI Prices database, which contains
stock prices, dividends, and splits for 3,000 US publicly traded companies. The drawback of
this database is that as of April, 2018, it is no longer supported (meaning there is no recent
data). However, for purposes of getting historical data or learning how to access the
databases, it is more than enough.

We use the same example that we used in the previous recipe — we download Apple's stock
prices for the years 2000-2010.

Getting ready

Before downloading the data, we need to create an account at Quandl (https://www.
quandl.com) and then we can find our personal API key in our profile (https://www.
quandl.com/account/profile). We can search for data of interest using the search
functionality (https://www.quandl.com/search).

[11]

https://www.quandl.com
https://www.quandl.com
https://www.quandl.com
https://www.quandl.com
https://www.quandl.com
https://www.quandl.com
https://www.quandl.com
https://www.quandl.com
https://www.quandl.com/account/profile
https://www.quandl.com/account/profile
https://www.quandl.com/account/profile
https://www.quandl.com/account/profile
https://www.quandl.com/account/profile
https://www.quandl.com/account/profile
https://www.quandl.com/account/profile
https://www.quandl.com/account/profile
https://www.quandl.com/account/profile
https://www.quandl.com/account/profile
https://www.quandl.com/account/profile
https://www.quandl.com/account/profile
https://www.quandl.com/search
https://www.quandl.com/search
https://www.quandl.com/search
https://www.quandl.com/search
https://www.quandl.com/search
https://www.quandl.com/search
https://www.quandl.com/search
https://www.quandl.com/search
https://www.quandl.com/search
https://www.quandl.com/search
https://www.quandl.com/search

Financial Data and Preprocessing Chapter 1

How to do it...
Execute the following steps to download data from Quandl.
1. Import the libraries:

import pandas as pd
import quandl

2. Authenticate using the personal API key:

QUANDL_KEY = '{key}'
quandl.ApiConfig.api_key = QUANDL_KEY

You need to replace {key} with your own API key.
3. Download the data:

df_quandl = quandl.get (dataset='WIKI/AAPL',
start_date='2000-01-01",
end_date='2010-12-31")

We can inspect the downloaded data:

+ Open + High+ Low % Close #+ Volume + Ex-Dividend # Split Ratio + Adj. Open # Adj. High $ Adj.Low + Adj.Close + Adj.Volume %

s a a - a a a a a a a - -
Date & s s s s s s s s L4 L4 4 4

2000-01-03 104.87 11250 101.69 111.94 4783900.0 0.0 1.0 3.369314 3.614454 3.267146 3.596463 133949200.0
2000-01-04 108.25 110.62 101.19 102.50 4574800.0 0.0 1.0 3.477908 3.554053 3.251081 3.293170 128094400.0
2000-01-05 103.75 110.56 103.00 104.00 6949300.0 0.0 1.0 3.333330 3.5652125 3.309234 3.341362 194580400.0
2000-01-06 106.12 107.00 95.00 95.00 6856900.0 0.0 1.0 3.409475 3.437748 3.052206 3.052206 191993200.0
2000-01-07 96.50 101.00 95.50 99.50 4113700.0 0.0 1.0 3.100399 3.244977 3.068270 3.196784 115183600.0

The result of the request is a DataFrame (2,767 rows) containing the daily OHLC
prices, the adjusted prices, dividends, and potential stock splits.

How it works...

The first step after importing the required libraries was authentication using the API key
(paste it instead of {key}). When providing the dataset argument, we used the following
structure: DATASET/TICKER.

[12]

Financial Data and Preprocessing Chapter 1

There's more...

Some additional features of the get function are:

e We can specify multiple datasets at once using a list such as ['WIKI/AAPL',
'"WIKI/MSFT'].

¢ The collapse parameter can be used to define the frequency (available options:
daily, weekly, monthly, quarterly, or annually).

See also

Additional resources are available here:

® https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.
md—You can read the Detailed Method Guide to discover more functionalities
offered by the library, such as inspecting the list of databases and their contents
in Python.

Getting data from Intrinio

Another source of financial data is Intrinio, which offers access to its free (with limits)
database. An additional feature is that we can also download already calculated technical
indicators such as the Moving Average Convergence Divergence (MACD) and many
more.

Please see https://github.com/intrinio/python-sdk for the full list of
0 available indicators to download.

The database is not only restricted to stock prices, but we follow with the preceding
example of downloading Apple's stock prices for the years 2000-2010.

[13]

https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/quandl/quandl-python/blob/master/FOR_DEVELOPERS.md
https://github.com/intrinio/python-sdk
https://github.com/intrinio/python-sdk
https://github.com/intrinio/python-sdk
https://github.com/intrinio/python-sdk
https://github.com/intrinio/python-sdk
https://github.com/intrinio/python-sdk
https://github.com/intrinio/python-sdk
https://github.com/intrinio/python-sdk
https://github.com/intrinio/python-sdk
https://github.com/intrinio/python-sdk
https://github.com/intrinio/python-sdk
https://github.com/intrinio/python-sdk
https://github.com/intrinio/python-sdk

Financial Data and Preprocessing Chapter 1

Getting ready

Before downloading the data, we need to register at https://intrinio.com to obtain the
API key.

How to do it...

Execute the following steps to download data from Intrinio.

1. Import the libraries:

import intrinio_sdk
import pandas as pd

2. Authenticate using the personal API key, and select the API:

intrinio_sdk.ApiClient () .configuration.api_key['api_key'] = '{key}'
security_api = intrinio_sdk.SecurityApi ()

You need to replace {key} with your own API key.

3. Request the data:

security_api.get_security_stock_prices(identifier='AAPL"',
start_date='2000-01-01",

end_date='2010-12-31",
frequency='daily"',
page_size=10000)

r =

4. Convert the results into a DataFrame:

response_list = [x.to_dict() for x in r.stock_prices]
df_intrinio = pd.DataFrame (response_list).sort_values('date')
df_intrinio.set_index('date', inplace=True)

[14]

https://intrinio.com
https://intrinio.com
https://intrinio.com
https://intrinio.com
https://intrinio.com
https://intrinio.com
https://intrinio.com

Financial Data and Preprocessing Chapter 1

The output looks like this:

a

4 intraperiod # frequency # open # high # low # close # volume # adj_open # adj_high # adj_low # adj_close # adj_volume %

d a a a a a a a a a a a a a
ate - - - - - - 4 - 4 4 4 4

2000-01-03 False daily 104.87 112.50 101.69 111.94 4783900.0 3.258837 3.495940 3.160019 3.478538 133949200.0
2000-01-04 False daily 108.25 110.62 101.19 102.50 4574800.0 3.363871 3.437519 3.144481 3.185190 128094400.0
2000-01-05 False daily 103.75 110.56 103.00 104.00 6949300.0 3.224033 3.435654 3.200727 3.231802 194580400.0
2000-01-06 False daily 106.12 107.00 95.00 95.00 6856900.0 3.297681 3.325027 2.952127 2.952127 191993200.0
2000-01-07 False daily 96.50 101.00 95.50 99.50 4113700.0 2.998739 3.138577 2.967664 3.091965 115183600.0

The resulting DataFrame (2,771 rows) contains the OHLC prices and volume, as
well as their adjusted counterparts.

How it works...

The first step after importing the required libraries was to authenticate using the API key
(paste it instead of {key}). Then, we selected the API we wanted to use for the recipe — in
the case of stock prices, it was SecurityApi.

To download the data, we used the get_security_stock_prices method of
the securityApi class. The parameters we can specify are as follows:

e identifier: Stock ticker or another acceptable identifier.
e start_date/end_date: This is self-explanatory.

e frequency: Which data frequency is of interest to us (available choices: daily,
weekly, monthly, quarterly, or yearly).
® page_size: Defines the number of observations to return on one page; we set it

to a high number to collect all data in one request with no need for
the next_page token.

The API returns a JSON-like object, which we then transformed into a DataFrame and set
the date as an index using the set_index method of a pandas DataFrame.

[15]

Financial Data and Preprocessing Chapter 1

There's more...

In this chapter, we have covered a few sources of financial data. Some
additional, potentially interesting data sources are:

e iexfinance: A library that can be used to download data from IEX Cloud
e tiingo: A library that can be used to download data from Tiingo
® alpha_vantage: A library that is a wrapper for the Alpha Vantage API

Converting prices to returns

Asset prices are usually non-stationary, that is, their statistics, such as mean and variance
(mathematical moments) change over time. This could also mean observing some trends or
seasonality in the price series (see Chapter 3, Time Series Modeling). By transforming the
prices into returns, we attempt to make the time series stationary, which is the desired
property in statistical modeling.

There are two types of returns:

¢ Simple returns: They aggregate over assets; the simple return of a portfolio is the
weighted sum of the returns of the individual assets in the portfolio. Simple
returns are defined as:

Ry =(P,—P_,)/P_y =PF,/P_; -1

¢ Log returns: They aggregate over time; it is easier to understand with the help
of an example—the log return for a given month is the sum of the log returns of
the days within that month. Log returns are defined as:

Tt = lOQ(Pt/Ptfl) = lOQ(Pt) - ZOQ(Ptfl)

P, is the price of an asset in time f. In the preceding case, we do not consider
dividends, which obviously impact the returns and require a small modification
of the formulas.

The best practice while working with stock prices is to use adjusted
values, as they account for possible corporate actions, such as stock splits.

[16]

Financial Data and Preprocessing Chapter 1

The difference between simple and log returns for daily/intraday data will be very small,
however, the general rule is that log returns are smaller in value than simple returns.

In this recipe, we show how to calculate both types of returns using Apple's stock prices.

How to do it...
Execute the following steps to download the stock prices and calculate simple/log returns.
1. Import the libraries:
import pandas as pd

import numpy as np
import yfinance as yf

2. Download the data and keep the adjusted close prices only:

df = yf.download('AAPL',
start='2000-01-01",
end='2010-12-31",
progress=False)

df = df.loc[:, ['Ad]j Close']]
df.rename (columns={'Adj Close':'adj_close'}, inplace=True)

3. Calculate the simple and log returns using the adjusted close prices:

df['simple_rtn'] = df.adj_close.pct_change ()
df['log_rtn'] = np.log(df.adj_close/df.adj_close.shift (1))

The resulting DataFrame looks as follows:

4+ adj_close # simple_rtn # log rtn ¢

Date # i s L4
1999-12-31 3.194901 NaN NaN
2000-01-03 3.478462 0.088754 0.085034
2000-01-04 3.185191 -0.084311 -0.088078

2000-01-05 3.231803 0.014634 0.014528

2000-01-06 2.952128 -0.086538 -0.090514

The first row will always contain a not a number (NaN) value, as there is no
previous price to use for calculating the returns.

[17]

Financial Data and Preprocessing Chapter 1

How it works...

In Step 2, we downloaded price data from Yahoo Finance, and only kept the adjusted close
price for the returns calculation.

To calculate the simple returns, we used the pct_change method of pandas
Series/DataFrame, which calculates the percentage change between the current and prior
element (we can specify the number of lags, but for this specific case, the default value of 1
suffices).

To calculate the log returns, we followed the formula given in the introduction to this
recipe. When dividing each element of the series by its lagged value, we used the shift
method with a value of 1 to access the prior element. In the end, we took the natural
logarithm of the divided values by using np. log.

There's more...

We will also discuss how to account for inflation in the returns series. To do so, we continue
with the example used in this recipe.

We first download the monthly Consumer Price Index (CPI) values from Quandl and
calculate the percentage change (simple return) in the index. We can then merge the
inflation data with Apple's stock returns, and account for inflation by using the following
formula:

1+ Ry
R =
¢ 1%—ﬂt

Here, R, is a time ¢ simple return and 7,is the inflation rate.
Execute the following steps to account for inflation in the returns series.

1. Import libraries and authenticate:

import pandas as pd
import quandl

QUANDL_KEY = '{key}'
quandl.ApiConfig.api_key = QUANDL_KEY

[18]

Financial Data and Preprocessing Chapter 1

2. Create a DataFrame with all possible dates, and left join the prices to it:

df_all_dates = pd.DataFrame (index=pd.date_range (start='1999-12-31",
end='2010-12-31"))

df = df_all_dates.join(df[['adj_close']]l, how='left') \
.fillna (method="£f£fi11") \
.asfreq('M")

We used a left join, which is a type of join (used for merging DataFrames) that
returns all rows from the left table and the matched rows from the right table
while leaving the unmatched rows empty. In case the last day of the month was
not a trading day, we used the last known price of that month

(fillna (method="££i11")). Lastly, we selected the end-of-month rows only by
applying asfreq('M'").

3. Download the inflation data from Quandl:
df_cpi = quandl.get (dataset='RATEINF/CPI_USA',
start_date='1999-12-01",
end_date='2010-12-31")
df_cpi.rename (columns={'Value':'cpi'}, inplace=True)
4. Merge the inflation data to the prices:
df_merged = df.join(df_cpi, how='left')

5. Calculate the simple returns and inflation rate:

df_merged['simple_rtn'] = df_merged.adj_close.pct_change ()
df_merged['inflation_rate'] = df_merged.cpi.pct_change ()

6. Adjust the returns for inflation:

df_merged['real_rtn'] = (df_merged.simple_rtn + 1) /
(df_merged.inflation_rate + 1) - 1

[19]

Financial Data and Preprocessing Chapter 1

The output looks as follows:

+ adj_close ¥ cpi # simple_rtn # inflation_rate + real_rtn &
1999-12-31 3.194901 168.3 NaN NaN NaN
2000-01-31 3.224035 168.8 0.009119 0.002971 0.006130
2000-02-29 3.561976 169.8 0.104819 0.005924 0.098313
2000-03-31 4.220376 171.2 0.184841 0.008245 0.175152
2000-04-30 3.855247 171.3 -0.086516 0.000584 -0.087049

The DataFrame contains all the intermediate results, and the real_ rtn column
contains the inflation-adjusted returns.

Changing frequency
The general rule of thumb for changing frequency can be broken down into the following:

e Multiply/divide the log returns by the number of time periods.
e Multiply/divide the volatility by the square root of the number of time periods.

In this recipe, we present an example of how to calculate the monthly realized volatilities
for Apple using daily returns and then annualize the values.

The formula for realized volatility is as follows:

T
RV = 4| 2
i=1

Realized volatility is frequently used for daily volatility using the intraday returns.

The steps we need to take are as follows:

¢ Download the data and calculate the log returns.
¢ Calculate the realized volatility over the months.

¢ Annualize the values by multiplying by v12, as we are converting from monthly
values.

[20]

Financial Data and Preprocessing Chapter 1

Getting ready

We assume you have followed the instructions from earlier recipes and have a DataFrame
called df with a single 1og_rtn column and timestamps as the index.

How to do it...

Execute the following steps to calculate and annualize the monthly realized volatility.

1. Import the libraries:
import pandas as pd
2. Define the function for calculating the realized volatility:

def realized_volatility(x):
return np.sgrt (np.sum(x**2))

3. Calculate the monthly realized volatility:

df_rv = df.groupby (pd.Grouper (freg="M')) .apply(realized_volatility)
df_rv.rename (columns={'log_rtn': 'rv'}, inplace=True)

4. Annualize the values:
df_rv.rv = df_rv.rv * np.sqrt(12)

5. Plot the results:

fig, ax = plt.subplots (2, 1, sharex=True)
ax[0].plot (df)
ax[1l].plot (df_rv)

[21]

Financial Data and Preprocessing Chapter 1

Executing the preceding code results in the following plots:

25
2.0
1.5
1.0

o ™M

0.0

2000 2002 2004 2006 2008 2010

We can see that the spikes in the realized volatility coincide with some extreme
returns (which might be outliers).

[22]

Financial Data and Preprocessing Chapter 1

How it works...

Normally, we could use the resample method of a pandas DataFrame. Supposing we
wanted to calculate the average monthly return, we could run
df.log_rtn.resample('M') .mean ().

For the resample method, we can use any built-in aggregate functions of pandas, such as
mean, sum, min, and max. However, our case is a bit more complex, so we defined a helper
function called realized_volatility, and replicated the behavior of resample by using
a combination of groupby, Grouper, and apply.

We presented the most basic visualization of the results (please refer to the next recipe for
information about visualizing time series).

Visualizing time series data

After learning how to download and preprocess financial data, it is time to learn how to
plot it in a visually appealing way. We cover two approaches using the following;:

e The default plot method of a pandas DataFrame
e A combination of the plotly and cufflinks libraries

The plotly library is built on top of d3. js (a JavaScript library used for creating
interactive visualizations in web browsers) and is known for creating high-quality plots
with a significant degree of interactivity (inspecting values of observations, viewing
tooltips of a given point, zooming in, and so on). Plotly is also the company responsible for
developing this library and provides hosting for our visualizations. We can create an
infinite number of offline visualizations and up to 25 free ones to share online (with a
limited number of views per day).

The cufflinks library also makes the process easier, as it enables us to create
the plotly visualizations directly on top of pandas DataFrames.

In this recipe, we plot Microsoft's stock prices (all-time) and returns. For details on how to
download and preprocess the data, please refer to the earlier recipes.

[23]

Financial Data and Preprocessing Chapter 1

Getting ready

For this recipe, we assume we already have a DataFrame called df with three columns
(adj_close, simple_rtn, and log_rtn) and dates set as the index. Please refer to the
notebook on the GitHub repository for details on downloading data for this recipe.

How to do it...

In this section, we introduce how to plot time series data. We start by using the default
plot method of a pandas DataFrame/Series, and then present the interactive alternative

offered by the combination of plotly and cufflinks.

The plot method of pandas

Execute the following code to plot Microsoft's stock prices together with the simple and log
returns.

fig, ax = plt.subplots(3, 1, figsize=(24, 20), sharex=True)

df.adj_close.plot (ax=ax[0])

ax[0] .set (title = 'MSFT time series',
ylabel = 'Stock price ($)"')

df.simple_rtn.plot (ax=ax[1])

ax[1l].set(ylabel = 'Simple returns (%)"')

df.log_rtn.plot (ax=ax[2])
ax[2] .set (xlabel = 'Date',
ylabel = 'Log returns (%)"')

[24]

Financial Data and Preprocessing Chapter 1

Executing the preceding code results in the following plot:

MSFT time series

Stock price ($)
a 9~ 2 N @
o [o (8] o o

N
&

o

0.2

Simple returns (%)

Log returns (%)

o o o o o o NG ~° &
Date

The resulting plot contains three axes. Each one of them presents a different series: raw
prices, simple returns, and log returns. Inspecting the plot in such a setting enables us to see
the periods of heightened volatility and what was happening at the same time with the
price of Microsoft's stock. Additionally, we see how similar simple and log returns are.

[25]

Financial Data and Preprocessing Chapter 1

plotly and cufflinks

Execute the following code to plot Microsoft's stock prices together with the simple and log
returns.

1. Import the libraries and handle the settings:

import cufflinks as cf
from plotly.offline import iplot, init_notebook_mode

set up configuration (run it once)
#cf.set_config_file(world_readable=True, theme='pearl',
offline=True)

init_notebook_mode ()

2. Create the plot:

df.iplot (subplots=True, shape=(3,1), shared_xaxes=True,
title="'MSFT time series')

We can observe the time series in the following plot:

MSFT time series

150 adj_close
simple_rtn

log_rtn

-0.2

1990 1995 2000 2005 2010 2015 2020

Export to plot.ly »

[26]

Financial Data and Preprocessing Chapter 1

The main advantage of using plotly with cufflinks is the interactivity of the
preceding chart, which is unfortunately only demonstrable in the Notebook
(please refer to the accompanying GitHub repository).

How it works...

In the next section, we go over the details of the two selected methods of plotting time
series in Python.

The plot method of pandas

Our goal was to visualize all three series on the same plot (sharing the x-axis) to enable a
quick visual comparison. To achieve this, we had to complete the following steps:

e We created a subplot, which we then populated with individual plots. We
specified that we wanted three plots vertically (by indicating p1t.subplots (3,
1)). We also specified the figure size by setting the figsize parameter.

e We added the individual plots using the plot method on a single Series
(column) and specifying the axis on which we wanted to place the plot.

e We used the set method to specify the title and axis labels on each of the plots.

When working in Jupyter Notebook, best practice is to run

the $matplotlib inline magic (once per kernel) in order to display the
8 plots directly below the code cell that has produced it. Additionally, if you

are working on a MacBook with a Retina screen, running the

extra IPython magic $config InlineBackend. figure_format

='retina’' will double the resolution of the plots we make. Definitely

worth the extra line!

plotly and cufflinks

By using cufflinks, we can use the iplot method directly on a pandas DataFrame. To
create the previous plot, we used subplots (subplots=True), specified the shape of the
figure (shape= (3, 1)), indicated that the plots share the x-axis (shared_xaxes=True), and
added the title (title="MSFT time series'). By default, the selected type of plot is

a line chart (kind="1ine").

[27]

Financial Data and Preprocessing Chapter 1

One note about using plotly in Jupyter—in order to share a notebook with the option to
view the plot (without running the script again), you should use nbviewer or render the
notebook as an HTML file and share it then.

The extra line of code cf.set_config file (world_readable=True, theme='pearl',
offline=True) sets up the configuration (such as the current theme or the offline mode)
and should be used only once. It can be used again to reconfigure.

There's more...

There are many more ways to create plots in Python. We list some of the libraries:

® matplotlib

® seaborn

e plotly

® plotly_express
® altair

e plotnine

We have decided to present the two selected for their simplicity, however, a specific use
case might require using some of the previously mentioned libraries as they offer more
freedom when creating the visualization. We should also mention that the plot method of
a pandas DataFrame actually uses matplotlib for plotting, but the pandas API makes the
process easier.

See also

Additional resources are available here:

e cufflinks documentation: https://plot.ly/python/v3/ipython-notebooks/
cufflinks/

e nbviewer: https://nbviewer. jupyter.org/

[28]

https://plot.ly/python/v3/ipython-notebooks/cufflinks/
https://plot.ly/python/v3/ipython-notebooks/cufflinks/
https://plot.ly/python/v3/ipython-notebooks/cufflinks/
https://plot.ly/python/v3/ipython-notebooks/cufflinks/
https://plot.ly/python/v3/ipython-notebooks/cufflinks/
https://plot.ly/python/v3/ipython-notebooks/cufflinks/
https://plot.ly/python/v3/ipython-notebooks/cufflinks/
https://plot.ly/python/v3/ipython-notebooks/cufflinks/
https://plot.ly/python/v3/ipython-notebooks/cufflinks/
https://plot.ly/python/v3/ipython-notebooks/cufflinks/
https://plot.ly/python/v3/ipython-notebooks/cufflinks/
https://plot.ly/python/v3/ipython-notebooks/cufflinks/
https://plot.ly/python/v3/ipython-notebooks/cufflinks/
https://plot.ly/python/v3/ipython-notebooks/cufflinks/
https://plot.ly/python/v3/ipython-notebooks/cufflinks/
https://plot.ly/python/v3/ipython-notebooks/cufflinks/
https://plot.ly/python/v3/ipython-notebooks/cufflinks/
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/

Financial Data and Preprocessing Chapter 1

Identifying outliers

While working with any kind of data, we often encounter observations that are
significantly different from the majority, that is, outliers. They can be a result of a wrong
tick (price), something major happening on the financial markets, an error in the data
processing pipeline, and so on. Many machine learning algorithms and statistical
approaches can be influenced by outliers, leading to incorrect/biased results. That is why
we should handle the outliers before creating any models.

In this recipe, we look into detecting outliers using the 30 approach.

Getting ready

We continue from the Converting prices to returns recipe and have a DataFrame with Apple's
stock price history and returns.

How to do it...

Execute the following steps to detect outliers using the 30 approach, and mark them on a
plot.

1. Calculate the rolling mean and standard deviation:

df_rolling = df[['simple_rtn']].rolling(window=21) \
.agg(['mean', 'std'l)
df_rolling.columns = df_rolling.columns.droplevel ()

2. Join the rolling metrics to the original data:
df_outliers = df.join(df_rolling)

3. Define a function for detecting outliers:

def indentify_outliers(row, n_sigmas=3):

x = row['simple_rtn']

mu = row['mean']

sigma = row['std']

if (x >mu + 3 * sigma) | (x < mu - 3 * sigma):
return 1

else:
return 0

[29]

Financial Data and Preprocessing Chapter 1

4. Identify the outliers and extract their values for later use:

df_outliers['outlier'] = df_outliers.apply(indentify_outliers,
axis=1)
outliers = df_outliers.loc[df_outliers['outlier'] == 1,

['simple_rtn']]
5. Plot the results:
fig, ax = plt.subplots/()

ax.plot (df_outliers.index, df_outliers.simple_rtn,
color="'blue', label='Normal')
ax.scatter (outliers.index, outliers.simple_rtn,
color='red', label='Anomaly')
ax.set_title ("Apple's stock returns")
ax.legend(loc='lower right')

Executing the code results in the following plot:

Apple's stock returns
0.1
0.0
-0.1
-0.2
-0.3
-0.4
R : ST
2000 2002 2004 2006 2008 2010

In the plot, we can observe outliers marked with a red dot. One thing to notice is
that when there are two large returns in the vicinity, the algorithm identifies the
first one as an outlier and the second one as a regular observation. This might be
due to the fact that the first outlier enters the rolling window and affects the
moving average/standard deviation.

[30]

Financial Data and Preprocessing Chapter 1

We should also be aware of the so-called ghost effect/feature. When a
single outlier enters the rolling window, it inflates the values of the rolling
statistics for as long as it is in the window.

How it works...

In the 30 approach, for each time point, we calculated the moving average (u) and standard
deviation (o) using the last 21 days (not including that day). We used 21 as this is the
average number of trading days in a month, and we work with daily data. However, we
can choose different values, and then the moving average will react faster/slower to
changes. We can also use (exponentially) weighted moving average if we find it more
meaningful in our particular case.

The condition for a given observation x to be qualified as an outlier is x > u + 30 or x < - 30.

In the first step, we calculated the rolling metrics using the rol1ing method of a pandas
DataFrame. We specified the window's size and the metrics we would like to calculate. In
the second step, we joined the two DataFrames.

In Step 3, we defined a function that returns 1 if the observation is considered an outlier,
according to the 30 rule (we parametrized the number of standard deviations), and 0
otherwise. Then, in the fourth step, we applied the function to all rows in the DataFrame
using the apply method.

In the last step, we visualized the returns series and marked the outliers using a red dot. In
real-life cases, we should not only identify the outliers, but also treat them, for example, by
capping them at the maximum/minimum acceptable value, replacing them by interpolated
values, or by following any of the other possible approaches.

There's more...

There are many different methods of identifying outliers in a time series, for example, using
Isolation Forest, Hampel Filter, Support Vector Machines, and z-score (which is similar to
the presented approach).

[31]

Financial Data and Preprocessing Chapter 1

Investigating stylized facts of asset returns

Stylized facts are statistical properties that appear to be present in many empirical asset
returns (across time and markets). It is important to be aware of them because when we are
building models that are supposed to represent asset price dynamics, the models must be
able to capture/replicate these properties.

In the following recipes, we investigate the five stylized facts using an example of daily
S&P 500 returns from the years 1985 to 2018.

Getting ready

We download the S&P 500 prices from Yahoo Finance (following the approach in the
Getting data from Yahoo Finance recipe) and calculate returns as in the Converting prices to
returns recipe.

We use the following code to import all the required libraries:

import pandas as pd

import numpy as np

import yfinance as yf

import seaborn as sns

import scipy.stats as scs

import statsmodels.api as sm
import statsmodels.tsa.api as smt

How to do it...

In this section, we investigate, one by one, five stylized facts in the S&P 500 series.

[32]

Financial Data and Preprocessing Chapter 1

Non-Gaussian distribution of returns

Run the following steps to investigate the existence of this first fact by plotting the
histogram of returns and a Q-Q plot.

1. Calculate the normal Probability Density Function (PDF) using the mean and
standard deviation of the observed returns:

r_range = np.linspace (min(df.log_rtn), max(df.log_rtn), num=1000)
mu = df.log_rtn.mean ()

sigma = df.log_rtn.std()

norm_pdf = scs.norm.pdf (r_range, loc=mu, scale=sigma)

2. Plot the histogram and the Q-Q plot:

fig, ax = plt.subplots(l, 2, figsize=(16, 8))

histogram
sns.distplot (df.log_rtn, kde=False, norm_hist=True, ax=ax[0])
ax[0] .set_title('Distribution of MSFT returns', fontsize=16)
ax[0] .plot (r_range, norm_pdf, 'g', lw=2,

label=f'N({mu:.2f}, {sigma**2:.4f})")
ax[0].legend(loc="upper left');

0-Q plot
agq = sm.qggplot (df.log_rtn.values, line='s', ax=ax[l])

ax[1l].set_title('Q-Q plot', fontsize = 16)

[33]

Financial Data and Preprocessing Chapter 1
Executing the preceding code results in the following plot:
Distribution of MSFT returns Q-Q plot
% = N(0.00, 0.0001) °
0.10 O
o
40 0.05
0.00
30 I3
2
E
S -0.05
g
o
aQ
£ (4
e é 010 0
-0.15
10
-0.20
(]
0 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 -3 -2 -1 0 1 2 3
log_rtn Theoretical Quantiles

—————————— Descriptive Statistics —--——-—-———-—-
Range of dates: 1985-01-02 - 2018-12-28
Number of observations: 8569

Mean: 0.0003

Median: 0.0006

Min: -0.2290

Max: 0.1096

Standard Deviation: 0.0113

Skewness: -1.2624

Kurtosis: 28.0111

Jarque-Bera statistic: 282076.61 with p-value: 0.00

We can use the histogram (showing the shape of the distribution) and the Q-Q
plot to assess the normality of the log returns. Additionally, we can print the
summary statistics (please refer to the GitHub repository for the code):

By looking at the metrics such as the mean, standard deviation, skewness, and
kurtosis we can infer that they deviate from what we would expect under
normality. Additionally, the Jarque-Bera normality test gives us reason to reject
the null hypothesis stating that the distribution is normal at the 99% confidence
level.

[34]

Financial Data and Preprocessing Chapter 1

Volatility clustering

Run the following code to investigate this second fact by plotting the log returns series.

1. Visualize the log returns series:

df.log_rtn.plot (title='Daily MSFT returns')

Executing the code results in the following plot:

Daily MSFT returns

0.10

0.05

0.00

-0.05

-0.10

-0.15

-0.20

,\g%% \ggl \9’96 'LQQQ qub« qu% "I,“N’L '79\6
Date

We can observe clear clusters of volatility—periods of higher positive and
negative returns.

Absence of autocorrelation in returns

Investigate this third fact about the absence of autocorrelation in returns.

1. Define the parameters for creating the autocorrelation plots:

N_LAGS = 50
SIGNIFICANCE_LEVEL = 0.05

[35]

Financial Data and Preprocessing Chapter 1

2. Run the following code to create the autocorrelation function (ACF) plot of log
returns:

acf = smt.graphics.plot_acf(df.log_rtn,

lags=N_LAGS,
alpha=SIGNIFICANCE_LEVEL)

Executing the preceding code results in the following plot:

Autocorrelation

0.8
0.6
04

0.2

00——TrTrTﬁ4#*ql1vﬁ4~v#*hTuTu~Hv~Tuv~Tr-

0 10 20 30 40 50

Only a few values lie outside the confidence interval (we do not look at lag 0) and
can be considered statistically significant. We can assume that we have verified
that there is no autocorrelation in the log returns series.

Small and decreasing autocorrelation in

squared/absolute returns
Investigate this fourth fact by creating the ACF plots of squared and absolute returns.

1. Create the ACF plots:
fig, ax = plt.subplots (2, 1, figsize=(12, 10))

smt .graphics.plot_acf(df.log_rtn ** 2, lags=N_LAGS,
alpha=SIGNIFICANCE_LEVEL, ax = ax[0])

[36]

Financial Data and Preprocessing Chapter 1

ax[0] .set (title='Autocorrelation Plots',
ylabel='Squared Returns')

smt.graphics.plot_acf (np.abs(df.log_rtn), lags=N_LAGS,
alpha=SIGNIFICANCE_LEVEL, ax = ax[1l])
ax[1l].set (ylabel='Absolute Returns',
xlabel="Lag"')

Executing the preceding code results in the following plots:

Autocorrelation Plots

o o o
IS o ©

Squared Returns

o
[N

II”h[”TITTrIIHI‘TT1IrrrTTTnTrInrrhnrnnrn

0 10 20 30 40 50

0.0

=4
=

Absolute Returns
o
IS

o
N

g T ATttt

0

Lag

[371]

Financial Data and Preprocessing Chapter 1

We can observe the small and decreasing values of autocorrelation for the
squared and absolute returns, which are in line with the fourth stylized fact.

Leverage effect

For the fifth fact, run the following steps to investigate the existence of the leverage effect.

1. Calculate volatility measures as rolling standard deviations:

df ['moving_std_252'] = df[['log_rtn']].rolling(window=252) .std()
df ['moving_std_21'] = df[['log_rtn']].rolling(window=21) .std()

2. Plot all the series for comparison:

fig, ax = plt.subplots(3, 1, figsize=(18, 15),
sharex=True)

df.adj_close.plot (ax=ax[0])
ax[0] .set (title="'MSFT time series',
ylabel='Stock price ($)"')

df.log_rtn.plot (ax=ax[1])
ax[1l].set (ylabel="'Log returns (%)"')

df .moving_std_252.plot (ax=ax[2], color='r',
label="Moving Volatility 252d")
df .moving_std_21.plot (ax=ax[2], color='g',
label="Moving Volatility 21d")
ax[2] .set (ylabel="Moving Volatility',
xlabel="Date')
ax[2].legend()

[38]

Financial Data and Preprocessing Chapter 1

We can now investigate the leverage effect by visually comparing the price series
to the (rolling) volatility metric:

MSFT time series
3000

2500

8
8

S 1500

tock price ($)

St

3
8

500

g retums (%)

—— Moving Volatilty 252d
006 —— Moving Volatilty 21d

Moving Volatiity

This fact states that most measures of an asset's volatility are negatively correlated
with its returns, and we can indeed observe a pattern of increased volatility when
the prices go down and decreased volatility when they are rising.

How it works...

In this section, we describe the approaches we used to investigate the existence of the
stylized facts in the S&P 500 log return series.

[39]

Financial Data and Preprocessing Chapter 1

Fact 1

The name of the fact (Non-Gaussian distribution of returns) is pretty much self-
explanatory. It was observed in the literature that (daily) asset returns exhibit the following;:

¢ Negative skewness (third moment): Large negative returns occur more
frequently than large positive ones.

¢ Excess kurtosis (fourth moment): Large (and small) returns occur more often
than expected.

The pandas implementation of kurtosis is the one that literature refers to
as excess kurtosis or Fisher's kurtosis. Using this metric, the excess
kurtosis of a Gaussian distribution is 0, while the standard kurtosis is 3.
This is not to be confused with the name of the stylized fact's excess
kurtosis, which simply means kurtosis higher than that of normal
distribution.

We break down investigating this fact into three parts.
Histogram of returns

The first step of investigating this fact was to plot a histogram visualizing the distribution
of returns. To do so, we used sns.distplot while setting kde=False (which does not use
the Gaussian kernel density estimate) and norm_hist=True (this plot shows density
instead of the count).

To see the difference between our histogram and Gaussian distribution, we superimposed a
line representing the PDF of the Gaussian distribution with the mean and standard
deviation coming from the considered return series.

First, we specified the range over which we calculated the PDF by using np.linspace (we
set the number of points to 1,000, generally the more points the smoother the line) and then
calculated the PDF using scs.norm.pdf. The default arguments correspond to the
standard normal distribution, that is, with zero mean and unit variance. That is why we
specified the 1oc and scale arguments as the sample mean and standard deviation,
respectively.

To verify the existence of the previously mentioned patterns, we should look at the
following;:

* Negative skewness: The left tail of the distribution is longer, while the mass of
the distribution is concentrated on the right side of the distribution.

¢ Excess kurtosis: Fat-tailed and peaked distribution.

[40]

Financial Data and Preprocessing Chapter 1

The second point is easier to observe on our plot, as there is a clear peak over the PDF and
we see more mass in the tails.

Q-Q plot

After inspecting the histogram, we looked at the Q-Q (quantile-quantile) plot, on which we
compared two distributions (theoretical and observed) by plotting their quantiles against
each other. In our case, the theoretical distribution is Gaussian (Normal) and the observed
one comes from the S&P 500 returns.

To obtain the plot, we used the sm. ggplot function. If the empirical distribution is
Normal, then the vast majority of the points will lie on the red line. However, we see that
this is not the case, as points on the left side of the plot are more negative (that is, lower
empirical quantiles are smaller) than expected in the case of the Gaussian distribution, as
indicated by the line. This means that the left tail of the returns distribution is heavier than
that of the Gaussian distribution. Analogical conclusions can be drawn about the right tail,
which is heavier than under normality.

Descriptive statistics

The last part involves looking at some statistics. We calculated them using the appropriate
methods of pandas Series/DataFrames. We immediately see that the returns exhibit
negative skewness and excess kurtosis. We also ran the Jarque-Bera test
(scs.jarque_bera) to verify that returns do not follow a Gaussian distribution. With a p-
value of zero, we reject the null hypothesis that sample data has skewness and kurtosis
matching those of a Gaussian distribution.

Fact 2

The first thing we should be aware of when investigating stylized facts is the volatility
clustering—periods of high returns alternating with periods of low returns, suggesting that
volatility is not constant. To quickly investigate this fact, we plot the returns using the
plot method of a pandas DataFrame.

Fact 3

Autocorrelation (also known as serial correlation) measures how similar is a given time
series to the lagged version of itself, over successive time intervals.

[41]

Financial Data and Preprocessing Chapter 1

To investigate whether there is significant autocorrelation in returns, we created the
autocorrelation plot using plot_acf from the statsmodels library. We inspected 50 lags
and used the default alpha=0. 05, which means that we also plotted the 95% confidence
interval. Values outside of this interval can be considered statistically significant.

Fact 4

To verify this fact, we also used the plot_acf function from the statsmodels library;
however, this time we applied it to the squared and absolute returns.

Fact 5

This fact states that most measures of asset volatility are negatively correlated with their
returns. To investigate it, we used the moving standard deviation (calculated using

the rol1ling method of a pandas DataFrame) as a measure of historical volatility. We used
windows of 21 and 252 days, which correspond to one month and one year of trading data.

There's more...

We present another method of investigating the leverage effect (fact 5). To do so, we use the
VIX (CBOE Volatility Index), which is a popular metric of the stock market's expectation
regarding volatility. The measure is implied by option prices on the S&P 500 index. We take
the following steps:

1. Download and preprocess the prices of the S&P 500 and VIX:

df = yf.download(['"GSPC', '~VIX'],
start='1985-01-01",
end='2018-12-31",
progress=False)

df = df[['Adj Close']]
df.columns = df.columns.droplevel (0)
df = df.rename (columns={'"GSPC': 'spb500', '~VIX': 'vix'})

2. Calculate the log returns (we can just as well use percentage change-simple

returns):
df['log_rtn'] = np.log(df.sp500 / df.sp500.shift (1))
df['vol_rtn'] = np.log(df.vix / df.vix.shift (1))

df .dropna (how="'any', axis=0, inplace=True)

[42]

Financial Data and Preprocessing Chapter 1

3. Plot a scatterplot with the returns on the axes and fit a regression line to identify
the trend:

corr_coeff = df.log_rtn.corr(df.vol_rtn)

ax = sns.regplot(x='log_rtn', y='vol_rtn', data=df,
line_kws={'"'color': 'red'})
ax.set (title=f'S&P 500 vs. VIX ($\\rho$ = {corr_coeff:.2f})"',
ylabel='VIX log returns',

xlabel='S&P 500 log returns')

We additionally calculated the correlation coefficient between the two series and
included it in the title:

S&P 500 vs. VIX (0 = -0.71)

0.8
[]

0.6

VIX log returns

0.050 0.075 0.100

0.000 0.025

-0.100 -0.075 -0.050 -0.025
S&P 500 log returns

[43]

Financial Data and Preprocessing Chapter 1

We can see that both the negative slope of the regression line and a strong
negative correlation between the two series confirm the existence of the leverage
effect in the return series.

See also

For more information, refer to the following:

e Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical
issues.

[44]

Technical Analysis in Python

In this chapter, we will cover the basics of technical analysis (TA) in Python. In short, TA is
a methodology for determining (forecasting) the future direction of asset prices and
identifying investment opportunities, based on studying past market data, especially the
prices themselves and the traded volume.

We begin by introducing a simple way of visualizing stock prices using the candlestick
chart. Then, we show how to calculate selected indicators (with hints on how to calculate
others using selected Python libraries) used for TA. Using established Python libraries, we
show how easy it is to backtest trading strategies built on the basis of TA indicators. In this
way, we can evaluate the performance of these strategies in a real-life context (even
including commission fees and so on).

At the end of the chapter, we also demonstrate how to create an interactive dashboard in
Jupyter Notebook, which enables us to add and inspect the predefined TA indicators on the
fly.

We present the following recipes in this chapter:

¢ Creating a candlestick chart

Backtesting a strategy based on simple moving average

Calculating Bollinger Bands and testing a buy/sell strategy

Calculating the relative strength index and testing a long/short strategy

Building an interactive dashboard for TA

Technical Analysis in Python Chapter 2

Creating a candlestick chart

A candlestick chart is a type of financial graph, used to describe a given security's price
movements. A single candlestick (typically corresponding to one day, but a higher
frequency is possible) combines the open, high, low, and close prices (OHLC). The
elements of a bullish candlestick (where the close price in a given time period is higher than
the open price) are presented in the following image (for a bearish one, we should swap the
positions of the open and close prices):

HIGH —— -
Upper
Shadow
CLOSE -
— Real Body
OPEN -
Lower
Shadow
LOW _— ot

In comparison to the plots introduced in the previous chapter, candlestick charts convey
much more information than a simple line plot of the adjusted close price. That is why they
are often used in real trading platforms, and traders use them for identifying patterns and
making trading decisions.

In this recipe, we also add moving average lines (which are one of the most basic technical
indicators), as well as bar charts representing volume.

[46]

Technical Analysis in Python Chapter 2

Getting ready

In this recipe, we download Twitter's (adjusted) stock prices for the year 2018. We use
Yahoo Finance to download the data, as described in the Getting data from Yahoo Finance
recipe, found in chapter 1, Financial Data and Preprocessing. Follow these steps:

1. Import the libraries:

import pandas as pd
import yfinance as yf

2. Download the adjusted prices:
df_twtr = yf.download ('TWIR',
start='2018-01-01",
end='2018-12-31",

progress=False,
auto_adjust=True)

For creating the plot, we use the plotly and cufflinks libraries. For more details, please
refer to the Visualizing time series data recipe, found in Chapter 1, Financial Data and
Preprocessing.

How to do it...

Execute the following steps to create an interactive candlestick chart.

1. Import the libraries:

import cufflinks as cf
from plotly.offline import iplot, init_notebook_mode

init_notebook_mode ()

2. Create the candlestick chart, using Twitter's stock prices:

gf = cf.QuantFig(df_twtr, title="Twitter's Stock Price",
legend="top', name='TWTR')

3. Add volume and moving averages to the figure:
gf.add_volume ()

gf.add_sma (periods=20, column='Close', color='red')
gf.add_ema (periods=20, color='green')

[47]

https://cdp.packtpub.com/python_for_finance_cookbook/wp-admin/post.php?post=25&action=edit#post_24

Technical Analysis in Python Chapter 2

4. Display the plot:
gf.iplot ()

We can observe the following plot (it is interactive in the notebook):

Twitter's Stock Price
SMA(20) —— EMA(20) - TWTR

B volume

Mar 2018 May 2018 Jul2018 Sep 2018 Nov 2018

150M
100M

Smg..dhiliji l..llii.LLna.H*h-..- ulliu.:LaJL-huh Nidusdadbe e duada

Export to plot.ly »

In the plot, we can see that the exponential moving average (EMA) adapts to the
changes in prices much faster than the SMA. Some discontinuities in the chart are
caused by the fact that we are using daily data, and there is no data for
weekends/bank holidays.

How it works...

In Step 2, we created a QuantFig object by passing a DataFrame containing the input data,
as well as some arguments for the title and legend's position. We could have created a
simple candlestick chart by running the iplot method of QuantFig immediately

afterward.

[48]

Technical Analysis in Python Chapter 2

However, in Step 3, we also added two moving average lines by using

the add_sma/add_ema methods. We decided to consider 20 periods (days, in this case). By
default, the averages are calculated using the close column, however, we can change this
by providing the column argument.

The difference between the two moving averages is that the exponential one puts more
weight on recent prices. By doing so, it is more responsive to new information and reacts
faster to any changes in the general trend.

See also

For more information on the available methods (different indicators and settings), please
refer to the source code available at the GitHub repository of cuff1inks, at https://
github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py.

Backtesting a strategy based on simple
moving average

The general idea behind backtesting is to evaluate the performance of a trading
strategy—built using some heuristics or technical indicators—by applying it to historical
data.

In this recipe, we introduce one of the available frameworks for backtesting in
Python: backtrader. Key features of this framework include:

¢ A vast amount of available technical indicators (backtrader also provides a
wrapper around the popular TA-Lib library) and performance measures

Ease of building and applying new indicators

Multiple data sources available (including Yahoo Finance, Quand]l)

Simulating many aspects of real brokers, such as different types of orders
(market, limit, stop), slippage (the difference between the intended and actual
execution prices of an order), commission, going long/short, and so on

e A one-line call for a plot, with all results

For this recipe, we consider a basic strategy based on the SMA. The key points of the
strategy are as follows:

e When the close price becomes higher than the 20-day SMA, buy one share.

[49]

https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py
https://github.com/santosjorge/cufflinks/blob/master/cufflinks/quant_figure.py

Technical Analysis in Python Chapter 2

e When the close price becomes lower than the 20-day SMA and we have a share,
sell it.

¢ We can only have a maximum of one share at any given time.
¢ No short selling is allowed.

We run the backtesting of this strategy, using Apple's stock prices from the year 2018.

How to do it...

In this example, we present two possible approaches: building a trading strategy, using a
signal (bt . Signal) or defining a full strategy (bt . St rategy). Both yield the same results,
however, the lengthier one, using bt . St rategy, provides more logging of what is actually
happening in the background. This makes it easier to debug and keep track of all
operations (the level of detail included in the logging depends on our needs).

Signal
Execute the following steps to create a backtest, using the bt . Signal class.
1. Import the libraries:

from datetime import datetime
import backtrader as bt

2. Define a class representing the trading strategy:

class SmaSignal (bt.Signal) :

params = (('period', 20),)
def _ init__ (self):
self.lines.signal = self.data -

bt.ind.SMA (period=self.p.period)

3. Download data from Yahoo Finance:
data = bt.feeds.YahooFinanceData (dataname='AAPL"',

fromdate=datetime (2018, 1, 1),
todate=datetime (2018, 12, 31))

4. Set up the backtest:

cerebro = bt.Cerebro(stdstats = False)

cerebro.adddata (data)

[50]

Technical Analysis in Python Chapter 2

cerebro.broker.setcash (1000.0)
cerebro.add_signal (bt.SIGNAL_LONG, SmaSignal)
cerebro.addobserver (bt.observers.BuySell)
cerebro.addobserver (bt .observers.Value)

5. Run the backtest:

print (f'Starting Portfolio Value: {cerebro.broker.getvalue():.2f}")
cerebro.run ()
print (f'Final Portfolio Value: {cerebro.broker.getvalue():.2f}")

6. Plot the results:

cerebro.plot (iplot=True, volume=False)

The plot is divided into three parts: the evolution of the portfolio's value, the price
of the asset (together with the buy/sell signals), and—lastly—the technical
indicator of our choosing, as shown in the following plot:

Value (None) 1035
value 1011.56
1020
101156
1005

~~ AAPL (1 Day) C:153.92 230
MyBuySell (False, 0.015)
A by

v selt

220

160

153.92

150

15
Smasignal (20)
~ signal -9.69 N
569
[—15

From the preceding plot, we can see that, in the end, the trading strategy made
money: the terminal value of the portfolio is $1011.56.

[51]

Technical Analysis in Python Chapter 2

Strategy

To make the code more readable, we first present the general outline of the class (trading
strategy) and then define separate pieces in the following code blocks.

1. The template of the strategy is presented below:

class SmaStrategy (bt.Strategy) :
params = (('ma_period', 20),)

def _ _init_ (self):
some code

def log(self, txt):
some code

def notify_order(self, order):
some code

def notify_trade(self, trade):
some code

def next (self):
some code

The init__ block is defined as:

def _ init__ (self):
self.data_close = self.datas[0].close

self.order = None
self.price = None
self.comm = None

self.sma = bt.ind.SMA (self.datas[0],
period=self.params.ma_period)

The 1og block is defined as:

def log(self, txt):
dt = self.datas[0] .datetime.date (0) .isoformat ()
print (£'{dt}, {txt}")

[52]

Technical Analysis in Python Chapter 2

The notify_order block is defined as:

def notify_order(self, order):
if order.status in [order.Submitted, order.Accepted]:

return

if order.status in [order.Completed]:
if order.isbuy/() :
self.log (f'BUY EXECUTED --- Price:
{order.executed.price:.2f}, Cost: {order.executed.value:.2f},
Commission: {order.executed.comm:.2f}")
self.price = order.executed.price
self.comm = order.executed.comm

else:
self.log (f'SELL EXECUTED —--- Price:

{order.executed.price:.2f}, Cost: {order.executed.value:.2f},
Commission: {order.executed.comm:.2f}")

self.bar_executed = len(self)

elif order.status in [order.Canceled, order.Margin,
order.Rejected] :
self.log('Order Failed')

self.order = None

The notify_trade block is defined as:

def notify_trade(self, trade):
if not trade.isclosed:
return

self.log (f'OPERATION RESULT --- Gross: {trade.pnl:.2f},
Net: {trade.pnlcomm:.2f}")

The next block is defined as:

def next (self):
if self.order:
return

if not self.position:
if self.data_close[0] > self.sma[O0]:
self.log(f'BUY CREATED --- Price:
{self.data_close[0]:.2f}")
self.order = self.buy()
else:
if self.data_close[0] < self.sma[O0]:

[53]

Technical Analysis in Python Chapter 2

self.log(f'SELL CREATED —--- Price:
{self.data_close[0]:.2f}")
self.order = self.sell()

The code for data is the same as in the signal strategy, so it is not
included here, to avoid repetition.

2. Set up the backtest:

cerebro = bt.Cerebro(stdstats = False)

cerebro.adddata (data)
cerebro.broker.setcash (1000.0)
cerebro.addstrategy (SmaStrategy)
cerebro.addobserver (bt.observers.BuySell)
cerebro.addobserver (bt .observers.Value)

3. Run the backtest:

print (f'Starting Portfolio Value: {cerebro.broker.getvalue():.2f}")
cerebro.run ()
print (f'Final Portfolio Value: {cerebro.broker.getvalue():.2f}")

4. Plot the results:
cerebro.plot (iplot=True, volume=False)

The resulting graph is presented below:

[54]

Technical Analysis in Python Chapter 2

Value (None)
value 1011/56 et

7~ AAPL (1 Day) C:153.92 r 230
A MyBuysell (False, 0.015)
buy

v sl
—— SMA(20) 163 61

20\3‘07‘ 1013‘03 7_0\5‘{’4 7_0X3'°=’ 1013'06 7_0\5‘01 7_0\3‘°e 1013'09 2019"0 7_013‘“ 7_0x8“7'

From the preceding graph, we see that the strategy managed to make $11.56 over
the year. Additionally, we present a piece of the log;:

Starting Portfolio Value: 1000.00

2018-02-14, BUY CREATED --- Price: 164.23

2018-02-15, BUY EXECUTED --- Price: 166.60, Cost: 166.60, Commission: 0.00
2018-03-19, SELL CREATED --- Price: 172.01

2018-03-20, SELL EXECUTED =--- Price: 171.95, Cost: 166.60, Commission: 0.00
2018-03-20, OPERATION RESULT --- Gross: 5.35, Net: 5.35

2018-04-10, BUY CREATED --- Price: 170.00

2018-04-11, BUY EXECUTED --- Price: 169.00, Cost: 169.00, Commission: 0.00
2018-04-20, SELL CREATED --- Price: 162.61

2018-04-23, SELL EXECUTED --- Price: 163.70, Cost: 169.00, Commission: 0.00
2018-04-23, OPERATION RESULT --- Gross: -5.30, Net: -5.30

The log contains information about all the created and executed trades, as well as
the operation results, in case it was a sell.

[551]

Technical Analysis in Python Chapter 2

How it works...

The key idea of working with backtrader is that there is the main brain—Cerebro—and
by using different methods, we provided it with historical data, the designed trading
strategy, additional metrics we wanted to calculate (for example, Portfolio Value over the
investment horizon, or the overall Sharpe ratio), information about commissions/slippage,
and so on. These were the common elements between the two approaches. The part that
differed was the definition of the strategy. We start by describing the common elements of
the backtrader framework while assuming a trading strategy already exists, and we then
explain the details of the particular strategies.

Common elements

We started with downloading price data from Yahoo Finance, with the help of

the bt . feeds.YahooFinanceData () function. What followed was a series of operations
connected to Cerebro, as described here:

1. Creating the instance of bt . Cerebro and setting stdstats = False, in order
to suppress a lot of default elements of the plot. Doing so avoided cluttering the
output, and then we manually picked the interesting elements (observers and
indicators).

Adding data, using the adddata method.

Setting up the amount of available money, using the broker. setcash method.
Adding the signal/strategy, using the add_signal/addstrategy methods.
Adding Observers, using addobserver. We selected two Observers: BuySell, to
display the buy/sell decisions on the plot (denoted by blue and red triangles),
and Value, for tracking how the portfolio value changed over time.

SRR

You can also add data from a CSV file, a pandas DataFrame, Quandl, and
other sources. For a list of available options, please refer to bt . feeds.

[561]

Technical Analysis in Python Chapter 2

The last step involved running the backtest with cerebro. run () and displaying the
resulting plot with cerebro.plot (). In the latter step, we disabled displaying the volume
bar charts, to avoid cluttering the graph.

Signal

The signal was built as a class, inheriting from bt . Signal. The signal was represented as a
number—in this case, the difference between the current data point (self.data) and the
moving average (bt . ind. SMA). If the signal is positive, it is an indication to go long (buy).
A negative one indicates short (selling). The value of 0 means there is no signal.

The next step was to add the signal to Cerebro, using the add_signal method. When
doing so, we also had to specify what kind of signal we were adding.

The following is a description of the available signal types:

e LONGSHORT: This takes into account both long and short indications from the
signal.

¢ LONG: Positive signals indicate going long; negative ones are used to close the
long position.

e SHORT: Negative signals indicate shorting; positive ones are used to close the
short position.

o LONGEXIT: A negative signal is used to exit a long position.

e SHORTEXIT: A positive signal is used to exit a short position.

However, exiting positions can be more complex (enabling users to build more
sophisticated strategies), as described here:

¢ LONG: If there is a LONGEXIT signal, it is used to exit the long position, instead
of the default behavior mentioned previously. If there is a SHORT signal and no
LONGEXIT signal, the SHORT signal is used to close the long position before
opening a short one.

e SHORT: If there is a SHORTEXIT signal, it is used to exit the short position,
instead of the default behavior mentioned previously. If there is a LONG signal
and no SHORTEXIT signal, the LONG signal is used to close the short position
before opening a long one.

[571

Technical Analysis in Python Chapter 2

As you might have already realized, the signal is calculated for every time
point (as visualized in the bottom of the plot), which effectively creates a
continuous stream of positions to be opened/closed (the signal value of 0
is not very likely to happen). That is why backtrader, by default,
disables accumulation (the constant opening of new positions, even when
we have one already opened) and concurrency (generating new orders
without hearing back from the broker whether the previously submitted
ones were executed successfully).

Strategy

The strategy was built as a class, inheriting from bt . Strategy. Inside the class, we defined
the following methods (we were actually overwriting them to make them tailor-made for
our needs):

e _ init_ :Here, we defined the objects that we would like to keep track of, for
example, close price, order, buy price, commission, indicators such as SMA, and
SO on.

¢ log: This is defined for logging purposes.

® notify_order: This is defined for reporting the status of the order (position). In
general, on day ¢, the indicator can suggest opening/closing a position based on
the close price (assuming we are working with daily data). Then, the (market)
order will be carried out on the next day (using day t + 1's open price). However,
there is no guarantee that the order will be executed, as it can be canceled, or we
might have insufficient cash. This behavior is also true for strategies built with
signals. It also removes any pending order, by setting self.order = None.

e notify_trade: This is defined for reporting the results of trades (after the
positions are closed).

e next: This is the place containing the trading strategy's logic. First, we check
whether there is an order already pending, and do nothing if there is. The second
check is to see whether we already have a position (enforced by our strategy; not
a must), and, if we do not, we check whether the close price is higher than the
moving average. A positive outcome results in an entry to the log, and the
placing of a buy order self.order = self.buy (). Thisis also the place where
we can choose the stake (number of assets we want to buy). A default outcome in
self.buy(size=1).

[581]

Technical Analysis in Python Chapter 2

Here are some general notes:

e Cerebro should only be used once. If we want to run another backtest, we
should create a new instance, not add something to it after prior calculations.

e The strategy built on bt . Signal inherits from bt . Signal, and uses only one
signal. However, we can combine multiple signals, based on different conditions,
when we use bt . SignalStrategy instead.

e When we do not specify otherwise, all trades are carried out on one unit of the
asset.

® backtrader automatically handles the warm-up period. In this case, no trade
can be carried out until there are enough data points to calculate the 20-day
SMA. When considering multiple indicators at once, backtrader automatically
selects the longest necessary period.

There's more...

It is worth mentioning that backt rader has parameter optimization capabilities, which we
present in the code that follows. The code is a modified version of the strategy from this
recipe, in which we optimize the number of days in the SMA.

The following list provides details of modifications to the code (we only show the relevant
ones, as the bulk of the code is identical to that using bt . Strategy):

o We add an extra attribute called stop to the class definition—it returns the
Terminal portfolio value for each parameter:

def stop(self):

self.log(f' (ma_period = {self.params.ma_period:2d}) ---—
Terminal Value: {self.broker.getvalue():.2f}")

e Instead of using cerebro.addstrategy (), we use cerebro.optstrategy (),
and provide the strategy name and parameter values:

cerebro.optstrategy (SmaStrategy, ma_period=range (10, 31))

[591]

Technical Analysis in Python

Chapter 2

e We increase the number of CPU cores when running the backtesting;:

cerebro.run (maxcpus=4)

We present the results in the following summary (the order of parameters is not

preserved, as the testing was carried out on four cores):

We see that the strategy performed best for ma_period

See also

2018-12-28, (ma_period = 10) --- Terminal Value: 1006.25
2018-12-28, (ma_period 13) -—- Terminal Value: 992.28
2018-12-28, (ma_period 11) --- Terminal Value: 1004.34
2018-12-28, (ma_period 12) --- Terminal Value: 1005.81
2018-12-28, (ma_period 14) --- Terminal Value: 977.05
2018-12-28, (ma_period 15) --- Terminal Value: 981.33
2018-12-28, (ma_period 17) --- Terminal Value: 992.73
2018-12-28, (ma_period 16) --- Terminal Value: 979.72
2018-12-28, (ma_period 19) --- Terminal Vvalue: 1005.23
2018-12-28, (ma_period 18) --- Terminal Value: 994.77
2018-12-28, (ma_period 20) --- Terminal Value: 1011.62
2018-12-28, (ma_period 21) --- Terminal Value: 1013.64
2018-12-28, (ma_period 22) --- Terminal Value: 1021.24
2018-12-28, (ma_period 23) --- Terminal Value: 1018.70
2018-12-28, (ma_period 24) --- Terminal Value: 1018.70
2018-12-28, (ma_period 25) --- Terminal Value: 1018.22
2018-12-28, (ma_period 26) =--- Terminal Value: 1009.37
2018-12-28, (ma_period 27) =--- Terminal Value: 1008.22
2018-12-28, (ma_period 28) =--- Terminal Value: 1011.92
2018-12-28, (ma_period 29) --- Terminal Value: 1015.30
2018-12-28, (ma_period = 30) --- Terminal Value: 1013.13
= 22.

Additional resources are available here:

® https://www.zipline.io/: An alternative framework for backtesting. Developed
and actively maintained by Quantopian.

[60]

https://www.zipline.io/
https://www.zipline.io/
https://www.zipline.io/
https://www.zipline.io/
https://www.zipline.io/
https://www.zipline.io/
https://www.zipline.io/
https://www.zipline.io/
https://www.zipline.io/
https://www.zipline.io/

Technical Analysis in Python Chapter 2

Calculating Bollinger Bands and testing a
buy/sell strategy

Bollinger Bands are a statistical method, used for deriving information about the prices and
volatility of a certain asset over time. To obtain the Bollinger Bands, we need to calculate
the moving average and standard deviation of the time series (prices), using a specified
window (typically, 20 days). Then, we set the upper/lower bands at K times (typically, 2)
the moving standard deviation above/below the moving average.

The interpretation of the bands is quite sample: the bands widen with an increase in
volatility and contract with a decrease in volatility.

In this recipe, we build a simple trading strategy, with the following rules:

e Buy when the price crosses the lower Bollinger Band upwards.

e Sell (only if stocks are in possession) when the price crosses the upper Bollinger
Band downward.

o All-in strategy—when creating a buy order, buy as many shares as possible.

e Short selling is not allowed.

We evaluate the strategy on Microsoft's stock in 2018. Additionally, we set the commission
to be equal to 0.1%.

How to do it...
Execute the following steps to backtest a strategy based on the Bollinger Bands.

1. Import the libraries:

import backtrader as bt
import datetime
import pandas as pd

2. The template of the strategy is presented:

class BBand_Strategy (bt.Strategy) :
params = (('period', 20),
('devfactor', 2.0),)

def _ _init_ (self):
some code
def log(self, txt):

[61]

Technical Analysis in Python Chapter 2

some code

def notify_order(self, order):
some code

def notify_trade(self, trade):
some code

def next_open(self):
some code

The init__ block is defined as:

def _ _init_ (self):
keep track of close price in the series
self.data_close = self.datas[0].close
self.data_open = self.datas[0].open

keep track of pending orders/buy price/buy commission
self.order = None

self.price = None

self.comm = None

add Bollinger Bands indicator and track the buy/sell signals
self.b_band = bt.ind.BollingerBands (self.datas[0],
period=self.p.period,
devfactor=self.p.devfactor)
self.buy_signal = bt.ind.CrossOver (self.datas[0],
self.b_band.lines.bot)
self.sell_signal = bt.ind.CrossOver (self.datas[0],
self.b_band.lines.top)

The 1og block is defined as:

def log(self, txt):
dt = self.datas[0].datetime.date (0).isoformat ()
print (£'{dt}, {txt}"')

The notify_order block is defined as:

def notify_order(self, order):
if order.status in [order.Submitted, order.Accepted]:
return

if order.status in [order.Completed]:
if order.isbuy () :
self.log(
f'BUY EXECUTED --- Price:

[62]

Technical Analysis in Python Chapter 2

{order.executed.price:.2f}, Cost: {order.executed.value:.2f},
Commission: {order.executed.comm:.2f}"

)

self.price = order.executed.price

self.comm = order.executed.comm
else:
self.log(
f'SELL EXECUTED --- Price:

{order.executed.price:.2f}, Cost: {order.executed.value:.2f},
Commission: {order.executed.comm:.2f}"

)

elif order.status in [order.Canceled,

order.Rejected]:
self.log('Order Failed')

order.Margin,

self.order = None

The notify_trade block is defined as:

def notify_trade(self, trade):
if not trade.isclosed:
return

self.log (£f'OPERATION RESULT —--- Gross:

{trade.pnl:.2f},
Net: {trade.pnlcomm:.2f}")

The next_open block is defined as:

def next_open(self):
if not self.position:
if self.buy_signal > 0:

size = int (self.broker.getcash() /
self.datas[0] .open)
self.log(f'BUY CREATED —--- Size: {size}, Cash:
{self.broker.getcash():.2f}, Open: {self.data_open[0]},
{self.data_close[0]}")

self.buy(size=size)

Close:

else:
if self.sell_signal < 0:

self.log(f'SELL CREATED —--- Size:
{self.position.size}")

self.sell (size=self.position.size)

[63]

Technical Analysis in Python Chapter 2

3. Download the data:

data = bt.feeds.YahooFinanceData (
dataname="MSFT',
fromdate=datetime.datetime (2018, 1, 1),
todate=datetime.datetime (2018, 12, 31)
)

4. Set up the backtest:

cerebro = bt.Cerebro(stdstats = False, cheat_on_open=True)

cerebro.addstrategy (BBand_Strategy)

cerebro.adddata (data)

cerebro.broker.setcash(10000.0)

cerebro.broker.setcommission (commission=0.001)
cerebro.addobserver (bt.observers.BuySell)
cerebro.addobserver (bt .observers.Value)

cerebro.addanalyzer (bt.analyzers.Returns, _name='returns')
cerebro.addanalyzer (bt.analyzers.TimeReturn, _name='time_return')

5. Run the backtest:
print ('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())
backtest_result = cerebro.run ()
print ('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())

6. Plot the results:

cerebro.plot (iplot=True, volume=False)

[64]

Technical Analysis in Python Chapter 2

The resulting graph is presented below:

Value (None)
value 1063491 11400
10800
10200
MSFT (1 Day) C:98.93
MyBuysSell (False, 0.015) 112.84
buy -,
sell Ssa

- BollingerBands (20, 2.0) 103.62

<>

CrossOver

crossover 0.00

1
Crossover
" crossover 0.00
0.00]
-1

201802 201803 201804 2018°0° 20180¢ 200807 201808 20180° 201830 L0187 2018732

The log is presented below:

Starting Portfolio Value: 10000.00

2018-02-12, BUY CREATED --- Size: 115, Cash: 10000.00, Open: 86.54, Close: 86.92
2018-02-12, BUY EXECUTED --- Price: 86.54, Cost: 9952.10, Commission: 9.95
2018-04-19, SELL CREATED --- Size: 115

2018-04-19, SELL EXECUTED --- Price: 94.49, Cost: 9952.10, Commission: 10.87
2018-04-19, OPERATION RESULT --- Gross: 914.25, Net: 893.43

2018-06-29, BUY CREATED --- Size: 111, Cash: 10893.43, Open: 97.35, Close: 97.03
2018-06-29, BUY EXECUTED --- Price: 97.35, Cost: 10805.85, Commission: 10.81
2018-07-17, SELL CREATED --- Size: 111

2018-07-17, SELL EXECUTED --- Price: 102.94, Cost: 10805.85, Commission: 11.43
2018-07-17, OPERATION RESULT --- Gross: 620.49, Net: 598.26

2018-10-15, BUY CREATED --- Size: 106, Cash: 11491.69, Open: 107.58, Close: 106.29
2018-10-15, BUY EXECUTED --- Price: 107.58, Cost: 11403.48, Commission: 11.40
Final Portfolio Value: 10633.35

We can see that the strategy managed to make money, even after accounting for
commission costs. We now turn to an inspection of the analyzers.

7. Run the following code to investigate different returns metrics:

print (backtest_result[0].analyzers.returns.get_analysis())

[65]

Technical Analysis in Python Chapter 2

The output of the preceding line is as follows:

OrderedDict ([('rtot', 0.06155731237239935),

('ravg', 0.00024622924948959743),
('rnorm', 0.06401530037885826),
(

'rnorml100', 6.401530037885826)])

8. Create a plot of daily portfolio returns:

returns_dict =
backtest_result[0] .analyzers.time_return.get_analysis()
returns_df = pd.DataFrame (list (returns_dict.items()),
columns = ['report_date', 'return']) \
.set_index ('report_date')
returns_df.plot (title='Portfolio returns')

Running the code results in the following plot:

Portfolio returns

—— return

0.04

0.02

0.00 \
v

-0.02

-0.04

A
‘b"\

S & o & ® St g *® E\J AV
S o o o S o o S o oo o

report_date

The flat lines represent periods when we have no open positions.

[66]

Technical Analysis in Python Chapter 2

How it works...

There are a lot of similarities between the code used for creating the Bollinger Bands-based
strategy and that used in the previous recipe. That is why we only discuss the novelties,
and refer you to the Backtesting a strategy based on simple moving average recipe for more
details.

As we were going all-in in this strategy, we had to use a method called cheat_on_open.
This means that we calculated the signals on day #'s close price, but calculated the number
of shares we wanted to buy based on day t+1's open price. To do so, we had to set
cheat_on_open=True when creating the bt . Cerebro object. As a result, we also defined
a next_open method instead of next within the Strategy class. This clearly indicated to
Cerebro that we were cheating-on-open. Before creating a potential buy order, we
calculated size = int (self.broker.getcash() / self.datas[0].open), whichis
the maximum number of shares we could buy (the open price comes from day t+1). The last
novelty was that we also added commission directly to Cerebro by

using cerebro.broker.setcommission (commission=0.001).

When calculating the buy/sell signals based on the Bollinger Bands, we used the
CrossOver indicator. It returned the following:

e 1 if the first data (price) crossed the second data (indicator) upward
e -1 if the first data (price) crossed the second data (indicator) downward

We can also use CrossUp and CrossDown when we want to consider
crossing from only one direction. The buy signal would look like
this: self.buy_signal = bt.ind.CrossUp(self.datas[0],
self.b_band.lines.bot).

The last addition included utilizing analyzers—backtrader objects that help to evaluate
what is happening with the portfolio. In the following example, we used two analyzers:

e Returns: A collection of different logarithmic returns, calculated on the entire
timeframe: total compound return, the average return over the entire period, and
the annualized return.

e TimeReturn: A collection of returns over time (using a provided time-frame, in
this case, daily data).

[671]

Technical Analysis in Python Chapter 2

We can obtain the same result as from the TimeReturn analyzer by
8 adding an observer with the same name:

cerebro.addobserver (bt.observers.TimeReturn). The only

difference is that the Observer will be plotted on the main results plot,

which is not always desired.

Calculating the relative strength index and
testing a long/short strategy

The RSI is an indicator that uses the closing prices of an asset to identify
oversold/overbought conditions. Most commonly, the RSl is calculated using a 14-day
period, and it is measured on a scale from 0 to 100 (it is an oscillator). Traders usually buy
an asset when it is oversold (if the RSI is below 30), and sell when it is overbought (if the
RSl is above 70). More extreme high/low levels, such as 80-20, are used less frequently and,
at the same time, imply stronger momentum.

In this recipe, we build a trading strategy with the following rules:

e We can go long and short.
e For calculating the RSI, we use 14 periods (trading days).

¢ Enter a long position if the RSI crosses the lower threshold (standard value of 30)
upwards; exit the position when the RSI becomes larger than the middle level
(value of 50).

e Enter a short position if the RSI crosses the upper threshold (standard value of
70) downwards; exit the position when the RSI becomes smaller than 50.

¢ Only one position can be open at a time.

We evaluate the strategy on Facebook's stock in 2018, and apply a commission of 0.1%.

How to do it...

Execute the following steps to implement a strategy based on the RSI.

1. Import the libraries:

from datetime import datetime
import backtrader as bt

[68]

Technical Analysis in Python Chapter 2

2. Define the signal strategy, based on bt . SignalStrategy:

class Rs

iSignalStrategy (bt.SignalStrategy) :

params = dict (rsi_periods=14, rsi_upper=70,

def

rsi_lower=30, rsi_mid=50)

__init_ (self):

rsi = bt.indicators.RSI (period=self.p.rsi_periods,
upperband=self.p.rsi_upper,
lowerband=self.p.rsi_lower)

bt.talib.RSI(self.data, plotname='TA_RSI')
rsi_signal_long = bt.ind.CrossUp(rsi, self.p.rsi_lower,
plot=False)
self.signal_add (bt .SIGNAL_LONG, rsi_signal_long)
self.signal_add (bt .SIGNAL_LONGEXIT, - (rsi >
self.p.rsi_mid))

rsi_signal_short = -bt.ind.CrossDown(rsi, self.p.rsi_upper,
plot=False)

self.signal_add (bt .SIGNAL_SHORT, rsi_signal_short)

self.signal_add (bt .SIGNAL_SHORTEXIT, rsi < self.p.rsi_mid)

3. Download the data:

data = bt.feeds.YahooFinanceData (dataname='FB',

fromdate=datetime (2018, 1, 1),
todate=datetime (2018, 12, 31))

4. Set up and run the backtest:

cerebro

cerebro.
cerebro.
cerebro.
cerebro.
cerebro.
cerebro.

cerebro.

= bt.Cerebro(stdstats = False)

addstrategy (RsiSignalStrategy)

adddata (data)

broker.setcash (1000.0)
broker.setcommission (commission=0.001)
addobserver (bt .observers.BuySell)
addobserver (bt .observers.Value)

run ()

5. Plot the results:

cerebro.

plot (iplot=True, volume=False)

[69]

Technical Analysis in Python

Chapter 2

Running the code results in the following graph:

Value (None)
value 1004 47

1008
1004.47

1000

992

~

A
v sl

FB (1 Day) C:133.20
MyBuysell (False, 0.015)
buy

RSI(14)

B WWVN Wv%m/%~

TA_RSI

(14
real 24/34,

7_0‘3.0’1.

7_0\3&2

L0180? L0180t L0180° 201800 201807 201808 20180° L0830 L8t

We look at the triangles in pairs. The first one indicates opening a position (going
long if the triangle is blue and facing up; going short if the triangle is red and
facing down). The next triangle (of the opposite color and direction) indicates
closing a position. We can match the opening and closing of positions with the
RSI below the chart. Sometimes, there are multiple triangles of the same color in
sequence. That is because the RSI fluctuates around the line of opening a position,
crossing it multiple times, as we can see on the preceding RSI chart. But the actual
position is only opened on the first instance of a signal (no accumulation is the

default setting).

[70]

Technical Analysis in Python Chapter 2

How it works...

In this recipe, we built a trading strategy on top of bt . SignalStrategy. First, we defined
the indicator (RSI), with selected arguments. We also

added bt .talib.RSI (self.data,plotname='TA_RSI'), justto show that
backtrader provides an easy way to use indicators from the popular TA-Lib library

(the TA-Lib library must be installed for the code to work). The trading strategy does not
depend on this second indicator; it is only plotted for reference, and we could add an
arbitrary number of indicators.

Even when adding indicators for reference only, their existence influences
the "warm-up period." For example, if we additionally included a 200-day
SMA indicator, no trade would be carried out before there exists at least
one value for the SMA indicator.

The next step was to define signals. To do so, we used

the bt .CrossUp/bt . CrossDown indicators, which returned 1 if the first series (price)
crossed the second (upper or lower RSI threshold) from below/above, respectively. For
entering a short position, we made the signal negative, by adding a - in front of the

bt .CrossDown indicator.

We can disable printing any indicator, by adding plot=False to the
function call.

As the last step of defining the strategy, we added tracking of all the signals, by using the
signal_add method. For exiting the positions, the conditions we used (an RSI value
higher/lower than 50) resulted in a Boolean, which we had to make negative in case of
exiting a long position: ~True is the same as - 1.

Setting up and running the backtest is analogous to the previous recipe, so please refer to it
if in doubt regarding any of the steps.

Building an interactive dashboard for TA

In this recipe, we show how to build an interactive dashboard for technical analysis in
Jupyter Notebook. Of course, the same result could be achieved without any interactivity,
by writing the initial code, and then changing the parameter values inline multiple times.
However, we believe it is much better to create an interactive tool that can ease the pain, as
well as reduce the number of potential mistakes.

[71]

Technical Analysis in Python Chapter 2

In order to do so, we leverage a tool called IPython widgets (ipywidgets), in combination
with plotly and cufflinks. We select a few US tech stocks and three indicators
(Bollinger Bands, MACD, and RSI) for the dashboard, but this selection can be extended to
many more.

Getting ready

After installing the ipywidgets library, we need to run the following line in Terminal to
enable the extension:

jupyter nbextension enable —--py widgetsnbextension

How to do it...

Execute the following steps to create an interactive dashboard inside Jupyter Notebook.

1. Import the libraries:

import ipywidgets as wd

import cufflinks as cf

import pandas as pd

import yfinance as yf

from plotly.offline import iplot, init_notebook_mode
from ipywidgets import interact, interact_manual

init_notebook_mode ()

2. Define the possible values for assets and technical indicators:

stocks = ['IWTR', 'MSFT', 'GOOGL', 'FB', 'TSLA', 'AAPL']
indicators = ['Bollinger Bands', 'MACD', 'RSI']

3. Define a function for creating the interactive plot:

def ta_dashboard(asset, indicator, start_date, end_date,
bb_k, bb_n, macd_fast, macd_slow, macd_signal,
rsi_periods, rsi_upper, rsi_lower):
df = yf.download(asset,

start=start_date,
end=end_date,
progress=False,
auto_adjust=True)

gf = cf.QuantFig(df, title=f'TA Dashboard - {asset}',

[72]

Technical Analysis in Python Chapter 2

legend='right', name=f'{asset}')
if 'Bollinger Bands' in indicator:
gf.add_bollinger_bands (periods=bb_n,
boll_std=bb_k)
if 'MACD' in indicator:
gf.add_macd(fast_period=macd_fast,
slow_period=macd_slow,
signal_period=macd_signal)
if '"RSI' in indicator:
gf.add_rsi (periods=rsi_periods,
rsi_upper=rsi_upper,
rsi_lower=rsi_lower,
showbands=True)

return gf.iplot ()

4. Define the selectors:

stocks_selector = wd.Dropdown (
options=stocks,
value=stocks[0],
description="Asset'

indicator_selector = wd.SelectMultiple (
description='Indicator',
options=indicators,
value=[indicators[0]]

start_date_selector = wd.DatePicker (
description='Start Date',
value=pd.to_datetime ('2018-01-01"),
continuous_update=False

end_date_selector = wd.DatePicker (
description='End Date',
value=pd.to_datetime ('2018-12-31"),
continuous_update=False

[73]

Technical Analysis in Python Chapter 2

5. Define a label, and group the selectors inside a container:

main_selector_label = wd.Label ('Main parameters',
layout=wd.Layout (height="45px"))

main_selector_box = wd.VBox(children=[main_selector_label,
stocks_selector,
indicator_selector,
start_date_selector,
end_date_selector])

6. Define the secondary selectors for the Bollinger Bands:

bb_label = wd.Label ('Bollinger Bands')

n_param = wd.IntSlider (value=20, min=1, max=40, step=1,
description='N:"', continuous_update=False)

k_param = wd.FloatSlider (value=2, min=0.5, max=4, step=0.5,
description='k:', continuous_update=False)

bollinger_box = wd.VBox (children=[bb_label, n_param, k_param])

7. Define the secondary selectors for the MACD:

macd_label = wd.Label ('MACD')

macd_fast = wd.IntSlider (value=12, min=2, max=50, step=1,
description='Fast avg:',
continuous_update=False)

macd_slow = wd.IntSlider (value=26, min=2, max=50, step=1,
description='Slow avg:',
continuous_update=False)

macd_signal = wd.IntSlider (value=9, min=2, max=50, step=1,
description='MACD signal:',
continuous_update=False)

macd_box = wd.VBox (children=[macd_label, macd_fast,
macd_slow, macd_signall])

[74]

Technical Analysis in Python Chapter 2

8. Define the secondary selectors for the RSI:

rsi_label = wd.Label ('RSI'")

rsi_periods = wd.IntSlider (value=14, min=2, max=50, step=1,
description='RSI periods:',
continuous_update=False)

rsi_upper = wd.IntSlider (value=70, min=1, max=100, step=1,
description="'Upper Thr:',
continuous_update=False)

rsi_lower = wd.IntSlider (value=30, min=1, max=100, step=1,
description="'Lower Thr:',
continuous_update=False)

rsi_box = wd.VBox (children=[rsi_label, rsi_periods,
rsi_upper, rsi_lower])

9. Create the labels and group the selectors into containers:

sec_selector_label = wd.Label ('Secondary parameters',
layout=wd.Layout (height="45px"))
blank_label = wd.Label('', layout=wd.Layout (height='45px"'))

sec_box_1 = wd.VBox([sec_selector_label, bollinger_box, macd_box])
sec_box_2 = wd.VBox ([blank_label, rsi_box])

secondary_selector_box = wd.HBox([sec_box_1, sec_box_21])

10. Group the boxes and prepare the interactive output:

controls_dict = {'asset':stocks_selector,
'indicator':indicator_selector,
'start_date':start_date_selector,
'end_date':end_date_selector,
'bb_k':k_param,
'bb_n':n_param,
'macd_fast': macd_fast,
'macd_slow': macd_slow,
'macd_signal': macd_signal,

'rsi_periods': rsi_periods,

'rsi_upper': rsi_upper,

'rsi_lower': rsi_lower}
ui = wd.HBox ([main_selector_box, secondary_selector_box])
out = wd.interactive_output (ta_dashboard, controls_dict)

[75]

Technical Analysis in Python Chapter 2

11. Display the dashboard:
display (ui, out)

Running the last line displays the following graphical user interface (GUI):

Main parameters Secondary parameters
Asset | MSFT v | Bollinger Bands RSI
Indicator |Bollinger Bands N: 20 RSI periods: 14
MACD
RSI k: 2.00 Upper Thr: 70
MACD Lower Thr: 30
Start Date | 01/01/2017 Fast avg: 12
End Date | 31/12/2018 Slow avg: 26
MACD signal: 9

By selecting values of interest in the GUI, we can influence the interactive chart,
for example, by changing the technical indicators we want to display.

TA Dashboard - MSFT —— BOLL(Clase,20)

—— MACD([12,26])
—— MACD SIGNAL(9)

- MsFT

Apr 2017 Jul 2017 Oct 2017 Jan 2018 Apr 2018 Jul 2018 Oct 2018

Export to plot.ly »

[761]

Technical Analysis in Python Chapter 2

This time, we plotted both the Bollinger Bands and the MACD on top of the
candlestick chart. Inside of the Notebook, we can zoom in on areas of interest, to
further inspect the patterns.

How it works...

After importing the libraries, we defined lists of possible assets (represented by their
tickers), and the technical indicators from which to select.

In Step 3, we defined a function called ta_dashboard, which took as input all parameters
we made configurable: asset, technical indicators, range of dates, and indicator-specific
parameters. The function itself downloaded historical stock prices from Yahoo Finance and
used cufflinks to draw a candlestick chart, as we presented in the Creating a candlestick
chart recipe. Then, we added additional indicators to the figure, by using methods such as
add_bollinger_bands and providing the required arguments. For a list of all supported
technical indicators, please refer to the cuff1inks documentation.

Having prepared the function, we started defining the elements of the GUL In Step 4 and
Step 5, we defined the main selectors (such as the asset, technical indicators, and start/end
dates for downloading the data) and grouped them inside a vertical box (VBox), which
serves as storage for smaller elements and makes it easier to design the GUI. To indicate
which selectors belonged to a given box, we provided a list of the objects as the children
argument.

In Steps 6 to 9, we created the secondary container, this time with all the parameters
responsible for tuning the technical indicators. Some general notes about using selectors
and boxes are:

e We can turn off the continuous updating of sliders with
continuous_update=False, so the plot only updates when a new value is set,
not while moving it around.

e We can define the default value for a selector by providing the value argument.

e We can use blank labels (without any text) to align the elements of the boxes.

[77]

Technical Analysis in Python Chapter 2

In Step 10, we used the wd. interactive_output, to indicate that the output of

the ta_dashboard function would be modified by the interactive widgets (in a dictionary,
we assigned widgets to certain arguments of the function). Lastly, we ran display (ui,
out) to display the GUI, which in turn generated the plot.

There's more...

The main advantage of the dashboard presented in this recipe is that it is embedded within
Jupyter Notebook. However, we might want to move it outside of the local notebook and
make it available for everyone as a web application. To do so, we could use Dash, which is
Python's equivalent of R's vastly popular Shiny framework.

[78]

Time Series Modeling

In this chapter, we will introduce the basics of time series modeling. We start by explaining
the building blocks of time series and how to separate them using decomposition methods.
Later, we will introduce the concept of stationarity—why it is important, how to test for it,
and ultimately how to achieve it in case the original series is not stationary.

We will also look into two of the most widely used approaches to time series
modeling—the exponential smoothing methods and ARIMA class models. In both cases,
we will show you how to fit the models, evaluate the goodness of fit, and forecast future
values of the time series. Additionally, we will present a novel approach to modeling a time
series using the additive model from Facebook's Prophet library.

We cover the following recipes in this chapter:

¢ Decomposing time series
e Decomposing time series using Facebook's Prophet

Testing for stationarity in time series

Correcting for stationarity in time series

Modeling time series with exponential smoothing methods

Modeling time series with ARIMA class models

Forecasting using ARIMA class models

Decomposing time series

The goal of time series decomposition is to increase our understanding of the data by
breaking down the series into multiple components. It provides insight in terms of
modeling complexity and which approaches to follow in order to accurately capture each of
the components.

Time Series Modeling Chapter 3

These components can be divided into two types: systematic and non-systematic. The
systematic ones are characterized by consistency and the fact that they can be described and
modeled. By contrast, the non-systematic ones cannot be modeled directly.

The following are the systematic components:

¢ level: The mean value in the series.

e trend: An estimate of the trend, that is, the change in value between successive
time points at any given moment. It can be associated with the slope
(increasing/decreasing) of the series.

e seasonality: Deviations from the mean caused by repeating short-term cycles.
The following is the non-systematic component:
e noise: The random variation in the series

There are two types of models that are used for decomposing time series: additive and
multiplicative.

The following are the characteristics of the additive model:

Model's form: y(t) = level + trend + seasonality + noise

Linear model: changes over time are consistent in size

The trend is linear (straight line)

¢ Linear seasonality with the same frequency (width) and amplitude (height) of
cycles over time

The following are the characteristics of the multiplicative model:

e Model's form: y(t) = level * trend * seasonality * noise

¢ Non-linear model: changes over time are not consistent in size, for example,
exponential

e A curved, non-linear trend

¢ Non-linear seasonality with increasing/decreasing frequency and amplitude of
cycles over time

It can be the case that we do not want to work with the multiplicative model. One possible
solution is to apply certain transformations to make the trend/seasonality linear. One
example of a transformation could be taking the log of a series in which we observe
exponential growth.

[80]

Time Series Modeling Chapter 3

In this recipe, we present how to carry out time-series decomposition of monthly gold
prices downloaded from Quandl.

How to do it...

Execute the following steps to carry out the time series decomposition.
1. Import the libraries:

import pandas as pd
import quandl
from statsmodels.tsa.seasonal import seasonal_decompose

2. Download the prices of gold for 2000-2011 and resample to monthly values:

QUANDL_KEY = '{key}' # replace {key} with your own API key
quandl.ApiConfig.api_key = QUANDL_KEY

df = quandl.get (dataset='WGC/GOLD_MONAVG_USD',
start_date='2000-01-01",
end_date='2011-12-31")

df.rename (columns={"'Value': 'price'}, inplace=True)
df = df.resample('M').last ()

There are some duplicate values in the series. For example, there is an entry for
2000-04-28 and 2000-04-30, both with the same value. To deal with this issue,
we resample to monthly data by only taking the last available value (this does not
change any of the actual values; it only removes potential duplicates in each
month).

3. Add the rolling mean and standard deviation:

WINDOW_SIZE = 12

df['rolling mean'] = df.price.rolling(window=WINDOW_SIZE) .mean ()
df['rolling_std'] = df.price.rolling(window=WINDOW_SIZE) .std()
df .plot (title="'Gold Price')

[81]

Time Series Modeling Chapter 3

Executing the code results in the following plot:

Gold Price

—— gold_price
1750~ roling_mean
—— rolling_std

1500

1250

1000

750

500

250

2001 2003 2005 2007 2009 2011
Date

From the preceding plot, we can see that there is a non-linear growth pattern in
the 12-month moving average and that the rolling standard deviation increases
over time. That is why we decided to use the multiplicative model.

4. Carry out seasonal decomposition using the multiplicative model:

decomposition_results = seasonal_decompose (df.price,
model="multiplicative')
decomposition_results.plot () \
.suptitle ('Multiplicative Decomposition',
fontsize=18);

[82]

Time Series Modeling Chapter 3

The following decomposition plot is generated:

1750 Multiplicative Decomposition
1500

1250
1000
750
500
250

Observed

1500

1250

1000

Trend

750

500

250

1.02

1.01

1.10

1.05

1.00

Residual

0.95

0.90

2001 2003 2005 2007 2009 2011
Date

In the decomposition plot, we can see the extracted component series: trend,
seasonal, and random (residual). To evaluate whether the decomposition makes
sense, we can look at the random component. If there is no discernible pattern (in
other words, the random component is indeed random), then the fit makes sense.
For example, if we would have applied the additive model, there would be an
increasing pattern in the residuals over time. In this case, it looks like the variance
in the residuals is slightly higher in the second half of the dataset.

How it works...

After downloading the data in Step 2, we made sure that the series only contained one data
point per month (we enforced this by resampling the data to monthly frequency). To
calculate the rolling statistics, we used the ro11ing method of a pandas DataFrame and
specified the desired window size (12 months).

We used the seasonal_decompose function from the statsmodels library to carry out
the classical decomposition. When doing so, we indicated what kind of model we would
like to use—the possible values are additive and multiplicative.

[83]

Time Series Modeling Chapter 3

When using seasonal_decompose with an array of numbers, we must
specify the frequency of the observations (the freq argument) unless we
are working with a pandas Series object. In case we have missing values
or want to extrapolate the residual for the "warm-up" period at the
beginning of the series (when there is not enough data to calculate rolling
statistics), we can pass an extra argument, that

is, extrapolate_trend="'freq"'.

See also

There are some more advanced methods of decomposition available, such as Seasonal and
Trend decomposition using Loess (STL decomposition), Seasonal Extraction in ARIMA
Time Series (SEATS Decomposition), and X11 decomposition. More information can be
found in the following book:

e Hyndman, R.J., and Athanasopoulos, G. (2018) Forecasting: principles and practice,
2nd edition, OTexts: Melbourne, Australia. OTexts.com/fpp2. Accessed on
November 26, 2019.

Decomposing time series using Facebook's
Prophet

An alternative approach to time series decomposition is to use an additive model, in which
a time series is represented as a combination of patterns on different time scales (daily,
weekly, monthly, yearly, and so on) together with the overall trend. Facebook's Prophet
does exactly that, along with more advanced functionalities such as accounting for
changepoints (rapid changes in behavior), holidays, and much more. A practical benefit of
using this library is that we are able to forecast future values of the time series, along with a
confidence interval indicating the level of uncertainty.

In this recipe, we will try fitting Prophet's additive model to daily gold prices from
2000-2004 and predicting the prices over 2005.

[84]

Time Series Modeling Chapter 3

How to do it...

Execute the following steps to decompose the gold prices time series using Facebook's
Prophet and create forecasts for one year ahead.

1. Import the libraries and authenticate with Quandl:

import pandas as pd

import seaborn as sns

import quandl

from fbprophet import Prophet
QUANDL_KEY = '{key}' # replace {key} with your own API key
quandl.ApiConfig.api_key = QUANDL_KEY

2. Download the daily gold prices and rename the columns:
df = quandl.get (dataset='WGC/GOLD_DAILY_USD',

start_date='2000-01-01",
end_date='2005-12-31")

df.reset_index (drop=False, inplace=True)
df.rename (columns={"'Date': 'ds', 'Value': 'y'}, inplace=True)

3. Split the series into the training and test sets:

train_indices = df.ds.apply(lambda x: x.year) < 2005
df_train = df.loc[train_indices] .dropna/ ()
df_test = df.loc[~train_indices].reset_index (drop=True)

4. Create the instance of the model and fit it to the data:

model_prophet = Prophet (seasonality_mode='additive')
model_prophet.add_seasonality (name='monthly', period=30.5,
fourier_order=5)

model_prophet.fit (df_train)

5. Forecast the gold prices and plot the results:

df_future = model_prophet.make_future_dataframe (periods=365)
df_pred = model_prophet.predict (df_future)
model_prophet.plot (df_pred)

[85]

Time Series Modeling Chapter 3

The resulting plot is as follows:

600

550

500

450

400

350

300

250

2000 2001 2002 2003 2004 2005 2006
ds

The black dots are the actual observations of the gold price. The blue line
representing the fit does not match the observations exactly, as the model
smooths out the noise in the data (also reducing the chance of overfitting). An
important feature is that Prophet quantifies uncertainty, which is represented by
the blue intervals around the fitted line.

6. Inspect the decomposition of the time series:

model_prophet.plot_components (df_pred)

The decomposition is presented in the following plot:

[86]

Time Series Modeling Chapter 3

2000 2001 2002 2003 2004 2005 2006
ds

weekly
N

-2

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
Day of week
20

15
10

yearly

-5
-10
-15

January 1 March 1 May 1 July 1 September 1 November 1 January 1
Day of year

01/01 01/06 01/11 01/16 01/21 01/26 01/31

[871]

Time Series Modeling Chapter 3

Upon closer inspection, we can see that the overall trend is increasing and that the
gold price seems to be higher during the beginning and the end of the year, with a
dip in the summer. On the monthly level, there is some movement, but the scale is
much smaller than in the case of the yearly pattern. There is not a lot of
movement in the weekly chart (we do not look at weekends as there are no prices
for weekends), which makes sense because, with a decrease in the time scale, the
noise starts to wash out the signal. For this reason, we might disable the weekly
level altogether.

How it works...

Prophet was designed for analyzing time series with daily observations (which does not
mean that there are no ways to use weekly or monthly data) that exhibit patterns on
different time scales (weekly, monthly, yearly, and so on).

In Step 2, we downloaded daily gold prices from Quandl and created a pandas DataFrame
with two columns: ds, indicating the timestamp, and y, which is the target variable. This
structure (column names) is required for working with Prophet. Then, we split the
DataFrame into training (years 2000-2004) and test (the year 2005) sets by slicing over time.

In Step 4, we instantiated the model with additive seasonality. Additionally, we added the
monthly seasonality by using the add_seasonality method with values suggested by
Prophet's documentation. To fit the model, we used the £it method, which is known from
the popular scikit-learn library.

In Step 5, we used the fitted model for predictions. To create forecasts with Prophet, we had
to create a future_dataframe by using the make_future_dataframe method and
indicating how many periods we wanted to obtain (by default, this is measured in days).
We created the predictions using the predict method of the fitted model.

We inspected the components of the model (the decomposition) in Step 6. To do so, we used
the plot_components method with the prediction DataFrame as the argument.

[881]

Time Series Modeling Chapter 3

There's more...

We are also interested in some basic performance evaluation of the fitted model. Execute
the following steps to visually inspect the predicted versus actual gold prices in 2005.

1. Merge the test set with the forecasts:
selected_columns = ['ds', 'vhat_lower', 'vhat_upper', 'vhat']

df_pred = df_pred.loc[:, selected_columns].reset_index (drop=True)

df_test = df_test.merge(df_pred, on=['ds'], how='left')
df_test.ds = pd.to_datetime (df_test.ds)
df_test.set_index('ds', inplace=True)

We merged the test set with the prediction DataFrame. We used a left join, which
returns all the rows from the left table (test set) and the matched rows from the
right table (prediction DataFrame) while leaving the unmatched rows empty. This
way, we also kept only the dates that were in the test set (Prophet created
predictions for the next 365 days, including weekends and potential holidays).

2. Plot the test values versus predictions:
fig, ax = plt.subplots(1l, 1)

ax = sns.lineplot (data=df_test[['y', 'vhat_lower', 'vyhat_upper',
"yvhat']1])
ax.fill_between (df_test.index,
df_test.yhat_lower,
df_test.yhat_upper,
alpha=0.3)
ax.set (title='Gold Price - actual vs. predicted’',
xlabel="'Date’',
ylabel="'Gold Price ($)"'")

[891]

Time Series Modeling Chapter 3

Executing the code results in the following plot:

Gold Price - actual vs. predicted
— ¥
—~ yhat_lower

575 - yhat_upper
-~ yhat

525

500

Gold Price ($)

450

oo
-l

400

N ANl

e A Vo)

L g
Vo~

2005-01 2005-03 2005-05 2005-07 2005-09 2005-11 2006-01
Date

From the preceding plot, we can see that Prophet accurately (at least visually)
predicted the price of gold over 2005. It was only over the first two months that
the observed prices were outside of the confidence interval.

Testing for stationarity in time series

A stationary time series is a series in which statistical properties such as mean, variance,
and covariance are constant over time. Stationarity is a desired characteristic of time series
as it makes modeling and extrapolating (forecasting) into the future more feasible. Some
drawbacks of non-stationary data are:

e Variance can be misspecified by the model
e Worse model fit
e Cannot leverage valuable time-dependent patterns in the data

[90]

Time Series Modeling

Chapter 3

In this recipe, we show you how to test the time series for stationarity. To do so, we employ

the following methods:

¢ The Augmented Dickey-Fuller (ADF) test
¢ The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test
e Plots of the (partial) autocorrelation function (PACF/ACF)

We investigate the stationarity of monthly gold prices from the years 2000-2011.

Getting ready

We will use the same data that we used in the Decomposing time series recipe. In the plot
presenting the rolling mean and standard deviation of the gold prices, we have already

seen that the statistics seem to increase over time, suggesting non-stationarity.

How to do it...

Execute the following steps to test the given time series for stationarity.

1. Import the libraries:

import pandas as pd

from statsmodels.graphics.tsaplots import plot_acf, plot_pact

from statsmodels.tsa.stattools import adfuller, kpss

2. Define a function for running the ADF test:

def adf_test (x):
indices = ['Test Statistic', 'p-value',
'# of Lags Used', '# of Observations Used']
adf_test = adfuller(x, autolag='AIC'")

results = pd.Series(adf_test[0:4], index=indices)
for key, value in adf_test[4].items():
results[f'Critical Value ({key})'] = value

return results

Now, we can run the test:

adf_test (df.price)

[91]

Time Series Modeling Chapter 3

The code generates the following summary:

Test Statistic 3.510499
p-value 1.000000
of Lags Used 14.000000
of Observations Used 129.000000
Critical Vvalue (1%) -3.482088
Critical Value (5%) -2.884219
Critical Vvalue (10%) -2.578864

The null hypothesis of the ADF test states that the time series is not stationary.
With a p-value of 1 (or equivalently, the test statistic larger than the critical value
for the selected confidence level), we have no reason to reject the null hypothesis,
meaning that we can conclude that the series is not stationary.

3. Define a function for running the KPSS test:

def kpss_test (x, hO_type='c'):

indices = ['Test Statistic', 'p-value', '# of Lags']

kpss_test = kpss(x, regression=h0_type)

results = pd.Series (kpss_test[0:3], index=indices)

for key, value in kpss_test[3].items() :
results[f'Critical Value ({key})'] = value

return results
Now, we can run the test:
kpss_test (df.price)

The code generates the following summary:

Test Statistic 0.985671
p-value 0.010000
of Lags 14.000000
Critical Value (10%) 0.347000
Critical Value (5%) 0.463000
Critical Value (2.5%) 0.574000
Critical Value (1%) 0.739000

The null hypothesis of the KPSS test is that the time series is stationary. With a p-
value of 0.01 (or test statistic greater than the selected critical value), we have
reasons to reject the null hypothesis in favor of the alternative one, meaning that
the series is not stationary.

[92]

Time Series Modeling

Chapter 3

4. Generate the ACF/PACEF plots:

N_LAGS = 40
SIGNIFICANCE_LEVEL =

fig, ax =
plot_acf (df.price,

plt.subplots (2,
ax=ax[07],

0.05

1)
lags=N_LAGS,

alpha=SIGNIFICANCE_LEVEL)

plot_pacf (df.price,

ax=ax[1],

lags=N_LAGS,

alpha=SIGNIFICANCE_LEVEL)

The output is as follows:

RRRRRRHRTRHTR

Autocorrelation

HHHHHIHHHHHH

20 25 30 35 40

Partial Autocorrelation

20 25 30 35 40

In the ACF plot, we can see that there are significant autocorrelations (above the
95% confidence interval, corresponding to the selected 5% significance level).
There are also some significant autocorrelations at lags 1 and 4 in the PACF plot.

[93]

Time Series Modeling Chapter 3

How it works...

In Step 2, we defined a function used for running the ADF test and printing out the results.
We specified autolag="AIC' inthe adfuller function, sothe number of considered
lags is automatically selected based on the Akaike Information Criterion (AIC).
Alternatively, we could select this value manually.

For the kpss function (Step 3), we specified the regression argument. A value of

'c' corresponds to the null hypothesis stating that the series is level-stationary, while
'ct' corresponds to trend-stationary (removing the trend from the series would make it
level-stationary).

For all the tests and the autocorrelation plots, we selected the significance level of 5%,
which is the probability of rejecting the null hypothesis (H0) when it is, in fact, true.

Correcting for stationarity in time series

In this recipe, we investigate how to make a non-stationary time series stationary by using
the following transformations:

e Deflation: Accounting for inflation in monetary series using the Consumer Price
Index (CPI)

¢ Natural logarithm: Making the exponential trend closer to linear

¢ Differencing: Taking the difference between the current observation and a
lagged value (observation x time points before it)

We use the same data that we used in the Testing for stationarity in time series recipe. The
conclusion from that recipe was that the time series of monthly gold prices from 2000-2011
was not stationary.

How to do it...

Execute the following steps to transform the series from non-stationary to stationary.
1. Import the libraries and update the inflation data:

import cpi

import pandas as pd

from datetime import date

from statsmodels.graphics.tsaplots import plot_acf, plot_pact
from statsmodels.tsa.stattools import adfuller, kpss

[94]

Time Series Modeling Chapter 3

from chapter_3_utils import test_autocorrelation

update the CPI data (if needed)
cpi.update ()

2. Deflate the gold prices (to 2011-12-31 USD values) and plot the results:

DEFL_DATE = date (2011, 12, 31)

df['dt_index'] = df.index.map(lambda x: x.to_pydatetime () .date())
df['price_deflated'] = df.apply(lambda x:
cpi.inflate(x.price,
x.dt_index,
DEFL_DATE),
axis=1)
df[['price', 'price_deflated']].plot(title="'Gold Price
(deflated) ') ;

We can observe the inflation-adjusted prices in the following plot:

Gold Price (deflated)
1800

—— gold_price
——— gold_price_deflated

1600

1400

1200

1000

800

600

400

200
2001 2003 2005 2007 2009 2011
Date

We could also adjust the gold prices to another point of time, as long as it is the
same point for the entire series.

[95]

Time Series Modeling Chapter 3

3. Deflate the series using a natural logarithm and plot it with the rolling metrics:

WINDOW = 12
selected_columns = ['price_log', 'rolling_mean_log',
'rolling_std_log']

df['price_log'] = np.log(df.price_deflated)
df['rolling _mean_log'] = df.price_log.rolling(window=WINDOW) \
.mean ()
df['rolling_std_log'] = df.price_log.rolling (window=WINDOW) \
.std ()

df [selected_columns].plot (title="'Gold Price (logged)')

Executing the code results in the following output:

Gold Price (logged)

—— gold_price_log
- rolling_mean_log
= rolling_std_log

2001 2003 2005 2007 2009 2011
Date

From the preceding plot, we can see that the log transformation did its job, that is,
it made the exponential trend linear.

4. Use test_autocorrelation (the helper function for this chapter) to
investigate whether the series became stationary:

test_autocorrelation(df.price_log)

[961]

Time Series Modeling Chapter 3

Executing the code results in the following plot:

Autocorrelation

HlH‘HHHHHHHH|||Hllllllllmm

5 10 15 20 25 30 35 40

Partial Autocorrelation

We also receive the results of the statistical tests:

ADF test statistic: 0.89 (p-val: 0.99)
KPSS test statistic: 1.04 (p-val: 0.01)

After inspecting the results of the statistical tests and the ACF/PACF plots, we can
conclude that deflation and a natural algorithm were not enough to make the
gold prices stationary.

5. Apply differencing to the series and plot the results:

selected_columns = ['price_log_diff', 'roll_mean_log_diff',
'roll_std_log_diff']
df['price_log_diff'] = df.price_log.diff (1)
df['roll _mean_log_diff'] = df.price_log diff.rolling (WINDOW) \
.mean ()
df['roll_std_log diff'] = df.price_log_diff.rolling (WINDOW) \
.std()

df [selected_columns].plot (title="'Gold Price (1st differences)')

[97]

Time Series Modeling Chapter 3

Executing the code results in the following output:

Gold Price (1st differences)

—— price_log_diff
—— roll_mean_log_diff
040 —— roll_std_log_diff

\1
~

2001 2003 2005 2007 2009 2011
Date

The transformed gold prices make the impression of being stationary — the series
oscillates around 0 with more or less constant variance. At least there is no visible
trend.

6. Test whether the series became stationary:

test_autocorrelation(df.price_log_diff.dropnal())

[981]

Time Series Modeling

Chapter 3

Executing the preceding code results in the following plot:

Autocorrelation

I
| [r*=1r>> +71~ ‘[I | R |

Partial Autocorrelation

We also receive the results of the statistical tests:

-9.13
0.37

ADF test statistic:
KPSS test statistic:

(p—val: 0.00)
(p-val: 0.09)

After applying the first differences, the series became stationary at the 5%
significance level (according to both tests). In the ACF/PACEF plots, we can see
that there was a significant value of the function at lag 11 and 22. This might
indicate some kind of seasonality or simply be a false signal. Using a 5%
significance level means that 5% of the values might lie outside the 95%
confidence interval — even when the underlying process does not show any

autocorrelation or partial autocorrelation.

[991]

Time Series Modeling Chapter 3

How it works...

We address each transformation separately:

Deflation: In Step 2, we used the cpi library to account for inflation in the US dollar. The
library relies on the CPI-U index recommended by the Bureau of Labor Statistics. To make
it work, we created an artificial index column containing dates as objects of

the datetime.date class. The inflate function takes the following arguments:

e value: The dollar value we want to adjust.
e yvear_or_month: The date that the dollar value comes from.

e to: Optionally, the date we want to adjust to. If we don't provide this argument,
the function will adjust to the most recent year.

Log transformation: In Step 3, we applied the natural logarithm (np . 1og) to all the values
to make the exponential trend linear. This operation was applied to prices that had already
been corrected for inflation.

Taking the first difference: In Step 5, we used the diff method to calculate the difference
between the value in time f and time -1 (the default setting corresponds to the first
difference). We can specify a different number by changing the period argument.

There's more...

The considered gold prices do not contain obvious seasonality. However, if the dataset
shows seasonal patterns, there are a few potential solutions:

¢ Adjustment by differencing: Instead of using the first order differencing, use a
higher-order one, for example, if there is yearly seasonality in monthly data, use
diff(12).

¢ Adjustment by modeling: We can directly model the seasonality and then
remove it from the series. One possibility is to extract the seasonal component
from seasonal_decompose or another more advanced automatic
decomposition algorithm. In this case, we should subtract the seasonal
component when using the additive model or divide by it if the model is
multiplicative. Another solution is to use np.polyfit () to fit the best
polynomial of a chosen order to the selected time series and then subtract it from
the original series.

[100]

Time Series Modeling Chapter 3

The Box-Cox transformation is another type of adjustment we can use on the time series
data. It combines different exponential transformation functions to make the distribution
more similar to the Normal (Gaussian) distribution. We can use boxcox from scipy, which
allows us to automatically find the value of the 1ambda parameter for the best fit. One
condition to be aware of is that all the values in the series must be positive, the
transformation should not be used after 1st differences or any transformations that
introduce negative values to the series.

A library called pmdarima (more on this library can be found in the Modeling time series
with ARIMA class models recipe) contains two functions that employ statistical tests to
determine how many times we should differentiate the series in order to achieve
stationarity (and also remove seasonality, that is, seasonal stationarity).

We can employ the following tests to investigate stationarity: ADF, KPSS, and
Phillips—Perron (PP):

from pmdarima.arima import ndiffs, nsdiffs

print (f"Suggested # of differences (ADF): {ndiffs(df.price, test='adf')}")
print (f"Suggested # of differences (KPSS): {ndiffs(df.price,
test="kpss')}")

print (f"Suggested # of differences (PP): {ndiffs(df.price, test='pp')}")

The output of the preceding code is as follows:

Suggested # of differences (ADF): 1
Suggested # of differences (KPSS): 2
Suggested # of differences (PP): 1

For the KPSS test, we can also specify what type of null hypothesis we want to test against.
The default is level stationarity (null="'1level"). The results of the tests suggest that the
series (without any differencing) is not stationary.

The library also contains two tests for seasonal differences:

¢ Osborn, Chui, Smith, and Birchenhall (OCSB)
¢ Canova-Hansen (CH)

To run them, we also need to specify the frequency of our data (12, in our case) as we are
working with monthly data:

print (f"Suggested # of differences (OSCB): {nsdiffs(df.price, m=12,
test='ocsb')}")

print (f"Suggested # of differences (CH): {nsdiffs(df.price, m=12,
test='ch')}")

[101]

Time Series Modeling Chapter 3

The output is as follows:

Suggested # of differences (OSCB): O
Suggested # of differences (CH): O

The results suggest no seasonality in gold prices.

Modeling time series with exponential
smoothing methods

Exponential smoothing methods are suitable for non-stationary data (that is, data with a
trend and/or seasonality) and work similarly to exponential moving averages. The forecasts
are weighted averages of past observations. These models put more emphasis on recent
observations as the weights become exponentially smaller with time. Smoothing methods
are popular because they are fast (not a lot of computations are required) and relatively
reliable when it comes to forecasts:

Simple exponential smoothing: The most basic model is called Simple Exponential
Smoothing (SES). This class of models is most apt for cases when the considered time series
does not exhibit any trend or seasonality. They also work well with series with only a few
data points.

The model is parameterized by a smoothing parameter o with values between 0 and 1. The
higher the value, the more weight is put to recent observations. When a = 0, the forecasts
for the future are equal to the average of historical data (the one that the model was fitted
to). When a = 1, all the forecasts have the same value as the last observation in the training
data.

Simple Exponential Smoothing's forecast function is flat, that is, all the forecasts, regardless
of the time horizon, are equal to the same value—the last level component. That is why this
method is only suitable for series with neither trend nor seasonality.

Holt's linear trend method: Holt's model is an extension of SES that accounts for a trend in
the series by adding the trend component into the model specification. This model should
be used when there is a trend in the data, but no seasonality.

One issue with Holt's model is that the trend is constant in the future, which means that it
increases/decreases indefinitely. That is why an extension of the model dampens the trend
by adding the dampening parameter, ¢. It makes the trend converge to a constant value in
the future, effectively flattening it. Hyndman and Athanasopoulos (2018) state that ¢ is
rarely smaller than 0.8, as the dampening has a very strong effect for smaller values of ¢.

[102]

Time Series Modeling Chapter 3

The best practice is to restrict the values of ¢ so that they lie between 0.8 and 0.98, because
for ¢ =1 the damped model is equivalent to the model without dampening.

In this recipe, we show you how to apply smoothing methods to Google's monthly stock
prices (non-stationary data with a trend and no visible seasonality). We fit the model to the
prices from 2010-2017 and make forecasts for 2018.

Getting ready

In the following recipes, we will be plotting multiple lines on the same plots, each of them
representing a different model specification. That is why we want to make sure these lines
are clearly distinguishable, especially in black and white. For that reason, from now until
the last recipe of this chapter, we will be using a different color palette for the plots, that
is, cubehelix:

plt.set_cmap ('cubehelix"')
sns.set_palette ('cubehelix")

COLORS = [plt.cm.cubehelix(x) for x in [0.1, 0.3, 0.5, 0.7]]

In the preceding code, we defined a list of four colors. We will use these instead of using
the standard color codes (red/green/blue/gray).

How to do it...

Execute the following steps to use the exponential smoothing methods to create forecasts of
Google's stock prices.

1. Import the libraries:

import pandas as pd

import numpy as np

import yfinance as yf

from datetime import date

from statsmodels.tsa.holtwinters import (ExponentialSmoothing,
SimpleExpSmoothing,
Holt)

[103]

Time Series Modeling Chapter 3

2. Download the adjusted stock prices for Google:

df = yf.download('GOOG',
start='2010-01-01",
end='2018-12-31",
adjusted=True,
progress=False)

3. Aggregate to monthly frequency:

goog = df.resample('M') \
.last () \
.rename (columns={'Adj Close': 'adj_close'}) \
.adj_close

4. Create the training/test split:

train_indices = goog.index.year < 2018
goog_train = goog[train_indices]
goog_test = goog[~train_indices]

test_length = len(goog_test)

5. Plot the prices:

goog.plot (title="Google's Stock Price")

The preceding code generates the following plot:

[104]

Time Series Modeling Chapter 3

Google's Stock Price

1200

1000

800

600

400

200

2010 2011 2012 2013 2014 2015 2016 2017 2018

Date

6. Fit three SES models and create forecasts for them:

ses_1 =

ses_forecast_1

ses_2

ses_forecast_2

SimpleExpSmoothing (goog_train) .fit (smoothing_level=0.2)
ses_1.forecast (test_length)

SimpleExpSmoothing (goog_train) .fit (smoothing_level=0.5)
ses_2.forecast (test_length)

ses_3 = SimpleExpSmoothing(goog_train) .fit ()

alpha

ses_forecast_3

ses_3.model.params|['smoothing_level']

ses_3.forecast (test_length)

N

. Plot the original prices and the models' results:

goog.plot (color=COLORS[O0],
title='Simple Exponential Smoothing',
label="'Actual',
legend=True)

ses_forecast_1.plot (color=COLORS[1], legend=True,
label=r's$\alpha=0.2$")
ses_1l.fittedvalues.plot (color=COLORS[1])

ses_forecast_2.plot (color=COLORS[2], legend=True,
label=r's$\alpha=0.5$")

[105]

Time Series Modeling Chapter 3

ses_2.fittedvalues.plot (color=COLORS[2])

ses_forecast_3.plot (color=COLORS[3], legend=True,
label=r'$\alpha={0:.4f}$'.format (alpha))

ses_3.fittedvalues.plot (color=COLORS[3])

Executing the code results in the following plot:

Simple Exponential Smoothing

—— Actual

— a=02

— a=05
=0.9408

1200

1000

800

600

400

2010 2011 2012 2013 2014 2015 2016 2017 2018
Date

In the preceding plot, we can see the characteristic of the SES we described in the
introduction to this recipe—the forecast is a flat line. We can also see that the
optimal value that was selected by the statsmodels optimization routine is
close to 1. Additionally, the fitted line of the third model is effectively the line of
the observed prices shifted to the right.

[106]

Time Series Modeling Chapter 3

8. Fit three variants of Holt's smoothing model and create forecasts:

Holt's model with linear trend
hs_1 = Holt (goog_train) .fit ()
hs_forecast_1 = hs_1.forecast (test_length)

Holt's model with exponential trend
hs_2 = Holt (goog_train, exponential=True).fit ()
hs_forecast_2 = hs_2.forecast (test_length)

Holt's model with exponential trend and damping

hs_3 = Holt (goog_train, exponential=False,
damped=True) .fit (damping_slope=0.99)

hs_forecast_3 = hs_3.forecast (test_length)

Holt (goog_train, exponential=True) isequivalentto
ExponentialSmoothing (goog_train, trend='mul').

9. Plot the original prices and the models' results:

goog.plot (color=COLORS[O0],
title="Holt's Smoothing models",
label="'Actual',
legend=True)

hs_1.fittedvalues.plot (color=COLORS[1])
hs_forecast_1.plot (color=COLORS[1], legend=True,
label="Linear trend')

hs_2.fittedvalues.plot (color=COLORS[2])
hs_forecast_2.plot (color=COLORS[2], legend=True,
label="Exponential trend')

hs_3.fittedvalues.plot (color=COLORS[3])
hs_forecast_3.plot (color=COLORS[3], legend=True,
label="Exponential trend (damped)"')

[107]

Time Series Modeling Chapter 3

Executing the code results in the following plot:

Holt's Smoothing models

— Actual
—— Linear trend

—— Exponential trend

1200 Exponential trend (damped)

1000

800
\

2016 2017 2018

2010 2011 2012 2013 2014 2015
Date

We can already observe an improvement since the lines are not flat anymore, as
compared to SES.

How it works...

In Steps 2 to 5, we downloaded Google's stock prices from 2010-2018, resampled the values
to a monthly frequency, split the data into training (2010-2017) and test (2018) sets, and
plotted the series.

[108]

Time Series Modeling Chapter 3

In Step 6, we fitted three different SES models using the SimpleExpSmoothing class and
its £it method. For fitting, we only used the training data. We could have manually
selected the value of the smoothing parameter (smoothing_level), however, the best
practice is to let statsmodels optimize it for the best fit. This optimization is done by
minimizing the sum of squared residuals (errors). We created the forecasts using the
forecast method, which requires the number of periods we want to forecast for (which is
equal to the length of the test set). In Step 7, we visualized the results and compared them to
the actual stock prices. We extracted the fitted values of the model by using the
fittedvalues method of the fitted model.

In Step 8, we used the Holt class (which is a wrapper around the more

general ExponentialSmoothing class) to fit Holt's linear trend model. By default, the
trend in the model is linear, but we can make it exponential by specifying
exponential=True and add dampening with damped=True. As in the case of SES, using
the fit method with no arguments results in running the optimization routine to
determine the optimal value of the parameter. We can access it by running
fitted_model.params. In our example, we manually specified the value of the
dampening parameter to be 0.99, as the optimizer selected 1 to be the optimal value, and
this would be indistinguishable on the plot. In Step 9, we visualized the results.

There's more...

There is an extension of Holt's method called Holt-Winter's Seasonal Smoothing. It
accounts for seasonality in the time series. There is no separate class for this model, but we
can tune the ExponentialSmoothing class by adding the seasonal and
seasonal_periods arguments.

Without going into too much detail, this method is most suitable for data with trend and
seasonality. There are two variants of this model and they have either additive or
multiplicative seasonalities. In the former one, the seasonal variations are more or less
constant throughout the time series. In the latter one, the variations change in proportion to
the passing of time.

[109]

Time Series Modeling Chapter 3

We begin by fitting the models:

SEASONAL_PERIODS = 12

Holt-Winter's model with exponential trend
hw_1 = ExponentialSmoothing(goog_train,
trend="mul',
seasonal="'add',
seasonal_periods=SEASONAL_PERIODS) .fit ()
hw_forecast_1 = hw_1.forecast (test_length)

Holt-Winter's model with exponential trend and damping

hw_2 = ExponentialSmoothing(goog_train,
trend="mul',
seasonal='add',
seasonal_periods=SEASONAL_PERIODS,
damped=True) .fit ()

hw_forecast_2 = hw_2.forecast (test_length)

Then, we plot the results:

goog.plot (color=COLORS[O0],
title="Holt-Winter's Seasonal Smoothing",
label="Actual',
legend=True)

hw_1.fittedvalues.plot (color=COLORS[1])
hw_forecast_1.plot (color=COLORS[1], legend=True,
label='Seasonal Smoothing')

phi = hw_2.model.params|['damping_slope']
plot_label = f'Seasonal Smoothing (damped with $\phi={phi:.4f}$)"

hw_2.fittedvalues.plot (color=COLORS[2])
hw_forecast_2.plot (color=COLORS[2], legend=True,
label=plot_label)

[110]

Time Series Modeling Chapter 3

Executing the code results in the following plot:

Holt-Winter's Seasonal Smoothing

—— Actual
—— Seasonal Smoothing
~—— Seasonal Smoothing (damped with ¢ = 0.9825)

1400

1200

1000

800

600

400

200

2010 2011 2012 2013 2014 2015 2016 2017 2018
Date

From the plotted forecasts, we can see that the model is more flexible in comparison to SES
and Holt's linear trend models. The extreme fitted values at the beginning of the series are a
result of not having enough observations to look back on (we selected
seasonal_periods=12 as we are dealing with monthly data).

Modeling time series with ARIMA class
models

ARIMA models are a class of statistical models that are used for analyzing and forecasting
time series data. They aim to do so by describing the autocorrelations in the data. ARIMA
stands for Autoregressive Integrated Moving Average and is an extension of a simpler
ARMA model. The goal of the additional integration component is to ensure stationarity of
the series, because, in contrast to the exponential smoothing models, the ARIMA class
requires the time series to be stationary. In the next few paragraphs, we briefly go over the
building blocks of ARIMA models.

[111]

Time Series Modeling Chapter 3

AR (autoregressive) model:

e This kind of model uses the relationship between an observation and its lagged
values.

e In the financial context, the autoregressive model tries to account for the
momentum and mean reversion effects.

I (integration):

e Integration, in this case, refers to differencing the original time series (subtracting
the value from the previous period from the current period's value) to make it
stationary.

¢ The parameter responsible for integration is d (called degree/order of
differencing) and indicates the number of times we need to apply differencing.

MA (moving average) model:

e This kind of model uses the relationship between an observation and the white
noise terms (shocks that occurred in the last g observations).

¢ In the financial context, the moving average models try to account for the
unpredictable shocks (observed in the residuals) that influence the observed time
series. Some examples of such shocks could be natural disasters, breaking news
connected to a certain company, and so on.

All of these components fit together and are directly specified in the commonly used
notation known as ARIMA (p,d,q).

By setting the parameters of the ARIMA model, we can obtain some
special cases:

- ARIMA (0,0,0): White noise

- ARIMA (0,1,0) without constant: Random walk

- ARIMA (p,0,q): ARMA(p, q)

- ARIMA (p, 0, 0): AR(p) model

- ARIMA (0, 0, q): MA(q) model

- ARIMA (0,1,2): Damped Holt's model

- ARIMA (0,1,1) without constant: SES model

- ARIMA (0,2,2): Holt's linear method with additive errors

One of the known weaknesses of the ARIMA class models in the financial context is their
inability to capture volatility clustering that is observed in most of the financial assets.

[112]

Time Series Modeling Chapter 3

In this recipe, we go through all the necessary steps to correctly estimate an ARIMA model
and learn how to verify that it is a proper fit to the data. For this example, we use Google's
weekly stock prices from 2015-2018.

How to do it...

Execute the following steps to fit and evaluate an ARIMA model using Google's stock price.
1. Import the libraries:

import yfinance as yf

import pandas as pd

import numpy as np

from statsmodels.tsa.arima_model import ARIMA

import statsmodels.api as sm

from statsmodels.graphics.tsaplots import plot_acf

from statsmodels.stats.diagnostic import acorr_ljungbox
import scipy.stats as scs

from chapter_3_utils import test_autocorrelation

2. Download Google's stock prices and resample them to weekly frequency:

df = yf.download('GOOG',
start='2015-01-01",
end='2018-12-31",
adjusted=True,
progress=False)

goog = df.resample ('W') \
.last () \
.rename (columns={'Adj Close': 'adj_close'}) \
.adj_close

3. Apply the first differences to the price series and plot them together:
goog_diff = goog.diff () .dropna ()
fig, ax = plt.subplots (2, sharex=True)

goog.plot (title = "Google's stock price", ax=ax[0])
goog_diff.plot (ax=ax[1l], title='First Differences')

[113]

Time Series Modeling Chapter 3

In the following plot, we can see a more or less linear trend in Google's stock
price, which indicates non-stationarity:

Google's stock price
1200
1100
1000
900
800
700
600
500

First Differences
150

100

-100

Jan dul Jan dul Jan L
2016 2017 2018
Date

4. Test the differenced series for stationarity:

test_autocorrelation (goog_diff)

Executing the code results in the following plot:

[114]

Time Series Modeling Chapter 3

Autocorrelation

08

0.6

0.4

0.2

N 1 | L., 1 1 L 1 I R I
l 1 l 1 l * l ¢ l 1 LR 1 { l Y T T)
' ’ ! ’ Partial Aulz:correlat\on ’ ’ : !

0 ? I 1. . 1 . ? 1 Tty 111
[T I~ T 0 [7 T 7" Tl r

We also receive the results of the statistical tests:

ADF test statistic: -12.79 (p-val: 0.00)
KPSS test statistic: 0.11 (p-val: 0.10)

The results indicate that the differenced prices are stationary.

5. Based on the results of the tests, specify the ARIMA model and fit it to the data:

arima = ARIMA (goog, order=(2, 1, 1)).fit (disp=0)
arima.summary ()

[115]

Time Series Modeling Chapter 3

We get the following output:

ARIMA Model Results

Dep. Variable: D.adj_close No. Observations: 208
Model: ARIMA@, 1, 1) Log Likelihood -987.233
Method: css-mle S.D. of innovations 27.859
Date: Mon, 09 Dec 2019 AIC 1984.466
Time: 13:13:17 BIC 2001.154
Sample: 01-11-2015 HQIC 1991.214
-12-30-2018
coef stderr z P>zl [0.025 0.975]

const 2.4700 1.441 1.714 0.088 -0.354 5.294
ar.L1.D.adj _close -0.3908 0.280 -1.398 0.164 -0.939 0.157

ar.L2.D.adj_close -0.1910 0.082 -2.322 0.021 -0.352 -0.030

ma.L1.D.adj_close 0.1781 0.280 0.637 0.525 -0.370 0.726

6. Prepare a function for diagnosing the fit of the model based on its residuals:

def arima_diagnostics (resids, n_lags=40):
create placeholder subplots

fig, ((axl, ax2), (ax3, ax4)) = plt.subplots(2, 2)
r = resids

resids = (r - np.nanmean(r)) / np.nanstd(r)
resids_nonmissing = resids[~(np.isnan(resids))]

residuals over time
sns.lineplot (x=np.arange (len(resids)), y=resids, ax=axl)
axl.set_title('Standardized residuals')

distribution of residuals

Xx_lim = (-1.96 * 2, 1.96 * 2)
r_range = np.linspace(x_1im[0], x_1im[1])
norm_pdf = scs.norm.pdf (r_range)

sns.distplot (resids_nonmissing, hist=True, kde=True,
norm_hist=True, ax=ax2)

ax2.plot (r_range, norm_pdf, 'g', lw=2, label='N(0,1)")

ax2.set_title('Distribution of standardized residuals')

ax2.set_xlim(x_1lim)

ax2.legend()

0-0 plot
qq = sm.ggplot (resids_nonmissing, line='s', ax=ax3)
ax3.set_title('Q-0Q plot')

[116]

Time Series Modeling Chapter 3

ACF plot
plot_acf (resids, ax=ax4, lags=n_lags, alpha=0.05)
ax4.set_title('ACF plot'")
return fig
7. Test the residuals of the fitted ARIMA model:

arima_diagnostics(arima.resid, 40)

The distribution of the standardized residuals does resemble the Normal
distribution:

Sample Quantiles

. 00 P 1 1 . 1) S
l T 11 l stl UOT 0]

Standardized residuals Distribution of standardized residuals

= N(0,1)

05

0.4

03

0.2

0.1

0.0
50 100 150 200 -3 -2 -1 0 1 2 3

Q-Q plot ACF plot

0.8

06

04

0.2

1 I1.er 11
A

-2 -1 1 2 0 5 10 15 20 25 30 35 40

0
Theoretical Quantiles

The average of the residuals is close to 0 (-0.05), and inspecting the ACF plot leads
to the conclusion that the residuals are not correlated. These two characteristics
speak in favor of a good fit. However, the tails of the distribution are slightly
heavier than under normality, which we can observe in the Q-Q plot.

[117]

Time Series Modeling Chapter 3

8. Apply the Ljung-Box test for no autocorrelation in the residuals and plot the
results:

ljung_box_results = acorr_ljungbox (arima.resid)

fig, ax = plt.subplots(l, figsize=[16, 5])

sns.scatterplot (x=range (len (ljung_box_results[1l])),
y=ljung_box_results[1],
ax=ax)

ax.axhline (0.05, 1ls='—--', c='r")

ax.set (title="Ljung-Box test's results",
xlabel="'Lag',
ylabel="p-value')

Executing the code results in the following plot:

Ljung-Box test's results

08

p-value

04

02 °

The results of the Ljung-Box test do not give us any reasons to reject the null
hypothesis of no significant autocorrelation for any of the selected lags. This
indicates a good fit of the model.

How it works...

We started by downloading Google's stock prices from the given years and resampling
them to weekly frequency by taking the last (adjusted) close price in every week. In Step 3,
we applied the first difference in order to make the series stationary.

[118]

Time Series Modeling Chapter 3

If we want to difference a given series more than once, we should use the
np.diff function as it implements recursive differencing. Using the
diff method of a DataFrame/Series with periods > 1 results in taking the
difference between the current observations and the one from that many
periods before.

Step 4 is very important because, because we determined the order of the ARIMA model
based on these results. We tested for stationarity using a custom function

called test_autocorrelation. First, the series turned out to be stationary, so we knew
that the order of integration was d=1. We determined the suggested lag order (p) by looking
at the last lag after the PACF function crossed the confidence interval. In this case, it was
p=2. Analogically, for the moving average order, we looked at the ACF plot to determine
g=1. This way, we specified the model as ARIMA(2,1,1) in Step 5. We printed a summary
using the summary method of the fitted model.

Hyndman and Athanasopoulos (2018) warned that if both p and g are
positive, the ACF/PACF plots might not be helpful in determining the
specification of the ARIMA model.

In Step 6 and Step 7, we investigated the goodness of fit by looking at the model's residuals.
If the fit is good, the residuals should be similar to the white noise. That is why we used
four different types of plots to investigate how closely the residuals resemble the white
noise.

Finally, we employed the Ljung-Box test (the acorr_1jungbox function from
statsmodels) for no significant correlation and plotted the results.

Different sources suggest a different number of lags to consider in the
Ljung-Box test. The default value in statsmodels ismin((nobs // 2
- 2), 40), while other commonly used variants include min (20, nobs
— 1)and 1n (nobs).

There's more...

AUTO-ARIMA: As manual selection of the ARIMA parameters might not lead to
discovering the optimal model specification, there is a library called pmdarima (which ports
the functionalities of the famous R package called forecast to Python). The key class of
the library is called auto_arima and it automatically fits the best model for our time
series.

[119]

Time Series Modeling Chapter 3

In order to do so, we need to introduce a metric that the function will optimize. A popular
choice is the Akaike Information Criterion (AIC), which provides a trade-off between the
goodness of fit of the model and its simplicity —AIC deals with the risks of overfitting and
underfitting. When we compare multiple models, the lower the value of AIC, the better the
model.

auto_arima iterates over the specified range of possible parameters and selects the model
with the lowest AIC. It also facilitates estimation of SARIMA models.

We would like to verify whether the model we selected based on the ACF/PACEF plots is the
best one we could have selected.

1. Import the libraries:
import pmdarima as pm

2. Run auto_arima with the majority of the settings set to the default values (only
exclude potential seasonality):

model = pm.auto_arima (goog,
error_action='ignore',
suppress_warnings=True,
seasonal=False)

model . summary ()

Running the code generates the following summary:

ARIMA Model Results

Dep. Variable: D.y No. Observations: 208
Model: ARIMA(Q, 1, 1) Log Likelihood -988.749
Method: css-mle S.D. of innovations 28.065
Date: Mon, 09 Dec 2019 AIC 1983.497
Time: 13:17:54 BIC 1993.510
Sample: 1 HQIC 1987.546

coef stderr z P>|z| [0.025 0.975]

const 2.4561 1.486 1.653 0.100 -0.456 5.368

ma.L1.D.y -0.2376 0.071 -3.339 0.001 -0.377 -0.098

[120]

Time Series Modeling Chapter 3

It looks like a simpler model provides a better fit. ARIMA(0,1,1) actually
corresponds to one of the special cases—SES.

3. In the next step, we try to tune the search of the optimal parameters:

model = pm.auto_arima (goog,
error_action='ignore',
suppress_warnings=True,
seasonal=False,
stepwise=False,
approximation=False,
n_jobs=-1)

model.summary ()

We receive the following summary:

ARIMA Model Results

Dep. Variable: D.y No. Observations: 208
Model: ARIMA(3, 1, 2) Log Likelihood -9<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>