
		
			[image: Cover.png]
		

	
		
			VBA Automation for Excel 2019 Cookbook

			Solutions to automate routine tasks and increase productivity with Excel and other MS Office applications

			Mike Van Niekerk

			[image:]

			BIRMINGHAM—MUMBAI

			VBA Automation for Excel 2019 Cookbook

			Copyright © 2020 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Commissioning Editor: Richa Tripathi

			Acquisition Editor: Karan Gupta

			Senior Editor: Rohit Singh

			Content Development Editor: Ruvika Rao

			Technical Editor: Gaurav Gala

			Copy Editor: Safis Editing

			Project Coordinator: Deeksha Thakkar

			Proofreader: Safis Editing

			Indexer: Rekha Nair

			Production Designer: Vijay Kamble

			First published: September 2020

			Production reference: 1180920

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-78961-003-1

			www.packt.com

			To my wife, Esmarie, for believing in me. This book would not have been written had it not been for your love and support.

			– Mike Van Niekerk

			[image:]

			Packt.com

			Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

			Why subscribe?

			
					Spend less time learning and more time coding with practical eBooks and videos from over 4,000 industry professionals

					Improve your learning with Skill Plans built especially for you

					Get a free eBook or video every month

					Fully searchable for easy access to vital information

					Copy and paste, print, and bookmark content

			

			Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packt.com and, as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

			At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

			Contributors

			About the author

			Mike Van Niekerk has consulted as an IT lecturer since 1995, mainly presenting project management and Microsoft Office end user application courses. With 39 years of applied experience in many industries, including language courses and the writing of manuals, he has acquired an exceptional ability to transfer knowledge. Being a Microsoft Office Specialist and Microsoft Certified Trainer, he is highly experienced in MS Word, Excel, PowerPoint, Access, MS Project, and VBA. He also works with, and trains on, Outlook, Publisher, and Visio. The training he has done includes all these applications on all levels, from beginner to advanced. He has written MS Office training manuals for several IT training companies in South Africa.

			A heartfelt thank you to everyone on the VBA Automation for Excel 2019 Cookbook team. No book is ever written by just one person. There are four people that I've worked with very closely and for whom I have much appreciation. Thank you, Karan, for making me feel welcome during those first days of writing an outline and signing contracts. To Rohit, for patiently introducing me to a new style of writing, and Ruvika, for her persistence when schedules became tight. Lastly, a special word of thanks to Prajakta, the watchful Project Manager who kept us all on our toes.

			About the reviewer

			Belinda Loseby has been involved in IT training and development for over 20 years. During this time, she has developed software solutions specifically using VBA to adapt Microsoft applications to the needs of business users.

			As a lecturer, she has had the opportunity to present on a number of IT-related topics, including VBA, C#, Microsoft Office, and business skills, to employees of corporations throughout South Africa and other countries across Africa.

			She thoroughly enjoys the creative process of building software and adding value by imparting knowledge, making software easier to understand and more efficient to use.

			Packt is searching for authors like you

			If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

		

	
		
			Table of Contents

		

		
			Preface

			Chapter 1: Getting Started with VBA

			Technical requirements 18

			Investigating VBA code 18

			Getting ready 19

			How to do it… 21

			How it works… 22

			There's more… 23

			Recording a macro 23

			Getting ready 23

			How to do it… 24

			How it works… 27

			There's more… 28

			Testing the macro 28

			Getting ready 28

			How to do it… 28

			How it works… 30

			There's more… 30

			Using the VBA Editor 30

			Getting ready 30

			How to do it… 31

			How it works… 31

			There's more… 32

			Editing the code by changing cell references 32

			Getting ready 33

			How to do it… 33

			How it works… 35

			There's more… 35

			Saving the file with an embedded macro 35

			Getting ready 35

			How to do it… 35

			How it works… 37

			There's more… 37

			Using the Trust Center for macro security 37

			Getting ready 37

			How to do it… 38

			How it works… 39

			There's more… 40

			Creating a customized ribbon 40

			Getting ready 40

			How to do it… 41

			Chapter 2: Working with the VBA Editor

			Technical requirements 50

			Identifying, activating, and closing components in the VBA Editor 50

			Getting ready 50

			How to do it… 50

			How it works… 54

			Creating a module for storing a Sub procedure 57

			Getting ready 57

			How to do it… 57

			How it works… 59

			Creating a basic procedure in the code window of the Editor 59

			Getting ready 59

			How to do it… 59

			How it works… 61

			Creating VBA code in the code window in three different ways 61

			Getting ready 61

			How to do it… 61

			How it works… 65

			There's more… 66

			Customizing the Editor tab to suit your preferences 67

			Getting ready 67

			How to do it… 67

			How it works… 71

			Chapter 3: The VBA Object Model

			Technical requirements 74

			Understanding and identifying objects in VBA 74

			Getting ready 74

			How to do it… 74

			How it works… 75

			Objects as a collection, and changing the attributes of the entire collection 76

			Getting ready 77

			How to do it… 77

			How it works… 78

			Modifying object properties 79

			Getting ready 79

			How to do it… 79

			How it works… 80

			There's more… 81

			Associating methods with objects 81

			Getting ready 81

			How to do it… 81

			How it works… 82

			Using events to activate objects 82

			Getting ready 83

			How to do it… 83

			How it works… 85

			Using the Object Browser in the VBA Editor 85

			Getting ready 85

			How to do it… 86

			How it works… 87

			Chapter 4: Working with Procedures

			Technical requirements 90

			Creating Sub and Function procedures 90

			Getting ready 91

			How to do it… 91

			How it works… 92

			There's more… 93

			Executing Sub procedures directly 94

			Getting ready 94

			How to do it… 94

			How it works… 94

			Executing Sub procedures from the Macro dialog box 94

			Getting ready 95

			How to do it… 95

			How it works… 95

			Executing Sub procedures using buttons 96

			Getting ready 96

			How to do it… 96

			How it works… 98

			There's more… 98

			Executing Sub procedures using a shortcut key 99

			Getting ready 99

			How to do it… 100

			How it works… 102

			Executing Function procedures using a worksheet formula 102

			Getting ready 102

			How to do it… 102

			How it works… 103

			Executing Function procedures by calling from a Sub procedure 103

			Getting ready 103

			How to do it… 103

			How it works… 104

			Chapter 5: Next Level Recording

			Technical requirements 106

			Setting the macro recorder for absolute or relative reference 106

			Getting ready 106

			How to do it… 106

			How it works… 108

			Recording options 109

			Getting ready 109

			How to do it… 110

			How it works… 110

			Chapter 6: VBA Language Elements

			Technical requirements 114

			Adding comments 114

			Getting ready 115

			How to do it… 115

			How it works… 117

			Declaring variables 118

			Getting ready 118

			How to do it… 118

			How it works… 122

			Declaring constants 126

			Getting ready 127

			How to do it… 127

			How it works… 128

			There's more… 129

			Working with data types in variables and constants 129

			Getting ready 130

			How to do it… 130

			How it works… 131

			Scoping variables 132

			Getting ready 132

			How to do it… 132

			How it works… 134

			Declaring arrays 135

			Getting ready 135

			How to do it… 135

			How it works… 139

			Chapter 7: Working with Ranges

			Technical requirements 146

			Referring to ranges 146

			Getting ready 146

			How to do it… 148

			How it works… 149

			Using the Range object properties 149

			Getting ready 150

			How to do it… 150

			How it works… 150

			Adding the Range object's methods 152

			Getting ready 152

			How to do it… 152

			How it works… 153

			Making ranges work 153

			Getting ready 154

			How to do it… 154

			How it works… 156

			Chapter 8: Using Functions

			Technical requirements 157

			Using built-in VBA functions 158

			Getting ready 158

			How to do it… 159

			How it works… 161

			Using worksheet functions 162

			Getting ready 162

			How to do it… 163

			How it works… 164

			Creating custom functions 164

			Getting ready 165

			How to do it… 165

			How it works… 167

			There's more… 167

			Chapter 9: Implementing Program Flow

			Technical requirements 170

			Exploring program flow 170

			Changing the flow using the GoTo statement 170

			Getting ready 171

			How to do it… 171

			How it works… 172

			Using If and If-Then structures to make decisions 172

			Getting ready 173

			How to do it… 173

			How it works… 175

			There's more… 175

			Using the Select Case structure 176

			Getting ready 176

			How to do it… 176

			How it works… 178

			Using loops 181

			Getting ready 181

			How to do it… 182

			How it works… 186

			Chapter 10: Implementing Automation

			Technical requirements 190

			Writing event handler procedures 190

			Getting ready 190

			How to do it… 190

			How it works… 192

			There's more… 193

			Discovering events 195

			Creating workbook-related events 195

			Getting ready 195

			How to do it… 196

			How it works… 198

			Creating worksheet-related events 198

			Getting ready 198

			How to do it… 199

			How it works… 201

			Creating non-object events 201

			Getting ready 202

			How to do it… 202

			How it works… 203

			Chapter 11: Handling Errors

			Technical requirements 205

			Handling different types of errors 206

			Getting ready 206

			How to do it… 207

			How it works… 211

			Correcting a runtime error 212

			Getting ready 212

			How to do it… 212

			How it works 214

			Testing to find errors 214

			Getting ready 215

			How to do it… 215

			How it works… 220

			Using the On Error statement 220

			Getting ready 220

			How to do it… 221

			How it works… 222

			Resuming after an error 222

			Getting ready 222

			How to do it… 223

			How it works… 224

			Chapter 12: Debugging

			Technical requirements 226

			Exploring various bugs 226

			Debugging techniques 227

			Getting ready 228

			How to do it… 228

			How it works… 232

			Using the debugger in Excel 233

			Setting breakpoints 233

			Using the Watch window 238

			Chapter 13: Creating and Modifying Dialog Boxes

			Technical requirements 246

			Using the MsgBox function 246

			Getting ready 246

			How to do it… 247

			How it works… 253

			Using the InputBox function 254

			Getting ready 254

			How to do it… 254

			How it works… 257

			Using the Application.InputBox method 258

			Getting ready 258

			How to do it… 259

			How it works… 262

			Chapter 14: Creating UserForms

			Technical requirements 266

			Inserting the form 266

			Getting ready 266

			How to do it… 266

			How it works… 268

			Changing properties 269

			Getting ready 269

			How to do it… 269

			How it works… 272

			Adding controls 272

			Getting ready 272

			How to do it… 273

			How it works… 278

			There's more… 278

			Using Frames 280

			Getting ready 281

			How to do it… 281

			There's more… 283

			Chapter 15: UserForm Controls

			Technical requirements 286

			Assigning controls 286

			Getting ready 286

			How to do it… 286

			How it works 289

			Unloading a form 290

			Getting ready 290

			How to do it… 290

			How it works… 291

			Loading the form 291

			Getting ready 292

			How to do it… 292

			How it works… 294

			Using the Combo Box control 294

			Getting ready 294

			How to do it… 295

			How it works… 296

			Using the SpinButton control 296

			Getting ready 297

			How to do it… 297

			How it works… 299

			There's more… 300

			Setting the tab order 300

			Getting ready 300

			How to do it… 301

			How it works 303

			Chapter 16: Creating Custom Functions

			Technical requirements 306

			Writing functions 306

			Getting ready 306

			How to do it… 307

			How it works… 309

			Calling functions 309

			Getting ready 310

			How to do it… 310

			How it works… 311

			Adding function arguments 311

			Getting ready 312

			How to do it… 312

			How it works… 314

			There's more… 314

			Displaying function and argument descriptions 315

			Getting ready 316

			How to do it… 316

			Chapter 17: Creating Word Documents with Excel VBA

			Technical requirements 322

			Creating a new instance of Word 322

			Getting ready 322

			How to do it… 322

			How it works… 325

			Writing and formatting text 325

			Getting ready 325

			How to do it… 325

			Copying data into Word 327

			Getting ready 328

			How to do it… 328

			How it works… 331

			See also 331

			Using templates and bookmarks 331

			Getting ready 332

			How to do it… 332

			See also 334

			Chapter 18: Working with PowerPoint in Excel VBA

			Technical requirements 336

			Creating a new instance of PowerPoint 336

			Getting ready 336

			How to do it… 336

			Creating presentations and slides 339

			Getting ready 339

			How to do it… 339

			Adding text to textboxes 340

			Getting ready 340

			How to do it… 341

			Copying Excel content into PowerPoint 342

			Getting ready 342

			How to do it… 342

			There's more… 344

			Other Books You May Enjoy

			Leave a review - let other readers know what you think 349

		

	
		
			Preface

			Visual Basic for Applications (VBA) has been around for decades, and was upgraded in 2010 with the introduction of VBA 7 in Microsoft Office applications. Millions of users worldwide use VBA daily, making it indispensable for streamlining work within the Office Suite.

			It is probably one of the easiest coding languages to learn, and unique in the sense that it is associated with specific applications. Where other coding languages can be used to create standalone programs, VBA will function only within the MS Office environment.

			VBA's main purpose is to automate tasks in Microsoft Office products, and its most outstanding feature is its simplicity. Even if you know nothing about programming, you will see results within the first day.

			Starting with the macro recorder, you can create your first code by clicking a record button, and the recorder will write code for every single step you execute. Experienced coders can write more effective code, yet it enables complete novices to automate lengthy and time-consuming processes. With this recorded code as the basis, you can become adventurous by making small changes, teaching yourself as you go along.

			Another useful feature is that VBA can control one application from another. You can, for example, automatically create a report in MS Word or PowerPoint, from existing Excel data.

			Companies other than Microsoft also use VBA to automate some tasks. These include ArcGIS, AutoCAD, CorelDraw, LibreOffice, SolidWorks, and WordPerfect.

			This book is designed to teach you the language, first on an elementary level, and later moving to more advanced terrain. We start with recording a macro, then proceed to writing your own Sub procedures. Next, we teach you the object model and language elements, program flow, error handling, user forms for capturing data, and eventually creating custom functions.

			Each chapter contains code samples to explain the principles taught in each recipe. As an added bonus, there are action videos to clarify each working sample.

			Who this book is for

			This book is aimed at Excel users who know a bit more than the basics. If you've tried all the functions and formulas available in Excel, and you've attempted recording one or two macros, yet feel the need to automate your work further, this is the book for you.

			What this book covers

			Chapter 1, Getting Started with VBA, gives a general introduction to VBA, and how to go about recording and editing a macro.

			Chapter 2, Working with the VBA Editor, shows us how to work with and customize the VBA Editor.

			Chapter 3, The VBA Object Model, gets us familiar with objects in VBA.

			Chapter 4, Working with Procedures, shows us how to write Sub procedures manually.

			Chapter 5, Next Level Recording, discusses recording macros with relative or absolute referencing.

			Chapter 6, VBA Language Elements, introduces us to VBA language elements.

			Chapter 7, Working with Ranges, gives us an understanding of cells and named ranges, as well as referring to ranges in VBA.

			Chapter 8, Using Functions, tells us the difference between Sub procedures and functions, and covers writing a simple VBA function.

			Chapter 9, Implementing Program Flow, covers the implementation of program flow principles in your VBA Sub procedures.

			Chapter 10, Implementing Automation, introduces us to writing event handler procedures.

			Chapter 11, Handling Errors, introduces us to error handling in VBA, with practical code samples.

			Chapter 12, Debugging, identifies different bugs in VBA, and uses various debugging techniques to eliminate bugs.

			Chapter 13, Creating and Modifying Dialog Boxes, creates every possible type of message box and input box imaginable.

			Chapter 14, Creating UserForms, introduces us to UserForms. We'll cover setting up a form, creating labels and text boxes, and using lookup fields and frames.

			Chapter 15, UserForm Controls, brings life to UserForms by adding controls, namely, Combo Boxes, SpinButtons, date options, and command buttons.

			Chapter 16, Creating Custom Functions, takes functions to a new level of automation, including a look at calling functions from Sub procedures.

			Chapter 17, Creating Word Documents with Excel VBA, examines activating MS Word from within Excel VBA, opening a new document, and transferring Excel content to Word.

			Chapter 18, Working with PowerPoint in Excel VBA, shows you how to activate MS PowerPoint using only Excel VBA commands, then create a new presentation and slide show with content from Excel.

			To get the most out of this book

			You will need the latest version of Excel installed on your PC to make the most of these recipes. The coding examples were tested on Windows 10.

			All the recipes in a chapter are meant to be executed in the same order.

			
				
					[image: Table 1]
				

			

			No extra installations are necessary.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code via the GitHub repository (link available in the next section). Doing so will help you avoid any potential errors related to copy/pasting of code.

			VBA is not difficult. However, unless you apply your newly acquired knowledge diligently, you might not gain all the advantages that are there for the taking. The secret lies in spaced repetition.

			Download the example code files

			You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

			You can download the code files by following these steps:

			
					Log in or register at www.packt.com.

					Select the Support tab.

					Click on Code Downloads.

					Enter the name of the book in the Search box and follow the onscreen instructions.

			

			Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of the following:

			
					WinRAR/7-Zip for Windows

					Zipeg/iZip/UnRarX for Mac

					7-Zip/PeaZip for Linux

			

			The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook. In case there's an update to the code, it will be updated on the existing GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Code in Action

			Code in Action videos for this book can be viewed at (https://bit.ly/3jQRvVk).

			Download the color images

			We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781789610031_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "In the BeforeClose procedure, set the BeforeClose event's parameter to cancel by adding the next line."

			A block of code is set as follows:

			Private Sub Workbook_BeforeClose(Cancel As Boolean)

			 MsgBox "This file cannot be closed"

			 Cancel = True

			End Sub

			Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Activate the Developer ribbon. In the Code group, click on Macro Security to open the Trust Centre dialog box."

			Tips or important notes

			Appear like this.

			Sections

			In this book, you will find several headings that appear frequently (Getting ready, How to do it..., How it works..., There's more..., and See also).

			To give clear instructions on how to complete a recipe, use these sections as follows:

			Getting ready

			This section tells you what to expect in the recipe and describes how to set up any software or any preliminary settings required for the recipe.

			How to do it…

			This section contains the steps required to follow the recipe.

			How it works…

			This section usually consists of a detailed explanation of what happened in the previous section.

			There's more…

			This section consists of additional information about the recipe in order to make you more knowledgeable about the recipe.

			See also

			This section provides helpful links to other useful information for the recipe.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

			Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Reviews

			Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

			For more information about Packt, please visit packt.com.

		

	
		
			Chapter 1: Getting Started with VBA

			The recipes in this chapter will help you familiarize yourself with VBA in general, introduce you to the VBA working environment, and also help you edit and save your first working VBA subroutine. In the process, you will learn how to set up the development environment and how to edit your VBA coding.

			In this chapter, we will cover the following recipes:

			
					Investigating VBA code

					Recording a macro

					Testing the macro

					Using the VBA Editor

					Editing the code by changing cell references

					Saving the file with an embedded macro

					Using the Trust Center for macro security

					Creating a customized ribbon

			

			By the end of this chapter, you will be able to identify the need and use for a macro, record a macro, edit VBA code, and save the macro in an Excel Workbook.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10.

			In the case of MS Word, MS Excel, and MS PowerPoint, the Developer ribbon can be activated, although this is not a prerequisite. In all the applications, on the View ribbon | Macros group, there are icons for viewing and recording macros.

			Demonstration files can be downloaded from https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check out the CiA videos: https://bit.ly/3jQRvVk.

			Investigating VBA code

			In this recipe, we will inspect a short VBA subroutine. Like all programming languages, VBA has a specific syntax, and the best way to understand the principles is to see what the coding looks like.

			What we're going to see here will lay the foundation for the other recipes in this book, so pay close attention.

			Getting ready

			In order to investigate and edit VBA code in Excel, or any of the other Office applications, we first need to activate the Developer toolbar. Here are the steps:

			
					Open MS Excel and select Blank workbook from the opening screen.

					Open the 01_VBA_Code.xlsm sample file. Click on [Enable Content] on the SECURITY WARNING ribbon.

					If the Developer ribbon is not visible, activate the Backstage View by clicking on File, which will display the following screen:[image:]
Figure 1.1 – The Backstage View

					From the category list on the left, select the last option, Options. The Excel Options dialog box appears:[image: Figure 1.2 – The Excel Options dialog box
]
Figure 1.2 – The Excel Options dialog box

					From the categories on the left, select Customize Ribbon.

					To the far right, under the Main Tabs heading, look for the Developer option. Select the checkbox.

					Click on OK to accept the change. The dialog box will close, and Excel will now display the Developer tab.

			

			How to do it…

			With the Developer tab activated, we will now proceed with the steps for this recipe:

			
					With 01_VBA_Code.xlsm open, click on the Developer tab:[image: Figure 1.3 – The Developer tab
]
Figure 1.3 – The Developer tab

					In the Code group (the first group on the left of the ribbon), select the Macros icon. The Macro dialog box opens:[image: Figure 1.4 – The Macro dialog box
]
Figure 1.4 – The Macro dialog box

					The VBA code we want to investigate is contained in the only macro: Area_Bold. Click on the Edit button. The Microsoft Visual Basic for Applications window will open. Maximize the window, if necessary:[image: Figure 1.5 – The Microsoft Visual Basic for Applications editor window
]
Figure 1.5 – The Microsoft Visual Basic for Applications editor window

					In the code window (the large area on the right), a short VBA subroutine is displayed.

			

			How it works…

			The subroutine in the VBA Editor looks like this:

			
				
					[image: Figure 1.6 – The subroutine in the VBA Editor
]
				

			

			Figure 1.6 – The subroutine in the VBA Editor

			Let's try to understand this subroutine. Any and all subroutines in VBA start with the Sub keyword, followed by the name of the subroutine (macro), and end with two brackets.

			A single apostrophe allows you to enter a note. Comments can be added anywhere in a subroutine and will be displayed in green text, as long as it is on its own line or after a line of code (that is, it cannot be before a line of code as it would obviously comment out the code too). Indented lines without apostrophes are VBA instructions. In this case, the first instruction is when the range B1 to E1 is selected.

			The selection's font style is then set to Bold. The last instruction moves the focus to cell A1. Finally, the subroutine is concluded with the End Sub keywords.

			There's more…

			Whether you record a macro or manually type the coding, you will always find this basic syntax structure in VBA.

			In future chapters, we will be working with much longer subroutines. Before we get there, though, we are going to record a macro. With your newly acquired knowledge, you will be able to investigate the VBA code for that too.

			Recording a macro

			Macros are indispensable when we have to do repetitive tasks. In this recipe, we are going to create a macro in Excel. Instead of manually typing several lines of VBA code to create a subroutine, or short program, we can simply record a series of actions in Excel and then store it in the same file. The macro recorder will automatically create the VBA code, as we will see in future recipes.

			These recorded steps can then be replayed, in order to execute a series of steps in a fraction of a second.

			Getting ready

			Like functions, macros make use of absolute and relative referencing. In this first macro, we will use absolute referencing because we have two other sheets with exactly the same layout.

			Open the 02_RecordMacro.xlsx file and confirm that Sheet1 is active. Click on the Developer tab. Then, in the Code group, make sure that Use Relative References is not active:

			
				
					[image: Figure 1.7 – The Relative References option
]
				

			

			Figure 1.7 – The Relative References option

			How to do it…

			We will now proceed with the steps to record a macro:

			
					Make sure that 02_RecordMacro.xlsx is still open on Sheet1, and that cell A1 is selected. In the Code group of the Developer tab, click on Record Macro. The Record Macro dialog box appears.

					In the first textbox, under the Macro name heading, type Format_Range. That will be the name of the macro we are going to record.

					Press the Tab key, or click in the textbox under the Shortcut key heading to the right of Ctrl+:[image: Figure 1.8 – The Shortcut key textbox, Ctrl+
]
Figure 1.8 – The Shortcut key textbox, Ctrl+

					While holding down the Shift key, press F on the keyboard.The shortcut key for this macro is now set to Ctrl + Shift + F.

					Under Store macro in, make sure that This Workbook is selected. Other options will be discussed in later recipes.

					Under Description, enter a short description of what the macro will do. Click on OK to start recording:[image: Figure 1.9 – The Record Macro dialog box with all fields completed
]
Figure 1.9 – The Record Macro dialog box with all fields completed

					Observe the Code group on the Developer ribbon. The Record Macro icon has been replaced with the Stop Recording icon. This means you are now in recording mode, and all your actions on the keyboard and with the mouse will be recorded:[image: Figure 1.10 – Stop Recording is displayed when in recording mode
]
Figure 1.10 – Stop Recording is displayed when in recording mode

					While in recording mode, click on the Home tab. Then, select the range C1 to F2, hold down Ctrl, and select the range A3 to B7:[image: Figure 1.11 – The selected ranges
]
Figure 1.11 – The selected ranges
Now, change the format of the selected cells to bold.

					Next, select the range C3 to F8:[image: Figure 1.12 – The selected range
]
Figure 1.12 – The selected range
Once done, center the cell content and change the format to currency (US$).

					To finish this recording, select cell A1, navigate to the Developer tab | the Code group, and click on Stop Recording.

			

			You have just successfully recorded a macro.

			How it works…

			Now, this was simple enough, wasn't it? Let's have a look at what just happened.

			We set the referencing for the macro to absolute because we want to use the same macro on Sheet2 and Sheet3, too. By starting on cell A1 on Sheet1, we can run the macro from cell A1 on Sheet2 and Sheet3 and get exactly the same results.

			Macro names must start with a letter, and there should be no spaces in the name. Furthermore, VBA keywords are not allowed. Format, Copy, and Select are three examples of keywords. Special characters are also taboo.

			A keyboard shortcut makes it easy to run a macro, but that's all it is – a shortcut. In the next recipe, we will run a macro from the Macro dialog box.

			Storing the macro in This Workbook means it will only work in this specific workbook. To make it available for other workbooks, it must be stored in Personal Macro Workbook. We will find out more about that in future recipes.

			Many VBA users leave the Description field empty. This will have no effect on the macro, but it is good practice to explain to other users what you had in mind when saving this macro.

			Once you are in recording mode, all your actions are recorded, including errors. It is, therefore, a good idea to makes notes of the steps you want to record.

			When you click on Stop Recording, the macro recorder is switched off, and you can relax. Each of your actions has been recorded and converted into VBA code in the background. By opening the Microsoft Visual Basic for Applications editor, you will be able to see the recording code.

			There's more…

			Once you understand how easy it is to record a series of actions in Excel, you will start looking for reasons to automate all your repetitive tasks.

			You can, for instance, record a macro to select the entire sheet and clear it of all formatting. That is much faster than doing so manually, especially if there is more than one sheet.

			Testing the macro

			It's all very well to have recorded a macro, but how do we know whether it's working or not? There is only one way, and that is to test it. Sure, you can have a look at the VBA code in the VBA Editor, but unless you are a seasoned coder, it will be virtually impossible to find coding errors. Best then to do a practical test.

			Getting ready

			Before moving on, make sure that you have recorded the macro as per the instructions in the previous recipe. We will be using that code in this recipe.

			Since we've previously used Sheet1 to record the macro, we will have to test it on Sheet2. Testing on Sheet1 will have no effect because the cells have already been formatted. Sheet2 is still in its original form, meaning we will immediately notice any changes.

			How to do it…

			Let's proceed with the following steps:

			
					Make sure that 02_RecordMacro.xlsx is still open, but this time on Sheet2. To test how effective the Relative Reference setting is, select any cell other than cell A1.

					Let's use the Ctrl + Shift + F keyboard shortcut and see what happens:[image: Figure 1.13 – The formatted sheet after running the macro
]
Figure 1.13 – The formatted sheet after running the macro
The content is now formatted in exactly the same way as in Sheet 1. Isn't that much faster than formatting each area manually?

					Activate Sheet3, because there is yet another way to run a macro. Select any cell on the sheet.

					This time, select the Developer tab and click on the Macros icon in the Code group:[image: Figure 1.14 – The Macro dialog box
]
Figure 1.14 – The Macro dialog box

					The only available macro is the one we recorded, as you can see. To the right, there are several buttons. Click the top one, Run.

					As expected, Sheet3 is now also formatted in the same way as Sheet1 and Sheet2.

			

			How it works…

			When we first recorded the macro, the Record Macro dialog box gave us the option to select a keyboard shortcut. Clearly, our instructions there have worked.

			A slightly longer, yet still effective, way is to run a macro from the Macro dialog box. Since there is only one macro, we can only execute that one. However, if there were more, we could have selected any one before clicking Run.

			There's more…

			It is good practice to always test a macro, instead of assuming that it will work. It will be exceptional for a recorded macro to fail, but when we get to more advanced subroutines – especially when you start typing your code manually – you should never assume that your coding will be flawless.

			So, when everything is working the way it should, it may be a good idea to investigate the actual VBA coding.

			Using the VBA Editor

			We've worked with the VBA Editor before, but that was on another file, with a different Sub procedure. The recipe we're going to work with here will show you how to activate the VBA Editor in your own file. Furthermore, we're going to identify various components within the editor.

			Getting ready

			With 02_RecordMacro.xlsx still open, we're going to activate the VBA Editor. Whether you are on Sheet1, Sheet2, or Sheet3 is of no consequence, because the macro is part of the workbook.

			How to do it…

			Let's go through the steps for this recipe:

			
					The standard way to activate the VBA Editor is to navigate to Developer | Code | Macros, and then select Edit on the Macro dialog box.

					The shortcut key makes life much easier. Simply hold down the Alt key while pressing F11. This time, you bypass the dialog box by going straight to the VBA Editor:

			

			
				
					[image: Figure 1.15 – A Sub procedure in the VBA Editor
]
				

			

			Figure 1.15 – A Sub procedure in the VBA Editor

			The evidence of what we recorded is displayed in the code window.

			How it works…

			Opening the VBA Editor can be done in one of two ways: with the Alt + F11 keyboard shortcut, or by clicking on Edit in the Macro dialog box.

			In the VBA Editor, you will find the following basic components:

			
				
					[image: Figure 1.16 – Components of the VBA Editor
]
				

			

			Figure 1.16 – Components of the VBA Editor

			There's more…

			Each element, or component, of the VBA Editor has a specific function. Up until now, we've only used the code window. In future recipes, we will be referring to and using the other elements.

			Editing the code by changing cell references

			This recipe shows you how to edit coding in the VBA Editor. It is more effective to make changes in the code, rather than deleting an entire macro and recording it again. We're going to start by deleting some redundant lines of code, before showing you how to edit code in order to bring about a visible change on the spreadsheet when the code is executed.

			Getting ready

			With 02_RecordMacro.xlsx still open, use the keyboard shortcut, Alt + F11, to activate the VBA Editor.

			How to do it…

			For this recipe, the steps are as follows:

			
					In the VBA Editor, double-click on Module1 to open the code window.

					In the code window, select the second line of the executable code. Delete the line of code, as well as the empty line:[image: Figure 1.17 – Selected code to be deleted
]
Figure 1.17 – Selected code to be deleted

					Switch back to Excel, clear all formatting on the data and run the macro. The result is the same as with the first test.

					Next, select all the lines after .HorizontalAlignment = xlCenter. Press Del:[image: Figure 1.18 – Selected code to be deleted
]
Figure 1.18 – Selected code to be deleted

					Once again, switch back to Excel, clear all formatting on the data, and run the macro. The result is still the same as with the first test.

					Finally, change the cell reference in the last line from A1 to G2:[image: Figure 1.19 – Cell reference to be changed
]
Figure 1.19 – Cell reference to be changed

					For the last time, switch back to Excel, clear all formatting on the data in the spreadsheet, and run the macro. The formatting is done as before, but the focus is on cell G2 and not on A1 this time.

			

			How it works…

			Let's understand what just happened.

			The Range("A3").Activate line can be deleted because the C1:F2, A3:B7 range is already selected. It is that selection that will be formatted to bold.

			When the C3:F8 range is selected, we only want it to be centered. The other lines are automatically added but are redundant, and can, therefore, be deleted.

			Instead of ending on cell A1, we change the focus to cell G2.

			There's more…

			The macro has been recorded, tested, and edited, but we have not saved the file yet. As simple as it may sound, there is a trick to it. Refer to the next recipe to take care of that.

			Saving the file with an embedded macro

			This recipe will show you how to save a file with an embedded macro. You might think that saving a file cannot be that difficult, and it isn't. The point is a normal Excel file will not allow you to save the macro you've just recorded, at least not with the normal file extension.

			Getting ready

			With 02_RecordMacro.xlsx still open, close the VBA Editor.

			How to do it…

			Now, proceed with the following steps:

			
					In Excel, click on the Save button. The following message box appears:[image: Figure 1.20 – Message box warning
]
Figure 1.20 – Message box warning

					Since we want to save the file together with the newly recorded macro, click No.

					Select the folder where you want to save the file in the Save As dialog box.

					At the bottom, below the File name textbox, to the right of the Save as type textbox, click on the arrow. From the list of options, select the second one from the top, Excel Macro-Enabled Workbook (*.xlsm):[image: Figure 1.21 – Choosing the macro-enabled file option from the Save As dialog box
]
Figure 1.21 – Choosing the macro-enabled file option from the Save As dialog box

					Click on Save. In the title bar, the file extension has changed to .xlsm:

			

			
				
					[image: Figure 1.22 – Altered file extension visible in the title bar
]
				

			

			Figure 1.22 – Altered file extension visible in the title bar

			How it works…

			There are a couple of things to notice:

			
					The standard .xlsx file extension will not allow a macro to be saved with the file.

					Only files with the .xlsm file extension will allow you to save a file with an embedded macro.

			

			There's more…

			File extensions allow you to distinguish between files with or without macros.

			Using the Trust Center for macro security

			This recipe is all about security, at least as far as macros are concerned. We will show you where to find the Trust Center in Excel, and after that, how to choose between four levels of macro security.

			Getting ready

			We've successfully created and tested our macro. We've even made some changes to the code by editing it in the VBA Editor. The final step is to have 02_RecordMacro.xlsm open in order to set the macro security.

			How to do it…

			Proceed with the following steps for this recipe:

			
					Activate the backstage view by clicking on File:[image: Figure 1.23 – The backstage view
]
Figure 1.23 – The backstage view

					From the category list on the left, select the last one, Options. The Excel Options dialog box appears:[image: Figure 1.24 – The Excel Options dialog box
]
Figure 1.24 – The Excel Options dialog box

					Select the last category on the left, Trust Center, and then click on the Trust Center Settings button on the right:[image: Figure 1.25 – Macro Settings in the Trust Center dialog box
]
Figure 1.25 – Macro Settings in the Trust Center dialog box

					Select the Macro Settings category on the left. The details will be displayed on the right.

					Click the second radio button from the top, Disable all macros with notification.

					Click on OK to close the Trust Center dialog box.

					In the Excel Options dialog box, click on OK.

			

			How it works…

			Macro Settings has four levels of security in order to prevent viruses from entering your system. These options are as follows:

			
					Disable all macros without notification: Choosing this option will enable all macros. It is safe but defeats the purpose of creating macros.

					Disable all macros with notification: This is the standard setting, selected by most users. A yellow message bar will appear when you open a file with an embedded macro. If you know and trust the person that sent the file, go ahead and disable the macros. If not, do not enable the macros.

					Disable all macros except digitally signed macros: Only macros that have a digital signature are allowed to run. However, you will still receive a security warning for signatures that haven't been marked as trusted.

					Enable all macros: This setting is not recommended because potentially dangerous code can run. Unless you are not connected to the internet, or any other computers in a LAN, never choose this option.

			

			There's more…

			The keyword here is vigilance. In this day and age, computer security is vital. A good starting point would be to always have an anti-virus application running on your PC. It is better to be safe than sorry.

			Creating a customized ribbon

			This recipe is optional, though very useful.

			There are several ways that you can invoke a macro. After activating the Developer ribbon, it is relatively easy to click on the Developer tab, and then to choose the Macros button in the Code group. But what if you don't want to do it that way? Shortcuts may help, but only up to a point because macros have a way of proliferating quickly.

			This recipe will show you how to create a new ribbon, group, and icons.

			Getting ready

			Open Excel, with a new sheet active.

			How to do it…

			
					Before starting with customization, there is an important yet simple way to manipulate the ribbon in Excel. This is not really a customization, but it is still important to know how to control the interface. If you double-click any of the tabs on the ribbon, the ribbon will collapse. By double-clicking the tab again, the ribbon will expand, showing the standard, full view:[image: Figure 1.26 – The Developer ribbon in the expanded view
]
Figure 1.26 – The Developer ribbon in the expanded view
The tabs are collapsed as shown:
[image: Figure 1.27 – Collapsed ribbons
]
Figure 1.27 – Collapsed ribbons
The standard tabs normally provide all the functionality you need. However, if you have a series of functions you want to use regularly, or even a series of macros, it will help a lot if you could display the shortcuts to those items on a ribbon.

					To add a new tab to the ribbon, right-click on any existing tab. Choose Customize the Ribbon:[image: Figure 1.28 – Right-clicking on the Help tab
]
Figure 1.28 – Right-clicking on the Help tab

					You could also right-click anywhere to the right of an existing ribbon, in the gray area, and choose Customize the Ribbon, or you can click on File | Options | Customize Ribbon.The Excel Options dialog box will appear:
[image: Figure 1.29 – The Excel Options dialog box
]
Figure 1.29 – The Excel Options dialog box
There are two columns in the Excel Options dialog box. We will be working on the right side, under the Customize the Ribbon heading.

					Make sure that all the main tabs are collapsed. If any of these are expanded, click on - to collapse them.

					Select the Help tab without expanding it, because we want the new tab to appear to the right of the Help tab:[image: Figure 1.30 – The Help tab selected
]
Figure 1.30 – The Help tab selected

					At the bottom of that column, click on New Tab:[image: Figure 1.31 – The Help tab selected
]
Figure 1.31 – The Help tab selected

					A new entry will appear on the list – New Tab (Custom) – and under that is New Group (Custom):[image: Figure 1.32 – The New Tab option inserted
]
Figure 1.32 – The New Tab option inserted

					Select the New Tab (Custom) listing, then click on Rename at the bottom:[image: Figure 1.32 – The New Tab option inserted
]
Figure 1.33 – Renaming the new tab

					In the Rename dialog box, enter an appropriate name for the tab. Click OK:[image: Figure 1.34 – Typing a new name
]
Figure 1.34 – Typing a new name

					Select the New Group (Custom) listing:[image: Figure 1.35 – Selecting the new group
]
Figure 1.35 – Selecting the new group

					Click on Rename at the bottom, then enter a name for the new group. Click OK:[image: Figure 1.36 – The Rename dialog box for groups
]
Figure 1.36 – The Rename dialog box for groups

					In the left column, select Macros from the commands list:[image: Figure 1.37 – Selecting Macros
]
Figure 1.37 – Selecting Macros
A list of the available macros in this Excel file will appear:
[image: Figure 1.38 – List of recorded macros
]
Figure 1.38 – List of recorded macros

					Select the macro you want to add to the group, then click Add:[image: Figure 1.39 – Click Add to add a macro to the group
]
Figure 1.39 – Click Add to add a macro to the group

					Select the newly inserted icon and click on Rename. Type a more descriptive name for the macro, and choose a fitting icon. Click OK, and OK again:[image: Figure 1.40 – Name and icon selection
]
Figure 1.40 – Name and icon selection
You will have a new tab with a new group, and one icon in the group:
[image: Figure 1.41 – The new ribbon with the new group
]
Figure 1.41 – The new ribbon with the new group

					Click the new icon to run the macro associated with it. You can insert more macros to the same group by repeating the steps from Step 12 on this list.

			

			This recipe should enable you to create an easy access point for all recorder macros in a workbook.

		

	
		
			Chapter 2: Working with the VBA Editor

			The recipes in this chapter will familiarize you with the working environment of the Visual Basic for Applications (VBA) Editor. It is an integral part of all applications in the MS Office suite. In order to use the Editor effectively, we need to investigate all of its elements, features, and characteristics. Getting to know the VBA Editor components is vitally important for any potential VBA coder.

			In this chapter, we will cover the following recipes:

			
					Identifying, activating, and manipulating components in the VBA Editor

					Creating a module for storing a Sub procedure

					Creating a basic procedure in the code window of the Editor

					Creating VBA code in the code window in three different ways

					Customizing the Editor to suit your preferences

			

			By the end of this chapter, you will be familiar with the working environment of the VBA Editor.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10.

			In the case of MS Word, MS Excel, and MS PowerPoint, the VBA Editor can be activated by using the Alt + F11 keyboard shortcut. By pressing Alt + F11 a second time, you can switch between the Editor and the application you are working in.

			Demonstration files can be downloaded from https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check out the CiA videos: https://bit.ly/3jQRvVk.

			Identifying, activating, and closing components in the VBA Editor

			The VBA Editor is the heart and soul of writing your code. In this recipe, we will examine the VBA Editor in detail in order to understand the layout and location of components. There are several components in the Editor, each with a specific function and purpose.

			Getting ready

			All applications in the MS Office Suite contain the VBA Editor as an integral part of the application. In this recipe, we will be working with Excel. If you do not have Excel installed on your PC or laptop, please install it now.

			How to do it…

			Let's take a look at the steps for this recipe:

			
					To get to the Editor, we first need to open Excel.

					With the home screen visible, also referred to as the welcome screen, select the first option, Blank workbook:[image: Figure 2.1 – The welcome screen
]
Figure 2.1 – The welcome screen
A new Excel spreadsheet named Sheet1 is displayed. Since the file has not been saved, the workbook name, as displayed in the title bar, is Book1 - Excel:
[image: Figure 2.2 – Book1, Sheet1
]
Figure 2.2 – Book1, Sheet1

					With Sheet1 active, the next step is to open the VBA Editor. This can be done in one of two ways:Click on the Developer tab, go to the Code group, and click on the Visual Basic icon.
Use the keyboard shortcut, Alt + F11.
Either way, the following screen will appear:
[image: Figure 2.3 – The VBA Editor
]
Figure 2.3 – The VBA Editor

					Since there was no recorded macro, the code window will not be available. Press F7 to open a new code window or, if you want, click View on the menu bar, then select the first option, Code:[image: Figure 2.4 – The VBA Editor with the code window
]
Figure 2.4 – The VBA Editor with the code window

					With the VBA Editor open, we can now identify the different components:

			

			
				
					[image: Figure 2.5 – The VBA Editor components
]
				

			

			Figure 2.5 – The VBA Editor components

			How it works…

			Figure 2.5 shows the VBA Editor and its components. Let's look at each component in detail.

			The title bar

			All applications in the Microsoft environment have a title bar. As the name suggests, it identifies the application you are working in. It also displays the familiar minimize, maximize/restore, and close buttons on the rightmost end:

			
				
					[image: Figure 2.6 – The title bar
]
				

			

			Figure 2.6 – The title bar

			The menu bar

			All the latest Microsoft applications make use of ribbons to categorize icons and commands. Menu bars are, therefore, not all that common anymore. However, in the case of the VBA Editor, the menu bar has survived the test of time. It contains all the commands you need to work within the various components of the VBA Editor. Drop-down menus will also show shortcut keys for some of the commands:

			
				
					[image: Figure 2.7 – The menu bar
]
				

			

			Figure 2.7 – The menu bar

			The toolbar

			The standard toolbar is displayed directly under the menu bar. There are three other toolbars, which can be activated by using the View | Toolbars command, or by right-clicking on the toolbar. All these toolbars can be customized and moved around, although most users leave the toolbars as they are:

			
				
					[image: Figure 2.8 - The toolbar
]
				

			

			Figure 2.8 - The toolbar

			The Project window

			The Project window displays a tree diagram of the objects currently available in Excel. In this case, only one workbook with one sheet is open in Excel, meaning that only Sheet1 and ThisWorkbook will be displayed under Microsoft Excel Objects. To expand and collapse the objects under Microsoft Excel Objects, you can either double-click on the folder icon or click on the minus sign to the left of the folder icon.

			To close the Project window, click on the close button on its title bar, and to open it, press Ctrl + R or View | Project Explorer:

			
				
					[image: Figure 2.9 – The Project window
]
				

			

			Figure 2.9 – The Project window

			The Properties window

			The Properties window is displayed directly below the Project window. It does exactly what it says: it displays the properties of objects. When you click on the Sheet1 object in the Project window, the Properties window will display the related properties. The same happens when you select the ThisWorkbook object:

			
				
					[image: Figure 2.10 – The Properties window
]
				

			

			Figure 2.10 – The Properties window

			The code window

			The code window is the place where the VBA code is stored. Every object in a project has its own code window. To view the code window for ThisWorkbook, double-click on the object. The same applies for the Sheet1 object.

			Because we have not saved a macro or typed any code for any of these objects, the code window for both objects will be empty:

			
				
					[image: Figure 2.11 – The code window
]
				

			

			Figure 2.11 – The code window

			Like all windows, the code window can be restored (and maximized). By restoring both the code windows, you can either tile or cascade them:

			
				
					[image:]
				

			

			Figure 2.12 – Cascading code windows

			The Immediate window

			When you open the VBA Editor the first time, the Immediate window is normally not visible. Use the View | Immediate Window command, or press Ctrl + G to display the Immediate window. Closing it requires clicking on the close button on the title bar.

			If you are new to VBA, the Immediate window will not be of much use to you, since it is used to execute VBA statements directly, as well as for debugging your code. Until you have a bit more experience, feel free to close this window:

			
				
					[image: Figure 2.13 – The Immediate window
]
				

			

			Figure 2.13 – The Immediate window

			Creating a module for storing a Sub procedure

			In this recipe, we will be creating a new module, which is yet another object, in the Project window. So far, we've seen only two objects in the Project window: Sheet1 and ThisWorkbook. It is possible to create a code window for each, but Sub procedures must be created and stored in a module in the Project window. This is where coding for all objects can be created and saved.

			Getting ready

			Make sure that Excel is open and that the VBA Editor is visible.

			How to do it…

			The steps for this recipe are as follows:

			
					With Excel open on a new sheet, select the Developer tab. In the Code group, select the Visual Basic icon to activate the VBA Editor. If you prefer using the shortcut key, simply press Alt + F11.In the VBA Editor, observe the Project window. Under Microsoft Excel Objects, only two objects are visible: Sheet1 (Sheet1) and ThisWorkbook.

					On the menu bar, select Insert. From the drop-down menu, select Module, as shown:

			

			
				
					[image: Figure 2.14 – The Insert menu's Module option
]
				

			

			Figure 2.14 – The Insert menu's Module option

			Once you've made your selection, the VBA Editor adds a new module – visible in the Project window – and a new code window appears on the right:

			
				
					[image: Figure 2.15 – Newly inserted module
]
				

			

			Figure 2.15 – Newly inserted module

			How it works…

			When you open a new spreadsheet in Excel and then activate the VBA Editor, no modules will be visible in the Project window.

			However, should you record a macro and then activate the VBA Editor, that macro will be stored in a module.

			Finally, if you choose not to record a macro, but to insert the code yourself, you have to create a module yourself.

			Creating a basic procedure in the code window of the Editor

			In this recipe, we will create a basic procedure in the code window of the Editor. We're at the point where everything is coming together now; you know the different components, and you know how to create a module. All that's left is to create code – a simple Sub procedure – in the newly created module.

			Getting ready

			Make sure that you've created a module in the VBA Editor. The module should be visible as an object in the Project window, and the title bar of the code window should display the name Module1 (Code). If you cannot see the title bar, click on the restore window button to make the window smaller.

			How to do it…

			Let's go through the steps for this recipe:

			
					In the code window, type the following code:Sub MyName()
 MsgBox "My name is Yourname" (Replace Yourname _
 with your first name.)
End Sub

					Press Alt + F11 to switch to Excel.

					Click on any cell of the active sheet. Go to Developer | Code, and click on the Macros icon. The Macro dialog box appears:

			

			
				
					[image: Figure 2.16 – The Macro dialog box
]
				

			

			Figure 2.16 – The Macro dialog box

			The only available macro is the one that you've just created; MyName. Click on the Run button.

			A message box will appear with the words My name Mike, as shown:

			
				
					[image: Figure 2.17 – Message box from a basic procedure
]
				

			

			Figure 2.17 – Message box from a basic procedure

			A much shorter way to execute the code is to press F5 while in the VBA Editor. You will automatically switch to Excel, where the message box will be displayed.

			How it works…

			Entering code in the VBA Editor is relatively simple, on the condition that you have a basic understanding of VBA coding. Looking at a few code samples online before going solo is advisable, and will save you many hours of frustration.

			As a bonus, the Editor will make adjustments to the text you enter. The first example of this is when you type the Sub statement and the name of your procedure. When you press Enter, the Editor automatically inserts the End Sub statement. As we progress, you will see how spaces are inserted, and how capitalization and text colors are changed.

			Once your code is error-free, the code can be run. In this case, the outcome is a message box, displaying the words My name Mike.

			Creating VBA code in the code window in three different ways

			Our first Sub procedure was as simple as it gets. It wouldn't take much imagination to understand that coding can become more complex than that. If that's the case, it makes you wonder how long it would take to manually type the coding for super-long Sub procedures.

			All depending on the situation, there is more than one option to create coding. In this recipe, we will investigate the different methods to create code.

			Getting ready

			With Excel open, activate a worksheet in the workbook.

			How to do it…

			We will now go through the steps of working with each method to create code.

			Recording a macro and then opening the VBA Editor to view the code

			When using this method, you'll need to perform the following steps:

			
					Fill the range A1:A10 with any numerical value. In this case, I filled the range with the value 100. Once done, click on cell A1:[image: Figure 2.18 – Fill the range A1:A10
]
Figure 2.18 – Fill the range A1:A10

					Navigate to Developer | Code and click on Record Macro. The Record Macro dialog box appears. Give the macro a name and shortcut key, and type a short description, as shown:[image: Figure 2.19 – The Macro dialog box
]
Figure 2.19 – The Macro dialog box

					Click on OK to start recording the macro. The first step is to highlight the range A1:A10. Then, format the range as Accounting by using the drop-down list from Home | Number, as shown:[image: Figure 2.20 – Formatting the range
]
Figure 2.20 – Formatting the range

					Once the formatting is done, stop the recording from Developer | Code by clicking on Stop Recording.

					Now, view the code. Press Alt + F11 to display the VBA Editor. Double-click on Module1 to open the code window:[image: Figure 2.21 – Code for the recorded macro
]
Figure 2.21 – Code for the recorded macro

					To test the macro, press Alt + F11 to switch back to Excel. First, clear the formatting on range A1:A10. To clear the formatting, select the range. Then, go to Home | Editing | Clear | Clear formats. Click any cell on the sheet, then run the macro. The range A1:A10 will be formatted as Accounting.

			

			Entering the code manually by typing

			In this method, we will be typing the code manually using the following steps:

			
					While still in the VBA Editor, click on Insert, then select Module.

					A new module will appear in the Project window. Double-click on the Module icon to open the corresponding code window.

					Type the following code:Sub MsgBoxOKCancel()
 MsgBox "Do you want to continue?", vbOKCancel
End Sub

					To run the code, press F5. The Excel spreadsheet will appear, with a message box on the screen. When you click on OK, you will switch back to the VBA Editor.

			

			Copying and pasting

			When you work in MS Word and want to copy text from one document to the other, you need both pages to be open. The same applies for code in VBA.

			Open the module with the code you want to copy, as well as the one where you want to paste it. Select the code in the first module – use Ctrl + C, or right-click and Copy – then switch to the new module. Ctrl + V will paste it, or you can right-click and select Paste.

			How it works…

			Now let's see how each method works.

			Recording a macro, and then opening the VBA Editor to view the code

			Many Excel users are introduced to the world of VBA coding after recording a macro or two. Looking at the recorded steps and starting to understand how VBA works is quite exciting.

			If you have to record a series of steps in Excel, there is no better or faster way to create the code than with a macro.

			Entering the code manually by typing

			It normally comes as a shock when you realize that not all coding can be done with the macro recorder.

			Take, for instance, the message box we created with the sample code. There is no way to create that message box other than manually typing the code.

			If you are new to VBA, typing code manually might sound like a challenge. However, with a little bit of experience, you will soon be able to type lines of code like a professional.

			Like with any other typing, you can cut, copy, paste, and delete text in the Editor. To make the code easier to read, indent some of the lines with the Tab key. Don't forget that undo and redo can also be used!

			If a single line becomes too long to read on one screen, use a space and an underscore (_) to break to a new line.

			Copying and pasting

			This sounds like the lazy man's escape, but there are many good reasons for copying code. Firstly, if you created a Sub procedure for another project that can be used in your current project, it would be a waste of time to retype it.

			You will also find many examples of VBA code on the internet. This is a very good way of learning from people with experience.

			There's more…

			To make the macro we recorded a bit more useful, do the following:

			
					In the VBA Editor, copy the Currency_Format Sub procedure and paste it directly below the last line.

					Still in the Editor, rename it to Range_Format.

					Now, delete all the notes in the Range_Format procedure.

					Finally, delete the line that selects the range A1:A10.

			

			Your code should now look like this:

			
				
					[image: Figure 2.22 – Altered code
]
				

			

			Figure 2.22 – Altered code

			If you switch back to Excel, you can now use the second macro to highlight any range and format it to accounting.

			Customizing the Editor tab to suit your preferences

			In this recipe, we will change settings in the Editor tab to suit your preferences.

			Getting ready

			Make sure that the VBA Editor is visible.

			How to do it…

			In order to proceed with executing this recipe, you need to go through the following steps:

			
					With the VBA Editor active, choose Tools | Options from the menu bar. The Options dialog box will appear as shown here:[image: Figure 2.23 – The Options dialog box
]
Figure 2.23 – The Options dialog box

					In the Options dialog box, click on the Editor tab, if it is not already selected.There are two sections: Code Settings and Window Settings. In each of these sections, you will find several boxes, some with tick marks and others empty.

					Click in any of these tick boxes to select or deselect the option, as described to the right of the tick box:[image: Figure 2.24 – The Editor tab
]
Figure 2.24 – The Editor tab

					Click on the Editor Format tab to activate it. With this tab, you can customize the way the Editor looks.Here, you will find three sections: Code Colors, Font, and Sample.
The options under Code Colors can be customized by selecting a different color under Foreground, Background, and Indicator for each of the code elements.
The font and size can be changed by selecting either Font or Size, while a sample will display the effect of your choices in the Sample section, as shown:
[image: Figure 2.25 – The Editor Format tab
]
Figure 2.25 – The Editor Format tab

					Click on the General tab to activate it. This is where the less dedicated settings can be made.In this area, you will find four sections: Form Grid Settings, Edit and Continue, Error Trapping, and Compile.
Once again, changes can be made by either selecting or unselecting tick boxes, as shown:
[image: Figure 2.26 – The General tab
]
Figure 2.26 – The General tab

					Click on the Docking tab to activate it. The only purpose of this tab is to set the behavior of the different windows in the VBA Editor.There is only one section with a list of tick boxes, each with a description:

			

			
				
					[image: Figure 2.27 – The Docking tab
]
				

			

			Figure 2.27 – The Docking tab

			How it works…

			We will now have a quick look at what customizing these tabs entails.

			The Editor tab

			The default settings are default for good reasons and speak for themselves, in most cases. There are two possible changes I would suggest, which are as follows:

			
					The Auto Syntax Check: For novice users, this option is indispensable, so keep it as it is. For people with more experience, the pop-up dialog box that appears when it discovers a syntax error in the code can be irritating. You choose what you prefer.

					Default to Full Module View: Many coders prefer to see a maximized code window. However, if you know that you're going to work in multiple modules, it is sometimes nice to have the code window in restore down mode so that you can easily select and move between them.

			

			The Editor Format tab

			With this tab, you can customize the way the Editor looks. Once again, these settings are the default because they've been tried and tested.

			So, unless you are working for a multi-national company where the project managers have developed their own color settings, I would strongly advise that you stick to the factory settings.

			The General tab

			In almost every case, the default setting will be best. There is, however, one setting that must be mentioned, and that is Error Trapping. The default setting is Break On Unhandled Errors. If you switch this off, your error handling code will not work. More on this will be covered later in the book.

			The Docking tab

			As said, these settings determine window behavior in the VBA Editor. When a window is docked, it is fixed in place in the VBA program window, meaning that your environment is fixed and familiar.

			If you turn off all docking, windows in the VBA Editor can potentially become a confusing mess of floating screens. In this case, I would strongly advise against undocking windows.

		

	
		
			Chapter 3: The VBA Object Model

			VBA is essentially object driven. Excel, for example, provides dozens of objects that can be manipulated. This includes workbooks, worksheets, ranges, charts and images, and shapes. These objects are arranged in a hierarchical structure. If you want to do anything in VBA, understanding the VBA object model is essential. The recipes in this chapter will be your reference to understanding and working with objects in VBA.

			In this chapter, we will cover the following recipes:

			
					Understanding and identifying objects in VBA

					Objects as a collection, and changing the attributes of the entire collection

					Modifying object properties

					Associating methods with objects

					Using events to activate objects

					Using the Object Browser in the VBA Editor

			

			By the end of this chapter, you will be able to work with objects in VBA.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10.

			Demonstration files can be downloaded from https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check out the CiA videos: https://bit.ly/3jQRvVk.

			Other than the aforementioned requirements, you have everything you need.

			Understanding and identifying objects in VBA

			In this recipe, we will learn how to identify objects. Whether you record a macro or manually enter code, you will be working with objects. In essence, the Excel object model is a hierarchy of objects contained in Excel. Each object has certain properties and can be manipulated to perform certain actions in Excel.

			Once you understand this hierarchical structure, you will have a good understanding of object-oriented programming (OOP).

			Getting ready

			As long as you have Excel installed on your system, you have everything you need. You may not have been aware of it, but every time you've used Excel in the past, you've been using objects.

			How to do it…

			The steps for this recipe are as follows:

			
					Open a blank workbook in Excel. The first object we're looking at here is the application itself. That's the familiar Excel interface we deal with every time we work in Excel.

					Next, contained in Excel, the main object, there are other objects such as workbooks. The default workbook will be Book1, and every new workbook after that – Book2, Book3, and so on – are all separate objects.

					Each workbook, in turn, contains its own set of objects such as worksheets. By inserting new worksheets into workbooks, the number of objects increases accordingly.

					On a lower level, worksheets also contain objects such as names, comments, and ranges.

			

			How it works…

			The best way to explain the hierarchical structure of objects is with a diagram, as follows:

			
				
					[image: Figure 3.1 – The object hierarchy
]
				

			

			Figure 3.1 – The object hierarchy

			In this scenario, the application is the main object on the left. It contains three Book objects, while each of the Book objects contains three Sheet objects. Sheet1 of Book1 contains a range object with a specific value.

			If we had to refer to these objects in VBA, the syntax used would be vitally important. Similar to Figure 3.1, where the Application object is on the left, followed by the rest of the objects, typing the code also flows from left to right.

			If we had to type code to describe the objects in Figure 3.1, it would be done as follows:

			Application.Workbooks("Book1.xlsx").Worksheets(1). _

			Range("A1").Value

			This code example is known as a fully qualified reference of the preceding diagram. The syntax dictates that each object is separated from the next by a dot (.).

			Notice that the book name is in quotation marks. This is necessary for Excel to identify it as an object, instead of a variable name. For the worksheet, the number is not in quotation marks. That is because we refer to the object by its index number. The range name is in quotation marks again, and the value is just the value.

			A simplified object reference for the same object would be the following:

			Range("A1").Value

			The reason for this much simpler reference is because the application object is always assumed. Further, if you're sure that Book1.xlsx is the active workbook, you can omit that too. Similarly, if you know that Sheet1 is the currently active worksheet, Excel will assume that reference.

			Note that Excel does not have a cell object. A cell is simply a range object consisting of a single element.

			Objects as a collection, and changing the attributes of the entire collection

			This recipe will take us one step further down the path of discovering objects.

			It is common knowledge that a workbook is made up of any number of worksheets. These worksheet objects are of the same type and form a collection. Collections are objects in themselves.

			There are, of course, more objects that form collections than just worksheets. Here is a list of other commonly used workbook objects:

			
					Workbooks: All currently open workbook objects form a collection.

					Worksheets: All worksheet objects contained in a particular workbook object constitute another collection.

					Charts: All chart objects/chart sheets contained in a particular workbook object are yet another collection.

					Sheets: All sheets, regardless of type, contained in a particular workbook object also form a collection.

			

			Having this understanding of collections will be useful for all future recipes.

			Getting ready

			Open Excel and make sure that Book1 is active.

			How to do it…

			Now let's proceed with the following steps:

			
					With Book1 open, insert three more sheets by clicking on the add button (+) to the right of Sheet1. We need a total of four sheets in Book1.

					Now, create a new workbook – Book2. Leave it with only one worksheet.

					Once done, activate the VBA Editor by pressing Alt + F11.

					The Project window displays all the recently created objects. It is important to take note of the collections. Book1 and Book2 are in bold because they belong to the same collection. Similarly, all the sheets belong to another collection:[image: Figure 3.2 – Objects in the Project window
]
Figure 3.2 – Objects in the Project window

					While still in the VBA Editor, select Book1. Then, on the menu bar, click Insert | Module.

					In the code window for Module1, type the following code:Sub ChangeFont()
 Sheets(Array("Sheet1", "Sheet2", "Sheet3", _
 "Sheet4")).Select
 Sheets("Sheet1").Activate
 Cells.Select
 With Selection.Font
 .Name = "Arial"
 .Size = 12
 End With
 Selection.Font.Size = 11
 Range("A1").Select
End Sub

					Once done, run the macro. (To do this, press F5 and then Alt + F11 to switch back to Excel. Alternatively, press Alt + F11 to switch back to Excel, and then click Developer Tab | Code Window | Macros | Run Macro | ChangeFont).

					Observe that all four sheets on Book1 have been selected, and that the font for each sheet is now Arial set to size 11.

			

			How it works…

			When we run the ChangeFont macro, the following happens:

			
					Line one of the code selects and groups all four sheets in Book1. At the same time, Book1 is activated. Because these sheets are grouped, any action taken on Sheet1 will also be applied to the rest of the group.

					Next, all cells on the sheets are selected.

					The font is changed to Arial, while the font size stays at 12 points for the moment.

					Now, the size is reduced to 11 points.

					Finally, cell A1 is selected.

			

			You can check any of the four sheets to confirm that the font has been changed to Arial, size 11.

			Modifying object properties

			Knowing how to refer to objects is only the first step in working with them. In this recipe, we will be learning how to modify the properties of objects. You can think of properties as attributes that describe an object. In order to use them to do something of value, you must be able to do the following:

			
					Read an object's properties and then modify them.

					Specify a method of action to be used with that object (more about this in the next recipe).

			

			Getting ready

			Make sure that a blank workbook is active in Excel.

			How to do it…

			Let's see the steps for this recipe:

			
					With Excel open, press Alt + F11 to activate the VBA Editor.

					In the Project window of Explorer, double-click on Sheet1 under Book1. The corresponding code window will appear:[image: Figure 3.3 – The code window in the VBA Editor
]
Figure 3.3 – The code window in the VBA Editor

					Type the following code:Sub ChangeValue()
 Worksheets("Sheet1").Range("A1").Value = 555
End Sub

					Press F5 to run the code, and then press Alt + F11 to switch back to Excel.

					The cell A1 of Sheet1 now contains the value 555.

			

			How it works…

			Here's how the preceding steps worked out:

			
					Cell A1 was empty. In other words, its value property was zero.

					The ChangeValue Sub procedure first activated Sheet1, then cell A1, and finally set the value of cell A1 to 555.

					By running the macro, we changed the value property of cell A1 from empty to 555:

			

			
				
					[image: Figure 3.4 – The new value property in cell A1
]
				

			

			Figure 3.4 – The new value property in cell A1

			There's more…

			With the preceding sample, we've only scratched the surface. Other properties, such as bold or italic, font color, font size, alignment, and many more, can be set in the same way.

			The following code sample is extremely clumsy, but I need to make a point here.

			First, clear cell A1. Then type any value into cells B1 and C1 of Sheet1. When done, activate the VBA Editor, and add the following lines to the existing Sub procedure:

			Sub ChangeValue()

			 Range("A1").Value = 555

			 Range("B1").Font.Color = -16776961

			 Range("C1").Font.Bold = True

			End Sub

			Run the macro.

			Cell A1's value is once again set to 555, while cell B1's font color has changed to red. Similarly, cell C1's font weight is set to bold.

			Associating methods with objects

			So, what is a method, and what is its connection with objects? Objects have properties, as we have seen, while a method is something an object does. A method is a specific piece of code you type after an object. It's like an instruction to the object: copy (the cell object), print (the sheet object), or select (the range object). In this recipe, we will use three basic methods: Activate, Copy, and ClearContents. In this recipe, we will copy content from one selection to another.

			Getting ready

			Make sure that a blank workbook is active in Excel. Type the words Monday, Tuesday, and Wednesday into cells A1, B1, and C1, respectively.

			How to do it…

			
					Press Alt + F11 to activate the VBA Editor.

					In the Project window of Explorer, double-click Sheet1 under Book1. The corresponding code window will appear.

					Type the following code into the code window:Sub CopyCell()
 Worksheets("Sheet1").Activate
 Range("A1:C1").Copy Range("A2")
End Sub
Run the macro, and then press Alt + F11 to switch back to Excel. Observe how the content of the three cells has been copied to the following row.

					Press Alt + F11 to activate the VBA Editor again.

					Under the CopyCell Sub procedure, press Enter to create a new line. Type the following code:Sub RangeClear()
 Range("A1:C1").ClearContents
End Sub

					Press F5 to run the code, and then press Alt + F11 to switch back to Excel.

					Whatever values you had in the range A1 to C1 have been cleared.

			

			How it works…

			Cells A1 to C1 each contained a value. The CopyCell Sub procedure first activated Sheet1, and then used the Copy method to copy the contents of cells A1, B1, and C1 to cells A2, B2, and C2.

			Following this, we also saw how we can use the RangeClear Sub procedure to clear the content from cells A1, B1, and C1.

			Using events to activate objects

			The last element in relation to objects that we need to discuss is events. In simple English, an event is what happens when an object does something, such as open a workbook, close a sheet, or print a file. Events are initiated by a user, for example, by clicking a mouse or pressing a key.

			In this recipe, we're going to cover only the most basic principles, since an entire chapter is dedicated to events later in this book.

			Getting ready

			With Excel open, ensure that a blank workbook is available and active.

			How to do it…

			The first thing to remember about events is that the code is not stored in a module object, but in the workbook object. Place the code anywhere else and it will simply not work.

			The steps for this recipe are as follows:

			
					Press Alt + F11 to activate the VBA Editor.

					In the Project window, double-click on the ThisWorkbook object to open the code window.

					At the top left of the code window, from the drop-down list, select the object that you're coding for; in this case, a workbook:[image: Figure 3.5 – The object drop-down list in the VBA Editor
]
Figure 3.5 – The object drop-down list in the VBA Editor

					The default event inserted will be Open. If you want to code for another event, select from the drop-down list at the top right of the window:[image: Figure 3.6 – The Open event code
]
Figure 3.6 – The Open event code

					Between the opening and closing statements of the Sub procedure, type the following code:[image: Figure 3.7 – Completed Sub procedure
]
Figure 3.7 – Completed Sub procedure

					Once done, don't just run the code by pressing F5. You need to trigger the event that the Sub procedure is attached to, meaning that you have to save the file and then open it. The event will only be activated when the file is opened.

					Press Alt + F11 to switch back to Excel.

					Save the file as a macro-enabled workbook and close it.

					When you open it now, click on Enable Macros. The event will be initiated, and a message box will be displayed. Click on the OK button to close the message box:

			

			
				
					[image: Figure 3.8 – The result of the Open event code Sub procedure
]
				

			

			Figure 3.8 – The result of the Open event code Sub procedure

			Take note that the message box must be closed before you can do any work on the spreadsheet.

			How it works…

			Events are initiated by objects that do something. In this case, the event is linked to the opening of a specific workbook. When the workbook is opened, the event is triggered, and as per the instructions in the code, a message box is displayed.

			Using the Object Browser in the VBA Editor

			This recipe covers usage of the Object Browser in the VBA Editor. The name says it all; the Object Browser lets you browse through the objects available to you.

			In later recipes, we will look into the autocompletion of our code. For instance, when you type the name of an object in the code window and type a dot, a context menu appears with a list of actions you can choose from:

			
				
					[image: Figure 3.9 – The context menu with available library options
]
				

			

			Figure 3.9 – The context menu with available library options

			The green icons are methods, including cutting, pasting, and clearing contents. The other icons are properties. You can, in other words, choose methods or properties here, or use the Object Browser, as described hereafter.

			Getting ready

			Make sure that a blank workbook is active in Excel.

			How to do it…

			
					Activate the VBA Editor by pressing Alt + F11.

					With the Editor active, press F2 to activate the Object Browser. You can also do this by clicking on View | Object Browser:[image: Figure 3.10 – The Object Browser
]
Figure 3.10 – The Object Browser

					The drop-down list in the top left-hand corner, just under the title bar, contains a list of all the object libraries that are currently available. Figure 3.10 displays the Excel libraries.

					Just below that, a second drop-down list lets you enter a search string. In this example, I searched for all Excel objects that deal with open.

					The object library now displays everything that contains the text open. If you want to know more about Close, for instance, click on that object and press F1 for more information.

					There is also the Auto List Members feature. It provides a list of properties and methods as you type. Figure 3.11 shows an example of this for the worksheets collection:

			

			
				
					[image:]
				

			

			Figure 3.11 – The Auto List Members option

			How it works…

			The Object Browser is a tool in the VBA Editor that lets you browse through the objects available to you.

			The Auto List Members feature provides a list of properties and methods as you type. It eliminates some typing, and also ensures that the property or method is spelled correctly.

		

	
		
			Chapter 4: Working with Procedures

			A good starting point for this chapter would be to help you understand what a procedure is.

			When recording a macro, Excel captures every action you take. Each step is stored in the VBA Editor in a specific text form, or a little program. The correct term for these recorded lines of code is a procedure. When recording a macro, your actions in Excel are stored in a VBA procedure.

			A procedure, therefore, is a block of statements. It starts with a particular declaration statement and ends with an End declaration. When you then run the macro, the procedure carries out whatever task you recorded.

			Macros are useful on an elementary level. To make the most of VBA, you need to know how to write procedures manually.

			VBA distinguishes between Sub procedures and Function procedures. We will investigate both procedures to help you understand the difference, role, and function of each. Naming conventions become important here and are explained in detail. To make things crystal clear, we make use of practical examples to explain the difference in executing a Sub procedure and a Function procedure.

			In this chapter, we will cover the following recipes:

			
					Creating Sub and Function procedures

					Executing Sub procedures directly

					Executing Sub procedures from the Macro dialog box

					Executing Sub procedures using buttons

					Executing Sub procedures using a shortcut key

					Executing Function procedures using a worksheet formula

					Executing Function procedures by calling from a Sub procedure

			

			By the end of this chapter, you will be able to write a Sub procedure manually.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10.

			If your hardware and software meet these requirements, you're good to go.

			Demonstration files can be downloaded from https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check out the CiA videos: https://bit.ly/3jQRvVk.

			Creating Sub and Function procedures

			In this recipe, we will be creating the two most common types of procedures; Sub and Function procedures.

			A Sub procedure is, in essence, a series of VBA statements, with the purpose of performing an action within Excel. The simplest Sub procedures can be as short as a single line of code (between the Sub and End Sub statements), while complex Sub procedures can become quite long. It is, however, advisable to divide huge Sub procedures into a series of shorter Sub procedures.

			Another procedure often used in VBA is the Function procedure. The purpose and use of this type of procedure differs from the Sub procedure in the sense that it performs a calculation and returns a single value.

			It can happen that you want to do a complex calculation, like a nested If statement, or a nested And/Or statement. By incorporating these functions into a User-Defined Function (UDF), you can simplify the process considerably.

			Function procedures can also be used for very simple calculations, such as finding the exponent of a value.

			So, watch closely as we show you how to create a Sub and a Function procedure.

			Getting ready

			Open Excel and make sure that Book1 is active.

			How to do it…

			Sub procedures are a series of steps or instructions that we can apply in Excel.

			Let's say you have to create a new data table every day. The layout and headings must be exactly the same for each new table. Instead of creating the table manually, you can write a Sub procedure to automate the work for you. The table headings we want to create should look like this:

			
				
					[image: Figure 4.1 – The table headings we want to create
]
				

			

			Figure 4.1 – The table headings we want to create

			Let's create a simple Sub procedure by taking the following steps:

			
					Activate the VBA Editor with Alt + F11 or click on Developer | Code | Visual Basic.

					In the Editor, click Insert | Module to create a new module in Book1.

					In the code window for Module1, type the following code:Sub TableData()
 Range("A1").Value = "First Name"
 Range("B1").Value = "Last Name"
 Range("C1").Value = "City"
 Range("D1").Select
End Sub

					Save the procedure by clicking on File | Save.

			

			Next, we will be creating a simple Function procedure:

			
					Under the existing Sub procedure, type the following code:Function Exponent(x As Integer, y As Integer) As Integer
 Exponent = x ^ y
End Function

					Save the Function procedure by clicking on File | Save.

			

			How it works…

			Sub procedures are a series of steps or instructions that we can apply in Excel:

			
					In the code window of Module1, we first typed the word Sub, then the name of the procedure, TableData, and then pressed Enter. The End Sub statement, as well as the parentheses, were inserted automatically.

					In this case, we want the heading First Name to appear in cell A1. By typing in the range, and then setting the value of that range to First Name, we've assigned the text value to cell A1.

					The values Last Name and City were assigned to cells B1 and C1, respectively.

					Finally, after placing the three headings, we want cell D1 to be selected.

			

			Function procedures return a single value. In this example, we want to calculate the value of a base number and any exponent. There is no existing function in Excel that does this. Let's see how we did it:

			
					In the code window, we typed the word Function and then the name we wanted to assign to that function. By pressing Enter, the End Function statement as well as the parentheses were inserted automatically.

					We then clicked between the parentheses and declared two variables, x and y, as integers. We ended off by setting the result to an integer as well.

					In the next line, we typed the name of the function again, and made sure that it was exactly the same as in the first line.

					Next, we set the function name to the calculation. In this case, we wanted the first value as the base value, and the second value as the exponent. The ^ (caret) character is used to set the second value as the exponent.

			

			There's more…

			In the Microsoft environment, there are at least two (sometimes three) different ways of getting things done. Writing a Sub or Function procedure is no different.

			If typing is not your thing, you can always use the VBA Editor to help you create procedures:

			
					In the VBA Editor, in the Menu bar, click on Insert | Procedure.

					The Add Procedure dialog box appears:[image: Figure 4.2 – The Add Procedure dialog box
]
Figure 4.2 – The Add Procedure dialog box

					Type the name of your Sub or Function procedure in the Name box.

					Next, select the Type of procedure: Sub, Function, or Property. (The Property function will be discussed at a later stage.)

					Under Scope, select Public.

					Click OK.

					In the code window, the opening and closing statements will automatically appear. All you have to do is type the rest of the code.Important note
A public procedure has no access restrictions, meaning that it can be accessed by any Sub procedure in any other module. Private procedures can only be accessed from Subs stored in the same VBA module.

			

			Executing Sub procedures directly

			Having created a Sub procedure is a waste of time if it doesn't make your life easier. Instead of creating a table manually, you want the Sub procedure to do the work automatically.

			So, how do you get the Sub procedure to work? You run it, or execute it. Whether you call it by running the code or executing the code makes no difference. All you want to do is to get the code to do what it was supposed to do.

			In this recipe, we will be investigating one specific way of executing a Sub procedure. It is not better or faster, it's just one of about ten different ways in which we can run a Sub procedure.

			Getting ready

			Make sure that you are still in the code window that contains the procedure we created in the previous section.

			How to do it…

			To execute a Sub procedure directly, do the following:

			
					Click anywhere in the code window of the procedure you want to run.

					Press Run | Run Sub/Userform. (The keyboard shortcut is F5.)

					Press Alt + F11 to switch back to Excel.

					Cells A1, B1, and C1 will display the values First Name, Last Name, and City, respectively.

			

			How it works…

			Lines of code in the code window are nothing more than a set of instructions for Excel to follow. When we run a macro, these text values will be inserted in the required cells. Because the macro was created in a module, it can be used on any worksheet.

			Executing Sub procedures from the Macro dialog box

			This recipe will show us how to execute a Sub procedure from within Excel. Once again, there is no right or wrong, no better or faster method; it is just another way of getting the macro to do what it is supposed to do.

			Getting ready

			If you are not already in Sheet1, press Alt + F11 to switch back from the code window to Excel and clear cells A1, B1, and C1.

			How to do it…

			To run the macro from the Macro dialog box, do the following:

			
					Click Developer | Code | Macros to activate the Macro dialog box:[image: Figure 4.3 – The Macro dialog box
]
Figure 4.3 – The Macro dialog box

					The only available macro is the one you've just created: TableData. Click on Run.

					As per the coding instructions for the Sub procedure, you will find the text inserted into cells A1, B1, and C1. Cell D1 will be selected, yet empty.

			

			How it works…

			We executed exactly the same Sub procedure as before. The only difference is the method: instead of running it directly from the code window, we selected the macro from the Macro dialog box.

			The results were also exactly the same. The principle behind this is that the executing method is not what is important, but rather the underlying coding.

			Executing Sub procedures using buttons

			In this recipe, we're going to take the running of macros one step further by executing them when clicking on a button.

			There is a very good reason for creating buttons on a spreadsheet. Some users may not be familiar with the VBA Editor, meaning that they wouldn't know how to run a macro from there. Even the Macro dialog box can be a challenge. That's when buttons become very useful, because even a novice will know that clicking on a button normally makes something happen.

			Getting ready

			Ensure that Excel is open on the same workbook that we've been working with so far.

			How to do it…

			The following steps will help you complete this recipe:

			
					In any worksheet, click on Developer | Controls | Insert | Button (Form Control):[image: Figure 4.4 – Inserting the Button form control
]
Figure 4.4 – Inserting the Button form control

					Now click and drag anywhere on the worksheet to create a button. Size is not important, but remember that a very small button would make it difficult to see button text, and a very large button would obscure data on the spreadsheet. A button called Button 1 will now be visible:[image: Figure 4.5 – The inserted button
]
Figure 4.5 – The inserted button

					The Assign Macro dialog box appears:[image: Figure 4.6 – The Assign Macro dialog box
]
Figure 4.6 – The Assign Macro dialog box

					To override the default name, click on the TableData macro. Observe how Button1_Click is replaced:[image: Figure 4.7 – Assigning a macro to the button
]
Figure 4.7 – Assigning a macro to the button

					Click OK.

			

			How it works…

			Assigning a macro to a button means that we've associated the code in Explorer with the button. That way, we make life much easier for users in general.

			Instead of running the macro from the VBA Editor or from the Developer toolbar, users can now conveniently click on a button to insert headings into cells A1, B1, and C1.

			There's more…

			It would make sense to change the text on the button. No one would have any idea what Button1 can or should do. However, if it is named Insert Headings, users would be much more comfortable clicking on it.

			Do the following to change the text on Button1:

			
					Right-click on Button1 and select Edit Text:
[image: Figure 4.8 – Editing the button name
]
Figure 4.8 – Editing the button name

					The menu disappears, while the text on the button can now be edited. Change it to Insert Headings.

					Once done, click anywhere on the spreadsheet to accept the change.

			

			Executing Sub procedures using a shortcut key

			Another very popular way of executing a macro is to press a shortcut key. If you assign that shortcut key when you record a macro, it's quite simple. But what if you entered your code directly in the code window? How do you assign a shortcut key from there?

			In this recipe, we are going to assign a shortcut key to a macro and execute it that way.

			Getting ready

			Excel is still open in the same workbook that we've been working with so far. The VBA Editor is active.

			How to do it…

			The following steps will show you how to assign a keyboard shortcut to an existing macro:

			
					In the VBA Editor, choose Developer | Code | Macros.

					The Macro dialog box appears:[image: Figure 4.9 – The Macro dialog box
]
Figure 4.9 – The Macro dialog box

					The only available macro is already selected. Click the Options button. The Macro Options dialog box appears:[image: Figure 4.10 – The Macro Options dialog box
]
Figure 4.10 – The Macro Options dialog box

					Enter a shortcut key in the Ctrl+Shift+ box. For this shortcut, we are going to hold down Shift, and then press T. The keyboard shortcut has now been set to Ctrl + Shift + T:[image: Figure 4.11 – Creating a shortcut key
]
Figure 4.11 – Creating a shortcut key

					Click OK to close the dialog box.

					Clear all data from Sheet1 and press the shortcut key Ctrl + Shift + T .

					The headings will once again appear in cells A1, B1, and C1, since it is the same macro that has been executed.

			

			How it works…

			Whether you run the macro directly from the code window, from the Macro dialog box, or with a keyboard shortcut, it boils down to the same thing; the code must somehow be executed. The method doesn't matter, as long as the result is agreeable.

			Executing Function procedures using a worksheet formula

			Unlike Sub procedures, Function procedures cannot be executed directly. In fact, they can be executed only in two ways: by another procedure, or with a worksheet formula.

			In this recipe, we will be executing the Exponent Function procedure from within Excel. It is done in exactly the same way as any of the other worksheet functions in Excel; you click on a cell, type the = (equals) sign, and move on from there.

			Let's go through the steps and see how it's done.

			Getting ready

			Make sure that Excel is still open in the same workbook that we've been working with so far.

			How to do it…

			To execute, or call a function in Excel, do the following:

			
					Click on any open cell on Sheet1. As with any other function, press =.

					Now type exponent to call up the function we created earlier.

					Press Tab to activate the function. After the first parenthesis, type 5,2 and press Enter.

					The result, 25, will be displayed in the active cell.

			

			How it works…

			
					By typing = in any cell, a list of available functions, starting with exp, will appear.[image: Figure 4.12 – Selecting the Exponent function
]
Figure 4.12 – Selecting the Exponent function

					By selecting Exponent and pressing Tab, the function was inserted, waiting for us to provide the arguments.

					By typing the base value as the first argument, followed by a comma, and then exponent as the second argument, the function was completed.

					By pressing Enter, the result appeared in the active cell.

			

			Executing Function procedures by calling from a Sub procedure

			In this last recipe, we will be calling the Function procedure from a Sub procedure. Once again, unless we call a Function procedure directly in Excel, the only other way to execute it is to call it from a Sub procedure.

			Getting ready

			Press Alt + F11 to activate the VBA Editor.

			How to do it…

			Follow these steps to create a Sub procedure to call the Exponent Function procedure:

			
					Under the last procedure in the code window, type the following code:Sub CallSample()
 Result = Exponent(5, 2)
 MsgBox Result
End Sub

					Save the file, and then press F5 to run the procedure.

			

			How it works…

			Function procedures cannot be executed like standard procedures. You cannot even execute it by running it as a macro. The only way to run a function is to use it in the Excel spreadsheet like a built-in function, or to call it from another procedure. That is why we had to create the CallSample procedure.

			In this procedure, we set the Result variable as equal to the Exponent function, with 5 as the base value and 2 as the exponent. The expected result would therefore be 25 (5 x 5 = 25).

			By pressing F5, the CallSample procedure is executed. It calls the Exponent function and displays the value 25 in a message box in Excel.

		

	
		
			Chapter 5: Next Level Recording

			Doing a basic recording is simple. There is, however, more to recording a macro than meets the eye. Planning plays a role, and so does relativity. Understanding and using absolute or relative references when recording a macro can make or break your procedure. It is also useful to understand that macro recordings are limited to direct actions taken in a worksheet. Functions, IF statements, loops, and custom dialog boxes, to name a few, cannot be recorded.

			Relative referencing in macros opens up a new world of functionality. Most importantly, it allows you to run a macro on specific, chosen cells, instead of being limited to one location. You can, in other words, record a macro starting in cell A1, but when it comes to executing, you can choose the starting cell to be any other cell on the sheet.

			In this chapter, we will cover the following recipes:

			
					Setting the macro recorder for absolute or relative reference

					Recording options

			

			By the end of this chapter, you will be able to record macros with relative or absolute referencing.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10.

			If your hardware and software meet these requirements, you have everything you need.

			Demonstration files can be downloaded from https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check out the CiA videos: https://bit.ly/3jQRvVk.

			Setting the macro recorder for absolute or relative reference

			In this recipe, we will be working with relative macro recordings.

			The default setting for a macro recording is absolute. In simple English, this means that the execution of your macro will always start on the same cell where the recording was done.

			With a relative setting, you can record a macro and choose a different starting point when executing the macro. Unlike the absolute reference macro, you are not restricted to a specific range or starting point.

			Getting ready

			Open Excel and make sure that Book1 is active.

			How to do it…

			To record a macro in relative mode, do the following:

			
					Click in cell A1. Activate the Developer ribbon.

					In the Code group, select the Use Relative References option:[image: Figure 5.1 – The Use Relative Refences option
]
Figure 5.1 – The Use Relative Refences option

					Still in the Code group, click on Record Macro. The Record Macro dialog box appears:[image: Figure 5.2 – The Record Macro dialog box
]
Figure 5.2 – The Record Macro dialog box

					In the Macro name textbox, type Relative. Set the shortcut key to Ctrl + Shift + R, store the macro in this workbook, and add a short description in the bottom textbox.

					Click on OK. You are now in recording mode.

					With cell A1 selected, type Heading and then press Enter.

					Click on the Stop Recording option in the Code group:

			

			
				
					[image: Figure 5.3 – The Stop Recording button in the Code group
]
				

			

			Figure 5.3 – The Stop Recording button in the Code group

			How it works…

			The steps for recording a macro with relative references are exactly the same as those for a macro with absolute references. The difference will only become evident when we run or execute the macro.

			Recording in relative mode means that you can record entering a value in cell A1, but when you run the macro, you can click on any other cell, and whatever you recorded will appear in the selected cell.

			Let's see what happens when we run a macro with relative references:

			
					With Excel open, click in cell D10.

					In the Code group, click on Macros. The familiar Macro dialog box appears. Since there is only one macro, called Relative, it will already be selected. Click on Run.

					Observe how Heading now appears in cell D10. If the recording was done as an absolute reference, the text would have appeared on A1 again, where it was recorded:

			

			
				
					[image: Figure 5.4 – Relative placement
]
				

			

			Figure 5.4 – Relative placement

			There are many more possible ways of using relative referencing when recording a macro. As long as you understand the principles, you should be able to apply and use it effectively.

			Recording options

			Whenever we record a macro, there are a number of options to consider. Beyond the choice between absolute and relative references, there are other settings we need to take note of.

			In this recipe, we will be looking at different options when recording a macro.

			Getting ready

			Open Excel and make sure that Book1 is active.

			How to do it…

			Here are the steps to set options for recording a macro:

			
					With Sheet1 active, click on Developer | Code | Record Macro. The Record Macro dialog box appears:[image: Figure 5.5 – The Record Macro dialog box
]
Figure 5.5 – The Record Macro dialog box

					The Macro name, Shortcut key, Store macro in, and Description options can all be changed, based on personal choice and need.

			

			How it works…

			The details of each option will now be discussed in the following subsections.

			Macro name

			All macros must have a name. There is, however, a specific naming convention that we need to follow. Macro names follow these conventions:

			
					Must begin with a letter

					Must contain only letters, numbers, and underscores

					Cannot contain any spaces

					Should not be the same as cell references, to avoid errors

					Cannot be the same as existing Excel functions or keywords, such as Sum, Average, Copy, and Paste

			

			Shortcut key

			You can use any combination of keys in this section. There are certain constraints you should be aware of:

			
					Try to use unique keyboard shortcuts, such as Ctrl + Q.

					If you use an existing keyboard shortcut for a macro – for example, Ctrl + C – it will override the Copy shortcut in Excel (for that specific worksheet).

					If you run out of keyboard shortcut options using Ctrl, combine it with Shift. Ctrl + Shift + C will not influence any existing shortcuts.

			

			Where to store the macro

			You can store the macro in one of three places:

			
					Personal Macro Workbook: Storing a macro in this location will make it available to multiple Excel workbooks on your PC. The Personal Macro Workbook is a hidden workbook named Personal.xlsb.

					New Workbook: If you select this option, Excel will open a new, blank workbook for you to record and save the macro in.

					This Workbook: Excel will store your macro, by default, in a module in the active workbook. It will be available on all sheets of that workbook, but not for any other Excel workbooks.

			

			Description

			The Description box is a good starting point to save comments. You can, of course, also store comments directly in the recorded macro.

			The point is that comments are an important and often ignored element in code. You might think that you will remember what you did in a specific procedure, but believe me when I tell you that you do not always remember. You sometimes create complex sequences for a client, save the file, and move on. When you later see that macro again and need to make adjustments, you will be shocked to realize how little you remember of the thinking process you went through to create that macro. Comments will save you a lot of time and frustration.

			Finally, if you don't want to leave comments for yourself, think about the possibility of someone else having to amend your coding. Once again, comments would make a world of difference for that person.

		

	
		
			Chapter 6: VBA Language Elements

			Visual Basic for Applications (VBA) has its origins in Visual Basic, a programming language developed by Microsoft. It is important to understand that VBA is not a standalone program, meaning that you cannot compile code and run it as a separate program outside the MS Office environment.

			Its main reason for existence is the customization of the MS Office host applications in which it runs: Word, Excel, Access, PowerPoint, Visio, and Publisher. Companies such as Corel also make use of VBA to allow customization of their applications.

			Customization involves the recording and creating of macros to automate repetitive tasks. It is also used to generate custom forms, including event-driven buttons and fields.

			Like any language, you need to understand the structure of VBA, which is a programming language. It starts with vocabulary. From there, you learn what effects certain words, also known as commands, will have. The more you use the language, the better you understand it. So, if you want to use VBA to its full potential, this chapter will empower you, in every sense of the word, in doing the following:

			
					Adding comments

					Declaring variables

					Declaring constants

					Working with data types in variables and constants

					Scoping variables

					Declaring arrays

			

			By the end of this chapter, you will be able to use VBA language elements.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10. If your hardware and software meet these requirements, you have everything you need.

			Demonstration files can be downloaded from https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check out the CiA videos: https://bit.ly/3jQRvVk.

			Adding comments

			In this recipe, we will be working with comments. Before we start, you need to understand three important principles about comments:

			
					VBA code does not depend on comments, meaning that macros will run flawlessly without a single comment.

					At the same time, comments are an important and often-ignored element in code.

					The most important reason why you need to leave comments in code is two-fold.Comments, or notes, serve as a reminder to yourself. You sometimes create complex sequences for a client, save the file, and move on. When you later see that macro again and need to make adjustments, you will be shocked to realize how little you remember of the thinking process you went through to create that macro.
Comments also serve as an explanation for someone else that might have to amend your coding. Instead of trying to waste time on trying to figure out your thought process, comments make a world of difference for that person.

					Finally, when you record a macro, certain comments will be inserted automatically, courtesy of the VBA recorder. However, nothing prevents you from adding extra comments.

			

			Getting ready

			Open Excel and make sure that Book1 is active. Save the file as Comments.xlsm.

			How to do it…

			Let's start with the steps:

			
					Enter the following data in Book1, Sheet1:[image: Figure 6.1 – Sample data
]
Figure 6.1 – Sample data

					Next, record a new macro with the following specifications:a. Call the macro Comments.
b. Add a shortcut key: Ctrl + Shift + Q.
c. In the Comments section, type Demonstrate the use of comments.
d. Format cells A1:E1 as bold, 12pt, and center.
e. Format cells A2:E7 as Accounting.
f. For cells A7:E7, add a single line to the top and a double line at the bottom.
g. Select cell F1 before stopping the recording.

					Switch to the VBA Editor to view the code. After deleting the redundant lines, your code should look like this:[image: Figure 6.2 – Auto-inserted comments
]
Figure 6.2 – Auto-inserted comments
The first six comments were automatically added during the recording of the macro.

					Add extra comments, as per the following example:

			

			
				
					[image: Figure 6.3 – Manually inserted comments
]
				

			

			Figure 6.3 – Manually inserted comments

			How it works…

			When recording a macro, the VBA Editor will insert some comments automatically. Extra comments can be added manually. Start a comment by first inserting the single apostrophe symbol ('). The VBA Editor will not interpret text following the apostrophe as code.

			Comments can be inserted anywhere you want in either of the following ways:

			
					As a line of text before the VBA code

					As an added comment after a line of code

					After the last line of code

			

			There is an exception to this rule, however. You cannot insert a comment in the middle of a line of code, because the apostrophe will cancel out all the code following it.

			Declaring variables

			Before confusing you with the definition of what a variable is, it helps a lot to first understand where and how variables can be used. Let's use the following example.

			Imagine you are capturing data on a standard Excel spreadsheet. The fields expect users to enter their name, the department they work in, and age, all on Sheet1 of a workbook. The captured data must then be stored on a separate sheet, most likely Sheet2 of the same workbook.

			The longest, most difficult way of doing that would be to copy the data from Sheet1 and paste it manually into Sheet2. It is quite clear that automation would save a lot of time.

			The question is how to achieve this automation. Without some way of automatically copying and then storing that data somehow, somewhere, and then pasting it in the new position, you will never get around to doing any other work than just that.

			Automation would be something like the following. You enter your details on Sheet1, and then run a macro to copy the details in order to automatically populate the table on Sheet2. Enter data, copy and store, then paste—all in one action!

			The problem here is how to copy and store the entries from Sheet1. That is where variables come in. A variable is simply a line of VBA coding with the purpose of storing information on a temporary basis. This stored information can be accessed repeatedly while the Excel file is open, but is not stored when the application is closed.

			There is a lot more to be said about variables, such as naming conventions, data types, and scope, but more about that later.

			In this recipe, we will be declaring and using variables.

			Getting ready

			Open Excel and make sure that Book1 is active.

			How to do it…

			The steps to create or declare a variable are as follows:

			
					With Sheet1 active, enter the following data:[image: Figure 6.4 – Headings on Sheet1
]
Figure 6.4 – Headings on Sheet1

					Insert a new sheet, Sheet2, then enter the following data:[image: Figure 6.5 – Headings on Sheet2
]
Figure 6.5 – Headings on Sheet2

					Save the workbook as a macro-enabled file. Call it Variables.xlsm.

					Activate the VBA Editor with Alt + F11 or click on Developer | Code | Visual Basic.

					In the editor, click on Insert | Module to create a new module in Variables.xlsm.

					In the code window for Module1, create a new Sub procedure called Form_Data:Sub Form_Data()
End Sub

					Next, declare variables for the three values that will be entered on Sheet1 in cells B1, B2, and B3:Sub Form_Data()
 Dim Name As String
 Dim Dept As String
 Dim Age As Integer
End Sub
We will discuss data types in the next recipe.

					The variables have been named, but are still empty. Let's assign a value to each by setting it equal to the values in cells B1, B2, and B3:Sub Form_Data()
 Dim Name As String
 Dim Dept As String
 Dim Age As Integer
 Name = Sheet1.Range("B1").Value
 Dept = Sheet1.Range("B2").Value
 Age = Sheet1.Range("B3").Value
End Sub

					The final step is to transfer the captured data from Sheet1 to Sheet2. Type the following code:Sub Form_Data()
 Dim Name As String
 Dim Dept As String
 Dim Age As Integer
 Name = Sheet1.Range("B1").Value
 Dept = Sheet1.Range("B2").Value
 Age = Sheet1.Range("B3").Value
 Sheet2.Range("A2").Value = Name
 Sheet2.Range("B2").Value = Dept
 Sheet2.Range("C2").Value = Age
End Sub

					To test the macro, enter data on Sheet1, in cells B1, B2, and B3. You can type any values you want, but for the purpose of this exercise, I am adding the following:[image: Figure 6.6 – Data on Sheet1
]
Figure 6.6 – Data on Sheet1

					Run the macro by clicking Developer | Code | Macros. From the Macro dialog box, select the only macro, Form_Data, then click on Run.

					Switch to Sheet2 and confirm that the values from Sheet1 have been placed on Sheet2.

			

			How it works…

			Let's have a look at what happened in the background for these variables to work the way they did:

			
					Press Alt + F11 to activate the VBA Editor.

					With the VBA Editor open, click View | Locals Window:[image: Figure 6.7 – Activate the Locals window
]
Figure 6.7 – Activate the Locals window
The Locals window will be visible at the bottom of the application:
[image: Figure 6.8 - The Locals window
]
Figure 6.8 - The Locals window

					We're going to use the Step Into functionality in the VBA Editor to see how each line is executed. Click on the first line of code in the code window, then click Debug | Step Into (note that the keyboard shortcut is F8).

					The first line of code is now highlighted in yellow. At the same time, in the Locals window at the bottom, the three variables are displayed. Only the names and data types are displayed because we have not assigned any values to them:[image: Figure 6.9 – Step Into
]
Figure 6.9 – Step Into

					By pressing F8, the next line of code is highlighted:Name = Sheet1.Range("B1").Value.
Take note that variables are not executable code but containers for data. There are no changes in the Locals window either because the highlighted line has not been executed yet.

					Press F8 again. This time, the first line of code is executed. Proof of that can be found in the Locals window, where the Sue text value, found in cell B1, is displayed after the Name variable.

					At the same time, the next line of code is highlighted:Dept = Sheet1.Range("B2").Value

					When you press F8 again, the value in cell B2 is assigned to the Dept variable, and the next line of code is highlighted:Age = Sheet1.Range("B3").Value

					Pressing F8 will execute this line, assigning the value in cell B3 to the Age variable:[image: Figure 6.10 – Values assigned to variables
]
Figure 6.10 – Values assigned to variables

					The following line is now selected: Sheet2.Range("A2").Value = Name
When we press F8 next, it will take the value Sue, which has been assigned to the Name variable, and place it in cell A2 of Sheet2.

					The next line is now selected: Sheet2.Range("B2").Value = Dept
As with the previous line, the next variable, Dept, with the value HR assigned to it, will be placed on cell B2 of Sheet2.

					The last line is now selected: Sheet2.Range("C2").Value = Age
The last variable, Age, with the value 28 assigned to it, will be placed in cell C2 of Sheet2.

					By pressing F8 for the very last time, the procedure is ended, and the Locals window is cleared of all variable data. That is in line with the definition of a variable being a temporary storage space.

					If you go back to Sheet1 now, you can type different values into cells B1, B2, and B3. By running the macro again, these new values will be assigned to the variables and placed on Sheet2.

			

			The coding in this example can be improved upon because the macro will simply overwrite the values on Sheet2. In later recipes, we will write code to find the first open line under the data in Sheet2 and place it there.

			Declaring constants

			If a variable is a line of VBA coding with the purpose of storing information on a temporary basis, a constant is a line of coding that stores information on a permanent basis.

			Let's work with a practical example again.

			Doing calculations in Excel is easy; you use a function or a formula and the problem is solved. But let's say you have to calculate the tax for products sold in a store on a daily basis. The data is not only on one spreadsheet, and people often randomly ask you to do these tax calculations.

			As simple as it is to add a short formula, this is a waste of time. If you could click on a button with a macro assigned to it to do the calculation for you automatically, it would make your life much easier.

			The tax rate can be stored as a permanent value in a constant and, depending on the VBA code, you can click on a cell and run the macro to calculate the tax for that specific item.

			Getting ready

			Open Excel and make sure that Book1 is active.

			How to do it…

			The steps to declare a constant are the following:

			
					With Sheet1 active, enter the following data:[image: Figure 6.11 – Entries on Sheet1
]
Figure 6.11 – Entries on Sheet1

					Save the workbook as a macro-enabled file. Call it Constants.xlsm.

					Activate the VBA Editor with Alt + F11 or click Developer | Code | Visual Basic.

					In the Editor, click Insert | Module to create a new module in Book1.

					In the code window for Module1, create a new Sub procedure called Tax:Sub Tax()
End Sub

					Next, declare a constant for the tax percentage that must be added to a price:Sub Tax()
Const Tax As Double = 0.1
End Sub
By typing Const, VBA will treat this line of code as a constant. After this keyword, we type the name of the constant – in this case, Tax. The data type is Double. Most importantly, the value for the constant is added in the same line.

					Once done, enter the last line of code:Sub Tax()
Const Tax As Double = 0.1
 ActiveCell.Value = ActiveCell.Offset(0, -1) * Tax
End Sub

					To test the macro, switch back to Sheet1 by pressing Alt + F11.

					Click on cell B2 on Sheet1.

					Run the macro by clicking Developer | Code | Macros.

					There is only one macro available: Tax. Click Run.

			

			The calculated value appears in cell B2.

			How it works…

			Here is an explanation for each step as the macro was executed:

			
					Press Alt + F11 to activate the VBA Editor.

					Make sure that the Locals window is still active in the VBA Editor.

					The Step Into function will take us through the execution process again. Click on the first line of code and press F8:[image: Figure 6.12 – Step Into
]
Figure 6.12 – Step Into

					The first line of code is active and highlighted in yellow. The Locals window shows us that the value 0.1 has been assigned to the Tax constant. Press F8 again.

					The constant is not highlighted, but the next line is. This line of code is what will make things happen on Sheet1.

					Cell B2 is the active cell on Sheet1. The value we want to appear in that cell must be equal to the cell directly to the left, multiplied by 0.1, or 10% – the constant. The Offset values, (0,-1), mean move 0 rows down and one column to the left.

					By pressing F8, the code is executed and the calculated value appears in the active cell, cell B2.

			

			There's more…

			By clicking on another open cell, cell B3, you can run the macro again, this time without using Step Into:

			
					Activate Sheet1 and click on cell B3.

					Run the Tax macro and observe the calculated value appear in B3.

			

			To speed things up, you can add a button to Sheet1 and assign the Tax macro to it:

			
				
					[image: Figure 6.13 – Button with assigned macro
]
				

			

			Figure 6.13 – Button with assigned macro

			This way, it will be much easier to run the macro in order to do the calculations.

			Working with data types in variables and constants

			In this recipe, we will be investigating the different data types you can assign to variables and constants.

			Getting ready

			Open Excel and make sure that Book1 is active, and save the file as DatTypes.xlsm. Open the VBA Editor by pressing Alt + F11. In the VBA editor, click Insert | Module to create a new module in Book1. On the menu bar, click View | Locals Window, if the Locals window is not already active.

			How to do it…

			
					In the code window for Module1, create a new Sub procedure called Data_Types:Sub Data_Types()
End Sub

					Once done, declare the following variables. Ensure that the data types are added exactly as per the example:Sub Data_Types()
Dim Small As Byte
Small = 75
Dim Big As Integer
Big = 3333
Dim Large As Long
Large = 800011100
Dim Yes As Boolean
Yes = True
Dim Dec As Double
Dec = 3.14159
Dim Text As String
Text = "MyName"
Dim DOB As Date
DOB = #12/25/1990#
Dim Price As Currency
Price = 24.55
'Variant
Dim Name
Name = Range("A1")
End Sub

					With everything done, press F8 to step into the procedure.

					The first line is highlighted, and all the variables are recognized in the Locals window.

					Press F8 repeatedly to step through each variable declaration. Observe how each variable's value is assigned, and how the data type affects the value.

			

			How it works…

			It is important to assign data types to variables because it helps your code run faster, and also because memory is allocated more efficiently. In simple English, it means that you will be wasting memory if, for instance, you assign a Long data type if you could get away with an integer.

			The following table explains the size of data types:

			
				
					[image: Table 6.1 – Data types and sizes
]
				

			

			
				
					[image:]
				

			

			Table 6.1 – Data types and sizes

			As a final remark, you need to understand that you can declare a variable without a data type. However, by doing that, VBA will automatically assign the Variant data type to that variable. An integer would have used 2 bytes of memory, while a variant would grab a minimum of 16 bytes per entry.

			Make sure that you have a good understanding of this table and get into the good habit of always assigning data types.

			Scoping variables

			In this recipe, we will be working with the range of effect, or scope, of variables.

			Whenever you declare a variable in a module, you would expect that variable to at least have an effect within that module. You can also say you would expect your macro to work on the sheet where you created the macro, at the very least.

			What has not been said before is that a workbook can accommodate any number of VBA modules and a module can accommodate any number of Sub and Function procedures. This information is merely academic.

			This knowledge becomes important when you have more than one procedure in a module, several modules in the workbook, and more than just one worksheet in a workbook. The questions are: which macro will have an effect in which module, and is it possible for one macro to work in more than one module, or even in several sheets?

			All depending on what you want to achieve with your macro, you can set the scope of a procedure with certain keywords. Let's see what those keywords are.

			Getting ready

			Open Excel and make sure that Book1 is active. Save the file as Scope.xlsm. Open the VBA Editor by pressing Alt + F11. In the VBA editor, click Insert | Module to create a new module in Book1.

			How to do it…

			
					In the code window, declare the following procedure-only variables:Sub Proc_Level()
 Dim Distance As Integer
 Dim Number As Long
 Dim Fraction As Double
 Dim Name As String
End Sub

					Take note that more than one variable, as in the following example, can be declared with a single Dim statement:Sub Proc_Level2()
 Dim Distance As Integer, Number As Long, _
 Fraction As Double, Name As String
End Sub

					If a line of code is too long, you can insert a line continuation character, which is an underscore (_). A line continuation character will only work if you insert a space immediately before it and press Enter immediately afterward.

					Insert a new module. To declare module-level variables, make sure that you declare all variables before the module's first Sub or Function statement:[image: Figure 6.14 – Module-level variables
]
Figure 6.14 – Module-level variables

					To check the scope of these variables, click on the Sub procedure and press F8. The declared variables do not appear in the Locals window in the usual way; you have to click on the + sign to the left of Module1 to expand the contents. This is an indication that these variables are available in every procedure throughout the module.

					Insert yet another module. Public variables, also referred to as global variables, are declared by using the Public keyword:

			

			
				
					[image: Figure 6.15 – A public-level variable
]
				

			

			Figure 6.15 – A public-level variable

			This variable will be available in all procedures and all modules of the workbook.

			How it works…

			
					Procedure-only variables have the lowest level of scope for a variable. In other words, they can only be used in the procedure that they were declared. It is also important to understand that this type of variable will no longer exist once the procedure ends. However, when you execute the procedure again, it will become active again but with a new value, because the previous value was cleared from memory.

					Module-only variables are used in a situation where you want one or more variables to be available to all procedures in a module. It saves a lot of coding to declare variables this way. The alternative would be to declare the same variables repeatedly in every procedure of that specific module.

					Public variables are also known as global variables, indicating their scope. Like module-level variables, they must be declared before the first Sub procedure. The difference is that you need to use the Public keyword to indicate its status and the Dim keyword is not used.

			

			Declaring arrays

			Arrays are variables of a specific type. While a variable can store only one value at a time, arrays store multiple values, or elements. An array is therefore a group of variables sharing a common name. One example of an array would be the days of the week typed in a single column in Excel.

			Like variables, arrays are also declared with a Dim statement. The rest of the line of code differs in the sense that with arrays, you have to specify the number of elements in the array.

			In its simplest form, the elements consist of a first and last index number, separated with the To keyword, all in parentheses. This is known as a one-dimensional array, which stores a single line of values. Multidimensional arrays stores multiple rows and columns of values.

			In this recipe, we will be discussing three types of arrays:

			
					One-dimensional arrays

					Multidimensional arrays

					Dynamic arrays

			

			Getting ready

			Open Excel and make sure that Book1 is active. Save the file as Arrays.xlsm.

			On Sheet1, enter the days of the week in cells A1 to A7.

			Open the VBA Editor by pressing Alt + F11. In the VBA editor, click Insert | Module to create a new module in Book1.

			How to do it…

			To create a one-dimensional array, do the following:

			
					Start by creating a new Sub procedure called StatArray:Sub StatArray()
End Sub

					Next, declare a variable and call it WeekArray:Sub StatArray()
 Dim WeekArray(0 To 2) As String
End Sub
When you declare a variable, it is not always necessary to declare both the upper and lower index of the elements. The following declaration would mean exactly the same as the preceding one:
 Dim WeekArray(2) As String
In this case, VBA assumes that 0 is the lower index. It must be mentioned that it is more reliable to declare both elements, though.

					Let's now populate the array:Sub StatArray()
 Dim WeekArray(0 To 2) As String
 WeekArray(0) = Range("A1").Value
 WeekArray(1) = Range("A2").Value
 WeekArray(2) = Range("A3").Value
End Sub

					To demonstrate how to read from an array and write values to cells, add code to create a new worksheet. Then, pass the array values to cells A1 to A3 on the new sheet. Type the following code:Sub StatArray()
 Dim WeekArray(0 To 2) As String
 WeekArray(0) = Range("A1").Value
 WeekArray(1) = Range("A2").Value
 WeekArray(2) = Range("A3").Value
 Worksheets.Add.Activate
 Range("A1").Value = WeekArray(0)
 Range("A2").Value = WeekArray(1)
 Range("A3").Value = WeekArray(2)
End Sub
Populating an array like this, with only three values in it, can easily be done manually. However, when you want to work with an array with hundreds, or even thousands, of values, this technique will clearly not be effective.
In a future recipe, where we will be explaining loops, this problem will be addressed. With loops, you can write code that can handle any number of elements in an array.

			

			For a multidimensional array, do the following:

			
					Switch to Excel. Insert a new sheet, then enter the following data:[image: Figure 6.16 – Multidimensional array
]
Figure 6.16 – Multidimensional array

					Switch back to the VBA Editor by pressing Alt + F11. In the VBA editor, create a new Sub procedure under the existing one:Sub MultiArray()
End Sub

					Declare a multidimensional array:Sub MultiArray()
 Dim TableArray(0 To 6, 0 To 2) As Variant
End Sub

					We are only going to populate the first row. Type the following code:Sub MultiArray()
 Dim TableArray(0 To 6, 0 To 2) As Variant

 TableArray(0, 0) = Range("A1").Value
 TableArray(0, 1) = Range("B1").Value
 TableArray(0, 2) = Range("C1").Value

End Sub

					Open the Locals window by selecting View | Locals. Press F8 to step into the procedure. Observe how only the values in row one are assigned.

			

			Populating the rest of the rows can be done in the same manual way, but creating loops would once again be much more effective.

			Declaring dynamic arrays

			So far, we've been working with static or fixed arrays. In other words, we knew how many rows and columns there were in the Excel sheet and did not expect it to change. But what do we do if the data is not fixed? Let's say users have access to the data and have to add details. The ideal would be to use an array where the size can be changed while a program is running. That, by definition, is what a dynamic array is.

			To declare a dynamic array, you simply leave the parentheses empty:

			Dim MyDynamic () as Integer

			Take the following steps:

			
					Create a new Sub procedure and declare a dynamic array:Sub DynamicArray()
 Dim Days() As String
End Sub

					To define the number of elements in the array, use the ReDim statement. In this case, use the value 6 to include all 7 entries in the column:Sub DynamicArray()
 Dim Days() As String
 ReDim Days(6)
End Sub

			

			How it works…

			By going through the steps for a one-dimensional array as they are executed in the VBA Editor, the process will become clear:

			
					With the VBA Editor open, press F8. The three elements of the array will be displayed in the Locals window, although without values:[image: Figure 6.17 – Array elements
]
Figure 6.17 – Array elements

					Press F8 another four times, and observe how the values on cells A1 to A3 are assigned to the array elements:[image:]
Figure 6.18 – Assigned values

					Press F8 yet again to add a new worksheet. Then, press it another three times to write the values of elements WeekArray(0) to WeekArray(2) to cells A1 to A3 on the newly inserted worksheet.

					By pressing F8 one last time, the Sub procedure will end, and all the values of the array will be cleared.

			

			The steps for a multidimensional array can also be observed in the Locals window:

			
					While you are still working in the VBA Editor, and with the Locals window active, press F8. In the Locals window, expand the first two objects – TableArray and TableArray(0):[image: Figure 6.19 – Multiple arrays
]
Figure 6.19 – Multiple arrays

					Press F8 four times until the first elements of the array have been populated.Once again, populating the rest of the row manually will become more and more laborious and time-wasting. In the Using Loops recipe in Chapter 9, Implementing Program Flow, we will show you how to populate multiple rows with great efficiency.

			

			Dynamic arrays

			As with the two fixed arrays, it is best to see how it works in the Locals window:

			
					When a dynamic array is declared, no values are assigned to the elements.

					Press F8 to step through the code until you get to the End statement:[image: Figure 6.20 – Empty dynamic array
]
Figure 6.20 – Empty dynamic array

					By using the ReDim statement, you create the requested number of elements:

			

			
				
					[image: Figure 6.21 – Using the ReDim statement
]
				

			

			Figure 6.21 – Using the ReDim statement

			Where the Days array was previously empty, there are now seven elements added.

			We are not going to populate the values because it will be easier to do so with a Loop statement.

		

	
		
			Chapter 7: Working with Ranges

			Ranges are used in Excel because Excel is all about cells, and the Range object is a container for cells. Without a solid understanding of ranges, working in Excel is virtually impossible. It's all about moving around on the spreadsheet, assigning values, changing properties, and using methods. Although less important in Word and PowerPoint, the principles of working with ranges are still essential.

			In this chapter, we will cover the following recipes:

			
					Referring to ranges

					Using the Range object properties

					Adding the Range object's methods

					Making ranges work

			

			By the end of this chapter, you will be able to work effectively with ranges in VBA.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10.

			If your hardware and software meet these requirements, you have everything you need.

			Demonstration files can be downloaded from https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check out the CiA videos: https://bit.ly/3jQRvVk.

			Referring to ranges

			In this recipe, we will be working with Range objects, with specific instructions on how to refer to ranges. Keep in mind that the Range objects have properties and methods, like all other VBA objects. Range properties can be examined and changed, while methods perform certain actions on the object.

			To eliminate any misunderstandings, let's first define the word range within the Excel environment.

			A range can be a single cell, a group of cells, or a column or a row, or even the entire worksheet. Clicking on a cell – in other words, selecting a range – in any worksheet, or selecting a group of cells, is normal. That's what you do whenever you work in Excel.

			Things change when you start working in the VBA Editor, though. There are no cells to click on, yet you still need to instruct Excel to select cells or assign values to cells. And what do you do when you need to retrieve values from cells and use them in calculations?

			As if that is not enough, how do you refer to a range in another worksheet, or even in a different workbook?

			The simple answer is that you refer to any range or ranges by making use of cell references, according to the VBA language rules.

			Let's have a look at these language rules.

			Getting ready

			This recipe covers the theoretical aspects of range references. Making notes might be a good idea!

			Before digging in, let's quickly create a named range, because we're going to need that for Step 3:

			
					Open Excel and activate a new workbook. In Sheet1, select range A1:C10:[image: Figure 7.1 – Selected range
]
Figure 7.1 – Selected range

					In the Name Box, type Data and press Enter. That will be the name of the selected range of cells:[image: Figure 7.2 – Name of the range typed in the Name Box
]
Figure 7.2 – Name of the range typed in the Name Box

					Click on any cell outside the range to deselect it.

					Now, click on the drop-down arrow on the right side of the Name Box to see the named range:[image: Figure 7.3 – The named range in the drop-down list
]
Figure 7.3 – The named range in the drop-down list

					The moment you click on the name, the range A1:C10 will be selected again.

			

			How to do it…

			The following steps show how to refer to various range types and sizes:

			
					Let's start with a single cell. The correct way to refer to a single cell is as follows:Range("B1")
First, there is the Range keyword, followed by the address. Take note that the address is always surrounded by parentheses and double quotes.

					To refer to a group of cells, use the same keyword. The address will include the first and last cells in the range:Range("A1:C10")

					A named range reference looks like this. Instead of cell references, the name of the saved range is enclosed by parentheses and double quotes:Range("Data")

					Referring to a single column is done as follows:Range("C:C")
You can refer to more than one column in the following manner:
Range("A:D")

					A row reference looks like this:Range("5:5")
To refer to multiple rows, use the following reference:
Range("1:5")

					Non-contiguous ranges are referred to in the following way:Range("A1:D6,D8:E12")

					Referring to a specific worksheet in the same workbook is done like this:Worksheets("Sheet2").Range("B1:B10")

					Referring to a different workbook should be done like this:Workbooks("Admin.xlsx").Worksheets("Sheet1"). _
Range("A1:D10")

			

			How it works…

			Referring to range objects in VBA has a specific syntax. Keywords such as Range, Worksheets, and Workbooks indicate which objects you are referring to. Range references or range addresses will set a focus on the specified cell range.

			Take note that these code snippets are not executable. In other words, if you want to run any of these references, you will have to place it in a Sub procedure first, and then add a method such as activate or select.

			The following two recipes will help you understand how all these elements fit together.

			Using the Range object properties

			In this recipe, we will be working with the Range object's properties. Ranges are objects, and all VBA objects have properties – some are read-only, while others can be edited.

			A Range object has many properties, much more than we normally use. Once you understand the principle, you can apply it to all objects.

			Getting ready

			Open Excel and activate Book1. Make sure Sheet1 is active. Save the file as Ranges.xlsm, and then press Alt + F11 to activate the VBA Editor. Insert a new module in the Explorer.

			How to do it…

			
					In the code window, create the following Sub procedure:Sub RangeProperties()
End Sub

					Add the following lines of code:Sub RangeProperties()
 MsgBox Range("A1:B4").Address
 Range("A1").Value = 10
 MsgBox Range("A1:C1").Count
 Range("A1").Font.Bold = True
End Sub

					Press F8 to step into the code and execute it line by line. Observe how the properties are displayed.

			

			How it works…

			
					The first property, Address, is read-only, meaning you cannot edit it. When the line is run, the address will be displayed in a message box:[image: Figure 7.4 – Message box showing the address property
]
Figure 7.4 – Message box showing the address property
The Value property can be changed. In this case, you assigned the value 10 to cell A1. In the next run, you can assign a different value:
[image: Figure 7.5 – Value assigned to cell B1
]
Figure 7.5 – Value assigned to cell B1

					The Count property is also read-only because it simply tells you how many cells there are in the indicated range:[image: Figure 7.6 – Message box showing the count of cells
]
Figure 7.6 – Message box showing the count of cells

					The Font property has to be set to bold, or regular, or whatever option you chose. The effect of the changed property will be visible on the selected range, based on your instructions:

			

			
				
					[image: Figure 7.7 – The Font property set to bold
]
				

			

			Figure 7.7 – The Font property set to bold

			That should take care of properties. Adding methods is the next logical step.

			Adding the Range object's methods

			This recipe covers methods. Properties need to be activated. We call these actions methods. Think of giving commands; you've told VBA to refer to a range, but VBA has no idea what to do with the range. Should it select the range, activate it, or do something else? Should it assign a value to the range, or should it copy the content and paste it in another location?

			There is a method for every action you can imagine doing with a range. The four methods we will cover in this recipe are the tip of the iceberg. The principle, however, is always the same.

			Getting ready

			With Ranges.xlsm still open in Sheet1, clear the value in cell A1. Now type your first name in cell A1, your last name in cell B1, and the word Test in cell A6.

			Press Alt + F11 to activate the VBA Editor. Insert a new module in the Explorer and change its name to Prop_Methods.

			How to do it…

			This is how to add methods to references with properties:

			
					In the code window, create the following Sub procedure:Sub RangeMethods()
End Sub

					Add the following lines of code:Sub RangeMethods()
 Range("A1").Select
 Range("A1").Copy Range("A5")
 Range("B1").Clear
 Range("A5").Delete xlUp
End Sub

					Press F8 to step into the code and execute it line by line. Observe how the methods are acted upon in the Excel sheet.

			

			How it works…

			The following explains what happens when a method is executed:

			
					The Select method will go to the indicated range. Our instructions in the Editor refer to range A1, while the next instruction is to select the mentioned range.

					This method will first copy range A1, and then paste the value in range A5.The code can be somewhat confusing, so let's dissect this. The first part is simple; the code refers to cell A1, and then the copy method is applied. The second part, to paste the copied value, does not use the word paste. The VBA syntax just works like that; when you copy something and then refer to another cell in the same line of code, VBA knows that it should paste the value in the referred cell.If this is still not clear, you are welcome to use another longer method. The code for this copy-and-paste routine reads as follows:
Sub CopyPasteSample()
 Range("A1").Select
 ActiveCell.Copy
 Range("A5").Select
 ActiveCell.PasteSpecial
End Sub

					Whatever value or formatting is in range B1 will be cleared. Please note that not only will formatting be cleared but also the contents of the cell.

					The value in cell A5 will be deleted, and cells will shift up from below.

			

			Making ranges work

			In this last recipe, we're going to create and add data to a short list, making use of everything we've learned in the sections about references, properties, and methods.

			Getting ready

			Ranges.xlsm needs to be kept open. Now, follow these steps:

			
					Insert a new sheet, and then add the following data to Sheet2:[image: Figure 7.8 – Preparation
]
Figure 7.8 – Preparation

					Press Alt + F11 to activate the VBA Editor, and then insert a new module and change its name to Range_Select.

			

			How to do it…

			
					In the Editor, create a new Sub procedure:Sub RangeSelect()
End Sub

					Add the following line of code to select cell A5:Sub RangeSelect()
 Range("A5").Select
End Sub

					Next, change the value of cell A5 with the following code:Sub RangeSelect()
 Range("A5").Select
 ActiveCell.Value = 4
End Sub

					Add another line of code to assign a value to cell B5. Instead of the normal referencing, we use the row and column style: row 5 and column 2, which is the same as cell B5:Sub RangeSelect()
 Range("A5").Select
 ActiveCell.Value = 4
 Cells(5, 2).Value = "Joe"
End Sub

					The last line of code selects cell C5 and then assigns a date value to the cell. This way of referencing a range is not commonly used, but still nice to know about. Take note that dates must be entered in the US style: month, day, year:Sub RangeSelect()
 Range("A5").Select
 ActiveCell.Value = 4
 Cells(5, 2).Value = "Joe"
 [C5].Value = #11/3/1994#
End Sub

					The slow process would be to press F8 and watch each step as it is executed. The faster way is to press F5 to run the macro, and then switch back to Excel (Alt + F11). New values have been added to cells A5, B5, and C5:

			

			
				
					[image: Figure 7.9 – Added data
]
				

			

			Figure 7.9 – Added data

			By repeating the process, you can add more data to the same table.

			How it works…

			
					To add data to a cell, you first reference the cell, and then use the Select method to focus on it.

					With that cell being active, you assign a value to the cell.

					A shorter way of doing this is to refer to a cell and add a value in one line of code. It saves a line of code to combine selection, activation, and the assigning of values.

					The last line of code makes use of a relatively rare referencing technique, but as in the previous line of code, everything is done in one line.

			

			This is as close as we will get to a real-world example of using references, properties, and methods all in one task.

			Do a little bit of research and see whether you can improve on this. Think about writing a procedure to find the first open cell under the last number in column A, and then adding the next number under that, but in sequence.

		

	
		
			Chapter 8: Using Functions

			In Chapter 4, Working with Procedures, we covered the basic principles of functions. In this chapter, we're building on that knowledge by adding more detail. Your ability to use and apply functions is another steppingstone to becoming a proficient VBA coder.

			In this chapter, we will cover the following recipes:

			
					Using built-in VBA functions

					Using worksheet functions

					Creating custom functions

			

			By the end of this chapter, you will be able to use and create functions in the VBA environment.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10.

			If your hardware and software meet these requirements, you have everything you need.

			Demonstration files can be downloaded from https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check out the CiA videos: https://bit.ly/3jQRvVk.

			Using built-in VBA functions

			A good starting point for this recipe is a refresher of the definition of a function.

			A function performs a calculation and returns a single value. Built-in functions are no different in that respect – the end result will always be a single value.

			In this recipe, we will be working with built-in functions exclusively. Given the number of available functions, it is important to understand the principles of built-in functions, rather than trying to understand how each function can be used or applied.

			A list of every built-in function would take up too much space, so instead refer to the three links here:

			
					Functions in alphabetical order: https://bettersolutions.com/vba/functions/complete-list.htm

					Functions grouped by type: https://www.excelfunctions.net/vba-functions.html

					Functions in the VBA Help system: https://docs.microsoft.com/en-us/office/client-developer/access/desktop-database-reference/visual-basic-for-applications-functions

			

			Another important aspect of built-in functions is that they are predefined. In other words, they cannot be defined or changed by users.

			Take note that some built-in VBA functions are exactly the same as Excel workbook functions, as follows:

			
					Average(): Calculates the average of a series of values

					Sqr(): Calculates the square root of a number

					Abs(): Calculates the absolute value of a number

					Sin(): Calculates the sine of a number

					Log(): Calculates the natural logarithm of a number

			

			There are more, but these should be enough to help you understand the principle.

			That's enough on that topic. Let's start working on real examples of built-in functions.

			Getting ready

			Open Excel and make sure that Sheet1 is active. Save the file and call it Functions.xlsm. Press Alt + F11 to activate the VBA Edtior. Insert a new module.

			How to do it…

			We're going to use some built-in VBA functions as examples of how you can apply these functions.

			One of the VBA functions we've used a number of times in this book so far is the MsgBox function. Measured by the definition of a function, it doesn't do any calculations, but it does return a single value.

			Let's start coding:

			
					Create a new Sub procedure and call it Function_Samples. Add the following line of code to the procedure:Sub Function_Samples
 MsgBox Date
End sub

					Press F5 to run the macro. The following message box will appear:[image: Figure 8.1 – Message box displaying a date
]
Figure 8.1 – Message box displaying a date

					Click OK to return to the VBA Editor.

					Another example of a built-in function and how to use it is the following. We will continue with the same recipe. Create a new Sub procedure and call it FormatFunction. Add the three lines of code in the following example:Sub FormatFunction()
 Dim FormatSample
 FormatSample = Format(0.75657, "Percent")
 MsgBox FormatSample
End sub

					Press F5 to run the macro. The message box that appears is the following:[image: Figure 8.2 – Message box displaying the percentage
]
Figure 8.2 – Message box displaying the percentage
Here is a final example:

					Create yet another Sub procedure:Sub StringFunction()
 Dim StrSearch
 StrSearch = InStr(1, "Find the position of A _
 in the text", "A")
 MsgBox StrSearch
End sub

					Press F5 to run the macro. The following message box will appear.

			

			
				
					[image: Figure 8.3 – Message box displaying the position of A in the text string
]
				

			

			Figure 8.3 – Message box displaying the position of A in the text string

			These three functions are by no means representative of all the built-in functions, but at least you've had the opportunity to use your first functions.

			How it works…

			Let's take a closer look at each of the function examples:

			
					The Date function simply returns the system date. However, if you don't know what the code should look like, press F1 to invoke the VBA help function. After searching for the Date function, the following screen will appear:[image: Figure 8.4 – The Date function help page
]
Figure 8.4 – The Date function help page

					Under Syntax, it indicates that there are no extra arguments for this function.

					Under Example, it shows you how to use the function. You can either declare a variable to assign the Date value to, or if you want to display the system date, you can do so via a message box.

					The Format function has a different syntax, with more than one argument. In our example, you first type the function and then, in parentheses, the value you want to format, and after that, the actual format. In this case, we wanted the decimal number to be displayed as a percentage.

					The InStr function has three arguments. The first argument indicates the starting point, followed by the text string you are investigating, and finally, the character you are looking for:InStr(1, "Find the position of A in the text", "A")

			

			The examples are endless, but the principles are always the same:

			
					Understand the structure of the function. Press F1 for help.

					Always use built-in functions in a Sub procedure.

					Display the result via a message box. In later examples, we will declare variables to display results.

			

			As you progress as a programmer, you will discover how important built-in functions are. Make F1 your best friend, because there are too many functions to remember them all.

			Using worksheet functions

			This recipe explains the use of worksheet functions in VBA. Despite the impressive list of built-in functions, you might sometimes find the need for one of the old favorites, such as sum, average, or even count. In fact, you can use most of Excel's worksheet functions, unless they have an equivalent VBA function.

			Getting ready

			With Functions.xlsm still open, type the following data into Sheet1:

			
				
					[image: Figure 8.5 – Data for worksheet functions
]
				

			

			Figure 8.5 – Data for worksheet functions

			Once done, press Alt + F11 to activate the VBA Editor, and insert a new module.

			How to do it…

			Let's start with some of the most popular, or at least the most used, worksheet functions:

			
					Start a new Sub procedure and call it WorksheetFunctions.

					Declare variables for SumValues, AvgValue, and MaxValue with the following code:Sub WorksheetFunctions()
 Dim SumValues As Integer
 Dim AvgValue As Double
 Dim MaxValue As Integer
End Sub

					After that, set the variables equal to the range A1:A5, using the Application.WorksheetFunction qualifier before the first variable. For the last two variables, use only the WorksheetFunction qualifier: Sub WorksheetFunctions()
 Dim SumValues As Integer
 Dim AvgValue As Double
 Dim MaxValue As Integer
 SumValues = Application.WorksheetFunction.Sum _
 (Range("A1:A5"))
 AvgValue = WorksheetFunction.Average(Range("A1:A5"))
 MaxValue = WorksheetFunction.Max(Range("A1:A5"))
End Sub

					Once done, activate the Locals window (View | Locals Window).

					Press F8 to step into the procedure. Continue pressing F8, but keep your eye on the Locals window to see how the values are assigned to each variable:

			

			
				
					[image: Figure 8.6 – Results in the Locals window
]
				

			

			Figure 8.6 – Results in the Locals window

			How it works…

			Let's take a closer look at what happened here:

			
					We declared a variable for each function: SumValues for sum, AvgValue for average, and MaxValue for the maximum function.

					Because we are dealing with worksheet functions, we couldn't assign values to these variables in the normal way. In each case, we had to use the WorksheetFunction qualifier before the function.

					Using this technique, you can use any of the worksheet functions in VBA, on the condition that VBA doesn't have an equivalent function.

			

			If you have some experience with Excel, worksheet functions will save you a lot of time.

			Creating custom functions

			Between the built-in functions and the worksheet functions, it is difficult to imagine that you would need anything more. It does, however, sometimes happen that you need something specific. Custom functions are exactly what the name says; they're customized for your specific needs. You develop this function yourself by using VBA.

			This recipe will take you through the steps of creating a custom function.

			Getting ready

			Functions.xlsm is still open in Sheet1. As always, press Alt + F11 to activate the VBA Editor, and insert another new module.

			How to do it…

			The first thing about custom functions is that they must be defined in the workbook where they will be used. This makes sense because you won't find them among the built-in functions or the worksheet functions.

			Imagine you have to repeatedly – but at intervals and in different places on a worksheet – calculate the number of days between two dates. Of course, you can do this with a simple Excel calculation, but it would be so much faster and easier if you had a function to do it for you. Let's create this custom function:

			
					Let's first define the new function by calling it DaysCalc. We also want to set the two arguments, EndDate and Startdate:Function DaysCalc(EndDate As Date, StartDate As Date) _
As Integer
 DaysCalc = (EndDate - StartDate)
End Function

					Next, we want to use this custom function in a VBA Sub procedure:Sub TimeLapse()
 Dim StartDate As Date
 Dim EndDate As Date

 StartDate = InputBox("Type the date on which you _
 started")
 EndDate = InputBox("Type the date on which you _
 ended")
 MsgBox DaysCalc(EndDate, StartDate)
End Sub

					Press F5 to run the macro. When the first input box appears, enter a date from roughly 4 to 6 months ago. Click OK:[image: Figure 8.7 – The input box for the start date
]
Figure 8.7 – The input box for the start date

					In the next input box, type today's date. Click OK:[image: Figure 8.8 – The input box for the end date
]
Figure 8.8 – The input box for the end date

					A message box will appear, displaying the number of days between the first and the last date:

			

			
				
					[image: Figure 8.9 – Message box with result
]
				

			

			Figure 8.9 – Message box with result

			You don't need to make use of input boxes, but in this case, it worked well enough.

			How it works…

			
					Once the custom function has been defined, it is available for use in the Sub procedure in the workbook. It can also be used from Excel in the same way that other functions are used.

					To use the custom function in VBA, it must be used in a Sub procedure. Arguments must be declared as variables, and values must be assigned. In this case, we assign values via the input boxes.

					The result can be assigned to a specific cell, or in this case, to a message box. This is your function, and you can use it any way you find best.

			

			There's more…

			As a matter of interest, it is nice to see how this custom function can be used from within Excel:

			
					Switch to Excel by pressing Alt + F11.

					In Sheet1, click in cell C1 and type a start date.

					In cell E1, type an end date:[image: Figure 8.10 – Start and end dates
]
Figure 8.10 – Start and end dates

					Click in cell G1. This is where we want to see the result – the number of days between the two dates.

					Enter the = sign and start typing the first few letters of the newly created function. Once you see the function on the list, double-click on it:[image: Figure 8.11 – The function list in Excel
]
Figure 8.11 – The function list in Excel

					Now, click on the end date first, cell E1. That's the first argument for this function.

					Enter the comma, and then click on the start date, cell C1.

					Press Enter. The result will be displayed in cell G1:

			

			
				
					[image: Figure 8.12 – Result
]
				

			

			Figure 8.12 – Result

			This was only the beginning, but it's a good start. A small word of warning, though: make sure that there is not a built-in or worksheet function already available before wasting a lot of time writing your own function.

		

	
		
			Chapter 9: Implementing Program Flow

			So far, we've mostly worked with either recorded macros, or relatively simple and short procedures. The code was easy to follow, since it started on line one and flowed line by line, until the procedure ended. Your life is about to change, however, because program flow will introduce you to conditions and decisions. It will be up to you to anticipate what users will do or expect, and write code to meet those expectations.

			In this chapter, we will cover the following recipes:

			
					Exploring program flow

					Changing the flow using the GoTo statement

					Using If and If-Then structures to make decisions

					Using the Select Case structure

					Using loops

			

			By the end of this chapter, you will be able to implement program flow principles in your VBA Sub procedures.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10.

			If your hardware and software meet these requirements, you have everything you need.

			Demonstration files can be downloaded from https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check out the CiA videos: https://bit.ly/3jQRvVk.

			Exploring program flow

			This chapter will open the door for you to a whole new way of thinking about programming. In the previous chapters, we've merely scratched the surface – making sure that you know your way around some basic, and some not so basic, aspects of VBA.

			Program flow controls how your code is executed. This is where the real programming starts. Instructing a machine to make decisions has always been a challenge for programmers. A PC, by definition, is an unintelligent piece of hardware. Everything it does is done via software that has been designed by humans. Every command that software executes is based on a set of choices – options between two or more actions.

			It's up to you, the programmer, to think of all the possible options your code has to choose between. You need to control the flow of your code by skipping over some statements and executing others, once or several times, until certain conditions are met. Every step of the way, your code must test conditions to determine what the procedure does next.

			Changing the flow using the GoTo statement

			In this recipe, we will be exploring the GoTo statement. Before I say another word, it is important to mention that whatever we do in this recipe is nothing more than a basic explanation of how to use the GoTo statement. The only time you should ever use it is when you do error handling, which will be discussed in Chapter 11, Handling Errors. The Sub procedure we create here is, however, a good example of how you can control program flow.

			Let's see how the GoTo statement works.

			Getting ready

			Open Excel and activate a new workbook. Save the file as a macro-enabled file on your desktop and call it ProgramFlow. Sheet1 should be active. Press Alt + F11 to switch to the VBA Editor. With that open, insert a new module.

			How to do it…

			
					Create a new Sub procedure and call it GoToSample:Sub GotoSample()
End Sub

					Add the following lines of code:Sub GotoSample()
 Password = InputBox("Enter your password: ")
 If Password <> "aBc" Then GoTo WrongPassword
End Sub

					Create code to display a message box for when the correct password is entered:Sub GotoSample()
 Password = InputBox("Enter your password: ")
 If Password <> "aBc" Then GoTo WrongPassword
 MsgBox "Welcome to our website"
 'Lines of code
 'More lines of code
 Exit Sub
End Sub

					The last bit of code will take care of incorrect entries or errors:Sub GotoSample()
 Password = InputBox("Enter your password: ")
 If Password <> "aBc" Then GoTo WrongPassword
 MsgBox "Welcome to our website"
 'Lines of code
 'More lines of code
 Exit Sub
WrongPassword:
 MsgBox "Sorry, wrong password"
End Sub

					Press F5 to run the procedure. Type the correct password, aBc, in the message box and click OK. Another message box will appear with a welcome message. Click OK.

					Now, run the code again, this time entering an incorrect password. Click OK. This message box is less welcoming, informing you that your password was incorrect.

			

			How it works…

			Let's see how this most basic decision-making process works:

			
					In this procedure, users are asked for a password. Using InputBox works well in this case.

					Should you enter the correct password, it stands to reason that the bypassing procedure will not be invoked. A message box will welcome you, after which the rest of the code in the procedure will be run.

					Once the procedure comes to the last line of code, it will exit without activating the WrongPassword code, and end the Sub procedure.

					When the password is incorrect – not corresponding to the correct password – the rest of the procedure is bypassed. The GoTo command stops further execution of the rest of the code by sending you to the indicated area, in this case, WrongPassword.

					Once there, a message box will be activated, telling you that your password is incorrect (in Chapter 11, Handling Errors, we will discuss a more elegant way of returning to the procedure).

			

			Using If and If-Then structures to make decisions

			Of all the control structures in VBA, the If-Then and ElseIf structures are probably the most important. You will use these more than any of the other structures.

			The word If sets a condition. It works like normal English; If you do not study, you may fail your exam. In other words, you need to make a decision. If you study, you pass, or else you fail.

			In this recipe, we explain this control structure and its conditional statement with two examples, the first being very basic, and the second slightly more complex. Simplistic or not, you will see how you can use code to make your life easier. PCs are much faster than the human brain when it comes to repetitive tasks and decisions.

			Getting ready

			With ProgramFlow.xlsm still open on Sheet1, enter the single word Red in cell A1.

			Press Alt + F11 to switch to the VBA Editor. With that active, insert a new module.

			How to do it…

			There are many ways of using the If statement. The simplest form is a single line of code, using only If and Then as keywords:

			
					As always, we start with a new Sub procedure. Call it IfThenSample, and then enter the following code:Sub IfThenSample()
 If Range("A1") = "Red" Then MsgBox "Danger"
End Sub
This is how it will appear on screen:
[image: Figure 9.1 – Message box
]
Figure 9.1 – Message box

					Press F5 to run the code. Observe the message box with the Danger message. Click OK to return to the Editor.

					Press Alt + F11 to switch to Excel. Replace the word Red in cell A1 with Green. Switch back to the Editor, and then press F5 again. Nothing happens, which is not surprising.

					To make the code slightly more useful, add another line of code after the first:Sub IfThenSample()
 If Range("A1") = "Red" Then MsgBox "Danger"
 If Range("A1") = "Green" Then MsgBox "Proceed"
End Sub

					Running the procedure this time will display a message box with the Proceed message.There are obvious limitations, and limited use for this type of decision making. Let's investigate something slightly more useful. This time, we will use the If and ElseIf keywords to create a nested If statement. We will continue with the same recipe.

					Switch back to Excel and enter the value 4 in cell A1. Return to the Editor. Create a second Sub procedure below the first one and call it ElseIfSingle. Copy the following sample code and paste it into the procedure:Sub ElseIfSingle()
 If Sheet1.Range("A1").Value > 5 Then
 Debug.Print "Value is greater than five."
 ElseIf Sheet1.Range("A1").Value < 5 Then
 Debug.Print "Value is less than five."
 Else
 Debug.Print "Value is equal to five."
 End If
End Sub

					Activate the Immediate window (View | Immediate Window or Ctrl + G).

					Run the code by pressing F5, first with the value 4 in cell A1. Observe the message in the Immediate window. Next, run it after replacing 4 with 5 in cell A1. Finally, run it one final time with the value 6 in cell A1. Three messages should be visible in the Immediate window.

			

			How it works…

			The program flow in this example can be explained as follows:

			
					The first line of code tests the value in cell A1. Since it is not larger than 5, in other words, it doesn't meet the condition, the line of code directly after that will be skipped. No message will be displayed in the Immediate window.

					The second condition will now be tested and found true. 4 is, after all, less than five. As per the next instruction, the message will now be displayed in the Immediate window:[image: Figure 9.2 – Message in the Immediate window
]
Figure 9.2 – Message in the Immediate window

					The third condition test will be skipped, since the purpose of the code was to test for one condition only; less than, equal to, or larger than.

			

			There's more…

			
					Change the value in cell A1 back to 4. This time, cycle through the lines of code, step by step, by pressing F8, the keyboard shortcut for Step Into. Check which lines are skipped, and which message is displayed in the Immediate window every time.

					Once done, change the value in cell A1 to 5. Step into the code again. Once finished with 5, change the value to 6. Stepping into the code should show you how the first condition is met, and the rest of code is skipped to end the procedure.

			

			There is a lot more you can do with the If-Then control structure. As you gain experience, you will discover the power of long and complex nested If controls. As long as you understand the basic principles, the rest will come easy.

			Using the Select Case structure

			This recipe covers yet another control structure, the Select Case structure. There are similarities between this and the If-Then-Else structure, which will make it easier to understand the working process. This structure works well enough when you have only two options to choose between, but excels when you have to make decisions between three or more options.

			Getting ready

			Make sure that ProgramFlow.xlsm is still active. Clear Sheet1 of any data and enter the following numbers in column A:

			
				
					[image: Figure 9.3 – Data for Select Case
]
				

			

			Figure 9.3 – Data for Select Case

			Press Alt + F11 to switch to the VBA Editor. With that open, insert a new module.

			How to do it…

			
					Create a new Sub procedure. Call it SelectCaseSample, and then copy the following code:Sub SelectCaseSample()
 Dim Mark As Integer
 Range("A1").Select
 Mark = ActiveCell.Value
 Select Case Mark
 Case Is < 50
 ActiveCell.Offset(0, 1).Value = "Try again"
 Case Is < 60
 ActiveCell.Offset(0, 1).Value = "D"
 Case Is < 70
 ActiveCell.Offset(0, 1).Value = "C"
 Case Is < 80
 ActiveCell.Offset(0, 1).Value = "B"
 Case Else
 ActiveCell.Offset(0, 1).Value = "A"
 End Select
End Sub

					Resize Excel and the VBA Editor in such a way that you can see both windows on one screen:[image: Figure 9.4 – Viewing Excel and the VBA Editor
]
Figure 9.4 – Viewing Excel and the VBA Editor

					Click in the code window and press F8 to step into the code. Keep pressing F8 until the letter A appears in cell B1.

					Reset the procedure and change the first range reference to A2:[image: Figure 9.5 – The Reset button
]
Figure 9.5 – The Reset button

					Repeat the process until you reach cell A5, each time changing the range reference to the next cell in column A. The data on Sheet1 should now look like this:

			

			
				
					[image: Figure 9.6 – Results
]
				

			

			Figure 9.6 – Results

			How it works…

			This was a rather long-winded and ineffective process. Let's see what happened, and how we can improve on it.

			Before starting, close the Immediate window in the VBA Editor, and replace it with the Locals window (View | Locals Window):

			
					Change the range reference back to cell A1, and press F8 to step into the code. Your screen should look like this:[image: Figure 9.7 – Stepping into code
]
Figure 9.7 – Stepping into code

					Press F8 twice more, until the focus is on the Mark variable. Observe how the active cell (cell A1)'s value has been assigned to the variable. To see the assigned value, hover the mouse curser over ActiveCell.Value:[image: Figure 9.8 – Value assigned to a variable
]
Figure 9.8 – Value assigned to a variable

					This value, 85, will now be tested in each case against the criteria. The first case is less than 50, meaning it will be skipped. Ditto for each case where 85 is larger than the set standard.

					Press F8 until you are on the last case, Case Else. This time, when you press F8, it will execute the next line because 85 is larger than 80. According to the case structure, any values not smaller than 80 must be assigned the value A. Furthermore, it must be placed in the same row, one column to the right:[image: Figure 9.9 – Meeting the criteria
]
Figure 9.9 – Meeting the criteria

					Pressing F8 now will end Case Select, while the next F8 will end the procedure.

					To add the correct symbol next to the value in cell A2, you will have to change the first range reference to A2 and step into the procedure again. Observe how every case is skipped, until it meets the less than 80 criterion. The line after that is executed, and because the value has been found, the case will be ended, after which the procedure will be ended.

					Repeat this process, each time changing the first range reference to the next cell in column A, until all the values have symbols in column B.

					It is quite obvious that this is a highly inefficient process. The problem is that neither the If-Then nor the Select Case structure can go through the code repetitively, at least not without manual intervention. In the following section, we will introduce you to loops, and when we finally combine If-Then or Case structures with a loop structure, you will never look back.

			

			Using loops

			In this final recipe of this chapter, we will show you how to use loops.

			Loops are used to automatically repeat a set of statements until a condition is met. There are different types of loops that can be used in VBA:

			
					The Do loop

					The Do-Until loop

					The For Next loopFor and For Each loops can both be used to iterate through collections and arrays. Only the For loop can be used to iterate through a range of specified values, for example, 1 to 10. Only the For loop can be used to replace items of an iterated collection or array.

					Looping through a collection of objects

			

			Getting ready

			With ProgramFlow.xlsm still open on Sheet1, press Alt + F11 to switch to the VBA Editor With that open, insert a new module.

			How to do it…

			The first loop under discussion is the Do loop:

			
					Type the following code into the LoopSample Sub procedure:Sub LoopSample()
 Range("A1").Select
 Do
 ActiveCell.Offset(1, 0).Select
 Loop Until ActiveCell.Value = ""
End Sub

					Resize the two windows again before stepping into the procedure.

					Press F8, and observe how cell A1 is selected in Excel.

					Press F8 again until you enter the Do loop. Press it again and observe how cell A2 is selected.

					Keep stepping through the code with F8 until you reach the final entry in cell A5. Pressing F8 one last time will exit the loop and end the procedure.

			

			In the next Do Until loop, I've inserted the If Else structure in order to automate the process:

			
					Clear the data in cells B1:B5, and then insert a new module. Create the following Sub procedure in the code window:Sub ElseIfDoLoop()
 Dim Mark As Integer
 Dim Symbol As String
 Range("A1").Select
 Do Until ActiveCell.Value = ""
 Mark = ActiveCell.Value
 If Mark < 50 Then
 Symbol = "Try again"
 ElseIf Mark < 60 Then
 Symbol = "D"
 ElseIf Mark < 70 Then
 Symbol = "C"
 ElseIf Mark < 80 Then
 Symbol = "B"
 ElseIf Mark <= 100 Then
 Symbol = "A"
 Else
 End If
 ActiveCell.Offset(0, 1).Value = Symbol
 ActiveCell.Offset(1, 0).Select
 Loop
End Sub

					To speed things up a bit, simply press F5 to execute the Sub procedure. Observe the newly inserted values in cells B1 to B5. The inserted If structure in the loop automated the process of assigning symbols to the values, saving us a lot of time.

			

			The For Next loop is next:

			
					Create yet another module, and then insert the following text in the code window:Sub ForNextSample()
 Dim Count As Integer
 Range("D1").Select
 For Count = 1 To 20
 ActiveCell.Value = Count
 ActiveCell.Offset(1, 0).Select
 Next Count
End Sub

					Once again, press F5 to execute the code. Column D will now display a series of values, in sequence, starting in cell D1 and ending in cell D20.

			

			Finally, we have to loop through a collection of objects. A collection is a series of objects of the same type: workbooks, worksheets, ranges, and even cells fall into that category. There are various ways in which the concept can be demonstrated. In this recipe, we will be investigating two possible ways.

			
					The first example will loop through all the worksheets in the active workbook. In preparation for this Sub procedure, insert four extra worksheets into the workbook, and open the Immediate window in the Editor. Then, enter the following code in the code window:Sub ListWorkSheetNames()
 Dim SingleSheet As Worksheet
 For Each SingleSheet In Worksheets
 Debug.Print SingleSheet.Name
 Next SingleSheet
End Sub

					When you press F5, the names of the five sheets will be displayed in the Immediate window.

			

			In the final example, we will be looping through a range of cells. To make the most of this, we will have to combine a number of loops in a single Sub procedure.

			In preparation, we need to clear Sheet1 and then add some data to the blank sheet:

			
					Enter a series of values in cells D1:D10. Start at 85 and use the Autofill feature to create a decreasing series with a step value of 4:[image: Figure 9.10 – Values in cells D1:D10
]
Figure 9.10 – Values in cells D1:D10

					Before running the ElseIfDoLoop procedure, change the starting reference to D1. Now run the ElseIfDoLoop procedure from cell D1. The result should look like this:[image: Figure 9.11 – Values with symbols
]
Figure 9.11 – Values with symbols

					Create a final new module and copy the following text into the code window.The first part of the code declares all the variables:
Sub CountSymbols()
 Dim SingleCell As Range
 Dim ListOfCells As Range
 Dim CountSymbol_A
 Dim CountSymbol_B
 Dim CountSymbol_C
 Dim CountSymbol_D
 Dim CountSymbol_TryAgain
Now we set the object range, and then the nested If statements:
Set ListOfCells = Range("D1", _
 Range("E1").End(xlDown))

 For Each SingleCell In ListOfCells

 If SingleCell.Value = "A" Then
 CountSymbol_A = CountSymbol_A + 1
 ElseIf SingleCell.Value = "B" Then
 CountSymbol_B = CountSymbol_B + 1
 ElseIf SingleCell.Value = "C" Then
 CountSymbol_C = CountSymbol_C + 1
 ElseIf SingleCell.Value = "D" Then
 CountSymbol_D = CountSymbol_D + 1
 ElseIf SingleCell.Value = "Try again" Then
 CountSymbol_TryAgain = CountSymbol_TryAgain + 1
 End If

 Next SingleCell
Here we assign values to the range F1 to F5:
 Range("F1") = "Total A"
 Range("F2") = "Total B"
 Range("F3") = "Total C"
 Range("F4") = "Total C"
 Range("F5") = "Total Try"
And finally, we place the variable output in the range G1 to G5:
 Range("G1") = CountSymbol_A
 Range("G2") = CountSymbol_B
 Range("G3") = CountSymbol_C
 Range("G4") = CountSymbol_D
 Range("G5") = CountSymbol_TryAgain
End Sub

					Press F5 and observe the newly inserted information in columns F and G:

			

			
				
					[image:]
				

			

			Figure 9.12 – Displaying total values

			Now this is starting to look like something you could use in the future. Let's investigate the construction of these procedures.

			How it works…

			Here's how loops work:

			
					The first procedure, LoopSample, is the simplest example of what a loop can do. It can start anywhere, but in this case we start in cell A1.

					Between the Do and Loop keywords, the single line of code tells VBA to move one row down, in the same column, from the active cell.

					By adding the Until keyword after Loop, we limit the downward movement to the first open cell. In other words, when the active cell is found to be empty, the loop ends.

			

			The next procedure, ElseIfDoLoop, has a nested If inside the loop. Doing a Step Into will help a lot to clarify each step of the procedure:

			
					After declaring two variables, Mark and Symbol, cell A1 is selected.

					The same limitation as in the LoopSample procedure is inserted in order to end the loop when reaching the last entry in column A.

					Now, the active cell's value is assigned to the Mark variable. With that value stored in memory, each If statement is checked. The last one meets the criterion because 85 is larger than any of the others. The string A is now assigned to the Symbol variable.

					The If statement ends, and the next line is executed, meaning that the value A is entered in the cell to the right of the active cell, cell A1.

					Offset now moves the focus one row down, in the same column.

					The loop is repeated, adding symbols to the right of each value, until cell A6 becomes the active cell. Being empty, the loop is forced to end, after which the procedure also ends.

			

			The ForNextSample procedure works as follow:

			
					A variable called Count is declared.

					Cell D1 is selected.

					The count start and end values are set.

					The first Count value is assigned to the active cell.

					Focus moves one row down, in the same column.

					The count loop now starts again, because the end value, 20, has not been reached.

					The loop continues until the value 20 is entered in the last cell, after which the loop ends and the procedure also ends.

			

			Finally, the collection loop must be explained. In the first example, ListWorkSheetNames, we print the names of each worksheet in the immediate window. Here's how it works:

			
					A variable called SingleSheet is declared as a worksheet object.

					The For loop is given its parameters, which is to find all worksheet objects and print their names in the Immediate window.

					By stepping into the code (pressing F8), you will see how each sheet name is found and printed, until the loop ends after printing the last name.

			

			The second example of a loop structure is essentially a loop through a range of cells. By adding some extra coding, it has the potential to become something useful.

			The aim of this procedure is to count the number of symbols in each category, add them, and then print the totals in a new position. Here's how the code works:

			
					Declare range variables for the range that we will loop through, as well as the individual cells in the range.

					Next, declare variables for each symbol to be counted.

					Now, set the range for the ListOfCells variable. Observe that this range covers the entire column.

					Start the For loop, telling it to investigate each cell in the range.

					Insert a nested If structure inside the For loop. Observe how each symbol is detected and then added to the category variable. It will help a lot if you use the Step Into shortcut, F8, to cycle through each step here.

					Once the end of the range has been reached, the For loop ends. The procedure, however, has more commands waiting.

					The title for each symbol count is assigned to cells F1:F5.

					Finally, in the range G1:G5, the total values for each symbol category are assigned.

					The procedure ends.

			

			Like everything else in life, it will take time for you to assimilate this information. Work through these examples repeatedly, and then try some of your own.

		

	
		
			Chapter 10: Implementing Automation

			Automation comes in different flavors. Simple recorded macros, for instance, can be used to eliminate the drudgery of repetitive tasks. Even keyboard shortcuts are a form of automation. However, when messages start popping up while you open or close a file or because you forget to make backups, the word automation takes on a new meaning. This chapter is all about those event-driven procedures, which is a major step toward automation in VBA. Therefore, the benefits of event procedures are increased production and better interaction with users.

			In standard English, an event is something that happens – a wedding or a conference, for example. In VBA, an event is also something that happens, such as when you click on a button, or when you save, open, or close a file. You can also say that an event procedure is a sub-routine that runs automatically in response to an event in the workbook.

			In this chapter, we will cover the following recipes:

			
					Writing event handler procedures

					Discovering events

					Creating workbook-related events

					Creating worksheet-related events

					Creating non-object events

			

			By the end of this chapter, you will be able to write event handler procedures.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10.

			If your hardware and software meet these requirements, you have everything you need.

			Demonstration files can be downloaded from https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check out the CiA videos: https://bit.ly/3jQRvVk.

			Writing event handler procedures

			In this recipe, we will be working with a new type of procedure, known as event handler procedures. This is a special type of procedure, designed and placed in such a way that it will do nothing else but handle events.

			Important note

			For a list of every possible event available in VBA, follow this link: https://docs.microsoft.com/en-us/dotnet/api/microsoft.office.tools.excel.workbook?redirectedfrom=MSDN&view=vsto-2017#events.

			Getting ready

			Open Excel and activate a new workbook. Save the file as a macro-enabled file on your desktop and call it Events. Sheet1 should be active. Press Alt + F11 to switch to the VBA Editor.

			How to do it…

			Let's create our first event handler procedure:

			
					Instead of inserting a new module, double-click on the workbook object in Project Explorer:[image: Figure 10.1 – Code window for ThisWorkbook
]
Figure 10.1 – Code window for ThisWorkbook

					In the code window, click on the drop-down arrow on the left and choose the object that you're coding for; Workbook:[image: Figure 10.2 – Workbook object
]
Figure 10.2 – Workbook object

					This will automatically generate the default event for this object, which is the open event:[image: Figure 10.3 – Generated code
]
Figure 10.3 – Generated code

					Insert the following code into the existing procedure:Private Sub Workbook_Open()
 MsgBox "Welcome to Automation"
End Sub

					Save the file and close Excel. When you open the saved file, click the Enable Macros notification. A message box will appear:[image: Figure 10.4 – Message box
]
Figure 10.4 – Message box

					Click OK to close the message box.

			

			How it works…

			Creating an event procedure works as follows:

			
					Unlike normal Sub procedures, event procedures are not created in a standard VBA module. Event handler procedures go into the code window of an Object module. Should they be placed in the wrong module, they will simply not work.

					By double-clicking on the ThisWorkbook object, the associated code window will be activated.

					In the top-left corner of the code window, a single event handler procedure is available. By selecting that, the Sub and End sub statements will appear in the window. This code is the default event handler procedure for an open event.

					To the right of that, a procedure drop-down list allows you to choose other events. By selecting, for instance, the BeforeClose event, the new event will be created and inserted above the current event.

					For the Workbook_Open event to work, we need to add some actionable code to execute when the workbook opens up. In this case, we want a simple message box to appear. Enter the code, together with the text you want to read on the message box.

					Unlike other Sub procedures, you can't press F5 to run the code because it is an event that will only run when the workbook opens. So, save the file and then close it.

					Open the saved file, and observe the security warning below the ribbon:[image: Figure 10.5 – Enabling macros
]
Figure 10.5 – Enabling macros

					Click on Enable Content to enable the macro. The desired message box will appear. Click OK to close the message box to enter data on the spreadsheet.

					The message box will appear every time you open this specific file.

			

			There's more…

			Make sure that the security settings on your PC are correct. Check the following settings:

			
					Activate the Developer ribbon. In the Code group, click on Macro Security to open the Trust Center dialog box:[image: Figure 10.6 – Macro Security
]
Figure 10.6 – Macro Security

					With the Trust Center dialog box open, and the Macro Settings category selected in the left panel, select Disable all macros with notification:[image: Figure 10.7 – Macro Settings
]
Figure 10.7 – Macro Settings

					Next, select Trusted Documents in the category panel and then tick the Disable Trusted Documents checkbox:[image: Figure 10.8 – Disable Trusted Documents
]
Figure 10.8 – Disable Trusted Documents

					This final setting will ensure that the security warning appears every time you open this file. Without it, the warning will appear only the first time you open the file.

			

			It is seemingly insignificant settings like these that make life so much easier when working with VBA. You can thank me later!

			Discovering events

			In the following section, we will be creating three different types of events. The principle behind any event will always be the same; in other words, something must happen in Excel to trigger the event procedure.

			What has not been mentioned explicitly is that different objects in the Excel VBA environment will respond to different events. It makes sense that you can enter data in the cell of a worksheet, but not in a workbook. Similarly, you cannot save a cell, while a workbook can and must be saved.

			The three event types to be discussed will explain this principle in detail, in the remaining recipes of this chapter.

			Creating workbook-related events

			The Open event is one of many workbook-related events. In this recipe, we will be creating more workbook-related events.

			Getting ready

			Make sure that Events.xlsm is still open. Sheet1 should be active. Press Alt + F11 to switch to the VBA Editor, and then double-click the ThisWorkbook object to activate the code window.

			How to do it…

			Let's create three workbook-related events:

			
					If we can welcome users when they open a file, we can greet them when they leave. In the top-right corner of the code window, select the BeforeClose event from the drop-down list:[image: Figure 10.9 – List of events
]
Figure 10.9 – List of events
A new procedure will be created in the code window:
Private Sub Workbook_BeforeClose(Cancel As Boolean)
End Sub

					Insert the next line of code in the procedure:Private Sub Workbook_BeforeClose(Cancel As Boolean)
 MsgBox "Goodbye - have a nice day"
End Sub

					After saving the file, close it. A message box will appear, in which you will have to click OK before Excel can close down.

					Open Events.xlsm again, enable macros, and click OK in the message box. Switch to the VBA Editor.

					In the BeforeClose procedure, set the BeforeClose event's parameter to Cancel by adding the following line:Private Sub Workbook_BeforeClose(Cancel As Boolean)
 MsgBox "This file cannot be closed"
 Cancel = True
End Sub

					If you now try to close the file, it will not allow you to do so. You can, however, close the file on a conditional basis. Add the following code to the procedure:Private Sub Workbook_BeforeClose(Cancel As Boolean)
 If Hour(Now) < 17 Then
 MsgBox "You have to work until 5pm"
 Cancel = True
 End If
End Sub
Change the hour until it is earlier than your current time in order to meet the condition.

					The second workbook-related event is the BeforeSave event. In the top-right corner of the code window, select the BeforeSave event from the drop-down list. A new procedure will be created in the code window:Private Sub Workbook_BeforeSave(ByVal SaveAsUI As _
Boolean, Cancel As Boolean)
End Sub

					Insert the next line of code in the new procedure:Private Sub Workbook_BeforeSave(ByVal SaveAsUI As _
Boolean, Cancel As Boolean)
 MsgBox "You do not have permission to save this file"
 Cancel = True
End Sub

					Whether you click on Save in Explorer, or switch to Excel and try to save the file there, a message box will inform you that you cannot save the file.

					Next, we want to prevent users from printing a file. Insert the BeforePrint event, and insert the following code into the procedure:Private Sub Workbook_BeforePrint(Cancel As Boolean)
 MsgBox "You cannot print this file"
 Cancel = True
End Sub

					Switch to Excel and type your name in cell A1. Press Ctrl + P to activate the print window. Click on the Print button. A message box will tell you that you cannot print the file.

					To save the file, and also to exit Excel, you will have to comment out any line of code preventing you from doing so.

			

			How it works…

			Let's start with the BeforeClose event.:

			
					With this event active, you can set reminders, or even warnings, before users can close Excel. In the first case, we're simply wishing them a nice day.

					By setting the Cancel parameter to True, the file cannot be closed at all, which doesn't make sense. If you add a condition, as in the third example, you can force users to obey certain rules.

					The BeforeSave event will have the same effect, but only when users try to save a file. Without any conditions, it will prevent saving. With conditions, such as providing a password or code, the event would be more useful.

					The last event, BeforePrint, will activate when users try to print the file. There may be good reason for you to prevent printing, but adding a condition will make it more flexible and user-friendly.

			

			Creating worksheet-related events

			The next logical step will be to create events that influence only worksheets. This recipe will discuss the principles behind these events.

			Getting ready

			Open Excel and activate a new workbook. Save the file as a macro-enabled file on your desktop and call it Worksheets. Enter the following data in Sheet1:

			
				
					[image: Figure 10.10 – Working data
]
				

			

			Figure 10.10 – Working data

			Finally, press Alt + F11 to switch to the VBA Editor.

			How to do it…

			The first worksheet event we will create is the SelectionChange event. The steps are virtually the same as with the workbook event handler procedure:

			
					Double-click the worksheet object in Project Explorer, Sheet1.

					In the code window that appears, click on the drop-down arrow on the left, and choose the object that you're coding for; Worksheet.

					This will automatically generate the default event for this object, which is the SelectionChange event.

					Insert two lines of code into the procedure:Private Sub Worksheet_SelectionChange(ByVal Target _
As Range)
 Target.Font.Color = vbBlue
 Target.Font.Bold = True
End Sub

					Press Alt + F11 to switch to Excel. Click on any of the filled cells and observe how the text changes to blue and bold. The event is working as intended, but is not really useful.

					Switch back to the VBA Editor. Add the following condition:Private Sub Worksheet_SelectionChange(ByVal Target _
As Range)
 If Target.Row = 1 Then
 Target.Font.Color = vbBlue
 Target.Font.Bold = True
 End If
End Sub

					Switch back to Excel one last time. Use Ctrl + A to select the entire sheet, and then click Home | Editing | Clear | Clear Formatting to clear all formatting.

					Click on any cell in the sheet, and observe how only the top row will turn blue and bold, while clicking on any other cell has no effect.

			

			Another example of a worksheet event is the Change event:

			
					In the VBA Editor, create the Change event. Click on the drop-down arrow on the left, and choose the object that you're coding for; Worksheet.

					From the drop-down box on the right, select the Change event.

					Create the code for a simple message box:Private Sub Worksheet_Change(ByVal Target As Range)
 MsgBox "Change!"
End Sub

					Switch to Excel and delete or edit the content of any cell in the table. A message box will appear:[image:]
Figure 10.11 – Message box for a change event

					Switch back to the Editor. Add the following code to the procedure:Private Sub Worksheet_Change(ByVal Target As Range)
 If Target.Address = Range("A6").Address Then
 MsgBox "Change!"
 End If
End Sub

					Switch back to Excel and once again delete or edit the content of any cell in the table. A message box will appear only when you change something in cell A6.

					Switch back to the Editor one last time. Add the following code to the procedure:Private Sub Worksheet_Change(ByVal Target As Range)
 If Not Intersect(Target, Range("A6:G6")) Is Nothing _
 Then
 MsgBox "Change!"
 End If
End Sub

					This time, the message box will appear only when you change something in the range A6 to G6.

			

			How it works…

			The events work as follows:

			
					The SelectionChange event will activate every time you select a cell in the worksheet. By adding methods, such as making the font blue and bold, you can change every cell you select. Nice, but with little value.

					Using the If condition to limit the event to row one of the worksheet, you can now use the event to format headings on Sheet1.

					The Change event will trigger when something in a cell changes, such as adding or deleting values. The message box displays every time a change is made anywhere in the sheet.

					To focus the event on a single cell, set the Target address equal to that cell. The Change event will only fire when that specific cell is changed.

					To cover a range of cells for a Change event, use the Intersect function to specify the Target range.

			

			Creating non-object events

			This recipe deals with objects other than workbooks and worksheets. The principle is, however, exactly the same as with the previous events; an action of sorts triggers the event. Let's get working!

			Getting ready

			Open Excel and activate a new workbook. Save the file as a macro-enabled file on your desktop and call it NonObjectEvents. Sheet1 should be active. Press Alt + F11 to switch to the VBA Editor.

			How to do it…

			When dealing with workbook and worksheet events, we created code for the event in the object's code window. Non-object events are exactly what the name says; events that are not associated with objects. These events are programmed in a normal VBA module.

			
					Insert a new module in the VBA Editor; Insert | Module.

					Enter the following code in the code window:Sub WakeUpCall()
 Application.OnTime 0.5, "Alarm"
End Sub

					Create a second Sub procedure – the one that is referred to in the first Sub procedure:Sub Alarm()
 MsgBox "Time for a break!"
End Sub

					You will have to wait until noon, in other words 12:00 P.M., for this event to be triggered, but it will work.

					Let's do another, somewhat more useful non-object event. Insert a new module, and then create the following Sub procedures:Sub KeyAssign()
 Application.OnKey "+^{RIGHT}", "SpecialSign"
 Application.OnKey "^{z}", "OwnUndo"
 Dim SpecialSign As String, OwnUndo As String
 SpecialSign = "+^{RIGHT}"
 OwnUndo = "^{z}"
End Sub
Sub SpecialSign()
 MsgBox "You pressed Shift+Ctrl+Right Arrow"
End Sub
Sub OwnUndo()
 MsgBox "You pressed Undo"
End Sub

					Set up the OnKey event by running the KeyAssign procedure. Switch to Excel.

					Press either of the two keyboard shortcuts: Shift + Ctrl + right arrow, or Ctrl + Z. A message box will appear in each case, confirming the keystrokes.

			

			How it works…

			These non-object events work as follows:

			
					In the WakeUpCall procedure, the OnTime method of the Application object does the work. It has two arguments: the time and the name of the Sub procedure that must be executed.

					For this procedure to do what it's supposed to do, it must be executed. Remember, this is not an Open or Close event associated with a workbook.

					Apart from executing the procedure, you must also have this specific workbook open for the OnTime event to be activated. When your PC's system clock reaches 12:00 P.M., a message box will appear, telling you to take a break.

					The KeyAssign procedure also takes two arguments: first, the code for the kkeystrokes ("+^{RIGHT}") and then the Sub procedure.

					Next, we declare two variables, one for each keystroke: Dim SpecialSign As String, OwnUndo As String

					After this, we assign the keyboard strokes to the variables: SpecialSign = "+^{RIGHT}"
 OwnUndo = "^{z}"

					The final step involves writing messages to be displayed when each procedure is triggered.

			

			This brings us to the end of this section. It must be mentioned that not all events have been covered here. Do yourself a favor and do some research on the Microsoft site for Application events, Chart events, and UserForm events.

			Whatever we have done here will give you a solid foundation, enough anyway to easily apply other events with equal success.

		

	
		
			Chapter 11: Handling Errors

			Try as you may, mistakes will be made. After all, we're only human. There are three types of errors in the VBA world of coding; syntax errors, compile errors, and runtime errors. Even experienced programmers encounter these problems to some extent. In the world of programming, errors are part of the territory, so consider yourself in good company.

			The sooner you learn how to deal with all types of errors, the easier your life as a programmer will be.

			In this chapter, we will cover the following recipes:

			
					Handling different types of errors

					Correcting a runtime error

					Testing to find errors

					Using the On Error statement

					Resuming after an error

			

			By the end of this chapter, you will be able to do error handling in VBA.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10.

			If your hardware and software meet these requirements, you are good to go.

			Demonstration files can be downloaded from https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check out the CiA videos: https://bit.ly/3jQRvVk.

			Handling different types of errors

			All errors are not equal.

			OK, let me clarify that statement. All errors will prevent a procedure from executing flawlessly, but there are several different types of errors, each with specific characteristics and consequences. Not all sources agree on the number of error types. However, in this manual, I have identified and described the following three errors:

			
					Syntax error: A very common error, especially when you're new to the VBA environment, is syntax-related, or grammar-related errors. It could be that you spell a word incorrectly, or accidentally drop a number somewhere. It could even be something as small as a missing comma, full stop, or bracket (parenthesis). Whichever spelling mistake it is, VBA is unforgiving in that department. It has to be done the right way, 100% correct, or nothing.

					Compile error: Compiling is done automatically for you when you run a Sub procedure, checking whether your code makes sense. Where syntax errors check individual words, compile errors are only revealed when an entire Sub procedure is incorrect or does not make sense.

					Runtime error: This type of error is very common, even among more experienced coders, and can occur for a great number of reasons. It should be observed that, unlike syntax and compile errors, runtime errors will only be revealed once you run your Sub procedure. A typical runtime error could be referring to a cell that doesn't actually exist. In such a case, your code will compile without problems, but a runtime error will occur because the cell reference does not exist.

			

			In this recipe, we will be working on resolving these errors.

			Getting ready

			Open Excel and activate a new workbook. Save the file as a macro-enabled file on your desktop and call it ErrorHandling.xlsm. Sheet1 should be active. Press Alt + F11 to switch to the VBA Editor, and then insert a new module.

			How to do it…

			First-hand experience is always the best way to learn. Let's see how syntax errors present themselves:

			
					Copy the following code into the code window:Sub ErrorSamples()
 Range("A1").Value = "Name"
 Range("B1").Value = "Dept"
 Range("C1").Value = "Date"

 Range("A2").Value = InputBox("Type your name")
 Range("B2").Value = InputBox("Type your Department")
 Range("C2").Value = InputBox("Enter today's date")

 Range("A1:C1").Select
 With Selection.Font
 .Name = "Verdana"
 .Size = 10
 .Bold = True
 End With
End Sub

					Once done, remove the parentheses after cell reference A2 so as to simulate an error. Click in the next line, and observe the immediate warning:[image: Figure 11.1 – Syntax error showing in red
]
Figure 11.1 – Syntax error showing in red
A message box pops up, informing you that a list separator or) is expected. It also highlights the position where it thinks the parentheses should appear. This is not a true compile error, so ignore the heading on the message box for the moment. There is a solution for this at Step 7 in this recipe.

					Click OK to close the dialog box, and then replace the parentheses you've just removed. The font turns back to black, which is confirmation that you've removed the error.

					Next, let's remove the quotation mark directly following cell reference A2. Click in the next line to activate the error:[image: Figure 11.2 – Syntax error marking the wrong area
]
Figure 11.2 – Syntax error marking the wrong area

					The line turns red again, but this time the highlighted area is in completely the wrong place. Even the message box is wrong; we're missing a quotation mark, not a parenthesis. As with the previous confusing message box, there is a solution at Step 7

					Click OK to close the message box, and replace the missing quotation mark.

					Now, let's prevent the confusing dialog boxes from appearing. In the VBA Editor, on the menu bar, click on Tools | Options. The Options dialog box appears:[image: Figure 11.3 – The Options dialog box
]
Figure 11.3 – The Options dialog box

					In the Code Settings group, remove the tick mark in front of Auto Syntax Check. Click OK to close the dialog box. Whenever you make a syntax error again, no dialog box will appear, while the erroneous code will still be marked in red.

					Remove the quotation mark after cell reference A2 again, and click in the next line:[image: Figure 11.4 – Syntax error without dialog box
]
Figure 11.4 – Syntax error without dialog box

					This time, the dialog box with its confusing messages does not appear. The line is still marked in red, though, which is all you want – an indication where the syntax error is.

					To cause a compile error, delete the letter e in the first instance of the word Range. Click in the next line. Observe that the text of the first line does not turn red:[image: Figure 11.5 – Error in code
]
Figure 11.5 – Error in code

					Try to run the procedure by pressing F5. The following dialog box appears:[image: Figure 11.6 – Compile error warning and highlight
]
Figure 11.6 – Compile error warning and highlight

					More than an accurate assessment of what the problem is, the correct area where the mistake was made is highlighted in the code. Click OK to close the dialog box and correct the mistake by rectifying the spelling for the word Range.

					Run the procedure again to confirm that all errors have been removed.

			

			How it works…

			Here is an explanation of what we just did in this recipe:

			
					Syntax errors are essentially errors in the structure or the grammar of the code. Examples of this type of error would be double quotes left out, parentheses omitted, double spaces, incorrect line breaks, declared variables spelt incorrectly in references, and so on. Syntax errors will mark the line in red, plus a dialog box will appear, sometimes with confusing information.

					By removing the Auto Syntax Check option from the Options dialog box, a dialog box will not appear when syntax errors are made, while the line of code will still be marked in red.

					Compile errors only reveal themselves immediately before a Sub procedure is executed. By spelling a keyword incorrectly, for instance, a message box informs you of your error.

					The dialog box information for compile errors is much more accurate than that of syntax errors. At the same time, compile errors are highlighted with much greater accuracy.

			

			Syntax errors and compile errors both have the same effect: they prevent the code from running. Don't make too much of an issue of this, though. There are only two rules to remember:

			
					Correct the spelling mistakes (marked in red, and known as syntax errors) when the code turns red.

					Correct compile errors when you try to run the code, and a message box tells you to correct the compile error.

			

			Correcting a runtime error

			Runtime errors are by far the most common type of error you'll come across when working in VBA. As the name suggests, these errors only occur once you run the code. Unlike with syntax and compile errors, there is no way for VBA to check your code for actions that will happen after the procedure starts running.

			To come up with a list of possible runtime errors is virtually impossible because situations and procedures are never the same.

			One typical runtime error that occurs from time to time is when you create a link to an external file, and then accidentally delete that file. Only when you run the code will an error message be displayed. Another example is when you refer to a range that does not exist.

			In this recipe, we will be correcting a runtime error.

			Getting ready

			Make sure that ErrorHandling.xlsm from the preceding recipe is still open. Sheet1 should be active. Press Alt + F11 to switch to the VBA Editor. If it is not open, double-click on Module 1 to activate the code window.

			How to do it…

			Let's manipulate our code to create an error:

			
					In the code window of Module 1, edit the code as follows. In other words, change the reference A1 to XFE1:[image: Figure 11.7 – Deliberate runtime error
]
Figure 11.7 – Deliberate runtime error

					Observe that no errors are displayed when clicking in the next line.

					Press F5 to run the code. The following dialog box appears:[image: Figure 11.8 – Runtime error indicated by the dialog box
]
Figure 11.8 – Runtime error indicated by the dialog box

					Click on Debug to close the dialog box. Observe that the line containing the error is now highlighted in yellow:[image: Figure 11.9 – Highlighted line with error
]
Figure 11.9 – Highlighted line with error

					Correct the error by deleting the incorrect cell reference, replacing it with the original reference to cell A1. Click on the next line. The line is still highlighted:[image: Figure 11.10 – Highlighted line with correction
]
Figure 11.10 – Highlighted line with correction

					Since the error has been corrected, you can simply press F5 to run the rest of the procedure.

			

			How it works

			Let's look at the details of what's just happened.

			
					The last column in Excel is column XFD. Referring to column XFE is guaranteed to cause a runtime error because there is no such a reference in Excel.

					Since this incorrect cell reference is neither a syntax error nor a compile error, you can click anywhere else in the code without error messages popping up, or lines being highlighted in red.

					The moment you run the code, a dialog box appears, informing you of a runtime error.

					By clicking on the Debug button, the dialog box disappears and the line containing the error is highlighted in yellow. You are now in break mode, and can rectify the incorrect cell reference.

					Once you've corrected the runtime error, the yellow highlight on the line does not disappear. It simply means that you are still in break mode, and can either exit break mode, or press F5 to finish the procedure.

					If there are no other runtime errors, your procedure will execute successfully.

			

			Correcting runtime errors requires vigilance and a thorough understanding of the application, as well as knowledge of general principles within the PC environment.

			Testing to find errors

			Errors that occur while Excel executes your code – the typical runtime errors – do not always reveal themselves immediately. It is quite possible to work with a specific Sub procedure for a while before a dialog box will pop up and spoil your fun. "How's that possible?", you may ask.

			The simple answer is that users often use a procedure without making any so-called mistakes. However, being human, we sometimes use text instead of numerical values. That's just one example. The point is, these errors are not always predictable, and it happens all the time, especially if you are new to programming. Programming is not only about knowing syntax, but also about being able to think logically.

			A good understanding of math will also come in handy. For instance, dividing by zero, or trying to calculate the square root of a negative number, is guaranteed to invoke a runtime error.

			Add to this other mistakes, such as typing text into a field that expects a value, and you'll understand that programmers have to think about much more than simple lines of code.

			In this recipe, we will be testing a Sub procedure repeatedly. Testing, followed by more testing, trying to imagine every possible action a user might take when using your code, is the only way to eliminate runtime errors.

			Getting ready

			Make sure that ErrorHandling.xlsm is still open. Sheet1 should be active. Press Alt + F11 to switch to the VBA Editor. Insert a new module.

			How to do it…

			Let's start with a very simple example:

			
					Copy the following code into the code window:Sub Test()
 Dim Num As Double
 Num = InputBox("Enter a value to divide by")

 ActiveCell.Value = ActiveCell.Offset(0, -1). _
 Value / Num
End Sub

					Resize both the VBA Editor and Excel in such a way that both windows are visible next to each other:[image: Figure 11.11 – Viewing Excel and the VBA Editor
]
Figure 11.11 – Viewing Excel and the VBA Editor

					In Excel, type the value 12 in cell A1, and then select cell B1.

					Click in the code window of Module 2 and press F5 to run the code. Enter the value 2 in the input box and click on OK. The value 6 will appear in cell B1.

					Test the procedure several times, each time using a positive value.

					Next, test the procedure two or three times by entering a negative value.

					Finally, run the procedure, but this time enter the value 0 in the input box. A dialog box appears, announcing a runtime error:[image: Figure 11.12 – Runtime error
]
Figure 11.12 – Runtime error

					Click End to stop the procedure. Click in the code window, and then edit the code as follows:Sub Test()
 Dim Num As Double
 Num = InputBox("Enter a value to divide by")

 If Num = 0 Then
 MsgBox "You cannot divide by zero"
 Exit Sub
 End If

 ActiveCell.Value = ActiveCell.Offset(0, -1). _
 Value / Num
End Sub

					Run the procedure, once again using 0 as the divider. Instead of a runtime error, the following message box appears:[image: Figure 11.13 – Message box explaining the error
]
Figure 11.13 – Message box explaining the error

					Let's do another test. Run the procedure and type your name in the input box. The following runtime error occurs:[image: Figure 11.14 – Value runtime error
]
Figure 11.14 – Value runtime error

					Click End, and then edit the code as follows. We will be working with debugging in the next chapter. Take care to change the data type for the Num variable to Variant:Sub Test()
 Dim Num As Variant
 Num = InputBox("Enter a value to divide by")

 If Num = 0 Then
 MsgBox "You cannot divide by zero"
 Exit Sub
 End If

 If Not IsNumeric(Num) Then
 MsgBox "You must enter a number"
 Exit Sub
 End If

 ActiveCell.Value = ActiveCell.Offset(0, -1). _
 Value / Num
End Sub

					Run the procedure, again typing your name in the input box. Instead of a runtime error, the following message box appears:

			

			
				
					[image: Figure 11.15 – Text runtime error
]
				

			

			Figure 11.15 – Text runtime error

			By anticipating typical mistakes that users make, it is possible to prevent most runtime errors. In the next recipe, we will reveal the last secret regarding runtime errors. For now, let's see how our recipe works!

			How it works…

			Let's look at what we've just done, but in more detail:

			
					The Test procedure is a very simple piece of coding that I often use for training purposes. The objective, in this example, is to give users the opportunity to divide the value in cell A1 by any chosen value.

					In its simplest form, using any value other than zero, the procedure works without any problems. Then, a user decides to divide by zero, and the first runtime error upsets your stable procedure.

					By inserting an If statement to handle this specific error made by users, we've added typical error-handling code. In simple English, this means that we can enter zero as the divider, without ugly dialog boxes bringing our procedure to a standstill.

					The same thing happens when we add text (your name), instead of a numerical value, to the input box. Your error-handling code will smooth away the dialog box.

			

			There are more errors than these two, such as when users cancel the input box, when the correct sheet is not activated, or when the sheet is protected. As mentioned previously, the only way to find these errors is to test for every possible error you can think of. The next recipe will discuss the technique of handling all errors in a procedure.

			Using the On Error statement

			In this recipe, we will be using the On Error statement in a procedure.

			Instead of trying to anticipate every possible error that can be made or invoked, the On Error statement handles every and all possible errors.

			This statement lets you bypass Excel's error handling – the dialog boxes – and allows you to use your own error-handling code.

			Let's see how it's done.

			Getting ready

			ErrorHandling.xlsm is still open, with Sheet1 active. Both Excel and the VBA Editor windows are visible next to each other.

			How to do it…

			Insert a new module and follow these steps:

			
					Enter the following code:Sub Test()
 Dim Num As Variant
 Dim Msg As String

 On Error GoTo WrongEntry 'Set up error handling

 Num = InputBox("Enter a value to divide by")

 If Num = "" Then Exit Sub 'Exit the procedure if _
 nothing is entered

 ActiveCell.Value = ActiveCell.Offset(0, -1). _
 Value / Num
 Exit Sub

WrongEntry:
Msg = "An error occurred. Please check your entry."
MsgBox Msg, vbCritical
End Sub

					Run the procedure as many times as you like, testing different entries each time; entering zero as the divider, typing text in the input box, and canceling the input box. In each case, the following dialog box will appear:

			

			
				
					[image: Figure 11.16 – Custom dialog box
]
				

			

			Figure 11.16 – Custom dialog box

			Error handling is a very important element in an VBA Sub procedure. Use and apply the On Error statement whenever you have to manage a series of possible errors.

			How it works…

			
					Instead of trying to handle each error individually, we inserted the On Error statement directly after declaring the variables. The purpose of this statement is to take care of all errors.

					Any errors occurring while the procedure is running will be taken care of this way.

					The only exception is when the input box is canceled, hence the line dedicated to that, which reads as follows:If Num = "" Then Exit Sub 'Exit the procedure if _
nothing is entered

					When an error occurs, the GoTo error-handling statement skips the rest of the procedure and goes directly to WrongEntry, where an appropriate and personalized dialog box is created.

					It might be a good idea to be a bit more specific about the possible errors that caused the procedure to end. I'll leave that to you.

			

			Error handling can be a nightmare if you don't know how to trap errors. Dealing with errors by using the On Error GoTo statement makes life much easier for programmers as well as users.

			Resuming after an error

			One way of handling errors is to display a dialog box with some explanation as to why the procedure stopped. It's rather abrupt, though, sometimes leaving us with a lack of full understanding as to what really happened. Furthermore, we are often unsure as to what we should do after closing the dialog box.

			In cases where we want to recover from errors, the Resume statement will achieve this.

			In this recipe, we will be resuming after errors occurred in three different ways.

			Getting ready

			With ErrorHandling.xlsm still open, and Sheet1 active, arrange the Excel and VBA Editor windows in such a way that both are visible next to each other.

			How to do it…

			Insert a new module and follow these steps:

			
					Enter the following code:Sub Test()
 Dim Num As Variant
 Dim Msg As String
 Dim Answer As Integer
TryAgain:
 On Error GoTo WrongEntry 'Set up error handling

 Num = InputBox("Enter a value to divide by")
 If Num = "" Then Exit Sub 'Exit the sub if cancelled

 ActiveCell.Value = ActiveCell.Offset(0, -1). _
 Value / Num
 Exit Sub

WrongEntry:
 Msg = Msg & "An error occured. Please check your _
 entry."
 Msg = Msg & vbNewLine & vbNewLine & "Try again?"
 Answer = MsgBox(Msg, vbYesNo + vbCritical)
 If Answer = vbYes Then Resume TryAgain
End Sub

					Run the procedure two or three times, testing different entries again; entering zero as the divider, typing text in the input box, and canceling the input box. In each case, the following dialog box will appear:[image: Figure 11.17 – Resulting dialog box
]
Figure 11.17 – Resulting dialog box

					Click on Yes to resume the procedure.

					Fix whatever error you made in order to successfully perform the calculation.

			

			How it works…

			
					We added another label to the code, directly after declaring the variables: TryAgain.

					When an error occurs, the GoTo error-handling statement skips the rest of the procedure and goes directly to WrongEntry.

					This time, when the user clicks Yes, the Resume statement makes the code return to the TryAgain label.

			

			Giving users the opportunity to correct their mistakes will cause less confusion and uncertainty.

		

	
		
			Chapter 12: Debugging

			In the real world of programming, all applications have bugs. In simple English, this means that programs do not always perform the way we expect them to. Even Excel, Word, and PowerPoint have bugs. Before you get too worried, let me assure you that the majority of these bugs will only appear in highly exceptional cases or circumstances.

			One example will be when you run an older version of an application on the latest version of the Windows operating system. At the time of release, developers of the old applications could not foresee what Windows 10 would look like or require from installations. When things go wrong in such a case, no one is to blame, even though runtime errors will more than likely cause those applications to malfunction.

			In a situation where individuals work on some simple procedures in Excel, runtime errors are less likely to cause such dramatic problems. It would be relatively easy to detect and eliminate them, but you still need to understand what debugging is. Bugs of this nature include error types such as undefined object errors, division by zero errors, logic errors, and data type errors.

			The process of detecting and removing existing and potential errors (also called bugs) is known as debugging. Errors in software code that can cause it to behave unexpectedly or crash are called bugs.

			There are various debugging techniques that can be employed in the VBA Editor to eliminate these errors.

			In this chapter, we will cover the following recipes:

			
					Exploring various bugs

					Debugging techniques

					Using the debugger in Excel

			

			By the end of this chapter, you will be able to identify different bugs. You will also be able to use various debugging techniques to eliminate bugs.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10.

			If your hardware and software meet these requirements, you're good to go.

			Demonstration files can be downloaded from https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check out the CiA videos: https://bit.ly/3jQRvVk.

			Exploring various bugs

			Before getting too excited about eliminating bugs, we need to understand what we're dealing with. Some errors are obvious, and therefore, easy to find and eliminate. The syntax and compile errors discussed in Chapter 11, Handling Errors, fall into this category, because we eliminate them before running the procedure.

			What we're dealing with here is the typical runtime error, which will only rear its ugly head once we run the procedure.

			This is a theoretical recipe, in the sense that we are going to identify and list various bugs. Other than making notes, either in Word or Excel, nothing else is needed.

			Here is a list of the different categories of bugs:

			
					Logic error bugs: The name says it all, meaning that whatever you're trying to do with your code doesn't make logical sense. A simple example would be when you assign the wrong value to a variable. All calculations related to that variable will result in incorrect results.

					Incorrect reference bugs: These bugs will present themselves when you refer to a range that doesn't exist, or when you refer to a file that has been moved or deleted.

					Extreme-case bugs: This is a less common bug, but still an annoyance. It happens when a database presents you with numbers you did not expect or plan for. These numbers would be either extremely large or extremely small, hence the reason we refer to them as extreme-case bugs.

					Data error bugs: Once again, the bug's name tells us what it does. This occurs, for example, when users enter text in fields where numbers are expected, or when you try to perform mathematical calculations with text strings.

					Version bugs: This type of bug is associated with incompatibilities between older and newer versions of Microsoft applications. Whether it's the operating system that's old, or that you developed a program in the latest version of Excel, and your users are working on an ancient version from 1995, the result will be a program crash.

					Exceptional bugs: These bugs are normally beyond your control in the sense that Microsoft sometimes makes updates that cause previously working procedures to end unexpectedly. Another example of an exceptional bug will be security updates, over which you obviously have no control.

			

			Debugging techniques

			We often use the word technique without thinking of its exact meaning. According to various dictionaries, the word refers to a way of carrying out a particular task or a scientific procedure, or a skillful or efficient way of doing or achieving something.

			That is exactly what a debugging technique is; a proven method or procedure of finding and eliminating errors in our code.

			In this recipe, we will be investigating four specific debugging techniques:

			
					Hover

					Message box

					Debug.Print

					The Locals window

			

			Each of these will enable us to see what values the variables have taken on. Any errors can, therefore, be corrected before finalizing the procedure.

			Getting ready

			Open Excel and activate a new workbook. Save the file as a macro-enabled file on your desktop and call it Debugging.xlsm. Sheet1 should be active. Press Alt + F11 to switch to the VBA Editor, and then insert a new module. Switch back to Excel to enter data in Sheet1.

			How to do it…

			Let's first create some data to work with and start with the hover technique:

			
					Enter the following data in Sheet1:[image: Figure 12.1 – Data
]
Figure 12.1 – Data

					Switch to the VBA Editor. In the code window, type the following code:Sub DebugSample()
 Dim Name As String
 Dim Age As Integer
 Dim Weight As Double

 Name = Range("A2").Value
 Age = Range("B2").Value
 Weight = Range("C2").Value
End Sub

					Press F8 to step into the code, and then hover the mouse cursor over the Name variable:[image: Figure 12.2 – Hovering over a variable
]
Figure 12.2 – Hovering over a variable

					Press F8 until the Age variable line is highlighted. Then, hover over the Name variable:[image: Figure 12.3 – Name variable value
]
Figure 12.3 – Name variable value

					Press F8 again, and then hover over the Age variable:[image: Figure 12.4 – Age variable value
]
Figure 12.4 – Age variable value

					Now, press F8 for the last time and then hover over the Weight variable to view the value of the variable.

			

			Now, let's move on to the second technique, which is message box:

			
					Add the following line of code: MsgBox Name & vbNewLine & Age & vbNewLine & Weight
The complete procedure should look like this:
Sub DebugSample()
 Dim Name As String
 Dim Age As Integer
 Dim Weight As Double

 Name = Range("A2").Value
 Age = Range("B2").Value
 Weight = Range("C2").Value

 MsgBox Name & vbNewLine & Age & vbNewLine & Weight
End Sub

					Press F5 to run the procedure:[image: Figure 12.5 – Message box displaying values
]
Figure 12.5 – Message box displaying values

					Click OK to close the message box.

			

			The third technique that we will implement now is the Debug.Print technique:

			
					First, either delete the line with the MsgBox instruction or simply turn it into a comment by placing an apostrophe in front.

					Start by activating the Immediate window – click View | Immediate Window.

					Add the following line to the procedure:Debug.Print Name, Age, Weight
The complete procedure should look like this:
Sub DebugSample()
 Dim Name As String
 Dim Age As Integer
 Dim Weight As Double

 Name = Range("A2").Value
 Age = Range("B2").Value
 Weight = Range("C2").Value

 Debug.Print Name, Age, Weight
End Sub

					Step into the code with F8, or press F5 to run the procedure. The variable values appear in the Immediate window:

			

			
				
					[image: Figure 12.6 – Variable values in the Immediate window
]
				

			

			Figure 12.6 – Variable values in the Immediate window

			The final technique involves the Locals window, which will be implemented using the following steps:

			
					Activate the Locals window by clicking View | Locals Window after closing the Immediate window.

					With the Locals window open at the bottom of the VBA Editor, press F8.

					All the variables will appear in this window, without displaying values. Keep pressing F8 until each variable's value is displayed:

			

			
				
					[image: Figure 12.7 – Variable values in the Locals window
]
				

			

			Figure 12.7 – Variable values in the Locals window

			These techniques can be used as needed, and not in any specific order of importance.

			How it works…

			Let's look at the details of the samples we've just worked with:

			
					First technique: Hovering over any of the variable names will display a screen tip. Initially, not one of the variables will have a value assigned to it.By pressing F8, values will be assigned, one by one, to each variable. Hovering over the variable names will confirm what value has been assigned to which variable.

					Second technique: When running the procedure while the message box function is active, variable values will be displayed there. This is another way of confirming variable values.

					Third technique: Debug.Print can be used if you do not want message boxes to assist you with variable values. Depending on the number of variables in your code, this technique can be used to verify values in one window, all at the same time.

					Fourth technique: The Locals window is similar to Debug.Print, with the added advantage that you do not need any extra line of code to display the values. Furthermore, it also tells you what data type your variable is.

			

			You can use any of these debugging techniques to determine whether variables have taken on the correct values.

			Using the debugger in Excel

			Using the debugger is yet another debugging technique, but it has greater power and flexibility. It is not necessarily better or easier to use, it is just a slightly more advanced way of checking your code for errors.

			The debugger is, in fact, a set of tools in the VBA environment, specifically incorporated in the VBA Editor to ease the process of debugging.

			We will be using two tools in this section:

			
					Setting breakpoints

					Using the Watch window

			

			Setting breakpoints

			The first tool under discussion allows you to inspect your code by stopping it at specific, pre-set points. It is, in a way, similar to the MsgBox function, because it also halts the running of your procedure in the middle of execution. The difference, however, is that you don't have to click on buttons to close dialog boxes, because you'll only work in the VBA Editor.

			In this recipe, we will be going through the details of setting breakpoints.

			Getting ready

			Make sure that Debugging.xlsm is still open. Insert a new sheet, and ensure that Sheet2 is active. Press Alt + F11 to switch to the VBA Editor. Insert a new module.

			If the Debug toolbar is not yet active in your VBA Editor, do that now by right-clicking anywhere in the toolbar area. In the pop-up menu that appears, select the top option, Debug. A new toolbar will appear to the right of the standard toolbar. If necessary, you can drag and drop this new toolbar to a position below the standard toolbar:

			
				
					[image: Figure 12.8 – Activating the Debug toolbar
]
				

			

			Figure 12.8 – Activating the Debug toolbar

			The VBA Editor should now look like this:

			
				
					[image: Figure 12.9 – The Debug toolbar in position
]
				

			

			Figure 12.9 – The Debug toolbar in position

			Finally, resize both the VBA Editor and Excel in such a way that both windows are visible next to each other:

			
				
					[image: Figure 12.10 – Viewing Excel and the VBA Editor
]
				

			

			Figure 12.10 – Viewing Excel and the VBA Editor

			How to do it…

			First, we'll need some data to work with to start with this recipe, so proceed with the following steps:

			
					Enter the following data in Sheet2:[image: Figure 12.11 – Data
]
Figure 12.11 – Data

					Switch to the VBA Editor, and then enter the following code in Module2:Sub TotalPay()
 Dim AddName As String
 Dim HoursWorked As Double
 Dim WageRate As Double

 AddName = InputBox("Enter your name")
 Range("A2").Value = AddName
 HoursWorked = InputBox("Enter your hours worked")
 Range("B2").Value = HoursWorked
 WageRate = InputBox("Enter your hourly rate")
 Range("C2").Value = WageRate
 Range("D2").Value = HoursWorked * WageRate
End Sub

					Click in the last line of the code, just before End Sub, where the calculated value will be assigned to cell D2.

					Enter a breakpoint in one of the following three ways:Press F9.
Or click on the Toggle Breakpoint icon on the Debug toolbar:
[image: Figure 12.12 – Toggle Breakpoint icon
]
Figure 12.12 – Toggle Breakpoint icon
Or click in the gray margin to the left of the line:
[image: Figure 12.13 – Inserted breakpoint
]
Figure 12.13 – Inserted breakpoint

					Press F5 to run the procedure.

					Enter values in the dialog boxes as they appear, clicking OK each time.

					With the execution halted, hover over any of the three variables:[image: Figure 12.14 – Code stopped at the breakpoint
]
Figure 12.14 – Code stopped at the breakpoint

					Press F5 to execute the final line of code.

					Use any of the three methods again under step 4 to remove the breakpoint.

			

			How it works…

			Let's see how these steps work:

			
					We normally set a breakpoint in the code to check for bugs, or to check whether the calculated values of variables are correct.

					By setting a breakpoint in the final line of code, we allow values to be assigned to all the variables.

					This debugging technique is less disruptive than others, for the simple reason that we do not leave the VBA Editor environment at any point.

					It also allows us to edit our code by correcting errors, if there were any.

					By removing the breakpoint, we can insert it at any other point in the code.

					If necessary, we can insert more than one breakpoint.

					To proceed after the execution of the procedure has been stopped, we can either press F5, or step into each line of the remaining code by pressing F8.

					To remove the breakpoint, press F9 again, or click on the red dot in the margin, or use the icon on the toolbar.

			

			Setting a breakpoint is one of a series of tools that assists us in debugging our code.

			Using the Watch window

			In this recipe, we will be using the Watch window, one last debugging tool in the VBA Editor. Every tool discussed in this chapter has its own time and place, meaning that none is better or worse than the other.

			Where the Locals window displays all the variables simultaneously, the Watch window enables us to choose which ones to observe. You can watch a single variable or all the variables in a procedure. You can even place a watch on variables from other modules, should you wish.

			Getting ready

			Make sure that Debugging.xlsm is still open. Sheet2 should be active, and Excel and the VBA Editor should be tiled vertically, next to each other. We will be working on the code in Module2.

			How to do it…

			To go about this recipe, we'll need to go through the following steps:

			
					First, we need to display the Watch window, so close the Locals or Immediate windows if either one is still open.

					On the Debug toolbar, click the Watch Window icon:[image: Figure 12.15 – Activating the Watch window
]
Figure 12.15 – Activating the Watch window

					The alternative would be to click on View | Watch Window.

					The Watch window will appear at the bottom of the VBA Editor:[image: Figure 12.16 – The Watch window
]
Figure 12.16 – The Watch window

					Let's watch one specific variable in the procedure. Right-click on the WageRate variable. From the pop-up menu, choose Add Watch… to display the Watch window:[image: Figure 12.17 – Adding a watch to a variable
]
Figure 12.17 – Adding a watch to a variable

					The following dialog box will appear. Since we don't need to change anything, click OK:[image: Figure 12.18 – The Add Watch dialog box
]
Figure 12.18 – The Add Watch dialog box

					Another way of adding a watch is to right-click in the Watch window itself. Select the Add Watch… option:[image: Figure 12.19 – Add Watch… from the Watch window
]
Figure 12.19 – Add Watch… from the Watch window

					This time, we need to type in the name of the variable we want to watch:[image: Figure 12.20 – Entering the variable name in the Add Watch dialog box
]
Figure 12.20 – Entering the variable name in the Add Watch dialog box

					The second variable will now also be displayed in the Watch window:[image: Figure 12.21 – Second watch added
]
Figure 12.21 – Second watch added

					Press F8 to start stepping through the procedure. Only the marked variables' values are displayed:[image: Figure 12.22 – Variables in the Watch window
]
Figure 12.22 – Variables in the Watch window

					Press F8 until values have been assigned to both variables. Make changes in the code window, should it be necessary.

			

			The Watch window can inspect a single variable at a time or as many as you choose. Once again, it's a debugging tool for specific situations. The choice is yours.

			How it works…

			
					The Watch window will not display any variables unless we nominate the ones we want to check.

					Once we've selected the variables we want to verify the values of, they will be displayed in the Watch window.

					Whenever the values of the variables change, they will be displayed in the Watch window.

					Any changes we need to make can be done in the code window, without interruption.

					If we need to recheck the values, then reset the procedure by clicking on the icon in the Debug toolbar. Run the procedure, or step through it again.

			

			Debugging tools have been designed to assist us with debugging our code.

		

	
		
			Chapter 13: Creating and Modifying Dialog Boxes

			Dialog boxes are an integral part of every application in the Windows environment. The Office Suite is no exception. When it comes to Excel, a dialog box will pop up almost every time we interact with the application.

			A dialog box should not be confused with a window. Windows can be resized, maximized, and minimized, while dialog boxes cannot be manipulated in that way. They appear in a standard size when information needs to be gathered or shared, after which they're closed.

			This broad description of dialog boxes includes all forms and shapes of the item. For the purposes of this chapter, we will only work with message boxes, input boxes, and the open and close dialog boxes. On the other hand, UserForms, which are a more elaborate type of dialog boxes, will be discussed in the next chapter.

			We've used message boxes as well as input boxes in the previous chapters, but we're going to take things to a new level here—we'll add icons and titles this time. Even the humble message box can do more than just display a message.

			In this chapter, we will cover the following recipes:

			
					Using the MsgBox function

					Using the InputBox function

					Using the Application.InputBox method

			

			By the end of this chapter, you will be able to write code to effectively activate message boxes and input boxes.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10. If your hardware and software meet these requirements, you are good to go.

			Demonstration files can be downloaded from https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check out the CiA videos: https://bit.ly/3jQRvVk.

			Using the MsgBox function

			A message box is the easiest, and also the most common, way of sharing information with users. As well as the built-in message boxes that appear in Excel whenever the application needs to inform you of something, we can create and customize our own message boxes in VBA.

			In this recipe, we will be using the MsgBox function to create and manipulate message boxes to suit our needs.

			Getting ready

			Open Excel, and activate a new workbook. Save the file as a macro-enabled file on your desktop and call it DialogBoxes.xlsm. Sheet1 should be active. Press Alt + F11 to switch to the VBA Editor, then insert a new module.

			How to do it…

			Let's build and expand the code for message boxes:

			
					Enter the following code in the code window of Module1:Sub SimpleMessage()
 MsgBox "Basic message box."
End Sub

					Press F5 to run the procedure. This is the message box you should see. Click OK to close it:[image: Figure 13.1 – A simple message box
]
Figure 13.1 – A simple message box

					To customize the title of the message box, click at the end of the line of code and type a comma to make the parameter list appear:[image: Figure 13.2 – The parameter list
]
Figure 13.2 – The parameter list

					With the Buttons parameter now highlighted, scroll down the list of available symbols. Select and click on vbInformation:[image: Figure 13.3 – The parameter list
]
Figure 13.3 – The parameter list

					Enter another comma after vbInformation to enter a title for the dialog box:Sub SimpleMessage()
 MsgBox "Basic message box.", vbInformation, _
 "Announcement"
End Sub

					Press F5 to run the code. The customized message box should look like this:[image: Figure 13.4 – Customized message box
]
Figure 13.4 – Customized message box

					Close the message box. Let's concatenate, or join, if you will, a message with a VBA function. Create a new Sub procedure under the existing one, still in Module1, by adding the following code:Sub ConcatenateLines()
 MsgBox "The date is " & Date
End Sub

					Run the code. The following message box will appear:[image: Figure 13.5 – Concatenated strings
]
Figure 13.5 – Concatenated strings

					Click OK to close, then add more information with another ampersand. Enter the following code:Sub ConcatenateLines()
 MsgBox "The date is " & Date & ", week 32 of the _
 year."
End Sub

					Run the procedure, and see how the message has changed:[image: Figure 13.6 – Added information
]
Figure 13.6 – Added information

					Close the message box. If the information is too much for one line, we can create a new line with the vbNewLine command:Sub ConcatenateLines()
 MsgBox "The date is " & Date & "," & vbNewLine _
 & "week 32 of the year."
End Sub

					When you run the procedure this time, the message box will look like this:[image: Figure 13.7 – Message over two lines
]
Figure 13.7 – Message over two lines

					Message boxes can also be used to display values from cells. Press F11 to switch to Excel, then enter the following data in Sheet1:[image: Figure 13.8 – Data
]
Figure 13.8 – Data

					Switch back to the VBA Editor. In the code window, create another new Sub procedure by adding the following code:Sub DepartmentInfo()
 Range("A2").Select
 MsgBox ActiveCell.Value & " works in " _
 & ActiveCell.Offset(0, 1).Value
End Sub

					Pressing F5 will display the following message box:[image: Figure 13.9 – Values from cells
]
Figure 13.9 – Values from cells
By changing the range to cell A3, A4, or A5, you will get different results every time.

					We can even ask questions with a message box. Alter the code of the second procedure as follows:Sub ConcatenateLines()
 MsgBox "The date is " & Date & "," & vbNewLine _
 & "week 32 of the year."

 MsgBox "Is this information correct?", vbQuestion _
 + vbYesNo, "Validate"
End Sub

					Run the procedure and click OK to close the first message box. The second message box should look like this:[image: Figure 13.10 – Message box with Yes/No buttons
]
Figure 13.10 – Message box with Yes/No buttons

					Since there is no way that we can store the choice, be it yes or no, we need to address that next. First, we need to create a variable to store the response. Add the following line of code to the procedure, before the first MsgBox function: Dim ButtonChoice As VbMsgBoxResult

					Assign the button choice to the variable by changing the second dialog box as follows:ButtonChoice = MsgBox("Is this information correct?", _
vbQuestion + vbYesNo, "Validate")
Take note of the parentheses that's been added to the message box prompt.

					We now need to add an If statement to check which button was clicked. Add the following code after the previous line: If ButtonChoice = vbYes Then
 MsgBox "Yes, it is correct."
 Else
 MsgBox "No, it is incorrect."
 End If

					The final procedure should look like this:Sub ConcatenateLines()
 Dim ButtonChoice As VbMsgBoxResult
 MsgBox "The date is " & Date & "," & vbNewLine _
 & "week 32 of the year."

 ButtonChoice = MsgBox("Is this information _
 correct?", vbQuestion + vbYesNo, "Validate")

 If ButtonChoice = vbYes Then
 MsgBox "Yes, it is correct."
 Else
 MsgBox "No, it is incorrect."
 End If
End Sub

					Press F5 to run the procedure. Click OK to close the first message box. When the second box appears, click Yes. The following message should appear:[image: Figure 13.11 – Confirmed as correct
]
Figure 13.11 – Confirmed as correct

					Press F5 to run the procedure one last time. After the first dialog box is closed, choose No. The following message should appear:

			

			
				
					[image: Figure 13.12 – Incorrect
]
				

			

			Figure 13.12 – Incorrect

			Your imagination is the only limit when it comes to message boxes. These examples will give you a good starting point.

			How it works…

			Here is the explanation of what we did with message boxes:

			
					The MsgBox function, in its simplest form, can be used to display a message box containing a text message of your choice.

					To customize the MsgBox function, carefully read the IntelliSense guidelines. After the basic prompt, you can add symbols and a title for the message box.

					The message that appears in the message box can also be enhanced. Use the ampersand (&) to combine strings of text or other functions.

					If the line of text on the message box becomes too long, use the vbNewLine command in the Sub procedure to create a new line.

					We sometimes need information from a specific cell or cells to be displayed in a message box. To achieve that, assign the MsgBox function to the cell.

					There are more buttons than just the standard OK button available for use with message boxes. Use the buttons parameter to select, for instance, the Yes/No buttons.

					Without some way of assigning the Yes or No choice to either a database or a variable, the buttons are not of much use.

					Create a variable to store the choice. Then, use the If function to display either a Yes message box or a No message box.

			

			Using the InputBox function

			Input boxes are used to capture information from users. By its very nature, it obtains only one piece of information at a time, be it a value, date, or text information. It is the easiest, and also the most common way of gathering information from users.

			Like message boxes, we can create and customize our own input boxes in VBA.

			In this recipe, we will be using the InputBox function to create and manipulate input boxes to suit our needs.

			Getting ready

			Make sure that DialogBoxes.xlsm is still open. Sheet1 should be active. Press Alt + F11 to switch to the VBA Editor, then insert a new module.

			How to do it…

			Enter the following code to create an input box:

			
					In Module2, create the following Sub procedure:Sub AskForName()
 InputBox "Please enter your name"
End Sub

					Press F5 to run the code. The following input box will appear. Click on the Cancel button to close the dialog box:[image: Figure 13.13 – A standard input box
]
Figure 13.13 – A standard input box

					To customize the input box, click at the end of the code line and enter a comma. The parameter list will appear. Take note that the last parameter specifies that the entry must be a string value:[image: Figure 13.14 – Parameter list
]
Figure 13.14 – Parameter list

					Add a title for the input box by adding "Personal Details" after the comma:[image: Figure 13.15 – Title added in code
]
Figure 13.15 – Title added in code

					Press F5 to run the code. The input box has a new title:[image: Figure 13.16 – New title in input box
]
Figure 13.16 – New title in input box

					We can even change the default value of the input box. Edit the text as follows:Sub AskForName()
 InputBox "Please enter your name", "Personal _
 Details", "Enter first name here…"
End Sub

					Press F5, and observe the resulting input box:[image: Figure 13.17 – Default value
]
Figure 13.17 – Default value

					Next, we want to capture what's been entered in the input box. Change the code as follows. Make sure that the arguments are put in parentheses:Sub AskForName()
 Range("A2").Value = InputBox("Please enter your _
 name", "Personal Details")
End Sub

					Press F5 to run the code, enter your name in the input box, then click OK. Switch back to Excel to confirm that your name has been entered on cell A2.

					Instead of writing the value to a specific cell, we can store what's been entered in the input box in a variable. Let's declare a variable to make this happen:Sub AskForName()
 Dim YourName As String
 YourName = InputBox("Please enter your name", _
 "Personal Details")
End Sub

					When you run the procedure, no entries or dialog boxes will be visible. Let's take care of that problem by adding a message box:Sub AskForName()
 Dim YourName As String
 YourName = InputBox("Please enter your name", _
 "Personal Details")
 MsgBox "Hi " & YourName
End Sub

					Run the code, enter your name, and click OK. The following dialog box will appear:[image: Figure 13.18 – Variable value displayed
]
Figure 13.18 – Variable value displayed

					When things go according to plan and users enter their names, as expected, we don't have any problems. When they cancel the input box without entering a name, the message box will not have any value to display. Let's take care of that.

					Edit the procedure as follows:Sub AskForName()
 Dim YourName As String
 YourName = InputBox("Please enter your name", _
 "Personal Details")
 If YourName = "" Then
 MsgBox "No entry was made"
 Else
 MsgBox "Hi " & YourName
 End If
End Sub

					If you now run the procedure and cancel or close the input box, a message box will tell you that no entry was made. However, if you do enter a name, you will be greeted with the original message box.

			

			How it works…

			
					A convenient way to ask for information in Excel is to use an input box. It is the simplest way for users to interact and provide information.

					Input boxes can be customized as far as the title, prompt, default value, and symbol are concerned. The parameter list serves as a guide to what can be added.

					Values entered into an input box are often stored as a variable.

					As in so many cases when programming in VBA, we need to plan for user errors. An example of this is data validation, which was covered in detail in Chapter 12, Debugging. Always add code to do data validation.

			

			Knowing how to use the InputBox function is the first step of interacting with users.

			Using the Application.InputBox method

			The standard input box works well enough, until you try to capture data other than text. You're also limited to direct inputs, meaning that you cannot click on a value in the spreadsheet while the input box is active.

			These are the two main limitations of the standard input box. The other one, the absence of built-in error handling, is also a drawback. There are, in other words, more than enough reasons to progress to the Application.InputBox method.

			In this recipe, we will be using the Application.InputBox method to create input boxes with more functionality.

			Getting ready

			Make sure that DialogBoxes.xlsm is still open. Insert a new sheet and enter the following data on Sheet2:

			
				
					[image: Figure 13.19 – Sample data
]
				

			

			Figure 13.19 – Sample data

			Now, switch to the VBA Editor and insert a new module.

			How to do it…

			Enter the following partial code to create an application input box:

			
					In Module3, start creating the following Sub procedure:Sub ApplicationInputBox()
 Dim Name As String
 Name = Application.InputBox(
End Sub

					Before typing in the prompt, observe how the parameter list differs from the standard input box:[image: Figure 13.20 – The parameter list for Application.InputBox
]
Figure 13.20 – The parameter list for Application.InputBox

					Complete the Sub procedure now. You do not have to specify a data type, because the default, namely String, will automatically be applied:Sub ApplicationInputBox()
 Dim Name As String
 Name = Application.InputBox("Enter employee's name")
 Range("A1").End(xlDown).Offset(1, 0).Value = Name
End Sub

					Press F5 to run the code. The following input box will show. Enter a name, then click OK:[image: Figure 13.21 – An application input box
]
Figure 13.21 – An application input box

					The data on Sheet2 should be updated to include an extra name:[image: Figure 13.22 – Updated data
]
Figure 13.22 – Updated data

					For entering a number, there are two ways to handle the process required. The first is the following: Sub ApplicationInputBox()
 Dim Name As String
 Dim Age As Integer

 Name = Application.InputBox("Enter employee's name")
 Age = Application.InputBox("Enter his/her age", , _
 , , , , , 1)

 Range("A1").End(xlDown).Offset(1, 0).Value = Name
 Range("A1").End(xlDown).Offset(0, 1).Value = Age
End Sub

					The second way is to use named parameters. This is a shorter and less complex technique. Entering all those commas in order to skip parameters to get to the Type parameter is confusing. Here is how we could do it differently:Sub ApplicationInputBox()
 Dim Name As String
 Dim Age As Integer

 Name = Application.InputBox("Enter employee's name")
 Age = Application.InputBox(Prompt:="Enter his/her _
 age", Type:=1)

 Range("A1").End(xlDown).Offset(1, 0).Value = Name
 Range("A1").End(xlDown).Offset(0, 1).Value = Age
End Sub

					When accidentally entering text, the following dialog box will appear:[image:]
Figure 13.23 – Built-in validation

					Run the procedure again, but instead of entering a name, click any cell with a name and press Enter. Next, choose a cell in column B to select an age value and press Enter:[image:]
Figure 13.24 – Clicking a cell to capture data

					These values will be entered into the table:[image: Figure 13.25 – Indirect entries
]
Figure 13.25 – Indirect entries

					To capture dates, enter the following code:Sub ApplicationInputBox()
 Dim Name As String
 Dim Age As Integer
 Dim StartDate As Date

 Name = Application.InputBox("Enter employee's name")
 Age = Application.InputBox(Prompt:="Enter his/her _
 age", Type:=1)
 StartDate = Application.InputBox(Prompt:="Enter _
 employment date dd/mm/yyyy", Type:=1)

 Range("A1").End(xlDown).Offset(1, 0).Value = Name
 Range("A1").End(xlDown).Offset(0, 1).Value = Age
 Range("A1").End(xlDown).Offset(0, 2).Value = StartDate
End Sub

					Run the code and enter values in the Name and Age boxes. For Start Date, you can enter anything that is recognizable as a full date, for example, 1/12/2015, or 1 December, 2015. See Step 7 under the How it works… section on implicit datatype conversion.

			

			
				
					[image: Figure 13.26 – Date displayed in the correct format
]
				

			

			Figure 13.26 – Date displayed in the correct format

			How it works…

			
					The parameter list for the application input box differs from the standard input box. There are more options and, most importantly, we can assign a data type with the last parameter.

					The following values should be used to indicate data types:[image:]
Table13.1 – Indicating data types

					The application input box looks slightly different from the standard input box, but it fulfills the same function.

					Specifying the return type is the most important factor distinguishing this input box from the standard input box. Using the Type 1 parameter, for example, will allow only numbers to be entered into the input box.

					When entering the wrong data type, the built-in validation function will prevent the procedure from crashing. With a normal input box, you'd have a lot of work to write error-handling procedures.

					Another valuable feature of the application input box is its ability to use existing values on the spreadsheet to fill the input box. Standard input boxes are of the modal type, meaning that nothing can be selected on the spreadsheet while the input box is open. That limitation means that you cannot click on a cell to read in that cell's value into the text box.

					Dealing with dates is another challenge, because the application input box does not have a date type option. However, with the help of implicit datatype conversion, a string entry can be converted to a date, as long as the string is recognizable as a full date.Note
For more detailed information on the Application.InputBox method, have a look at the Microsoft documentation, available at https://docs.microsoft.com/en-us/office/vba/api/excel.application.inputbox.

			

		

	
		
			Chapter 14: Creating UserForms

			A macro is a wonderful time-saving tool in the Excel environment, but it has its limitations. When we want to run a macro, we have to click on ribbons and icons before choosing the desired macro from a list. Sure, we can use shortcuts, but you can only remember so many keyboard shortcuts.

			Wouldn't it be wonderful if we could send data to a macro, and then watch as it populates a table for us?

			So, welcome to UserForms, the interface between macros and spreadsheets. With UserForms, we can not only automate data capturing but also add buttons to activate macros on our spreadsheets. We are, in reality, going to create our own customized dialog boxes.

			In this chapter, we will cover the following recipes:

			
					Inserting the form

					Changing properties

					Adding controls

					Using Frames

			

			By the end of this chapter, you will be able to create your own UserForms.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10.

			Demonstration files can be downloaded from https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check out the CiA videos: https://bit.ly/3jQRvVk.

			If your hardware and software meet these requirements, you are ready for this chapter.

			Inserting the form

			Unlike macros, UserForms are not created in newly inserted modules. They live elsewhere, which is what we're going to work on now.

			In this recipe, we will be inserting a UserForm in the VBA Editor.

			Getting ready

			Open Excel and activate a new workbook. Save the file as a macro-enabled file on your desktop and call it UserForms.xlsm. Sheet1 should be active.

			How to do it…

			Let's insert our first UserForm using the following steps:

			
					Enter the following data into Sheet1. We will be creating a form to later add more data to this list:[image: Figure 14.1 – Data on Sheet1
]
Figure 14.1 – Data on Sheet1

					Press Alt + F11 to switch to the VBA Editor.

					Right-click somewhere in the Project Explorer. From the pop-up menu that appears, select Insert, then click on UserForm:[image: Figure 14.2 – Inserting a UserForm
]
Figure 14.2 – Inserting a UserForm

					A blank UserForm1 window will appear to the right, and an icon for UserForm1 will appear in the Project Explorer:[image: Figure 14.3 – Newly inserted UserForm1
]
Figure 14.3 – Newly inserted UserForm1

					By default, a dialog box with the Toolbox title will also appear somewhere in the VBA Editor:

			

			
				
					[image: Figure 14.4 – The default Toolbox window for UserForms
]
				

			

			Figure 14.4 – The default Toolbox window for UserForms

			That will take care of inserting a new form. Now that it's there, we can start working on the rest.

			How it works…

			Here is the explanation of what we did when inserting a form:

			
					Forms are not inserted in the normal code window. Therefore, we do not have to insert a new module to insert or create a form.

					Once the UserForm appears, a toolbox will appear by default. We will be using this toolbox a bit later in this chapter to insert controls. Click on the Toolbox icon in the standard toolbar to switch it off. Clicking on it again will make it reappear.

					If you accidentally double-click anywhere in the form, the code window for the form will be displayed. You can either close the code window from the top right-hand corner or double-click on the Form icon in the Project Explorer.

			

			Changing properties

			The first thing we need to do after inserting a UserForm is to change certain properties. The Properties window displays a list of 35 different properties that can be changed, but we're going to start off slow. Once you know how to change one property, the rest will be easy.

			In this recipe, we will be changing properties on a UserForm.

			Getting ready

			Make sure that UserForms.xlsm is still open. UserForm1 should be visible, and both the Project Explorer and the Properties window should be visible on the left of the VBA Editor.

			How to do it…

			Let's start by changing the first property:

			
					We need to give UserForm1 a more appropriate name. In the Properties window, click on the first property of the form, and type in frmNewRecord: [image: Figure 14.5 – New form name visible in the Project Explorer
]
Figure 14.5 – New form name visible in the Project Explorer
Note
This recipe book uses Hungarian notation as standard. Read more about its origin here: https://en.wikipedia.org/wiki/Hungarian_notation.
A list of prefixes can be found here: https://www.databasezone.com/techdocs/naming.html.

					Next, we're going to change the Caption property. Scroll down on the properties list until you see the Caption property. Type New Record Entry Form and press Enter when done:[image: Figure 14.6 – New caption for the form
]
Figure 14.6 – New caption for the form
Take note that spaces are allowed for this property, while the Name property will not allow spaces.

					Another property that can be changed, although it is not as important as the Name and Caption properties, is the background property. Click on the drop-down arrow to the right of the BackColor property. Scroll up and down the list of available colors to choose an alternative:[image: Figure 14.7 – The System colors
]
Figure 14.7 – The System colors

					The System tab's colors are limited, so you can always choose from the Palette tab. Click on the Palette tab to display this somewhat more expansive range of colors:

			

			
				
					[image: Figure 14.8 – The Palette colors
]
				

			

			Figure 14.8 – The Palette colors

			Changing properties on a UserForm is another way of saying changing the appearance of a form.

			How it works…

			Changing properties works as follows:

			
					Whenever we need to change the property of an object, we need to make sure that the object is selected. Since the UserForm is the only object in our project, we can only change properties for the form.

					By selecting a property in the Properties window, we can change that specific property by typing a new value to the right of the property.

					In other cases, we change properties by selecting from a list of available colors, for instance.

					Other properties still present options such as True or False, Font Names, and options 1 or 2.

					While changing the names and captions will make recognizing the form easier, we need to be careful when changing background colors. Too dark, and users won't be able to read the text on the form. At the same time, forms with colors that are too bright can be distracting, so it is better to keep to the standard Microsoft colors. Users don't like surprises, and they're used to tones of gray in forms.

			

			Adding controls

			UserForms with meaningful names and customized background colors are still not worth much. We need to add controls to bring life to the form, or at least to make it useful. After all, if we want to populate a spreadsheet by using a dialog box, there must be someplace for us to enter that data on the form. Furthermore, it would be nice to have some controls or buttons to cancel the entry or save it.

			In this recipe, we will be adding controls to a UserForm.

			Getting ready

			Make sure that UserForms.xlsm is still open. UserForm1 should be visible, and both the Project Explorer and the Properties window should be visible on the left of the VBA Editor.

			How to do it…

			Let's do the following exercise:

			
					Make sure that the UserForm is selected, then click the Toolbox icon on the standard toolbar to open the Toolbox window.

					On the Toolbox windows, click the Label control:[image: Figure 14.9 – The Label control in the Toolbox window
]
Figure 14.9 – The Label control in the Toolbox window

					Click once in the top-left corner of the UserForm to add a label. Do not worry about the size for the moment, we will adjust that later:[image: Figure 14.10 – Placing a label on the UserForm
]
Figure 14.10 – Placing a label on the UserForm

					In the Properties window, change the name property of this label to lblName. While there, you can also change the caption property to Name:[image: Figure 14.11 – The Name and Caption properties changed
]
Figure 14.11 – The Name and Caption properties changed

					Next, click on the TextBox control, and create a text box to the right of Label1:[image: Figure 14.12 – The TextBox control
]
Figure 14.12 – The TextBox control

					As with the label, you can click once or click and drag to create a textbox of a different size. For the moment, do not drag to place the text box, because we want all these items to be the same size to start with:[image: Figure 14.13 – Placing a text box
]
Figure 14.13 – Placing a text box

					Change the Name property of the text box to txtName. Note that there is no caption property to change:[image: Figure 14.14 – The Name property for the text box is changed
]
Figure 14.14 – The Name property for the text box is changed

					Next, add a label for department, and change the Name property to lblDept and Caption to Department.

					Instead of a normal text box, we're going to add a combo box to the right of the Department label. Click on the Combo Box control in Toolbox, then click once to the right of the Department label. Our form should look like this now:[image: Figure 14.15 – Inserted combo box
]
Figure 14.15 – Inserted combo box

					Change the Name property of the Combo Box object to cboDept in the Properties window.

					Insert a third label. The Name property should be lblAge, and the Caption property should be Age.

					To the right of the preceding label, add a text box named txtAge.

					Now, draw a spin button control to the right of this text box. Change the Name property to spnAge. At the same time, change the Min and Max values for the SpinButton control to 22 and 50, respectively.

					Your form should look like this now:[image: Figure 14.16 – The form with controls
]
Figure 14.16 – The form with controls

					The final label we need to insert is the Start Date label. Insert that below the Age label, and change the Name property to lblStartD and Caption to Start Date.

					The text box that goes with this label will be named txtStartD. Insert that to the right of the last label. The form should look like this now:[image: Figure 14.17 – The form with all the entry fields
]
Figure 14.17 – The form with all the entry fields

					To see what our form would look like in Excel, even if it's not complete, press F5, or click the Run button on the standard toolbar:

			

			
				
					[image: Figure 14.18 – View of the form in Excel
]
				

			

			Figure 14.18 – View of the form in Excel

			Spending time on the design and layout of a form will save us a lot of frustration during the process of creating the form. There should be a control to enter the date for each field in the spreadsheet.

			How it works…

			Let's take a look at what we did and how it works:

			
					In order to capture data on a form and assign it to an Excel sheet, we need some way to capture that data. Therefore, we need to create a place, be it a text box, spinner control, or drop-down list, on a form that will correspond with each heading in the Excel sheet.

					Placing objects on the form can be done in one of two ways: click once on the form to create a standard-sized object or drag to create a custom-sized one.

					To change the properties of any object, that object must be selected. When you select the form, only the form's properties will be visible in the Properties window. The same goes for any of the other controls. You cannot change the properties of a text box if the specific item is not selected.

					It is good practice to immediately change the Name property of each object as it is inserted. The Caption properties for labels should also be added the moment they're inserted.

					Extra labels can be added the way we did it the first time, or we can copy an existing label and paste it anywhere in the form. Just drag it to the desired position, then change the Name and Caption properties.

					Preview the form in Excel after inserting every label and textbox. It is better to make minor adjustments in the process of creating a form, than having to redo the entire form at the end of the process.

			

			There's more…

			
					Sometimes, the controls on our forms are not aligned or equally distributed. In this case, use the Select Objects tool in the Toolbox window to select the controls you want to align:[image: Figure 14.19 – The Select Objects tool
]
Figure 14.19 – The Select Objects tool

					Drag the Select Objects tool over the controls you want to select, even if you are only partially selecting them:[image: Figure 14.20 – Selecting controls with the Select Objects tool
]
Figure 14.20 – Selecting controls with the Select Objects tool

					Once selected, move to the standard toolbar and click Align | Lefts, should you want to align the boxes to the left:[image: Figure 14.21 – Aligning controls
]
Figure 14.21 – Aligning controls

					On the same Format drop-down menu, there is an option to set the horizontal spacing, as well as the vertical spacing.

			

			Tidying up a form will improve its look and feel. Users instinctively like and trust well-designed, neat forms.

			Using Frames

			Not all forms are the same size or, said in another way, some forms display more controls than others. Having too many controls on a form can create confusion, hence the standard practice of organizing controls in groups. Just think of the Alignment dialog box in Excel or the Page Setup dialog box—not only are the controls separated in groups, but they also have several tabs to group related controls together.

			The containers in which these clusters of controls are organized are known as Frames. In this recipe, we will be adding a Frame to our UserForm.

			Getting ready

			Make sure that UserForms.xlsm is still open. UserForm1 should be visible, and both the Project Explorer and the Properties window should be visible on the left of the VBA Editor.

			How to do it…

			To insert a Frame, do the following:

			
					Under normal circumstances, we would have inserted the Frame before creating any controls. Since we first had to understand the basic principles of controls, we will have to insert a Frame on another area of the UserForm, and then copy the existing controls in there.

					Increase the size of the UserForm to double what it is currently. Activate the toolbox and select the Frame control. Click once on the open area of the UserForm to insert a Frame:[image: Figure 14.22 – Inserted Frame
]
Figure 14.22 – Inserted Frame

					Use the Select Objects tool on the Toolbox window to select all the existing controls. Press Ctrl + X, or right-click and select Cut:[image: Figure 14.23 – Cut controls from the UserForm
]
Figure 14.23 – Cut controls from the UserForm

					Click inside Frame1 and paste the objects by using the Ctrl + V shortcut, or right-click and select Paste:[image: Figure 14.24 – Paste controls inside Frame1
]
Figure 14.24 – Paste controls inside Frame1

					Finally, click on the edge of the Frame and drag it to the top left-hand corner of the UserForm. All the controls inside the Frame should move with the Frame:[image: Figure 14.25 – Move Frame1 in position
]
Figure 14.25 – Move Frame1 in position

					With the Frame still selected, change the Name property to fraNewRecordEntry and Caption to New Record Entry.

			

			There's more…

			
					We should have added two command buttons when we inserted the other controls, yet we couldn't do this before knowing what the size of the Frame was. So, with the Frame in place, insert a command button outside the Frame, at the top right of the form.

					Rename it cmdSaveEntry, and change the Caption property to Save this Entry:[image: Figure 14.26 – The command button with changed properties
]
Figure 14.26 – The command button with changed properties

					The second command button will fit directly below the Save button. Once inserted, change the Name property to cmdCancel and Caption to Cancel:

			

			
				
					[image: Figure 14.27 – The second command button with changed properties
]
				

			

			Figure 14.27 – The second command button with changed properties

			Our form is complete, at least as far as buttons and controls are concerned.

		

	
		
			Chapter 15: UserForm Controls

			UserForms are customized dialog boxes, and their purpose is to allow users various levels of interaction with Excel. These UserForms contain different controls, from obvious labels and textboxes, to more complex drop-down lists and combo boxes, to command buttons for saving, canceling, or closing the dialog box.

			Behind each of these controls (buttons, lists, and so on) is a dedicated procedure, or VBA coding. This VBA code will determine which actions will follow when we click on a button, or select an option from a list, or where data will be stored if we enter information in a textbox.

			In this chapter, we will cover the following recipes:

			
					Assigning controls

					Unloading a form

					Loading the form

					Using the Combo Box control

					Using the SpinButton control

					Setting the tab order

			

			By the end of this chapter, you will be able to show a user form with working controls.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10.

			If your hardware and software meet these requirements, you are good to go.

			Demonstration files can be downloaded from https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check the CiA videos: https://bit.ly/3jQRvVk.

			Assigning controls

			We're finally ready to make a form do something. Adding controls to a form is only the first step in creating a working dialog box, or a UserForm. Adding data to a form where controls have not been assigned to certain actions and addresses in the spreadsheet will have no effect at all.

			In this recipe, we will be assigning controls to specific fields and objects.

			Getting ready

			Make a copy of the file we used in Chapter 14, Creating UserForms, and save it as Controls.xlsm. Activate the VBA Editor. New Record Entry Form should be visible, and both the Project window and the Properties window should be visible on the left of the VBA Editor.

			How to do it…

			We will start with the Save this Entry button. Let's see how it's done:

			
					On the New Record Entry Form, right-click the Save this Entry button and then choose View Code from the pop-up menu. Alternatively, double-click the button. The code window for the form itself will appear:[image: Figure 15.1 – The code window for frmNewRecord
]
Figure 15.1 – The code window for frmNewRecord

					Delete any redundant code (if any) in the window. Only the click event of the Save this Entry button must be available:

					Add the following code to the command button's click event:Private Sub cmdSaveEntry_Click()
 Sheet1.Activate
End Sub

					To reach the first available blank cell in column A, enter the following code:Private Sub cmdSaveEntry_Click()
 Sheet1.Activate
 Range("A1").End(xlDown).Offset(1, 0).Select
End Sub

					Add the following line of code after the previous one to create a unique identifier: ActiveCell.Value = ActiveCell.Offset(-1, 0).Value + 1

					To move the focus one cell to the right and set that cell equal to the value of the first textbox in the form, enter the following line of code: ActiveCell.Offset(0, 1).Value = txtName.Value

					To search for the textbox reference, use the Ctrl + spacebar keyboard shortcut to activate the IntelliSense list. Start the search by typing txt. Thanks to the Hungarian naming convention, all the textboxes will appear in a group. All we need to do is select the appropriate textbox:[image: Figure 15.2 – Using IntelliSense
]
Figure 15.2 – Using IntelliSense

					To reference the rest of the controls on our form, enter the following lines of code: ActiveCell.Offset(0, 2).Value = cboDept.Value
 ActiveCell.Offset(0, 3).Value = txtAge.Value
 ActiveCell.Offset(0, 4).Value = txtStartD.Value

					Confirm that entries to the form will be written to the correct cells in Excel by means of a test. Double-click the frmNewRecord object in the Project window to display the UserForm in the code window. Press F5, or click on the Run button on the standard toolbar to display the form in Excel.

					Manually enter values in all the fields, since the Combo Box for Department, as well as the spin control for Age, has not been set up yet. Once these values have been entered, click on the Save this Entry button. Observe how the next row for ID 3 has been populated correctly:[image: Figure 15.3 – Testing the form
]
Figure 15.3 – Testing the form

					Since we've not added any code to the Cancel button, close the form by clicking the close icon in the top-right corner of the dialog box.

			

			How it works

			Here is an explanation of what we did:

			
					We had to access the code that sits behind the command button to assign actions to the button. It is important to note that we did not insert a new module. UserForms have their own code window.

					The SaveEntry button will do much more than just save records, meaning that we will need to give extensive and exact instructions with our code. First, we need to make sure that we are in fact in Sheet1, hence that first code instruction.

					Getting to the first available blank cell in column A was the next goal, which the next line of code did for us.

					Reaching the end of the list was not enough. We needed a new, and also unique, identifier for the next record.

					Being in the right position in our table, and with a new ID number in place, the rest of the code could be entered. First, we had to move one cell to the right. We then set that cell equal to the value of the first textbox in the form.

					The other three controls on the form were assigned in much the same way, each with its own reference.

			

			Testing the functionality of a UserForm while entering code is essential. This confirms the correct assignment of controls, and allow errors to be rectified immediately.

			Unloading a form

			Closing dialog boxes is something we hardly think about, because it either happens automatically, or we click on a Cancel button. That is exactly what we need to do with our custom dialog box, instead of having to ungracefully click on the Windows close down button in the top right. We need some coding to facilitate the closing, or unloading, process.

			In this recipe, we will be unloading a form from memory.

			Getting ready

			Make sure that Controls.xlsm is still open. New Record Entry Form should be visible, and both the Project window and the Properties window should be visible on the left of the VBA Editor.

			How to do it…

			Let's see how to unload a form:

			
					In the UserForm window, double-click the Save this Entry button, and then add the Unload method as the last line of code:Private Sub cmdSaveEntry_Click()
 Sheet1.Activate
 Range("A1").End(xlDown).Offset(1, 0).Select

 ActiveCell.Value = ActiveCell.Offset(-1, 0).Value + 1
 ActiveCell.Offset(0, 1).Value = txtName.Value
 ActiveCell.Offset(0, 2).Value = cboDept.Value
 ActiveCell.Offset(0, 3).Value = txtAge.Value
 ActiveCell.Offset(0, 4).Value = txtStartD.Value

 Unload frmNewRecord
End Sub

					Test this by switching to the form, and then press F5 to run it. Add values in every field, and observe how the form will close and return to the VBA Editor the moment you click the Save this Entry button.

					Double-click on the Cancel button on the form (in the VBA Editor), and then add the following code in the click event for the button:Private Sub cmdCancel_Click()
 Unload frmNewRecord
End Sub

					Switch to the UserForm view, click on the form background, and press F5 to run it. Clicking on the Cancel button will now close the form (and return to the VBA Editor) without any issues.

			

			How it works…

			Here is an explanation of what we did:

			
					We need to clear the memory of the PC we're working on when exiting an application, or closing a dialog box. Unloading is, therefore, the last action executed in our UserForm code.

					The Save button can be used to unload a form, although this is not always the case.

					The Cancel button normally closes a form, hence the reason for our instruction to that effect in the code.

			

			Loading the form

			Every time we wanted to use the form so far, we had to run it from the VBA Editor. This is not ideal for users, you might agree. We need some way of making the form available from within the spreadsheet itself. The most effective way of achieving that is to create a button in the spreadsheet, which will launch the dialog box.

			In this recipe, we will be loading a form.

			Getting ready

			Make sure that Controls.xlsm is still open. New Record Entry Form should be visible, and both the Project window and the Properties window should be visible on the left of the VBA Editor.

			How to do it…

			We need to do the following:

			
					Switch back to Excel and make sure that Sheet1 is active. Click on Developer | Controls | Insert | ActiveX Controls | Command Button:[image: Figure 15.4 – Inserting a command button in the spreadsheet
]
Figure 15.4 – Inserting a command button in the spreadsheet

					Click to the right of the table to insert a command button of default size. Instead of returning to the VBA Editor to edit its properties, click on Developer | Controls | Properties. The familiar Properties window will appear in Excel. Change the Name and Caption properties to cmdShowForm and Add New Record:[image: Figure 15.5 – The Properties window in Excel
]
Figure 15.5 – The Properties window in Excel

					Once done, close the Properties window and activate the code window for the button. Take note that the Properties window in the VBA Editor has also been closed, so press F4 to reactivate it. Add the following code in the code window:Private Sub cmdShowForm_Click()
 frmNewRecord.Show
End Sub

					Switch back to Excel again and deactivate Design Mode by clicking on the icon:[image: Figure 15.6 – Switching off Design Mode
]
Figure 15.6 – Switching off Design Mode

					Click on the newly added Add New Record button to display our custom dialog box, this time from within Excel. Close the form.

			

			How it works…

			Here is an explanation of what we did:

			
					Placing a command button on a spreadsheet makes it possible for users to access the UserForm without having to open the VBA Editor.

					Setting the Caption property will determine whether users understand the command button.

					As with other controls, it is the coding behind the command button that does the work. We assigned Show command to the button in this case.

			

			Using the Combo Box control

			We still need to create a list of values for the Combo Box. Users must select a department from a pre-defined list, rather than being unsure about the possible options. To populate the Combo Box, we first need to create that lookup list.

			In this recipe, we will be using the Combo Box control.

			Getting ready

			Make sure that Controls.xlsm is still open. New Record Entry Form should be visible, and both the project window and the properties window should be visible on the left of the VBA Editor.

			How to do it…

			We need to do the following:

			
					Before configuring the Combo Box, we need to create a lookup list. Switch to Excel and insert a new sheet. In Sheet2, create the following list:[image: Figure 15.7 – Lookup list for the Combo Box
]
Figure 15.7 – Lookup list for the Combo Box

					Once done, select the list and save it as a range, (click in the Name Box, then type the word Department, and press Enter), calling it Department.

					Switch back to the UserForm and select the Department Combo Box. In its Properties window, look for the RowSource property and type in the name of the range, Department, we've just created. Press Enter:[image: Figure 15.8 – Adding the Department range to the RowSource property
]
Figure 15.8 – Adding the Department range to the RowSource property

					Now, click on the drop-down arrow of the Combo Box to test whether the list will appear when we click on the drop-down list:

			

			
				
					[image: Figure 15.9 – Testing the Combo Box
]
				

			

			Figure 15.9 – Testing the Combo Box

			Combo boxes can be used for almost any situation where a selection must be made from pre-defined options.

			How it works…

			Here is an explanation of what we did:

			
					A lookup list is the source needed for a Combo Box to display its options.

					The Properties window of the Combo Box determines which Named Range will be used.

					Using a Combo Box gives users the opportunity to choose input from a list. It saves time, and eliminates spelling mistakes.

			

			Using the SpinButton control

			We also need to make changes to the SpinButton control for the Age textbox, since it is currently not functioning, or so it appears. The arrows on the SpinButton control do actually change values when we click on them, but this is not displayed anywhere. We can, therefore, not see the changing values. What we need to do is code an event for the spin button, so that whenever its value changes, it also changes the value of the textbox.

			In this recipe, we will be using the SpinButton control.

			Getting ready

			Make sure that Controls.xlsm is still open. New Record Entry Form should be visible, and both the project window and the properties window should be visible on the left of the VBA Editor.

			How to do it…

			We need to do the following:

			
					Double-click on the SpinButton control to open the code for the control. Add the following code:Private Sub spnAge_Change()
 txtAge.Value = spnAge.Value
End Sub

					Set parameters for the SpinButton control. Let's say the maximum age for people working in our company is 60. To set that value, go to the Properties window of the SpinButton control and set the Max value to 60 and Min to 0. Finally, change the Value property to 26, which will be the default value that appears in the Age textbox when we load the form:[image: Figure 15.10 – Values for the Spin control
]
Figure 15.10 – Values for the Spin control

					Display the UserForm by double clicking the frmNewRecord object in the Project window.

					Double-click on the background of the form to get to its code window. By default, the Click event will appear, which is not what we need. Click on the drop-down list (top right) to list all the events for the UserForm, and select the Initialize event:[image: Figure 15.11 – Selecting the Initialize event
]
Figure 15.11 – Selecting the Initialize event

					Delete the code for the Click event, and then add the following code to the Initialize event:Private Sub UserForm_Initialize()
 txtAge.Value = spnAge.Value
End Sub

					Switch to Excel , Sheet 1, and click the Add New Record command button. The default value in the Age textbox will be 26, and clicking on the arrows will increase or decrease the values from the value 26, to a maximum of 60.

					And yet this is still not the end. Let's say we add the value 35 to the Age textbox when the form is loaded, and then click on the spin buttons. Instead of counting from 35 up or down, the value will jump back to the default, 26, and increase or decrease from there. Here's how to resolve this issue—link the textbox to the spin button by entering the following code. Close the dialogue box, then switch to the VBA Editor. Add the following Sub procedure:Private Sub txtAge_Change()
 spnAge.Value = txtAge.Value
End Sub

			

			Run the form one last time to confirm that the spin buttons will respond correctly to changes in the textbox.

			How it works…

			Here is an explanation of what we did:

			
					The SpinButton control cannot display its own value, hence the need to assign those values to a textbox where it can be displayed.

					Setting parameters on the SpinButton control limits the range of the numbers through which it can scroll. Be careful not to set a lower level limit, since this can cause unexpected runtime errors that must be handled with extra coding.

					The Value property of the SpinButton control will set the default value for the control.

					To display the spin button's default value of 26 in the Age textbox whenever the form is loaded, we need to change the Initialize event of the UserForm. That will set the Age textbox to the initial value of the spin button.

					We also need to link the textbox back to the spin button in such a way that values entered in the textbox will update the SpinButton control.

			

			There's more…

			The SpinButton control might be working fine, but there is always the potential danger of a user typing text into that textbox, or deleting the value. In both these cases, an error would spoil our fun. Add the following line of code:

			Private Sub txtAge_Change()

			 If IsNumeric(txtAge.Value) Then

			 spnAge.Value = txtAge.Value

			 End If

			End Sub

			More testing will surely reveal other potential errors, but for the moment, things are working fine.

			Setting the tab order

			Setting the tab order in our form is the last thing we need to do. The correct tab order will ensure that the focus will be on the Name textbox when the form is loaded. Furthermore, every time we press Tab, the focus will move in an orderly manner from one control to the next; from the Name box to Department, then Age, Start Date, the Save Button, and finally the Cancel button. It makes the form user friendly, in the sense that you can complete the form by pressing the Tab key, jumping from field to field, without using the mouse.

			In this recipe, we will be setting the tab order.

			Getting ready

			Make sure that Controls.xlsm is still open. New Record Entry Form should be visible, and both the Project window and the Properties window should be visible on the left of the VBA Editor.

			How to do it…

			We need to do the following:

			
					Select the Frame object on the form. If the UserForm is selected, we wouldn't be able to set the tab order for the items inside the frame.

					Click on the View menu, and then select the Tab Order option:[image: Figure 15.12 – The View menu, Tab Order option
]
Figure 15.12 – The View menu, Tab Order option

					If you click on the Tab Order option, the Tab Order dialog box will appear:[image: Figure 15.13 – The Tab Order dialog box
]
Figure 15.13 – The Tab Order dialog box

					Click on lblName, and then click on the Move Up button to move it to the top. Repeat the process for all the other controls. The Tab Order should be as follows:[image: Figure 15.14 – New tab order
]
Figure 15.14 – New tab order

					Click on OK to close the dialog box:

					Switch to Excel, and then launch the dialog box. Press Tab repeatedly, and observe how the focus moves from top to bottom, in sequence.

			

			How it works

			This is how setting the tab order works:

			
					Make sure that the frame inside the UserForm is selected, otherwise we wouldn't be able to set the tab order for the items inside the frame.

					All the controls displayed in the frame can be moved up and down—either to the top or bottom of the list. The first item in the Tab Order list will be the active control when the UserForm is loaded.

					The Tab Order doesn't influence label controls, but we prefer to keep it with its corresponding textbox control.

			

		

	
		
			Chapter 16: Creating Custom Functions

			Chapter 8, Using Functions, covered the basic principles of functions. In this chapter, we will take it to a different level altogether.

			By definition, functions only return values, as you may know by now. What might surprise you is that Excel already has approximately 470 built-in functions.

			Generally speaking, we hardly use more than 10 Excel functions at any given time. Granted, some advanced or specialist users may need more than that to get their work done, but even they would hardly utilize more than 25% of the total functions available.

			If this is the case, then why would we go to the trouble of creating extra functions? The short answer is automation and increased productivity. Instead of building highly complex nested functions from scratch every time the need arises, you can embed and save the entire group of arguments as a single custom function. Imagine how much time you'll save for yourself!

			In this chapter, we will cover the following recipes:

			
					Writing functions

					Calling functions

					Adding function arguments

					Displaying function and argument descriptions

			

			By the end of this chapter, you will be able to create your own custom functions.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10.

			If your hardware and software meet these requirements, you are ready for action.

			Demonstration files can be downloaded from https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check the CiA videos: https://bit.ly/3jQRvVk.

			Writing functions

			Writing a function is similar to writing a procedure, in the sense that both are created in the VBA Editor. That is where the similarities end, though.

			Apart from the fact that functions only return values, and cannot be executed independently like Sub procedures, there is also a difference in structure, headings, code structure, and then the all-important arguments.

			Once you understand these principles, creating your own functions will become an important part of your VBA journey.

			In this recipe, we will be creating and writing several functions.

			Getting ready

			Open Excel and activate a new workbook. Save the file as a macro-enabled file on your desktop and call it CustomFunctions.xlsm. Sheet1 should be active. Press Alt + F11 to switch to the VBA Editor, then insert a new module.

			How to do it…

			Here is how to write a function:

			
					As in so many other cases in the Microsoft environment, there is more than one way of achieving the same result. Starting a new function is no different. The first way to initiate the process is to click on Insert | Procedure. The Add Procedure dialog box will appear:[image: Figure 16.1 – The Add Procedure dialog box
]
Figure 16.1 – The Add Procedure dialog box

					Enter the name of the function in the Name: text box of the dialog box. In this case, we want to call it CurrentDate. Next, select the Function option under Type. Click OK once done:[image: Figure 16.2 – Completed dialog box
]
Figure 16.2 – Completed dialog box

					Without typing a word, you've created the start of a new custom function. Add the following code to complete the process. Essentially, assign the built-in Date function to the CurrentDate custom function:Public Function CurrentDate() As String
 CurrentDate = Date
End Function

					Switch to Excel to test the function. In cell A1, or any open cell, enter the equals sign, as you would with all functions. Now type the first letters of the function name, and wait for the auto-complete list to display the function:[image: Figure 16.3 – Inserting the function in Excel
]
Figure 16.3 – Inserting the function in Excel

					Double-click the name on the presented list and press Enter. The current date will appear in the cell. Note that if the serial number for this date (44061) appears in the cell, change the data type from general to date:[image: Figure 16.4 – The current date, inserted by using a custom function
]
Figure 16.4 – The current date, inserted by using a custom function

					The second way of writing a function is to type everything manually. Switch back to the VBA Editor. Click in the code window, in an open space under the CurrentDate function, then type the first part of the code:Function CustomDate As String

					Once done, press Enter. The rest of the code will autocomplete, including the parentheses after the function name:Function CustomDate() As String
End Function

					Complete the function by adding a line between the opening and closing statements. In this case, we're using the Format built-in function to change the appearance of the Date built-in function, finally assigning all that to the custom function:Function CustomDate() As String
 CustomDate = Format(Date, "dddd dd mmmm yyyy")
End Function

					Switch to Excel to test the custom function. The result should look similar to this:

			

			
				
					[image: Figure 16.5 – The result after running a custom function
]
				

			

			Figure 16.5 – The result after running a custom function

			Following these steps will enable you to write a custom function Click on cell D1, then use the CustomDate function. without problems.

			How it works…

			Here is an explanation of what we did:

			
					In some cases, Excel doesn't have a function that suits our special needs, hence the reason why it will allow us to create custom functions in VBA.

					The code for a custom function must be written in the VBA Editor. Code can be entered by inserting a function procedure, or by manually typing it in.

					Testing the function can be done in the Excel spreadsheet.

			

			Calling functions

			Using a custom function from within Excel, the way we did just now, has some value. If nothing else, it's an effective way of testing whether the function works or not. However, the point of writing VBA code is to automate your work. In other words, ideally, we want to run custom functions like a standard Sub procedure, either by pressing F5 in the VBA Editor or by pressing a command button in Excel.

			The only way to do that is to write an extra Sub procedure, which we know can be executed, and then call the function. By calling, we mean calling up the non-executable function to do its work via the Sub procedure.

			In this recipe, we will be calling a function.

			Getting ready

			Make sure that CustomFuntions.xlsm is still open and the VBA Editor is active.

			How to do it…

			These are the steps to call a function:

			
					Add the following Sub procedure below the two custom functions in Module1:Sub InsertNewSheet()
 Worksheets.Add
 Range("A1").Value = CustomDate
End Sub

					Instead of running the function, press F8 to step into the code.

					The next instruction, highlighted in the Sub procedure, is to set cell A1 equal to the CustomDate function. In simple English, this is an instruction to call the function to action:[image: Figure 16.6 – Calling the CustomDate function
]
Figure 16.6 – Calling the CustomDate function

					Press F8 again. The focus now jumps from the Sub procedure to the custom function:[image: Figure 16.7 – Activating the CustomDate function
]
Figure 16.7 – Activating the CustomDate function

					Press F8 three more times to execute the custom function, step by step. Because the focus was set on cell A1, the formatted date will be inserted there.

					Pressing F8 a fourth time will end the function and transfer the focus back to the current Sub procedure.

					Press F8 one last time to end the Sub procedure.

					Switch to Excel and observe the newly inserted Sheet2, as well as the custom date in cell A1 of that sheet:

			

			
				
					[image: Figure 16.8 – Result of calling a custom function
]
				

			

			Figure 16.8 – Result of calling a custom function

			These instructions will enable you to call any function from a Sub procedure.

			How it works…

			Here is an explanation of what we did:

			
					Because functions cannot be executed independently, we had to create a Sub procedure to call our custom function.

					When running the Sub procedure, it will call the function to do what it was designed for, and then present the result in a spreadsheet.

			

			Adding function arguments

			In VBA terms, when referring to an argument within a function, we refer to information that needs to be passed to the function in order to present us with a sensible answer.

			The functions we have written so far haven't had any arguments, meaning that there was no need to pass any information to it. It simply presented us with the result of a built-in VBA function.

			Although VBA will let you add as many as 60 arguments to a function, we hardly ever use more than three or four. In many cases, we get along fine with a single argument.

			In this recipe, we will be adding function arguments to a custom function.

			Getting ready

			Make sure that CustomFuntions.xlsm is still open. Activate Sheet1, and enter the following data:

			
				
					[image: Figure 16.9 – Data on Sheet1
]
				

			

			Figure 16.9 – Data on Sheet1

			Once done, switch to the VBA Editor.

			How to do it…

			Follow these steps to add a function argument:

			
					We need a function that can tell us which students passed or failed a test, where they needed a 50% or higher mark to pass.A simple If function in Excel will do just fine, but you still need to set it up every time you need it. A custom function can be saved and reused with much greater ease.

					In the open space below the last procedure, enter the following code:Function PassFail(Mark As Integer) As String
 If Mark >= 50 Then
 PassFail = "Pass"
 Else
 PassFail = "Fail"
 End If
End Function

					Switch to Excel and click in cell B2 of Sheet1. Press =, and then start typing PassFail:[image: Figure 16.10 – Using the PassFail custom function
]
Figure 16.10 – Using the PassFail custom function

					Double-click on the function prompt, then click on cell A2 to enter the argument:[image: Figure 16.11 – Entering the argument
]
Figure 16.11 – Entering the argument

					Close the parenthesis, then press Enter to complete the function. The result will appear on cell B2. Use autofill to apply the function to the rest of the values in column A:[image: Figure 16.12 – Using the custom function on all cells
]
Figure 16.12 – Using the custom function on all cells

					Delete the results on cells B2:B6 and switch to the VBA Editor. Now enter the following Sub procedure to call the function:Sub InsertSymbol()
 Sheet1.Activate
 Range("A2").Select
 Do Until ActiveCell.Value = ""
 ActiveCell.Offset(0, 1).Value = _
 PassFail(ActiveCell.Value)
 ActiveCell.Offset(1, 0).Select
 Loop
End Sub

					Run the InsertSymbol procedure, and confirm that the results have been inserted in column B.

			

			These instructions will help you set up function arguments where needed.

			How it works…

			Here is an explanation of what we did:

			
					Not all functions depend on functions to present a value – for example, Date functions.

					Some functions do need some input, which will differ every time the function is invoked.

					Users can supply those values by clicking on data in cells, or by manually typing in values.

					Each part of such a function is called an argument.

			

			There's more…

			Some custom functions need more than one argument, by their very nature. The technique discussed here can be applied to add a third and fourth argument too:

			
					To create a custom function with two arguments, enter the following code:Function Exponent(x As Integer, y As Integer) As Integer
 Exponent = x ^ y
End Function

					Switch to Excel and click in any open cell on Sheet1. Press =, and then start typing Exponent.

					Double-click on the function prompt. Let's say you want to raise 5 to the power of 2. You now need to Enter the base value, 5, then enter a comma, and then enter the exponent, 2. Press Enter.

					The result of the calculation will appear in the selected cell.

			

			Displaying function and argument descriptions

			Adding descriptions to the components of your custom functions is the final finishing touch. It's a nice way of refreshing your memory if you haven't used the function in a while, and it will also be of help to users that are not familiar with your custom functions.

			If you use the Insert Function dialog box to insert the PassFail custom function at this stage, no help will be available:

			
				
					[image: Figure 16.13 – No help on the custom function
]
				

			

			Figure 16.13 – No help on the custom function

			In this recipe, we will be adding function and argument descriptions to be displayed in the Insert Functions dialog box.

			Getting ready

			Make sure that CustomFuntions.xlsm is still open. Activate Sheet1.

			How to do it…

			What we need to do is the following:

			
					To add a description to a custom function, open the Macro dialog box: Developer | Code | Macros. The Macro dialog box will appear.

					Click on the Macro name text box and enter the name of the custom function. It is important to note that the names of custom functions will not appear among the listed macros, hence the need to enter it manually:[image: Figure 16.14 – Adding a description to a custom function
]
Figure 16.14 – Adding a description to a custom function

					Click the Options button, then enter a short description of what the custom function does. Click OK. When the Macro Options dialog box is closed, click Cancel on the Macro dialog box.

					To check how the description is displayed for users, open the Insert Function dialog box by clicking Formulas | Insert Function.

					Scroll down the list of functions until the PassFail function is visible. Click once to select it. The description will appear below the box with the list of functions:[image: Figure 16.15 – Function description visible
]
Figure 16.15 – Function description visible

					After selecting the PassFail custom function from the Insert Function dialog box, no argument description will be visible. Click on Cancel to close the dialogue box:[image: Figure 16.16 – No argument description visible
]
Figure 16.16 – No argument description visible

					To add argument descriptions, you need to add the following Sub procedure in the code window. You only need to run it once to display the argument description for the function. Each custom function will need a similar Sub procedure, with dedicated coding:Sub AddArgumentDescriptions()
 Application.MacroOptions Macro:="PassFail", _
 ArgumentDescriptions:=Array(_
 "Range that contains the mark")
End Sub

					Press F5 to run the code.

					Switch to Excel. Open the Insert Function dialog box again. Scroll to find the PassFail function, select it, and click OK. The Function Arguments dialog box will appear, displaying the description of the Mark argument:[image: Figure 16.17 – Displaying the argument description
]
Figure 16.17 – Displaying the argument description

					Now that we've confirmed that the argument description is displayed the way it should, you can click Cancel to close the dialog box.

			

			By following and implementing these steps, you will be able to display function and argument descriptions for your custom functions. By adding function and argument descriptions in the Functions dialog box, we make it easier for users to use the function effectively.

		

	
		
			Chapter 17: Creating Word Documents with Excel VBA

			When dealing with VBA for Excel, you'd be forgiven for thinking that your coding would limit you to working within Excel only. However, if you think carefully about the role of VBA within Office Suite, you'd realize that it is common to all the applications within the suite.

			Knowing this, a new set of possibilities opens up. You can, for instance, capture data in Excel via a user form, and then automatically export it to a Word document. The beauty of this is that everything is executed in the background. In other words, you don't need to manually copy data from Excel, search for the correct Word document to paste this information, save the file, and then close Word again.

			In this chapter, we will cover the following recipes:

			
					Creating a new instance of Word

					Writing and formatting text

					Copying data into Word

					Using templates and bookmarks

			

			By the end of this chapter, you will be able to create Word documents from within Excel.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10.

			If your hardware and software meet these requirements, you are good to go.

			Demonstration files can be downloaded from https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check the CiA videos: https://bit.ly/3jQRvVk.

			Creating a new instance of Word

			The first step in the process of creating a Word document from within Excel requires some changes to the available references. To be exact, we'll have to set a reference to Word's object library in the VBA Editor. Without this step, Excel cannot communicate with Word at all, let alone create documents and paragraphs.

			In this recipe, we will be creating a new instance of Word from within Excel.

			Getting ready

			Open Excel, and activate a new workbook. Save the file as a macro-enabled file on your desktop and call it Word_Interaction.xlsm. Sheet1 should be active. Press Alt + F11 to switch to the VBA Editor, and then insert a new module.

			It goes without saying that MS Word must also be installed on your computer in order for the instructions in this recipe to work effectively.

			How to do it…

			Here is how to link Word to Excel:

			
					In the VBA Editor, click on Tools | References. The References - VBAProject dialog box will open:[image: Figure 17.1 – The References - VBAProject dialog box
]
Figure 17.1 – The References - VBAProject dialog box

					Scroll down the list of available references until you find Microsoft Word 16.0 Object Library. Earlier versions of Word will have a different number, but will still refer to the Word object library:[image: Figure 17.2 – The Microsoft Word 16.0 Object Library selected
]
Figure 17.2 – The Microsoft Word 16.0 Object Library selected

					Once selected, click on OK to save the selection and also to close the dialog box.Note
It is important to know that the reference to the Word object library is only valid for the Excel workbook you're working in currently. Every new workbook will have to be referenced to Word in exactly the same way.

					Create a Sub procedure to initiate Word from within Excel. There are several ways of doing this, but for this recipe, we will be using this specific technique:Sub CreateWordDoc()
 Dim wdApp As Word.Application
 Set wdApp = New Word.Application
 wdApp.Visible = True
 wdApp.Activate
End Sub

					Press F5 to run the procedure, or to test it, if you will. A new instance of Word will appear on your screen. Close the Word application once you know that the Sub procedure is working.

					Opening Word without opening a new document is not very useful. Add the next lines of code to the Sub procedure to open a new document:Sub CreateWordDoc()
 Dim wdApp As Word.Application
 Set wdApp = New Word.Application
 With wdApp
 .Visible = True
 .Activate
 .Documents.Add
 End With
End Sub
Note
Because we need to use the Word.Application keyword every time we refer to MS Word, the loop structure makes it easier to refer to Word.Application via the wdApp variable.

					If you now run the procedure, Word will open again, this time displaying a new document, Document1.

					Close Word, but don't save the document. Return to the VBA Editor in Excel.

			

			These steps will enable you to create a new instance of Word from within Excel, using VBA for Excel.

			How it works…

			Enabling the Microsoft Word object library for this Excel workbook made it possible to use Word keywords and methods within Excel. These keywords can open an instance of Word, as well as a new Word document, all from within Excel.

			Writing and formatting text

			It's all very well to know how to open Word with a new document available. However, we need more than this. A heading for the new document would be a good start, but that is still not enough. Formatting the heading is also necessary, and will round it off professionally.

			In this recipe, we will be writing and formatting text.

			Getting ready

			Make sure Word_Interaction.xlsm is still open, and that the VBA Editor is active.

			How to do it…

			These are the steps to enter and format text in Word:

			
					To add text to a Word document via Excel, add the following line of code:Sub CreateWordDoc()
 Dim wdApp As Word.Application
 Set wdApp = New Word.Application
 With wdApp
 .Visible = True
 .Activate
 .Documents.Add
 .Selection.TypeText "Employee Information"
 End With
End Sub

					Press F5. Running the Sub procedure will now result in a new instance of Word, with a new document open, and the line of text in the Sub procedure at the top of the page. Close Word without saving, since there is more code to add to our procedure in Excel:[image: Figure 17.3 – New instance of Word, with document and text
]
Figure 17.3 – New instance of Word, with document and text

					It is quite clear that we need to do some formatting here. By starting a nested loop structure, this will save us repeating the keywords. Furthermore, if you haven't done it so far, you can use IntelliSense to assist you with all the Word keywords.Add the following lines of code to the VBA Editor:Sub CreateWordDoc()
 Dim wdApp As Word.Application
 Set wdApp = New Word.Application
 With wdApp
 .Visible = True
 .Activate

 .Documents.Add

 With .Selection
 .ParagraphFormat.Alignment = _
 wdAlignParagraphCenter
 .BoldRun 'Switch Bold on
 .Font.Size = 16
 .TypeText "Employee Information"
 .BoldRun 'Switch Bold off
 .TypeParagraph 'Enter a new line
 .Font.Size = 11
 .ParagraphFormat.Alignment = _
 wdAlignParagraphLeft
 .TypeParagraph
 End With
 End With
End Sub

					When you run the Sub procedure now, there will be a marked improvement in appearance:

			

			
				
					[image: Figure 17.4 – Formatting done via VBA in Excel
]
				

			

			Figure 17.4 – Formatting done via VBA in Excel

			Using these principles, users will be able to format a Word document with VBA coding in Excel.

			Copying data into Word

			We could have opened Word manually and achieved what we've just done, but the whole purpose of the exercise is to do it from Excel, so that data in a spreadsheet can be written to the Word document automatically.

			What we need to do now is select data, copy it, and then paste that as part of the opening and formatting process.

			In this recipe, we will be copying data into Word.

			Getting ready

			Make sure that Word_Interaction.xlsm is still open. Activate Sheet1, and enter the following data:

			
				
					[image: Figure 17.5 – Working data
]
				

			

			Figure 17.5 – Working data

			How to do it…

			Follow these steps to copy text from Excel to Word:

			
					Create code to automatically select whatever range is on a sheet:Sub CreateWordDoc()
 Dim wdApp As Word.Application
 Set wdApp = New Word.Application
 With wdApp
 .Visible = True
 .Activate

 .Documents.Add

 With .Selection
 .ParagraphFormat.Alignment = _
 wdAlignParagraphCenter
 .BoldRun 'Switch Bold on
 .Font.Size = 16
 .TypeText "Employee Information"
 .BoldRun 'Switch Bold off
 .TypeParagraph 'Enter a new line
 .Font.Size = 11
 .ParagraphFormat.Alignment = _
 wdAlignParagraphLeft
 .TypeParagraph
 End With
 End With
 Range("A1", Range("A2").End(xlDown) _
 .End(xlToRight)).Copy
 wdApp.Selection.Paste
End Sub

					Run the Sub procedure to check your coding. We know that the first part will work, but in this case, we need to see whether the data on our spreadsheet was copied into Word:[image: Figure 17.6 – Excel data copied and pasted into Word
]
Figure 17.6 – Excel data copied and pasted into Word

					Saving the Word document is what we need to do next. When you add these lines of code, pay attention to the changes in the With statement:Sub CreateWordDoc()
 Dim wdApp As Word.Application
 Set wdApp = New Word.Application
 With wdApp
 .Visible = True
 .Activate
 .Documents.Add
 With .Selection
 .ParagraphFormat.Alignment = _
 wdAlignParagraphCenter
 .BoldRun 'Switch Bold on
 .Font.Size = 16
 .TypeText "Employee Information"
 .BoldRun 'Switch Bold off
 .TypeParagraph 'Enter a new line
 .Font.Size = 11
 .ParagraphFormat.Alignment = _
 wdAlignParagraphLeft
 .TypeParagraph
 End With
 Range("A1", Range("A2").End(xlDown) _
 .End(xlToRight)).Copy

 .Selection.Paste
 .ActiveDocument.SaveAs2 Environ("UserProfile") _
 & "\Desktop\EmployeeReport.docx"
 End With
End Sub

					The last thing we need to do is close down the document, and finally, Word itself. Just add the following two lines in a new line after the filename: .ActiveDocument.Close
 .Quit

					When you run the procedure now, you will see Word open briefly, and immediately close again. If you want to eliminate that, simply comment the following two lines out: '.Visible = True
 '.Activate

					We're still not done, because every time we run the procedure, the file is replaced without giving us the option of saving it under a new name. We need to add code to create a unique filename every time we run the procedure. By declaring a new variable, SaveAsName, and then assigning a formatted version of the Now function, we can create a unique name for the file every time it is saved. Add these two lines after .Selection.Paste: SaveAsName = Environ("UserProfile") _
 & "\Desktop\EmployeeReport " _
 & Format(Now, "yyyy-mm-dd hh-mm-ss") & ".docx"
 .ActiveDocument.SaveAs2 SaveAsName

					Every time you run the procedure now, a new file with a unique name will be saved.

			

			Following these instructions will enable you to automatically copy data from Excel into Word.

			How it works…

			Here is an explanation of what we did.

			Selecting data in Excel is not a new concept, and neither is copying. Saving it in a Word document with Excel VBA requires making use of the Environ function, as well as formatting of the filename. This will ensure that a new file is created every time the Excel VBA procedure is executed.

			See also

			Visit https://bettersolutions.com/vba/functions/environ-function.htm for more information on the Environ function and keywords.

			Using templates and bookmarks

			To copy an entire Excel spreadsheet and paste it into Word doesn't make sense. You could rather have done everything in Word from the beginning, saving you the whole effort of copying from Excel and pasting in Word.

			The point is, if you have an existing Word document or even a Word template, and you regularly need to export selected information from a spreadsheet in Excel to this template, this is the way to do it. The word automation acquires new meaning if you can link Excel with Word in this manner.

			In this recipe, we will be pasting Excel data into a Word document at a specific bookmark.

			Getting ready

			Make sure that Word_Interaction.xlsm is still open, and that the VBA Editor is active.

			How to do it…

			We need to do the following:

			
					Open the Word document that was saved to the desktop. Delete the inserted table, (select only the entire table – no lines before or after, click the Layout contextual tab, and then Rows & Columns | Delete | Delete Table)

					Enter the short sentence Latest information on employees in the open space.

					Insert a bookmark in the first open line after this sentence. Click on Insert | Bookmark. The Bookmark dialog box will appear. Enter a name in the Bookmark name textbox, and then click on Add to close the dialog box:[image: Figure 17.7 – Bookmark name
]
Figure 17.7 – Bookmark name

					Click on File | Save As, and save the file as a Word template. The file extension is .dotx. Call the file EmployeeReportTemplate.

					Depending on the operating system and the version of MS Office on your PC, the file will be saved in a specific folder, dedicated to template files:[image: Figure 17.8 – Folder for template files
]
Figure 17.8 – Folder for template files

					Close the file and return to the VBA Editor in Excel.

					Add the following line of text in the code window to open a specific file, and not just a blank document:Sub CreateWordDoc()
 Dim wdApp As Word.Application
 Set wdApp = New Word.Application
 With wdApp
 .Visible = True
 .Activate
 .Documents.Add "C:\Users\User\Documents\Custom _
 Office Templates\EmployeeReportTemplate.dotx"

					Because we're making use of a template, we do not need any of the formatting we did for the previous document. Delete the following lines of code: With .Selection
 .ParagraphFormat.Alignment = _
 wdAlignParagraphCenter
 .BoldRun 'Switch Bold on
 .Font.Size = 16
 .TypeText "Employee Information"
 .BoldRun 'Switch Bold off
 .TypeParagraph 'Enter a new line
 .Font.Size = 11
 .ParagraphFormat.Alignment = _
 wdAlignParagraphLeft
 .TypeParagraph
 End With

					Use the GoTo method to instruct Word exactly where the copied data from Excel must be inserted. That's why we created a bookmark in the Word template. The final coding for the entire procedure should look like this:Sub CreateWordDoc()
 Dim wdApp As Word.Application
 Dim SaveAsName As String

 Set wdApp = New Word.Application

 With wdApp
 '.Visible = True
 '.Activate

 .Documents.Add "C:\Users\User\Documents\Custom _
 Office Templates\EmployeeReportTemplate.dotx"

 Range("A1", Range("A2").End(xlDown) _
 .End(xlToRight)).Copy

 .Selection.Goto wdGoToBookmark, , , "ExcelTable"
 .Selection.Paste

 SaveAsName = Environ("UserProfile") _
 & "\Desktop\EmployeeReport " _
 & Format(Now, "yyyy-mm-dd hh-mm-ss") & ".docx"

 .ActiveDocument.SaveAs2 SaveAsName
 .ActiveDocument.Close
 .Quit
 End With
End Sub

			

			These instructions will enable you to create a template in Word, and then automatically place content from Excel into the Word document at specific bookmarks.

			Inserting Excel data into a Word template can be done with Excel VBA. Inserting a bookmark in the Word template enables Excel to send data to a specific insertion point for the data to be pasted.

			See also

			Visit https://docs.microsoft.com/en-us/office/vba/api/word.selection.goto for more information on the GoTo method.

		

	
		
			Chapter 18: Working with PowerPoint in Excel VBA

			Experience has shown by now that VBA is common to all the applications within the Office Suite. This means that data in an Excel spreadsheet can be automatically exported to PowerPoint as well.

			The advantage of knowing how to use VBA to automate these tasks saves a lot of time. Instead of manually copying from Excel and pasting into PowerPoint, everything can be automated, using the appropriate procedures in VBA.

			In this chapter, we will cover the following recipes:

			
					Creating a new instance of PowerPoint

					Creating presentations and slides

					Adding text to textboxes

					Copying Excel content into PowerPoint

			

			By the end of this chapter, you will be able to initiate a PowerPoint slideshow from within Excel.

			Technical requirements

			This cookbook was written and designed to be used with MS Office 2019 and MS Office 365, installed on either Windows 8, 8.1, or 10.

			If your hardware and software meet these requirements, you are good to go.

			The code for this book is stored at the following link: https://github.com/PacktPublishing/VBA-Automation-for-Excel-2019-Cookbook.

			Please visit the following link to check the CiA videos: https://bit.ly/3jQRvVk.

			Creating a new instance of PowerPoint

			The process of setting a reference to the object library with Word is similar to that of PowerPoint. Hence, the same must be done with PowerPoint, or else Excel cannot communicate with PowerPoint at all.

			In this recipe, we will be creating a new instance of PowerPoint from within Excel.

			Getting ready

			Open Excel, and activate a new workbook. Save the file as a macro-enabled file on your desktop and call it PPoint_Interaction.xlsm. Sheet1 should be active. Press Alt + F11 to switch to the VBA Editor, and then insert a new module.

			It is a prerequisite that MS PowerPoint must also be installed on your computer in order for the instructions in this recipe to work effectively.

			Note

			In this chapter, we will only cater to the latest version of MS Office. Coding for previous or legacy versions is not covered.

			How to do it…

			Here is how to link PowerPoint to Excel:

			
					In the VBA Editor, click on Tools | References. The References - VBAProject dialog box will open:[image: Figure 18.1 – The References - VBAProject dialog box
]
Figure 18.1 – The References - VBAProject dialog box

					Scroll down the list of available references until you find Microsoft PowerPoint 16.0 Object Library:[image: Figure 18.2 – Microsoft PowerPoint 16.0 Object Library selected
]
Figure 18.2 – Microsoft PowerPoint 16.0 Object Library selected

					Once selected, click on OK to save the selection and also to close the dialog box.Note
It is important to know that the reference to the PowerPoint object library is only valid for the Excel workbook you're working in currently. Every new workbook will have to be referenced to PowerPoint in exactly the same way.

					With the object library in place, we can initiate PowerPoint from within Excel. There are several ways of doing this, but for this recipe, we will be using this specific technique:Sub CreatePPointSlides()
 Dim PowPntApp As PowerPOint.Application
 Set PowPntApp = New PowerPoint.Application
 PowPntApp.Visible = True
 PowPntApp.Activate
End Sub

					Test the Sub procedure by pressing F5. A new instance of PowerPoint will appear on your screen, with no presentation or slide active. Close the application once you know that the Sub procedure is working:

			

			
				
					[image: Figure 18.3 – New PowerPoint instance
]
				

			

			Figure 18.3 – New PowerPoint instance

			With the Microsoft PowerPoint object library enabled, it is possible to use PowerPoint keywords and methods within Excel.

			Actions such as opening an instance of PowerPoint, which was previously not possible, can now be done.

			Creating presentations and slides

			Opening PowerPoint without opening a new presentation is not very useful. It stands to reason that a new presentation, with at least one slide, should be initiated together with the application.

			Getting ready

			With Excel still open, make sure that PPoint_Interaction.xlsm is available. Module1 in the VBA Editor must be visible.

			How to do it…

			Here are the steps to follow:

			
					Add the next lines of code to the Sub procedure to open a new presentation with a new slide:Sub CreatePPointSlides()
 Dim PowPntApp As PowerPoint.Application
 Dim PowPntPrsnt As PowerPoint.Presentation
 Dim PowPntSlide As PowerPoint.Slide

 Set PowPntApp = New PowerPoint.Application

 PowPntApp.Visible = True
 PowPntApp.Activate

 Set PowPntPrsnt = PowPntApp.Presentations.Add

 Set PowPntSlide = _
 PowPntPrsnt.Slides.Add(1, ppLayoutTitle)
End Sub

					If you now run the procedure, PowerPoint will open again, this time displaying not only a new presentation, but also a new slide.[image: Figure 18.4 – New presentation and slide
]
Figure 18.4 – New presentation and slide

					Close PowerPoint, but don't save anything. Return to the VBA Editor in Excel.

			

			Opening a new instance of PowerPoint creates a new presentation as well as a new, empty slide. By using the appropriate VBA coding in Excel, the process can be automated.

			Adding text to textboxes

			It's all very well to know how to open PowerPoint, create presentations, and make a slide available. The next objective is to add text to the two available textboxes on Slide1.

			In this recipe, we will be adding text to the textboxes on Slide1.

			Getting ready

			Make sure PPoint_Interaction.xlsm is still open, and that the VBA Editor is active.

			How to do it…

			These are the steps to enter and format text in PowerPoint:

			
					To add text to a PowerPoint presentation via Excel, add the following line of code:Sub CreatePPointSlides()
 Dim PowPntApp As PowerPoint.Application
 Dim PowPntPrsnt As PowerPoint.Presentation
 Dim PowPntSlide As PowerPoint.Slide
 Set PowPntApp = New PowerPoint.Application
 PowPntApp.Visible = True
 PowPntApp.Activate
 Set PowPntPrsnt = PowPntApp.Presentations.Add
 Set PowPntSlide = _
 PowPntPrsnt.Slides.Add(1, ppLayoutTitle)
 PowPntSlide.Shapes(1).TextFrame.TextRange = _
 "Employee Information Slide"
 PowPntSlide.Shapes(2).TextFrame.TextRange = _
 "by Presenter"
End Sub

					Press F5. Running the Sub procedure will now result in a new instance of PowerPoint, with a new presentation and slide open: [image: Figure 18.5 – New instance of PowerPoint, with a presentation, slide, and text
]
Figure 18.5 – New instance of PowerPoint, with a presentation, slide, and text

					Each textbox will have its own line of text. Close PowerPoint without saving, since there is more code to add to our procedure in Excel.

			

			Using the appropriate code will enable you to add customized text to individual textboxes on a slide.

			Copying Excel content into PowerPoint

			Automatically copying content from Excel to PowerPoint saves a lot of time. What we need to do now is select data, copy it, and then paste that into yet another newly inserted slide.

			In this recipe, we will be copying a table into PowerPoint.

			Getting ready

			Make sure that PPoint_Interaction.xlsm is still open. Activate Sheet1, and enter the following data:

			
				
					[image: Figure 18.6 – Working data
]
				

			

			Figure 18.6 – Working data

			How to do it…

			Follow these steps to copy text from Excel to PowerPoint:

			
					Before selecting anything in Excel, we need to insert a new blank slide in PowerPoint. Add the following lines of code:Sub CreatePowPntShow()
 Dim PowPntApp As PowerPoint.Application
 Dim PowPntPrsnt As PowerPoint.Presentation
 Dim PowPntSlide As PowerPoint.Slide

 Set PowPntApp = New PowerPoint.Application

 PowPntApp.Visible = True
 PowPntApp.Activate

 Set PowPntPrsnt = PowPntApp.Presentations.Add

 Set PowPntSlide = _
 PowPntPrsnt.Slides.Add(1, ppLayoutTitle)

 PowPntSlide.Shapes(1).TextFrame.TextRange = _
 "Employee Information"
 PowPntSlide.Shapes(2).TextFrame.TextRange = _
 "by Presenter"

 Set PowPntSlide = _
 PowPntPrsnt.Slides.Add(2, ppLayoutBlank)
 PowPntSlide.Select
End Sub

					Run the Sub procedure to check your coding. We know that the first part will work, but in this case, we need to check whether a second slide was inserted:[image: Figure 18.7 – Second slide inserted
]
Figure 18.7 – Second slide inserted

					To select the data in Excel, add the following line of code, directly below the previous entry. This will select the data on Sheet1 and then copy it:Range("A1").CurrentRegion.Copy

					Once the data has been copied, it must be pasted into the current slide. Enter the next line of code, once again directly below the previous line of code:PowPntSlide.Shapes.Paste

					The last thing we need to do is close down the document, and finally, PowerPoint itself. Just add the following two lines in a new line after the filename: PowPntPrsnt.Close
 PowPntApp.Quit

			

			Selecting data in Excel, copying it, and then pasting it into PowerPoint can all be automated with VBA in Excel.

			There's more…

			As a finishing touch, we can add code to create a unique filename for each PowerPoint presentation:

			
					We can create a unique name for the file every time it is saved. Add the following lines after .Shapes.Paste: PowPntPrsnt.SaveAs Environ("UserProfile") _
 & "\Desktop\EmployeeInformation " _
 & Format(Now, "yyyy-mm-dd hh-mm-ss") & ".pptx"

					Every time you run the procedure now, a new file with a unique name will be saved.

					The complete Sub procedure should look like this:Sub CreatePPointSlides()
 Dim PowPntApp As PowerPoint.Application
 Dim PowPntPrsnt As PowerPoint.Presentation
 Dim PowPntSlide As PowerPoint.Slide

 Set PowPntApp = New PowerPoint.Application
 PowPntApp.Visible = True
 PowPntApp.Activate

 Set PowPntPrsnt = PowPntApp.Presentations.Add
 Set PowPntSlide = _
 PowPntPrsnt.Slides.Add(1, ppLayoutTitle)
 PowPntSlide.Shapes(1).TextFrame.TextRange = _
 "Employee Information"
 PowPntSlide.Shapes(2).TextFrame.TextRange = _
 "by Presenter"
 Set PowPntSlide = _
 PowPntPrsnt.Slides.Add(2, ppLayoutBlank)
 PowPntSlide.Select
 Range("A1").CurrentRegion.Copy
 PowPntSlide.Shapes.Paste
 PowPntPrsnt.SaveAs Environ("UserProfile") _
 & "\Desktop\EmployeeInformation " _
 & Format(Now, "yyyy-mm-dd hh-mm-ss") & ".pptx"

 PowPntPrsnt.Close
 PowPntApp.Quit
End Sub

			

			Following the instructions in this recipe will enable you to select information in Excel, copy it there, and then paste it into a specific slide in PowerPoint.

		

	
		
			Other Books You May Enjoy

			If you enjoyed this book, you may be interested in these other books by Packt:

			[image: Learn Microsoft Office 2019]

			Learn Microsoft Office 2019

			Linda Foulkes

			ISBN: 978-1-83921-725-8

			
					Use PowerPoint 2019 effectively to create engaging presentations

					Gain working knowledge of Excel formulas and functions

					Collaborate using Word 2019 tools, and create and format tables and professional documents

					Organize emails, calendars, meetings, contacts, and tasks with Outlook 2019

					Store information for reference, reporting, and analysis using Access 2019

					Discover new functionalities such as Translator, Read Aloud, Scalable Vector Graphics (SVG), and data analysis tools that are useful for working professionals

			

			[image: Learn Power Query]

			Learn Power Query

			Linda Foulkes, Warren Sparrow

			ISBN: 978-1-83921-971-9

			
					Convert worksheet data into a table format ready for query output

					Create a dynamic connection between an Access database and Excel workbook

					Reshape tabular data by altering rows, columns, and tables using various Power Query tools

					Create new columns automatically from filenames and sheet tabs, along with multiple Excel data files

					Streamline and automate reports from multiple sources

					Explore different customization options to get the most out of your dashboards

					Understand the difference between the DAX language and Power Query's M language

			

			Leave a review - let other readers know what you think

			Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!

		

	OEBPS/image/Figure_10.2_12303.jpg

OEBPS/image/Figure_8.12_B12303.jpg

OEBPS/image/Figure_1.9_B12303.jpg

OEBPS/image/Figure_16.6_B12303.jpg

OEBPS/image/Figure_12.9_B12303.jpg

OEBPS/image/Figure_2.27_B12303.jpg

OEBPS/image/Figure_4.3_12303.jpg

OEBPS/image/Figure_14.19_B12303.jpg

OEBPS/image/Figure_9.3_B12303.jpg

OEBPS/image/Figure_14.13_B12303.jpg

OEBPS/image/Figure_2.2_B12303.jpg

OEBPS/image/Figure_2.17_B12303.jpg

OEBPS/image/Figure_9.9_B12303.jpg

OEBPS/image/Figure_1.3_B12303.jpg

OEBPS/image/Figure_1.16_B12303.jpg

OEBPS/image/Figure_2.11_B12303.jpg

OEBPS/image/Figure_1.26_B12303.jpg

OEBPS/image/Figure_13.18_B12303.jpg

OEBPS/image/Figure_17.5_B12303.jpg

OEBPS/image/B12303_03_06.jpg

OEBPS/image/Figure_12.3_B12303.jpg

OEBPS/image/Figure_13.8_B12303.jpg

OEBPS/image/Figure_15.14_B12303.jpg

OEBPS/image/Figure_8.4_B12303.jpg

OEBPS/image/Figure_13.22_B12303.jpg

OEBPS/image/Figure_11.15_B12303.jpg

OEBPS/image/Figure_13.12_B12303.jpg

OEBPS/image/B12303_03_02.jpg

OEBPS/image/Figure_10.1_12303.jpg

OEBPS/image/Figure_1.30_B12303.jpg

OEBPS/image/Figure_1.40_B12303.jpg

OEBPS/image/Figure_6.20_B12303.jpg

OEBPS/image/Figure_1.36_B12303.jpg

OEBPS/image/Figure_15.1_B12303.jpg

OEBPS/image/Figure_16.15_B12303.jpg

OEBPS/image/Figure_18.4_B12303.jpg

OEBPS/image/Figure_6.10_B12303.jpg

OEBPS/image/Packt_Logo1.png

OEBPS/image/Figure_6.16_B12303.jpg

OEBPS/image/Figure_14.1_B12303.jpg

OEBPS/image/Cover.png

OEBPS/image/Figure_13.11_B12303.jpg

OEBPS/image/Figure_2.8_B12303.jpg

OEBPS/image/Figure_13.21_B12303.jpg

OEBPS/image/Figure_13.2_B12303.jpg

OEBPS/image/Figure_1.20_B12303.jpg

OEBPS/image/Figure_1.10_B12303.jpg

OEBPS/image/Figure_14.2_B12303.jpg

OEBPS/image/Figure_1.15_B12303.jpg

OEBPS/image/Figure_1.25_B12303.jpg

OEBPS/image/Table_6.1.1.jpg

OEBPS/image/Figure_12.2_B12303.jpg

OEBPS/image/Figure_13.17_B12303.jpg

OEBPS/image/Figure_2.10_B12303.jpg

OEBPS/image/Figure_1.35_B12303.jpg

OEBPS/image/Figure_14.22_B12303.jpg

OEBPS/image/Figure_6.6_B12303.jpg

OEBPS/image/Figure_8.3_B12303.jpg

OEBPS/image/Figure_8.9_B12303.jpg

OEBPS/image/Figure_11.16_B12303.jpg

OEBPS/image/Figure_2.3_B12303.jpg

OEBPS/image/Learn_Microsoft_Office_2019.png

OEBPS/image/Figure_12.16_B12303.jpg

OEBPS/image/Figure_16.5_B12303.jpg

OEBPS/image/Figure_12.8_B12303.jpg

OEBPS/image/Figure_10.10_12303.jpg

OEBPS/image/Figure_18.5_B12303.jpg

OEBPS/image/Figure_10.4_12303.jpg

OEBPS/image/Figure_14.12_B12303.jpg

OEBPS/image/Figure_14.8_B12303.jpg

OEBPS/image/B12303_03_10.jpg

OEBPS/image/Figure_2.20_B12303.jpg

OEBPS/image/Figure_14.24_B12303.jpg

OEBPS/image/Figure_4.4_12303.jpg

OEBPS/image/Figure_14.14_B12303.jpg

OEBPS/image/Figure_12.17_B12303.jpg

OEBPS/image/Figure_2.12_B12303.jpg

OEBPS/image/Figure_6.4_B12303.jpg

OEBPS/image/Figure_12.4_B12303.jpg

OEBPS/image/Packt_Logo.png

OEBPS/image/Figure_14.7_B12303.jpg

OEBPS/image/Figure_16.7_B12303.jpg

OEBPS/image/Figure_15.13_B12303.jpg

OEBPS/image/Figure_8.5_B12303.jpg

OEBPS/image/Figure_2.21_B12303.jpg

OEBPS/image/Figure_6.5_B12303.jpg

OEBPS/image/Figure_14.23_B12303.jpg

OEBPS/image/Figure_16.10_B12303.jpg

OEBPS/image/Figure_14.6_B12303.jpg

OEBPS/image/Figure_2.22_B12303.jpg

OEBPS/image/Figure_4.1_12303.jpg

OEBPS/image/Figure_12.15_B12303.jpg

OEBPS/image/Figure_13.20_B12303.jpg

OEBPS/image/Figure_1.31_B12303.jpg

OEBPS/image/Figure_7.9_B12303.jpg

OEBPS/image/Figure_12.22_B12303.jpg

OEBPS/image/Figure_7.3_B12303.jpg

OEBPS/image/Figure_1.11_B12303.jpg

OEBPS/image/Figure_12.18_B12303.jpg

OEBPS/image/Figure_14.3_B12303.jpg

OEBPS/image/Figure_15.5_B12303.jpg

OEBPS/image/Figure_13.13_B12303.jpg

OEBPS/image/B12303_03_05.jpg

OEBPS/image/Figure_11.3_B12303.png

OEBPS/image/Figure_4.7_12303.jpg

OEBPS/image/Figure_6.21_B12303.jpg

OEBPS/image/Figure_11.17_B12303.jpg

OEBPS/image/Figure_16.4_B12303.jpg

OEBPS/image/Figure_1.27_B12303.jpg

OEBPS/image/Figure_17.4_B12303.jpg

OEBPS/image/Figure_6.1_B12303.jpg

OEBPS/image/Figure_2.25_B12303.jpg

OEBPS/image/Figure_14.11_B12303.jpg

OEBPS/image/Figure_16.14_B12303.jpg

OEBPS/image/Figure_4.11_12303.jpg

OEBPS/image/Figure_14.27_B12303.jpg

OEBPS/image/Figure_14.18_B12303.jpg

OEBPS/image/Figure_16.2_B12303.jpg

OEBPS/image/Figure_9.12_B12303.jpg

OEBPS/image/Figure_1.18_B12303.jpg

OEBPS/image/Figure_18.3_B12303.jpg

OEBPS/image/Figure_9.2_B12303.jpg

OEBPS/image/Figure_2.16_B12303.jpg

OEBPS/image/Figure_2.1_B12303.jpg

OEBPS/image/Figure_8.2_B12303.jpg

OEBPS/image/Figure_11.9_B12303.jpg

OEBPS/image/Figure_17.6_B12303.jpg

OEBPS/image/Figure_1.2_B12303.jpg

OEBPS/image/B12303_03_09.jpg

OEBPS/image/Figure_13.6_B12303.jpg

OEBPS/image/Figure_5.2_B12303.jpg

OEBPS/image/Figure_1.38_B12303.jpg

OEBPS/image/Figure_15.3_B12303.jpg

OEBPS/image/Figure_15.9_B12303.jpg

OEBPS/image/Figure_6.12_B12303.jpg

OEBPS/image/Figure_4.12_12303.jpg

OEBPS/image/Figure_9.5_12303.jpg

OEBPS/image/Figure_7.7_B12303.jpg

OEBPS/image/Figure_12.11_B12303.jpg

OEBPS/image/Figure_16.16_B12303.jpg

OEBPS/image/Figure_4.2_12303.jpg

OEBPS/image/Figure_9.4_B12303.jpg

OEBPS/image/Figure_11.13_B12303.jpg

OEBPS/image/Figure_9.8_B12303.jpg

OEBPS/image/Figure_2.18_B12303.jpg

OEBPS/image/Figure_13.4_B12303.jpg

OEBPS/image/Figure_5.4_B12303.jpg

OEBPS/image/Figure_12.20_B12303.jpg

OEBPS/image/Figure_1.4_B12303.jpg

OEBPS/image/Figure_10.3_12303.jpg

OEBPS/image/Figure_8.10_B12303.jpg

OEBPS/image/B12303_03_11.jpg

OEBPS/image/Figure_15.7_B12303.jpg

OEBPS/image/Figure_6.14_B12303.jpg

OEBPS/image/Figure_7.5_B12303.jpg

OEBPS/image/Table_6.1.2.jpg

OEBPS/image/Figure_4.8_12303.jpg

OEBPS/image/Figure_11.11_B12303.jpg

OEBPS/image/Figure_11.5_B12303.jpg

OEBPS/image/Figure_15.11_B12303.jpg

OEBPS/image/Figure_9.6_B12303.jpg

OEBPS/image/Figure_14.16_B12303.jpg

OEBPS/image/B12303_03_04.jpg

OEBPS/image/Figure_10.9_12303.jpg

OEBPS/image/Figure_14.26_B12303.jpg

OEBPS/image/Figure_12.6_B12303.jpg

OEBPS/image/Figure_1.19_B12303.jpg

OEBPS/image/Figure_16.3_B12303.jpg

OEBPS/image/Figure_16.9_B12303.jpg

OEBPS/image/Figure_1.39_B12303.jpg

OEBPS/image/Figure_16.12_B12303.jpg

OEBPS/image/Figure_6.19_B12303.jpg

OEBPS/image/Figure_1.29_B12303.jpg

OEBPS/image/Figure_5.3_B12303.jpg

OEBPS/image/Figure_1.6_B12303.jpg

OEBPS/image/Figure_2.14_B12303.jpg

OEBPS/image/Figure_2.24_B12303.jpg

OEBPS/image/Figure_17.8_B12303.jpg

OEBPS/image/Table_13.1_B12303.jpg

OEBPS/image/Figure_11.7_B12303.jpg

OEBPS/image/Figure_9.10_B12303.jpg

OEBPS/image/Figure_15.4_B12303.jpg

OEBPS/image/Figure_18.1_B12303.jpg

OEBPS/image/Figure_6.8_B12303.jpg

OEBPS/image/Figure_12.14_B12303.jpg

OEBPS/image/Figure_7.1_B12303.jpg

OEBPS/image/Figure_4.9_12303.jpg

OEBPS/image/Figure_8.1_B12303.jpg

OEBPS/image/Figure_10.8_12303.jpg

OEBPS/image/Figure_11.1_B12303.jpg

OEBPS/image/Figure_17.2_B12303.jpg

OEBPS/image/Figure_6.2_B12303.jpg

OEBPS/image/Figure_12.13_B12303.jpg

OEBPS/image/Figure_7.2_B12303.jpg

OEBPS/image/Figure_14.20_B12303.jpg

OEBPS/image/Figure_14.10_B12303.jpg

OEBPS/image/Figure_16.13_B12303.jpg

OEBPS/image/Figure_8.6_B12303.jpg

OEBPS/image/Figure_13.14_B12303.jpg

OEBPS/image/Figure_6.9_B12303.jpg

OEBPS/image/Table_Preface_1_B12303.jpg

OEBPS/image/Figure_2.6_B12303.jpg

OEBPS/toc.xhtml

		
		Contents

			
						VBA Automation for Excel 2019 Cookbook

						Why subscribe?

						Contributors

						About the author

						About the reviewer

						Packt is searching for authors like you

						Preface
					
								Who this book is for

								What this book covers

								To get the most out of this book
							
										Download the example code files

							

						

								Code in Action

								Download the color images

								Conventions used

								Sections
							
										Getting ready

										How to do it…

										How it works…

										There's more…

										See also

							

						

								Get in touch

								Reviews

					

				

						Chapter 1: Getting Started with VBA
					
								Technical requirements

								Investigating VBA code
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Recording a macro
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Testing the macro
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Using the VBA Editor
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Editing the code by changing cell references
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Saving the file with an embedded macro
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Using the Trust Center for macro security
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Creating a customized ribbon
							
										Getting ready

										How to do it…

							

						

					

				

						Chapter 2: Working with the VBA Editor
					
								Technical requirements

								Identifying, activating, and closing components in the VBA Editor
							
										Getting ready

										How to do it…

										How it works…

							

						

								Creating a module for storing a Sub procedure
							
										Getting ready

										How to do it…

										How it works…

							

						

								Creating a basic procedure in the code window of the Editor
							
										Getting ready

										How to do it…

										How it works…

							

						

								Creating VBA code in the code window in three different ways
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Customizing the Editor tab to suit your preferences
							
										Getting ready

										How to do it…

										How it works…

							

						

					

				

						Chapter 3: The VBA Object Model
					
								Technical requirements

								Understanding and identifying objects in VBA
							
										Getting ready

										How to do it…

										How it works…

							

						

								Objects as a collection, and changing the attributes of the entire collection
							
										Getting ready

										How to do it…

										How it works…

							

						

								Modifying object properties
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Associating methods with objects
							
										Getting ready

										How to do it…

										How it works…

							

						

								Using events to activate objects
							
										Getting ready

										How to do it…

										How it works…

							

						

								Using the Object Browser in the VBA Editor
							
										Getting ready

										How to do it…

										How it works…

							

						

					

				

						Chapter 4: Working with Procedures
					
								Technical requirements

								Creating Sub and Function procedures
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Executing Sub procedures directly
							
										Getting ready

										How to do it…

										How it works…

							

						

								Executing Sub procedures from the Macro dialog box
							
										Getting ready

										How to do it…

										How it works…

							

						

								Executing Sub procedures using buttons
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Executing Sub procedures using a shortcut key
							
										Getting ready

										How to do it…

										How it works…

							

						

								Executing Function procedures using a worksheet formula
							
										Getting ready

										How to do it…

										How it works…

							

						

								Executing Function procedures by calling from a Sub procedure
							
										Getting ready

										How to do it…

										How it works…

							

						

					

				

						Chapter 5: Next Level Recording
					
								Technical requirements

								Setting the macro recorder for absolute or relative reference
							
										Getting ready

										How to do it…

										How it works…

							

						

								Recording options
							
										Getting ready

										How to do it…

										How it works…

							

						

					

				

						Chapter 6: VBA Language Elements
					
								Technical requirements

								Adding comments
							
										Getting ready

										How to do it…

										How it works…

							

						

								Declaring variables
							
										Getting ready

										How to do it…

										How it works…

							

						

								Declaring constants
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Working with data types in variables and constants
							
										Getting ready

										How to do it…

										How it works…

							

						

								Scoping variables
							
										Getting ready

										How to do it…

										How it works…

							

						

								Declaring arrays
							
										Getting ready

										How to do it…

										How it works…

							

						

					

				

						Chapter 7: Working with Ranges
					
								Technical requirements

								Referring to ranges
							
										Getting ready

										How to do it…

										How it works…

							

						

								Using the Range object properties
							
										Getting ready

										How to do it…

										How it works…

							

						

								Adding the Range object's methods
							
										Getting ready

										How to do it…

										How it works…

							

						

								Making ranges work
							
										Getting ready

										How to do it…

										How it works…

							

						

					

				

						Chapter 8: Using Functions
					
								Technical requirements

								Using built-in VBA functions
							
										Getting ready

										How to do it…

										How it works…

							

						

								Using worksheet functions
							
										Getting ready

										How to do it…

										How it works…

							

						

								Creating custom functions
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

					

				

						Chapter 9: Implementing Program Flow
					
								Technical requirements

								Exploring program flow

								Changing the flow using the GoTo statement
							
										Getting ready

										How to do it…

										How it works…

							

						

								Using If and If-Then structures to make decisions
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Using the Select Case structure
							
										Getting ready

										How to do it…

										How it works…

							

						

								Using loops
							
										Getting ready

										How to do it…

										How it works…

							

						

					

				

						Chapter 10: Implementing Automation
					
								Technical requirements

								Writing event handler procedures
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Discovering events

								Creating workbook-related events
							
										Getting ready

										How to do it…

										How it works…

							

						

								Creating worksheet-related events
							
										Getting ready

										How to do it…

										How it works…

							

						

								Creating non-object events
							
										Getting ready

										How to do it…

										How it works…

							

						

					

				

						Chapter 11: Handling Errors
					
								Technical requirements

								Handling different types of errors
							
										Getting ready

										How to do it…

										How it works…

							

						

								Correcting a runtime error
							
										Getting ready

										How to do it…

										How it works

							

						

								Testing to find errors
							
										Getting ready

										How to do it…

										How it works…

							

						

								Using the On Error statement
							
										Getting ready

										How to do it…

										How it works…

							

						

								Resuming after an error
							
										Getting ready

										How to do it…

										How it works…

							

						

					

				

						Chapter 12: Debugging
					
								Technical requirements

								Exploring various bugs

								Debugging techniques
							
										Getting ready

										How to do it…

										How it works…

							

						

								Using the debugger in Excel
							
										Setting breakpoints

										Using the Watch window

							

						

					

				

						Chapter 13: Creating and Modifying Dialog Boxes
					
								Technical requirements

								Using the MsgBox function
							
										Getting ready

										How to do it…

										How it works…

							

						

								Using the InputBox function
							
										Getting ready

										How to do it…

										How it works…

							

						

								Using the Application.InputBox method
							
										Getting ready

										How to do it…

										How it works…

							

						

					

				

						Chapter 14: Creating UserForms
					
								Technical requirements

								Inserting the form
							
										Getting ready

										How to do it…

										How it works…

							

						

								Changing properties
							
										Getting ready

										How to do it…

										How it works…

							

						

								Adding controls
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Using Frames
							
										Getting ready

										How to do it…

										There's more…

							

						

					

				

						Chapter 15: UserForm Controls
					
								Technical requirements

								Assigning controls
							
										Getting ready

										How to do it…

										How it works

							

						

								Unloading a form
							
										Getting ready

										How to do it…

										How it works…

							

						

								Loading the form
							
										Getting ready

										How to do it…

										How it works…

							

						

								Using the Combo Box control
							
										Getting ready

										How to do it…

										How it works…

							

						

								Using the SpinButton control
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Setting the tab order
							
										Getting ready

										How to do it…

										How it works

							

						

					

				

						Chapter 16: Creating Custom Functions
					
								Technical requirements

								Writing functions
							
										Getting ready

										How to do it…

										How it works…

							

						

								Calling functions
							
										Getting ready

										How to do it…

										How it works…

							

						

								Adding function arguments
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Displaying function and argument descriptions
							
										Getting ready

										How to do it…

							

						

					

				

						Chapter 17: Creating Word Documents with Excel VBA
					
								Technical requirements

								Creating a new instance of Word
							
										Getting ready

										How to do it…

										How it works…

							

						

								Writing and formatting text
							
										Getting ready

										How to do it…

							

						

								Copying data into Word
							
										Getting ready

										How to do it…

										How it works…

										See also

							

						

								Using templates and bookmarks
							
										Getting ready

										How to do it…

										See also

							

						

					

				

						Chapter 18: Working with PowerPoint in Excel VBA
					
								Technical requirements

								Creating a new instance of PowerPoint
							
										Getting ready

										How to do it…

							

						

								Creating presentations and slides
							
										Getting ready

										How to do it…

							

						

								Adding text to textboxes
							
										Getting ready

										How to do it…

							

						

								Copying Excel content into PowerPoint
							
										Getting ready

										How to do it…

										There's more…

							

						

					

				

						Other Books You May Enjoy
					
								Leave a review - let other readers know what you think

					

				

			

		
		
		Landmarks

			
						Cover

						Table of Contents

			

		
	

OEBPS/image/Figure_13.24_B12303.jpg

OEBPS/image/Figure_2.13_B12303.jpg

OEBPS/image/Figure_6.18_B12303.jpg

OEBPS/image/Figure_2.23_B12303.jpg

OEBPS/image/Figure_15.10_B12303.jpg

OEBPS/image/Figure_14.15_B12303.jpg

OEBPS/image/Figure_6.3_B12303.jpg

OEBPS/image/Figure_1.32_B12303.jpg

OEBPS/image/Figure_14.25_B12303.jpg

OEBPS/image/Figure_12.7_B12303.jpg

OEBPS/image/Figure_16.8_B12303.jpg

OEBPS/image/Figure_12.19_B12303.jpg

OEBPS/image/Figure_1.22_B12303.jpg

OEBPS/image/B12303_03_01.jpg

OEBPS/image/Figure_1.12_B12303.jpg

OEBPS/image/Figure_14.4_B12303.jpg

OEBPS/image/Figure_2.4_B12303.jpg

OEBPS/image/Figure_1.23_B12303.jpg

OEBPS/image/Figure_16.11_B12303.jpg

OEBPS/image/Figure_1.33_B12303.jpg

OEBPS/image/Figure_13.26_B12303.jpg

OEBPS/image/Figure_8.7_B12303.jpg

OEBPS/image/Figure_1.13_B12303.jpg

OEBPS/image/Figure_1.34_B12303.jpg

OEBPS/image/B12303_03_08.jpg

OEBPS/image/Figure_1.24_B12303.jpg

OEBPS/image/Figure_14.5_B12303.jpg

OEBPS/image/Figure_10.7_12303.jpg

OEBPS/image/Figure_12.5_B12303.jpg

OEBPS/image/Figure_13.15_B12303.jpg

OEBPS/image/Figure_18.7_B12303.jpg

OEBPS/image/Figure_13.16_B12303.jpg

OEBPS/image/Figure_13.25_B12303.jpg

OEBPS/image/Figure_2.5_B12303.jpg

OEBPS/image/Figure_1.14_B12303.jpg

OEBPS/image/Figure_15.12_B12303.jpg

OEBPS/image/Figure_1.8_B12303.png

OEBPS/image/Figure_18.6_B12303.jpg

OEBPS/image/Figure_7.6_B12303.jpg

OEBPS/image/Figure_12.12_B12303.jpg

OEBPS/image/Figure_14.9_B12303.jpg

OEBPS/image/Figure_11.2_B12303.jpg

OEBPS/image/Figure_1.21_B12303.jpg

OEBPS/image/Figure_16.17_B12303.jpg

OEBPS/image/Figure_10.6_12303.jpg

OEBPS/image/Figure_11.14_B12303.jpg

OEBPS/image/Figure_13.23_B12303.jpg

OEBPS/image/Figure_6.7_B12303.jpg

OEBPS/image/Figure_15.8_B12303.jpg

OEBPS/image/Figure_6.11_B12303.jpg

OEBPS/image/Figure_1.41_B12303.jpg

OEBPS/image/Figure_2.7_B12303.jpg

OEBPS/image/Figure_8.8_B12303.jpg

OEBPS/image/Figure_13.10_B12303.jpg

OEBPS/image/Figure_4.10_12303.jpg

OEBPS/image/Figure_13.19_B12303.jpg

OEBPS/image/Figure_9.1_B12303.jpg

OEBPS/image/Figure_16.1_B12303.jpg

OEBPS/image/Figure_17.1_B12303.jpg

OEBPS/image/Figure_1.7_B12303.jpg

OEBPS/image/Figure_5.1_B12303.jpg

OEBPS/image/Figure_13.1_B12303.jpg

OEBPS/image/Figure_14.21_B12303.jpg

OEBPS/image/Figure_12.1_B12303.jpg

OEBPS/image/Figure_2.15_B12303.jpg

OEBPS/image/Figure_14.17_B12303.jpg

OEBPS/image/Figure_1.17_B12303.jpg

OEBPS/image/Figure_11.8_B12303.jpg

OEBPS/image/B12303_03_03.jpg

OEBPS/image/Figure_2.26_B12303.jpg

OEBPS/image/Figure_10.11_12303.jpg

OEBPS/image/Figure_1.1_B12303.jpg

OEBPS/image/Figure_17.3_B12303.jpg

OEBPS/image/Figure_1.37_B12303.jpg

OEBPS/image/Figure_15.2_B12303.jpg

OEBPS/image/Figure_4.6_12303.jpg

OEBPS/image/Figure_6.17_B12303.jpg

OEBPS/image/Figure_10.5_12303.jpg

OEBPS/image/Figure_2.9_B12303.jpg

OEBPS/image/Learn_Power_Query.jpg

OEBPS/image/Figure_11.10_B12303.jpg

OEBPS/image/Figure_4.5_12303.jpg

OEBPS/image/Figure_1.28_B12303.jpg

OEBPS/image/Figure_13.9_B12303.jpg

OEBPS/image/Figure_11.6_B12303.jpg

OEBPS/image/Figure_9.11_B12303.jpg

OEBPS/image/Figure_18.2_B12303.jpg

OEBPS/image/Figure_13.3_B12303.jpg

OEBPS/image/Figure_12.21_B12303.jpg

OEBPS/image/Figure_8.11_B12303.jpg

OEBPS/image/Figure_7.8_B12303.jpg

OEBPS/image/Figure_7.4_B12303.jpg

OEBPS/image/Figure_6.15_B12303.jpg

OEBPS/image/Figure_11.4_B12303.jpg

OEBPS/image/B12303_03_07.jpg

OEBPS/image/Figure_12.10_B12303.jpg

OEBPS/image/Figure_13.7_B12303.jpg

OEBPS/image/Figure_11.12_B12303.jpg

OEBPS/image/Figure_2.19_B12303.jpg

OEBPS/image/Figure_9.7_B12303.jpg

OEBPS/image/Figure_5.5_B12303.jpg

OEBPS/image/Figure_13.5_B12303.jpg

OEBPS/image/Figure_17.7_B12303.jpg

OEBPS/image/Figure_1.5_B12303.jpg

OEBPS/image/Figure_6.13_B12303.jpg

OEBPS/image/Figure_15.6_B12303.jpg

