
A First Course in
FUZZY

and
NEURAL

CONTROL

© 2003 by Chapman & Hall/CRC

CHAPMAN & HALL/CRC
A CRC Press Company

Boca Raton London New York Washington, D.C.

Hung T. Nguyen • Nadipuram R. Prasad
Carol L. Walker • Elbert A. Walker

A First Course in
FUZZY

and
NEURAL

CONTROL

© 2003 by Chapman & Hall/CRC

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2003 by Chapman & Hall/CRC

No claim to original U.S. Government works
International Standard Book Number 1-58488-244-1

Library of Congress Card Number 2002031314
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

A first course in fuzzy and neural control / Hung T. Nguyen ... [et al.].
p. cm.

Includes bibliographical references and index.
ISBN 1-58488-244-1
1. Soft computing. 2. Neural networks (Computer science) 3. Fuzzy systems. 4.

 Control theory. I. Nguyen, Hung T., 1944-

 QA76.9.S63 .F57 2002
 006.3—dc21 2002031314

C2441 disclaimer Page 1 Tuesday, October 15, 2002 3:19 PM

© 2003 by Chapman & Hall/CRC

http://www.crcpress.com

Contents

1 A PRELUDE TO CONTROL THEORY 1
1.1 An ancient control system . 1
1.2 Examples of control problems . 3

1.2.1 Open-loop control systems 3
1.2.2 Closed-loop control systems 5

1.3 Stable and unstable systems . 9
1.4 A look at controller design . 10
1.5 Exercises and projects . 14

2 MATHEMATICAL MODELS IN CONTROL 15
2.1 Introductory examples: pendulum problems 15

2.1.1 Example: Þxed pendulum 15
2.1.2 Example: inverted pendulum on a cart 20

2.2 State variables and linear systems 29
2.3 Controllability and observability 32
2.4 Stability . 34

2.4.1 Damping and system response 36
2.4.2 Stability of linear systems 37
2.4.3 Stability of nonlinear systems 39
2.4.4 Robust stability . 41

2.5 Controller design . 42
2.6 State-variable feedback control 48

2.6.1 Second-order systems . 48
2.6.2 Higher-order systems . 50

2.7 Proportional-integral-derivative control 53
2.7.1 Example: automobile cruise control system 53
2.7.2 Example: temperature control 61
2.7.3 Example: controlling dynamics of a servomotor 71

2.8 Nonlinear control systems . 77
2.9 Linearization . 78
2.10 Exercises and projects . 80

iii

© 2003 by Chapman & Hall/CRC

iv CONTENTS

3 FUZZY LOGIC FOR CONTROL 85
3.1 Fuzziness and linguistic rules . 85
3.2 Fuzzy sets in control . 86
3.3 Combining fuzzy sets . 90

3.3.1 Minimum, maximum, and complement 90
3.3.2 Triangular norms, conorms, and negations 92
3.3.3 Averaging operators . 101

3.4 Sensitivity of functions . 104
3.4.1 Extreme measure of sensitivity 104
3.4.2 Average sensitivity . 106

3.5 Combining fuzzy rules . 108
3.5.1 Products of fuzzy sets . 110
3.5.2 Mamdani model . 110
3.5.3 Larsen model . 111
3.5.4 Takagi-Sugeno-Kang (TSK) model 112
3.5.5 Tsukamoto model . 113

3.6 Truth tables for fuzzy logic . 114
3.7 Fuzzy partitions . 116
3.8 Fuzzy relations . 117

3.8.1 Equivalence relations . 119
3.8.2 Order relations . 120

3.9 DefuzziÞcation . 120
3.9.1 Center of area method . 120
3.9.2 Height-center of area method 121
3.9.3 Max criterion method . 122
3.9.4 First of maxima method 122
3.9.5 Middle of maxima method 123

3.10 Level curves and alpha-cuts . 123
3.10.1 Extension principle . 124
3.10.2 Images of alpha-level sets 125

3.11 Universal approximation . 126
3.12 Exercises and projects . 128

4 FUZZY CONTROL 133
4.1 A fuzzy controller for an inverted pendulum 133
4.2 Main approaches to fuzzy control 137

4.2.1 Mamdani and Larsen methods 139
4.2.2 Model-based fuzzy control 140

4.3 Stability of fuzzy control systems 144
4.4 Fuzzy controller design . 146

4.4.1 Example: automobile cruise control 146
4.4.2 Example: controlling dynamics of a servomotor 151

4.5 Exercises and projects . 157

© 2003 by Chapman & Hall/CRC

CONTENTS v

5 NEURAL NETWORKS FOR CONTROL 165
5.1 What is a neural network? . 165
5.2 Implementing neural networks . 168
5.3 Learning capability . 172
5.4 The delta rule . 175
5.5 The backpropagation algorithm 179
5.6 Example 1: training a neural network 183
5.7 Example 2: training a neural network 185
5.8 Practical issues in training . 192
5.9 Exercises and projects . 193

6 NEURAL CONTROL 201
6.1 Why neural networks in control 201
6.2 Inverse dynamics . 202
6.3 Neural networks in direct neural control 204
6.4 Example: temperature control . 204

6.4.1 A neural network for temperature control 205
6.4.2 Simulating PI control with a neural network 209

6.5 Neural networks in indirect neural control 216
6.5.1 System identiÞcation . 217
6.5.2 Example: system identiÞcation 219
6.5.3 Instantaneous linearization 223

6.6 Exercises and projects . 225

7 FUZZY-NEURAL AND NEURAL-FUZZY CONTROL 229
7.1 Fuzzy concepts in neural networks 230
7.2 Basic principles of fuzzy-neural systems 232
7.3 Basic principles of neural-fuzzy systems 236

7.3.1 Adaptive network fuzzy inference systems 237
7.3.2 ANFIS learning algorithm 238

7.4 Generating fuzzy rules . 245
7.5 Exercises and projects . 246

8 APPLICATIONS 249
8.1 A survey of industrial applications 249
8.2 Cooling scheme for laser materials 250
8.3 Color quality processing . 256
8.4 IdentiÞcation of trash in cotton 262
8.5 Integrated pest management systems 279
8.6 Comments . 290

Bibliography 291

© 2003 by Chapman & Hall/CRC

Preface

Soft computing approaches in decision making have become increasingly pop-
ular in many disciplines. This is evident from the vast number of technical
papers appearing in journals and conference proceedings in all areas of engi-
neering, manufacturing, sciences, medicine, and business. Soft computing is a
rapidly evolving Þeld that combines knowledge, techniques, and methodologies
from various sources, using techniques from neural networks, fuzzy set theory,
and approximate reasoning, and using optimization methods such as genetic
algorithms. The integration of these and other methodologies forms the core of
soft computing.
The motivation to adopt soft computing, as opposed to hard computing, is

based strictly on the tolerance for imprecision and the ability to make decisions
under uncertainty. Soft computing is goal driven � the methods used in Þnding
a path to a solution do not matter as much as the fact that one is moving
toward the goal in a reasonable amount of time at a reasonable cost. While
soft computing has applications in a wide variety of Þelds, we will restrict our
discussion primarily to the use of soft computing methods and techniques in
control theory.
Over the past several years, courses in fuzzy logic, artiÞcial neural networks,

and genetic algorithms have been offered at New Mexico State University when
a group of students wanted to use such approaches in their graduate research.
These courses were all aimed at meeting the special needs of students in the
context of their research objectives. We felt the need to introduce a formal
curriculum so students from all disciplines could beneÞt, and with the estab-
lishment of The Rio Grande Institute for Soft Computing at New Mexico State
University, we introduced a course entitled �Fundamentals of Soft Computing
I� during the spring 2000 semester. This book is an outgrowth of the material
developed for that course.
We have a two-fold objective in this text. Our Þrst objective is to empha-

size that both fuzzy and neural control technologies are Þrmly based upon the
principles of classical control theory. All of these technologies involve knowledge
of the basic characteristics of system response from the viewpoint of stability,
and knowledge of the parameters that affect system stability. For example, the
concept of state variables is fundamental to the understanding of whether or
not a system is controllable and/or observable, and of how key system vari-
ables can be monitored and controlled to obtain desired system performance.

vii

© 2003 by Chapman & Hall/CRC

viii PREFACE

To help meet the Þrst objective, we provide the reader a broad ßavor of what
classical control theory involves, and we present in some depth the mechanics of
implementing classical control techniques. It is not our intent to cover classical
methods in great detail as much as to provide the reader with a Þrm understand-
ing of the principles that govern system behavior and control. As an outcome of
this presentation, the type of information needed to implement classical control
techniques and some of the limitations of classical control techniques should
become obvious to the reader.
Our second objective is to present sufficient background in both fuzzy and

neural control so that further studies can be pursued in advanced soft comput-
ing methodologies. The emphasis in this presentation is to demonstrate the
ease with which system control can be achieved in the absence of an analytical
mathematical model. The beneÞts of a model-free methodology in comparison
with a model-based methodology for control are made clear. Again, it is our in-
tent to bring to the reader the fundamental mechanics of both fuzzy and neural
control technologies and to demonstrate clearly how such methodologies can be
implemented for nonlinear system control.
This text, A First Course in Fuzzy and Neural Control, is intended to address

all the material needed to motivate students towards further studies in soft
computing. Our intent is not to overwhelm students with unnecessary material,
either from a mathematical or engineering perspective, but to provide balance
between the mathematics and engineering aspects of fuzzy and neural network-
based approaches. In fact, we strongly recommend that students acquire the
mathematical foundations and knowledge of standard control systems before
taking a course in soft computing methods.
Chapter 1 provides the fundamental ideas of control theory through simple

examples. Our goal is to show the consequences of systems that either do or
do not have feedback, and to provide insights into controller design concepts.
From these examples it should become clear that systems can be controlled if
they exhibit the two properties of controllability and observability.
Chapter 2 provides a background of classical control methodologies, in-

cluding state-variable approaches, that form the basis for control systems de-
sign. We discuss state-variable and output feedback as the primary moti-
vation for designing controllers via pole-placement for systems that are in-
herently unstable. We extend these classical control concepts to the design
of conventional Proportional-Integral (PI), Proportional-Derivative (PD), and
Proportional-Integral-Derivative (PID) controllers. Chapter 2 includes a dis-
cussion of stability and classical methods of determining stability of nonlinear
systems.
Chapter 3 introduces mathematical notions used in linguistic rule-based con-

trol. In this context, several basic examples are discussed that lay the mathe-
matical foundations of fuzzy set theory. We introduce linguistic rules �methods
for inferencing based on the mathematical theory of fuzzy sets. This chapter
emphasizes the logical aspects of reasoning needed for intelligent control and
decision support systems.
In Chapter 4, we present an introduction to fuzzy control, describing the

© 2003 by Chapman & Hall/CRC

PREFACE ix

general methodology of fuzzy control and some of the main approaches. We
discuss the design of fuzzy controllers as well as issues of stability in fuzzy
control. We give examples illustrating the solution of control problems using
fuzzy logic.
Chapter 5 discusses the fundamentals of artiÞcial neural networks that are

used in control systems. In this chapter, we brießy discuss the motivation for
neural networks and the potential impact on control system performance. In
this context, several basic examples are discussed that lay the mathematical
foundations of artiÞcial neural networks. Basic neural network architectures,
including single- and multi-layer perceptrons, are discussed. Again, while our
objective is to introduce some basic techniques in soft computing, we focus
more on the rationale for the use of neural networks rather than providing an
exhaustive survey and list of architectures.
In Chapter 6, we lay down the essentials of neural control and demonstrate

how to use neural networks in control applications. Through examples, we pro-
vide a step-by-step approach for neural network-based control systems design.
In Chapter 7, we discuss the hybridization of fuzzy logic-based approaches

with neural network-based approaches to achieve robust control. Several exam-
ples provide the basis for discussion. The main approach is adaptive neuro-fuzzy
inference systems (ANFIS).
Chapter 8 presents several examples of fuzzy controllers, neural network con-

trollers, and hybrid fuzzy-neural network controllers in industrial applications.
We demonstrate the design procedure in a step-by-step manner. Chapters 1
through 8 can easily be covered in one semester. We recommend that a mini-
mum of two projects be assigned during the semester, one in fuzzy control and
one in neural or neuro-fuzzy control.
Throughout this book, the signiÞcance of simulation is emphasized. We

strongly urge the reader to become familiar with an appropriate computing en-
vironment for such simulations. In this book, we present Matlab

R°
simulation

models in many examples to help in the design, simulation, and analysis of
control system performance. Matlab can be utilized interactively to design
and test prototype controllers. The related program, Simulink

R°
, provides a

convenient means for simulating the dynamic behavior of control systems.
We thank the students in the Spring 2000 class whose enthusiastic responses

encouraged us to complete this text. We give special thanks to Murali Sidda-
iah and Habib Gassoumi, former Ph.D. students of Ram Prasad, who kindly
permitted us to share with you results from their dissertations that occur as
examples in Chapters 6 and 8. We thank Chin-Teng Lin and C. S. George Lee
who gave us permission to use a system identiÞcation example from their book
Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems.
Much of the material discussed in this text was prepared while Ram Prasad

spent a year at the NASA/Jet Propulsion Laboratory between August 2001
and August 2002, as a NASA Faculty Fellow. For this, he is extremely thank-
ful to Anil Thakoor of the Bio-Inspired Technologies and Systems Group, for
his constant support, encouragement, and the freedom given to explore both

© 2003 by Chapman & Hall/CRC

x PREFACE

application-oriented technologies and revolutionary new technology develop-
ment.
We thank our editor, Bob Stern, project coordinator, Jamie B. Sigal, and

project editor Marsha Hecht for their assistance and encouragement. And we
give a very personal thank you to Ai Khuyen Prasad for her utmost patience
and good will.

Hung T. Nguyen
Nadipuram R. Prasad
Carol L. Walker
Elbert A. Walker

Las Cruces, New Mexico
July 2002

© 2003 by Chapman & Hall/CRC

Chapter 1

A PRELUDE TO
CONTROL THEORY

In this opening chapter, we present fundamental ideas of control theory through
simple examples. These fundamental ideas apply no matter what mathematical
or engineering techniques are employed to solve the control problem. The exam-
ples clearly identify the concepts underlying open-loop and closed-loop control
systems. The need for feedback is recognized as an important component in con-
trolling or regulating system performance. In the next chapter, we will present
examples of classical modern control theory systems that rely on mathematical
models, and in the remainder of this book, we explore possible alternatives to
a rigid mathematical model approach. These alternative approaches � fuzzy,
neural, and combinations of these � provide alternative designs for autonomous
intelligent control systems.

1.1 An ancient control system

Although modern control theory relies on mathematical models for its imple-
mentation, control systems were invented long before mathematical tools were
available for developing such models. An amazing control system invented about
2000 years ago by Hero of Alexandria, a device for the opening and closing of
temple doors � is still viewed as a control system marvel. Figure 1.1 illustrates
the basic idea of his vision. The device was actuated whenever the ruler and
his entourage arrived to ascend the temple steps. The actuation consisted of
lighting a Þre upon a sealed altar enclosing a column of air. As the air temper-
ature in the sealed altar increased, the expanding hot air created airßow from
the altar into a sealed vessel directly below. The increase in air pressure created
inside the vessel pushed out the water contained in this vessel. This water was
collected in a bucket. As the bucket became heavier, it descended and turned
the door spindles by means of ropes, causing the counterweights to rise. The left
spindle rotated in the clockwise direction and the right spindle in the counter-

1

© 2003 by Chapman & Hall/CRC

2 CHAPTER 1. A PRELUDE TO CONTROL THEORY

Figure 1.1. Hero�s automatic temple doors

clockwise direction, thus opening the temple doors. The bucket, being heavier
than the counterweight, would keep the temple doors open as long as the Þre
upon the altar was kept burning. Dousing the Þre with cold water caused the
temple doors to close.1 As the air in the altar cooled, the contracting cool air
in the altar created a suction to extract hot air from the sealed vessel. The
resulting pressure drop caused the water from the bucket to be siphoned back
into the sealed vessel. Thus, the bucket became lighter, and the counterweight

1Here, there is a question on how slow or how fast the temple doors closed after dousing
out the Þre. This is an important consideration, and a knowledge of the exponential decay
in temperature of the air column inside the altar holds the answer. Naturally then, to give a
theatrical appearance, Hero could have had copper tubes that carried the air column in close
contact with the heating and cooling surface. This would make the temperature rise quickly
at the time of opening the doors and drop quickly when closing the doors.

© 2003 by Chapman & Hall/CRC

1.2. EXAMPLES OF CONTROL PROBLEMS 3

being heavier, moved down, thereby closing the door. This system was kept in
total secret, thus creating a mystic environment of superiority and power of the
Olympian Gods and contributing to the success of the Greek Empire.

1.2 Examples of control problems

One goal of classical science is to understand the behavior of motion of physical
systems. In control theory, rather than just to understand such behavior, the
object is to force a system to behave the way we want. Control is, roughly
speaking, a means to force desired behaviors. The term control, as used here,
refers generally to an instrument (possibly a human operator) or a set of instru-
ments used to operate, regulate, or guide a machine or vehicle or some other
system. The device that executes the control function is called the controller,
and the system for which some property is to be controlled is called the plant.
By a control system we mean the plant and the controller, together with the

Figure 1.2. Control system

communication between them. The examples in this section include manual and
automatic control systems and combinations of these. Figure 1.2 illustrates the
basic components of a typical control system. The controlling device produces
the necessary input to the controlled system. The output of the controlled sys-
tem, in the presence of unknown disturbances acting on the plant, acts as a
feedback for the controlling device to generate the appropriate input.

1.2.1 Open-loop control systems

Consider a system that is driven by a human � a car or a bicycle for example.
If the human did not make observations of the environment, then it would be
impossible for the �system� to be controlled or driven in a safe and secure
manner. Failure to observe the motion or movement of the system could have
catastrophic results. Stated alternatively, if there is no feedback regarding the
system�s behavior, then the performance of the system is governed by how well
the operator can maneuver the system without making any observations of the
behavior of the system. Control systems operating without feedback regarding
the system�s behavior are known as open-loop control systems. In other

© 2003 by Chapman & Hall/CRC

4 CHAPTER 1. A PRELUDE TO CONTROL THEORY

words, an open-loop control system is one where the control inputs are chosen
without regard to the actual system outputs. The performance of such systems
can only be guaranteed if the task remains the same for all time and can be
duplicated repeatedly by a speciÞc set of inputs.

Example 1.1 (Traffic light) To control the ßow of traffic on city streets, a
traffic engineer may preset a Þxed time interval for a traffic light to turn green,
yellow, and red. In this example, the environment around the street intersection
is the plant. Traffic engineers are interested in controlling some speciÞed plant

Figure 1.3. Traffic light, open-loop control

output, here the traffic ßow. The preset timer and on/off switch for the traffic
light comprise the controller. Since the traffic lights operate according to a
preset interval of time, without taking into account the plant output (the timing
is unaltered regardless of the traffic ßow), this control system is an open-loop
control system. A pictorial representation of the control design, called a block
diagram, is shown in Figure 1.3.

Example 1.2 (Toaster) A toaster can be set for producing the desired dark-
ness of toasted bread. The �darkness� setting allows a timer to time out and
switch off the power to the heating coils. The toaster is the plant, and the

Figure 1.4. Standard toaster

timing mechanism is the controller. The toaster by itself is unable to determine
the darkness of the toasted bread in order to adjust automatically the length
of time that the coils are energized. Since the darkness of the toasted bread
does not have any inßuence on the length of time heat is applied, there is no
feedback in such a system. This system, illustrated in Figure 1.4, is therefore
an open-loop control system.

Example 1.3 (Automatic sprinkler system) An automatic home sprinkler
system is operated by presetting the times at which the sprinkler turns on and
off. The sprinkler system is the plant, and the automatic timer is the controller.

© 2003 by Chapman & Hall/CRC

1.2. EXAMPLES OF CONTROL PROBLEMS 5

Figure 1.5. Automatic sprinkler system

There is no automatic feedback that allows the sprinkler system to modify the
timed sequence based on whether it is raining, or if the soil is dry or too wet.
The block diagram in Figure 1.5 illustrates an open-loop control system.

Example 1.4 (Conventional oven) With most conventional ovens, the cook-
ing time is prescribed by a human. Here, the oven is the plant and the controller
is the thermostat. By itself, the oven does not have any knowledge of the food

Figure 1.6. Conventional oven

condition, so it does not shut itself off when the food is done. This is, there-
fore, an open-loop control system. Without human interaction the food would
most deÞnitely become inedible. This is typical of the outcome of almost all
open-loop control problems.

From the examples discussed in this section, it should become clear that
some feedback is necessary in order for controllers to determine the amount of
correction, if any, needed to achieve a desired outcome. In the case of the toaster,
for example, if an observation was made regarding the degree of darkness of the
toasted bread, then the timer could be adjusted so that the desired darkness
could be obtained. Similar observations can be made regarding the performance
of the controller in the other examples discussed.

1.2.2 Closed-loop control systems

Closed-loop systems, or feedback control systems, are systems where the
behavior of the system is observed by some sensory device, and the observations
are fed back so that a comparison can be made about how well the system is
behaving in relation to some desired performance. Such comparisons of the
performance allow the system to be controlled or maneuvered to the desired
Þnal state. The fundamental objective in closed-loop systems is to make the
actual response of a system equal to the desired response.

© 2003 by Chapman & Hall/CRC

6 CHAPTER 1. A PRELUDE TO CONTROL THEORY

Example 1.5 (Traffic light) To control the traffic ßow in a more efficient

Figure 1.7. Traffic light feedback control

manner than in the example of the open-loop traffic light control described in
Example 1.1, we could design a controller that does take into account the traffic
ßow (i.e., plant output). In this case, the new control system is referred to as
a closed-loop system since the control strategy uses feedback information. The
block diagram of this design is shown in Figure 1.7.

Example 1.6 (Flush tank) Suppose water ßows into a ßush tank through a
supply valve, and the goal is to keep the water in the tank at a given level.

Figure 1.8. (a) Flush tank with ßoat

Figure 1.8. (b) Control system diagram for ßush tank with ßoat

One control system solving this problem uses a ßoat that opens and closes the
supply valve. As the water in the tank rises, the ßoat rises and slowly begins
to close the supply valve. When the water reaches the preset level, the supply
valve closes shut completely. In this example, the ßoat acts as the observer that

© 2003 by Chapman & Hall/CRC

1.2. EXAMPLES OF CONTROL PROBLEMS 7

provides feedback regarding the water level. This feedback is compared with
the desired level, which is the Þnal position of the ßoat (see Figures 1.8 (a) and
(b)).

Example 1.7 (Fluid level) Consider a manually controlled closed-loop sys-
tem for regulating the level of ßuid in a tank (see Figures 1.9 (a) and 1.9 (b)).

Figure 1.9. (a) Human maintaining ßuid level

Figure 1.9. (b) Diagram of control system for maintaining ßuid level

Fluid input is provided to the tank from a source that you can assume is
continuous-time and time-varying. This means that the ßow rate of ßuid in-
put can change with time. The ßuid enters a tank in which there is an outlet
for ßuid output. The outlet is controlled by a valve, that can be opened or
closed to control the ßow rate of ßuid output. The objective in this control
scheme is to maintain a desired level of ßuid in the tank by opening or closing
the valve controlling the output. Such opening and closing operations either
increase or decrease the ßuid output ßow rate to compensate for variations in
the ßuid input ßow rate.

© 2003 by Chapman & Hall/CRC

8 CHAPTER 1. A PRELUDE TO CONTROL THEORY

The operator is instructed to maintain the level of ßuid in the tank at a
particular level. A porthole on the side of the tank provides the operator a
window to observe the ßuid level. A reference marker is placed in the window
for the operator to see exactly where the ßuid level should be. If the ßuid level
drops below the reference marker, the human sees the ßuid level and compares
it with the reference. Sensing whether the height of ßuid is above or below
the reference, the operator can turn the valve either in the clockwise (close) or
counterclockwise (open) direction and control the ßow rate of the ßuid output
from the tank.
Good feedback control action can be achieved if the operator can contin-

uously adjust the valve position. This will ensure that the error between the
reference marker position, and the actual height of ßuid in the tank, is kept to
a minimum. The controller in this example is a human operator together with
the valve system. As a component of the feedback system, the human operator
is performing two tasks, namely, sensing the actual height of ßuid and compar-
ing the reference with the actual ßuid height. Feedback comes from the visual
sensing of the actual position of the ßuid in the tank.

Example 1.8 (Temperature control) The temperature inside a home is in-
ßuenced by the outside temperature. In order to maintain the inside temper-
ature at a comfortable level, the desired room temperature is set on the ther-
mostat. If the room temperature is lower than the desired temperature, a relay

Figure 1.10. Thermostat controlling room temperature

closes and turns on the furnace to produce heat in the room. When the room
temperature reaches the desired temperature, the relay opens, and in turn shuts
off the furnace.
As shown in Figure 1.10, a comparator is used to determine whether or not

the actual room temperature is equal to the desired room temperature. The
relay/switch and furnace are the dynamic elements of this closed-loop control
system shown in the Þgure.

© 2003 by Chapman & Hall/CRC

1.3. STABLE AND UNSTABLE SYSTEMS 9

1.3 Stable and unstable systems
Stability of an uncontrolled system indicates resistance to change, deterioration,
or displacement, in particular the ability of the system to maintain equilibrium
or resume its original position after displacement. Any system that violates
these characteristics is unstable. A closed-loop system must, aside from meeting
performance criteria, be stable.

Example 1.9 (Stable system) The pendulum is among the most stable of
all systems. No matter what position the ball is placed in, the pendulum tends
toward the vertical �at rest� position, shown in Figure 1.11.

Figure 1.11. Pendulum in motion and at rest

Pendulum clocks have been used to keep time since 1656, and they have not
changed dramatically since then. They were the Þrst clocks having a high level
of accuracy, made possible by the fact that the period of a pendulum�s swing
is related only to the length of the pendulum and the force of gravity. When

Figure 1.12. Clock�s escapement with pendulum

you �wind� a weight-driven clock, you pull on a cord that lifts the weights. The
weights act as an energy storage device so that the clock can run unattended for
relatively long periods of time. There are also gears that make the minute and
hour hands turn at the proper rates. Figure 1.12 shows an escapement with a

© 2003 by Chapman & Hall/CRC

10 CHAPTER 1. A PRELUDE TO CONTROL THEORY

gear having teeth of a special shape. Attached to the pendulum is a device to
engage the teeth of the gear. For each swing of the pendulum, one tooth of the
gear is allowed to �escape.� That is what produces the ticking sound of a clock.
One additional job of the escapement gear is to impart just enough energy into
the pendulum to overcome friction and allow it to keep swinging.

Example 1.10 (Unstable system) An inverted pendulum is an upright
pole with its fulcrum at the base. The objective is to balance the pole in the
upright position by applying the appropriate force at the base. An inverted
pendulum is inherently unstable, as you can observe by trying to balance a pole
upright in your hand (Figure 1.13). Feedback control can be used to stabilize
an inverted pendulum. We will give several examples in later chapters.

Figure 1.13. Balancing inverted pendulum

1.4 A look at controller design
Synthesizing the above examples of control problems, we can describe a typical
control problem as follows. For a given plant P , it is desirable to control a

© 2003 by Chapman & Hall/CRC

1.4. A LOOK AT CONTROLLER DESIGN 11

speciÞc plant output y by manipulating a plant input u in such a way to achieve
some control objective. That is to say, build a device C called a controller that
will send control signals u to the plant (u is the input to the plant) in such a
way as to achieve the given control objective (y is the output from the plant).
The function u is referred to as a control law, the speciÞcation of the control

Figure 1.14. Control law

signal. Figure 1.14 illustrates the problem. A successful control law is one that
does the job. Depending upon whether feedback information is used or not, we
have feedback or nonfeedback control laws. The engineering problem is this.
How do you Þnd the function u and how do you implement it?

Example 1.11 (Cruise control) Suppose we want to keep the speed of a car
at y0 = 65 mph for all t > t0. This is an example of a set-point control
problem. We have at our disposal a force u(t), and we can observe the speed
y(t). We consider the open-loop case. By the nature of the control problem,
there is a relationship between the input u and the output y, that is, there is a
function f satisfying

y(t) = f(u(t))

Given y0, the problem is to Þnd the control function u0(t) such that f(u0(t)) =
y0 for t > t0. It seems obvious that, without knowing f , there is no hope of
Þnding u0. The function f is referred to as a mathematical model for the plant.

From this viewpoint, standard control theory immediately focuses on Þnding
suitable mathematical models for a given plant as a very Þrst task in the analysis
and synthesis of any control problem. Note that analysis means collecting
information pertinent to the control problem at hand; whereas synthesismeans
actually constructing a successful control law. In most cases, a major part of
the effort is devoted to the task of developing a mathematical model for a plant.
In general, this is extremely difficult. The task requires detailed knowledge of
the plant and knowledge of physical laws that govern the interaction of all the
variables within the plant. The model is, at best, an approximate representation
of the actual physical system. So, the natural question that arises is whether
you can control the plant without knowing the relationship f between u and y
� that is, by using a model-free approach.
For our car example, it is straightforward to obtain a mathematical model.

From physical laws, the equation of motion (the plant dynamics) is of the form

d2x(t)

dt2
+
adx(t)

dt
= bu(t) (1.1)

© 2003 by Chapman & Hall/CRC

12 CHAPTER 1. A PRELUDE TO CONTROL THEORY

where x(t) denotes the car�s position.
The velocity is described by the equation y(t) = dx(t)/dt, so Equation 1.1,

written in terms of y, is
dy(t)

dt
+ ay(t) = bu(t) (1.2)

This equation gives rise to the needed relation between the input u(t) and output
y(t), namely y(t) = f(u(t)). This is done by solving for u(t) for a given y(t).
This equation itself provides the control law immediately. Indeed, from it you
see that, in order for y(t) = y0, for t > 0, the acceleration dy(t)/dt should be
equal to zero, so it is sufficient to take u(t) = (a/b)y0 for all t > 0.
To solve the second-order linear differential equation in Equation 1.2, you

can use Laplace transforms. This yields the transfer function F (s) of the
plant and puts you in the frequency domain � that is, you are working
with functions of the complex frequency s. Taking inverse Laplace transforms
returns u(t), putting you back in the time domain. These transformations
often simplify the mathematics involved and also expose signiÞcant components
of the equations. You will see some examples of this in Chapter 2. Note that this
example is not realistic for implementation, but it does illustrate the standard
control approach.
The point is that to obtain a control law analytically, you need a mathemati-

cal model for the plant. This might imply that if you don�t have a mathematical
model for your plant, you cannot Þnd a control law analytically. So, how can
you control complicated systems whose plant dynamics are difficult to know?
A mathematical model may not be a necessary prerequisite for obtaining a suc-
cessful control law. This is precisely the philosophy of the fuzzy and neural
approaches to control.
To be precise, typically, as in several of the preceding examples, feedback

control is needed for a successful system. These closed-loop controls are closely
related to the heuristics of �If...then...� rules. Indeed, if you feed back the plant
output y(t) to the controller, then the control u(t) should be such that the error
y(t)− y0 = e(t) goes to zero. So, apparently, the design of the control law u(t)
is reduced to another box with input e(t) and output u(t). Thus,

u(t) = g(e(t)) = h(y(t), y0)

The problem is to Þnd the function g or to approximate it from observable
values of u(t) and y(t). Even though y(t) comes out from the plant, you don�t
need the plant�s mathematical model to be able to observe y(t). Thus, where
does the mathematical model of the plant come to play in standard control
theory, in the context of feedback control? From a common-sense viewpoint,
we can often suggest various obvious functions g. This is done for the so-called
proportional integral derivative (PID) types of controllers discussed in the next
chapter. However, these controllers are not automatically successful controllers.
Just knowing the forms of these controllers is not sufficient information to make
them successful. Choosing good parameters in these controllers is a difficult
design problem, and it is precisely here that the mathematical model is needed.

© 2003 by Chapman & Hall/CRC

1.4. A LOOK AT CONTROLLER DESIGN 13

In the case of linear and time-invariant systems, the mathematical model can
be converted to the so-called transfer functions of the plant and of the controller
to be designed. As we will see, knowledge of the poles of these transfer functions
is necessary for designing state-variable feedback controllers or PID controllers
that will perform satisfactorily.

Even for linear and time-invariant plants, the modern view of control is
feedback control. From that viewpoint, a control law is a function of the error.
Proposing a control law, or approximating it from training data (a curve Þtting
problem), are obvious ways to proceed. The important point to note is that
the possible forms of a control law are not derived from a mathematical model
of the plant, but rather from heuristics. What the mathematical model does is
help in a systematic analysis leading to the choice of good parameters in the
proposed control law, in order to achieve desirable control properties. In other
words, with a mathematical model for the plant, there exist systematic ways to
design successful controllers.

In the absence of a mathematical model for the plant, we can always approx-
imate a plausible control law, either from a collection of �If. . . then. . . � rules or
from training data. When we construct a control law by any approximation
procedures, however, we have to obtain a good approximation. There are no
parameters, per se, in this approximation approach to designing control laws.
There are of course �parameters� in weights of neural networks, or in the mem-
bership functions used by fuzzy rules, but they will be adjusted by training
samples or trial and error. There is no need for analytical mathematical models
in this process. Perhaps that is the crucial point explaining the success of soft
computing approaches to control.

Let us examine a little more closely the prerequisite for mathematical models.
First, even in the search for a suitable mathematical model for the plant, we
can only obtain, in most cases, a mathematical representation that approximates
the plant dynamics. Second, from a common sense point of view, any control
strategy is really based upon �If. . . then. . . � rules. The knowledge of a functional
relationship f provides speciÞc �If. . . then. . . � rules, often more than needed.
The question is: Can we Þnd control laws based solely on �If. . . then. . . � rules?
If yes, then obviously we can avoid the tremendous task of spending the major
part of our effort in Þnding a mathematical model. Of course, if a suitable
mathematical model is readily available, we generally should use it.

Our point of view is that a weaker form of knowledge, namely a collection
of �If...then...� rules, might be sufficient for synthesizing control laws. The
rationale is simple: we are seeking an approximation to the control law �
that is, the relationship between input and output of the controller directly,
and not the plant model. We are truly talking about approximating functions.
The many ways of approximating an unknown function include using training
samples (neural networks) and linguistic �If. . . then. . . � rules (fuzzy logic).2

2 In both cases, the theoretical foundation is the so-called universal approximation capabil-
ity, based on the Stone-Weierstrass Theorem, leading to �good� models for control laws.

© 2003 by Chapman & Hall/CRC

14 CHAPTER 1. A PRELUDE TO CONTROL THEORY

In summary, standard control theory emphasizes the absolute need to have
a suitable mathematical model for the plant in order to construct successful
control laws. Recognizing that in formulating a control law we might only
need weaker knowledge, neural and fuzzy control become useful alternatives in
situations where mathematical models of plants are hard to specify.

1.5 Exercises and projects
1. In Hero�s ancient control system, identify the controller and the plant.
Develop a block diagram and label various plant details.

2. For the examples shown for open-loop systems, how would you modify
each system to provide closed-loop control? Explain with the help of
block diagrams both open- and closed-loop systems for each example.

3. The Intelligent Vehicle Highway System (IVHS) program for future trans-
portation systems suggests the possibility of using sensors and controllers
to slow down vehicles automatically near hospitals, accident locations, and
construction zones. If you were to design a system to control the ßow of
traffic in speed-restricted areas, what are the major considerations you
have to consider, knowing that the highway system is the controller and
the vehicle is the plant? Draw a block diagram that illustrates your design
concept. Explain the workings of the IVHS system design.

4. A moving sidewalk is typically encountered in large international airports.
Design a moving sidewalk that operates only when a passenger approaches
the sidewalk and stops if there are no passengers on, or approaching,
the sidewalk. Discuss what type of sensors might be used to detect the
approach of passengers, and the presence of passengers on the sidewalk.

5. A baggage handling system is to be designed for a large international
airport. Baggage typically comes off a conveyor and slides onto a carousel
that goes around and around. The objective here is to prevent one bag
from sliding onto another bag causing a pile up. Your task is to design a
system that allows a bag to slide onto the carousel only if there is room
between two bags, or if there are no bags. Explain your system with the
aid of a block diagram of the control system.

6. A soda bottling plant requires sensors to detect if bottles have the right
amount of soda and a metal cap. With the aid of sketches and block
diagrams, discuss in detail how you would implement a system of sensors
to detect soda level in the bottles and whether or not there is a metal cap
on each bottle of soda. State all your assumptions in choosing the type of
sensor(s) you wish to use.

7. A potato chip manufacturing plant has to package chips with each bag of
chips having a net weight of 16 ounces or 453.6 grams. Discuss in detail
how a system can be developed that will guarantee the desired net weight.

© 2003 by Chapman & Hall/CRC

Chapter 2

MATHEMATICAL
MODELS IN CONTROL

In this chapter we present the basic properties of control and highlight signiÞcant
design and operating criteria of model-based control theory. We discuss these
properties in the context of two very popular classical methods of control: state-
variable feedback control, and proportional-integral-derivative (PID) control.
This chapter serves as a platform for discussing the desirable properties of a
control system in the context of fuzzy and neural control in subsequent chapters.
It is not our intent to present a thorough treatment of classical control theory,
but rather, to present relevant material that provides the foundations for fuzzy
and neural control systems. The reader therefore is urged to refer to the many
excellent sources in classical control theory for further information.
Standard control theory consists of two tasks, analysis and synthesis. Analy-

sis refers to the study of the plant and the control objectives. Synthesis refers
to designing and building the controller to achieve the objectives. In standard
control theory, mathematical models are used in both the analysis and the syn-
thesis of controllers.

2.1 Introductory examples: pendulum problems

We present two simple, but detailed, examples to bring out the general frame-
work and techniques of standard control theory. The Þrst is a simple pendulum,
Þxed at one end, controlled by a rotary force; and the second is an inverted
pendulum with one end on a moving cart. The concepts introduced in these ex-
amples are all discussed more formally, and in more detail, later in this chapter.

2.1.1 Example: Þxed pendulum

We choose the problem of controlling a pendulum to provide an overview of
standard control techniques, following the analysis in [70]. In its simpliÞed

15

© 2003 by Chapman & Hall/CRC

16 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

form, the mathematical model of the motion of a pendulum, which is derived
from mechanics, is

θ̈ (t) + sin θ (t) = u (t) (2.1)

where θ (t) denotes the angle at time t, θ̈ (t) is the second derivative of θ (t), k
is a constant, and u (t) is the torque applied at time t. See Figure 2.1. Note

Figure 2.1. Motion of pendulum

that Equation (2.1) is a nonlinear differential equation.
The vertical position θ = π is an equilibrium point when úθ = 0 and u = 0, but

it is unstable. We can make a change of variable to denote this equilibrium point
as zero: Let ϕ = θ − π, then this equilibrium point is (ϕ = 0, úϕ = 0, u = 0).
Suppose we would like to keep the pendulum upright, as shown in Figure

2.2, by manipulating the torque u (t). The appropriate u (t) that does the job

Figure 2.2. Upright pendulum

is called the control law of this system. It is clear that in order to achieve our
control objective, we need to answer two questions:

1. How do we derive a control law from Equation (2.1)?

2. If such a control law exists, how do we implement it?

© 2003 by Chapman & Hall/CRC

2.1. INTRODUCTORY EXAMPLES: PENDULUM PROBLEMS 17

In this example, we concentrate on answering the Þrst question. When we
attempt to keep the pendulum upright, our operating range is a small range
around the unstable equilibrium position. As such, we have a local control
problem, and we can simplify the mathematical model in Equation (2.1) by
linearizing it around the equilibrium point. For ϕ = θ − π small, we keep only
the Þrst-order term in the Taylor expansion of sin θ, that is, − (θ − π), so that
the linearization of Equation (2.1) is the linear model (the linear differential
equation)

ϕ̈ (t)− ϕ (t) = u (t) (2.2)

and the control objective is manipulating u (t) to bring ϕ (t) and úϕ (t) to zero
from any small nonzero initial ϕ (0), úϕ (0).
Note that Equation (2.2) is a second-order differential equation. It is conve-

nient to replace Equation (2.2) by a system of Þrst-order differential equations
in terms of ϕ (t) and úϕ (t). Here, let x (t) be the vector

x (t) =

µ
x1 (t)
x2 (t)

¶
=

µ
ϕ (t)
úϕ (t)

¶
so that

úx (t) =

µ
úϕ (t)
ϕ̈ (t)

¶
=

µ
x2 (t)
úx2 (t)

¶
With this notation we see that the original model, Equation (2.1), is written as

úx = f (x, u) (2.3)

where f is nonlinear, and

f =

µ
f1
f2

¶
where f1 (x, u) = x2 and f2 (x, u) = − sin (x1 + π) + u. Since f is continuously
differentiable and f (0, 0) = 0, we can linearize f around (x, u) = (0, 0) as

úx = Ax+Bu (2.4)

where the matrices A and B are

A =

Ã
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

!
=

µ
0 1
1 0

¶

B =

Ã
∂f1
∂u
∂f2
∂u

!
=

µ
0
1

¶
with both Jacobian matrices A and B evaluated at (x, u) = (0, 0).
Thus, in the state-space representation, Equation (2.2) is replaced by Equa-

tion (2.4). Note that, in general, systems of the form (2.4) are called linear
systems, and when A and B do not depend on time, they are called time-
invariant systems.

© 2003 by Chapman & Hall/CRC

18 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

Now back to our control problem. Having simpliÞed the original dynamics,
Equation (2.1) to the nicer form of Equation (2.2), we are now ready for the
analysis leading to the derivation of a control law u (t). The strategy is this.
By examining the system under consideration and our control objective, the
form of u (t) can be suggested by common sense or naive physics. Then the
mathematical model given by Equation (2.2) is used to determine (partially)
the control law u (t).
In our control example, u (t) can be suggested from the following heuristic

�If .. then ...� rules:

If ϕ is positive, then u should be negative
If ϕ is negative, then u should be positive

From these common sense �rules,� we can conclude that u (t) should be of the
form

u (t) = −αϕ (t) (2.5)

for some α > 0. A control law of the form (2.5) is called a proportional
control law, and α is called the feedback gain. Note that (2.5) is a feedback
control since it is a function of ϕ (t).
To obtain u (t), we need α and ϕ (t). In implementation, with an appropriate

gain α, u (t) is determined since ϕ (t) can be measured directly by a sensor. But
before that, how do we know that such a control law will stabilize the inverted
pendulum? To answer this, we substitute Equation (2.5) into Equation (2.2),
resulting in the equation

ϕ̈ (t)− ϕ (t) + αϕ (t) = 0 (2.6)

In a sense, this is analogous to guessing the root of an equation and checking
whether it is indeed a root. Here, in control context, checking that u (t) is
satisfactory or not amounts to checking if the solution ϕ (t) of Equation (2.6)
converges to 0 as t → +∞, that is, checking whether the controller will sta-
bilize the system. This is referred to as the control system (the plant and the
controller) being asymptotically stable.
For this purpose, we have, at our disposal, the theory of stability of linear

differential equations. Thus, we examine the characteristic equation of (2.6),
namely

z2 + α− 1 = 0 (2.7)

For α > 1, the roots of (2.7) are purely imaginary: z = ± j√α− 1, where
j =

√−1. As such, the solutions of (2.6) are all oscillatory and hence do not
converge to zero. For α ≤ 1, it can also be seen that ϕ (t) does not converge to
zero as t→ +∞. Thus, u (t) = −αϕ (t) is not a good guess.
Let us take another guess. By closely examining why the proportional control

does not work, we propose to modify it as follows. Only for α > 1 do we have
hope to modify u (t) successfully. In this case, the torque is applied in the correct
direction, but at the same time it creates more inertia, resulting in oscillations
of the pendulum. Thus, it appears we need to add to u (t) something that acts

© 2003 by Chapman & Hall/CRC

2.1. INTRODUCTORY EXAMPLES: PENDULUM PROBLEMS 19

like a brake. In technical terms, we need to add damping to the system. The
modiÞed control law is now

u (t) = −αϕ (t)− β úϕ (t) (2.8)

for α > 1 and β > 0. Because of the second term in u (t), these types of control
laws are called proportional-derivative (feedback) control laws, or simply PD
control.
To determine if Equation (2.8) is a good guess, as before, we look at the

characteristic equation
z2 + βz + α− 1 = 0 (2.9)

of the closed-loop, second-order linear differential equation

ϕ̈ (t) + β úϕ (t) + (α− 1)ϕ (t) = 0 (2.10)

For α > 1 and β > 0, the roots of Equation (2.9) are

z =
−β ±

q
β2 − 4 (α− 1)
2

and hence both have negative real parts. Basic theorems in classical control
theory then imply that all solutions of Equation (2.2) with this control law will
converge to zero as t gets large. In other words, the PD control laws will do the
job. In practice, suitable choices of α and β are needed to implement a good
controller. Besides α and β, we need the value úϕ (t), in addition to ϕ (t), in
order to implement u (t) by Equation (2.8).
Suppose we can only measure ϕ (t) but not úϕ (t), that is, our measurement

of the state

x (t) =

µ
ϕ (t)
úϕ (t)

¶
is of the form

y (t) = Cx (t) (2.11)

for some known matrix C. Here, C =
¡
1 0

¢
.

Equation (2.11) is called the measurement (or output) equation, that,
in general, is part of the speciÞcation of a control problem (together with (2.4)
in the state-space representation).
In a case such as the above, a linear feedback control law that depends only

on the allowed measurements is of the form

u (t) = KCx (t)

Of course, to implement u (t), we need to estimate the components of x (t) that
are not directly measured, for example úϕ (t), by some procedures. A control law
obtained this way is called a dynamic controller.
At this point, it should be mentioned that u and y are referred to as input

and output, respectively. Approximating a system from input-output observed
data is called system identiÞcation.

© 2003 by Chapman & Hall/CRC

20 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

Let us further pursue our problem of controlling an inverted pendulum. The
linearized model in Equation (2.2) could be perturbed by some disturbance e,
say, resulting in

ϕ̈ (t)− ϕ (t) = u (t) + e (2.12)

To see if our PD control law is sufficient to handle this new situation, we
put (2.8) into (2.12), resulting in

ϕ̈ (t) + β úϕ (t) + (α− 1)ϕ (t) = e (2.13)

and examine the behavior of the solutions of (2.13) for t large. It can be shown,
unfortunately, that no solutions of (2.13) converge to zero as t → +∞. So we
need to modify (2.8) further to arrive at an acceptable control law. Without
going into details here (but see examples in Section 2.7), the additional term to
add to our previous PD control law is of the form

−γ
Z t

0

ϕ (s) ds

This term is used to offset a nonzero error in the PD control. Thus, our new
control law takes the form

u (t) = −αϕ (t)− β úϕ (t)− γ
Z t

0

ϕ (s) ds (2.14)

A control law of the form (2.14) is called a proportional-integral-derivative
(PID) control. PID control is very popular in designing controllers for linear sys-
tems. It is important to note that, while PID controls are derived heuristically,
stability analysis requires the existence of mathematical models of the dynamics
of the systems, and stability analysis is crucial for designing controllers.
In our control example, we started out with a nonlinear system. But since

our control objective was local in nature, we were able to linearize the system and
then apply powerful techniques in linear systems. For global control problems,
as well as for highly nonlinear systems, one should look for nonlinear control
methods. In view of the complex behaviors of nonlinear systems, there are no
systematic tools and procedures for designing nonlinear control systems. The
existing design tools are applicable to particular classes of control problems.
However, stability analysis of nonlinear systems can be based on Lyapunov�s
stability theory.

2.1.2 Example: inverted pendulum on a cart

We look at a standard approach for controlling an inverted pendulum, which we
will contrast later with fuzzy control methods. The following mechanical system
is referred to as an inverted pendulum system. In this system, illustrated
in Figure 2.3, a rod is hinged on top of a cart. The cart is free to move in the
horizontal plane, and the objective is to balance the rod in the vertical position.
Without any control actions on the cart, if the rod were initially in the vertical

© 2003 by Chapman & Hall/CRC

2.1. INTRODUCTORY EXAMPLES: PENDULUM PROBLEMS 21

position then even the smallest external disturbance on the cart would make
the rod lose balance and hence make the system unstable. The objective is to
overcome these external perturbations with control action and to keep the rod
in the vertical position. Therefore, in the presence of control actions the force
on the cart is comprised of both external disturbances and the necessary control
actions from a controller to overcome the effects of disturbances.

Figure 2.3. Inverted pendulum on a cart

The task of the controller is to apply an appropriate force u(t) to the cart to
keep the rod standing upright. We wish to design a controller that can control
both the pendulum�s angle and the cart�s position.
The following model parameters will be used to develop the mathematical

model of the system.

M is the mass of the cart.
m is the mass of the pendulum.
b is the friction of the cart resisting motion.
L is the length of the pendulum to its center of mass.
I is the inertia of the pendulum.
u(t) is the force applied to the cart.
x represents the cart position coordinate.
θ is the angle of the pendulum measured from the vertical.

To design a controller for the inverted pendulum from a standard control
viewpoint, it is Þrst necessary to determine its mathematical model. In Figure
2.4, we consider the free-body diagrams of the cart and the pendulum. This
will allow us to write the equations of motion.
Since the cart can only move around in a horizontal line, we are only inter-

ested in obtaining the equation by summing the forces acting on the cart in the
horizontal direction. Summing the forces along the horizontal for the cart, we
obtain the equation of motion for the cart as

Mẍ+ b úx+H = u

© 2003 by Chapman & Hall/CRC

22 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

Figure 2.4. Free-body diagrams of the cart and the pendulum

By summing the forces along the horizontal for the pendulum, we get the fol-
lowing equation of motion:

H = mẍ+mLθ̈ cos θ −mL úθ2 sin θ
Substituting this equation into the equation of motion for the cart and collecting
terms gives

(M +m)ẍ+ b úx+mLθ̈ cos θ −mL úθ2 sin θ = u (2.15)

This is the Þrst of two equations needed for a mathematical model.
The second equation of motion is obtained by summing all the forces in the

vertical direction for the pendulum. Note that, as we pointed out earlier, we
only need to consider the horizontal motion of the cart; and as such, there is no
useful information we can obtain by summing the vertical forces for the cart.
By summing all the forces in the vertical direction acting on the pendulum, we
obtain

V sin θ +H cos θ −mg sin θ = mLθ̈ +mẍ cos θ
In order to eliminate the H and V terms, we sum the moments around the

centroid of the pendulum to obtain

−V L sin θ −HL cos θ = Iθ̈
Substituting this in the previous equation and collecting terms yields

(mL2 + I)θ̈ +mgL sin θ = −mLẍ cos θ (2.16)

Equations 2.15 and 2.16 are the equations of motion describing the nonlinear
behavior of the inverted pendulum. Since our objective is to design a controller
for this nonlinear problem, it is necessary for us to linearize this set of equations.
Our goal is to linearize the equations for values of θ around π, where θ = π is
the vertical position of the pendulum. Consider values of θ = π + ϕ where ϕ

© 2003 by Chapman & Hall/CRC

2.1. INTRODUCTORY EXAMPLES: PENDULUM PROBLEMS 23

represents small deviations around the vertical position. For this situation, we
can use the approximations cos θ = −1, sin θ = −ϕ, and θ̈ = 0. By substituting
these approximations into Equations 2.15 and 2.16, we obtain

(M +m)ẍ+ b úx−mLϕ̈ = u (2.17)

and

(mL2 + I)ϕ̈−mgLϕ = mLẍ (2.18)

Equations 2.17 and 2.18 are the linearized set of equations we will use to design
the PID controller.
We Þrst derive the transfer function for the inverted pendulum. To do this,

we take the Laplace transform of Equations 2.17 and 2.18 with zero initial
conditions which yields

(M +m)s2X(s) + bsX(s)−mLs2Φ(s) = U(s) (2.19)

and

(mL2 + I)s2Φ(s)−mgLΦ(s) = mLs2X(s) (2.20)

Since we are interested in the deviation Φ(s) in the pendulum from the
vertical position, as a function of the state X(s), we solve Equation 2.20 for
X(s) to obtain

X(s) =

"¡
mL2 + I

¢
mL

− g

s2

#
Φ(s) (2.21)

Substituting Equation 2.21 into 2.19, we obtain the relationship between Φ(s)
and the state X(s) as

(M +m)

·
(mL2+I)

mL + g
s

¸
s2Φ(s) + b

·
(mL2+I)

mL + g
s

¸
sΦ(s)−mLs2Φ(s)

= U(s)
(2.22)

Rearranging Equation 2.22, we obtain the transfer function

Φ(s)

U(s)
=

mL
r s

2

s4 + b(mL2+I)
r s3 − (M+m)mgL

r s2 − bmgL
r s

=
mL
r s

s3 + b(mL2+I)
r s2 − (M+m)mgL

r s− bmgL
r

where

r =
h
(M +m)

¡
mL2 + I

¢− (mL)2i
Using the method outlined earlier, the linearized equations may be expressed

© 2003 by Chapman & Hall/CRC

24 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

in state-space form as
úx1(t)
úx2(t)
úϕ1(t)
úϕ2(t)

 =


0 1 0 0

0
−(mL2+I)b

(M+m)I+MmL2
m2gL2

(M+m)I+MmL2 0

0 0 0 1

0 −mLb
(M+m)I+MmL2

mgL(M+m)
(M+m)I+MmL2 0



x1(t)
x2(t)
ϕ1(t)
ϕ2(t)



+


0

(mL2+I)
(M+m)I+MmL2

0
mL

(M+m)I+MmL2

u (t)
where úx1(t) = úx, úx2(t) = ẍ, úϕ1(t) = úϕ and úϕ2(t) = ϕ̈. Since we are interested
in the position of the cart, as well as the angular position of the pendulum, the
output may be synthesized as

·
y1(t)
y2(t)

¸
=

·
1 0 0 0
0 0 1 0

¸
x1(t)
x2(t)
ϕ1(t)
ϕ2(t)

+ · 00
¸
u (t)

For this example we will assume the following parameters:

M = 0.5 kg

m = 0.2 kg

b = 0.1N/m/ s

l = 0.3m

I = 0.006 kgm2

To make the design more challenging, we will be applying a step input to the
cart. The cart should achieve its desired position within 5 seconds and have a
rise time under 0.5 seconds. We will also limit the pendulum�s overshoot to 20
degrees (0.35 radians), and it should also settle in under 5 seconds. The design
requirements for the inverted pendulum are therefore

� settling time for x and θ of less than 5 seconds,
� rise time for x of less than 0.5 seconds, and
� overshoot of θ less than 20 degrees (0.35 radians).

We use Matlab to perform several computations. First, we wish to obtain the
transfer function for the given set of parameters. Using the m-Þle shown below,
we can obtain the coefficients of the numerator and denominator polynomials.
M = .5;
m = 0.2;

© 2003 by Chapman & Hall/CRC

2.1. INTRODUCTORY EXAMPLES: PENDULUM PROBLEMS 25

b = 0.1;
i = 0.006;
g = 9.8;
l = 0.3;
r = (M+m)*(i+m*l*l)-(m*l)*(m*l);
numplant = [m*l/q 0];
denplant = [1 b*(i+m*l^2)/q -(M+m)*m*g*l/q -b*m*g*l/q];

The coefficients of the numerator and denominator polynomial from the
Matlab output can be translated to the following plant transfer function:

Gp(s) =
4.5455

s3 + 0.1818s2 − 31.1818s− 4.4545 =
Np(s)

Dp(s)

The open-loop response of this transfer function can be simulated in Matlab
using the following code:
t = 0:0.01:5;
impulse(numplant,denplant,t)
axis([0 0.9 0 60]);

The plot shown in Figure 2.5 clearly indicates the unstable nature of the
plant in an open-loop setup.

Figure 2.5. Unstable plant

We can now extend the Matlab script Þle to include computation of the
state-space model. The necessary code is as follows:
p = i*(M+m)+M*m*l*l;
A = [0 1 0 0;
0 -(i+m*l*l)*b/p (m*m*g*l*l)/p 0;
0 0 0 1;
0 -(m*l*b)/p m*g*l*(M+m)/p 0]
B = [0;
(i+m*l*l)/p;
0;
m*l/p]

© 2003 by Chapman & Hall/CRC

26 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

C = [1 0 0 0;
0 0 1 0]
D = [0;
0]

The output gives the following state-space model
úx1(t)
úx2(t)
úϕ1(t)
úϕ2(t)

 =

0 1 0 0
0 −0.1818 2.6727 0
0 0 0 1
0 −0.4545 31.1818 0



x1(t)
x2(t)
ϕ1(t)
ϕ2(t)

+


0
1.8182
0

4.5455

u (t)
·
y1(t)
y2(t)

¸
=

·
1 0 0 0
0 0 1 0

¸
x1(t)
x2(t)
ϕ1(t)
ϕ2(t)

+ · 00
¸
u (t)

Figure 2.6. Time simulation for a unit step

Figure 2.7. Original control structure

Figure 2.6 shows the response of the open-loop system where the system
is unstable and Figure 2.7 illustrates the closed-loop control structure for this
problem. Note that the control objective is to bring the pendulum to the upright
position. As such, the output of the plant is tracking a zero reference with the

© 2003 by Chapman & Hall/CRC

2.1. INTRODUCTORY EXAMPLES: PENDULUM PROBLEMS 27

vertical reference set to a zero value. Hence, the control structure may be
redrawn as shown in Figure 2.8. The force applied to the cart is added as an
impulse disturbance.

Figure 2.8. ModiÞed control structure

From the modiÞed control structure, we can obtain the closed-loop transfer
function that relates the output with the disturbance input. Referring to Figure
2.8,

E(s) = D(s)−Gc(s)Y (s)
and

Y (s) = Gp(s)E(s)

Therefore,
Y (s)

D(s)
=

Gp(s)

[1 +Gp(s)Gc(s)]

DeÞning the transfer function of the PID controller

Gc(s) =
Nc(s)

Dc(s)

and using

Gp(s) =
Np(s)

Dp(s)

we can write the transfer function as

Y (s)

D(s)
=

Np(s)
Dp(s)

[1 + Nc(s)
Dc(s)

Np(s)
Dp(s)

]
=

Np(s)Dc(s)

[Dc(s)Dp(s) +Nc(s)Np(s)]

Since the transfer function for the PID controller is

Gc(s) =

¡
s2KD + sKP +KI

¢
s

=
Nc(s)

Dc(s)

and the transfer function of the inverted pendulum with a cart is

Gp(s) =
4.5455

s3 + 0.1818s2 − 31.1818s− 4.4545 =
Np(s)

Dp(s)

© 2003 by Chapman & Hall/CRC

28 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

we can easily manipulate the transfer function inMatlab for various numerical
values of KP , KD, and KI . To convolve the polynomials in the denominator of
the transfer function, we use a special function called polyadd.m that is added
to the library. The function polyadd.m is not in the Matlab toolbox. This
function will add two polynomials even if they do not have the same length. To
use polyadd.m in Matlab, enter polyadd(poly1, poly2). Add the following code
to your work folder.

function[poly]=polyadd(poly1,poly2)

% Copyright 1996 Justin Shriver

% polyadd(poly1,poly2) adds two polynomials possibly of unequal length

if length(poly1)<length(poly2)

short=poly1;

long=poly2;

else

short=poly2;

long=poly1;

end

mz=length(long)-length(short);

if mz>0

poly=[zeros(1,mz),short]+long;

else

poly=long+short;

end

It is very convenient to develop controllers using the Simulink features of
Matlab. For the inverted pendulum problem, the simulation diagram using
Simulink is shown in Figure 2.9. Parameters for the PID controller can be
varied to examine how the system will perform.

Figure 2.9. Simulink model for inverted pendulum problem

© 2003 by Chapman & Hall/CRC

2.2. STATE VARIABLES AND LINEAR SYSTEMS 29

2.2 State variables and linear systems

We now begin to formalize the general framework of standard control, as exem-
pliÞed by the two previous examples. The state of a system at a given time t
is described by a set of variables xi (t), i = 1, 2, . . . , n, called state variables.
These variables, that are functions, are usually written in the form of a vector
function

x (t) = (x1(t), x2(t), . . . , xn(t))

The standard mathematical model of a control system is a system of differ-
ential equations

úx (t) = f (x (t) ,u (t) , t)

involving the state variables and the input (control) variables (also functions)

u (t) = (u1(t), u2(t), . . . , uk(t))

so that the future state of the system can be determined from it. These differ-
ential equations are called state equations.
In general, state variables cannot be measured directly, but instead, only

values of some other set of variables

y (t) = g (x (t) ,u (t)) = (y1(t), y2(t), . . . , ym(t))

called output variables can be measured. The equation

y = g (x,u)

is called the output equation.
A system whose performance obeys the principle of superposition is de-

Þned as a linear system. The principle states that the mathematical model
of a system is linear if, when the response to an input u is g (x,u), then the
response to the linear combination

cu+ dv

of inputs is that same linear combination

cg (x,u) + dg (x,v)

of the corresponding outputs. Here, c and d are constants. The Þrst model of
a situation is often constructed to be linear because linear mathematics is very
well-developed and methods for control of linear systems are well-understood.
In practice, a linear system is an approximation of a nonlinear system near a
point, as is explained in Section 2.9. This leads to a piecewise linear system
and gives rise to simpliÞed matrix algebra of the form discussed here. Most
systems in classical control theory are modeled as piecewise linear systems, and
controllers are designed to control the approximated systems.

© 2003 by Chapman & Hall/CRC

30 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

The system is called time invariant if the response to u (t− τ) is y (t− τ),
that is,

g (x (t− τ) ,u (t− τ)) = y (t− τ)
for any Þxed τ . Linear time invariant sets of state equations are the easiest to
manage analytically and numerically. Furthermore, the technique of lineariza-
tion of nonlinear systems is an important one, relying on the fact that if the
perturbation z (t) from some desired state x (t) is small, then a set of linear
equations in z can be formed by neglecting all but the Þrst terms in a Taylor
series expansion in z.
A linear differential equation is one that can be written in the form

bn (x) y
(n) + bn−1 (x) y(n−1) + · · ·+ b1 (x) y0 + b0 (x) y = R (x) (2.23)

where b1, ..., bn, and R are arbitrary functions of x. Writing D for the dif-
ferentiation operator Dy = dy/dx, and letting a power of D denote repeated
differentiation, that is, using the notation

Dny =
dny

dxn

the left side of Equation 2.23 can be rewritten in the form

bn (x)D
ny + bn−1 (x)Dn−1y + · · ·+ b1 (x)Dy + b0 (x) y

=
£
bn (x)D

n + bn−1 (x)Dn−1 + · · ·+ b1 (x)D + b0 (x)
¤
y

= p (D) y

Thus, the linear differential equation is of the form

p (D) y = R (x)

where p (D) is a polynomial in D with coefficients bi (x). For such an equation,
the general solution has the form

y (x) = yh (x) + yp (x)

where yh (x) is the homogeneous solution � that is, p (D) yh = 0, and yp (x) is
a particular solution.
A linear system is modeled by linear differential equations. For a linear

system, the mathematical form of the state model is as follows:

úx(t) = Ax(t) +Bu(t) State equations

y(t) = Cx(t) +Du(t) Output equations

where x(t) is the n× 1 state vector; A is an n× n matrix and B is an n× k
matrix; u(t) is the k × 1 input vector; C is an m × n matrix, and D is an
m × k matrix. Thus, for a linear system we have the power of linear algebra
and matrix theory at our disposal.

© 2003 by Chapman & Hall/CRC

2.2. STATE VARIABLES AND LINEAR SYSTEMS 31

Example 2.1 (Motion of an automobile) A classical example of a simpli-
Þed control system is the motion of a car subject to acceleration and braking
controls. A simpliÞed mathematical model of such a system is

d2s

dt2
+ a

ds

dt
+ bs = f(t)

where s(t) represents position at time t, so that ds(t)
dt represents velocity and

d2s(t)
dt2 represents acceleration. The basic idea of the state variable approach
is to select variables that represent the state of the system. Certainly, the
position s(t) and the velocity ds(t)

dt both represent states of the system. If we
let x1(t) = s(t), then we are assigning a state variable x1(t) to represent the
position of the system. The velocity úx1(t) = ús(t) can be assigned another state
variable

x2(t) = úx1(t)

This is one of the state equations. Here, we have expressed one state in terms
of the other. Proceeding further, note that ẍ1(t) = úx2(t) = s̈(t) yields the
acceleration term. From the second-order differential equation s̈(t) = −a ús(t)−
bs(t) + f(t), we have

úx2(t) = −ax2(t)− bx1(t) + f(t)

This is the second of the state equations. For an nth order differential equation
there must be n Þrst-order state equations. In this case, for a second-order
differential equation, we have two Þrst-order differential equations. Casting
these two equations in vector-matrix form, we can write the set of state equations
as ·

úx1(t)
úx2(t)

¸
=

·
0 1
−b −a

¸ ·
x1(t)
x2(t)

¸
+

·
0
1

¸
f (t)

that is of the form

úx(t) = Ax(t) +Bu(t)

where u (t) = f (t).
To obtain both the position and the velocity of the system as outputs, we

can select y1(t) and y2(t) to represent the states x1(t) and x2(t), respectively.
Placing these quantities in vector-matrix form, we obtain the output equation·

y1(t)
y2(t)

¸
=

·
1 0
0 1

¸ ·
x1(t)
x2(t)

¸
+

·
0
0

¸
f(t)

that is of the form

y(t) = Cx(t) +Du(t)

Note again that the outputs are expressed in terms of the system states.

© 2003 by Chapman & Hall/CRC

32 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

2.3 Controllability and observability
An important Þrst step in solving control problems is to determine whether the
desired objective can be achieved by manipulating the chosen control variables.
Intuitively, a control system should be designed so that the input can bring
it from any state to any other state in a Þnite time, and also so that all the
states can be determined from measuring the output variables. The concepts of
controllability and observability formalize these ideas.
A plant is controllable if at any given instant, it is possible to control each

state in the plant so that a desired outcome can be reached. In the case where
a mathematical model of the system is available in the form

úx (t) = F (x, u, t) (2.24)

the system úx (t) is said to be completely controllable if for any t0, any initial
condition x0 = x (t0), and any Þnal state xf , there exists a Þnite time T and a
control function u (t) deÞned on the interval [t0, T] such that x (T) = xf . Note
that x (T) is the solution of Equation 2.24 and clearly depends on the function
u (t). It can be shown that a linear, time-invariant system

úx (t) = Ax (t) +Bu (t) (2.25)

is completely controllable if and only if the n× nm controllability matrix

W =
£
B AB A2B · · · An−1B

¤
(2.26)

has rank n, where A is n× n and B is n×m. More generally, the system

úx(t) = A(t)x(t) +B(t)u(t) (2.27)

y(t) = C(t)x(t)

with A a continuous n× n matrix, is completely controllable if and only if the
n× n symmetric controllability matrix

W (t0, t1) =

Z t1

t0

X (t)X−1 (t0)B (t)BT (t)
¡
X−1¢T (t0)XT (t) dt (2.28)

is nonsingular, where X (t) is the unique n× n matrix satisfying
dX (t)

dt
= A (t)X (t) , X (0) = I (2.29)

Other types of controllability can be deÞned. For example, output control-
lability requires attainment of arbitrary Þnal output. The ability to control the
state gives rise to the notion that the output (response) of a system may also be
controllable, based on the assumption that if all the individual states in a sys-
tem are controllable, and the output is a linear combination of the states, then
the output must also be controllable. Generally, however, there is no guarantee

© 2003 by Chapman & Hall/CRC

2.3. CONTROLLABILITY AND OBSERVABILITY 33

that a system that exhibits state controllability will also exhibit output con-
trollability. For example, if the output is a linear combination of two or more
states, and the states are not independent, then the system may not exhibit
output controllability.
We need to keep in mind that controllability is a black and white issue. A

model of a plant is either controllable in a given sense or it is not. Clearly,
to know that a plant is uncontrollable is a very useful piece of information.
However, to know that something is controllable really tells us nothing about
the degree of difficulty in achieving the desired objectives. From a practical point
of view, we would, of course, also like to know how to check the controllability
of a given system.
A plant is observable if states can be determined from output observations.

Observability therefore, is concerned with the issue of what can be said about
the system state when one is given measurements of the plant output. In the
case where the mathematical model of the system is available in the form

úx (t) = F (x, u, t)

the system is said to be completely observable if for any initial state x (0)
there is a Þnite time T > 0 for which x (0) can be uniquely deduced from the
output y = G (x, u, t) and the input u (t) over the interval [0, T]. Measuring the
response of an observable system allows one to formulate appropriate control
actions that can steer the system to its desired output. For many systems, some
system states cannot be determined by observing the output.
The output y(t) of a system can be measured. The question is whether

we can reconstruct the initial condition from this measured output. It can be
shown that a time-invariant system

úx(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

is completely observable if and only if the nr × n observability matrix
V =

£
C CA CA2 · · · CAn−1

¤T
has rank n, where A is n× n and C is n× r. A system

úx(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)

with A (t) continuous, is completely observable if and only if the symmetric
observability matrix

V (t0, t1) =

Z t1

t0

X (τ)X−1 (t0)CT (τ)Φ (τ , t0) dτ

is nonsingular, where X (τ) is the unique n× n matrix satisfying
dX

dt
= A (t)X (t) , X (0) = I

© 2003 by Chapman & Hall/CRC

34 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

Once again the property of observability is also a black and white issue. A
system either is or is not observable. A system that is observable can provide
the necessary conditions of the plant variables as described above. However, the
observed plant variables may not be sufficient to reconstruct the entire plant
dynamics.
There is a �duality� result that connects these two concepts. Namely, a

linear system whose state model is of the form

úx(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)

where A, B, and C are matrices of appropriate sizes, is completely controllable
if and only if the �dual� system

úx(t) = −AT (t)x(t) + CT (t)u(t)
y(t) = BT (t)x(t)

is completely observable. This result is related to the fact that a matrix and its
transpose have the same rank.

2.4 Stability
Stability analysis of a system to be controlled is the Þrst task in control design.
In a general descriptive way, we can think of stability as the capacity of an object
to return to its original position, or to equilibrium, after having been displaced.
There are two situations for stability: (1) the plant itself is stable (before the
addition of a controller), and (2) the closed-loop control system is stable. All
controlled systems must be designed to be stable regardless of the stability or
instability of the plant. Controllers must be able to handle disturbances that
are not characterized by the model of the system, such as a gust of wind acting
on a car set to travel at a constant velocity, wind shear acting on a plane in
ßight, and so on. This is illustrated in Figure 2.10.
The notion of stability can be viewed as a property of a system that is

continuously in motion about some equilibrium point. A point position a is
called an equilibrium point of Equation 2.30 if f (a, t) = 0 for all t. By
changing variables, y = x − a, the equilibrium point a can be transferred to
the origin. By this means, you can assume that a = 0. Thus, we will always
refer to the stability at the point 0. The stability of a dynamical system that is
described by a differential equation of the form

úx =
dx (t)

dt
= f (x, t) (2.30)

is referred to as stability about an equilibrium point.
When 0 is an equilibrium state of the system, the system will remain at 0

if started from there. In other words, if x (t0) = 0, then x (t) = 0 for all t ≥ t0.
This is the intuitive idea of an equilibrium state.

© 2003 by Chapman & Hall/CRC

2.4. STABILITY 35

Figure 2.10. Disturbance in system

In general, a dynamical system can have several equilibrium states. Also,
the concept of stability about an equilibrium state can be formulated in many
different ways. Below is a popular concept of stability.

DeÞnition 2.1 The equilibrium state 0 of Equation 2.30 is said to be

1. stable (in the sense of Lyapunov) if for all ε > 0, there exists δ > 0 such
that if kx (t0)k < δ then kx (t)k < ε for all t ≥ t0.

2. asymptotically stable if 0 is stable and limt→∞ x (t) = 0.

3. asymptotically stable in the large if 0 is asymptotically stable and
limt→∞ x (t) = 0 regardless of how large are the perturbations around 0.

In this deÞnition we use kx (t)k to denote the Euclidean norm, noting that
the state space is some Rn. Of course 0 is unstable if there is an ε > 0 such
that for all δ > 0 there exists x (t0) with kx (t0)k < δ and kx (t1)k > ε for some
t1 ≥ t0.

Figure 2.11. Equilibrium points

The notions of stable and asymptotically stable refer to two different proper-
ties of stability of 0. In other words, the nature of stability may vary from one
equilibrium point to another. The intuitive idea for stability is clear: for small

© 2003 by Chapman & Hall/CRC

36 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

perturbations, from the equilibrium 0 at some time t0, the system remains close
to it in subsequent motion. This concept of stability is due to Lyapunov, and
often referred to as �stability in the sense of Lyapunov.�
In Figure 2.11, the Þgure on the left represents stability in the sense of

Lyapunov if friction is ignored, and asymptotic stability if friction is taken into
account, whereas the Þgure in the center represents instability. The Þgure on
the right represents stability, which is a local condition. In the Þgure on the
left, even if friction is present, a ball would eventually return to equilibrium no
matter how large the disturbance. This is an illustration of asymptotic stability
in the large.

2.4.1 Damping and system response

A control system produces an output, or response, for a given input, or stim-
ulus. In a stable system, the initial response until the system reaches steady
state is called the transient response. After the transient response, the system
approaches its steady-state response, which is its approximation for the com-
manded or desired response. The nature and duration of the transient response
are determined by the damping characteristics of the plant.
The possibility exists for a transient response that consists of damped oscilla-

tions � that is, a sinusoidal response whose amplitude about the steady-state
value diminishes with time. There are responses that are characterized as being
overdamped (Figure 2.12 (a)) or critically damped (Figure 2.12 (b)). An

Figure 2.12. (a) Overdamped response (b) Critically damped response

overdamped system is characterized by no overshoot. This occurs when there
is a large amount of energy absorption in the system that inhibits the tran-
sient response from overshooting and oscillating about the steady-state value
in response to the input. A critically damped response is characterized by no
overshoot and a rise time that is faster than any possible overdamped response
with the same natural frequency. Both are considered stable because there is
a steady-state value for each type of response. Stated differently, the system
is in �equilibrium.� This equilibrium condition is achieved even if the system
is allowed to oscillate a bit before achieving steady state. Systems for which

© 2003 by Chapman & Hall/CRC

2.4. STABILITY 37

Figure 2.13. (a) Underdamped response (b) Undamped response

the initial response is to oscillate before achieving steady state are referred to
as underdamped systems (Figure 2.13 (a)). An underdamped response is
characterized by overshoot, and an undamped response (Figure 2.13 (b)) by
sustained oscillation.
A certain amount of oscillation is tolerable in the system response. For

example, if a change in the output of a plant is desired, the input to the plant
is changed in the form of a step change. Upon receiving this step change in
input, we expect the plant to respond quickly so that the desired output can
be obtained and maintained as rapidly as possible. We can let the plant output
have a fast rate of rise so that the desired output can be achieved quickly. In
doing so, we need to allow for a small overshoot and then control the response to
exhibit a frequency of oscillation that is adequately damped to bring the plant
response towards the desired value in the shortest possible time. A detailed
description of the response characteristics of the system is necessary both for
analysis and design.

2.4.2 Stability of linear systems

Consider the special case
f(x, t) = Ax (t) (2.31)

where A is a constant n × n matrix. If A is nonsingular, that is, if detA 6= 0,
then the system described by Equation 2.31 has a unique equilibrium point,
namely 0. For this situation, we can simply talk about the stability of the linear
system. Its analysis is based upon the following theorem.

Theorem 2.1 The linear system úx = Ax is asymptotically stable if and only if
all eigenvalues of the matrix A have negative real parts.

Proof. The solution of úx = Ax is

x (t) = x0e
At

© 2003 by Chapman & Hall/CRC

38 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

where

eAt =
∞X
k=0

tk

k!
Ak

with A0 the identity n× n matrix and x0 = x (0). Now

eAt =
mX
k=1

h
Bn1 +Bn2t+ · · ·+Bnαk tαk−1

i
eλkt (2.32)

where the λks are eigenvalues of A, the αks are coefficients of the minimum
polynomial of A, and the Bns are constant matrices determined solely by A.
Thus, °°eAt°° ≤

mX
k=1

αkX
i=1

ti−1
°°eλkt°° kBnik

=
mX
k=1

αkX
i=1

ti−1eRe(λk)t kBnik

where Re(λk) denotes the real part of λk.
Thus, if Re(λk) < 0 for all k, then

lim
t→∞ kx (t)k ≤ lim

t→∞ kx0k
°°eAt°° = 0

so that the origin is asymptotically stable.
Conversely, suppose the origin is asymptotically stable. Then Re(λk) < 0

for all k, for if there exists some λk such that Re(λk) > 0, then we see from
Equation 2.32 that limt→∞ kx (t)k =∞ so that the origin is unstable.
Such a matrix, or its characteristic polynomial, is said to be stable.

Example 2.2 The solution of a second-order constant-coefficient differential
equation of the form

d2y

dt2
+ a

dy

dt
+ by = 0

is stable if the real parts of the roots

s1 = −1
2

³
a−

p
a2 − 4b

´
s2 = −1

2

³
a+

p
a2 − 4b

´
of the characteristic polynomial s2+as+b lie in the left-half s-plane. In practice,
the characteristic polynomial is often found by taking the Laplace transform to
get the transfer function

L (y) = y0 (0) + (a+ s) y (0)
s2 + as+ b

The roots of s2 + as+ b are called the poles of the rational function L (y).
If bounded inputs provide bounded outputs, this is called BIBO stability. If

a linear system is asymptotically stable, then the associated controlled system
is BIBO stable.

© 2003 by Chapman & Hall/CRC

2.4. STABILITY 39

2.4.3 Stability of nonlinear systems

Stability analysis for nonlinear systems is more complicated than for linear sys-
tems. There is, nevertheless, an extensive theory for control of nonlinear sys-
tems, based on Lyapunov functions. This theory depends on the mathematical
models of the systems, and when considering fuzzy and neural control as an
alternative to standard control of nonlinear systems, we will need to consider
other approaches to stability analysis.
For a nonlinear system of the form

úx = f (x) , f (0) = 0 (2.33)

with x (t0) = x0, it is possible to determine the nature of stability of the origin
without solving the equation to obtain x (t). Sufficient conditions for stability
of an equilibrium state are given in terms of the Lyapunov function. These
conditions generalize the well-known property that an equilibrium point is stable
if the energy is a minimum.

DeÞnition 2.2 A Lyapunov function for a system úx = f (x) is a function
V : Rn → R such that

1. V and all its partial derivatives ∂V
∂xi
, i = 1, 2, . . . , n are continuous.

2. V (0) = 0 and V (x) > 0 for all x 6= 0 in some neighborhood kxk < k of
0. That is, V is positive deÞnite.

3. For x (t) = (x1 (t) , . . . , xn (t)) satisfying úx = f (x) with f (0) = 0,

úV (x) =
∂V

∂x1
úx1 + · · ·+ ∂V

∂xn
úxn

is such that úV (0) = 0 and úV (x) ≤ 0 for all x in some neighborhood of 0.
In other words, úV is negative semideÞnite.

Theorem 2.2 For a nonlinear system of the form

úx = f (x) , f (0) = 0

the origin is stable if there is a Lyapunov function V for the system úx = f (x),
f (0) = 0.

Proof. Take a number k > 0 satisfying both V (x) > 0 and úV (x) ≤ 0 for all
x 6= 0 in the neighborhood kxk < k of 0. Then there exists a continuous scalar
function ϕ : R → R with ϕ (0) = 0 that is strictly increasing on the interval
[0, k] such that

ϕ (kxk) ≤ V (x)
for all x in the neighborhood kxk < k of 0. Given ε > 0, then since ϕ (ε) > 0,
V (0) = 0 and V (x) is continuous, and x0 = x (t0) can be chosen sufficiently
close to the origin so that the inequalities

kx0k < ε, V (x0) < ϕ (ε)

© 2003 by Chapman & Hall/CRC

40 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

are simultaneously satisÞed. Also, since úV (x) ≤ 0 for all x in the neighborhood
kxk < k of 0, t0 ≤ t1 ≤ k implies

V (x (t1)) ≤ V (x (t0)) < ϕ (ε)
Thus, for all x in the neighborhood kxk < k of 0, t0 ≤ t1 ≤ k implies

kx (t1)k < ε
since we know that ϕ (kx (t1)k) ≤ V (x (t1)) < ϕ (ε), and kx (t1)k ≥ ε would
imply ϕ (kx (t1)k) ≥ ϕ (ε) by the property that ϕ is strictly increasing on [0, k].
Taking δ = ε, we see by DeÞnition 2.1 that the origin is stable.

The proof of the following theorem is similar. A function úV : Rn → R is said
to be negative deÞnite if úV (0) = 0 and for all x 6= 0 in some neighborhood
kxk < k of 0, úV (x) < 0.
Theorem 2.3 For a nonlinear system of the form

úx = f (x) , f (0) = 0 (2.34)

the origin is asymptotically stable if there is a Lyapunov function V for the
system, with úV negative deÞnite.

Here is an example.

Example 2.3 Consider the nonlinear system

úx = f (x)

where

x =

µ
x1
x2

¶
, úx =

µ
úx1
úx2

¶
= f (x) =

µ
f1 (x)
f2 (x)

¶
with

f1 (x) = x1
¡
x21 + x

2
2 − 1

¢− x2
f2 (x) = x1 + x2

¡
x21 + x

2
2 − 1

¢
The origin (0, 0) is an equilibrium position. The positive deÞnite function

V (x) = x21 + x
2
2

has its derivative along any system trajectory

úV (x) =
∂V

∂x1
úx1 +

∂V

∂x2
úx2

= 2x1
£
x1
¡
x21 + x

2
2 − 1

¢− x2¤+ 2x2 £x1 + x2 ¡x21 + x22 − 1¢¤
= 2

¡
x21 + x

2
2 − 1

¢ ¡
x21 + x

2
2

¢
When x21 + x

2
2 < 0, we have úV (x) < 0, so that (0, 0) is asymptotically stable.

© 2003 by Chapman & Hall/CRC

2.4. STABILITY 41

2.4.4 Robust stability

The problem of robust stability in control of linear systems is to ensure system
stability in the presence of parameter variations. We know that the origin is
asymptotically stable if all the eigenvalues of the matrix A have negative real
parts. When A is an n × n matrix, there are n eigenvalues that are roots of
the associated characteristic polynomial Pn(x) =

Pn
k=0 akx

k. Thus, when the
coefficients ak are known (given in terms of operating parameters of the plant),
it is possible to check stability since there are only Þnitely many roots to check.
These parameters might change over time due to various factors such as

wearing out or aging; and hence, the coefficients ak should be put in tolerance
intervals [a−k , a

+
k], allowing each of them to vary within the interval. Thus, we

have an inÞnite family of polynomials Pn, indexed by coefficients in the intervals
[a−k , a

+
k], k = 0, 1, 2, ..., n. In other words, we have an interval-coefficient

polynomial
nX
k=0

[a−k , a
+
k]x

k

This is a realistic situation where one needs to design controllers to handle
stability under this type of �uncertainty� � that is, regardless of how the coef-
Þcients ak are chosen in each [a

−
k , a

+
k]. The controller needs to be robust in the

sense that it will keep the plant stable when the plant parameters vary within
some bounds. For that, we need to be able to check the n roots of members
of an inÞnite family of polynomials. It seems like an impossible task. But if
that were so, there would be no way to construct controllers to obtain robust
stability.
Mathematically, it looks as though we are facing an �inÞnite problem.� How-

ever, like some other problems that appear to be inÞnite problems, this is a Þnite
problem. This discovery, due to Kharitonov in 1978, makes robust control pos-
sible for engineers to design. Here is an outline of his result.

Theorem 2.4 (Kharitonov) Suppose [a−k , a
+
k], k = 0, 1, ..., n is a family of

intervals. All polynomials of the form Pn(x) =
Pn

k=0 akx
k, where ak ∈ [a−k , a+k],

are stable if and only if the following four Kharitonov canonical polynomials are
stable:

K1(x) = a−0 + a
−
1 x+ a

+
2 x

2 + a+3 x
3 + a−4 x

4 + a−5 x
5 + a+6 x

6 + · · ·
K2(x) = a+0 + a

+
1 x+ a

−
2 x

2 + a−3 x
3 + a+4 x

4 + a+5 x
5 + a−6 x

6 + · · ·
K3(x) = a+0 + a

−
1 x+ a

−
2 x

2 + a+3 x
3 + a+4 x

4 + a−5 x
5 + a−6 x

6 + · · ·
K4(x) = a−0 + a

+
1 x+ a

+
2 x

2 + a−3 x
3 + a−4 x

4 + a+5 x
5 + a+6 x

6 + · · ·
Note that the pattern for producing these four polynomials is obtained by

repetitions of the symbol pattern
− − + +
+ + − −
+ − − +
− + + −



© 2003 by Chapman & Hall/CRC

42 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

by the superscripts of the lower and upper bounds of the intervals.

Example 2.4 Take polynomials P2 (x) = a0+ a1x+ a2x2 where a0 ∈ [0.9, 1.1],
a1 ∈ [−0.9, 0.1], and a2 ∈ [0.9, 1.1]. The four Kharitonov canonical polynomials
are

K1(x) = 0.9− 0.9x+ 1.1x2
K2(x) = 1.1 + 0.1x+ 0.9x2

K3(x) = 1.1− 0.9x+ 0.9x2
K4(x) = 0.9 + 0.1x+ 1.1x2

Two of these polynomials, K1(x) and K3(x), have roots with positive real parts,
0.409 and 0.5, so the interval-coefficient polynomial with these intervals does not
represent a stable system. On the other hand, if a0 ∈ [1.0, 1.1], a1 ∈ [0.9, 1.0],
and a2 ∈ [0.9, 1.0], the four Kharitonov canonical polynomials are

K1(x) = 1 + 0.99x+ x2

K2(x) = 1.1 + x+ 0.99x2

K3(x) = 1.1 + 0.99x+ 0.99x2

K4(x) = 1 + x+ x2

all of whose roots have negative real parts, and we know that a system producing
these polynomials is stable.

2.5 Controller design
There is a two-fold objective in the design of controllers. First, the overall
control loop must be stable. Second, the input to the plant must be such that
the desired set-point is achieved in minimum time within some speciÞed criteria.
Both of these objectives require full knowledge of the plant.1

The fundamental objective in feedback control is to make the output of a
plant track the desired input. Generally, this is referred to as set-point control.
The controller can be placed either in the forward path (in series) with the plant
or in the feedback path. Figures 2.14 (a) and (b) illustrate such conÞgurations.
Most of the conventional design methods in control systems rely on the so-

called Þxed-conÞguration design in that the designer at the outset decides
the basic conÞguration of the overall designed system and the location where
the controller is to be positioned relative to the controlled process. The prob-
lem then involves the design of the elements of the controller. Because most
control efforts involve the modiÞcation or compensation of the system perfor-
mance characteristics, the general design using Þxed conÞguration is also called
compensation.

1We are restricting our discussion of classical methods to only those that have a direct
bearing on the fuzzy controllers which will be discussed later. The reader should be aware
that classical methods exist for many other types of controller designs that are very powerful
and have been used extensively in modern control systems.

© 2003 by Chapman & Hall/CRC

2.5. CONTROLLER DESIGN 43

Figure 2.14. Set-point control

The most commonly used conÞguration is shown in Figure 2.14 (a) in which
the controller is placed in series with the plant to be controlled. This type
of control is referred to as series or cascade compensation. The PID con-
troller has a conÞguration illustrated in Figure 2.14 (a). In Figure 2.14 (b) the
compensator is placed in the minor feedback path and is usually referred to
as feedback compensation. State-variable and output-feedback controllers have
the conÞguration shown in Figure 2.14 (b).
Standard control is based on knowledge of a mathematical model of the

system. The mathematical model can take on basically two forms:

1. The actual model of the system.

2. An estimated model of the system.

For the classical design of controllers, we need to know something numerical
about the system. The so-called numerical approach requires that we know
something about the dynamics of the system. As brießy discussed earlier, the
model of the plant can be described by a set of equations. Typically, what we
have is a set of nonlinear differential equations for which a transfer function
does not exist. Designing a controller for a nonlinear system requires that
the system Þrst be linearized about some nominal operating point. From this
linearized model, a transfer function of the plant, that is, the ratio of the
output function to the input function, can be derived.
These computations are normally done in the �frequency domain� obtained

by taking Laplace transforms of the state equations. The Laplace transform
of a function x (t) is deÞned as

�x (s) =

Z ∞

0

x (t) e−stdt

© 2003 by Chapman & Hall/CRC

44 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

for values of s for which this improper integral converges. Taking Laplace trans-
forms of the system of equations

úx (t) = Ax (t) +Bu (t) (2.35)

y (t) = Cx (t) +Eu (t)

with x (0) = 0, we obtain

s�x (s) = A�x (s) +B�u (s) (2.36)

�y (s) = C�x (s) + E�u (s)

Writing s�x (s) = sI�x (s) where I is the identity matrix of the appropriate size,
we get

(sI −A) �x (s) = B�u (s) (2.37)

and inverting the matrix sI −A,

�y (s) = C (sI −A)−1B�u (s) +E�u (s) (2.38)

=
³
C (sI −A)−1B +E

´
�u (s)

Thus, the system transfer function

G (s) = C (sI −A)−1B +E (2.39)

satisÞes
G (s) �u (s) = �y (s) (2.40)

and thus describes the ratio between the output �y (s) and the input �u (s). The

ratio
C(s)

R(s)
=
�y (s)

�u (s)
is also known as the closed-loop control ratio.

There are a number of other reasons why transfer functions obtained from the
Laplace transform are useful. A system represented by a differential equation is
difficult to model as a block diagram, but the Laplace transform of the system
has a very convenient representation of this form. Another reason is that in
the solution x (t) = eAtx (0) +

R t
0
eA(t−τ)Bu (τ) dτ to the differential equation

model in Equation 2.35, the input u appears inside the �convolution integral,�
whereas in the transfer model, �x (s) becomes a rational function multiplied by
the input �u. Also, the transfer function in the frequency domain is analytic,
except at a Þnite number of poles, and analytic function theory is very useful
in analyzing control systems.
In the closed-loop feedback system shown in Figure 2.15, R (s) = �u (s) is the

reference input, C(s) = �y (s) is the system output, G (s) is the closed-loop
control ratio, E (s) is the error, and H (s) is the feedback transfer function.
From this Þgure we can derive the following relationships:

1. The output of the plant is C(s) = G(s)E(s).

© 2003 by Chapman & Hall/CRC

2.5. CONTROLLER DESIGN 45

Figure 2.15. Closed-loop feedback system

2. The error between the input value E(s) and the output C(s) of the system
ampliÞed or reduced by the feedback transfer function H(s) is

E(s) = R(s)−H(s)C(s)

3. Substituting the error E(s) into the equation for output of the plant, we
get

C(s) = G(s)[R(s)−H(s)C(s)]

4. Collecting terms and rearranging, we get

C(s)

R(s)
=

G(s)

1 +G(s)H(s)

that we can write as
G(s)

1 +G(s)H(s)
=
N(s)

D(s)

where N(s) and D(s) are polynomials in the variable s.

Factoring N(s) displays all the zeros of the plant transfer function; factoring
D(s) displays all the poles of the plant transfer function. The roots of D(s) are
called the characteristic roots of the system; D(s) = 0 is the characteristic
equation.
A knowledge of the poles and zeros of the plant transfer function provides

the means to examine the transient behavior of the system, and to obtain limits
on the loop gain to guarantee stability of the system. If a system is inherently
unstable, such as the case of an inverted pendulum, the plant transfer function
provides the designer with information on how to compensate the pole-zero
behavior of the plant with that of a controller. In this case, the controller poles
and zeros are selected in combination with the plant poles and zeros to produce
a transient response that meets the necessary design requirements.
Knowledge of the plant mathematical model clearly provides the means to

obtain the mathematical form of the controller. We can choose to place the

© 2003 by Chapman & Hall/CRC

46 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

Figure 2.16. Controller in forward or feedback path

controller either in the forward path or in the feedback path as illustrated in
Figure 2.16. Once the structure of the control system is decided upon, suitable
parameters can then be chosen for the controller model to obtain the desired
plant response characteristics.
Consider for example, the closed-loop transfer function of an unstable plant

given by the control ratio

Gp(s) =
C(s)

R(s)
=

1

(s+ 1)(s− 2)
where C(s) is the plant output and R(s) is the plant input. Upon examining the
roots, it is clear that the system is indeed unstable � that is, the root satisfying
s− 2 = 0 lies in the right-half s-plane. Suppose we wish to develop a controller
such that the system becomes stable and has speciÞc response characteristics.
Let Gc(s) and Gp(s) represent the controller and plant transfer functions, re-
spectively. If the controller is in the forward path, then the closed-loop transfer
function would be given as

G1(s) =
Gc(s)Gp(s)

1 +Gc(s)Gp(s)

Substituting the given plant transfer function and rearranging yields

G1(s) =
Gc(s)

(s+ 1)(s− 2) +Gc(s)
The denominator of this new control ratio represents the characteristic equation
of the system that includes both the controller and the plant. We are now in a

© 2003 by Chapman & Hall/CRC

2.5. CONTROLLER DESIGN 47

position to choose any desired set of roots that yield satisfactory performance.
Suppose we choose the desired characteristic equation as

(s+ 2)(s+ 3) = 0

Equating the denominator of G1(s) with the desired characteristic equation
yields

(s+ 1)(s− 2) +Gc(s) = (s+ 2)(s+ 3)
Expanding and simplifying yields the controller mathematical form

Gc(s) = (6s+ 8)

Suppose we choose the feedback path for the controller design. In this case
the resulting closed-loop transfer function would be given as

G2(s) =
Gp(s)

1 +Gp(s)Gc(s)

Substituting the given plant transfer function and rearranging yields

G2(s) =
1

(s+ 1)(s− 2) +Gc(s)
Once again, if we choose the desired characteristic equation as (s+2)(s+3) = 0,
we obtain the same result as before, namely,

Gc(s) = (6s+ 8)

In either case, the controller is of the form

Gc(s) = KDs+KP

This clearly has meaning in terms of derivative and proportional gain control.
More will be discussed along these lines in later sections. The point we wish to
make here is that given the mathematical model of a plant, it is entirely possible
to obtain a suitable controller design. What we have seen in this example is
the addition of terms to the overall closed-loop transfer function such that some
desired performance criteria can be met. In the Þrst case where the controller
is placed in the forward path, the resulting closed-loop transfer function of the
control system is

G1(s) =
6s+ 8

s2 + 5s+ 6

where the numerator term 6s + 8 represents the addition of a �zero� to the
transfer function. Such manipulations of the plant mathematical models to
yield desired plant responses is characterized in classical control techniques as
root locus analysis and the criterion used to adjust the open-loop sensitivity
gain is called the Routh-Hurwitz stability criterion. Adjusting the open-
loop sensitivity gain, and placing limits on the range of this gain will assure
stable operation of the system within prescribed limits. We urge the reader
to refer to one of many excellent control systems books in the literature for a
complete treatise on this topic. See [16] for example.

© 2003 by Chapman & Hall/CRC

48 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

2.6 State-variable feedback control
Here we address a controller design technique known as state-variable feedback
control. The concept behind state-variable feedback control is to determine the
poles of the transfer function of the closed-loop system and make changes so that
new poles are assigned that meet some design criteria. We will see that the basic
solution is to place poles in the controller such that the root loci of the overall
system is moved into the left-half s-plane. As mentioned earlier, the objective in
control systems design is to stabilize an otherwise unstable plant. The method
by which an inherently unstable system can be made stable by reassigning its
poles to lie in the left-half s-plane is referred to as pole placement. The theory
behind this technique comes from the result in Theorem 2.1 on page 37 that
states that the linear system úx = Ax is asymptotically stable if and only if all
eigenvalues of the matrix A have negative real parts, and the fact that these
eigenvalues are the poles of the transfer function.
It is not necessary that only unstable systems be considered for such con-

trol. Even stable systems that do not meet the criteria for a suitable transient
response can be candidates for state-variable feedback control. However, it is
necessary that all states of the original system be accessible and that the system
be completely controllable.

2.6.1 Second-order systems

We can discuss state-variable feedback control with some simple examples.
These examples are chosen only to demonstrate how the behavior of a system
can be modiÞed and are not intended to provide a complete theoretical eval-
uation of state-variable feedback control. There are excellent references that
provide full details of this type of control, such as [16] and [28], and the reader
is strongly urged to refer to the literature on this topic.

Example 2.5 Consider a second-order system represented by the state and
output equations as follows:·

úx1
úx2

¸
=

· −1 3
0 2

¸ ·
x1
x2

¸
+

·
1
1

¸
u

y =
£
1 0

¤ · x1
x2

¸
These equations are of the form úx = Ax+Bu, the state equation, and y = Cx,
the output equation. The eigenvalues of this system can be determined by
considering det [λI −A] = 0, the characteristic polynomial of the system. This
gives

det

µ
λ

·
1 0
0 1

¸
−
· −1 3
0 2

¸¶
= 0

that simpliÞes to

det

µ·
λ+ 1 −3
0 λ− 2

¸¶
= (λ+ 1) (λ− 2) = 0

© 2003 by Chapman & Hall/CRC

2.6. STATE-VARIABLE FEEDBACK CONTROL 49

The characteristic polynomial therefore is (λ+ 1) (λ− 2) = 0. Clearly this
system is unstable because (λ− 2) = 0 yields a pole in the right-half s-plane.
The objective now is to obtain a new system such that the closed-loop system
has poles that are only in the left-half s-plane.

Let us now consider the case in which all system states x of the system are
fed back through a feedback matrix K, where r is the input as illustrated in
Figure 2.17.

Figure 2.17. State variable feedback control system

For a single-input system with n states, the matrix K is a row vector of
dimension (1 × n), and a control law can be formulated where u = r + Kx.
Consequently, the state equations can now be written as úx = Ax+B (r +Kx),
which yields úx = (A+BK)x+ Br. Of course the output remains unchanged.
The characteristic polynomial now is det (λI − (A+BK)) = 0. Letting the
vector K =

£
k1 k2

¤
for our example and substituting the matrix elements

for A and B, we obtain

det

µ
λ

·
1 0
0 1

¸
−
µ· −1 3

0 2

¸
+

·
1
1

¸ £
k1 k2

¤¶¶
= 0

which can be simpliÞed to

det

µ·
λ+ 1− k1 −3− k2
−k1 λ− 2− k2

¸¶
= 0

The characteristic polynomial is therefore

λ2 + (−1− k1 − k2)λ+ (−2.0− k1 − k2) = 0
Suppose now that the desired characteristic equation is

(λ+ 1) (λ+ 2) = 0

© 2003 by Chapman & Hall/CRC

50 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

or
λ2 + 3λ+ 2 = 0

Comparing the coefficients, we get (−1− k1 − k2) = 3 and (−2.0−k1−k2) = 2,
which yields two identical equations (k1 + k2) = −4. While this results in a
nonunique solution for the feedback gains k1 and k2, we see that any set of
parameters satisfying (k1 + k2) = −4 will shift the pole originally located in the
right-half s-plane, namely (λ− 2) = 0, to the left-half s-plane at (λ+ 2) = 0.

2.6.2 Higher-order systems

Implementing state-variable feedback control for higher-order systems is sim-
pliÞed by Þrst converting the given system to a controller canonical form in
which the elements of the characteristic matrix have a prescribed structure. For
example, given the characteristic equation of a system as

Q(λ) = λn + αn−1λn−1 + · · ·+ α1λ+ α0
the controller canonical form of the characteristic matrix is

Ac =



0 1 0
0 0 1 0

0 0
. . . 1 0

0 1
−α0 −α1 · · · −αn−2 −αn−1


The entries in the last row of the Ac matrix are the negatives of the coefficients
of the characteristic polynomial. In addition, the input conditioning matrix Bc
for the controller canonical realization is of the form

Bc = [0 0 · · · 0 1]T

Now, if we choose the feedback matrix

K = [k1 k2 · · · kn−1 kn]

the resulting matrix obtained from [A+BK] can be written as:

Acf =



0 1
0 1

0
. . . 1

0 1
−α0 + k1 −α1 + k2 · · · −αn−2 + kn−1 −αn−1 + kn


Comparing the coefficients of the given system with the desired system yields

the feedback gains. Therefore, the canonical form of system representation is
more convenient for determining the feedback gains when dealing with higher-
order systems.

© 2003 by Chapman & Hall/CRC

2.6. STATE-VARIABLE FEEDBACK CONTROL 51

Example 2.6 Consider an unstable third-order system given by the set of state
and output equations as úx1

úx2
úx3

 =

 1 6 −3
−1 −1 1
−2 2 0

 x1
x2
x3

+
 1
1
1

u
y =

£
0 0 1

¤ x1
x2
x3


We notice that the system is not in canonical form and proceed to develop the
controller canonical realization. To do this, we Þrst obtain the transfer function
of the given system as

Y (s)

U(s)
= C [sI −A]−1B +D

This can be done very easily using Matlab by specifying the A, B, C, and D
matrices and using theMatlab function �ss2tf� to obtain the transfer function
of the system. The following Matlab code illustrates this process:

a=[1 6 -3;-1 -1 1;-2 2 0]; %Specify the A matrix
b=[1;1;1]; %Specify the B matrix
c=[0 0 1]; %Specify the C matrix
d=0; %Specify the D matrix
[num,den]=ss2tf(a,b,c,d,1); %Note: the 1 indicates a single-input system

The resulting transfer function is

Y (s)

U(s)
=

s2 − 13
s3 − 3s+ 2

The denominator of the transfer function factors as (s+ 2) (s− 1)2, display-
ing the roots of the characteristic equation and clearly indicating an unstable
system. From the method discussed above, the characteristic matrix for the
controller canonical realization may be obtained directly as

Ac =

 0 1 0
0 0 1

−2 3 0


Suppose the desired set of eigenvalues for the system is

{λ1, λ2 = −1± j, λ3 = −4}

which gives the characteristic polynomial

Q(λ) = λ3 + 6λ2 + 10λ+ 8

© 2003 by Chapman & Hall/CRC

52 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

From this, we can determine the desired characteristic matrix as

Acf =

 0 1 0
0 0 1

−8 −10 −6


Comparing the last row of coefficients between Ac and Acf , we obtain the feed-
back gain matrix

K = [−6 − 13 − 6]

For the examples considered here, we see a fairly straightforward approach
to implementing state-variable feedback control. However, as mentioned previ-
ously, all states of the original system must be accessible, and the system must
be completely controllable. Therefore, we need to know a priori that the sys-
tem is fully controllable before attempting to implement state-variable feedback
control.
Such a priori knowledge can be obtained by investigating the rank of the

n× nm controllability matrix£
B AB A2B · · · An−1B

¤
formed by the A and B matrices of the original system (see page 32). Recall
that an nth-order single-input system is fully controllable if and only if

Rank
£
B AB A2B · · · An−1B

¤
= n

This says that if the rank of the controllability matrix is less than n, the
system is not fully controllable. A system being not fully controllable implies
that one or more states of the system are not directly controllable. This is due
to pole-zero cancellations in the system transfer function as the next example
indicates.

Example 2.7 Consider the state and output equations of a second-order sys-
tem given by ·

úx1
úx2

¸
=

· −2 0
−1 −1

¸ ·
x1
x2

¸
+

·
1
1

¸
u

y =
£
0 1

¤ · x1
x2

¸
Computing the transfer function G(s) = C [sI −A]−1B +D yields

G(s) =
(s+ 1)

(s+ 1)(s+ 2)

in which the pole and zero located at s = −1 cancel, making the system uncon-
trollable at the eigenvalue λ = −1. Whether or not the system is fully control-
lable can also be veriÞed by computing the rank of the controllability matrix as
follows:

Rank

·
1
1

· −2 0
−1 −1

¸ ·
1
1

¸ ¸
= Rank

·
1 −2
1 −2

¸
= 1

© 2003 by Chapman & Hall/CRC

2.7. PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL 53

This computation showing Rank < 2 implies the system is not fully controllable,
but this does not, by itself, indicate which of the two eigenvalues is uncontrol-
lable.

2.7 Proportional-integral-derivative control

Most industrial systems are controlled by classical proportional-integral-deriva-
tive (PID) controllers (including P, PD, and PI). This is done despite the system
being nonlinear and despite the fact that the simplicity of the concept often
limits the performance. The reason why PID controllers have gained such pop-
ularity is that detailed knowledge about the system is not required, but the
controller can be tuned by means of simple rules of thumb or by PID �auto-
tuners.�
In this section, we demonstrate with several examples the design of con-

trollers using the standard approach. These same examples will be developed
using a fuzzy, neural, or neural-fuzzy approach in later chapters. The automo-
bile cruise control and temperature control problems are examples of regulation
problems, where the fundamental desired behavior is to keep the output of the
system at a constant level, regardless of disturbances acting on the system.
The servomotor dynamics control problem is a component of a servo problem,
where the fundamental desired behavior is to make the output follow a reference
trajectory.

2.7.1 Example: automobile cruise control system

In this example, we develop a simple model of an automobile cruise control
system. The control objective is to maintain a speed preset by the driver. If we

Figure 2.18. Mass and damper system

neglect the inertia of the wheels, and assume that friction (which is proportional
to the car�s speed) is what is opposing the motion of the car, then the plant
description is reduced to the simple mass and damper system shown in Figure

© 2003 by Chapman & Hall/CRC

54 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

2.18. Using Newton�s law of motion, the model equations for this system are

m
dv

dt
+ bv = f

y = v

where f is the force produced by the engine and v is the measured velocity of the
automobile. For this example, Let us assume that m = 1000 kg, b = 50 Newton
seconds/meter, and f = 500 Newtons, a constant force produced by the engine.
When the engine produces a 500 Newton force, the car will reach a maximum
velocity of 10 meters/second. An automobile should be able to accelerate up to
that speed in less than 5 seconds. For this simple cruise control system, we can
assume an allowable overshoot of 10% on the velocity and a 2% steady-state
error.
The next step is to Þnd the transfer function of the system above. For this,

we need to take the Laplace transform of the model equations. When Þnding the
transfer function, zero initial conditions must be assumed. Performing Laplace
transforms of the two equations gives

msV (s) + bV (s) = F (s)

Y (s) = V (s)

Since our output is the velocity, Let us express V (s) in terms of Y (s) and obtain

msY (s) + bY (s) = F (s)

The plant transfer function therefore becomes

Y (s)

F (s)
=

1

ms+ b

Substituting m = 1000 kg, b = 50 Newton seconds/meter assumed for the auto-
mobile, the transfer function is

Y (s)

F (s)
=

1

1000s+ 50
=
(1/1000)

s+ 0.05

For a constant force of 500 Newtons produced from the start, with the automo-
bile initially at rest, this represents a step input where

F (s) =
500

s

We can now compute the open-loop response of the system to examine how well
the system behaves without any controller action.
The open-loop response of the plant is that produced by the engine force

acting on the mass of the automobile. In this analysis, there is no controller
action as there is no feedback. Therefore, the output response is

Y (s) =
(1/1000)

s+ 0.05
F (s) =

·
(1/1000)

s+ 0.05

¸ ·
500

s

¸
=

0.5

s (s+ 0.05)

© 2003 by Chapman & Hall/CRC

2.7. PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL 55

Performing partial fractions expansion, we obtain

Y (s) =
10

s
− 10

s+ 0.05

The inverse Laplace transform yields

y(t) = 10u(t)− 10e−0.05tu(t)
where u(t) is a unit step. The graph in Figure 2.19 shows that the vehicle takes
more than 100 seconds to reach the steady-state speed of 10 meters/second.
Clearly, this does not satisfy our rise time criterion of less than 5 seconds.

0

2

4

6

8

10

20 40 60 80 100t

Figure 2.19. y(t) = 10u(t)− 10e−0.05tu(t)

From the above analysis, we have determined that a controller is needed to
improve the performance. The performance of this system can be improved by
providing a unity feedback controller. Figure 2.20 is the block diagram of a
typical unity feedback system.

Figure 2.20. Unity feedback system

We choose the standard PID transfer function for the controller, namely,

Gc(s) = KP +
KI
s
+KDs =

KDs
2 +KP s+KI

s

The plant transfer function is as derived above, namely,

Gp(s) =
1

ms+ b

© 2003 by Chapman & Hall/CRC

56 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

The objective in the controller design then is to select the appropriate parame-
ters for KP , KI , and KD to satisfy all design criteria.
To design a PID controller for a given system, follow the steps shown below

to obtain a desired response.

1. Obtain the open-loop response and determine what needs to be improved.

2. Add proportional control to improve the rise time KP > 0.

3. Add derivative control to improve the overshoot KD > 0.

4. Add integral control to eliminate the steady-state error KI > 0.

5. Adjust each of KP , KI , and KD until a desired overall response is ob-
tained.

Working through each of the steps listed above, we have already seen that
the open-loop response is not satisfactory in that the rise time is inadequate for
the automobile to reach a velocity of 10 meters/second in less than 5 seconds.
We must therefore provide some proportional gain, KP > 0, such that the rise
time is smaller � that is, the velocity reaches 10 meters/second in less than
5 seconds. In general, it is intuitive to think that if the rise time is made too
small, the velocity might reach the desired value at the expense of creating
a large overshoot before settling down to the desired value. Naturally then,
we need to be concerned about how we can best control the overshoot as a
consequence of reducing the rise time.
To achieve only proportional control action, we select KP > 0 and set KD =

KI = 0 in the controller transfer function Gc(s). Selecting values for any of the
constants is on a purely trial and error basis. However, we should keep in mind
that the proportional gain KP affects the time constant and consequently the
rate of rise.
From the control system diagram, we see that the controller and plant can

be combined into a single transfer function, namely,

G(s) = Gc(s)Gp(s) = KP

µ
1

ms+ b

¶
The closed-loop transfer function therefore is determined as

Y (s)

F (s)
=

G(s)

1 +G(s)H(s)

where H(s) is the feedback transfer function. In this case, since we have chosen
a unity feedback system, we set H(s) = 1. We therefore obtain the closed-loop
transfer function of the system as

Y (s)

F (s)
=

G(s)

1 +G(s)
=

KP

ms+b

1 + KP

ms+b

=
KP

ms+ b+KP

© 2003 by Chapman & Hall/CRC

2.7. PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL 57

Let us select KP = 100 as a start and see what happens. Substituting values
for KP , m, and b we get the closed-loop transfer function as

Y (s)

F (s)
=

100

1000s+ 50 + 100
=

100

1000s+ 150
=

0.1

s+ 0.15

Since we are interested in obtaining a desired velocity of 10 meters/second,
we need to provide a step input of amplitude 10 meters/second. Therefore,
using F (s) = 10/s, we obtain the closed-loop response Y (s) as,

Y (s) =
0.1

s+ 0.15
F (s) =

µ
0.1

s+ 0.15

¶µ
10

s

¶
=

1

s (s+ 0.15)
=

1
0.15

s
−

1
0.15

s+ 0.15

=
6. 6667

s
− 6. 6667

s+ 0.15

The time-domain solution for this is y(t) = 6. 6667u(t) − 6. 6667e−0.15tu(t),
shown in Figure 2.21.

0

2

4

6

8

10

20 40 60 80 100t

Figure 2.21. Time-domain solution

Once again, we see that choosing KP = 100 still does not satisfy our rise
time criterion of less than 5 seconds. However, we do see an improvement over
the open-loop response shown earlier. Choosing KP = 1000, and carrying out
an analysis similar to the above shows that the closed-loop response satisÞes the
performance criteria for rise time.

Y (s)

F (s)
=

1000

1000s+ [50 + 1000]
=

1000

1000s+ 1050
=

1

s+ 1.05

Y (s) =
1

s+ 1.05
F (s) =

·
1

s+ 1.05

¸ ·
10

s

¸
=

10

s (s+ 1.05)
=
9. 9502

s
− 9. 9502

s+ 1. 005

y(t) = 9.9502u(t)− 9.9502e−1. 005tu(t)

© 2003 by Chapman & Hall/CRC

58 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

However, the response continues to exhibit the small steady-state error of 10−
9.9502 = 0.049 8 meters/second shown in Figure 2.22.

0

2

4

6

8

10

2 4 6 8 10 12 14 16 18 20t

Figure 2.22. y(t) = 9.9502u(t)− 9.9502e−1. 005tu(t)

We see that there is no issue in this example relating to overshoot. The only
issue is that of steady-state error. It should be clear that just increasing the pro-
portional gain will not correct the steady-state error. To correct this, we need to
implement integral control. The reason for not needing derivative control should
be obvious from the analytical solution for the closed-loop solution; for example,
y(t) = 9.9502u(t) − 9.9502e−1. 005tu(t) which is of the form C [1− e−at]u(t) in
which there is no term that can produce sinusoidal oscillation. The shape of the
response clearly shows only exponential behavior. Overshoot can occur only if
the system oscillates, that is, has second-order complex conjugate poles.
We now proceed to implement integral control by choosing values forKI > 0.

Choosing a value of KP = 1000, KI = 1, and with KD = 0, we get the forward
transfer function as

G(s) = Gc(s)Gp(s) =

µ
KDs

2 +KP s+KI

s

¶µ
1

ms+ b

¶
=

µ
1000s+ 1

s

¶µ
1

1000s+ 50

¶
=

s+ 0.001

s (s+ 0.05)

The closed-loop transfer function therefore is given by

Y (s)

F (s)
=

G(s)

1 +G(s)
=

s+0.001
s(s+0.05)

1 + s+0.001
s(s+0.05)

=
s+ 0.001

s2 + 1.05s+ 0.001

A controller canonical form of state-variable realization can then be obtained
as follows. Let

Q(s)

Q(s)

Y (s)

F (s)
=

s+ 0.001

s2 + 1.05s+ 0.001

Upon choosing
Q(s)

F (s)
=

1

s2 + 1.05s+ 0.001

© 2003 by Chapman & Hall/CRC

2.7. PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL 59

we obtain a relationship between system state and input F (s), and choosing

Y (s)

Q(s)
= s+ 0.001

we obtain a relationship between system state and output Y (s). Here, we are
assigning an arbitrary state Q(s). From these two relationships, a state-variable
model can be developed.
From the state and input relationship, we obtain

(s2 + 1.05s+ 0.001)Q(s) = F (s)

The time-domain differential equation, with zero initial conditions is then

q00(t) = −1.05q0(t)− 0.001q(t) + f(t)
Similarly, from the state and output relationship, we have

Y (s) = (s+ 0.001)Q(s)

The time-domain equation is then

y(t) = q0(t) + 0.001q(t)

If we choose x1(t) = q(t), then

x01(t) = q
0(t) = x2(t)

and
x02(t) = q

00(t) = −1.05x2(t)− 0.001x1(t) + f(t)
represents the set of state-variable equations. The corresponding output equa-
tion can then be written as y(t) = x2(t) + 0.001x1(t). These equations can be
written in standard vector-matrix form as·

x01(t)
x02(t)

¸
=

·
0 1

−0.001 −1.05
¸ ·

x1(t)
x2(t)

¸
+

·
0
1

¸
f(t)

[y(t)] =
£
0.001 1

¤ · x1(t)
x2(t)

¸
A solution of the set of state and output equations given above can be ob-

tained using a Matlab simulation package called Simulink. In the simulation
diagram in Figure 2.23, we have set up a simulation to obtain the step response
of the modiÞed system described earlier. It can be seen in Figure 2.24 that while
the rise time is well within the required speciÞcation, the steady-state error is
large and has to be minimized using integral control action.
Choosing values KP = 800, KI = 40, and KD = 0, we get the forward

transfer function as

G(s) = Gc(s)Gp(s) =

µ
KDs

2 +KP s+KI

s

¶µ
1

ms+ b

¶
=

µ
800s+ 40

s

¶µ
1

1000s+ 50

¶
=
0.8

s

© 2003 by Chapman & Hall/CRC

60 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

Figure 2.23. Simulation diagram

The closed-loop transfer function therefore is given by

Y (s)

F (s)
=

G(s)

1 +G(s)
=

0.8
s

1 + 0.8
s

=
0.8

s+ 0.8

Figure 2.24. Large steady-state error

From this, we compute

Y (s) =
0.8

s+ 0.8
F (s) =

µ
0.8

s+ 0.8

¶
10

s
=
10

s
− 10

s+ 0.8

The time-domain solution is

y(t) = 10u(t)− 10e−0.8tu(t)

as shown in Figure 2.25. From the above example, we have seen the trial and
error nature of designing a PID controller. It should become clear that if the
model parameters change, so will the parameters of the PID controller. As such,
there is signiÞcant redesign effort needed to obtain satisfactory performance
from the controller.

© 2003 by Chapman & Hall/CRC

2.7. PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL 61

0

2

4

6

8

10

2 4 6 8 10 12 14 16 18 20t

Figure 2.25. y (t) = 10u (t)− 10e−0.8tu (t)

2.7.2 Example: temperature control

In this section we discuss the development of the classical proportional-integral-
derivative (PID) control parameters for a temperature control problem. We
will extend this example in Chapter 6 to incorporate a neural controller. In
a conventional PID control system, the gains are all Þxed, while with neural
networks, they can change.

System model The system comprises an electrical heater of heat capacity
Ch connected via a thermal resistance Rho to the oven. The heat capacity of
the oven is C0. At temperature Te, the oven loses heat to the environment
through the thermal resistance R0 of its insulation. The temperature controller
adjusts the power dissipated in the heating elements W , by comparing the oven
temperature T0 with the set-point temperature Ts.

Figure 2.26. System model

The symbols on the right side of the diagram in Figure 2.26 are thermal
components; the ones on the left are electrical devices. Dashed lines represent
transducers: a thermometer in one case, conversion of electrical current ßowing
through the heater into heat (thermal current W) in the other. The thermome-

© 2003 by Chapman & Hall/CRC

62 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

ter time constant is usually very small, so its effects will be assumed to be
negligible during much of the following discussion.
We discussed earlier that conventional control requires the use of a system

model for the development of a controller. In this context, we develop a state-
variable model as follows·

úTh
úTo

¸
=

 − 1
RhoCh

1
RhoCh

1
RhoCo

−
³

1
RhoCo

+ 1
RoCo

´ " Th
To

#
+

"
1
Ch

0

#
W

[To] =
£
0 1

¤ · Th
To

¸
that represents the mathematical model of the system. The heat loss to the
environment Te is a component that cannot be modeled and can only be com-
pensated by supplying sufficient heat by the controlling elements. The set of
differential equations (state equations) are driven by the input W that the con-
troller provides. To is the oven temperature which is a sensed parameter. The
error � that is, the difference between the desired temperature and the sensed
temperature, acts as input to the controller. Such a model can very easily be
modeled inMatlab as demonstrated in the following simulations of the system
behavior.

Figure 2.27. Fluctuations in temperature

It is important to mention at the outset that the simplest form of control that
can be adopted is the ON-OFF control used by almost all domestic thermostats.
When the oven is cooler than the set-point temperature, the heater is turned on
at maximum power, and once the oven is hotter than the set-point temperature,
the heater is switched off completely. The turn-on and turn-off temperatures are
deliberately made to differ by a small amount, known as hysteresis, to prevent
noise from rapidly and unnecessarily switching the heater when the temperature
is near the set-point. The ßuctuations in temperature shown in the graph in
Figure 2.27 are signiÞcantly larger than the hysteresis, due to the signiÞcant heat
capacity of the heating element. Naturally, the ON-OFF control is inefficient

© 2003 by Chapman & Hall/CRC

2.7. PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL 63

and results in a high average power consumption. It is for this reason that we
need to consider a controller that provides the best control actions that result
in the least power consumption.

Proportional control A proportional controller attempts to perform better
than the ON-OFF type by applying power W , to the heater in proportion to
the difference in temperature between the oven and the set-point

W = P (Ts − To)
where P is known as the �proportional gain� of the controller. As its gain
is increased, the system responds faster to changes in set-point, but becomes
progressively underdamped and eventually unstable. As shown in Figure 2.28,
the Þnal oven temperature lies below the set-point for this system because some
difference is required to keep the heater supplying power. The heater power
must always lie between zero and the maximum because it can only act as a
heat source, and not act as a heat sink.

Figure 2.28. Response to proportional control

Proportional + derivative control The stability and overshoot problems
that arise when a proportional controller is used at high gain can be mitigated
by adding a term proportional to the time-derivative of the error signal,

W = P (Ts − To) +D d

dt
(Ts − To)

This technique is known as PD control. The value of the damping constant,
D, can be adjusted to achieve a critically damped response to changes in the
set-point temperature, as shown in Figure 2.29.
It is easy to recognize that too little damping results in overshoot and ringing

(oscillation in the oven temperature characterized as underdamped); too much
damping causes an unnecessarily slow response characterized as overdamped.
As such, critical damping gives the fastest response with little or no oscillation
in the oven temperature.

© 2003 by Chapman & Hall/CRC

64 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

Figure 2.29. Response to PD control

Proportional + integral + derivative control Although PD control deals
well with the overshoot and ringing problems associated with proportional con-
trol, it does not solve the problem with the steady-state error. Fortunately, it is

Figure 2.30. Response to PID control

possible to eliminate this while using relatively low gain by adding an integral
term to the control function which becomes

W = P (Ts − To) +D d

dt
(Ts − To) + I

Z
(Ts − To)dt

where I, the integral gain parameter is sometimes known as the controller reset
level. This form of function is known as PID control. The effect of the inte-
gral term is to change the heater power until the time-averaged value of the
temperature error is zero. The method works quite well but complicates the
mathematical analysis slightly because the system is now a third-order system.
Figure 2.30 shows that, as expected, adding the integral term has eliminated

the steady-state error. The slight undershoot in the power suggests that there
may be scope for further tweaking the PID parameters.

© 2003 by Chapman & Hall/CRC

2.7. PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL 65

Proportional + integral control Sometimes derivative action can cause the
heater power to ßuctuate wildly. This can happen when the sensor measuring
the oven temperature is susceptible to noise or other electrical interference. In
these circumstances, it is often sensible to use a PI controller or set the derivative
action of a PID controller to zero.

Third-order systems Systems controlled using an integral action controller
are almost always at least third-order. Unlike second-order systems, third-order
systems are fairly uncommon in physics, but the methods of control theory
make the analysis quite straightforward. For instance, there is a systematic
way of classifying the complex roots of the auxiliary equation for the model,
known as the Routh-Hurwitz stability criterion. Provided the integral gain is
kept sufficiently small, parameter values can be found to give an acceptably
damped response, with the error temperature eventually tending to zero, if the
set-point is changed by a step or linear ramp in time. Whereas derivative control
improved the system damping, integral control eliminates steady-state error at
the expense of stability margin.

Using MATLAB for PID controller design The transfer function of a
PID controller looks like the following

Kp +
Ki
s
+ sKd =

Kds
2 +Kps+Ki

s

where Kp is the proportional gain, Ki is the integral gain, and Kd is the deriv-
ative gain. First, Let us take a look at the effect of a PID controller on the
closed-loop system using the schematic in Figure 2.31. To begin, the variable

Figure 2.31. Overview of controller and plant

e is the tracking error or the difference between the desired reference value R
and the actual output Y . The controller takes this error signal and computes
both its derivative and its integral. The signal u that is sent to the actuator is
now equal to the proportional gain Kp times the magnitude of the error, plus
the integral gain Ki times the integral of the error, plus the derivative gain Kd
times the derivative of the error.
Generally speaking, for an open-loop transfer function that has the canonical

second-order form
1

s2 + 2ζωRs+ ω2R

© 2003 by Chapman & Hall/CRC

66 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

a large Kp will have the effect of reducing the rise time and will reduce (but
never eliminate) the steady-state error. Integral control Ki, will have the effect
of eliminating the steady-state error, but it will make the transient response
worse. If integral control is to be used, a small Ki should always be tried Þrst.
Derivative control will have the effect of increasing the stability of the system,
reducing the overshoot, and improving the transient response. The effects on
the closed-loop response of adding to the controller terms Kp, Ki, and Kd are
listed in Table 2.1.

Table 2.1. Effects on closed-loop response
Controller Steady-state
Term Rise Time Overshoot Settling Time Error
Kp Decreases Increases No change Decreases
Ki Decreases Increases Increases Eliminates
Kd No change Decreases Decreases No change

It is important to note that these correlations are to be used only as a guide
and not to imply the exact relations between the variables and their effect on
each other. Changing one of these variables can change the effect of the other
two. The table serves as a guide to allow the designer to adjust the parameters
by trial and error.

Simulating the open-loop step response Many PID controllers are de-
signed by the trial and error selection of the variables Kp, Ki, and Kd. There
are some rules of thumb that you can consult to determine good values to start
from; see your controls book for some explanations of these recommendations.
Suppose we have a second-order plant transfer function

G(s) =
1

s2 + 10s+ 20

Let us Þrst view the open-loop step response. To model this system inMatlab,
create a new m-Þle and add in the following code:

numsys=1;
densys=[1 10 20];
step(numsys,densys);

A plot of the response is shown in Figure 2.32. From the given transfer
function, it is easy to see that the Þnal value of G(s), applying the Final Value
theorem, is 1/20, as is illustrated in the step response. This value of 0.05, in
relation to the unit step input amounts to a steady-state error of 0.95. Further-
more, the rise time is about 1 second and the settling time is nearly 2 seconds.
While it is not clear as to what the control criteria should be, it is evident that
at least the steady-state error must be reduced to within some tolerable lim-
its. We proceed now to design a PID controller in a step-by-step manner that
illustrates the changes in response that occur as a result of various parameter
adjustments.

© 2003 by Chapman & Hall/CRC

2.7. PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL 67

Figure 2.32. Step response of the open-loop transfer function

As outlined previously, the Þrst step is to improve the rise time such that the
plant response is at or near the desired level. So, we proceed to Þrst implement
proportional control. In the following Matlab code, we start by inputting
a low value of Kd as a start to examine the effect of proportional gain rise
time and subsequently on the error. The following Matlab code implements
proportional control:

kp=10; %Proportional gain
sysopenloop=tf(kp*numsys,densys); %Open-loop transfer function
sysfeedback=[1]; %Unity feedback
sysclosedloop=feedback(sysopenloop,sysfeedback);%Closed-loop TF
step(sysclosedloop,0:0.001:2.0); %Step input response

Figure 2.33. Step response with Kd = 10

Figure 2.33 illustrates the step response of the system with proportional
gain control. Certainly, there is marked improvement in the rise time and also
in the Þnal value. The steady-state error has been considerably reduced, but not
enough. The main observation is that the rise time is considerably faster than

© 2003 by Chapman & Hall/CRC

68 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

Figure 2.34. Step response with Kd = 500

the uncontrolled function. We now take the liberty to increase the proportional
gain, say to 500, and try the simulation. Note that our objective is to bring the
system response as close to the step input value as possible, in this case 1.0, as
fast as we can without causing much overshoot. Figure 2.34 illustrates the effect
of increasing the proportional gain. The overshoot is deÞnitely unsatisfactory.
It must be reduced to something less than 5%. As far as the settling time is
concerned, in this example we are really not concerned because the system we
are dealing with has no real-world connection and as such, all we can say is
that the performance with control is better than without control. We will see
later on, in examples that have a physical meaning, that settling time becomes
a very important criteria in the design of controllers. For now, it is important
to realize what the proportional, derivative, and integral parameters can do to
improve the system response.
We proceed further to examine what we need to do to bring the overshoot

down to some tolerable value, typically to less than 5% as we suggested earlier.
For this, we need to add derivative control into the system. The following
Matlab code illustrates how this can be done:

kp=500; %Proportional gain
kd=10; %Derivative gain
numc=[kd kp] %DeÞne the numerator polynomial (sKd+Kp)
sysopenloop=tf(numc,densys); %Open-loop TF
sysfeedback=[1]; %Unity feedback
sysclosedloop=feedback(sysopenloop,sysfeedback); %Closed-loop TF
step(sysclosedloop,0:0.001:2.0); %Step response

As shown in Figure 2.35, the derivative control parameter has most deÞnitely
provided damping effect and shows marked improvement in the overshoot com-
pared to the previous case with no derivative control. We also see that the
system has settled down more rapidly. So our conclusion is that we can further
increase the derivative control so that the response can be brought closer to a
critically damped response. Let us try one more simulation in which we increase
the derivative gain to 100. The result of this is illustrated in Figure 2.36.

© 2003 by Chapman & Hall/CRC

2.7. PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL 69

Figure 2.35. Step response with Kp = 500 and Kd = 10

Figure 2.36. Step response with Kp = 500 and Kd = 100

There is no question that the response is critically damped. However, the
steady-state error is not within the acceptable tolerance of being less than 2%.
The answer lies in providing an appropriate amount of integral control that will
bring the error to within the acceptable tolerance. We can implement integral
control action as illustrated in the following Matlab code:

kp=500; %Proportional gain
ki=1; %Integral gain
kd=100; %Derivative gain
numc=[kd kp ki] %DeÞne numerator polynomial of PID controller
denc=[1 0] %DeÞne denominator polynomial of PID controller
den=conv(denc,densys);
%Convolve the denominator polynomials of system and controller
sysopenloop=tf(numc,den); %Obtain open-loop TF
sysfeedback=[1]; %Feedback TF

© 2003 by Chapman & Hall/CRC

70 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

sysclosedloop=feedback(sysopenloop,sysfeedback); %Closed-loop TF
step(sysclosedloop,0:0.001:2.0); %Step response

Figure 2.37. Step response with Kp = 500, Ki = 1.0, and Kd = 100

As you can see in Figure 2.37, the addition of a small integral gain, in this
case Ki = 1.0, has practically no effect in improving the steady-state error.
Note that it would be wise to create a bit of an overshoot and then adjust the
steady-state error. This is where one needs to perform some trial and error, with
some practical knowledge of the limitations of components that will be involved.
Saturation and other limiting factors dictate how these parameter variations can
be made to obtain satisfactory control performance. In this example, however,
we illustrate the systematic nature of the design and the criteria that have to
be met in order to build successful controllers.
Proceeding further, we increase the proportional gain and decrease the deriv-

ative gain to obtain an overshoot within desirable criteria. We also increase the

Figure 2.38. Step response with Kp = 1400, Ki = 1000, and Kd = 75

© 2003 by Chapman & Hall/CRC

2.7. PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL 71

integral gain so that the steady-state error is within a tolerable margin, typically
within 2%. Figure 2.38 illustrates the response with a Þnal set of PID control
parameters that adequately meet some typical design performance characteris-
tics.
In this section we have very systematically shown the trial and error approach

of developing a PID controller for a plant. It is clear that the controller design
is facilitated by the use of a linear model. The main problem with such a design
is that any major nonlinearity in the plant makes it impossible to design a
controller with this approach. As such, there is a need to consider a model-free
approach to designing controllers.

2.7.3 Example: controlling dynamics of a servomotor

A DC servomotor is a commonly used actuator in control systems. It provides
rotary motion as well as transitional motion. In this example we demonstrate
how a controller can be developed to control the dynamics of the servomotor
effectively. We will extend this example in Chapter 4 to incorporate a fuzzy
controller.
For a classical controller design, we need a model of the system. The objec-

Figure 2.39. DC servomotor

tive in this modeling is to obtain a relationship between the angular position of
the rotor and the applied voltage. The electric circuit of the armature and the
free-body diagram of the rotor are shown in Figure 2.39.

System equations The motor torque T is related to the armature current i
by a constant factor Kt as

T = Kti

The back electromotive force (emf) e is related to the rotational velocity úθ by a
constant factor Ke as

e = Ke úθ

© 2003 by Chapman & Hall/CRC

72 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

In standard international (SI) units, the armature constant Kt, is equal to the
motor constant Ke. Therefore, if we let K = Kt = Ke, we can write

T = Ki

e = K úθ

Let J represent the inertia of the wheel and b the damping constant. Also, let L
represent the inductance of the armature coil with resistance R. With a voltage
V applied to the motor terminals as shown in Figure 2.39, we can write the
following coupled electromechanical equations based on Newton�s second law
and Kirchhoff�s law:

J
d2θ

dt2
+ b

dθ

dt
= T

L
di

dt
+Ri+ e = V

or

J
d2θ

dt2
+ b

dθ

dt
= Ki

L
di

dt
+Ri+K

dθ

dt
= V

Transfer function The coupled electromechanical equations form the basis
for obtaining the input-output relationship of the system. Using Laplace trans-
forms, and with zero initial conditions, the above equations can be expressed
as

Js2Θ(s) + bsΘ(s) = KI(s)

or
s (Js+ b)Θ(s) = KI(s)

and
LsI(s) +RI(s) +KsΘ(s) = V (s)

or
(Ls+R) I(s) +KsΘ(s) = V (s)

Since our objective is to obtain a relationship between rotor angle Θ(s) and
the applied voltage V (s), we eliminate the current I(s). From the Þrst equation
we obtain

I(s) =
s (Js+ b)

K
Θ(s)

Substituting this in the second equation and collecting terms, we getµ
(Ls+R)

s (Js+ b)

K
+Ks

¶
Θ(s) = V (s)

From this we obtain

Θ(s)

V (s)
=

1h
(Ls+R) s(Js+b)K +Ks

i = K

[LJs3 + s2(RJ + bL) + s(bR+K2)]

© 2003 by Chapman & Hall/CRC

2.7. PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL 73

Design speciÞcations Since the DC motor is being used as an actuator, we
wish to position the rotor very precisely. Therefore the steady-state error of
the motor angular position should be zero. We will also require the steady-
state error due to a disturbance to be zero as well. The other performance
requirement is that the motor reach its desired position very quickly. In this
case, let us specify a settling time requirement of 40 milliseconds. We also want
to have an overshoot of less than 5%.

System parameters For our example, let us assume the following parameters
for the electromechanical system:

� moment of inertia of the rotor: J = 3.0 ∗ 10−6 kgm2/ s2

� damping ratio of the mechanical system: b = 3.5 ∗ 10−6Nm/ s
� electromotive force constant: K = Ke = Kt = 0.03Nm/A

� electric resistance: R = 4Ω
� electric inductance: L = 2.0 ∗ 10−6H

Step response We Þrst simulate the open-loop response of this system to
determine its behavior to a step input. For this, the Matlab m-Þle can be set
up as follows:

J=3.0E-6; %Inertia constant
b=3.5E-6; %Damping constant
K=0.03; %Motor constant
R=4; %Armature resistance
L=2.0E-6; %Armature inductance
num=K; %Transfer function numerator
den=[(J*L) ((J*R)+(L*b)) ((b*R)+K^2) 0];
%Transfer function denominator
sys1=tf(num,den); %Matlab function �tf� establishes the transfer function
step(sys1,0:0.001:0.2); %Step response with plot

As illustrated in Figure 2.40, the rotor position continues to grow when a
1.0 volt step input is applied to the motor terminals. The open-loop response
clearly shows the need for a feedback that will stabilize the system for a step
input.
Considering a unity feedback system, the closed-loop transfer function of the

system can be developed as follows. Let Gp(s) represent the open-loop transfer
function. The closed-loop transfer function then becomes Gp(s)

1+Gp(s)
. This transfer

function can be obtained by using Matlab functions as illustrated below.

sys2=1 %Unity feedback transfer function
sys=feedback(sys1,sys2);
%Function �feedback� gives closed-loop transfer function

© 2003 by Chapman & Hall/CRC

74 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

Figure 2.40. Open-loop response

The step response in Figure 2.41 is then obtained by inserting the following
Matlab statement and running the m-Þle.

step(sys,0:0.001:0.2); %Step response of closed-loop system with plot;

Figure 2.41. Closed-loop response

From the closed-loop response, we observe that the settling time criteria is
not satisÞed, although the overshoot is within the tolerable limit of less than
5%.
To improve this, we choose the control structure illustrated in Figure 2.42

and we choose the standard PID transfer function for the controller, namely,

Figure 2.42. Control structure

© 2003 by Chapman & Hall/CRC

2.7. PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL 75

Gc(s) = KP +
KI
s
+KDs =

KDs
2 +KP s+KI

s

The objective in the controller design is to select the appropriate parameters
for KP , KI , and KD to satisfy all design criteria. Once again, we follow a
systematic approach to selecting the parameters. It is important to note that in
most cases a PI or PD controller may suffice, and there is really no need for the
development of a PID controller. As we will see in this example, a PD controller
could adequately bring the system response to within tolerable limits. We do,
however, show how a full PID controller may be implemented.

Figure 2.43. Response with proportional gain

To decrease the settling time, we need to add a proportional gain. The
proportional gain increases the rate of rise in the system response. If we add
only a proportional gain KP > 0, with KI = KD = 0, then Gc(s) = KP . We
can now set up the m-Þle and proceed with Matlab simulations as follows:

%Add proportional control
Kp=10; %This is an arbitrary Þrst choice
numcf=[Kp]; %Numerator of controller transfer function
dencf=[1]; %Denominator of controller transfer function
numf=conv(numcf,num);
%Convolve the numerators of the controller and plant
denf=conv(dencf,den);
%Convolve the denominators of the controller and plant
sysf=tf(numf,denf);
%Form the forward transfer function for controller and plant
sys=feedback(sysf,sys2); %Obtain the overall closed-loop transfer function
step(sys,0:0.001:0.2); %Obtain the step response

Notice in Figure 2.43 that the addition of a proportional gain, while sharply
increasing the rise time, causes signiÞcant overshoot in the response and still
does not meet the settling time criteria. Note that the choice of proportional
gain is arbitrary. Large values cause excessive oscillation, and small values
do not allow the settling time to be met. Some trial and error solutions are
needed to obtain what may be considered satisfactory. This is illustrated in

© 2003 by Chapman & Hall/CRC

76 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

Figure 2.44. System response

Figure 2.44, where the system response is examined for different values of the
proportional gain. From the response shown in Figure 2.44, we observe that
KP = 30 provides sufficiently good rate of rise so that an appropriate choice
of derivative gain may be chosen to reduce the overshoot and thereby improve
the settling time. We now examine the system behavior for various values of

Figure 2.45. System response

derivative gain KD, with KP = 30. It is clear that for KD = 0.35 the overshoot
is negligible, and the settling time is well within the desired speciÞcation of 40
milliseconds. Also, the steady-state error is nearly zero. Hence, a PD controller
would work well for this example.
Note in Figure 2.45 that forKP = 30 andKD = 0.25, the overshoot is within

the 5% tolerance. Suppose we decide to choose these parameters and include
integral control to ensure near-zero steady-state error. We could choose KI in
the range of 1 − 100 and still be within the design speciÞcations. A Matlab
simulation of the Þnal PID controlled system response is illustrated in Figure
2.46.
In summary, the design of a PID controller is iterative in nature. There is

no unique solution for the PID parameters. The selection of parameters may
however be governed by hardware limitations. A systematic approach can yield

© 2003 by Chapman & Hall/CRC

2.8. NONLINEAR CONTROL SYSTEMS 77

Figure 2.46. System response

a satisfactory controller design. The basic steps in developing PID controllers
can be summarized as follows:

� Obtain the open-loop and closed-loop response of the plant and determine
what needs to be improved.

� Add proportional control KP > 0 to improve the rise time.
� Add derivative control KD > 0 to improve the overshoot.

� Add integral control to eliminate the steady-state error KI > 0.

� Adjust each ofKP ,KI , andKD until you obtain a desired overall response.

2.8 Nonlinear control systems
Any system for which the superposition principle does not apply is said to be
nonlinear. In this case, there is no possibility of generalizing from the response
for any class of inputs to the response for any other input. This constitutes
a fundamental and important difficulty that necessarily requires any study of
nonlinear systems to be quite speciÞc. One can attempt to calculate the response
for a speciÞc case of initial conditions and input, but make very little inference
based on this result regarding the response characteristics in other cases.
Despite analytical difficulties, one has no choice but to attempt to deal in

some way with nonlinear systems, because they occupy a very important place
in any practical system. Most linear systems can be thought of as piecewise
linear approximations of a nonlinear system. The inverted pendulum example
described at the beginning of this chapter is one such example. In some cases the
approximation may be very good, but most physical variables, if allowed to take
on large values, will eventually go out of their range of reasonable linearity. Most
drive systems such as electrical and hydraulic actuators can only be thought of
as being linear over small ranges. Gas jets, for example, have no linear range
at all, and to achieve minimum-time control, an ON-OFF (bang-bang or relay)

© 2003 by Chapman & Hall/CRC

78 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

type controller is used in missile and spacecraft control systems. Other types of
nonlinearities have to be dealt with in the controller design as well.

There is no closed-form solution summarizing the response characteristics of
nonlinear systems. These systems display a variety of behaviors that have to
be studied quite speciÞcally using some iterative solution technique. Typically,
the solution of nonlinear systems requires simulation of the dynamic behavior
for a variety of inputs and initial conditions. The most obvious departure from
linear system behavior is the dependence of the response on the amplitude of
the excitation. This excitation can be either initial conditions or the forcing
input, or both. A common situation is a system that responds to some small
initial conditions by returning to rest in a well-behaved stable manner, while
diverging in an unstable manner for some other initial conditions. This type of
behavior is classiÞed as saddle-point behavior. In some cases, the response to
certain initial conditions may lead to continuous oscillation, the characteristics
of which are a property of the system. Such oscillations give rise to two classes
of systems, namely, systems that exhibit limit cycle behavior and systems
that are chaotic. A limit cycle is the trajectory of the system in its state space
where the trajectory closes in on itself and will not result in a steady state. A
chaotic system on the other hand, is a system for which trajectories in the state
space are unique and never follow the same path twice. This phenomenon is
not possible in linear systems.

2.9 Linearization

A study and design of controllers for nonlinear systems can be greatly simpliÞed
by approximating it about a desired operating point by a linear system. The re-
sulting linear system allows one to say a great deal about the performance of the
nonlinear system for small departures around the operating point. Any response
that carries variables through a range that exceeds the limits of reasonable lin-
ear approximation does not reßect the behavior of the nonlinear system. This
requires repeated linearizations about new operating points, and the resulting
solutions being �patched� together. In fact, this technique of �patching� has
signiÞcant connotation in the ability of fuzzy logic-based systems being �uni-
versal approximators.� A discussion of universal approximation is provided in
Chapter 4 on fuzzy control. Consider a nonlinear system represented by the
equation

úx(t) = f (x(t), u(t)) (2.41)

Linearization can be performed by expanding the nonlinear equations into a
Taylor series about an operating point and neglecting all terms higher than
Þrst-order terms. Let the nominal operating point be denoted x0(t), which
corresponds to the nominal input u0(t) and some Þxed initial states. Expanding
Equation (2.41) into a Taylor series about x(t) = x0(t), and neglecting all terms

© 2003 by Chapman & Hall/CRC

2.9. LINEARIZATION 79

higher than Þrst-order terms gives

úxi(t) = fi[x0(t),u0(t)] +
nX
j=1

∂fi
∂xj

¯̄̄̄
¯̄
x0,u0

(xj − x0j) +
nX
j=1

∂fi
∂uj

¯̄̄̄
¯̄
x0,u0

(uj − u0j) (2.42)

where, i = 1, 2, ..., n.
Now, if we let

4xi = xi − x0i
4ui = ui − u0i

then
4 úxi = úxi − úx0i

Since úx0i = fi[x0(t),u0(t)], Equation (2.42) can be written as

4 úxi =
nX
j=1

∂fi
∂xj

¯̄̄̄
¯̄
x0,u0

(4xj) +
nX
j=1

∂fi
∂uj

¯̄̄̄
¯̄
x0,u0

(4uj) (2.43)

Equation (2.43) can be expressed in vector-matrix form as

4 úx = A∗4x+B∗4u (2.44)

where

A∗ =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

 B∗ =


∂f1
∂u1

∂f1
∂u2

· · · ∂f1
∂un

∂f2
∂u1

∂f2
∂u2

· · · ∂f2
∂un

...
...

. . .
...

∂fn
∂u1

∂fn
∂u2

· · · ∂fn
∂un

 (2.45)

Both A∗ and B∗ are evaluated at the nominal operating point. In general,
however, Equation (2.44), although linear, may contain time varying elements.

Example 2.8 (Linearization) Suppose we wish to linearize the following state
equations of a nonlinear system:

úx1 (t) =
−1
x22 (t)

(2.46)

úx2 (t) = x1 (t)u (t) (2.47)

These equations are to be linearized about the nominal trajectory [x01(t), x02(t)]
which is the solution to the equations with initial conditions x01(0) = x02(0) = 1
and input u(t) = 0.
Integrating Equation (2.47) with respect to time t under the speciÞed initial

conditions, we get
x2 (t) = x2 (0) = 1 (2.48)

© 2003 by Chapman & Hall/CRC

80 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

Then Equation (2.46) gives
x1 (t) = −t+ 1 (2.49)

Therefore, the nominal trajectory for which Equations (2.46) and (2.47) are to
be linearized is described by

x01 (t) = −t+ 1 (2.50)

x02 (t) = 1 (2.51)

Now evaluating the coefficients of Equation (2.45), we get

∂f1(t)
∂x1(t)

= 0 ∂f1(t)
∂x2(t)

= 2
x32(t)

∂f1(t)
∂u(t) = 0

∂f2(t)
∂x1(t)

= u (t) ∂f2(t)
∂x2(t)

= 0 ∂f2(t)
∂u(t) = x1 (t)

Using Equation (2.43), we get

4 úx1 (t) = 2

x302 (t)
4 x2 (t) (2.52)

4 úx2 (t) = u0 (t)4 x1 (t) + x01 (t)4 u (t) (2.53)

Substituting Equations (2.50) and (2.51) into (2.52) and (2.53), we get· 4 úx1 (t)
4 úx2 (t)

¸
=

·
0 2
0 0

¸ · 4x1 (t)
4x2 (t)

¸
+

·
0

1− t
¸
4u (t) (2.54)

The set of Equations (2.54) represents linear state equations with time-varying
coefficients.

2.10 Exercises and projects

1. Show that the following systems are either linear or nonlinear, and either
time-varying or time-invariant.

(a) y (t) = v (t) ddt (v (t))

(b)
v(t)−→ N1

q(t)−→ N2
y(t)−→ where N1 and N2 are linear systems connected

in cascade.

2. Prove or disprove the following statements.

(a) In a linear system, if the response to v (t) is y (t), then the response
to Re(v (t)) is Re(y (t)) where Re(x) denotes the real part of the
complex number x.

(b) In a linear system, if the response to v (t) is y (t), then the response
to d

dt (v (t)) is
d
dt (y (t)).

© 2003 by Chapman & Hall/CRC

2.10. EXERCISES AND PROJECTS 81

3. Each of the following is a linear time-invariant system.

(i)
·
úx1
úx2

¸
=

·
1 0
2 2

¸ ·
x1
x2

¸
+

·
1
0

¸
u y =

£
2 1

¤ ·x1
x2

¸

(ii)

 úx1úx2
úx3

 =
0 1 0
0 0 1
0 −2 −3

x1x2
x3

+
01
1

u y =
£
1 0 1

¤x1x2
x3


(iii)

 úx1úx2
úx3

 =
1 0 0
0 1 1
0 −2 −1

x1x2
x3

+
10
1

u y =
£
0 1 1

¤x1x2
x3


(iv)

 úx1úx2
úx3

 =
−1 0 0
0 −1 0
0 −2 −2

x1x2
x3

+
01
1

u y =
£
1 1 0

¤x1x2
x3


(a) Explain why each system is or is not fully controllable.

(b) Explain why each system is or is not fully observable.

(c) Find the transfer function for each system.

(d) Explain why each system is or is not stable.

4. For each of the open-loop transfer functions of linear time-invariant sys-
tems, speciÞed below, we are required to obtain state-variable feedback
controllers. The corresponding desired roots (characteristic equation) are
speciÞed for each system.

(i) G1(s) =
(s+ 2)

(s+ 3)(s+ 7)
; Desired roots: {−5, −8}

(ii) G2(s) =
10

s(s+ 1)(s+ 5)
; Desired roots: {−0.708± j0.706, −50}

(iii) G3(s) =
(s2 + 2)

(s+ 3)(s+ 4)(s+ 5)
; Desired characteristic equation:

s3 + 8s2 + 22s+ 24 = 0

(iv) G4(s) =
(s2 + s+ 1)

(s3 + 8s2 + 22s+ 24)
; Desired characteristic equation:

s3 + 15s2 + 71s+ 105 = 0

(a) For each system obtain the step input open-loop response usingMat-
lab.

(b) For each system with state-variable feedback, obtain the step input
response using Matlab.

5. Explain why C (sI −A)−1B + E =
�y (s)

�u (s)
as claimed in Equations 2.39

and 2.40.

© 2003 by Chapman & Hall/CRC

82 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

6. A system is described by the following differential equation

d2x

dt2
+ 2

dx

dt
+ 3x = 1

with the initial conditions x (0) = 1 and úx (0) = −1. Show a block diagram
of the system, giving its transfer function and all pertinent inputs and
outputs.

7. Develop the state model (state and output equations) for the system be-
low.

R (s) −→ 5s+ 1

s4 + 2s3 + s2 + 5s+ 10
−→ C (s)

8. A system is deÞned as

d2x

dt2
+ 12

dx

dt
+ 30x = f(x)

Linearize the system for the following functions f(x).

(a) f(x) = sinx for x = 0 (b) f(x) = sinx for x = π

(c) f(x) = e−x for x ≈ 0
9. A Þrst-order system is modeled by the state and output equations as

dx(t)

dt
= −3x(t) + 4u(t)

y(t) = x(t)

(a) Find the Laplace transform of the set of equations and obtain the
transfer function.

(b) If the input u(t) is a unit step function, with x(0) = 0, Þnd y(t),
t > 0.

(c) If the input u(t) is a unit step function, with x(0) = −1, Þnd y(t),
t > 0.

(d) Obtain a Matlab solution to verify your results.

10. Given the state equations·
úx1 (t)
úx2 (t)

¸
=

·
0 2
−1 −3

¸ ·
x1 (t)
x2 (t)

¸
+

·
0
1

¸
u (t)

y(t) =
£
1 0

¤ · x1 (t)
x2 (t)

¸
(a) Find the Laplace transform of the set of equations and obtain the

transfer function.

© 2003 by Chapman & Hall/CRC

2.10. EXERCISES AND PROJECTS 83

(b) If the input u(t) is a unit step function, with x1(0) = x2(0) = 0, Þnd
y(t), t > 0.

(c) If the input u(t) is a unit step function, with x1(0) = x2(0) = −1,
Þnd y(t), t > 0.

(d) Obtain a Matlab solution to verify your results.

11. For each second-order system given below, obtain a complete analytical
solution y(t), t > 0 when x1(0) = 1 and x2(0) = 0. Assume the input
u (t) = u1 (t) = u2 (t) is a unit step function. Using Matlab, verify your
solutions in each case.

(a)
·
úx1 (t)
úx2 (t)

¸
=

· −3 2
−2 −3

¸ ·
x1 (t)
x2 (t)

¸
+

·
1
1

¸
u (t)

y(t) =
£
1 0

¤ · x1 (t)
x2 (t)

¸
(b)

·
úx1 (t)
úx2 (t)

¸
=

·
0 3
−5 −8

¸ ·
x1 (t)
x2 (t)

¸
+

·
1 1
0 −1

¸·
u1 (t)
u2 (t)

¸
·
y1 (t)
y2 (t)

¸
=

·
1 0
1 2

¸ ·
x1 (t)
x2 (t)

¸
(c)

·
úx1 (t)
úx2 (t)

¸
=

·
0 4
0 −5

¸ ·
x1 (t)
x2 (t)

¸
+

·
0
1

¸
u (t)·

y1 (t)
y2 (t)

¸
=

·
0 1
1 1

¸ ·
x1 (t)
x2 (t)

¸
12. Consider the following plant models:

(a) Gp1(s) =
10

(s+ 1)(s+ 10)
(b) Gp2(s) =

1

(s+ 1)(s− 3)
(c) Gp3

(s) =
1

(s2 + s+ 1)
(d) Gp4

(s) =
1

s(s+ 1)

Making reasonable assumptions for settling time and steady-state error
criteria, for each plant model derive a suitable set of PID control para-
meters. Use Matlab to simulate the behavior of the system. Assume a
tolerable overshoot of less than 5% in all cases.

13. Synthesize a PI controller for the plant given by the transfer function

Gp(s) =
1

(s2 + 6s+ 9)

Simulate the dynamics of the plant using Matlab. State all assumptions.

14. Consider the plant model of a system as follows:

Gp(s) =
−αs+ 1

(s2 + 3s+ 2)

© 2003 by Chapman & Hall/CRC

84 CHAPTER 2. MATHEMATICAL MODELS IN CONTROL

Synthesize a set of PID parameters for different values of α in the interval
[0.1; 20]. Discuss your results.

15. For the inverted pendulum problem example in Section 2.1.2, consider the
following parameters

M = 10.5 kg

m = 0.5 kg

b = 0.01N/m/ s

l = 0.6m

I = 0.016 kgm2

Consider the effects of changing proportional gain KP over a range of
0− 1000, the derivative gain KD over a range of 0− 500, and the integral
gain KI over the range of 0−10. Obtain a suitable set of PID parameters
that will meet the standard criteria of less than 5% overshoot and a two
second settling time.

16. For the inverted pendulum problem, suppose that it is necessary for the
cart to return to the same position or to a desired position. Include cart
control in your model and obtain simulations using Simulink.

17. Project: For the ardent student, modeling the ancient control system
developed by Hero should be a challenge. While there are no speciÞc
guidelines that can be given, commonsense and reasonableness account for
obtaining the mathematical model of the system. Some hints in modeling,
however, can be useful. A simple lag, for example, is given by

G1(s) =
1

s+ T1

Note that the inverse Laplace transform yields

g1(t) = e
−T1tu(t)

This should provide the insight into choosing the appropriate time con-
stants, like T1, so that fast and slow responding actions can be appro-
priately modeled. The goal, of course, is to design a controller that will
perform the opening and closing of the temple doors.

© 2003 by Chapman & Hall/CRC

Chapter 3

FUZZY LOGIC FOR
CONTROL

In this chapter, we set forth the basic mathematical ideas used in fuzzy control.
These ideas are illustrated here with simple examples. Their applications will
be expanded upon in later chapters.

3.1 Fuzziness and linguistic rules

There is an inherent impreciseness present in our natural language when we
describe phenomena that do not have sharply deÞned boundaries. Such state-
ments as �Mary is smart� and �Martha is young� are simple examples. Fuzzy
sets are mathematical objects modeling this impreciseness.
Our main concern is representing, manipulating, and drawing inferences

from such imprecise statements. Fuzzy set theory provides mathematical tools
for carrying out approximate reasoning processes when available information
is uncertain, incomplete, imprecise, or vague. By using the concept of degrees
of membership to give a mathematical deÞnition of fuzzy sets, we increase the
number of circumstances encountered in human reasoning that can be subjected
to scientiÞc investigation.
Humans do many things that can be classiÞed as control. Examples include

riding a bicycle, hitting a ball with a bat, and kicking a football through the
goalposts. How do we do these things? We do not have the beneÞt of precise
measurements, or a system of differential equations, to tell us how to control
our motion, but humans can nevertheless become very skillful at carrying out
very complicated tasks. One explanation is that we learn through experience,
common sense, and coaching to follow an untold number of basic rules of the
form �If...then...�:

If the bicycle leans to the right, then turn the wheel to the right.
If the ball is coming fast, then swing the bat soon.

85

© 2003 by Chapman & Hall/CRC

86 CHAPTER 3. FUZZY LOGIC FOR CONTROL

If a strong wind is blowing right to left, then aim to the right of the goalposts.

The use of basic rules of this form is the basic idea behind fuzzy control. Lin-
guistic variables such as fast, slow, large, medium, and small are translated into
fuzzy sets; mathematical versions of �If...then...� rules are formed by combining
these fuzzy sets.

3.2 Fuzzy sets in control
It is easy to express rules in words, but the linguistic notion of fuzziness as
illustrated in the rules above needs to be represented in a mathematical way
in order to make use of this notion in control theory. How can we do that?
The mathematical modeling of fuzzy concepts was Þrst presented by Professor
LotÞ Zadeh in 1965 to describe, mathematically, classes of objects that do not
have precisely deÞned criteria of membership. His contention is that meaning
in natural language is a matter of degree.
Zadeh gave the examples, �the class of all beautiful women� and �the class

of all tall men.� The notion of �tall� can be depicted by a graph such as Figure
3.1, where the x-axis represents height in centimeters, and the y-axis represents
the degree, on a scale of 0 to 1, of the tallness attributed to that height. Of

0

0.2

0.4

0.6

0.8

1

y

50 100 150 200 250x

Figure 3.1. �Tallness� of height in centimeters

course, the scaling of this function depends on the context, but the shape is
descriptive in a fairly general setting.
Before deÞning a fuzzy subset mathematically, we Þrst look at ordinary

subsets in a special way that will allow us to expand the notion of subset to
that of fuzzy subset. An ordinary subset A of a set X can be identiÞed with a
function X → {0, 1} from X to the 2-element set {0, 1}, namely

A (x) =

½
1 if x ∈ A
0 if x /∈ A

This function is called the characteristic function or indicator function of
the fuzzy set A. If A is the set of real numbers equal to or bigger than 10 and less
than or equal to 40, the set A would be depicted as in Figure 3.2. In contrast,
elements of fuzzy subsets of X can have varying degrees of membership from 0
to 1.

© 2003 by Chapman & Hall/CRC

3.2. FUZZY SETS IN CONTROL 87

0

0.2

0.4

0.6

0.8

10 20 30 40 50

Figure 3.2. A = [10, 40]

DeÞnition 3.1 A fuzzy subset A of a set X is a function A : X → [0, 1] from
X to the unit interval [0, 1].

The value of A (x) is thought of as the degree of membership of x in A. This
function is sometimes called the membership function of A. In the special
case that the membership function takes on only the values 0 and 1, A is called
an ordinary or crisp subset of X and its membership function coincides with
its characteristic function. The set X is sometimes called the universe of
discourse. A fuzzy subset is often referred to simply as a fuzzy set.
Other notation in common use for the membership function of the fuzzy

subset A of X includes µA : X → [0, 1] and sometimes
R
x∈X µA (x) /x or, if

the domain is discrete,
P
x∈X µA (x) /x. These more complicated notations do

not convey additional information, and we do not make a notational distinction
between a fuzzy subset A and its membership function A : X → [0, 1].
The support of a function A : X → [0, 1] is the set

supp(A) = {x ∈ X | A (x) 6= 0}
For most purposes, it is not critical whether X is the support of A or some set
larger than the support. Thus, given a collection of fuzzy subsets of the real
numbers, for example, we may assume that they share the same universe of
discourse by taking X to be the union of the supports of the fuzzy sets. If two
fuzzy sets have the same support and take the same values on their support, we
generally need not distinguish between them.
A fuzzy set A : X → [0, 1] is normal if there is an x ∈ X such that A (x) = 1.

A fuzzy set A : R → [0, 1] is convex if given x ≤ y ≤ z, it must be true that
f (y) ≥ f (x) ∧ f (z). A fuzzy set A : R→ [0, 1] with Þnite support that is both
normal and convex is often called a fuzzy number. Most fuzzy sets used in
control are both normal and convex.
Since data is generally numerical, the universe of discourse is most often

an interval of real numbers, or in practice, a Þnite set of real numbers. The
shape of a membership function depends on the notion the set is intended to
describe and on the particular application involved. The membership functions
most commonly used in control theory are triangular, trapezoidal, Gaussian,
and sigmoidal Z- and S-functions, as depicted in the following Þgures.

© 2003 by Chapman & Hall/CRC

88 CHAPTER 3. FUZZY LOGIC FOR CONTROL

Triangles and trapezoids, which are piecewise-linear functions, are often
used in applications. Graphical representations and operations with these fuzzy
sets are very simple. Also, they can be constructed easily on the basis of little
information.

0

0.5

1

Triangular

0

0.5

Trapezoidal

The triangular function A with endpoints (a, 0) and (b, 0), and high point (c, α)
is deÞned by

A (x) =


α

µ
x− a
c− a

¶
if a ≤ x ≤ c

α

µ
x− b
c− b

¶
if c ≤ x ≤ b

0 otherwise

(3.1)

The trapezoidal function B with endpoints (a, 0) and (b, 0), and high points
(c, α) and (d, α) is deÞned by

A (x) =



α

µ
x− a
c− a

¶
if a ≤ x ≤ c

α if c ≤ x ≤ d
α

µ
x− b
d− b

¶
if d ≤ x ≤ b

0 otherwise

(3.2)

When the domain is Þnite, these fuzzy sets can be depicted as follows:

0

0.5

Triangular

0

0.5

Trapezoidal

Several fuzzy sets are often depicted in the same plot, as follows:

0

0.5

2 4

© 2003 by Chapman & Hall/CRC

3.2. FUZZY SETS IN CONTROL 89

The Gaussian functions, the familiar bell-shaped curve, are of the form

A (x) = e−
(x−c)2
2σ2

These are related to the well-known normal or Gaussian distributions in prob-
ability and have useful mathematical properties.

0

0.5y

Gaussian e−
x2

2

0

0.5y

Gaussian e−
(x−5)2

25

The parameters c and σ determine the center and the shape of the curve, respec-
tively. The values c = 0 and σ = 1 deÞne the standard Gaussian membership

function e−
x2

2 , centered at c = 0, and with area under the curve equal to
√
2π.

This is the Gaussian curve depicted on the left above.
A Cauchy function, or generalized bell curve, is given by functions of the

form A (x) = 1/
³
1 +

¯̄
x−c
a

¯̄2b´
. The parameter c determines the center of the

curve, and a and b determine its shape.

0.2

0.4

0.6

0.8

-4 -2 0 2 4 6x

1
.³
1 +

¯̄
x−1
2

¯̄2´
0.2

0.4

0.6

0.8

-200 0 200 400x

1
.³
1 +

¯̄
x−100
2

¯̄1/2´

0

0.2

0.4

0.6

0.8

-2 -1 1 2 3 4x

1
.³
1 +

¯̄
x−1
2

¯̄200´ 0

0.2

0.4

0.6

0.8

-1500 -1000 -500 500 1000 1500x

1
.³
1 +

¯̄
x−1
200

¯̄2´
The S- and Z-functions are sigmoidal functions of the form

A (x) =
1

1 + e−(x−m)σ

0

0.5y

S-function 1
1+ e−x+1

0

0.5y

Z-function 1
1+ ex− 1

© 2003 by Chapman & Hall/CRC

90 CHAPTER 3. FUZZY LOGIC FOR CONTROL

The values of σ determine either increasing or decreasing functions, while the
parameterm shifts the function right or left. These same shapes can be achieved
with hyperbolic tangent functions since 1

2 (1 + tanhx) =
1

1+ e2x :

0

1

-4 -2 2 4x

1 + tanhx

0

1

-4 -2 2 4x

1− tanhx
The product of two sigmoidal functions is sometimes used

0

0.2

0.4

0.6

0.8

-6 -4 -2 2 4 6x

1− tanh2 x

All of these functions can be useful for different applications.

3.3 Combining fuzzy sets
In fuzzy control theory, where we work with collections of fuzzy subsets, we
need useful ways to combine them. These ways of combining should coincide
with known methods when the sets in question are ordinary sets. In other
words, methods of combining fuzzy sets should generalize common methods for
ordinary sets. The various operators used to combine fuzzy sets are called fuzzy
connectives or aggregation operators.
The variety of operators for the aggregation of fuzzy sets can be confusing.

If fuzzy set theory is used as a modeling language for real situations or systems,
it is not only important that the operators satisfy certain axioms or have certain
formal qualities (such as associativity and commutativity), that are certainly of
importance, but the operators must also be appropriate models of real-system
behavior, and this can normally be proven only by empirical testing. In practice,
numerical efficiency in computations can also be an important consideration.

3.3.1 Minimum, maximum, and complement

Ordinary subsets, also known as crisp sets, of a set X are often combined or
negated via intersection (AND), union (OR), and complement (NOT):

AND: A ∩B = {x ∈ X : x ∈ A and x ∈ B} (intersection)
OR: A ∪B = {x ∈ X : x ∈ A or x ∈ B} (union)
NOT: X −A = {x ∈ X : x /∈ A} (complement)

(3.3)

© 2003 by Chapman & Hall/CRC

3.3. COMBINING FUZZY SETS 91

These operations are determined by their characteristic functions. The char-
acteristic functions for intersection, union, and complement are

(A ∩B) (x) =

½
1 if x ∈ A and x ∈ B
0 if x /∈ A or x /∈ B (3.4)

(A ∪B) (x) =

½
1 if x ∈ A or x ∈ B
0 if x /∈ A and x /∈ B

(X −A) (x) =

½
1 if x /∈ A
0 if x ∈ A

For these characteristic functions representing ordinary sets, the following are
satisÞed. You will be asked to prove the facts in Equations 3.5 in the exercises.

(A ∩B) (x) = A (x) ∧B (x) = A (x)B (x) (3.5)

= max {A (x) +B (x)− 1, 0}
(A ∪B) (x) = A (x) ∨B (x) = A (x) +B (x)−A (x)B (x)

= min {A (x) +B (x) , 1}
(X −A) (x) = 1−A (x) = (1−A (x)a) 1a = 1− x

1 + (a− 1)x for a > 0

Each of the above equations leads to a generalization of AND, OR, or NOT for
fuzzy subsets. By far the most common generalizations are the classical fuzzy
operators

AND: (A ∧B) (x) = A (x) ∧B (x) (minimum or meet) (3.6)

OR: (A ∨B) (x) = A (x) ∨B (x) (maximum or join)

NOT: (¬A) (x) = 1−A (x) (complement or negation)
whereA (x)∧B (x) = min {A (x) , B (x)} andA (x)∨B (x) = max {A (x) , B (x)}.
The membership functions for these fuzzy sets will be denoted by A∧B for min-
imum, A ∨B for maximum, and A0 or ¬A for complement.
Example 3.1 Suppose X = [0, 1], A (x) = x2, and B (x) = sinπx. The sets
A ∨B, A ∧B, and B0 are shown below.

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1x

A ∨B (solid), A ∧B (dotted)

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1x

B (dotted), B0 (solid)

There is an important relation that exists among these three operations,
known as the De Morgan Laws.

(A ∨B)0 = A0 ∧B0 and (A ∧B)0 = A0 ∨B0 (3.7)

© 2003 by Chapman & Hall/CRC

92 CHAPTER 3. FUZZY LOGIC FOR CONTROL

We say that each of these binary operations is dual to the other, relative to the
complement. You will be asked in the exercises to verify that these laws hold.
An equivalent way to view these laws is

A ∨B = (A0 ∧B0)0 and A ∧B = (A0 ∨B0)0

from which you can see that knowing either of the binary operations and the
complement completely determines the dual binary operation.

3.3.2 Triangular norms, conorms, and negations

Although minimum, maximum, and complement are the most common oper-
ations used for AND, OR, and NOT, there are many other possibilities with
fuzzy sets. Some of these are described in the next sections.

Triangular norms Some situations call for a different notion of AND, and
in most cases these notions are supplied by triangular norms, usually referred
to as t-norms. The notion of AND suggested in Equations 3.6 � A (x)∧B (x)
� is an example of a t-norm. At the end of this section, we look at some
nonassociative generalizations of AND and OR.
The general deÞnition of a t-norm is the following.

DeÞnition 3.2 A t-norm is a binary operation ◦ : [0, 1]× [0, 1]→ [0, 1] satis-
fying for all x, y, z ∈ [0, 1]

1. x ◦ y = y ◦ x (◦ is commutative)
2. x ◦ (y ◦ z) = (x ◦ y) ◦ z (◦ is associative)
3. x ◦ 1 = 1 ◦ x = x (1 is an identity)
4. y ≤ z implies x ◦ y ≤ x ◦ z (◦ is increasing in each variable)

The term �binary operation� simply means that a t-norm is a function of
two variables. In the literature, you will often Þnd t-norms written as functions
of two variables with the notation x ◦ y = T (x, y). Using this notation, the
commutative, associative, and identity laws look like

1. T (x, y) = T (y, x)

2. T (x, T (y, z)) = T (T (x, y) , z)

3. T (x, 1) = T (1, x) = x

We use the notation x ◦ y because it is simpler and because binary notation
is commonly used for intersection (A∩B), minimum (x∧ y) and, as in the next
example, product (where the symbol is suppressed entirely except when needed
for clarity).

© 2003 by Chapman & Hall/CRC

3.3. COMBINING FUZZY SETS 93

The most widely used t-norm, minimum, is also the largest t-norm � that
is,

x ◦ y ≤ x ∧ y
for any t-norm ◦. The smallest t-norm, called the drastic product, is not
continuous.

Drastic product

x ◦ y =
½
x ∧ y if x ∨ y = 1
0 if x ∨ y < 1

The most common examples of a t-norm, other than minimum, are the
product t-norm, or algebraic product

x ◦ y = xy
and the Łukasiewicz1 t-norm or bounded product

x ◦ y = max {x+ y − 1, 0} = (x+ y − 1) ∨ 0
These three t-norms (minimum, algebraic product, and bounded product) are
depicted in the following plots:

0 0.2
0.8 1

x0
0.5y

0

0.2

0.4

0.6

0.8

1

z

x ∧ y
0 0.2

0.8 1
x0

0.2
0.4y

0

0.2

0.4

0.6

0.8

1

z

xy

0 0.2
0.8 1

0
0.2

0.4

0

0.2

0.4

0.6

0.8

1

max {x+ y − 1, 0}
A t-norm that satisÞes x ◦ x = x for all x is called idempotent. The mini-

mum t-norm is idempotent, and it is the only idempotent t-norm. A continuous
t-norm that satisÞes x ◦ x < x for all x 6= 0, 1 is called Archimedean. All con-
tinuous t-norms we will consider, other than minimum, are Archimedean. The
three examples depicted above are basic, in the sense that all other continuous
t-norms can be obtained from these three in a straightforward way.
An Archimedean t-norm for which x◦x = 0 only when x = 0 is called strict.

The product t-norm is the prototype for a strict t-norm. Other Archimedean
t-norms are nilpotent. The Łukasiewicz t-norm is the prototype for a nilpotent
t-norm.

1Łukasiewicz (1878�1956) was a Polish logician and philosopher.

© 2003 by Chapman & Hall/CRC

94 CHAPTER 3. FUZZY LOGIC FOR CONTROL

The following theorem has its roots in the work of the Norwegian mathe-
matician Niels Abel in the early 1800�s, long before the idea of fuzzy sets arose.
A function f : [0, 1] → [0, 1] is an order isomorphism if it is continuous and
strictly increasing with f (0) = 0 and f (1) = 1.

Theorem 3.1 An Archimedean t-norm ◦ is strict if and only if there is an
order isomorphism f : [0, 1]→ [0, 1] satisfying the identity

f(x ◦ y) = f(x)f(y)

or equivalently, such that

x ◦ y = f−1(f(x)f(y))

Another such order isomorphism g satisÞes this condition if and only if f(x) =
g(x)r for some r > 0.

A similar theorem is true for nilpotent t-norms.

Theorem 3.2 An Archimedean t-norm ◦ is nilpotent if and only if there is an
order isomorphism f : [0, 1]→ [0, 1] satisfying the identity

f(x ◦ y) = (f(x) + f(y)− 1) ∨ 0

or equivalently, such that

x ◦ y = f−1 ((f(x) + f(y)− 1) ∨ 0)

Another such order isomorphism g satisÞes this condition if and only if f = g.

Another way to express the situation is: Every strict t-norm is isomorphic to
the product t-norm and every nilpotent t-norm is isomorphic to the Łukasiewicz
t-norm. The order isomorphisms f in the theorems above are called generators
of the resulting t-norms.
A strict t-norm T (x, y) = x ◦ y is obtained from the algebraic product and a

generator f by
x ◦ y = f−1 (f (x) f (y))

The �additive� generator F : [0, 1]→ [0,∞] for strict t-norms that is commonly
referred to in the literature is related to f by F (x) = − ln f (x). Thus, there is
a decreasing function F : [0, 1]→ [0,∞] with

x ◦ y = F−1 (F (x) + F (y))

A nilpotent t-norm T(x, y)=x�y can be obtained from the bounded product
and a generator f by

x � y = f−1 ((f (x) + f (y)− 1) ∨ 0)

© 2003 by Chapman & Hall/CRC

3.3. COMBINING FUZZY SETS 95

The �additive� generator F : [0, 1] → [0,∞] for nilpotent t-norms that is com-
monly referred to in the literature is related to f by F (x) /F (0) = (1− f (x)).
Thus, there is a decreasing function F : [0, 1]→ [0,∞] with

x � y = F−1 ((F (x) + F (y)) ∧ F (0))

A �multiplicative� generator G : [0, 1] → [0, 1] is obtained from f by G (x) =
ef(x)−1, giving a third representation for nilpotent t-norms

x � y = G−1 ((G (x)G (y)) ∨G (0))

Here are two well-known examples of strict t-norms. For other strict and
nilpotent t-norms, see Tables 3.1 (a) and 3.2 (a) starting on page 97.

� Hamacher one-parameter family of t-norms:
x ◦H y = xy

x+ y − xy
generator: f(x) = e

x−1
x

� The Frank one-parameter family of t-norms includes strict, nilpotent, and
idempotent t-norms:

x ◦Fa y = loga
·
1 +

(ax − 1) (ay − 1)
a− 1

¸
, 0 < a <∞, a 6= 1

x ◦F1 y = lima→1 loga

h
1 + (ax−1)(ay−1)

a−1
i
= xy

x ◦F∞ y = lima→∞ loga
h
1 + (ax−1)(ay−1)

a−1
i
= (x+ y − 1) ∨ 0

x ◦F0 y = lima→0+ loga

h
1 + (ax−1)(ay−1)

a−1
i
= x ∧ y

generators: Fa(x) =
ax − 1
a− 1 , 0 < a <∞, a 6= 1; F1 (x) = x

Triangular conorms The corresponding generalization for OR is a triangu-
lar conorm or t-conorm.

DeÞnition 3.3 A t-conorm is a binary operation ∗ : [0, 1] × [0, 1] → [0, 1]
satisfying for all x, y, z ∈ [0, 1]

1. x ∗ y = y ∗ x (∗ is commutative)

2. x ∗ (y ∗ z) = (x ∗ y) ∗ z (∗ is associative)

3. x ∗ 0 = 0 ∗ x = x (0 is an identity)

4. y ≤ z implies x ∗ y ≤ x ∗ z (∗ is increasing in each variable)

© 2003 by Chapman & Hall/CRC

96 CHAPTER 3. FUZZY LOGIC FOR CONTROL

Maximum x∨y is the smallest (and most widely used) t-conorm. The largest
t-conorm, called the drastic sum, is not continuous.

Drastic sum

x ∗ y =
½
x ∨ y if x ∧ y = 0
1 if x ∧ y > 0

The most common examples, in addition to maximum, are the algebraic
sum

x ∗ y = x+ y − xy

and the Łukasiewicz t-conorm or bounded sum

x ∗ y = (x+ y) ∧ 1

These three t-conorms are depicted in the following plots:

0 0.2
0.8 1

x0
0.5y

0

0.2

0.4

0.6

0.8

1

z

x ∨ y
0 0.2

0.8 1
x0

0.2
0.4y

0

0.2

0.4

0.6

0.8

1

z

x+ y − xy
0 0.2

0.8 1

0
0.2

0.4

0

0.2

0.4

0.6

0.8

1

(x+ y) ∧ 1

The three examples depicted above are basic, in the sense that all other
continuous t-conorms can be obtained from these three in a straightforward
way.

© 2003 by Chapman & Hall/CRC

3.3. COMBINING FUZZY SETS 97

Table 3.1 (a). Strict t-norms, a > 0, r > 0
Type t-norm generator
Algebraic product xy x

Hamacher
xy

a+ (1− a) (x+ y − xy)

(
x

a−(a−1)x a > 0

e
x−1
x a = 0

Frank loga

³
1+ (ax−1)(ay−1)

a− 1
´
, a 6=1 ax − 1

a− 1
Schweizer-Sklar (x−a + y−a − 1)− 1

a exp
³
− 1−xa
(2a−1)xa

´
Schweizer-Sklar 1− ((1− x)a + (1− y)a 1− (1− x)a

− (1− x)a (1− y)a) 1a
Aczél-Alsina e−((− lnx)

a+(− ln y)a) 1a e−r(− lnx)
a

, r > 0

Dombi
³
1 +

³¡
1−x
x

¢a
+
³
1−y
y

´
a
´
1
a

´−1
e−(

1−x
x)

a

1-parameter family xye−a lnx ln y
1

1− a lnx
2-parameter family

³
1 + [(1−xx)r + (1−yy)

r
¡
1 + a

¡
1−x
x

¢r¢−1
+ a((1−xx)r(1−yy)

r]
1
r

´−1
Table 3.1 (b). Strict t-conorms, a > 0, r > 0

Type t-conorm cogenerator
Algebraic sum x+ y − xy 1− x
Hamacher

x+ y + (a− 2)xy
1 + (a− 1)xy

½ 1−x
1+(a−1)x a > 0

e
x

1−x a = 0

Frank, a 6= 1 1− loga
µ
1 +

(a1−x−1)(a1−y−1)
a−1

¶
a1−x−1
a−1

Schweizer-Sklar 1−((1− x)−a+(1− y)−a − 1)− 1
a exp

³
− 1−(1−x)a
(2a−1)(1−x)a

´
Schweizer-Sklar (xa + ya − xaya) 1a 1− xa

Aczél-Alsina e−((− ln x)
a+(− ln y)a) 1a e−r(− lnx)

a

Dombi
µ
1+
³¡
1−x
x

¢a
+
³
1−y
y

´a´ 1
a

¶−1
e−(

1−x
x)

a

1-parameter family 1−(1−x)(1−y) e−a ln(1−x) ln(1−y) 1

1− a ln (1− x)
2-parameter family

³
1 +

³
(1−xx)r + (1−yy)

r
¡
1 + a

¡
1−x
x

¢r¢−1
+ a((1−xx)r(1−yy)

r
´ 1
r

¶−1

© 2003 by Chapman & Hall/CRC

98 CHAPTER 3. FUZZY LOGIC FOR CONTROL

Table 3.2 (a). Nilpotent t-norms, a > 0
Type t-norm L-generator/Residual
Bounded (x+ y − 1) ∨ 0 L-Gen: x

product Res: 1− x
Schweizer-Sklar ((xa + ya − 1) ∨ 0) 1a L-Gen: xa

Res: (1− xa) 1a
Yager

³
1−((1− x)a+ (1− y)a) 1a

´
∨ 0 L-Gen: 1− (1− x)a

Res: 1− (1− (1− x)a) 1a
Sugeno-Weber (a (x+ y − 1)− (a− 1)xy) ∨ 0 L-Gen:−loga

¡
1− x+ 1

ax
¢

a 6= 1 Res: 1−x
1−a−1

a x

Table 3.2 (b). Nilpotent t-conorms, a > 0
Type t-conorm L-cogenerator/Residual

Bounded sum (x+ y) ∧ 1 L-Cog: 1− x
Res: 1− x

Schweizer-Sklar 1− (((1− x)a+ L-Cog: (1− x)a

(1− y)a − 1) ∨ 0) 1a Res: 1− (1− (1− x)a) 1a
Yager (xa + ya)

1
a ∧ 1 L-Cog: 1− xa

Res: (1− xa) 1a
Sugeno-Weber (x+ y + (a− 1)xy) ∧ 1 L-Cog: 1− loga(1− x+ ax)

a 6= 1 Res: 1−x
1+(a−1)x

A t-conorm that satisÞes x ◦ x = x for all x is called idempotent. The
maximum t-conorm is idempotent, and it is the only idempotent t-conorm.
A continuous t-conorm that satisÞes x ◦ x > x for all x 6= 0, 1 is called
Archimedean. All continuous t-conorms we will consider, other than max-
imum, are Archimedean.
An Archimedean t-conorm for which x ◦ x = 1 only when x = 1 is called

strict. The algebraic sum t-conorm is the prototype for a strict t-conorm.
Archimedean t-conorms that are not strict are nilpotent. The bounded sum
t-conorm is the prototype for a nilpotent t-conorm. See Tables 3.1 (b) and 3.2
(b) for examples of strict and nilpotent t-conorms.

Nonassociative AND operations Averaging two AND operations produces
a new AND operation we will denote by �&.� The result is a nonassociative
operation that can be used to model real-life expert reasoning.

Example 3.2 Take the Łukasiewicz and max-min t-norms for the two AND
operations. If we know the degrees of certainty (subjective probabilities) p1 =

© 2003 by Chapman & Hall/CRC

3.3. COMBINING FUZZY SETS 99

p (S1) and p2 = p (S2) of two statements S1 and S2, then possible values of
p1&p2 = p (S1&S2) form the interval

[max (p1 + p2 − 1, 0) ,min (p1, p2)]
As a numerical estimate, we can use a midpoint of this interval

p1&p2 ≡ 1
2 max (p1 + p2 − 1, 0) + 1

2 min (p1, p2)

or more generally, we can take a weighted average

p1&p2 ≡ αmax (p1 + p2 − 1, 0) + (1− α)min (p1, p2)
where α ∈ (0, 1). The corresponding OR operations are

p1 (OR) p2 ≡ αmax (p1, p2) + (1− α)min (p1 + p2, 1)
Bouchon-Meunier, Kreinovich and Nguyen argue that these AND operations

explain the empirical law in psychology according to which a person can nor-
mally distinguish between no more than 7± 2 classes of objects. This is related
to the fact that in intelligent control, experts normally use ≤ 9 different degrees
(such as �small,� �medium,� etc.) to describe the value of each characteristic
(see [10]).

Negations The logical operation x0 = NOT x satisÞes 10 = 0 and 00 = 1
and x ≤ y implies x0 ≥ y0. The operation is a strong negation if it also
satisÞes (x0)0 = x. Such an operation is also called an involution or a duality.
Strong negations are characterized as continuous, strictly decreasing functions
η : [0, 1]→ [0, 1] that satisfy

η (η (x)) = x

η (1) = 0

η (0) = 1

The word negation is often used to mean strong negation. Here are some com-
mon examples.

1. Standard: x0 = 1− x

2. Sugeno: x0 =
1− x
1 + ax

, a > −1

3. Yager: x0 = (1− xa) 1a , a > 0
4. Exponential: x0 = e

a
lnx , a > 0

5. Logarithmic: x0 = loga (a− ax + 1), a > 0, a 6= 1

6. x0 = 1− (1− (1− x)a) 1a , a > 0

© 2003 by Chapman & Hall/CRC

100 CHAPTER 3. FUZZY LOGIC FOR CONTROL

7. x0 = 1− loga
¡
a− a1−x + 1¢, a > 0, a 6= 1

8. Gödel: x0 = 0 if x 6= 0, 00 = 1 (Note (x0)0 6= x)
Following are some pictures of strong negations.

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1x

1− x

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1x¡
1− x3¢ 13

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1x³
1− x 1

2

´2

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1x½
1− x5 if x ≤ 0.755
5
√
1− x if x ≥ 0.755

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1x

1− x
1 + x

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1x

1− x
1 + 6x

Note that these graphs are all symmetric about the line y = x. This is a
result of the requirement that η (η (x)) = x, which implies that for each point
(x, η (x)) in the graph, the point (η (x) , η (η (x))) = (η (x) , x) is also in the
graph. The last two examples are Sugeno negations [71], functions of the
form

η (x) =
1− x
1 + λx

, λ > −1
A nilpotent t-norm has a (strong) negation naturally associated with it. This

is the �residual� deÞned by

η (x) =
_
{y : x4 y = 0}

For example, 1− x is the residual of the bounded product.

De Morgan systems If 0 is a strong negation, the equations

(x ∨ y)0 = x0 ∧ y0
(x ∧ y)0 = x0 ∨ y0

© 2003 by Chapman & Hall/CRC

3.3. COMBINING FUZZY SETS 101

both hold. These are called the De Morgan laws. They may or may not hold
for other pairs of t-norms and t-conorms. When they do, we say that ◦ is dual
to ∗ via the negation 0, and we call the triple ◦, ∗, 0 a De Morgan system
on the unit interval. For example, ∧, ∨, 1 − x is a De Morgan system. Tables
3.1 and 3.2 provide strict and nilpotent De Morgan systems if you pair t-norms
and t-conorms with common names and parameters. The duality between the
t-norm/t-conorm pairs in Tables 3.1 and 3.2 is via the negation 1 − x, except
for the Aczél-Alsina case where the duality is via the negation e

1
ln x . In the

nilpotent case, it is also natural to use the duality given by the t-norm or t-
conorm residual, but that is not done here.
The Frank t-norms are the solutions to the functional equation

x4 y + x5 y = x+ y
where x5 y = 1− ((1− x)4 (1− y)) is the t-conorm dual to 4 relative to the
negation 1 − x. The Frank�De Morgan systems are the triples for which the
Frank t-norm and Frank t-conorm use the same parameter and the negation is
1− x. See page 95 for a complete list of Frank t-norms.

3.3.3 Averaging operators

In the most general sense, averaging operations are aggregation operations that
produce a result that lies between the minimum and maximum. Averaging op-
erators represent some kind of compromise, and are of fundamental importance
in decision-making. Averaging operators are, in general, not associative.

DeÞnition 3.4 An averaging operator (or mean) is a continuous binary
operation

⊕ : [0, 1]× [0, 1]→ [0, 1]

satisfying

1. x⊕ x = x (idempotent)
2. x⊕ y = y ⊕ x (commutative)
3. x ≤ y and u ≤ v implies x⊕ u ≤ y ⊕ v (monotonic)
For an averaging operator ⊕ on [0, 1], it is always true that

x ∧ y ≤ x⊕ y ≤ x ∨ y
In other words, the average of x and y lies between x and y. To see this, just
observe that

x ∧ y = (x ∧ y)⊕ (x ∧ y) ≤ x⊕ y ≤ (x ∨ y)⊕ (x ∨ y) = (x ∨ y)
which follows from the idempotent and monotonic properties of averaging oper-
ators. Continuous t-norms and t-conorms are averaging operators. The arith-
metic mean (x+ y) /2 is, of course, an averaging operator, as are geometric

© 2003 by Chapman & Hall/CRC

102 CHAPTER 3. FUZZY LOGIC FOR CONTROL

mean
√
xy, harmonic mean xy/ (x+ y), and median. All averaging operations

can be extended to operations on fuzzy sets via

(A⊕B) (x) = A (x)⊕B (x)
The quasi-arithmetic mean is a direct generalization of the arithmetic mean.

DeÞnition 3.5 A quasi-arithmetic mean is a strictly monotonic, continu-
ous averaging operator satisfying

4. (x⊕ y)⊕ (z ⊕ w) = (x⊕ z)⊕ (y ⊕ w) (u is bisymmetric).

Any quasi-arithmetic mean ⊕ can be written in the form

x⊕ y = f−1
µ
f (x) + f (y)

2

¶
where f is a continuous, strictly increasing function f : [0, 1]→ [0, 1] satisfying
f (0) = 0 and f (1) = 1. Technically, every quasi-arithmetic mean is isomorphic
to the arithmetic mean. Examples of quasi-arithmetic means include the power
and logarithmic means:

x⊕ y =

µ
xa + ya

2

¶ 1
a

, a > 0

x⊕ y = loga (a
x + ay) , a > 1

The quasi-arithmetic mean for n points x1, x2, ..., xn is given by

f−1
µPn

i=1 f (xi)

n

¶
Averaging operators suggested by Werners [80] combine the minimum and

maximum operators with the arithmetic mean.

DeÞnition 3.6 The �fuzzy and� operator �⊕ of Werners is given by

x �⊕ y = γ (x ∧ y) + (1− γ) x+ y
2

and the �fuzzy or� operator ÿ⊕ of Werners is given by

x ÿ⊕ y = γ (x ∨ y) + (1− γ) x+ y
2

for some γ ∈ [0, 1].
As γ ranges from 0 to 1, the �fuzzy and� ranges from the arithmetic mean

to the minimum, and the �fuzzy or� ranges from the arithmetic mean to the
maximum.
An operator, suggested by Zimmermann and Zysno [88], that is more general

in the sense that the compensation between intersection and union is expressed
by a parameter γ, is called �compensatory and.� This is not an averaging oper-
ator in the sense of our deÞnition, since it is not idempotent. However, it plays
a similar role in decision making.

© 2003 by Chapman & Hall/CRC

3.3. COMBINING FUZZY SETS 103

DeÞnition 3.7 The �compensatory and� operator is³Yn

i=1
xi

´1−γ ³
1−

Yn

i=1
(1− xi)

´γ
for some γ ∈ [0, 1].

This operator is a combination of the algebraic product and the algebraic
sum. The parameter indicates where the actual operator is located between the
these two, giving the product when γ = 0 and the algebraic sum when γ = 1.
When it is desirable to accommodate variations in the importance of in-

dividual items, we can use weighted generalized means for the average of
x1, x2, ..., xn weighted by the vector w1, w2, ..., wn with

Pn
i=1wi = 1, as deÞned

by the formula Ã
nX
i=1

wix
a
i

! 1
a

An aggregation technique, due to Yager [83], uses ordered weighted aver-
aging (OWA) operators, which gives the greatest weight to objects of greatest
magnitude.

DeÞnition 3.8 An OWA operator of dimension n, with associated vector
W = (w1, ..., wn) satisfying wi ≥ 0 and

Pn
j=1wi = 1, is the mapping

FW : Rn → R : (x1, ..., xn) 7→
nX
j=1

xσ(i)wi

where
¡
aσ(1), ..., aσ(n)

¢
is a rearrangement of the coordinates of (x1, ..., xn) so

that xσ(1) ≥ · · · ≥ xσ(n).

The rearrangement of the coordinates into an ordered sequence is a crucial
part of this deÞnition.

Example 3.3 Assume W = (0.3, 0.4, 0.3). Then,

FW (1, 5, 3) = (0.3, 0.4, 0.3) · (5, 3, 1) = 3.0

Yager pointed out the following special cases:

� If W = (1, 0, ..., 0), then FW (a1, ..., an) = max {a1, ..., an}.
� If W = (0, 0, ..., 1), then FW (a1, ..., an) = min {a1, ..., an}.
� If W =

¡
1
n ,

1
n , ...,

1
n

¢
, then FW (a1, ..., an) = 1

n

Pn
j=1wi.

� IfW =
³
0, 1

n−2 , ...,
1

n−2 , 0
´
, then FW (a1, ..., an) = the �Olympic average.�

© 2003 by Chapman & Hall/CRC

104 CHAPTER 3. FUZZY LOGIC FOR CONTROL

3.4 Sensitivity of functions
The modeling of fuzzy concepts through the assignment of membership func-
tions, as well as the choice of fuzzy connectives, is subjective. In speciÞc ap-
plications, choices must be made. We illustrate some possible guidelines for
making these choices when sensitivity of membership functions or of fuzzy log-
ical connectives with respect to variations in their arguments is a factor. We
look at two measures of sensitivity � extreme and average sensitivity.
Note that here, by sensitivity we mean sensitivity with respect to measure-

ment errors or to the ßexibility in assigning degrees of membership for fuzzy
concepts. Thus, in general, a least sensitive operator among a class of operators
is preferred.

3.4.1 Extreme measure of sensitivity

DeÞnition 3.9 For a mapping f : [0, 1]n → [0, 1] and δ ∈ [0, 1], let
ρf (δ) =

W
|xi−yi|≤δ

|f(x)− f(y)|

where x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn). The function ρf : [0, 1]→ [0, 1]
is called an extreme measure of sensitivity of f . We say that f is less
sensitive than g if for all δ, ρf (δ) ≤ ρg(δ), with strict inequality at some δ.
Example 3.4 If f(x, y) = x ∧ y, then for |x− u| ≤ δ and |y − v| ≤ δ, we have
x ≤ u+ δ and y ≤ v + δ. So

(x ∧ y) ≤ (u+ δ) ∧ (v + δ) = (u ∧ v) + δ
and thus (x ∧ y)−(u ∧ v) ≤ δ. Similarly, (u ∧ v) ≤ (x ∧ y)+δ, so that (u ∧ v)−
(x ∧ y) ≤ δ. Thus, ρ∧(δ) ≤ δ.
Taking x = y = δ and u = v = 0, we have

(x ∧ y)− (u ∧ v) = (δ ∧ δ)− (0 ∧ 0) = δ
so ρ∧(δ) ≥ δ. It follows that

ρ∧(δ) = δ

Here are some additional examples.

Function Sensitivity
f(x) = 1− x ρf (δ) = δ

f(x, y) = xy ρf (δ) = 2δ − δ2
f(x, y) = x+ y −xy ρf (δ) = 2δ − δ2
f(x, y) = (x+ y) ∧ 1 ρf (δ) = 2δ ∧ 1
f(x, y) = x ∨ y ρf (δ) = δ

Theorem 3.3 A t-norm 4 and the t-conorm O that is dual to 4 with respect
to α(x) = 1− x, have the same sensitivity.

© 2003 by Chapman & Hall/CRC

3.4. SENSITIVITY OF FUNCTIONS 105

Proof. Using the fact that x and 1 − x have the same range of values for
x ∈ [0, 1], we have the equalities

ρ4(δ) =
_

|x−u|∨|y−v|≤δ
|x4 y − u4 v|

=
_

|(1−x)−(1−u)|∨|(1−y)−(1−v)|≤δ
|(1− x)4 (1− y)− (1− u)4 (1− v)|

=
_

|(1−x)−(1−u)|∨|(1−y)−(1−v)|≤δ
|1− (1− x)4 (1− y)− (1− (1− u)4 (1− v))|

=
_

|x−u|∨|y−v|≤δ
|x5y − u5v|

= ρ5(δ)

Thus ρ4(δ) = ρ5(δ).

Theorem 3.4 The functions x∧y, x∨y, and α(x) = 1−x are the least sensitive
among all continuous Archimedean t-norms and t-conorms, and all negations,
respectively.

Proof. We showed in the Þrst example above that ρ∧(δ) = δ. If 4 is any
t-norm, then

|14 1− (1− δ)4 (1− δ)| = |1− (1− δ)4 (1− δ)|
≤ ρ4(δ)

so (1− δ) ≥ (1− δ)4 (1− δ) > 1− ρ4(δ). Thus, ρ4(δ) ≥ δ = ρ∧(δ).
Note that ∧ is the only t-norm 4 such that ρ4(δ) = δ. Indeed, for ∧ 6= 4,

there are x, y such that x4y 6= x∧ y, and we may assume that x4y < x. Now

|x4 1− 14 1| = 1− x4 y > 1− x

so that ρ4(1− x) 6= 1− x. We leave the rest of the proof as exercises.
To consider sensitivity of membership functions, let us look at the triangular

function A with endpoints (a, 0) and (b, 0) and high point (c, α) (where a ≤ c ≤ b
and 0 ≤ α ≤ 1). This function is deÞned by

A (x) =


α

µ
x− a
c− a

¶
if a ≤ x ≤ c

α

µ
x− b
c− b

¶
if c ≤ x ≤ b

0 otherwise

Using the fact that if either x ≤ c ≤ y or y ≤ c ≤ x, and |x− y| < δ, then
|x− c| < δ and |y − c| < δ, we get an upper bound for the sensitivity of this

© 2003 by Chapman & Hall/CRC

106 CHAPTER 3. FUZZY LOGIC FOR CONTROL

membership function:

ρA(δ) =
_

|x−y|≤ δ



¯̄̄
αx−yc−a

¯̄̄
if a ≤ x, y ≤ c¯̄̄

αx(c−b)−y(c−a)+ac−bc(c−a)(c−b)
¯̄̄
if a ≤ x ≤ c ≤ y ≤ b¯̄̄

αx(c−a)−y(c−b)+ac−bc(c−a)(c−b)
¯̄̄
if a ≤ y ≤ c ≤ x ≤ b¯̄̄

αx−yc−b
¯̄̄

if c ≤ x, y ≤ b
0 otherwise


≤



α
c−aδ if a ≤ x ≤ c, a ≤ y ≤ c

α(b−a)
(c−a)(b−c)δ if a ≤ x ≤ c ≤ y ≤ b or a ≤ y ≤ c ≤ x ≤ b

α
b−cδ if c ≤ x ≤ b, c ≤ y ≤ b
0 otherwise


Note that α

c−a and
α
b−c are the absolute values of the slopes of the triangular

function at the left and right of c, respectively.

For the Gaussian functions A (x) = e−
(x−c)2
2σ2 , the sensitivity function is

ρA(δ) =
W

|x−y|≤δ

¯̄̄̄
e−

(x−c)2
2σ2 − e− (y−c)2

2σ2

¯̄̄̄

and for the sigmoidal functions of the form f (x) = 1
1+e−(x−m)σ , the sensitivity

function is

ρf (δ) =
W

|x−y|≤δ

¯̄̄̄
1

1 + e−(x−m)σ
− 1

1 + e−(y−m)σ

¯̄̄̄

3.4.2 Average sensitivity

An alternative to the measure above, of extreme sensitivity of fuzzy logical
connectives and membership functions, is a measure of average sensitivity.
Let f : [a, b] → R. One measure of the sensitivity of differentiable functions f
at a point in [a, b] is the square f 0(x)2 of its derivative at that point. Its average
sensitivity is the average over all points in [a, b] of f 0(x)2, namely, the quantity

1

b− a
Z b

a

f 0(x)2dx

If f is a function of two variables, say f : [a, b]2 → R, the average sensitivity of
f is

S(f) =
1

(b− a)2
Z b

a

Z b

a

Ãµ
∂

∂x
f (x, y)

¶2
+

µ
∂

∂y
f (x, y)

¶2!
dxdy

© 2003 by Chapman & Hall/CRC

3.4. SENSITIVITY OF FUNCTIONS 107

Example 3.5 Here are some examples for logical connectives on [0, 1].

Connective Average sensitivity
∧ or ∨ S (∧) = S(∨) = 1
x4 y = xy S (4) = 2

3
x4 y = x+ y − xy S (4) = 2

3
x4 y = (x+ y) ∧ 1 S (4) = 1
x4 y = 0 ∨ (x+ y − 1) S (4) = 1
α(x) = 1− x S(α) = 1

A t-norm and its dual t-conorm with respect to α(x) = 1 − x have the
same average sensitivity. The functions ∧ and ∨ in the examples above are
differentiable at all points in the unit square except for the line x = y, so there
is no problem calculating the integrals involved. In certain situations, one may
need to use more general notions of derivative.

Theorem 3.5 The connectives x 4 y = xy, x 5 y = x + y − xy, and α(x)
= 1 − x have the smallest average sensitivity among t-norms, t-conorms, and
negations, respectively.

Proof. We need to show, for example, that x4 y = xy minimizes
Z 1

0

Z 1

0

Ãµ
∂4
∂x

¶2
+

µ
∂4
∂y

¶2!
dxdy

A standard fact from analysis is that 4 minimizes this expression if it satisÞes
the Laplace equation

∂24
∂x2

+
∂24
∂y2

= 0

and of course it does. Similar arguments apply in the other two cases.

As in the case of extreme measure of sensitivity, one can use the notion
of average sensitivity as a factor in choosing membership functions for fuzzy
concepts. When facing a fuzzy concept such as a linguistic label, one might have
a class of possible membership functions suitable for modeling the concept. The
membership function within this class that minimizes average sensitivity can be
a good choice.
For a membership function A : [a, b]→ [0, 1], the average sensitivity is

S(A) =
1

(b− a)
Z b

a

µ
d

dx
A (x)

¶2
dx

© 2003 by Chapman & Hall/CRC

108 CHAPTER 3. FUZZY LOGIC FOR CONTROL

so the triangular function A with end points (a, 0) and (b, 0) and high point
(c, α) has average sensitivity

S(A) =
1

(b− a)

ÃZ c

a

µ
α

c− a
¶2
dx+

Z b

c

µ
α

c− b
¶2
dx

!

=
1

(b− a)
µ
α2

c− a +
α2

b− c
¶

=
α

(c− a)
α

(b− c)
which is the product of the absolute values of the slopes of the sides of the
triangle.
For the sigmoidal membership function f (x) = 1

1+e−x+1 on the interval
[−5, 10], the average sensitivity is

S(f) =
1

(10− (−5))
Z 10

−5

µ
d

dx

1

1 + e−x+1

¶2
dx

=
1

15

Z 10

−5

Ã
e−x+1

(1 + e−x+1)2

!2
dx

= 0.233 33

and for the Gaussian membership function f (x) = e−
x2

2 on the interval [−5, 5],
the average sensitivity is

S(f) =
1

(5− (−5))
Z 5

−5

µ
d

dx
e−

x2

2

¶2
dx

=
1

10

Z 5

−5

³
−xe− 1

2x
2
´2
dx

= 8. 862 3× 10−2

3.5 Combining fuzzy rules
The rules used in a rule-based system are generally expressed in a form such as
�If x is A then y is B,� where A and B are fuzzy sets, x is in the domain of A,
and y is in the domain of B. This sounds like an implication, such as �A implies
B.� There are many generalizations of the classical logical implication operation
to fuzzy sets, but most inference mechanisms used in fuzzy logic control systems
are not, strictly speaking, generalizations of classical implication.
The reasoning applied in fuzzy logic is often described in terms of a gener-

alized modus ponens

Premise 1 x is �A
Premise 2 If x is A then y is B
Conclusion y is �B

© 2003 by Chapman & Hall/CRC

3.5. COMBINING FUZZY RULES 109

where A, �A,B, �B are fuzzy sets representing fuzzy concepts. The computation of
�B can be carried out through a basic rule of inference called the compositional
rule of inference, namely, �B = R ◦ �A where R is a fuzzy relation representing
the implication or fuzzy conditional proposition �Premise 2.� This inference
scheme is sometimes described as a problem of interpolation. Interpolation
lies at the heart of the utility of fuzzy rule-based systems because it makes it
possible to employ a relatively small number of fuzzy rules to characterize a
complex relationship between two or more variables.
A number of formulas have been proposed for this implication, most com-

monly the compositional conjunction

R (x, y) = A (u) ∧B (v)

Then �B is deÞned as

�B (v) =
³
R ◦ �A

´
(u) =

W
u

³
�A (u) ∧A (u) ∧B (v)

´
(See page 118 for a discussion of max-min composition with fuzzy relations.)
We describe four inference and aggregation mechanisms � named after

Mamdani, Larsen, Takagi-Sugeno-Kang, and Tsukamoto � commonly used to
interpret a collection of rules

If x is Ai then y is Bi, i = 1, 2, ..., n

Applications of these methods in control theory will be discussed in Chapter 4.
In the following examples, we will use the same four fuzzy sets A1, A2, B1,

and B2 to illustrate the combination of fuzzy rules:

A1 (x) =

 x if 0 ≤ x ≤ 1
2− x if 1 ≤ x ≤ 2
0 otherwise

B1 (y) =


1
8y if 0 ≤ y ≤ 8

−1
4y + 3 if 8 ≤ y ≤ 12
0 otherwise

A2 (x) =

 x− 1 if 1 ≤ x ≤ 2
3− x if 2 ≤ x ≤ 3
0 otherwise

B2 (y) =


1
6y − 2

3 if 4 ≤ y ≤ 10
−1
5y + 3 if 10 ≤ y ≤ 15
0 otherwise

(3.8)

0

0.2

0.4

0.6

0.8

1

y

0.5 1 1.5 2 2.5 3x

A1 and A2

0

0.2

0.4

0.6

0.8

1

y

2 4 6 8 10 12 14x

B1 and B2

First we look at the product of fuzzy sets, as this greatly simpliÞes the
presentation of fuzzy rules for the Mamdani and Larsen models.

© 2003 by Chapman & Hall/CRC

110 CHAPTER 3. FUZZY LOGIC FOR CONTROL

3.5.1 Products of fuzzy sets

The (Cartesian) product of ordinary sets X1,X2, ...,Xn is the set of n-tuples

X1 ×X2 × · · · ×Xn =
nY
i=1

Xi = {(x1, x2, ..., xn) | xi ∈ Xi}

The product of fuzzy sets Ai : Xi → [0, 1], i = 1, ..., n, is the fuzzy set

A :
nY
i=1

Xi → [0, 1]

deÞned by
A (x1, x2, ..., xn) = A1 (x1) ∧ · · · ∧An (xn)

Given rules

Ri : If Ai1 and Ai2 and ... and Aik then Bi, i = 1, 2, ..., n

where Aij : Xj → [0, 1] and Bi : Y → [0, 1], interpreting �and� as minimum, we
can represent these rules as

Ri : If Ai then Bi, i = 1, 2, ..., n

where Ai =
Qn
j=1Aij :

Qn
j=1Xj → [0, 1]; so in a situation like this, we can

always assume that we have just one fuzzy set Ai for each i, with domain
X =

Qk
j=1Xj an ordinary product of sets. All of the models we describe allow

this simpliÞcation. A rule Ri is said to Þre at x if Ai (x) 6= 0, in other words,
if x is in the support of Ai.

3.5.2 Mamdani model

Given rules �If x is Ai then y is Bi,� i = 1, ..., n where x = (x1, x2, ..., xk), they
are combined in the Mamdani model as

R (x, y) =
n_
i=1

(Ai (x) ∧Bi (y))

For each k-tuple x = (x1, x2, ..., xk) this gives a fuzzy set Rx deÞned by

Rx (y) =
n_
i=1

Ai (x) ∧Bi (y)

Note that for the expanded set of rules

Ri : If Ai1 and Ai2 and ... and Aik then Bi, i = 1, 2, ..., n

this looks like

Rx (y) = R (x1, x2, ..., xk, y) =
n_
i=1

(Ai1 (x1) ∧Ai2 (x2) ∧ · · · ∧Aik (xk) ∧Bi (y))

© 2003 by Chapman & Hall/CRC

3.5. COMBINING FUZZY RULES 111

In fuzzy control, the number
Wn
i=1Ai (x) = Ai1 (x1)∧Ai2 (x2)∧· · ·∧Aik (xk)

is called the strength of the rule Ri for the input x. The fuzzy set Ri,x (y) =
Ai (x)∧Bi (y) is called the control output of the rule Ri for the input x, and
the fuzzy set Rx (y) is the aggregated control output for the input x.

Example 3.6 Take the fuzzy sets Ai and Bi deÞned in Equation 3.8.

0

0.2

0.4

0.6

0.8

1

y

0.5 1 1.5 2 2.5 3x

A1 and A2

0

0.2

0.4

0.6

0.8

1

y

2 4 6 8 10 12 14x

B1 and B2
At the point x = 1.25, the rules �If x is Ai then y is Bi, i = 1, 2,� produce the
fuzzy set

R1.25 (y) =



¡
3
4 ∧ 1

8y
¢

if 0 ≤ y ≤ 4¡
3
4 ∧

¡
1
8y
¢¢ ∨ ¡14 ∧ ¡16y − 2

3

¢¢
if 4 ≤ y ≤ 8¡

3
4 ∧

¡−1
4y + 3

¢¢ ∨ ¡14 ∧ ¡16y − 2
3

¢¢
if 8 ≤ y ≤ 10¡

3
4 ∧

¡−1
4y + 3

¢¢ ∨ ¡14 ∧ ¡−1
5y + 3

¢¢
if 10 ≤ y ≤ 12¡

1
4 ∧

¡−1
5y + 3

¢¢
if 12 ≤ y ≤ 15

0 if otherwise

0

0.2

0.4

0.6

0.8

1

x

2 4 6 8 10 12 14 16y

[A1 (1.25) ∧B1 (y)] ∨ [A2 (1.25) ∧B2 (y)]
B1 and B2 (dotted lines)

3.5.3 Larsen model

Given rules �If x is Ai then y is Bi,� i = 1, ..., n, they are combined in the
Larsen model as

R (x, y) =
n_
i=1

(Ai (x) ·Bi (y))

where · indicates multiplication. For each k-tuple x = (x1, x2, ..., xk) this gives
a fuzzy set

Rx (y) =
n_
i=1

Ai (x) ·Bi (y)

© 2003 by Chapman & Hall/CRC

112 CHAPTER 3. FUZZY LOGIC FOR CONTROL

Note that for the set of rules

Ri : If Ai1 and Ai2 and ... and Aik then Bi, i = 1, 2, ..., n

this looks like

Rx (y) = R (x1, x2, ..., xk, y) =
n_
i=1

(Ai1 (x1) ∧Ai2 (x2) ∧ · · · ∧Aik (xk)) ·Bi (y)

Example 3.7 Take the fuzzy sets Ai and Bi deÞned in Equation 3.8.

0

0.2

0.4

0.6

0.8

1

y

0.5 1 1.5 2 2.5 3x

A1 and A2

0

0.2

0.4

0.6

0.8

1

y

2 4 6 8 10 12 14x

B1 and B2

At the point x = 1.25, the rules �If x is Ai then y is Bi,� i = 1, 2, produce the
fuzzy set

0

0.2

0.4

0.6

0.8

1

x

2 4 6 8 10 12 14 16y

R1.25 (y) = (A1 (1.25) ·B1 (y)) ∨ (A2 (1.25) ·B2 (y))
B1 and B2 (dotted lines)

3.5.4 Takagi-Sugeno-Kang (TSK) model

For the TSK model, rules are given in the form

Ri : If x1 is Ai1 and x2 is Ai2 and ... and xk is Aik
then fi (x1, x2, ..., xk), i = 1, 2, ..., n

or
Ri : If xi is Ai then fi (x), i = 1, 2, ..., n

where f1, f2, ..., fn are functionsX = X1×X2×· · ·×Xk → R andAi =
Vk
j=1Aij .

These rules are combined to get a function

R (x) =
A1 (x) f1 (x) +A2 (x) f2 (x) + · · ·+An (x) fn (x)

A1 (x) +A2 (x) + · · ·+An (x)
Thus, this model produces a real-valued function.

© 2003 by Chapman & Hall/CRC

3.5. COMBINING FUZZY RULES 113

Example 3.8 Take the fuzzy sets Ai deÞned in Equation 3.8 and the functions

f1 (x) = 2 + x f2 (x) = 1 + x

0

0.2

0.4

0.6

0.8

1

y

0.5 1 1.5 2 2.5 3x

A1 and A2

0

2

4

1 2 3x

f1 (x) = 2 + x

0

1

2

3

1 2 3x

f2 (x) = 1 + x

Then the rules

Ri : If xi is Ai then fi (x), i = 1, 2

produce the function

0

1

2

3

4

5

y

0.5 1 1.5 2 2.5x

R (x) =
A1 (x) f1 (x) +A2 (x) f2 (x)

A1 (x) +A2 (x)
A1 and A2 (dashed lines)
f1 and f2 (dotted lines)

3.5.5 Tsukamoto model

Given rules �If x is Ai then y is Ci,� i = 1, ..., n, with Ci all monotonic (either
strictly increasing or strictly decreasing), the Tsukamoto model produces the
function

y =

Pn
i=1C

−1
i Ai (x)Pn

i=1Ai (x)

The monotonicity of the fuzzy sets Ci is necessary in order to compute the
inverse functions C−1i .

© 2003 by Chapman & Hall/CRC

114 CHAPTER 3. FUZZY LOGIC FOR CONTROL

Example 3.9 Take the two fuzzy sets A1 and A2 of Equation 3.8, and the
fuzzy sets C1 and C2 and their inverses.

C1 (y) = y/2
C2 (y) =

√
y

C−11 (z) = 2z
C−12 (z) = z2

The rules �If x is Ai then y is Ci,� i = 1, 2, produce the function

R (x) =

P2
i=1C

−1
i (Ai (x))P2

i=1Ai (x)
=

 2 if 0 ≤ x ≤ 1
5− 4x+ x2 if 1 ≤ x ≤ 2
3− x if 2 ≤ x ≤ 3

0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

y

0.5 1 1.5 2 2.5 3x

R (x) =

P2
i=1C

−1
i (Ai (x))P2

i=1Ai (x)
A1 and A2 (dashed lines)
C1 and C2 (dotted lines)

3.6 Truth tables for fuzzy logic

In classical two-valued logic, truth tables can be used to distinguish between
expressions. The following tables deÞne the operations of ∨, ∧, and 0 on the
truth values {0, 1}, where 0 is interpreted as �false� and 1 is interpreted as
�true.�

∨ 0 1

0 0 1
1 1 1

∧ 0 1

0 0 0
1 0 1

0
0 1
1 0

Truth tables, in a slightly different form, can be used to determine equivalence
of logical expressions. Take two variables x, y in classical two-valued logic, let
p = x and q = (x ∧ y) ∨ (x ∧ y0), and compare their values:

© 2003 by Chapman & Hall/CRC

3.6. TRUTH TABLES FOR FUZZY LOGIC 115

x y x ∧ y y0 x ∧ y0 q p

0 0 0 1 0 0 0
0 1 0 0 0 0 0
1 0 0 1 1 1 1
1 1 1 0 0 1 1

The fact that q and p have the same truth values for every truth value of x and
y reßects the well-known fact that p and q are logically equivalent.
For fuzzy logic, it is a remarkable fact that three-valued truth tables can

be used for this purpose. Take truth values {0, u, 1}, where 0 is interpreted as
�false,� 1 is interpreted as �true,� and u as �other.� For a fuzzy set, the truth
value u corresponds to the case where the degree of membership, or the truth
value, is greater than 0 but less than 1. The corresponding truth tables are

∨ 0 u 1

0 0 u 1
u u u 1
1 1 1 1

∧ 0 u 1

0 0 0 0
u 0 u u
1 0 u 1

0
0 1
u u
1 0

These three-valued truth tables can also be used to determine equivalence of
logical expressions of fuzzy sets.

Example 3.10 Let A,B : X → [0, 1] be fuzzy sets and consider the expressions

p (x) = A (x) ∧A0 (x)
q (x) = (A (x) ∧A0 (x) ∧B (x)) ∨ (A (x) ∧A0 (x) ∧B0 (x))

where A0 (x) = 1−A (x) and B0 (x) = 1−B (x). Also let
r (x) = A (x) ∧A0 (x) ∧B (x)
s (x) = A (x) ∧A0 (x) ∧B0 (x)

so that q (x) = r (x) ∨ s (x). To build a three-valued truth table for a fuzzy set
A : X → [0, 1], enter 1 if A (x) = 1, 0 if A (x) = 0, and u otherwise. Likewise
with B : X → [0, 1]. Then take all possible values in {0, u, 1} for A (x) and B (x)
in the Þrst two columns and evaluate the other expressions at those values.

A (x) B (x) A0 (x) B0 (x) p (x) r (x) s (x) q (x)

0 0 1 1 0 0 0 0
u 0 u 1 u 0 u u
1 0 0 1 0 0 0 0
0 u 1 u 0 0 0 0
u u u u u u u u
1 u 0 u 0 0 0 0
0 1 1 0 0 0 0 0
u 1 u 0 u u 0 u
1 1 0 0 0 0 0 0

© 2003 by Chapman & Hall/CRC

116 CHAPTER 3. FUZZY LOGIC FOR CONTROL

Observing that the truth values for the expressions p (x) and q (x) are identical,
we can conclude that

A (x) ∧A0 (x) = (A (x) ∧A0 (x) ∧B (x)) ∨ (A (x) ∧A0 (x) ∧B0 (x))

for all x ∈ [0, 1], or in terms of the fuzzy sets,

A ∧A0 = (A ∧A0 ∧B) ∨ (A ∧A0 ∧B0)

You will be asked to verify this identity for speciÞc fuzzy sets in the exercises.
A proof of the general result is contained in [26].

3.7 Fuzzy partitions

There is no standardized interpretation of the term �fuzzy partition.� In prac-
tice, the term is often used to mean any collection {Ai : Xi → [0, 1]} of fuzzy
sets for which ∪iXi is the desired universe. It may also be assumed that for
each i, Ai (x) = 1 for some x, that is, Ai is normal. Sometimes the term is used
in one of several ways that more accurately generalize the notion of partition
of ordinary sets. We describe some of these other notions after reviewing the
classical deÞnition of partition.
For ordinary sets, the term �partition� has a universally accepted meaning.

A partition of an ordinary set is a division of the set into nonoverlapping non-
empty pieces. There are many occasions, for example, when we divide a set of
people into nonoverlapping sets, such as age groups or gender groups. Here is
the formal deÞnition.

DeÞnition 3.10 A Þnite set {A1 , A2, ..., An} of nonempty subsets of a set X
is a partition of X if the following two conditions are satisÞed:

1. A1 ∪A2 ∪ · · · ∪An = X
2. Ai ∩Aj = ∅ if i 6= j

If we regard Ai as a characteristic function, this is equivalent to the two
conditions

1.
Pn
i=1Ai(x) = 1

2. Ai(x)Aj(x) = 0 (or equivalently, Ai(x) ∧Aj(x) = 0) for all x ∈ X, i 6= j

In extending the notion of partition to fuzzy sets, we cannot simply use prop-
erties 1 and 2 since having the two conditions (1) max{Ai(x) : i = 1, ..., n} = 1
and (2) min{Ai(x), Aj(x)} = 0 for i 6= j, would imply that for all i and x,
Ai(x) = 0 or 1 and thus that the Ai are crisp sets. Call a fuzzy set A normal
if A(x) = 1 for some x. This condition together with

Pn
i=1Ai(x) = 1 does lead

to a good deÞnition of partition for fuzzy sets.

© 2003 by Chapman & Hall/CRC

3.8. FUZZY RELATIONS 117

DeÞnition 3.11 A Þnite set of normal fuzzy subsets {A1 , A2, ..., An} of U is a
Þnite fuzzy partition of a set U if

1.
Pn
i=1Ai(x) = 1 for all x ∈ U

2. Each Ai is normal; that is, for each i, Ai (xi) = 1 for some xi

This deÞnition captures the meaning of properties 1 and 2 above in the
following sense. Each x has a nonzero membership value for some Ai. Also, if
Ai(x) = 1 for some i, then it is 0 for all others. A typical picture of a fuzzy
partition is as follows.

0

0.2

0.4

0.6

0.8

1 2 3 4

Here, the set X = [0, 4] is partitioned into three fuzzy (triangular) subsets.
For a Þnite set X = {x1, ..., xm}, with m ≥ n ≥ 2, condition 2 is sometimes

replaced by condition 20:

20. For each i, 0 <
Pm
k=1Ai(xk) < m.

See [86] for example. This is a weaker condition. If 1 and 2 are satisÞed, take j 6=
i. There is an xs with Aj(xs) = 1, and hence Ai(xs) = 0, so that

Pm
k=1Ai(xk) <

m. Also there is an xt for which Ai (xt) = 1, so that
Pm
k=1Ai(xk) > 0. Thus 2

0

is satisÞed. However, this weaker condition does not force the Ai to be normal,
and does not force each x to have a nonzero membership value for any Ai.

3.8 Fuzzy relations

A relation is a mathematical description of a situation where certain elements
of sets are related to one another in some way. There are many special kinds
of relations � products, functions, equivalence relations, partial orders � to
name a few.

DeÞnition 3.12 Let X1, . . . ,Xn be ordinary sets. An n-ary relation in X1×
X2 × · · · ×Xn is a subset R ⊆ X1 ×X2 × · · · ×Xn. If X1 = · · · = Xn = X, a
subset R ⊆ X ×X × · · · ×X is an n-ary relation on X. A 2-ary relation is
called a binary relation.
A fuzzy n-ary relation in X1 × X2 × · · · × Xn is a fuzzy subset R :

X1 × X2 × · · · × Xn → [0, 1], and a fuzzy n-ary relation on X is a fuzzy
subset R : X ×X × · · · ×X → [0, 1].

© 2003 by Chapman & Hall/CRC

118 CHAPTER 3. FUZZY LOGIC FOR CONTROL

Example 3.11 If X = {2, 3, 4, 6, 8} and R is the relation �(x, y) ∈ R if and
only if x divides y,� then

R = {(2, 2) , (2, 4) , (2, 6) , (2, 8) , (3, 3) , (3, 6) , (4, 4) , (4, 8) , (6, 6) , (8, 8)}

Example 3.12 IfX is the set of real numbers andQ is the fuzzy binary relation
on X described by �Q (x, y) is the degree to which x is close to y,� then one
possibility for Q is the function

Q (x, y) =
1

|x− y|+ 1

so that Q (x, x) = 1 for all x, while Q (2, 8) = 1
7 .

If X is Þnite, say X = {x1, x2, . . . , xn}, a fuzzy relation can be represented
as a matrix with ij entry R (xi, xj). This matrix will have entries all 0s and
1s if and only if the relation is an ordinary relation. For example, the relation
R above on X = {2, 3, 4, 6, 8} would be represented as

2 3 4 6 8
2
3
4
6
8


1 0 0 0 0
0 1 0 0 0
1 0 1 0 0
1 1 0 1 0
1 0 1 0 1


while the relation Q, restricted to the same domain, would be represented as

2 3 4 6 8
2

3

4

6

8



1 1
2

1
3

1
4

1
5

1
2 1 1

2
1
3

1
4

1
3

1
2 1 1

2
1
3

1
4

1
3

1
2 1 1

2

1
5

1
4

1
3

1
2 1


Since fuzzy relations are special kinds of fuzzy sets, all of the methods of

combining fuzzy sets can be applied to fuzzy relations. In addition, however,
there is a composition for fuzzy relations.

DeÞnition 3.13 If R is a fuzzy binary relation in X×Y and Q is a fuzzy binary
relation in Y × Z, the sup-min composition or max-min composition of
R and Q is deÞned as

(R ◦Q) (x, z) = W
y∈Y

(R (x, y) ∧Q (y, z))

© 2003 by Chapman & Hall/CRC

3.8. FUZZY RELATIONS 119

Example 3.13 Let X = {x1, x2, x3},

R =

x1 x2 x3
x1
x2
x3

 0.9 0.2 0.2
0.9 0.4 0.5
1.0 0.6 1.0

 , Q =

x1 x2 x3
x1
x2
x3

 0.3 0.8 0
0 0.6 1.0
0.3 0.8 0.2


then R ◦Q has ij entry W3k=1 (R (xi, xk) ∧Q (xk, xj)) so that

R ◦Q =
x1 x2 x3

x1
x2
x3

 0.3 0.8 0.2
0.3 0.8 0.4
0.3 0.8 0.6


Notice the similarity to matrix product. Use essentially the same algorithm,
but replace product by minimum and sum by maximum.

When S ⊆ X×Y is a relation, there are two natural maps called projections:
πX : S → X : (x, y) 7→ x

πY : S → Y : (x, y) 7→ y

In the case of a fuzzy relation R : X × Y → [0, 1], the projections of R on X
and Y are the fuzzy subsets πX (R) of X and πY (R) of Y deÞned by

πX (R) (x) =
W {R (x, y) | y ∈ Y }

πY (R) (y) =
W {R (x, y) | x ∈ X}

3.8.1 Equivalence relations

The fundamental similarity relation is an equivalence relation. With an ordinary
set, an equivalence relation partitions the set into separate pieces, any two
members of one of these pieces being equivalent. The formal deÞnition is the
following.

DeÞnition 3.14 An equivalence relation is a subset S ⊆ X ×X, such that
for all x, y, z ∈ X
1. (x, x) ∈ S (S is reßexive.)
2. (x, y) ∈ S if and only if (y, x) ∈ S (S is symmetric.)
3. (x, y) ∈ S and (y, z) ∈ S implies (x, z) ∈ S (S is transitive.)
This has been generalized to fuzzy sets as follows.

DeÞnition 3.15 A fuzzy equivalence relation is a fuzzy relation S on a set
X, such that for all x, y, z ∈ X
1. S (x, x) = 1 (S is reßexive.)

2. S (x, y) = S (y, x) (S is symmetric.)

3. S (x, z) ≥ S (x, y) ∧ S (y, z) (S is max-min transitive.)

© 2003 by Chapman & Hall/CRC

120 CHAPTER 3. FUZZY LOGIC FOR CONTROL

3.8.2 Order relations

A partial order ≤ on a set determines a relation R by (x, y) ∈ R if and only
if x ≤ y. There are many kinds of orders, and many generalizations have been
proposed for fuzzy sets. We will mention only the following.

DeÞnition 3.16 A fuzzy order relation is a fuzzy relation S on a set X such
that for all x, y, z ∈ X

1. S (x, x) = 1 (S is reßexive.)

2. If x 6= y, then S (x, y) ∧ S (y, x) = 0 (S is antisymmetric.)

3. S (x, z) ≥ S (x, y) ∧ S (y, z) (S is max-min transitive.)
A fuzzy order relation is a fuzzy linear ordering if it also satisÞes

4. If x 6= y, then S (x, y) ∨ S (y, x) > 0

3.9 DefuzziÞcation

The most common methods for combining fuzzy rules produce a fuzzy set. In
control theory, a crisp output is often needed. This requires some process of
defuzziÞcation� producing a number that best reßects the fuzzy set in some
sense. There are many techniques for defuzziÞcation. We will mention only a
few of the most common ones here. We will demonstrate each of these on the
output set obtained by the Mamdani method in Example 3.6.
Loosely speaking, there are two types of defuzziÞcation techniques � com-

posite moments and composite maximum. �Composite� reßects the fact that
the values are obtained from combining several fuzzy sets. Composite moment
techniques use some aspect of the Þrst moment of inertia, and composite max-
imum techniques extract a value for which the fuzzy set attains its maximum.
The center of area and height-center of area methods are of the Þrst type, and
the max criterion, Þrst of maxima, and middle of maxima methods are of the
second type.

3.9.1 Center of area method

The center of area, or center of gravity, or centroid method computes the
center of area of the region under the curve deÞned by a fuzzy set and selects
the Þrst component. If C is the fuzzy set in question and C is integrable, then
the defuzziÞed value of C by this method is

z0 =

R b
a
zC (z) dzR b
a
C (z) dz

© 2003 by Chapman & Hall/CRC

3.9. DEFUZZIFICATION 121

where [a, b] is an interval containing the support of C. If the support of C is
Þnite, the computation is

z0 =

Pn
j=1 zjC (zj)Pn
j=1C (zj)

The output set obtained in Example 3.6 produces the following value.

0

0.5y

2 4 6 8 10 12 14y

z0 (1.25) = 7.3187

The center of area defuzziÞcation is the most widely used technique. The
defuzziÞed values tend to move smoothly in reaction to small changes, and it is
relatively easy to calculate.

This solution is reminiscent of statistical decision theory. If we normalize
C (·|x) = Cx, we obtain the probability density function

C (·|x)R
Z
C (z|x) dz

A common way to summarize a distribution is to use its center of location �
that is, its expected value:

z0 =

R
Z
zC (z|x) dzR

Z
C (z|x) dz

3.9.2 Height-center of area method

The height-center of area defuzziÞcation method ignores values of the fuzzy
set below some level α, then uses the center of area method on the resulting
curve. For α = 0.5, the output set obtained in Example 3.6 produces the value
z0 (1.25) = 7. 5.

© 2003 by Chapman & Hall/CRC

122 CHAPTER 3. FUZZY LOGIC FOR CONTROL

0

0.5y

2 4 6 8 10 12 14y

z0 (1.25) = 7. 060 6, height above α = 0.5

3.9.3 Max criterion method

This method chooses an arbitrary value from the set of values in the domain on
which the fuzzy set assumes its maximum. The output set obtained in Example
3.6 produces a value 6 ≤ z0 (1.25) ≤ 9.

0

0.5y

2 4 6 8 10 12 14y

z0 (1.25) ∈ [6, 9]
A fuzzy set could be considered as a �possibility distribution� of the variable
z. From common sense, we could take z0 to be a value at which the degree of
possibility is the highest. This is the max-criterion defuzziÞcation method.

3.9.4 First of maxima method

First of maxima takes the smallest value in the domain on which the fuzzy set
assumes its maximum. The output set obtained in Example 3.6 produces the
value z0 (1.25) = 6.

© 2003 by Chapman & Hall/CRC

3.10. LEVEL CURVES AND ALPHA-CUTS 123

0

0.5y

2 4 6 8 10 12 14y

z0 (1.25) = 6

3.9.5 Middle of maxima method

Middle of maxima, or mean of maxima, takes the average of the smallest and
largest values in the domain on which the fuzzy set assumes its maximum. The
output set obtained in Example 3.6 produces the value z0 (1.25) = 6+9

2 = 7.5.

0

0.2

0.4

0.6

0.8

y

2 4 6 8 10 12 14y

z0 (1.25) = 7.5
This method appears weak, however, for a fuzzy set with two separate plateaus
at the maximum height.

0

0.1

0.2

0.3

0.4

2 4 6 8

z0 (1.25) = 4.5

3.10 Level curves and alpha-cuts
A level set (or level curve) of a function A : X → R is the set A−1 (α) of
points mapped by A to a constant α, or in other words, a set of the form

A−1 (α) = {x ∈ X : A (x) = α} (3.9)

© 2003 by Chapman & Hall/CRC

124 CHAPTER 3. FUZZY LOGIC FOR CONTROL

An α-cut for a function A is the set Aα of points for which the value of the
function is greater than or equal to α � that is,

Aα = {x ∈ X : A (x) ≥ α} (3.10)

Example 3.14 For the Gaussian function A (x) = e−
x2

2 the α-level set is the

set {x1, x2} such that e−
x2i
2 = α for 0 < α < 1, the single point 0 for α = 1,

and empty for α = 0.

The α-cut is the interval [x1, x2] such that e−
x2i
2 = α when 0 < α < 1, as

depicted in the Þgure above, the single point 0 for α = 1, and the entire domain
for α = 0.

The notion of α-cut is important in fuzzy set theory. The α-cut of a function
A : X → [0, 1] is a (crisp) subset of X, and there is one such subset for each
α ∈ [0, 1]. A fundamental fact about the α-cuts Aα is that they determine A.
This fact follows immediately from the equation

A−1(α) = Aα
T
(
S
β>α

Aβ)
0 (3.11)

This equation just says that the left side, {x : A(x) = α}, namely those elements
that A takes to α, is exactly the set of points that the two sets {x : A(x) ≥ α}
and {u : A(u) ≯ α} have in common. But the two sets on the right are given
strictly in terms of α-cuts, and knowing the sets A−1(α) for all α determines A.
So knowing all the α-cuts of A is the same as knowing A itself. We can state
this as follows.

Theorem 3.6 Let A and B be fuzzy sets. Then Aα = Bα for all α ∈ [0, 1] if
and only if A = B.

3.10.1 Extension principle

When f : X → Y is a function between ordinary sets X and Y , and A : X →
[0, 1] is a fuzzy subset of X, we can obtain a fuzzy subset B of Y by

B (y) =
_

f(x)=y

A (x) (3.12)

© 2003 by Chapman & Hall/CRC

3.10. LEVEL CURVES AND ALPHA-CUTS 125

This procedure is called the extension principle. The extension principle can
be viewed as a function

Map (X,Y)→Map (F (X) ,F (Y)) : f 7→ E (f)

whereMap (X,Y) denotes the set of all functions fromX to Y , F (X) and F (Y)
denote the set of all fuzzy subsets of X and Y , respectively,Map (F (X) ,F (Y))
is the set of all functions from F (X) to F (Y), and E (f) (A) = B as deÞned in
Equation 3.12.2

The fuzzy set E (f) (A) = B obtained above can be viewed as a composition
of functions

B = ∨Af−1

where
f−1 (y) = {x ∈ X | f (y) = x}

∨ is the function from the set of subsets of [0, 1] to [0, 1] that takes a set to its
supremum

∨ : 2[0,1] → [0, 1] : S 7→
_
{s : s ∈ S}

and A is identiÞed with the set function induced by A

A : 2X → 2[0,1] : S 7→ {A (s) | s ∈ S}

That is, we have the composition

B : Y
f−1→ 2X

A→2[0,1] ∨→ [0, 1]

3.10.2 Images of alpha-level sets

Given a function f : X → Y , there is a connection between the α-level sets, or
the α-cuts, of a fuzzy set A and the fuzzy set ∨Af−1. This relation is important
in the calculus of fuzzy quantities. Note that the function f induces a partition
of X into the subsets of the form f−1 (y).

Theorem 3.7 Let X and Y be sets, A : X → [0, 1] and f : X → Y . Then

1. f(Aα) ⊆ (∨Af−1)α for all α.

2. f(Aα) = (∨Af−1)α for α > 0 if and only if for each y ∈ Y , ∨A(f−1 (y)) ≥
α implies A(x) ≥ α for some x ∈ f−1 (y).

3. f(Aα) = (∨Af−1)α for all α > 0 if and only if for each y ∈ Y , ∨A(f−1 (y))
= A(x) for some x ∈ f−1 (y).

2 In appropriate categorical settings, the map E is functorial.

© 2003 by Chapman & Hall/CRC

126 CHAPTER 3. FUZZY LOGIC FOR CONTROL

Proof. The theorem follows immediately from the equalities below.

f(Aα) = {f(u) : A(x) ≥ α}
= {y ∈ Y : A(x) ≥ α, f(u) = y}

(∨Af−1)α = {y ∈ Y : ∨Af−1(y) ≥ α}
= {y ∈ Y : ∨{A(x) : f(x) = y} ≥ α}

Of course, for some α, it may not be true that ∨A(f−1 (y)) = α for any
y. The function ∨Af−1 is sometimes written f(A), and in this notation, the
theorem relates f(Aα) and f(A)α.
The situation X = X1 ×X2 × · · ·× Xn is of special interest. In that case,

let A(i) be a fuzzy subset of Xi. Then A(1) × · · · × A(n) is a fuzzy subset of
X, and trivially

¡
A(1) × · · · ×A(n)¢

α
= A

(1)
α × ... × A(n)α . The fuzzy subset

∨(A(1)× · · · ×A(n))f−1 is sometimes written f(A(1), ..., A(n)). In this notation,
the third part of the theorem may be stated as

� f(A(1)α , ..., A
(n)
α) = f(A(1), ..., A(n))α for all α > 0 if and only if for each

y ∈ Y ,
∨(A(1) × · · · ×A(n))(f−1 (y))A(1) × · · · ×A(n))(x)

for some x ∈ f−1 (y).

When X = Y × Y , f is a binary operation on Y . If A and B are fuzzy
subsets of Y and the binary operation is denoted ◦ and written in the usual
way, then the theorem speciÞes exactly when Aα ◦Bα = (A◦B)α, namely when
certain supremums are realized.

3.11 Universal approximation

As we will see in the next two chapters, the design of fuzzy systems or of neural
networks is aimed at approximating some idealistic input-output maps. As
such, a general question is this. If f : Rn → R is an arbitrary function, can
we construct a fuzzy system or a neural network to approximate f? Of course,
this question should be formulated in more speciÞc terms. A positive answer to
this question will put fuzzy and neural control on a Þrm theoretical basis, since
it provides a guideline for design of successful controllers. Note however that if
this is only an existence theorem, it does not actually tell us how to Þnd the
desired approximator for f .
A simple form in the theory of approximation of functions that is suitable

for our purpose here is as follows. It is well-known that any continuous function
f : [a, b]→ R, deÞned on a closed and bounded (compact) interval [a, b], can be
approximated uniformly by polynomials � that is, for any degree of accuracy
ε > 0, there is a polynomial p (x) on [a, b] such that supx∈[a,b] |p (x)− f (x)| < ε.
This is the classical Weierstrass theorem. The extension of this theorem, known

© 2003 by Chapman & Hall/CRC

3.11. UNIVERSAL APPROXIMATION 127

as the Stone-Weierstrass theorem, provides the most general framework for
designing function approximators.
To formulate this theorem, we need some terminology and concepts. Let X

be a set. A distance or metric d on X is a map d : X ×X → R such that

1. d (x, y) ≥ 0 and d (x, y) = 0 if and only if x = y.
2. d (x, y) = d (y, x) .

3. For any x, y, z ∈ X, d (x, y) ≤ d (x, z) + d (z, y).

On R, absolute value d (x, y) = |x− y| is a metric, and on the set C ([a, b])
of all continuous real-valued functions deÞned on the closed interval [a, b], the
function

d (f, g) = sup
x∈[a,b]

|f (x)− g (x)|

for f, g ∈ C ([a, b]) is also a metric. This metric is generated from the sup-norm

kfk = sup
x∈[a,b]

|f (x)|

by letting d (f, g) = kf − gk.
Since fuzzy systems or neural networks produce functions from Rn to R, we

need to specify the most general form of the counterpart in Rn of an interval
[a, b] in R. So let (X, d) be a metric space, that is, a set X together with a
metric d on it. For example, the Euclidean distance for X = Rn is

d (x, y) =
³Pn

i=1 (xi − yi)2
´ 1
2

for x = (x1, ..., xn) and y = (y1, ..., yn)

A subset A of X is said to be open if for each a ∈ A there is an ε > 0 such
that {x ∈ X : d (x, a) < ε} ⊆ A. A subset B of X is said to be closed if its
set complement B0 = {x ∈ X : x /∈ B} is open. A subset A of X is bounded
if sup {d (x, y) : x, y ∈ A} < +∞. On Rn, subsets that are closed and bounded
are called compact subsets. In metric spaces (X, d), a subset A of X is said
to be compact if any open cover of it contains a Þnite subcover � that is, for
any open sets Ai, i ∈ I, such that A ⊆ ∪i∈IAi, there is a Þnite set J ⊆ I such
that A ⊆ ∪j∈JAj . The closed intervals [a, b] in R are compact, and this is the
property that we need to generalize to Rn.
Let (X, d) and (Y, e) be two metric spaces. A function f : X → Y is said

to be continuous at a point x ∈ S if for any ε > 0, there is δ > 0 such that
e (f (x) , f (y)) < ε whenever d (x, y) < δ. The space C ([a, b]) of continuous
real-valued functions on [a, b] is generalized to the space C (X) of continuous
real-valued functions on X, where (X,d) is a metric space and X is compact.
The sup-norm on C (X) is sup {|f (x)| : x ∈ X}.
By exploiting the properties of polynomials on [a, b], we arrive at the Stone-

Weierstrass theorem. Its proof can be found in any text in Real Analysis, for
example see [61].

© 2003 by Chapman & Hall/CRC

128 CHAPTER 3. FUZZY LOGIC FOR CONTROL

Theorem 3.8 (Stone-Weierstrass theorem) Let (X, d) be a compact met-
ric space. Let H ⊆ C (X) such that

1. H is a subalgebra of C (X): If a ∈ R and f, g ∈ H, then af ∈ H and
f + g ∈ H.

2. H vanishes at no point of X: For any x ∈ X, there is an h ∈ H such that
h (x) 6= 0.

3. H separates points of X: If x, y ∈ H, x 6= y, then there is an h ∈ H such
that h (x) 6= h (y).

Then H is dense in C (X) � that is, for any f ∈ C (x) and any ε > 0,
there is an h ∈ H such that kf − hk < ε, where k·k is the sup-norm on C (X).

This theorem says that one can approximate elements of C (X) by elements
of the subclass H arbitrarily closely. The application of this theorem to the
setting of fuzzy and neural control is this. If our idealistic input-output map
is a continuous function deÞned on a compact set of some metric space, then
it is possible to approximate it to any degree of accuracy by fuzzy systems or
neural networks, provided, of course, that we design our fuzzy systems or neural
networks to satisfy the conditions of the Stone-Weierstrass theorem.
Even if we design fuzzy systems or neural networks to satisfy the conditions of

the Stone-Weierstrass theorem, we still do not know which fuzzy system or which
speciÞc neural network architecture to choose as the desired approximator, since,
as we already said, this theorem is only an existence theorem and is not a
constructive one. Its usefulness is to guide us to set up approximation models
that contain a �good� approximator. In real-world applications, how to Þnd
that good approximator is the main task. As we will see, in the context of fuzzy
and neural control, this task is called tuning. Since it is possible to design fuzzy
systems and neural networks to satisfy the conditions of the Stone-Weierstrass
theorem, but fuzzy systems and neural networks can approximate arbitrary
continuous functions deÞned on compact sets. So these two approaches possess
the so-called universal approximation property.

3.12 Exercises and projects

1. For ordinary (crisp) subsets A and B of a set X, the intersection, union,
and complement were deÞned in Equations 3.3 and 3.4. Prove that the
intersection, union, and complement for ordinary sets A,B : X → {0, 1}
satisfy all the following equations. (Each of these equations has been used
as the basis for a generalization of intersection, union, and complement to
fuzzy sets.)

(a) intersection:

i. (A ∩B) (x) = A (x) ∧B (x)

© 2003 by Chapman & Hall/CRC

3.12. EXERCISES AND PROJECTS 129

ii. (A ∩B) (x) = A (x)B (x)
iii. (A ∩B) (x) = max {A (x) +B (x)− 1, 0}

(b) union:

i. (A ∪B) (x) = A(x) ∨B(x)
ii. (A ∪B) (x) = A(x) +B(x)−A(x)B(x)
iii. (A ∪B) (x) = min {A (x) +B (x) , 1}

(c) complement:

i. (X −A) (x) = 1−A (x)
ii. (X −A) (x) = e− 1

lnA(x)

iii. (X −A) (x) = (1−A (x)a) 1a for a > 0
iv. (X −A) (x) = 1−A (x)

1 + (a− 1)A (x) for a > 0

2. Show that ordinary sets satisfy the De Morgan laws.

(a) X − (A ∪B) = (X −A) ∩ (X −B)
(b) X − (A ∩B) = (X −A) ∪ (X −B)

3. Let A and B be fuzzy subsets of X. Show that minimum and maximum,
with complement A0 (x) = 1−A (x), satisfy the De Morgan laws.

(a) (A ∨B)0 (x) = A0 (x) ∧B0 (x) for all x ∈ [0, 1]
(b) (A ∧B)0 (x) = A0 (x) ∨B0 (x) for all x ∈ [0, 1]

4. Let A and B be fuzzy subsets of X. Show that the algebraic product
(AB) (x) = A (x)B (x) and algebraic sum (A⊕B) (x) = A (x) + B (x)−
AB (x), with the negation A0 (x) = 1−A (x) satisfy the De Morgan laws:

(a) (A⊕B)0 (x) = (A0B0) (x) for all x ∈ [0, 1]
(b) (AB)0 (x) = (A0 ⊕B0) (x) for all x ∈ [0, 1]

5. Let A and B be fuzzy subsets of X. Show that the bounded product
(A4B) (x) = (A (x) +B (x)− 1) ∨ 0 and bounded sum (A5B) (x) =
(A (x) +B (x)) ∧ 1, with the negation A0 (x) = 1 − A (x) satisfy the De
Morgan laws:

(a) (A4B)0 (x) = (A05B0) (x) for all x ∈ [0, 1]
(b) (A5B)0 (x) = (A04B0) (x) for all x ∈ [0, 1]

6. Show that any t-norm ◦ satisÞes the following.
(a) x ◦ y ≤ x ∧ y for every x, y ∈ [0, 1]
(b) x ◦ 0 = 0 for every x ∈ [0, 1]

© 2003 by Chapman & Hall/CRC

130 CHAPTER 3. FUZZY LOGIC FOR CONTROL

7. Show that any t-conorm ∗ satisÞes the following.
(a) x ∗ y ≥ x ∨ y for every x, y ∈ [0, 1]
(b) x ∗ 1 = 1 for every x ∈ [0, 1]

8. Show that ∧ is the only idempotent t-norm.
9. Show that the functions ηλ (x) =

1−x
1+λx are negations for all λ > −1.

10. Prove that the equality

A−1(α) = Aα
T
(
S
β>α

Aβ)
0

given in Equation 3.11 always holds.

11. Explain why the 0.5-level set of sin (2x+ y + 1) consists of all the lines
y = −2x− 1 + 1

6π + 2nπ and y = −2x− 1 + 5
6π + 2mπ for integers m,n.

Some of these lines are depicted in the following Þgure.

-20

-10

0

10

20

y

-4 -2 2 4x

0.5-level set of sin t

12. Suppose f is any function R→ R, and a, b, c are constants. Explain why
the (nonempty) level sets for f (ax+ by + c) are families of straight lines.

13. Show that any α-cut of a fuzzy order (α > 0) is an order, that is, show
that the α-cut Sα = {(x, y) ∈ X ×X : S (x, y) ≥ α} satisÞes
(a) For all x ∈ X, (x, x) ∈ Sα.
(b) If (x, y) ∈ Sα and (y, x) ∈ Sα then x = y.
(c) If (x, y) ∈ Sα and (y, z) ∈ Sα then (x, z) ∈ Sα.

14. Let A (x) =

 x if 0 ≤ x ≤ 1
2− x if 1 ≤ x ≤ 2
0 otherwise

, B (x) =


3x−1
4 if 13 ≤ x ≤ 5

3
9−3x
4 if 53 ≤ x ≤ 3
0 otherwise

,

A0 (x) = 1−A (x) and B0 (x) = 1−B (x) for x ∈ [0, 3]. Show that
A (x) ∧A0 (x) = (A (x) ∧A0 (x) ∧B (x)) ∨ (A (x) ∧A0 (x) ∧B0 (x))

© 2003 by Chapman & Hall/CRC

3.12. EXERCISES AND PROJECTS 131

Find formulas for all the functions involved and also plot them.

15. Let A (x) = sinπx, B (x) = x2, A0 (x) = 1−A (x), and B0 (x) = 1−B (x)
for x ∈ [0, 1]. Show that

A (x) ∧A0 (x) = (A (x) ∧A0 (x) ∧B (x)) ∨ (A (x) ∧A0 (x) ∧B0 (x))

Find formulas for all the functions involved and also plot them.

16. If ⊕ is an averaging operator and f is a continuous, strictly increasing
function f : [0, 1]→ [0, 1] satisfying f (0) = 0 and f (1) = 1, show that

x~ y = f −1 (f (x)⊕ f (y))

is also an averaging operator.

17. Show that an OWA operator satisÞes the three basic properties associated
with an averaging operator.

18. Show that the function

t (x) = max

½
min

µ
x− a
b− a ,

c− x
c− b

¶
, 0

¾
gives the triangular set determined by the points (a, 0), (b, 1), (c, 0) for
a < b < c.

19. Show that the function

t (x) = max

½
αmin

µ
x− a
b− a , 1,

d− x
d− c

¶
, 0

¾
gives the trapezoidal set determined by the points (a, 0), (b, α), (c, α),
(d, 0) for a < b < c < d and 0 < α ≤ 1.

20. Let A [a, b, c] denote the triangular set determined by the points (a, 0),
(b, 1), (c, 0). Using the fuzzy sets

0

0.2

0.4

0.6

0.8

2 4 6 8 10

A1 [2, 4, 6] and A2 [4, 6, 8]
and

© 2003 by Chapman & Hall/CRC

132 CHAPTER 3. FUZZY LOGIC FOR CONTROL

0

0.2

0.4

0.6

0.8

2 4 6 8 10

B1 [1, 4, 6] and B2 [4, 8, 9]
and

0

0.2

0.4

0.6

0.8

2 4 6 8 10

C1 [1, 4, 7] and C2 [3, 6, 9]

graph the aggregated fuzzy set realized by the Mamdani method

O(5,5) (z) = (A1 (5) ∧B1 (5) ∧ C1 (z)) ∨ (A2 (5) ∧B2 (5) ∧C2 (z))

and defuzzify O(5,5) (z) by the �mean of maxima� method.

21. Repeat the previous exercise using the Larsen method, so that

O(5,5) (z) = ((A1 (5) ∧B1 (5)) · C1 (z)) ∨ ((A2 (5) ∧B2 (5)) · C2 (z))

and defuzzify by the �Þrst of maxima� method.

22. Defuzzify the following set by each of the methods proposed in Section 3.9.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10

23. Repeat the previous exercise, but assume that the domain is the set of
integers 1 ≤ n ≤ 10.

© 2003 by Chapman & Hall/CRC

Chapter 4

FUZZY CONTROL

Fuzzy logic controllers serve the same function as the more conventional con-
trollers, but they manage complex control problems through heuristics and
mathematical models provided by fuzzy logic, rather than via mathematical
models provided by differential equations. This is particularly useful for con-
trolling systems whose mathematical models are nonlinear or for which standard
mathematical models are simply not available.
The implementations of fuzzy control are, in some sense, imitations of the

control laws that humans use. Creating machines to emulate human expertise
in control gives us a new way to design controllers for complex plants whose
mathematical models are not easy to specify. The new design techniques are
based on more general types of knowledge than differential equations describing
the dynamics of the plants.

4.1 A fuzzy controller for an inverted pendulum

In Chapter 2, we presented examples of controlling an inverted pendulum by
means of standard control. It is interesting to note that, with practice, humans
can solve the inverted pendulum problem based solely on naive physics and
common sense rather than on complicated mathematical models.1 Balancing
a broom upright in your hand, as in Figure 1.13 for example, involves more
degrees of freedom and is inherently much more complicated than the inverted
pendulum on a cart depicted in Figure 2.3. However, when you balance the
broom, you are clearly not relying on a mathematical model that depends on
accurate measurements of angles and velocity. For the inverted pendulum prob-
lem, it is possible to design a successful controller without knowing or using the
plant dynamics. The implication is that, in a case where plant dynamics are
not available, we can use this new technique to construct control laws.

1For a striking example, see the skilled performer Brad Byers balancing a 100 pound barbell
on his chin, at http://www.bradbyers.com/balancer.html.

133

© 2003 by Chapman & Hall/CRC

http://www.bradbyers.com

134 CHAPTER 4. FUZZY CONTROL

To balance an upright pendulum, we know from naive physics that the con-
trol force u(t) should be chosen according to the magnitudes of the input vari-
ables θ(t) and θ0(t) that measure the angle from the upright position and the
angular velocity. The relation between these variables is linguistic, a much
weaker form than differential equations. That is exactly what happens in a
human mind that processes information qualitatively. Humans choose u(t) by
using common sense knowledge in the form of �If. . . then. . . � rules, such as �If
θ is very small and θ0 is also small then u should be small,� or �If the pendulum
is in a balanced position, then hold very still, that is, do not apply any force.�
By taking all such rules into account, the inverted pendulum can be successfully
controlled.
Now, in order to create an automatic control strategy duplicating human

ability, it is necessary to be able to translate the above �If. . . then. . . � rules
into some �soft� mathematical forms for machine processing. Looking at these
�If. . . then. . . � rules, we ask ourselves questions like the following:

� Is �If. . . then. . . � an implication operator in logic?

� How can one model linguistic labels like �small,� �medium,� and �large�?

� Given a Þnite number of �If. . . then. . . � rules, how can we handle all pos-
sible numerical inputs that will be measured by machine sensors, in order
to produce actual control actions?

The answers to all these basic questions lie in fuzzy logic theory. The term
�fuzzy control� refers to the science of building fuzzy controllers based on the
mathematics of fuzzy logic.
Now let us look in more detail at the design of a fuzzy controller for the

inverted pendulum on a cart. The input to the controller is the pair
¡
θ, θ0

¢
. Let

us take the input space to be X × Y , where X and Y are intervals representing
degrees for θ and degrees per second for θ0. The output or control space for
u is an interval representing Newtons for u. The linguistic labels are modeled
as fuzzy subsets of the spaces X, Y , and U by specifying their membership
functions. For example, these linguistic labels could correspond to negative big
(NB), negative medium (NM), negative small (NS), positive small (PS), positive
medium (PM), and positive big (PB).

ANGLE

A1 = NB A2 = NM A3 = NS A4 = PS A5 = PM A6 = PB
Fuzzy sets Aj for �angle�

© 2003 by Chapman & Hall/CRC

4.1. A FUZZY CONTROLLER FOR AN INVERTED PENDULUM 135

ANGULAR VELOCITY

B1 = NB B2 = NM B3 = NS B4 = PS B5 = PM B6 = PB
Fuzzy sets Bj for �angular velocity�

FORCE

C1 = NB C2 = NM C3 = NS C4 = PS C5 = PM C6 = PB
Fuzzy sets Cj for �force�

The particular choice of membership functions chosen to represent the lin-
guistic labels is somewhat arbitrary. One of the adjustments made during testing
of the control system will be experimenting with different membership functions,
that is, changing the parameters of these triangular functions. This process is
called tuning.
The rules are then of the form

1. If angle is negative medium and velocity is positive small then force is
negative small.

2. If angle is negative medium and velocity is positive medium then force is
positive small.

3. If angle is negative small and velocity is positive medium then force is
positive small.

and so forth. With six membership functions for each of X and Y, we can have
36 rules of the form

Rj : If θ is Aj and θ
0 is Bj then u is Cj

where Aj , Bj , and Cj are the fuzzy subsets of X, Y and U depicted above.

© 2003 by Chapman & Hall/CRC

136 CHAPTER 4. FUZZY CONTROL

The look-up table

θ\θ0 NB NM NS PS PM PB
NB NB NB NB NM NS PS
NM NB NB NM NS PS PS
NS NB NM NS PS PS PM
PS NM NS NS PS PM PB
PM NS NS PS PM PB PB
PB NS PS PM PB PB PB

summarizes 36 possible rules in a compact form.
The input (θ, θ0) to each rule Rj will result in a fuzzy subset of U . This

fuzzy subset is often taken to be the minimum:

ϕj(u) = min{Aj(θ), Bj(θ0), Cj(u)}

The fusion of rules, via the maximum, produces a fuzzy subset of U representing
a control action:

Ψ(u) = max{ϕj(u) : j = 1, 2, ..., k}
If, for example, the measurements are θ = −8◦ and θ0 = 2◦/ s then the fuzzy
sets depicted above give the values

A2 (−8) = 0.17

A3 (−8) = 0.88

B4 (2) = 0.6

B5 (2) = 0.82

and all other Ai and Bi are zero at this point. Thus the only rules pertinent for
this input are the four

θ\θ0 NM NS
PS NS NS
PM NS PS

as all others give the value zero for this input. These four rules are said to �Þre�
for this input.
Combining these rules, we have the fuzzy set

Ψ(u) = [A2 (−8) ∧B4 (2) ∧ C3 (u)] ∨ [A2 (−8) ∧B5 (2) ∧ C3 (u)]
∨ [A3 (−8) ∧B4 (2) ∧C3 (u)] ∨ [A3 (−8) ∧B5 (2) ∧C4 (u)]

= [0.17 ∧ 0.6 ∧ C3 (u)] ∨ [0.17 ∧ 0.82 ∧C3 (u)]
∨ [0.88 ∧ 0.6 ∧C3 (u)] ∨ [0.88 ∧ 0.82 ∧ C4 (u)]

= [0.6 ∧C3 (u)] ∨ [0.82 ∧ C4 (u)]

and the aggregated output is the following fuzzy subset of U :

© 2003 by Chapman & Hall/CRC

4.2. MAIN APPROACHES TO FUZZY CONTROL 137

FORCE

C3 = NS C4 = PS
Ψ (u) = [0.6 ∧ C3 (u)] ∨ [0.82 ∧ C4 (u)]

To produce an actual control action for the input (θ, θ0), we need to summarize
the fuzzy subset Ψ (u) in some way. The control action depends on the de-
fuzziÞcation technique that is applied to this fuzzy set. A natural choice is the
centroid defuzziÞcation method discussed on page 120, namely, the actual
control value is taken to be

u∗ =
R
uΨ(u)duR
Ψ(u)du

The control methodology described above, with sufficient tuning, will lead to
successful control of the inverted pendulum.
The 36 possible rules determined by the look-up table on page 136 are far

more than are needed. T. Yamakawa [84] successfully balanced an inverted
pendulum on a cart using only seven rules. He used one additional fuzzy set,
namely approximately zero (AZ), for each linguistic variable. The seven rules
were as follows:

θ θ0 u
1 AZ AZ AZ
2 PS PS PS
3 PM AZ PM
4 PS NS AZ
5 NM AZ NM
6 NS NS NS
7 NS PS AZ

In practice, a small number of rules will often work as well as a larger number
of rules. Working with a small number of rules has great advantages in terms
of cost, efficiency, and speed of computing.

4.2 Main approaches to fuzzy control

The essential knowledge about the dynamics of a plant can be presented in the
form of a linguistic rule base. In order to carry out a control synthesis, it is
necessary to model the linguistic information as well as an inference process,
an aggregation process, and possibly a defuzziÞcation process. The use of fuzzy
logic to transform linguistic knowledge into actual control laws leads to the Þeld
of fuzzy control. The main idea of fuzzy control is to formulate algorithms for

© 2003 by Chapman & Hall/CRC

138 CHAPTER 4. FUZZY CONTROL

control laws using logical rules. That is why we sometimes call this methodology
fuzzy logic control.
The rules are either obtained from experts (human controllers) or generated

from numerical observations. When human experts experienced in controlling a
given system are available, design engineers can interview these experts about
their control strategies and then express the experts� knowledge as a collection
of control �If...then...� rules. Even when the input-output relations in a complex
system are not known precisely, the behavior of the control process provides a
valuable source of information for suggesting control strategies and extracting
fuzzy rules. That is, one can supply numerical inputs and observe numerical
outputs of a control system as a means to obtain linguistic control �If...then...�
rules.
It is clear that there is ßexibility in choices of membership functions, rules,

fuzzy logic operations, and defuzziÞcation procedures when designing fuzzy con-
trollers. Note that fuzzy systems, or fuzzy models, are actually mathematical
models � that is, they are mathematical descriptions of relations between vari-
ables, using membership functions of fuzzy sets. These mathematical models are
ßexible, but they are not �fuzzy� in layman terms. The membership functions
themselves are precise mathematical functions.
Just as in the case of standard control, where existence of control laws should

be guaranteed before proceeding to obtain the control algorithm, we should ask
whether a given linguistic rule base is sufficient to derive a �successful� control
law. The rule base is a description of how we should control the plant. Each
rule is local in nature � that is, each rule tells us how we should control the
plant in some small region of the input space X. Since we are going to use this
information to derive a global control law ϕ, a map on the entire input space X,
these small regions speciÞed in the rules should cover all points of X in some
fashion. In other words, the membership functions deÞned on X should form a
fuzzy partition of X.

The methodology of fuzzy control consists of selecting and using
1. a collection of rules that describe the control strategy,
2. membership functions for the linguistic labels in the rules,
3. logical connectives for fuzzy relations, and
4. a defuzziÞcation method.

At the end, the derived control law is the realization of a function ϕ from X to
U , the space of control variables.

The strategy above for deriving control laws is based somewhat on common
sense. However, its successful applications can be explained theoretically in
the context of the theory of approximation of functions. See the statement
of the Stone-Weierstrass theorem, Chapter 3, theorem 3.8, for example. Fuzzy
systems satisfy a universal approximation property [78], which means that there
is a system that will do the task you want to accomplish. However, this does not
say how to set up or tune such a fuzzy system. Such mathematical justiÞcations
only provide some assurance that, if you work at it hard enough, it is possible
to design successful fuzzy controllers. The capability of fuzzy controllers can

© 2003 by Chapman & Hall/CRC

4.2. MAIN APPROACHES TO FUZZY CONTROL 139

also be assessed by using a concept known as Vapnik-Chervonenki dimension of
a class of functions, just as in the case of neural networks [23]. This is discussed
in Section 5.3.
We will discuss some well-known methods for constructing fuzzy control

systems. We look Þrst at the Mamdani and Larsen methods.

4.2.1 Mamdani and Larsen methods

The Þrst application of fuzzy logic was developed by E. H. Mamdani in 1974.
He designed an experimental fuzzy control system for a steam engine and boiler
combination by synthesizing a set of linguistic control rules obtained from expe-
rienced human operators. The popular method known today as the Mamdani
method is very similar to his original design.
For the Mamdani and Larsen methods, a typical rule base is of the form

Rj : If x is Aj then u is Bj , j = 1, 2, ..., r

where x = (x1, ..., xn) ∈ X and u ∈ U , and Aj (x) = mini=1...n {Aji (xi)} for

Aj = A1j ×A2j × · · · ×Anj : X = X1 ×X2 × · · · ×Xn → [0, 1]

Bj : U → [0, 1]

How can we interpret the rule �Rj : If Aj (x) then Bj (u)�? One common
view is that each rule Rj represents a fuzzy relation on X ×U . In other words,
when the input is x, then the degree to which a value u ∈ U is consistent (or
compatible) with the meaning of Rj is

Cj (x, u) = T (Aj (x) , Bj (u))

where T is some t-norm. Thus, Cj is a fuzzy subset of X×U . For a given input
x, Cj induces a fuzzy subset of U , namely

Cxj (x) : u −→ Cj (x, u) , u ∈ U , j = 1, 2, ..., N

Thus, the output of each rule Rj is a fuzzy subset of U . The Mamdani method
uses minimum for the t-norm

Cxj (u) = Cj (x, u) = Aj (x) ∧Bj (u) (4.1)

and the Larsen method uses the product for the t-norm

Cxj (u) = Cj (x, u) = Aj (x)Bj (u) (4.2)

Having translated each rule Rj into Cxj , the next task is to fuse all the rules
together. We face the following problem: Given N fuzzy subsets Cx1 ,...,C

x
N of

U , we need to combine them to produce an overall output. From a semantic
viewpoint, of course, it is a question of how the rules are connected. From a
mathematical viewpoint, we want to form a single fuzzy subset of U from the

© 2003 by Chapman & Hall/CRC

140 CHAPTER 4. FUZZY CONTROL

Cxj , j = 1, ..., N . In the Mamdani and Larsen methods, this is done by taking
the maximum. In the Mamdani method, for each x ∈ X = X1 × · · · ×Xn, this
gives the fuzzy subset

Cx (u) = C (u|x) = max
j=1,...,N

µ
min

i=1,...,n
{Aji (xi) , Bj (u)}

¶
(4.3)

of U . Equation 4.3 is calledMamdani synthesis.
In the Larsen method, for each x ∈ X, this gives the fuzzy subset

Cx (u) = C (u|x) = max
j=1,...,N

µµ
min

i=1,...,n
{Aji (xi)} ·Bj (u)

¶¶
(4.4)

of U . Equation 4.4 is called Larsen synthesis.
The overall output is, for each x, a fuzzy subset Cx of U . What is the

meaning of Cx? When the input x is given, each control action u is compatible
with degree Cx (u). We need a single numerical output u∗ = u∗ (x) for the
control law, and we need to get this from the fuzzy subset Cx. In other words, we
need to defuzzify the fuzzy subset Cx. In the Mamdani and Larsen approaches,
we defuzzify Cx by using the center of area (center of gravity or centroid)
procedure, namely

u∗ (x) =

R
U
uCx (u) duR

U
Cx (u) du

Of course, there are many different ways to defuzzify Cx. See Section 3.9
for a discussion of defuzziÞcation methods. The complexity, or speed, of the
computation will be affected by the method of defuzziÞcation. The question of
how to choose a defuzziÞcation method should be settled by the performance of
the induced controller.

4.2.2 Model-based fuzzy control

Another useful approach to fuzzy control is a functional form of fuzzy system,
due to Takagi and Sugeno, in which defuzziÞcation is not needed. This es-
sentially model-based fuzzy control method can be used when it is possible to
describe the dynamics of a plant locally in approximate terms.
The rule base in this case is of the form

Rj : If x1 is Aj1 and ... and xn is Ajn then uj = fj (x1, x2, ..., xn)

for j = 1, 2, ..., r, where the xi are observed values of the input variables, the fj
are functions, and the Aij form a fuzzy partition of the input space. Taking the
product of the Aji�s we can express the rules in the simpler form

Rj : �If x is Aj then uj = fj (x1, x2, ..., xn)�

The Þring degree of each rule Rj is Aj (x), and the overall output control
value is taken to be

u (x) =
rX
j=1

Aj (x) fj (x)

,
rX
j=1

Aj (x)

© 2003 by Chapman & Hall/CRC

4.2. MAIN APPROACHES TO FUZZY CONTROL 141

Note that the premise is in the same form as for the Mamdani and Larsen
methods, but the consequent is of a different form.
In the Takagi-Sugeno method each fj is a linear function

fj (x1, ..., xn) = a0j +
nX
i=1

αijxi

Other forms in common use are quadratic

fj (x1, ..., xn) = a0j +
nX
i=1

αijx
2
i

and trigonometric

fj (x1, ..., xn) = exp

Ã
nX
i=1

αij sinxi

!

The choice of the consequents fj (x) depends upon the particular application.

Example 4.1 The Takagi-Sugeno rules provide a means to interpolate between
piecewise linear mappings. For the partial mapping

-6

-4

-2
0

2

4

6

8

10

-3 -2 -1 1 2 3x

y =

½
3 + 3x for x ≤ −1
−1 + 4x for x ≥ 1

take two fuzzy sets

A1 (x) =

 1 if x ≤ −1
1−x
2 if −1 ≤ x ≤ 1
0 if 1 ≤ x

and

A2 (x) =

 0 if x ≤ −1
1+x
2 if −1 ≤ x ≤ 1
1 if 1 ≤ x

© 2003 by Chapman & Hall/CRC

142 CHAPTER 4. FUZZY CONTROL

each having value 1 on one of the pieces of the mapping and 0 on the other.

0-3 -2 -1 1 2 3x

A1 (x) solid line, A2 (x) dashed line
and rules

R1 : If x is A1 then f1 (x) = 1 + x
R2 : If x is A2 then f2 (x) = 2 + x

Now

A1 (x) f1 (x) +A2 (x) f2 (x) =

 2 + 2x if x ≤ −1
1
2 +

3
2x+ x

2 if −1 ≤ x ≤ 1
−1 + 4x if 1 ≤ x

and
A1 (x) +A2 (x) = 1

giving the following plot:

-20

-10

10

-4 -2 2 4x

y =
P2
j=1Aj (x) fj (xj)

.P2
j=1Aj (x)

These models can also be used as a nonlinear interpolator between linear
systems. Sugeno proposes rules of the form

Ri: If z1 is Ci1 and ... and zp is Cip then úxi (t) = Ai (x (t)) +Biu ((t)) (4.5)

for i = 1, 2, ..., r. In this rule, Sugeno uses a canonical realization of the
system known in classical control theory as the �controller canonical form.�
Here, x (t) = (x1 (t) , . . . , xn (t)) is the n-dimensional state vector, u (t) =
(u1 (t) , . . . , um (t)) is the m-dimensional input vector, Ai, Bi, i = 1, 2, ..., r,

© 2003 by Chapman & Hall/CRC

4.2. MAIN APPROACHES TO FUZZY CONTROL 143

are state and input matrices, respectively, and z (t) = (z1 (t) , . . . , zp (t)) is the
p-dimensional input to the fuzzy system. The output is

úx (t) =

Pr
i=1 [Aix (t) +Biu (t)] τ i (z (t))Pr

i=1 τ i (z (t))

=

Pr
i=1Aiτ i (z (t))Pr
i=1 τ i (z (t))

x (t) +

Pr
i=1Biτ i (z (t))Pr
i=1 τ i (z (t))

u (t)

where
τ i (z (t)) = 4p

k=1Cik (zk (t))

for some appropriate t-norm 4. In the special case r = 1, the antecedent is a
standard linear system:

úx (t) = Ax (t) +Bu (t)

In the general case, such a fuzzy system can be thought of as a nonlinear inter-
polator between r linear systems.

Example 4.2 Suppose that z (t) = x (t), p = n = m = 1, and r = 2. Take the
two fuzzy sets

C1 (z) =

 1 if z ≤ −1
1−z
2 if −1 ≤ z ≤ 1
0 if 1 ≤ z

and

C2 (z) =

 0 if z ≤ 0
1+z
2 if −1 ≤ z ≤ 1
1 if 1 ≤ z

0-3 -2 -1 1 2 3x

C1 (z) solid line, C2 (z) dashed line
and rules

R1: If z is C1 then úx1 = −x1 + 2u1
R2: If z is C2 then úx2 = −2x2 + u2

so A1 = −1, B1 = 2, A2 = −2, and B2 = 1. Since τ1 (z) + τ1 (z) = C1 (z) +
C2 (z) = 1, the output of the system is

úx = (−C1 (z (t))− C2 (z (t)))x+ (2C1 (z (t)) + C2 (z (t)))u
Thus, we have

úx =

 −x+ 2u if z ≤ −1
−x+ ¡ 3−z2 ¢u if −1 ≤ z ≤ 1
−2x+ u if 1 ≤ z

© 2003 by Chapman & Hall/CRC

144 CHAPTER 4. FUZZY CONTROL

4.3 Stability of fuzzy control systems

Fuzzy control designs seem appropriate for nonlinear systems whose mathemati-
cal models are not available. While the design of fuzzy controllers, based mostly
on linguistic rules, is relatively simple and leads to successful applications; it re-
mains to be seen how the most important problem in analysis of control systems,
namely the problem of stability, is addressed.
In standard control theory, one needs to study the stability of the control

system under consideration, either for its open-loop dynamics or its closed-loop
dynamics (assuming a control law has been designed). This is based on the
availability of the mathematical model for the system. Although in nonlinear
systems where solutions of nonlinear differential equations are difficult to obtain,
the knowledge of these equations is essential for stability analysis, such as in
the method of Lyapunov.
From a practical viewpoint, one can always use simulations to test stability

of the system when a fuzzy controller has been designed. But it is desirable to
have a theoretical analysis of stability rather than just �blind� simulations. The
problem of stability analysis of fuzzy control systems is still an active research
area in the theory of fuzzy control. Now, as stated above, it is difficult to see
how stability analysis can be carried out without mathematical models of the
systems, but fuzzy control is intended primarily for systems whose mathematical
models are not available in the Þrst place. Thus, to have a stability analysis
for fuzzy control, it seems plausible that some form of models should be known.
In other words, stability analysis of fuzzy control systems is only possible if the
problem is model-based.
A model-based approach to fuzzy control does not necessarily mean that

mathematical models are available. The models we refer to are fuzzy models
as opposed to precise mathematical models used in standard control. Mathe-
matically speaking, a fuzzy model is a mathematical model that involves fuzzy
terms. Thus, fuzzy models are generalizations of �crisp� models.
The stability analysis of model-based fuzzy control systems was carried out

by Tanaka and Sugeno [73] in 1992 using the Takagi-Sugeno model [72]. Here
is a summary of their approach to stability analysis, using Lyapunov�s direct
method. In the discrete form, the Takagi-Sugeno fuzzy dynamical model de-
scribes locally a linear relationship between inputs and outputs of the system.
Let the state-variable and control input be

x (k) =
¡
x1 (k) x2 (k) · · · xn (k)

¢T
u (k) =

¡
u1 (k) u2 (k) · · · un (k)

¢T
The fuzzy model is a collection of fuzzy rules Rj , j = 1, 2, ..., r, of the form

Rj: If x1 (k) is Aj1 and x2 (k) is Aj2 and ... and xn (k) is Ajn,
then x (k + 1) = Ajx (k) +Bju (k)

where the Aji�s, j = 1, ..., r; i = 1, ..., n, are fuzzy subsets of the state space.

© 2003 by Chapman & Hall/CRC

4.3. STABILITY OF FUZZY CONTROL SYSTEMS 145

For a given pair (x (k) ,u (k)), the next state x (k + 1) is obtained from the
above rule base as follows: Let Aji (xi (k)) = wji (k) be the membership degree
of xi (k) in the fuzzy set Aji. Using the product t-norm for fuzzy intersection
(�and�), the membership degree of x (k) in rule Rj is

vj (k) =
nQ
i=1
wji (k)

Then

x (k + 1) =

Pr
j=1 vj (k) [Ajx (k) +Bju (k)]Pr

j=1 vj (k)
(4.6)

The Takagi-Sugeno fuzzy dynamical model is speciÞed by the matrices Aj , j =
1, 2, ..., r and the fuzzy sets Aji, i = 1, 2, ..., n; j = 1, 2, ..., r.
The open-loop system (no control input u) is

x (k + 1) =

Pr
j=1 vj (k)Ajx (k)Pr

j=1 vj (k)
(4.7)

which is nonlinear.
Note that it suffices to study the stability of (4.7) since once a control law

u (·) is designed, the closed-loop system will be of the same form. Recall that the
equilibrium of the system (4.7) is asymptotically stable in the large if x (k)→ 0
as k → +∞, for any initial x (0).
Theorem 4.1 (Tanaka and Sugeno) A sufficient condition for the equilib-
rium of the system (4.7) to be asymptotically stable in the large is the existence of
a common positive deÞnite matrix P such that ATj PAj < 0 for all j = 1, 2, ..., r
(where ATj denotes the transpose of Aj).

Proof. Since (4.7) is nonlinear, the theorem will be proved if we can Þnd a
Lyapunov function for the system, that is, a scalar function V (x (k)) such that

1. V (0) = 0

2. V (x (k)) > 0 for x (k) 6= 0
3. V (x (k))→∞ as kx (k)k→∞
4. 4V (x (k)) = V (x (k + 1))− V (x (k)) < 0
Consider the function V deÞned by

V (x (k)) = x (k)
T
Px (k)

Then (1), (2), and (3) are easy to verify. For (4), we have

4V (x (k)) =
1Pr

j=1

Pr
i=1 vj (k) vi (k)

 rX
j=1

v2j (k)x (k)
T £
ATj PAj − P

¤
x (k)

+
X

1≤i<j≤r
vi (k) vj (k)x (k)

T £
ATi PAj +A

T
j PAi − 2P

¤
x (k)



© 2003 by Chapman & Hall/CRC

146 CHAPTER 4. FUZZY CONTROL

Then, in view of the hypothesis and the fact that if A, B, P are n×n matrices
with P positive deÞnite and both ATPA− P < 0 and BTPB − P < 0, then

ATPA+BTPB − 2P < 0
we see that 4V (x (k)) < 0.

4.4 Fuzzy controller design
Let us now investigate the ease with which we can design a fuzzy controller. In
this section, we give three examples of controller design using fuzzy methodology.
Each of these examples can be compared with an example given in Chapter 2
of controller design using standard methodology to solve a similar problem.

4.4.1 Example: automobile cruise control

In Section 2.7.1, we discussed the design of an automobile cruise control system
using the standard approach. Here we solve the same problem using the Mam-
dani method, a fuzzy approach (see pages 110 and 140). It should become clear
that this fuzzy approach, which provides a model-free approach to developing a
controller, is simpler.

(a) Velocity error (b) Velocity error (solid), acceleration (dotted)

Figure 4.1. Velocity error and its rate of change

We deÞne velocity error as the difference �desired velocity minus actual
velocity� where the desired velocity is the set-point. Then the acceleration is
the time-derivative of the velocity error. These are represented in Figure 4.1
where the velocity error varies between positive (the automobile is traveling too
slowly) and negative (the automobile is traveling too fast) and the rate of change
of the velocity error varies between negative and positive.
From the dynamics of the system, in this case an automobile, if the actual

velocity is less than the desired velocity, we need to accelerate the vehicle by

© 2003 by Chapman & Hall/CRC

4.4. FUZZY CONTROLLER DESIGN 147

providing as much force as needed to bring the velocity to the desired level. If
the actual velocity is more than the desired velocity, we need to reduce the force
so that the vehicle can decelerate and attain the desired velocity. If the vehicle
is at the desired velocity, we apply sufficient force to maintain the velocity at
the set-point. This knowledge of the system behavior allows us to formulate a
set of general rules. Following are some example rules:

� If velocity error is positive and acceleration is negative then apply maxi-
mum force.

� If velocity error is negative and acceleration is positive then apply mini-
mum force.

� If velocity error is zero and acceleration is zero then apply normal force.

The fuzzy controller we wish to design would require two inputs, namely
velocity error and acceleration, in order to generate the appropriate output,
namely engine force. Schematically, this is illustrated in Figure 4.2.

Figure 4.2. Design of fuzzy controller

Using theMatlab Fuzzy Toolbox, we can set up prototype triangular fuzzy
sets for the fuzzy variables, namely, velocity error, acceleration, and engine force.
Type fuzzy at theMatlab prompt to bring up the fuzzy inference system (FIS)
editor. The result is illustrated in Figure 4.3 (a), (b), and (c).

(a) Velocity error (b) Acceleration
Figure 4.3. Prototype membership functions for automobile cruise control

© 2003 by Chapman & Hall/CRC

148 CHAPTER 4. FUZZY CONTROL

(c) Engine force
Figure 4.3. Prototype membership functions for automobile cruise control

With the fuzzy sets deÞned, it is now possible to associate the fuzzy sets in
the form of fuzzy rules. When there are two inputs and one output, it is easy
to visualize the associations in the form of a table, called a fuzzy associative
memory or decision table. For this system, we can obtain such a table as
shown in Figure 4.4.

Figure 4.4. Fuzzy associative memory table for automobile cruise control

The associative memory is a set of nine rules of the form:

1. If velocity error is NE and acceleration is NA, then engine force is Min.

2. If velocity error is NE and acceleration is ZE, then engine force is Min.

3. If velocity error is NE and acceleration is PA, then engine force is Min.

4. If velocity error is ZE and acceleration is NA, then engine force is Normal.

5. If velocity error is ZE and acceleration is ZA, then engine force is Normal.

6. If velocity error is ZE and acceleration is PA, then engine force is Normal.

© 2003 by Chapman & Hall/CRC

4.4. FUZZY CONTROLLER DESIGN 149

7. If velocity error is PE and acceleration is NA, then engine force is Max.

8. If velocity error is PE and acceleration is ZA, then engine force is Max.

9. If velocity error is PE and acceleration is PA, then engine force is Max.

UsingMatlab the fuzzy control surface can be developed as shown in Figure
4.5. This control surface is the output plotted against the two inputs, and
displays the range of possible defuzziÞed values for all possible inputs. It is an
interpolation of the effects of the nine rules.

Figure 4.5. Control surface

Note that the control surface for a simple PD controller is a plane, which could
approximate this fuzzy control surface only in a small neighborhood of the origin.
The system can then be simulated using the Simulink package with the

system modeled as shown in Figure 4.6.

Figure 4.6. Simulink diagram for automobile cruise control
using a state-space model of the automobile

We describe brießy how to set up a simulation using the Simulink package
in Matlab. Simulink allows dynamic elements of a system to be connected
using both linear and nonlinear elements. Referring to Figure 4.6, the desired

© 2003 by Chapman & Hall/CRC

150 CHAPTER 4. FUZZY CONTROL

velocity is set up as a constant that feeds a signal to a summer. Since this
is a reference signal, we designate the signal input as positive. This signal is
summed with the output of the plant model that is designated as a negative
input to the summer. The resulting error signal serves two purposes, namely,
it gives clear indication whether the plant output is above or below the desired
value (10 meters/second in this case), and allows us to compute the derivative
of the error to determine if the error is increasing or decreasing in time. Both
the error signal and its derivative are fed to a multiplexer (Mux) that provides
input to the fuzzy controller. The output signal of the fuzzy controller is then
fed to a state-space model of the system. Matlab provides a convenient way
to set up the elements of the state-space model. All signals desired as outputs
can be monitored using a variety of output devices. For convenience, it is
desirable to provide a �Variable Initialization� block so that all variables at the
beginning of a simulation can automatically be set to zero. This only assures
that we are starting the simulation with the plant at rest. In cases where
there are multiple outputs from the controller and/or the plant, we will need
a demultiplexer (Demux) to channel the vector of outputs to the appropriate
devices.

The scope outputs for velocity error, acceleration, fuzzy controller output,
and actual velocity are depicted in Figure 4.7.

Figure 4.7. Simulated output of automobile cruise control

It is clear from the simulated outputs that rapid prototyping of the controller
is possible. However, the membership functions will have to be �tuned� to yield
the desired output characteristics � that is, the parameters of these functions
will need to be adjusted. When the membership functions are tuned, this will
change the shape of the control surface and affect the behavior of the closed-loop
control system. Some tuning techniques are included in the following example.

© 2003 by Chapman & Hall/CRC

4.4. FUZZY CONTROLLER DESIGN 151

4.4.2 Example: controlling dynamics of a servomotor

We now investigate the design of a fuzzy controller to control the dynamics of a
DC servomotor. Compare this with the example of a classical controller design
to solve this problem (see page 71).

In this example, we wish to control the angular position of the rotor to
coincide with some desired position. Let us deÞne position error as the difference
�desired position minus actual position� where desired position is the set point.
We can then use position error and rotor velocity as the two input variables to
the controller and obtain the necessary voltage to be applied to the motor as
the output of the controller. Schematically, the fuzzy controller can be shown
in Figure 4.8.

Figure 4.8. Closed-loop control system

The dynamics of the DC servomotor are such that we can rotate the shaft
of the motor either in the clockwise or counterclockwise direction by simply
reversing the polarity of the applied voltage. Therefore, if the actual position
is less than the desired position (a positive error), we can achieve the desired
position faster by boosting the voltage applied to the motor terminals. For a
negative error, when the rotor position is greater than that which is desired, the
voltage polarity can be reversed so that the rotor turns in the opposite direction.

(a) Position error (b) Rotor velocity
Figure 4.9. Prototype fuzzy membership functions for DC servomotor control

© 2003 by Chapman & Hall/CRC

152 CHAPTER 4. FUZZY CONTROL

(c) Motor voltage
Figure 4.9. Prototype fuzzy membership functions for DC servomotor control

This knowledge of the system behavior allows us to formulate a set of general
rules as, for example,

1. If position error is positive and velocity is negative, then apply positive
voltage.

2. If position error is negative and velocity is positive, then apply negative
voltage.

3. If position error is zero and velocity is zero, then apply zero voltage.

Using the Matlab fuzzy toolbox, we can set up prototype Gaussian fuzzy
sets for the fuzzy variables, namely, position error, velocity, and motor voltage.
This is illustrated in Figure 4.9.
With the fuzzy sets deÞned, it is now possible to associate the fuzzy sets in

the form of fuzzy rules. When there are two inputs and one output, it is easy
to visualize the associations in the form of a matrix. For this system, we can
obtain the matrix shown in Figure 4.10.

Figure 4.10. Fuzzy associative matrix for DC servomotor control

The matrix in Figure 4.10 summarizes the following set of nine rules:

© 2003 by Chapman & Hall/CRC

4.4. FUZZY CONTROLLER DESIGN 153

1. If position error is NE and velocity is NA, then motor voltage is Negative.
2. If position error is NE and velocity is ZE, then motor voltage is Negative.
3. If position error is NE and velocity is PA, then motor voltage is Negative.
4. If position error is ZE and velocity is NA, then motor voltage is Zero.
5. If position error is ZE and velocity is ZA, then motor voltage is Zero.
6. If position error is ZE and velocity is PA, then motor voltage is Zero.
7. If position error is PE and velocity is NA, then motor voltage is Positive.
8. If position error is PE and velocity is ZA, then motor voltage is Positive.
9. If position error is PE and velocity is PA, then motor voltage is Positive.

The control surface can be developed using Matlab, as shown in Figure
4.11.

Figure 4.11. Fuzzy control surface for DC servomotor control

The system can then be simulated using the Simulink package with the
system modeled in Figure 4.12. The simulation diagram presented in Figure
4.12 is slightly different from the one shown earlier in Figure 4.6. Here we have
opted to use the transfer function representation of the plant rather than the
state-space model, merely to illustrate variousMatlab options. Matlab allows
the conversion of state-space to transfer function, and from transfer function to
state-space representation very easily. The reader is urged to experiment with
these possible representations in order to build expertise in using a very powerful
and useful tool.

© 2003 by Chapman & Hall/CRC

154 CHAPTER 4. FUZZY CONTROL

Figure 4.12. Simulink diagram for DC servomotor control using
the transfer function model of the DC servomotor

Using the prototype membership functions, the scope outputs for Position
Error, Error Velocity (shown as the error derivative), the actual Rotor Position,
and the Fuzzy Controller output, namely the required Motor Voltage, are shown
in Figure 4.13.

Figure 4.13. Simulated output of DC servomotor control

As in the previous example, it is clear from the simulated outputs that rapid
prototyping of the controller is possible, but the membership functions have to
be �tuned� to yield the desired output characteristics. We see that for a step
change of 1 radian (the desired position), it takes in excess of 100 milliseconds to
reach the desired value. If we focus on the membership functions for the applied
voltage, we observe that for a large initial error we generate a large voltage. As
the error progressively becomes small, we apply a smaller and smaller voltage,
ultimately reducing the voltage to zero upon reaching the desired position. We
could therefore adjust the membership function for the applied voltage so that
we apply a large voltage until the rotor has reached very close to its desired

© 2003 by Chapman & Hall/CRC

4.4. FUZZY CONTROLLER DESIGN 155

position, and then begin to decrease the voltage as the error approaches zero.
There is some trial and error required here to achieve the �best� response.

As a Þrst step, let us make the membership function labeled �ZV� in the
motor-voltage set a bit narrower than the prototype chosen previously (see Fig-
ure 4.14).

Figure 4.14. Manual adjustment of membership function

Simulating the response now yields better performance than before, with
the rotor position nearly at the desired value of 1 radian in approximately 50
milliseconds. The full set of simulation results are shown in Figure 4.15.

Figure 4.15. Result of adjusting membership function

Since we require a slightly faster response (a settling time of 40 milliseconds),
we can make the �ZV� membership a bit narrower and try again. Suppose we
reshape the membership function as in Figure 4.16 and try simulating again.

© 2003 by Chapman & Hall/CRC

156 CHAPTER 4. FUZZY CONTROL

Figure 4.16. Further tuning of membership function

The simulation results in Figure 4.17 clearly show the desired response, and
meet all the required speciÞcations. We also notice that there is no overshoot.
The tuning of the membership functions has succeeded. This is a much improved
performance when compared to the PID controlled system.

Figure 4.17. Desired simulated results

In the above set of simulations, we used a prototype fuzzy control system
with three membership functions to describe each input variable. As such,
our control actions were rather coarse. We used �large negative� and �large
positive� values to describe the necessary control actions. While we were able
to achieve the desired simulation response, we did not consider some practical
issues such as power loss and the duty cycle of sensitive motor components. To
take into account these issues, it would be wise to select intermediate ranges
of motor voltages such as �medium negative� and �medium positive� and use
these to gradually control the motor position. This would reduce the amount
of Þne tuning as we have seen in the example, and provide a Þner granularity
in the control actions. Notice that if you increase the membership functions to

© 2003 by Chapman & Hall/CRC

4.5. EXERCISES AND PROJECTS 157

Þve for each of the input variables and the output variable, then we have a total
of 25 fuzzy rules that provide a smoother transition from one state to another.
We leave this as an example for the student to develop.

4.5 Exercises and projects
1. A position control system that positions a mass m has the following open-
loop transfer function

Y (s)

U(s)
=

40

ms2 + 10s+ 20

Using the Matlab Simulink capabilities, address the following:

(a) For a unit step input, simulate the open-loop response of the system
for m = 1 kg.

(b) Based on the open-loop response, it is desired to obtain a system
response with settling time of less than 0.5 seconds and overshoot of
less than 5%. Using a mass m = 1 kg, design a PID controller for
the system.

(c) Using the PID parameters obtained above, simulate the performance
of the system for the conditions when the mass of 1 kg is replaced by
a new mass m = 0.2 kg and subsequently for m = 5 kg. Discuss the
results in terms of control performance.

(d) Develop a fuzzy controller to control the position. Simulate the sys-
tem behavior for various masses listed above.

(e) Compare the results from the PID controller and the fuzzy controller.
What can you say about the advantages and disadvantages of using
either PID or fuzzy control.

2. The open-loop transfer function of an antenna positioning system is given
by

Y (s)

U(s)
=

5

s3 + 6s2 + 5s

where the output is measured in radians, and the input is the applied
torque in Newton-meters produced by the drive mechanism to rotate the
antenna to the desired position.

Using the Matlab Simulink capabilities, address the following:

(a) For a unit-step input, simulate the open-loop response of the system.

(b) For any desired positioning of the antenna, it is desired that a con-
troller produce a near critically damped system response. Design a
PID controller for the system.

(c) Develop a fuzzy controller to control the antenna position.

© 2003 by Chapman & Hall/CRC

158 CHAPTER 4. FUZZY CONTROL

(d) Compare the results from the PID controller and the fuzzy controller.

3. The open-loop transfer function of a plant is given by

GP (s) =
1

s(s+ T1)(s+ T2)(s+ T3)

For T1 = 1, T2 = 2, and T3 = 3, the open-loop response is unstable, while
a closed-loop unity feedback system is stable. However, the response of
the system is slow for a unit step input. The objective is to obtain a faster
closed-loop response.

(a) Develop a Simulink model of the system and obtain a satisfactory set
of PID control parameters that will improve the settling time by at
least 75%. Use a less than 5% overshoot criteria.

(b) Develop a fuzzy control model that can match the performance of
the PID control system.

(c) How well do the PID and fuzzy control systems perform if the para-
meters T1, T2, and T3 vary ±10% from their nominal values.

4. The ball and beam problem is a nonlinear system for which we wish to
examine the effectiveness of using fuzzy control. The Þgure below illus-
trates the system.

A ball of massM placed on a beam of length L is allowed to roll along the
length of the beam. A lever arm of negligible mass mounted onto a gear
and driven by a servomotor is used to tilt the beam in either direction.
The beam angle α is controlled by a rotational motion of the servo, shown
as θ. With α initially zero, the ball is in a stationary position. When α
is positive (in relation to the horizontal) the ball moves to the left due to
gravity, and when α is negative the ball moves to the right. The objective
in this exercise is to develop a fuzzy controller so that the ball position
can be controlled to any position R along the beam.

For convenience, we derive the equation of motion for this nonlinear prob-
lem. Assuming J to represent the moment of inertia of the ball, r the

© 2003 by Chapman & Hall/CRC

4.5. EXERCISES AND PROJECTS 159

radius of the ball, and g the gravitational constant, the Lagrange equa-
tion of motion can be written as

·
J

r2
+M

¸
R̈+Mg sinα−mR (úα)2 = 0

The beam angle α may be approximated by a linear relationship α = D
L θ.

These equations form the set of coupled equations for the system.

Use the following system parameters

M mass of the ball 0.2 kg
r radius of the ball 0.02m
D lever arm offset 0.03m
g gravitational acceleration 9.8m/ s2

L length of the beam 1.5m
J the moment of inertia of the ball 2e−6 kgm2

(a) Obtain a linearized model of the system for small variations in α.

(b) For the linearized model, obtain a set of PID control parameters to
satisfy a chosen criteria. Use Simulink in Matlab for developing
such a model. Test the system performance for various disturbance
conditions.

(c) Using the nonlinear model, obtain a suitable fuzzy controller.

(d) Compare and contrast the performance of the PID and fuzzy con-
trollers.

5. Magnetic levitation (MagLev) is a technology presently used in high-speed
transportation systems. The idea is to levitate an object with a magnet
and to propel the object at high speed. This technology has found prac-
tical use in high-speed trains in Japan and is being explored for a similar
purpose in the U.S. NASA is exploring this technology for rocket propul-
sion as a means to reduce the fuel payload during launch.

In this exercise, the idea is to levitate a steel ball using the conÞguration
shown in Figure 4.18. The objective is to control the vertical position z
of the steel ball of mass M by controlling the current input i to the elec-
tromagnet through a variable voltage V . The force F produced by the
electromagnet must overcome the force Mg created due to gravity, where
g is the gravitational constant.

© 2003 by Chapman & Hall/CRC

160 CHAPTER 4. FUZZY CONTROL

4.18. Magnetic levitation

The mathematical model of this system can be obtained as follows. For
the steel ball,

Mz̈ =Mg − F
For the electrical circuit, using Kirchoff�s voltage law, we can write

L
di

dt
+Ri = V

where L is the coil inductance and R is the coil resistance. The coupling
equation where the force F is related to the current i is given by

F = km
i2

z2

where km is the magnetic constant. Assume that the ball position is
measured using an optical sensor. Use the following set of parameters in
your model setup.

M Mass of steel ball 20 milligrams (mg)
km Magnetic constant 2.058 x 10−4 N(m/A)2

R Coil resistance 0.92 Ohms (Ω)
L Coil inductance 0.01 millihenry (mH)
i Coil current [0, 3] Amps (A)
V Coil voltage [0, 5] Volts (V)
g Gravitational constant 9.80665 m/ s2

z Ball position [min, max] [3, 7] cm

(a) Linearize the system at the minimum and maximum ball positions.
For each linearization, design a PID controller using a suitable set
of criteria, and simulate the performance of the system for various
ball positions around the point of linearization. How well do the two
separate linear models compare? Is it sufficient to obtain a single
linear model that will perform equally well?

© 2003 by Chapman & Hall/CRC

4.5. EXERCISES AND PROJECTS 161

(b) Develop a fuzzy controller that can magnetically levitate the steel
ball for various positions within the range indicated. Simulate the
system behavior for various disturbances that can act on the steel
ball.

(c) Discuss the results from the PID controller and the fuzzy controller.

6. The longitudinal motion of an aircraft is represented by a set of linear
differential equations as úx1

úx2
úx3

 =
 −0.09 1.0 −0.02
−8.0 −0.06 −6.0
0 0 −10

 x1
x2
x3

+
 0
0
10

 δE
where,

x1 = angle of attack
x2 = rate of change of pitch angle
x3 = incremental elevator angle
δE= control input into the elevator actuator

It can be observed from the state equations that changing the elevator
angle affects rate of change of pitch angle and the angle of attack.

(a) Perform open-loop simulations on the system for various inputs, namely,
step, ramp, and sinusoidal inputs. What can you say about the per-
formance of the system to such inputs?

(b) Based on the knowledge gained from open-loop simulations, develop
a fuzzy controller that will maintain stable aircraft performance in
the presence of unexpected disturbances.

7. A liquid level system is illustrated in the following Þgure. The objective
in this system is to control the input ßow such that desired heights of the
ßuid in both tanks can be maintained.

In the Þgure, qi, q1, q2 = the rates of liquid ßow, h1, h2 = the heights of
ßuid level, R1, R2 = the ßow resistance, and A1, A2 = the cross-sectional
tank areas.

© 2003 by Chapman & Hall/CRC

162 CHAPTER 4. FUZZY CONTROL

The following basic linear relationships are valid for this system, namely,

q = h
R = rate of ßow through oriÞce

qn = (tank input rate of ßow) − (tank output rate of ßow)
= net tank rate of ßow = ADh

Applying the above relationship to tanks 1 and 2 yields, respectively,

qn1 = A1Dh1 = qi − q1 = qi − h1 − h2
R1

qn2 = A2Dh2 = q1 − q2 = h1 − h2
R1

− h2
R1

These equations can be solved simultaneously to obtain the transfer func-
tions h1

qi
and h2

qi
. The energy stored in each tank represents potential

energy, which is equal to ρAh2

2 , where ρ is the ßuid density coefficient.
Since these are two tanks, the system has two energy storage elements,
whose energy storage variables are h1and h2. If we let x1 = h1, x2 = h2,
as the state variables, and u = qi as the input to tank 1, we can write the
state-variable model for the system as"

úx1

úx2

#
=

" − 1
R1A1

1
R1A1

1
R1A2

− 1
R1A2

− 1
R2A2

#"
x1

x2

#
+

"
1
A1

0

#
u

Letting y1 = x1 = h1 and y2 = x2 = h2 yields the heights of the liquid in
each tank. As such, the set of output equations can be represented as·

y1
y2

¸
=

·
1 0
0 1

¸ ·
x1
x2

¸
Using Matlab Simulink, obtain simulations that show the response of
the liquid level system.

(a) Develop a set of PID control parameters that will effectively control
the input so that desired heights of the ßuid can be maintained in
tanks 1 and 2.

(b) Develop a fuzzy control system that can effectively maintain the liq-
uid level heights in tanks 1 and 2.

(c) Discuss the performance of the fuzzy controller and issues concerning
Þne tuning.

8. Project: A mathematical model describing the motion of a single-stage
rocket is as follows:

d2y (t)

dt2
= c (t)

µ
m

M −mt
¶
− g

µ
R

R+ y (t)

¶
− 0.5

µ
dy (t)

dt

¶2µ
ρaACd
M −mt

¶

© 2003 by Chapman & Hall/CRC

4.5. EXERCISES AND PROJECTS 163

where dy(t)
dt is the rocket velocity at time t (the plant output), y (t) is

the altitude of the rocket above sea level, and c (t) is the plant input
that controls the nozzle opening which in turn controls the velocity of the
exhaust gas. The exhaust gas velocity determines the thrust of the rocket.

The following parameters are given:

� Initial mass of the rocket and fuel M = 20, 000 + 5000 = 25, 000 kg

� Fuel consumption rate m = 10 kg/ s (assumed to be constant)

� Cross-sectional area of rocket A = 1m2
� Gravitational constant g = 9.81456m/ s2
� Radius of earth R = 6.37× 106m
� Density of air ρa = 1.21 kg/m3
� Drag coefficient of the rocket Cd = 0.3

Caution: The rocket cannot ßy indeÞnitely!

The rocket should impact at a distance of 500 kilometers from the point
of blastoff. The maximum altitude it can reach is 15 kilometers above sea
level and the minimum altitude is 10 kilometers.

(a) For a selected altitude, compute the trajectory that the rocket should
follow.

(b) Develop both Mamdani type and Sugeno type fuzzy controllers that
control the rocket along the desired trajectory.

(c) Simulate the dynamics of motion using Matlab or any appropriate
simulation tool.

(d) Compare the performance of Mamdani and Sugeno controllers.

(e) Obtain a linearized model of the system and show that the system is
inherently unstable.

(f) Develop an output state-variable feedback controller and simulate its
performance.

Prepare a detailed report discussing the results. Comment on the stability
performance of the system due to possible disturbances.

9. Project (This project obtains fuzzy rules from input-output data and
implements a Mamdani fuzzy inference system using these rules.)

Approximate the function f(x1, x2) = 1
2x

2
1 +

1
2x

2
2 with a Mamdani fuzzy

inference system (FIS) using triangular antecedent membership functions
and triangular consequent membership functions.

© 2003 by Chapman & Hall/CRC

164 CHAPTER 4. FUZZY CONTROL

-2-1
12

-2

1
2

0

1

2

3

4

z

For the antecedent membership functions, take triangular functions on the
domain [0, 4].

0

0.2

0.4

0.6

0.8

1 2 3 4

A1 = B1 = (0, 1, 2), A2 = B2 = (1, 2, 3), A3 = B3 = (2, 3, 4)
Use the nine data points

If x1 is 1 and x2 is 1 then y is 2 If x1 is 2 and x2 is 3 then y is 13
If x1 is 1 and x2 is 2 then y is 5 If x1 is 3 and x2 is 1 then y is 10
If x1 is 1 and x2 is 3 then y is 10 If x1 is 3 and x2 is 2 then y is 13
If x1 is 2 and x2 is 1 then y is 5 If x1 is 3 and x2 is 3 then y is 18
If x1 is 2 and x2 is 2 then y is 8

to deÞne the antecedent functions for the nine rules

1. If x1 is A1 and x2 is B1, then y is C1.
2. If x1 is A1 and x2 is B2, then y is C2.
3. If x1 is A1 and x2 is B3, then y is C3.
4. If x1 is A2 and x2 is B1, then y is C4.
5. If x1 is A2 and x2 is B2, then y is C5.
6. If x1 is A2 and x2 is B3, then y is C6.
7. If x1 is A3 and x2 is B1, then y is C7.
8. If x1 is A3 and x2 is B2, then y is C8.
9. If x1 is A3 and x2 is B3, then y is C9.

Use theMatlab fuzzy toolbox to view the surface. Tune the membership
functions until your surface approximates y = x21 + x

2
2 on the domain

[1, 3]× [1, 3] to your satisfaction.

© 2003 by Chapman & Hall/CRC

Chapter 5

NEURAL NETWORKS
FOR CONTROL

In this chapter, we will introduce computational devices known as neural net-
works that are used to solve a variety of problems, including aspects of the
control of complex dynamical systems. With standard control, we rely on a
mathematical model; with fuzzy control, we use a set of rules. When the infor-
mation available about a system�s behavior consists primarily of numerical data,
the methodology of neural networks is very useful. As you will see later, some
problems are best solved with a combination of fuzzy and neural approaches.
We set forth here the basic mathematical ideas used in neural networks for

control. Although neural networks have applications in many Þelds, we will
attempt to address only the parts of neural network theory that are directly
applicable in control theory. We will address questions such as �What are neural
networks?,� �Why do we need neural networks?,� and �How can we use neural
networks to solve problems?� The applications of neural networks in control will
be expanded upon in later chapters.

5.1 What is a neural network?

It is well known that biological systems can perform complex tasks without
recourse to explicit quantitative operations. In particular, biological organisms
are capable of learning gradually over time. This learning capability reßects
the ability of biological neurons to learn through exposure to external stimuli
and to generalize. Such properties of nervous systems make them attractive
as computation models that can be designed to process complex data. For
example, the learning capability of biological organisms from examples suggests
possibilities for machine learning.
Neural networks, or more speciÞcally, artiÞcial neural networks are mathe-

matical models inspired from our understanding of biological nervous systems.
They are attractive as computation devices that can accept a large number

165

© 2003 by Chapman & Hall/CRC

166 CHAPTER 5. NEURAL NETWORKS FOR CONTROL

of inputs and learn solely from training samples. As mathematical models for
biological nervous systems, artiÞcial neural networks are useful in establishing
relationships between inputs and outputs of any kind of system.
Roughly speaking, a neural network is a collection of artiÞcial neurons. An

artiÞcial neuron is a mathematical model of a biological neuron in its simplest
form. From our understanding, biological neurons are viewed as elementary
units for information processing in any nervous system. Without claiming its
neurobiological validity, the mathematical model of an artiÞcial neuron [43] is
based on the following theses:

1. Neurons are the elementary units in a nervous system at which information
processing occurs.

2. Incoming information is in the form of signals that are passed between
neurons through connection links.

3. Each connection link has a proper weight that multiplies the signal trans-
mitted.

4. Each neuron has an internal action, depending on a bias or Þring threshold,
resulting in an activation function being applied to the weighted sum of
the input signals to produce an output signal.

Thus, when input signals x1, x2, . . . , xn reach the neuron through connection
links with associated weights w1, w2, . . . , wn, respectively, the resulting input to
the neuron, called the net input, is the weighted sum

Pn
i=1wixi. If the Þring

threshold is b and the activation function is f , then the output of that neuron
is

y = f

Ã
nX
i=1

wixi − b
!

In the Þrst computational model for artiÞcial neurons, proposed by McCul-
loch and Pitts [43], outputs are binary, and the function f is the step function

Figure 5.1. First model for artiÞcial neuron

deÞned by

f (x) =

½
1 if x ≥ 0
0 if x < 0

© 2003 by Chapman & Hall/CRC

5.1. WHAT IS A NEURAL NETWORK? 167

so that the activation of that neuron is

f

Ã
nX
i=1

wixi − b
!
=

(
1 if

Pn
i=1wixi ≥ b

0 if
Pn
i=1wixi < b

This is depicted in Figure 5.1.
An artiÞcial neuron is characterized by the parameters

θ = (w1, w2, . . . , wn, b, f)

The bias b can be treated as another �weight� by adding an input node x0 that
always takes the input value x0 = +1 and setting w0 = −b (see Figure 5.2).
With this representation, adjusting bias and adjusting weights can be done in
the same manner.

Figure 5.2. ArtiÞcial neuron with bias as weight

We will consider here only feedforward neural networks � that is, in-
formation propagates only forward as indicated by the direction of the arrows.
Mathematically speaking, a feedforward neural network is an acyclic weighted,
directed graph.
Viewing artiÞcial neurons as elementary units for information processing, we

arrive at simple neural networks by considering several neurons at a time. The
neural network in Figure 5.3 consists of an input layer� a layer of input nodes
� and one output layer consisting of neurons. This is referred to as a single-
layer neural network because the input layer is not a layer of neurons, that
is, no computations occur at the input nodes. This single-layer neural network
is called a perceptron.
A multi-layer neural network is a neural network with more than one

layer of neurons. Note that the activation functions of the different neurons can
be different. The neurons from one layer have weighted connections with neurons
in the next layer, but no connections between neurons of the same layer. A two-
layer neural network is depicted in Figure 5.4. Note that activation functions of
different neurons can be different. The input layer (or layer 0) has n+1 nodes,

© 2003 by Chapman & Hall/CRC

168 CHAPTER 5. NEURAL NETWORKS FOR CONTROL

Figure 5.3. Perceptron

the middle layer, called the hidden layer, has p nodes, and the output layer
has m nodes. This is called an �n-p-m� neural network.
Neurons (nodes) in each layer are somewhat similar. Neurons in the hidden

layer are hidden in the sense that we cannot directly observe their output. From
input patterns, we can only observe the output patterns from the output layer.
Of course, a multi-layer neural network can have more than one hidden layer.
The two-layer neural network depicted in Figure 5.4 is a typical multi-

layer perceptron (MLP), a multi-layer neural network whose neurons perform
the same function on inputs, usually a composite of the weighted sum and
a differentiable nonlinear activation function, or transfer function, such as a
hyperbolic tangent function. Multi-layer perceptrons are the most commonly
used neural network structures for a broad range of applications.

5.2 Implementing neural networks

Unlike computer systems that are programmed in advance to perform some
speciÞc tasks, neural networks need to be trained from examples (supervised
learning) before being used. SpeciÞcally, as we will see next, a neural network
can be designed and trained to perform a speciÞc task, for example, to construct
a control law for some control objective of a dynamical system.
The chosen architecture of the neural network is dictated by the problem at

hand. Once the neural network architecture is chosen, we need to have training
samples in order to train the neural network to perform the task intended. The
training of the neural network forms the most important phase in putting neural
networks to practical applications. Once the neural networks are successfully
trained, they are ready to use in applications as a computational device that
produces appropriate outputs from inputs.
We start out by giving an example of a logical function that can be imple-

© 2003 by Chapman & Hall/CRC

5.2. IMPLEMENTING NEURAL NETWORKS 169

Figure 5.4. Two-layer neural network

mented by a perceptron, a neural network without hidden layers. Note that
with inputs (x1, x2) pairs of real numbers, the domain is divided into two pieces
by the activation function

f (w1x1 + w2x2 − b) =
½
1 if w1x1 + w2x2 ≥ b
0 if w1x1 + w2x2 < b

Namely, inputs above the line w1x1+w2x2− b = 0 produce an output of 1, and
inputs below that line produce an output of 0. In particular, this setup provides
a solution only if the underlying function that the neural network is trying to
implement is linearly separable in this sense.

Example 5.1 We design a perceptron to implement the logical Boolean func-
tion OR, that is, the function g : {0, 1} × {0, 1}→ {0, 1}, deÞned by

g (x1, x2) =

½
0 if x1 = x2 = 0
1 otherwise

In view of the function g, we consider binary-input/binary-output neural net-
works, with two nodes in the input layer, and only one neuron in the output
layer.

y = f (w1x1 + w2x2 − b)
The problem is to choose w1, w2, and b so that

g (x1, x2) = f (w1x1 + w2x2 − b)

© 2003 by Chapman & Hall/CRC

170 CHAPTER 5. NEURAL NETWORKS FOR CONTROL

First, to see whether or not this problem is solvable, we look at the domain
of the function g, coloring the points white where the function value is 1, and
black where the function value is 0.

The input domain is divided into the two subsets B = {(0, 0)} and W =
{(0, 1) , (1, 1) , (1, 0)} corresponding to the two output values 0 and 1, respec-
tively. A solution to the perceptron design is a straight line w1x1+w2x2−b = 0,
in the x1-x2 plane, and we can see that there are lines that can separate these
two subsets,

that is, this is a linearly separable problem. Of course, there are many such lines,
and any such line gives a solution. In view of the simplicity of this function g,
no sophisticated mathematics is needed. Just observe that

g (0, 0) = 0 implies 0 < b

g (0, 1) = 1 implies w2 ≥ b
g (1, 0) = 1 implies w1 ≥ b
g (1, 1) = 1 implies w1 + w2 ≥ b

and choose any numbers w1, w2, and b satisfying these inequalities. One solution
is w1 = w2 = b = 2.

or

The basic logical functions are often written in set notation. For sets A
and B, the set notation for the logical function AND is A ∩ B, also called A

© 2003 by Chapman & Hall/CRC

5.2. IMPLEMENTING NEURAL NETWORKS 171

�intersection� B, and the set notation for the logical function OR is A∪B, also
called A �union� B.
Now consider another logical function. In the following example we consider

the exclusive OR, which, in set notation, is written A XOR B = (A ∩B0) ∪
(B ∩A0). This set is also called the symmetric difference of the sets A and
B, often written A4B.

Example 5.2 The exclusive or (XOR) is the Boolean function with truth
table

g (x1, x2) =

 0 if x1 = x2 = 1
0 if x1 = x2 = 0
1 otherwise

When we display the input-output relationship expressed by g, we see that this
problem is not linearly separable.

That is, there is no line that can separate the two subsets W = {(0, 0) , (1, 1)}
and B = {(0, 1) , (1, 0)}. Therefore, the function g cannot be implemented by
using a perceptron, so we need to consider a hidden layer.
From Exercise 2 on page 193, you know how to implement S∩T 0 with weights

and bias (w1A, w2A,bA) and (w1B , w2B,bB), respectively. From Example 5.1, we
know how to implement OR with weights and bias (wAC , wBC ,bC). Putting
these neurons together we get a solution for XOR, with the expense of having a
neural network architecture more complicated than that of perceptrons, namely,
using a two-layer neural network:

This is a multi-layer neural network in which the input layer (or layer 0) has
two nodes x1, x2 (no computation), together with x0 = 1 to implement the bias
for neurons A and B; the hidden layer has two hidden neurons A and B, with
x0 = 1 to implement the bias for neuron C; and the output layer consists of

© 2003 by Chapman & Hall/CRC

172 CHAPTER 5. NEURAL NETWORKS FOR CONTROL

only one neuron C. For all neurons, the �activation function� f is taken to be

f (x) =

½
1 if x ≥ 0
0 otherwise

Consider, for example, x1 = x2 = 1. We expect the network to produce the
output y = 0. The output y is computed in several steps. The net input to
neuron A is

w1Ax1 + w2Ax2 − bA
so that the output of neuron A is y1 = f (w1Ax1 + w2Ax2 − bA). Similarly, the
output of neuron B is y2 = f (w1Bx1 + w2Bx2 − bB). Hence, the net input to
neuron C, from neurons A and Bwith the condition it must satisfy, is

wACf (w1Ax1 + w2Ax2 − bA) + wBCf (w1Bx1 + w2Bx2 − bB)− bC < 0
to result in the output y = 0.

The lesson is this. More layers seem to increase the computation power
of neural networks. In other words, for general problems, single-layer neuron
networks are not enough; multi-layer neural networks should be considered.

5.3 Learning capability
ArtiÞcial neural networks are simpliÞed mathematical models of brain-like sys-
tems that function as parallel, distributed computing networks. As stated ear-
lier, neural networks need to be taught or trained from examples before they
can be put in use.
As we will see, the learning problem is nothing more than choosing a function

from a given class of functions according to some given criteria. First, we
need to know what functions can be implemented or represented by a neural
network. Only after we know the answer to that, can we search for ways to
design appropriate neural networks.
If we address general relationships expressed as functions from Rn to Rm,

then neural networks with smooth activation functions (rather than the step
functions used in the early development of perceptrons for binary outputs) can
approximate continuous functions with compact support. This universal ap-
proximation property of neural networks was proved using the Stone-Weierstrass
theorem in the theory of approximation of functions (see Chapter 3). Specif-
ically, all continuous functions whose domains are closed and bounded in Rn,
that is, having compact support, can be approximated to any degree of accuracy
by a neural network of one hidden layer with sigmoid or hyperbolic tangent ac-
tivation functions. This theoretical result means this: It is possible to design an
appropriate neural network to represent any continuous function having com-
pact support. This is only an existence theorem, not a constructive one. The
signiÞcance of the theorem is that it is reassuring, since most functions of prac-
tical interest are continuous.

© 2003 by Chapman & Hall/CRC

5.3. LEARNING CAPABILITY 173

Then comes the basic question. How do we Þnd an appropriate neural net-
work to represent a given relationship? Obviously, we need some information
from a given relationship in order to answer the question above. In the context
of learning, the information is provided in the form of a training set consisting
of known input-output pairs. Learning from information of this type is referred
to as supervised learning, or learning with a teacher.
SpeciÞcally, the learning problem is this. Suppose we have a set T of training

examples

T = {(xq, yq) , q = 1, . . . , N}
xq = (xq1, x

q
2, . . . , x

q
n) ∈ Rn

yq = (yq1, y
q
2, . . . , y

q
m) ∈ Rm

and we wish to use this data to adjust the weights and biases of a neural network
with n input nodes, and m output neurons with one hidden layer, for example.
Then from a common-sense viewpoint, we should compare the output

oq = (oq1, o
q
2, . . . , o

q
m) ∈ Rm

from the input pattern xq, with the corresponding target output yq. This is the
same as approximating a function from which the input-output pairs have been
drawn.
The error correction idea is simple: A change in weights should be made or

not according to the comparison of the actual output with the desired output.
This idea is formulated in terms of a suitable overall performance measure. In
a general sense, the learning problem may be stated as follows: Given a class of
functions (here an architecture of neural networks) and a performance criterion,
Þnd a function in this class that optimizes the performance criterion on the basis
of a set of training examples.
In a sense, neural networks are a class of learning machines, and the back-

propagation algorithm is a special case of a general inductive principle called
the empirical risk minimization principle [76]. As such, the learning capability
of neural networks falls under the same line of analysis as learning machines.
We indicate here the ideas used in the analysis.
Recall that a control law is a function ϕ from an input space X to an

output space Y that predicts the output for a given input. If we do not have a
mathematical model, or even if we do but do not have an analytic method to
Þnd ϕ from it, we need to look for other alternatives.
Consider the situation where the information that will help us Þnd ϕ is a

set of desirable pairs (xi, yi), i = 1, . . . ,m, where yi = ϕ (xi). Then the obvious
problem is to Þnd a function ϕN that Þts through these points in such a way
that prediction is good � that is, for new x the Þtted function ϕN will produce
values ϕN (x) close enough to ϕ (x).
To carry out the program above, we need the speciÞcation of performance

criteria and a way to construct ϕN that meets these criteria. The performance
criterion for a good approximation is speciÞed as an acceptable error of ap-
proximation. A neural network is a tool that can be used to achieve these two

© 2003 by Chapman & Hall/CRC

174 CHAPTER 5. NEURAL NETWORKS FOR CONTROL

requirements simultaneously. However, as with all tools, neural networks have
limitations.
The neural network approach consists of two phases � creating a set of

models and providing a mechanism for Þnding a good approximation. First, the
architecture of a neural network provides a set F of functions from X to Y . The
fact that F is a good set of models for ϕ is due to the universal approximation
property of neural networks � that is, ϕ can be approximated by some element
in F . Then the computer-oriented backpropagation algorithms of multi-
layer neural networks are designed to implement this approximation.
Instead of having the desired pairs, or sample data, suppose we only have

experts� knowledge as information to Þnd ϕ. Then we are in the domain of
applicability of fuzzy control. The set of models is created by experts� linguistic
�If. . . then. . . � rules. A similar universal approximation property of fuzzy sys-
tems exists. However, the search for a good approximation is done by tuning �
that is, there is no systematic procedure to reach the approximate function ϕN .
This drawback can be compensated by using neural networks in fuzzy control,
leading to what is called neural-fuzzy control, in which the formation used to
construct ϕ is a fuzzy rule base represented in a neural network structure so that
the systematic search by backpropagation algorithms of neural networks can be
used to Þnd a good approximation for ϕ. Of course, this requires experiments
on the controlled systems to extract samples. The advantage to this approach
is that we have incorporated all available information (experts� knowledge and
numerical data) in our process of constructing the control law ϕ. This process
replaces the tuning process and is referred to as optimization of fuzzy rules.
Indeed, when linguistic labels in fuzzy rules are modeled by parametric mem-
bership functions, the learning algorithm of neural networks will optimize the
parameters in fuzzy rules, leading to the desired approximation of ϕ.
With the above program in mind, it is necessary to assess the learning ca-

pability of neural networks. An excellent study of this issue can be found in [4].
Roughly speaking, although the universal approximation property states that
neural networks can approximate a large class of functions, in practice we also
need to know how much training data is needed to obtain a good approximation.
This clearly depends on the complexity of the neural network considered.
To give a measure of this complexity, we will deÞne the Vapnik-Chervonenkis

dimension of the class of functions computable by the neural network. Consider
the perceptron with n real inputs and binary outputs {0, 1}. Suppose we have
a training sample T = {(xi, yi) , i = 1, . . . , n} with xi ∈ Rn and yi ∈ {0, 1}. Let
S = {x1, x2, . . . , xm} ⊂ Rn with |S| = m, and let F be the class of all functions
computable (representable) by the perceptron. Here, F can be thought of as a
class of subsets of Rn, since each element of F is a function from Rn to {0, 1}.
Let FS be the class of restrictions of functions in F to S, and identify the
class FS with a collection of subsets of S. If |FS | = 2|S| = 2m, we say that F
shatters S. The growth function of the class F is a special map

GF : N → N

where N = {0, 1, 2, ...} is the set of natural numbers. The growth function is

© 2003 by Chapman & Hall/CRC

5.4. THE DELTA RULE 175

deÞned by
GF (k) = max {|FA| : A ⊂ Rn, |A| = k}

Note that for all k ∈ N ,
GF (k) ≤ 2k

The Vapnik-Chervonenkis dimension (VC dimension) of F is the size of
the largest shattered Þnite subset of Rn, or equivalently, the largest value of k
for which GF (k) = 2k.
In the case of the perceptron, we have

GF (k) = 2
nX
k=0

µ
m− 1
k

¶
=

½
2m for n ≥ m− 1
2m − 2Pm−1

k=n+1

¡
m−1
k

¢
for n < m− 1

so that the VC dimension of F , denoted by D (F), is n+ 1.
For general neural networks with real-valued outputs, the class of F of com-

putable functions is a class of functions. The concept of VC dimension of a class
of sets can be extended to the case of a class of functions by using subgraphs.
The subgraph of a function f is the subset of Rn ×R deÞned by

S (f) = {(x, t) : x ∈ Rn, t ∈ R, t ≤ f (x)}
Then D (F) is deÞned as the VC dimension of the class of its subgraphs

{S (f) : f ∈ F}
Essentially, neural networks with Þnite VC dimensions are trainable.

5.4 The delta rule
The delta rule is a learning algorithm for single-layer neural networks. We
choose to present this learning algorithm [81] in some detail since it is a precursor
of the backpropagation algorithm for multi-layer neural networks.
The idea is to deÞne a measure of the overall performance of a network, such

as the one shown in Figure 5.5, then Þnd a way to optimize that performance.
Obviously, learning algorithms should change the weights so that output oq

becomes more and more similar to the target output yq for all q = 1, 2, . . . ,m,
when presenting the input xq to the network.
A suitable overall performance measure is

E =
NX
q=1

Eq

where

Eq =
1

2

mX
i=1

(yqi − oqi)2

© 2003 by Chapman & Hall/CRC

176 CHAPTER 5. NEURAL NETWORKS FOR CONTROL

Figure 5.5. Network with weights wij

The goal is to minimize E with respect to the weights wij of the network.
Let wij denote the weight from the node j to the output neuron i. To use the

gradient descent method for optimization, we need the wij �s to be differentiable.
This boils down to requiring

oqi = fi

 nX
j=0

wijx
q
j


to be differentiable. That is, the activation function fi of the ith neuron should
be chosen to be a differentiable function. Note that step functions such as

f (x) =

½
1 if x ≥ 0
0 if x < 0

are not differentiable.
The sigmoid activation function, shown in Figure 5.6, is differentiable. Note

0

0.2

0.4

0.6

0.8

-10 -8 -6 -4 -2 2 4 6 8 10x

Figure 5.6. f (x) = 1
1+e−x

© 2003 by Chapman & Hall/CRC

5.4. THE DELTA RULE 177

that a step activation function models neurons that either Þre or do not Þre,
while continuous activation functions model neurons such as sigmoids that pro-
vide a gradual degree of Þring � a �fuzzy property� that is more realistic.
The error E is a function of the variables wij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Recall that the gradient ∇E of E at a point w with components wij is the
vector of partial derivatives ∂E

∂wij
. Like the derivative of a function of one vari-

able, the gradient always points to the uphill direction of the function E. The
downhill (steepest descent) direction of E at W is −∇E. Thus, to minimize E,
we move proportionally to the negative of ∇E, leading to the updating of each
weight wjk as

wjk −→ wjk +4wjk
where

4wjk = −η ∂E
∂wij

and η > 0 is a number called the learning rate.
We have

∂E

∂wij
=

NX
q=1

∂Eq

∂wij

and

∂Eq

∂wij
=

∂

∂wij

Ã
1

2

mX
i=1

(yqi − oqi)2
!

=
¡
oqj − yqj

¢ ∂

∂wij
fj

Ã
nX
i=0

wjix
q
i

!

since
∂

∂wij
(oqi − yqi) = 0 for i 6= j

noting that

oqj = fj

Ã
nX
i=0

wjix
q
i

!
Thus,

∂Eq

∂wjk
= xqk

¡
oqj − yqj

¢
f 0j

Ã
nX
i=0

wjix
q
i

!
= δqj · xqk

where

δqj =
¡
oqj − yqj

¢
f 0j

Ã
nX
i=0

wjix
q
i

!
for the jth output neuron.

© 2003 by Chapman & Hall/CRC

178 CHAPTER 5. NEURAL NETWORKS FOR CONTROL

Therefore,

4wjk =
NX
q=1

4qwjk

= −η
NX
q=1

∂Eq

∂wjk

=
NX
q=1

−η δqjxqk

The delta rule leads to the search for a weight vector w∗ such that the gradient
of E at w∗ is zero. For some simple single-layer neural networks, w∗ is the
unique absolute minimum of E (w).

Example 5.3 In this example, we implement the logical function AND by
minimizing the error E. Consider the training set T consisting of binary-
inputs/bipolar-targets:

T = {(xq, yq) , q = 1, 2, 3, 4}
with xq ∈ {0, 1}2 and yq ∈ {−1, 1}. SpeciÞcally,

x1 =
¡
x11, x

1
2

¢
= (1, 1) y1 = 1

x2 =
¡
x21, x

2
2

¢
= (1, 0) y2 = −1

x3 =
¡
x31, x

3
2

¢
= (0, 1) y3 = −1

x4 =
¡
x41, x

4
2

¢
= (0, 0) y4 = −1

An appropriate neural network architecture for this problem is the following,
with linear activation function f (x) = x.

We have

E =
4X
q=1

¡
xq1w1 + x

q
2w2 − w0 − yi

¢2
The weight vector (w∗0 , w∗1 , w∗2) that minimizes E is the solution of the system
of equations

∂E

∂wj
= 0, j = 0, 1, 2

© 2003 by Chapman & Hall/CRC

5.5. THE BACKPROPAGATION ALGORITHM 179

Explicitly,

(1)
∂E

∂w0
= w1 + w2 − 2w0 + 1 = 0

(2)
∂E

∂w1
= 2w1 + w2 − 2w0 = 0

(3)
∂E

∂w2
= w1 + 2w2 − 2w0 = 0

Here, the solution of this system of linear equations is easy to obtain. Indeed,
subtracting (3) from (1) yields w2 = 1. With w2 = 1, (2) and (3) yield

2w0 = 2w1 + 1 = w1 + 2

which implies w1 = 1. Then from (3), we get

w0 =
w1 + 2w2

2
=
3

2

Note that in the delta rule, as well as in the generalized delta rule that
we will consider next, we need to calculate the derivatives of the activation
functions involved. The choice of smooth activation functions is dictated by the
ranges of output variables. For example, if the range of the output of a neuron,
for some speciÞc application, is the open interval (0, 1), then an appropriate
differentiable activation function could be the sigmoid function shown in Figure
5.7. If the output variable has range (−1, 1), then an appropriate activation

0

0.2

0.4

0.6

0.8

-10 -8 -6 -4 -2 2 4 6 8 10x

Figure 5.7. f (x) = 1
1+e−x

function should have the same range, for example f (x) = 2
1+e−x − 1.

5.5 The backpropagation algorithm
As we have seen from a simple example in the implementation of the exclusive
or Boolean function XOR, we need to consider multi-layer neural networks for
approximating general relationships. So we need learning algorithms for these
more complicated neural networks.

© 2003 by Chapman & Hall/CRC

180 CHAPTER 5. NEURAL NETWORKS FOR CONTROL

The following popular learning algorithm, referred to as the backpropaga-
tion algorithm, is a generalization of the delta rule [42]. If we look closely
at the delta rule for single-layer neural networks, we realize that to update a
weight wik when the learning input pattern xq is presented, we need

4wqik = −η δqixqk
That is, we need to compute the function

δqi = (o
q
i − yqi) f 0

 nX
j=0

wijx
q
j


and this is possible since we have at our disposal the value yqi that is known to
us as the target output for the output node i.
Consider, for simplicity, the two-layer n-m-p neural network depicted in Fig-

ure 5.8. It seems that we cannot update a weight like wik on the link connecting

Figure 5.8. Two-layer neural network

the kth input node in the input layer to the ith hidden neuron in the hidden
layer, since we are not given the target pattern of the ith neuron from the input
xq. Note that patterns yq are target patterns of neurons in the output layer,
and not the hidden layers. Thus, when we look at the errors

¡
oqj − yqj

¢2
at the

output layer, we cannot detect which hidden neurons are responsible.
It turns out that to update these weights, it suffices to be able to compute

∂E
∂oi
, the partial derivative of the global error E with respect to the output

oi, i = 1, . . . , p. For differentiable activation functions, the gradient descent
strategy can still be applied to Þnd the network�s weight conÞguration w∗ that
minimizes the error E.

© 2003 by Chapman & Hall/CRC

5.5. THE BACKPROPAGATION ALGORITHM 181

We will write down the updating formulas for weights in a two-layer neural
network. The generalization to more than two layers is just a matter of notation.
Let vji be the weight of the link connecting the hidden neuron i to the output
neuron j, and wik the weight of the link connecting the input node k to the
hidden neuron i.
First, the updating rule for the vji�s is the same as in the delta rule, by

viewing now the hidden layer as an input layer. For output neuron j and hidden
neuron i, the weight vji is updated using

4vji =
NX
j=1

4qvji

= −η
NX
j=1

∂Eq

∂vji

=
NX
j=1

¡−η δqjzqi ¢
where zqi is the net input to the hidden neuron i,

zqi = fi

Ã
nX
k=0

wikx
q
k

!
and

δqj =
¡
oqj − yqj

¢
f 0i

Ã
mX
k=1

vjkz
q
k

!
For a hidden neuron i and input node k, the weight wik is updated as follows:

4qwik = −η ∂E
q

∂wik

with
∂Eq

∂wik
=
∂Eq

∂oqi

∂oqi
∂wik

where oqi is the output of the hidden neuron i,

oqi = fi

Ã
nX
`=0

wi`x
q
`

!
= zqi

We have
∂oqi
∂wik

= f 0i

Ã
nX
`=0

wi`x
q
`

!
xqk

Let δqi =
∂Eq

∂oqi
, the hidden layer. How do we compute this? Observe that

δqi =
∂Eq

∂oqi
=

pX
j=1

∂Eq

∂oqj

∂oqj
∂oqi

© 2003 by Chapman & Hall/CRC

182 CHAPTER 5. NEURAL NETWORKS FOR CONTROL

where j is in the output layer. The ∂Eq

∂oqj
are known from previous calculations

using the delta rule. Next,

oqi = f
0
j

Ã
mX
`=1

vi`z
q
`

!
vji

Thus the δqi , for hidden neurons i, are computed from the already-known values
of δqj for all j in the output layer.
Because of this fact, this generalized delta rule is called the backpropagation

algorithm. First feed the input patterns xq forward to reach the output layer
and then calculate the δqj �s for all output neurons j. Next propagate these δ

q
j �s

backward to the layer below (here, the hidden layer) in order to calculate the
δqi �s for all neurons i of that layer.
There are two strategies for training.

1. The batch approach: The weights wik are changed according to

4wik = −η
NX
q=1

∂Eq

∂wik

after all N training patterns are presented to the neural network.

2. The incremental approach: Change the weights wik after every train-
ing pattern q is presented to the neural network, that is, using

4qwik = −η ∂E
q

∂wik

to update wik.

Note that the batch update 4wik is just the sum of the incremental updates
4qwik, q = 1, 2, . . . , N .
In the backpropagation algorithm, we start out by the calculation of the δ

value in the output layer. Then we propagate the error vector backward from
the output layer towards the input terminals. When all the weights are updated
with 4qwik, the next training pattern xq is presented, and the procedure starts
again. The stopping criterion can be either a threshold or the error function
E.
In summary, the backpropagation algorithm can be described by the follow-

ing steps.

1. Initialize weights wik with small random values, and select the learning
rate η.

2. Apply the pattern xq to the input layer.

© 2003 by Chapman & Hall/CRC

5.6. EXAMPLE 1: TRAINING A NEURAL NETWORK 183

3. Propagate xq forward from the input layer to the output layer using

oi = fi

Ã
pX
k=0

wikok

!

4. Calculate the error Eq (w) on the output layer using

Eq (w) =
1

2

pX
i=1

(oqi − yqi)2

5. Calculate the δ values of the output layer using

δqi = f
0
i

Ã
nX
k=1

vikzk

!
(oqi − yqi)

6. Calculate the δ values of the hidden layer by propagating the δ values
backward, that is,

δqi = f
0
i

Ã
nX
k=0

wikx
q
k

!
pX
j=1

vijδ
q
j

7. Use
4qwik = −η δqi oqk

for all wik of the neural network.

8. q −→ q + 1 and go to step 2.

Both batch and incremental approaches can be applied for updating the
weight conÞguration w. The relative effectiveness of the two approaches depends
on the problem, but the incremental approach seems superior in most cases,
especially for very regular or redundant training sets.
The algorithm leads to w∗, such that

4 (E) (w∗) = 0

which could be a local minimum.

5.6 Example 1: training a neural network
We want to train the two-layer perceptron network shown in Figure 5.9 to
respond with a desired output d = 0.9 at the output y1 to the augmented input
vector x = [1, x1, x2]T = [1, 1, 3]T . The network weights have been initialized as
shown. Assuming sigmoidal activation functions at the outputs of the hidden
and output nodes and learning gains of η = 0.1 and no momentum term, we

© 2003 by Chapman & Hall/CRC

184 CHAPTER 5. NEURAL NETWORKS FOR CONTROL

Figure 5.9. Two-layer feedforward perceptron

analyze a single feedforward and backpropagation step for the initialized network
with activation function f(z) = 1

1+e−z .
The weight matrices for the speciÞed network are

d = 0.9

x =

 1
x1
x2

 =
 1
1
3


W =

·
w10 w11 w12
w20 w21 w22

¸
=

·
3 −1 2
1 2 0

¸

u =

 u10
u11
u12

 =
 −3
1
−2


The output of the hidden node is given by ai = wj � x and hj = f(aj) =
1

1+e−aj
, from which we calculate

a1 = (3)(1) + (−1)(1) + (2)(3) = 8
a2 = (1)(1) + (2)(1) + (0)(3) = 3

h = [h0, h1, h2]
T = [1, 0.9997, 0.9526]T

The network output is therefore

y1 = f(u · h) = f((−3)(1) + (1)(0.9997)− (2)(0.9526))
= f(−3.9055) = 0.0197

The error signals are computed as follows:

δy1 = (y1 − d)(y1)(1− y1)
= (0.0197− 0.9)(0.0197)(1− 0.0197) = −0.0170

δh1 = (h1)(1− h1)(δy1)(u11)
= (0.9997)(1− 0.9997)(−0.0197)(1) = −5.098× 10−6

δh2 = (h2)(1− h2)(δy1)(u12)
= (0.9526)(1− 0.9526)(−0.0170)(−2) = 8.056× 10−4

© 2003 by Chapman & Hall/CRC

5.7. EXAMPLE 2: TRAINING A NEURAL NETWORK 185

Compute all the nine weight updates:

1. ∆w10 = −η(δh1)(x0) = −(0.1)(−5.098× 10−6)(1) = 5.098× 10−7

2. ∆w11 = −η(δh1)(x1) = −(0.1)(−5.098× 10−6)(1) = 5.098× 10−7

3. ∆w12 = −η(δh1)(x2) = −(0.1)(−5.098× 10−6)(3) = 1.5294× 10−6

4. ∆w20 = −η(δh2)(x0) = −(0.1)(8.056× 10−4)(1) = −8.056× 10−5

5. ∆w21 = −η(δh2)(x1) = −(0.1)(8.056× 10−4)(1) = −8.056× 10−5

6. ∆w22 = −η(δh2)(x2) = −(0.1)(8.056× 10−4)(3) = −2.417× 10−4

7. ∆u10 = −η(δy1)(h0) = −(0.1)(−0.0170)(1) = 0.0017
8. ∆u11 = −η(δy1)(h1) = −(0.1)(−0.0170)(0.9997) = 0.0017
9. ∆u12 = −η(δy1)(h2) = −(0.1)(−0.0170)(0.9526) = 0.0016

Using the delta rule, the new weights are updated as

W =

·
w10 +∆w10 w11 +∆w11 w12 +∆w12
w20 +∆w20 w21 +∆w21 w22 +∆w22

¸

u =

 u10 +∆u10
u11 +∆u11
u12 +∆u12


In this example, we see that since the weight updates are very small, the network
is very nearly trained to obtain the desired output d = 0.9. Repeated compu-
tations will make the output y1 tend toward any desired near-zero tolerance.

5.7 Example 2: training a neural network
In this example, we discuss a practical application of signiÞcance to the cot-
ton ginning industry. Typically, when cotton undergoes ginning, trash particles
from the harvesting process have to be removed. Trash is comprised of bark from
the cotton plants, pieces of stems (sticks), leaves, crushed leaves (pepper), and
other extraneous matter from the cotton farms. The ginning process comprises
machines that can remove most or all of the trash particles. The Þnal grade
of ginned cotton is determined by the amount of remaining trash that cannot
be removed from the cotton without seriously affecting the material properties.
Identifying trash, therefore, constitutes a signiÞcant step in optimizing the num-
ber of trash-removing machines that can be placed on line during the ginning
process.
Identifying trash particles requires that we identify the features of each type

of trash, and determine which features can be used to distinguish between
�bark,� �stick,� �leaf,� and �pepper.� Once we have the features, we can choose
the appropriate neural network architecture, and train the neural network to

© 2003 by Chapman & Hall/CRC

186 CHAPTER 5. NEURAL NETWORKS FOR CONTROL

perform trash identiÞcation. We explain here how a backpropagation neural net-
work was trained to identify four different trash types in cotton, namely, bark,
stick, leaf, and pepper [65]. The training data used to train the neural network
consisted of a large number of samples for which image processing techniques
were used to determine the features of each trash type. Different neural network
topologies were trained and tested to evaluate their classiÞcation performance.
Results from two neural network topologies � one with a single hidden layer
and an output layer and the other with two hidden layers and an output layer
� are presented here for comparative purposes.
The fundamental objective in object recognition is to utilize a minimum

number of features that can be used not only to identify a speciÞc object, but
also to distinguish between objects. To accomplish this objective, we need to
obtain the right combination of distinguishing features. Extracting features
of objects that do not have any mathematical representation is based upon
empirical relationships that provide some measure of the object shape. Objects
such as �bark,� �stick,� �leaf,� and �pepper� have characteristics that must
be obtained from image analysis of such objects. Figures 5.10�5.13 illustrate
samples of trash objects and their corresponding computer-segmented images
that were used in obtaining features. Numbers alongside the segmented objects
are object identiÞers that are used to tag the computed features to that object.

Figure 5.10. Bark sample and segmented image

Figure 5.11. Stick sample and segmented image

© 2003 by Chapman & Hall/CRC

5.7. EXAMPLE 2: TRAINING A NEURAL NETWORK 187

Figure 5.12. Leaf sample and segmented image

Figure 5.13. Pepper sample and segmented image

Table 5.1 lists two sets of features that were selected to train backpropagation
neural networks with various topologies. The purpose of course was to determine
which set of features yielded the best recognition using an appropriate network
topology.

Table 5.1. Features used to train neural network
Feature set 1 Feature set 2
Area, Solidity, and Edif Area, Shape Factor, Solidity,

Convexity, Compactness,
Aspect Ratio, and Edif

The feature parameters listed in Table 5.1 are described by empirical rela-
tionships. They are primarily shape descriptors and are brießy described here for
completeness. The methods for obtaining these features are well documented
and are available in the Matlab image processing toolbox. A list of several
other descriptors can be obtained from any image processing handbook.

Area: Since images are represented in terms of pixels, the area of an object is
the total number of pixels within the object.

Perimeter: The perimeter is the number of pixels along the boundary of the
object.

© 2003 by Chapman & Hall/CRC

188 CHAPTER 5. NEURAL NETWORKS FOR CONTROL

Shape Factor : This feature is deÞned as Perimeter2

4π·Area .

Convex Area: The computation of this feature is somewhat involved. The
best measure for this feature is obtained by constructing a many-sided
polygon around the object and counting the total number of pixels within
the bounding polygon.

Solidity : This is deÞned as Area
Convex Area .

Convex Perimeter : This feature is computed by bounding an object with a
many-sided irregular polygon and counting the total number of pixels
along the perimeter.

Convexity : This is deÞned as Convex PerimeterPerimeter .

Maximum and Minimum Diameter : These parameters are obtained by com-
puting the maximum and minimum number of pixels across a many-sided
polygon bounding an object.

Aspect Ratio: This is deÞned as Maximum Diameter
Minimum Diameter .

Compactness: This feature is deÞned as

q
(4π)·Area

Maximum Diameter .

Bounding Box Area: This feature is obtained by determining the area of a
rectangle circumscribing the object with sides of the rectangle parallel to
the image edges.

Extent : This is deÞned as Area
Bounding Box Area .

Edif : This is the variation in Extent when an object is rotated by ±π
4 radians.

Using the shape descriptors, a set of training patterns and a set of test
patterns were generated for each trash type. For training the neural network, the
targets for bark, stick, leaf, and pepper were arbitrarily chosen as 0.2, 0.4, 0.6,
and 0.8, respectively. Several neural network topologies were examined. In all
cases, the activation function chosen was the unipolar sigmoidal function. The
neural networks were trained to classify trash objects as follows: if the output
is between 0.2 ± 0.1, then the trash object is classiÞed as �bark.� Similarly,
the object is classiÞed as �stick� if the output is between 0.4 ± 0.1, �leaf� if
the output is between 0.6 ± 0.1, and �pepper� if the output is between 0.8 ±
0.1. Figures 5.14�5.18 illustrate classiÞcation results from the trained neural
networks of various topologies.
In the following Þgures, a two-layer network topology indicated by [10, 1]

implies 10 neurons in the Þrst hidden layer and 1 neuron in the output layer.
Similarly, a three-layer neural network topology indicated as [5, 10, 1] implies 5
neurons in the Þrst hidden layer, 10 neurons in the second hidden layer, and 1
neuron in the output layer.

© 2003 by Chapman & Hall/CRC

5.7. EXAMPLE 2: TRAINING A NEURAL NETWORK 189

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Bark

Stick

Leaf

Pepper

Figure 5.14. ClassiÞcation performance of [10, 1] topology for Set 1 features

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Bark

Stick

Leaf

Pepper

Figure 5.15. ClassiÞcation performance of [5, 10, 1] topology for Set 1 features

© 2003 by Chapman & Hall/CRC

190 CHAPTER 5. NEURAL NETWORKS FOR CONTROL

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Bark

Stick

Leaf

Pepper

Figure 5.16. ClassiÞcation performance of [10, 1] topology for Set 2 features

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Bark

Stick

Leaf

Pepper

Figure 5.17. ClassiÞcation performance of [5, 10, 1] topology for Set 2 features

© 2003 by Chapman & Hall/CRC

5.7. EXAMPLE 2: TRAINING A NEURAL NETWORK 191

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Bark

Stick

Leaf

Pepper

Figure 5.18. ClassiÞcation performance of [10, 10, 1] topology for Set 2 features

We now refer to Figures 5.14 and 5.15 in which the neural network was
trained for Set 1 features listed in Table 5.1. From the results illustrated in
Figure 5.14, it is clear that the [10, 1] neural network performance is excellent for
the criteria chosen for classiÞcation. With the addition of another hidden layer
with [5, 10, 1] topology, as illustrated in Figure 5.15, the network performance
is even better.

Figures 5.16�5.18 represent the classiÞcation results from neural networks
trained to Set 2 features. From these results, it is clear that while the perfor-
mance criteria was indeed met, as in Figure 5.18, the results are not as tightly
bound as in Figure 5.15. Results in Figure 5.18 from a [10, 10, 1] topology
show improvement over the results from [5, 10, 1] topology illustrated in Figure
5.17. The addition of 5 neurons to the Þrst hidden layer shows marked im-
provement in performance. From this, we can conclude that either increasing
the number of neurons or the addition of another hidden layer may improve the
performance. But these additions come at the expense of increased computa-
tion and are possibly less attractive to adopt for on-line implementation of trash
identiÞcation.

It should be clear from this example that classiÞcation performance does
not necessarily improve with the addition of features. In fact, a simple rule
in pattern recognition and classiÞcation is to reduce the dimensionality of the
input space to a �sufficiently� small number and yet preserve classiÞcation per-
formance.

© 2003 by Chapman & Hall/CRC

192 CHAPTER 5. NEURAL NETWORKS FOR CONTROL

5.8 Practical issues in training

There is no prescribed methodology that predetermines a neural network archi-
tecture for a given problem. Some trial and error is required to determine a
sufficiently suitable model. The following is a list of several aspects to keep in
mind when selecting an appropriate neural network structure.

1. More than one hidden layer may be beneÞcial for some applications, but
in general, one hidden layer is sufficient.

2. The learning rate should be chosen in the open interval (0, 1), since al-
though large η might result in a more rapid convergence, small η avoids
overshooting the solution.

3. Training a neural network means creating a general model for an input-
output relationship from samples. This model can be applied to new data
sets of the problem, that is, can generalize to new data.

4. OverÞtting means performing a poor generalization on new data. This
happens when the number of parameters (weights) is greater than the
number of constraints (training samples).

5. There are no general conclusions about how many neurons should be in-
cluded in the hidden layer.

6. The choice of initial weights will inßuence whether the neural network
reaches a global or local minimum of the error E, and if so, how quickly
it converges (a property of the gradient descent method). The update of
the weights wik depends on both f 0k of the upper layer and the output of
the neuron i in the lower layer. For this reason, it is important to avoid
choices of the initial weights that would make it likely that either of these
quantities is zero.

Initial weights must not be too large, or the initial input signals will be
likely to fall into the region where the derivative of the activation function
has a very small value (the saturation region). On the other hand, if the
initial weights are too small, the net input to a hidden neuron or output
neuron will be close to zero, which also causes extremely slow learning.
As a common procedure, the initial weights are chosen at random, either
between −1 and 1 or in some other appropriate interval.

7. How long do we need to train a neural network? One could divide a
training set into two disjoint subsets: I and II. Use I to train the neural
network and use II for testing. During the training, one could compute the
errors from II. If these errors decrease, then continue the training. If they
increase, then stop the training because the neural network is starting to
memorize the set I too speciÞcally and consequently is losing its ability to
generalize.

© 2003 by Chapman & Hall/CRC

5.9. EXERCISES AND PROJECTS 193

8. What is a good size for the training set? As in statistics, such a question
only makes sense when we specify some degree of accuracy of the classi-
Þcation. There is some rule of thumb relating to the number of training
samples, the number of weights in a neural network, and the degree of
accuracy.

5.9 Exercises and projects

1. Design an artiÞcial neuron to implement the Boolean function AND whose
truth table is

g (x1, x2) =

½
1 if x1 = x2 = 1
0 otherwise

2. Consider the logical Boolean function �A and not B,� symbolically A∩B0,
with truth function

g (x1, x2) =

½
1 if x1 = 1 and x2 = 0
0 otherwise

Design an artiÞcial neuron to implement g.

3. Using your answer to Exercise 2 and (wAC , wBC , bC) = (2, 2, 2) from Ex-
ample 5.1, as values for the two-layer neural network depicted in Example
5.1, show that the network implements the XOR function by verifying
that the four possible inputs give the desired outputs.

4. Using your answer to Exercise 2 and (wAC , wBC , bC) = (1,−2,−0.5), as
values for the two-layer neural network depicted in Example 5.1, show
that the network also implements the XOR function by verifying that the
four possible inputs give the desired outputs.

5. Design an artiÞcial neuron to implement the material implication operator
in Boolean logic: A implies B = A0 OR B whose truth table is as follows

x1\x2 0 1
0 1 1
1 0 1

or in other words,

g (x1, x2) =

½
0 if x1 = 1 and x2 = 0
0 otherwise

6. Refer to Example 5.3. Verify that the line x1 + x2 = 3
2 in the x1-x2 plane

partitions the inputs xq, q = 1, 2, 3, 4, into two subsets corresponding to
output targets −1, +1, respectively.

© 2003 by Chapman & Hall/CRC

194 CHAPTER 5. NEURAL NETWORKS FOR CONTROL

7. Consider the following training set consisting of bipolar input-output pairs
{(xq, yq) , q = 1, 2, 3, 4}

x = (x1, x2) y
(1, 1) 1
(1,−1) −1
(−1, 1) −1
(−1,−1) −1

Find the weight vector that minimizes the error E.

8. Let f1 (x) =
1

1 + e−x
and f2 (x) =

2

1 + e−x
− 1

(a) Compute the derivatives of f1 and f2.

(b) Sketch the graph of f2.

(c) Compute the derivative of the hyperbolic tangent function

f3 (x) =
ex − e−x
ex + e−x

(d) Verify that

f2 (x) = 2f1 (x)− 1 = 1− e−x
1 + e−x

(e) Verify that f3 (x) = f2 (2x).

9. Let f1 (x) =
1

1 + e−x
. For a b ∈ R, let α = b− a and β = −a. Show that

the range of the function

g (x) = αf1 (x)− β
is the open interval (a, b).

10. Given the following function

y1 = 4 sin (πx1) + 2 cos (πx2)

(a) Obtain a set of 20 input-output training data pairs for random vari-
ation of (x1, x2) in the interval [−1, 1]. Train a single-hidden-layered
neural network with bipolar sigmoidal functions to the lowest value
of tolerance required. You may wish to choose a value of 1.0E − 06
as a start.

(b) Obtain a test set of data from the given function with a different seed
used in the random number generator. Test the function approxima-
tion capability of the neural network. Can the approximation capa-
bility be improved by training the neural network with more data?
Does over-training cause degradation in performance?

© 2003 by Chapman & Hall/CRC

5.9. EXERCISES AND PROJECTS 195

(c) Using the training and test data obtained in (a) and (b), retrain
and test a single-hidden-layered neural network with linear functions.
Compare the performance of this neural network with that using
sigmoidal functions. Can the performance be improved?

(d) For a two-hidden-layered neural network, repeat (a), (b), and (c).
Discuss issues pertaining to training time and accuracy in function
approximation.

(e) Repeat items (a), (b), (c), and (d) for the function

y2 = sin (πx1) cos (0.5πx2)

11. A set of six patterns from two classes are speciÞed as follows:n
[3, 2]T , [1,−2]T , [−2, 0]T

o
: Class 1n

[2, 1]T , [0,−1]T , [−1, 2]T
o
: Class 2

(a) Is this a linearly separable problem?

(b) Design and train a single-hidden-layered neural network with linear
activation units.

(c) From the training patterns, generate a set of 20 test patterns that are
±10% of the nominal values. How does the trained neural network
perform?

(d) Augment the original set of training patterns with the set of 20 test
patterns generated in step (b) and retrain the neural network. For
a new set of test patterns, similar to that obtained in step (c), how
does the neural network perform?

(e) Show whether the performance can be improved by increasing the
number of hidden layers.

(f) Show whether the performance can be improved if the linear activa-
tion units were replaced by bipolar or unipolar sigmoidal functions.

(g) What are the consequences of choosing to adopt (e) or (f) in the Þnal
design? Which design would you adopt and why?

The student is urged to take on more creative studies on how neural net-
works can be used in real-world applications. In the following, we pro-
vide projects that we consider challenging for the beginner, and hope that
such projects can be a motivation to examine more advanced approaches
to neural network-based applications. Note that there is quite a bit of di-
versity and room for exploration.

12. Project: The purpose of this project is to develop an aid for the blind in
recognizing street-crossing signals. In principle, the system would consist
of a miniature camera worn by the individual in a manner that would allow

© 2003 by Chapman & Hall/CRC

196 CHAPTER 5. NEURAL NETWORKS FOR CONTROL

imaging the street-crossing signal. A real-time neural network processor
would then identify the signal/symbol and trigger a voice command that
allows the blind to either �stop� or �walk� at the pedestrian crossing. We
are required to develop a neural network that can be trained to recognize
�WALK� and �STOP� signals commonly found at pedestrian crossings.
These signals can be either in the form of words as indicated or symbols
such as a �person� or a �hand.� You are required to develop the appropri-
ate set of training patterns and train a neural network with four outputs.
Each of the outputs should represent the word or symbol used in training.
Discuss in detail the technical merits and practical issues in implementing
such a system.

13. Project: Color is a signiÞcant feature in several applications. In the
food industry, for example, color is used as an indicator of whether or not
the food is of good quality. There is a difference in color between fresh
vegetables and not-so-fresh vegetables. The same can be said about meat
and other food products. Color is also used in distinguishing between
objects such as lemons and lime. As we can see, the possibilities of using
color for the purpose of identiÞcation of objects are enormous and can be
explored in many different applications. We leave the choice of selecting
a project to the explorative and inquisitive mind.

As a motivation to pursue studies in neural networks, in this project how-
ever, you are required to develop a neural network that can distinguish
between the three colors red, yellow, and green that we commonly see at
traffic intersections. Not only is color important, we also recognize the
need to identify the direction indicated by the traffic light in terms of the
�Left Arrow,� the �Right Arrow,� the �Up Arrow,� and the �Down Ar-
row.� Design a neural network that can identify traffic light conditions.
Discuss how such a system may be implemented. Identify and describe
speciÞc technical issues that would have to be addressed if such a system
were implemented.

14. Project: Neural network-based applications are useful wherever there
is a need to bridge the gap in communication between humans and ma-
chines. Brain-machine interfaces is a new area of scientiÞc exploration
where the objective is to make machines respond to human voice, ges-
tures, and thinking. One area that such an application is signiÞcant, and
can improve the communication ability, is to provide an interface that can
translate computer-generated commands to Braille and vice versa. This
would be a signiÞcant aid to the blind. In this project, we ask that a set
of training patterns be selected that adequately represent commonly used
words and commands. For example, in using a word processor we choose
the �File,� �Edit,� �Save,� and several other menu items to perform Þle
management operations. It would be important to translate these into
Braille so that a blind person can use the word processor effectively. Al-
ternatively, if the computer response were �Do you wish to replace an

© 2003 by Chapman & Hall/CRC

5.9. EXERCISES AND PROJECTS 197

existing Þle? Yes or No� such a response would have to be in Braille for
the operator to choose the desired option. There is much room in this
project to explore the ability of neural networks. The student is urged to
be creative.

15. Project: Several of NASA�s planetary missions involve precise and safe
landing of the spacecraft on unexplored planetary surface. As part of
the Mars Landing Program, NASA�s Jet Propulsion Laboratory has a
simulated Mars yard where rocks of different sizes are strewn across the
yard to emulate the surface of Mars. This simulated environment provides
a test bed for examining the capability of a lander to select an appropriate
landing site during its descent on to the surface of Mars.

We can describe brießy the process by which a lander may safely land
on the planet Mars. Upon reaching Mars, the Mars orbiter would map
the preselected landing site using its diversity of sensors. Due to the
distance from which such mapping is done, obviously there is not enough
resolution to identify rocks and other debris that may be present in the
selected landing site. Once the lander has been deployed, sensors on board
the lander would begin to acquire visible and radar images of the landing
site and begin to process in real time the �quality� of the landing site. The
objective of course is to distinguish �rocky� regions from �smooth� regions
and to provide navigational corrections to the lander as it approaches the
surface. This requires a real-time adaptive neural network processor that
can continuously update itself.

In this project, we expect the student to be very innovative in how to deal
with a simulation-based study of a lander�s ability to distinguish �rocky�
regions from �smooth� regions. With the availability of digital cameras
nowadays, it should be easy to acquire images of different resolution and
develop a set of training patterns. We leave the mechanics of data acqui-
sition to the curious and inquisitive mind. The Þrst step however, is to ex-
amine the viability of feedforward neural networks to perform adequately.
We strongly encourage exploration of other neural network architectures
that utilize radial basis functions, principal component analysis, and other
techniques that may be more efficient in real-time training and also allow
for adaptive capabilities.

16. Project: The trend in modern agricultural methods involve the analysis
of multispectral and hyperspectral data of agricultural ecosystems ob-
tained from spaceborne and airborne systems. There is quite a lot of
research activity in this area at NASA as well as at universities and pri-
vate institutions. The primary objective in this analysis is to identify
the health of the ecosystem by classifying the �state� of the ecosystem.
Healthy vegetation, for example, absorbs most of the radiation in the
visible spectrum and reßects only a small portion of the visible spectral
band. Also, healthy vegetation reßects a large portion of the near-infrared
portion of the spectral band. This is indicative of the process of photo-

© 2003 by Chapman & Hall/CRC

198 CHAPTER 5. NEURAL NETWORKS FOR CONTROL

synthesis and chlorophyll production. Unhealthy plants, however, reßect
most of the radiation from the visible spectrum and less from the near-
infrared spectral band. The following Þgure illustrates the overall concept
of an ecosystem classiÞer.

To obtain an estimate of plant health, we compute a value called �nor-
malized difference vegetation index (NDVI)�. It is a simple formula using
two satellite channel bands. For example, if one band is in the visible re-
gion (VIS) say Band 1 (0.58µm�0.68µm), and one is in the near-infrared
(NIR) say Band 2 (0.725µm�1.1µm), then

NDVI = (NIR−VIS)/(NIR+VIS)

The possible range of values is between −1 and 1, but the typical range
is between about −0.1 (NIR < VIS for not very green area) to 0.6 (NIR
> VIS for very green area). Healthy vegetation reßects very well in the
near-infrared part of the spectrum. Green leaves have a reßectance of 20%
or less in the 0.5 to 0.7 micron range (green to red) and about 60% in the
0.7 to 1.3 micron range (near-infrared). Changes in the NDVI values help
in monitoring the health of the vegetation over time. NDVI therefore is
a very important index to estimate both the short-term as well as the
long-term health of agricultural ecosystems.

In this project you are required to train a neural network to classify veg-
etation. There are several Internet resources that can be useful.

� wwwsgi.ursus.maine.edu/gisweb/spatdb/acsm/ac94014.html
A technical paper on this website entitled �ClassiÞcation of Mul-
tispectral, Multitemporal, Multisource Spatial Data Using ArtiÞcial
Neural Networks� provides considerable insight into the possible clas-
siÞcations of vegetation.

� www.geovista.psu.edu/sites/geocomp99/Gc99/072/gc_072.htm
This website has an excellent technical presentation by David Land-
grebe entitled �On information extraction principles for hyperspec-
tral data� and provides a link to download free software.
A software application program called MultiSpec is available at no
cost from dynamo.ecn.purdue.edu/~biehl/MultiSpec/. It contains all
the necessary algorithms. Complete documentation of the program is
also available. The site also provides sample data sets. The program
can be used to extract features required for training a neural network.

© 2003 by Chapman & Hall/CRC

http://www.geovista.psu.edu

5.9. EXERCISES AND PROJECTS 199

Results from a trained neural network can be compared with the
results from MultiSpec.

� For the more avid researcher, we provide the following NASA/JPL
websites that might be useful in developing a broader perspective of
the research required in this Þeld. The reader is urged to follow the
links to appropriate websites that discuss NASA�s overall mission in
Earth and Space Science initiatives.
earthobservatory.nasa.gov/
makalu.jpl.nasa.gov/aviris.html
For graduate student research, the JPL website offers AVIRIS hy-
perspectral datafree of cost. This website is a great resource for
obtaining training and test data.

© 2003 by Chapman & Hall/CRC

Chapter 6

NEURAL CONTROL

Neural control refers both to a methodology in which the controller itself is a
neural network, and to a methodology in which controllers are designed based on
a neural network model of the plant. These two basically different approaches
for implementing neural networks in control are referred to as direct and indirect
design methods.

6.1 Why neural networks in control

Controlling a dynamical system (a plant) means forcing it to behave in some
desired way. Once the desired goal is speciÞed, the design of the controller is
dictated by the knowledge about the plant and the data available.
We have seen that fuzzy control is a control method relying on perception-

based information expressed in fuzzy logic. This is the case where the available
data is in the form of a collection of linguistic �If. . . then. . . � rules. In other
words, fuzzy control is a mathematical method for implementing control strate-
gies expressed in a natural language. This situation arises mostly in the control
of complex systems, a situation that human operators handle well and for which
natural language is an appropriate means for describing control strategies.
As its name indicates, neural control refers to another control method when

available data are in the form of measurements (observed numerical data) of
the plant�s behavior. This is the case where information is only in the form of
system behavior, either of the real plant or of its simulated model, expressed
as input-output measurements. In view of the generality of neural networks as
function approximation devices, it is natural to use neural networks in control
situations such as this. SpeciÞcally, when mathematical models of the plant
dynamics are not available, neural networks can provide a useful method for
designing controllers, provided we have numerical information about the system
behavior in the form of input-output data. In other words, a neural network can
be used as a �black box� model for a plant. Also, controllers based on neural
networks will beneÞt from neural networks� learning capability that is suitable

201

© 2003 by Chapman & Hall/CRC

202 CHAPTER 6. NEURAL CONTROL

for adaptive control where controllers need to adapt to changing environment,
such as for time-variant systems. In practice, neural network controllers have
proved to be most useful for time-invariant systems.
Basically, to build a neural network-based controller that can force a plant

to behave in some desirable way, we need to adjust its parameters from the ob-
served errors that are the difference between the plant�s outputs and the desired
outputs. Adjustment of the controller�s parameters will be done by propagating
back these errors across the neural network structure. This is possible if the
mathematical model of the plant is known. When the mathematical model of
the plant is not known, we need to know at least an approximate model of the
plant in order to do the above. An approximate (known) model of the plant is
called an identiÞed model. When we use input-output data from the plant to
train a neural network to provide an approximate model to the plant, we obtain
a neural network identiÞed model of the plant. Neural network identiÞed
models are used in indirect neural control designs. After a general discussion
of inverse dynamics, we will Þrst discuss direct neural control designs and then
indirect control.

6.2 Inverse dynamics

An ideal control law describes the inverse dynamics of a plant. For a simple
example, consider plant dynamics of the form

úx (t) = f (x (t) , u (t))

A control law for this plant has the form

u (t) = g (x (t))

Even when a plant possesses inverse dynamics, the solution might not have a
closed form, in which case approximations are needed.
In general, it is difficult to check the existence of the inverse dynamics of

a plant. However, in the case of linear systems, this existence can be checked
easily. In this case, in fact, the existence of inverse dynamics is equivalent to
the controllability of the plant, which was discussed in Section 2.3.
Consider, for example, the time-invariant linear system described in discrete

time by the equations

x (k + 1) = Ax (k) +Bu (k) , k = 0, 1, 2, ...

where A is an n× n matrix and B is n× 1. Then we have

x (k + 2) = Ax (k + 1) +Bu (k + 1)

= A (Ax (k) +Bu (k)) +Bu (k + 1)

= A2x (k) +ABu (k) +Bu (k + 1)

© 2003 by Chapman & Hall/CRC

6.2. INVERSE DYNAMICS 203

x (k + 3) = Ax (k + 2) +Bu (k + 2)

= A
¡
A2x (k) +ABu (k) +Bu (k + 1)

¢
+Bu (k + 2)

= A3x (k) +A2Bu (k) +ABu (k + 1) +Bu (k + 2)

x (k + 4) = Ax (k + 3) +Bu (k + 3)

= A
¡
A3x (k) +A2Bu (k) +ABu (k + 1) +Bu (k + 2)

¢
+Bu (k + 3)

= A4x (k) +A3Bu (k) +A2Bu (k + 1) +ABu (k + 2) +Bu (k + 3)

and Þnally

x (k + n) = Anx (k) +An−1Bu (k) + · · ·+ABu (k + n− 2) +Bu (k + n− 1)
= Anx (k) +WU

where
W =

£
An−1B An−2B · · · A2B AB B

¤
is the n× n controllability matrix discussed in Section 2.3, and

U =
£
u (k) u (k + 1) · · · u (k + n− 2) u (k + n− 1) ¤T

If the matrix W is nonsingular, we can compute U directly from W and x:

U = W−1 (x (k + n)−Anx (k))
= ϕ (x (k) ,x (k + n))

This is a control law for the system that is derived directly from the plant
dynamics by computing the inverse dynamics.

Example 6.1 Take A =

 0 1 0
0 0 1
−5 −2 −3

 and B =
 0
0
9

 . Then
W =

£
A2B AB B

¤
=

 9 0 0
−27 9 0
63 −27 9


and

U =


1
9 0 0
1
3

1
9 0

2
9

1
3

1
9


x (k + 3)−

 −5 −2 −3
15 1 7

−35 1 −20

x (k)


=


1
9 0 0
1
3

1
9 0

2
9

1
3

1
9

x (k + 3)−
 −5

9 −2
9 −1

3

0 −5
9 −2

9

0 0 −5
9

x (k)

=


1
9x1 (k + 3) +

5
9x1 (k) +

2
9x2 (k) +

1
3x3 (k)

1
3x1 (k + 3) +

1
9x2 (k + 3) +

5
9x2 (k) +

2
9x3 (k)

2
9x1 (k + 3) +

1
3x2 (k + 3n) +

1
9x3 (k + 3) +

5
9x3 (k)


= ϕ (x (k) ,x (k + n))

© 2003 by Chapman & Hall/CRC

204 CHAPTER 6. NEURAL CONTROL

When the inverse dynamics of a plant exist, one can try to control the plant
by modeling its inverse dynamics.

6.3 Neural networks in direct neural control

As suggested in Section 6.2, suppose we have a plant whose inverse dynamics
exists but does not have a closed form. Approximating this inverse dynamics
provides a way to control the plant. Of course, approximations of functions
(control laws) can be done in many ways. When we use neural networks for
modeling inverse dynamics, we are designing direct neural controllers.
Direct designmeans that a neural network directly implements the control-

ler � that is, the controller is a neural network (see Figure 6.1). The network
must be trained as the controller according to some criteria, using either nu-
merical input-output data or a mathematical model of the system.

Figure 6.1. Direct design

A natural question that arises in this type of neural control is the selec-
tion of the type of neural network needed for the controller. We have seen
from the previous chapter on neural networks that there are several types of
neural network architectures. Multi-layered perceptron (MLP) neural networks
are composed of conÞgurations of simple perceptrons in a hierarchical structure
forming a feedforward network. They have one or more hidden layers of per-
ceptrons between the input and output layers. It is permissible to have any
prior layer nodes connected to subsequent layer nodes via a corresponding set
of weights. Different learning algorithms can be used for MLPs, but the most
common ones have been the delta rule and error-backpropagation algorithms
discussed previously. These algorithms do work fairly well but they tend to be
slow. Faster and more efficient algorithms have been developed [8, 20, 32, 37],
and ongoing research is continually discovering further improvements.

6.4 Example: temperature control

In Section 2.7.2, we discussed the development of the classical proportional-
integral-derivative (PID) control parameters for a temperature control problem.
Here we extend this example to incorporate a neural controller. In a conven-
tional PID control system, the gains are all Þxed; while with neural networks,
they can change.

© 2003 by Chapman & Hall/CRC

6.4. EXAMPLE: TEMPERATURE CONTROL 205

6.4.1 A neural network for temperature control

We Þrst demonstrate a very simple neural network control application, where the
neural network is intended to function as an ON/OFF controller. The objective
here is to train the neural network so that when the measured temperature is
higher than desired, the neural controller shuts OFF the furnace, and when the
measured temperature is below the desired temperature, the neural controller
turns ON the furnace. We must therefore train the neural network to recognize
the error between desired and measured temperatures and provide ON/OFF
control. Figure 6.2 illustrates the control loop in which a trained neural net-
work acts as the ON/OFF controller.

Figure 6.2. Neural network for ON/OFF control

In order to train a neural network, we must Þrst decide what type of patterns
we must use so that the trained network will be able to provide the desired
control actions for a wide range of variability in the error signal. Typically,
we wish to select a pattern that is oscillatory in nature and has some damping
associated with it. We therefore select a damped sinusoid and expect a trained
neural network to provide generalization for many other variations in the error
signal. For this example, we generate a training pattern vector p(i), for i = 1, 50.
We also generate a target vector t(i), for i = 1, 50 so that each value in p(i) has
a corresponding target value t(i). Since this is an ON/OFF controller design,
we set all positive values of p(i) to have a target t(i) = +1, and for all negative
values of p(i) we set t(i) = −1. This is similar to a relay switch. Note that
since the pattern vector is assumed to represent the error signal that is the
difference �reference minus measured,� training the neural network to a relay
characteristic would provide the necessary ON/OFF controller design.
First we generate the training pattern, in this case a damped sinusoid, from

which we develop the appropriate target vectors. We set the target as +1 for
all positive values of the damped sinusoid and to −1 for all negative values of
the damped sinusoid. This is illustrated in the following Matlab code.

w=2*pi;
time=0;
for i=1:50,

© 2003 by Chapman & Hall/CRC

206 CHAPTER 6. NEURAL CONTROL

p(i)=(exp(-time))*sin(w*time);
time=time+0.1;

if (p(i)>0.0)
t(i)=1;

elseif (p(i)<0.0)
t(i)=-1;

end
end

Figure 6.3 illustrates the damped sinusoid generated from the preceding Mat-
lab code.

Figure 6.3. Damped sinusoidal pattern for neural network training

Figure 6.4 illustrates the relay characteristic obtained by plotting the pattern
vector p(i) versus the target t(i). The neural network will be trained to repro-
duce this relay characteristic.

- 0 .6 - 0 .4 - 0 .2 0 0 .2 0 .4 0 .6 0 .8
- 1

- 0 .8

- 0 .6

- 0 .4

- 0 .2

0

0 .2

0 .4

0 .6

0 .8

1

Figure 6.4. Plot of pattern vector versus target that represents a relay
characteristic

In our example, a two-layer feedforward network is created. The topology
of the network will comprise a hidden layer with some speciÞed number of
neurons, and an output layer with as many neurons as we desire to represent

© 2003 by Chapman & Hall/CRC

6.4. EXAMPLE: TEMPERATURE CONTROL 207

the number of outputs we wish to generate. For example, in a system with
one binary output, we will need one output neuron. Selecting the number of
neurons in the hidden layers is by trial and error. To start with, we choose
the Þrst layer (the hidden layer) to have 10 neurons and the second layer (the
output layer) to have 1 neuron. All 10 neurons in the hidden layer are assigned
to have tangent-sigmoid nonlinear (squashing) functions. In Matlab this is
the function �tansig�. The output neuron is assigned a linear output function
�purelin.� Note that �purelin� provides both positive and negative outputs
as opposed to �poslin� which provides only positive output values. We will use
�trainlm,� which is the Levenberg-Marquardt optimization algorithm,
as the default neural network training algorithm. The default backpropagation
learning function and mean-squared error performance function are �learngdm�
and �mse,� respectively.
The Matlab setup that provides the desired neural network topology is as

follows:

net = newff([min(p) max(p)],[10 1],{�tansig�,�purelin�},
�trainlm�,�learngdm�,�mse�);

We also need to specify the number of epochs over which training is performed
and the mean-square error. In this example we set mse = 0.179 and the training
period for 10,000 epochs. Note that the number of epochs is the maximum
number of training cycles that the neural network is allowed to train with the
goal to meet the mean-squared error criterion. This section of theMatlab code
is as follows:

net.trainParam.epochs = 10000;
net.trainParam.goal = 0.179;

Before proceeding to the training phase, it would be prudent to initialize all the
weights and biases of the neural network. For this we use Matlab�s initializa-
tion code as follows:

net=init(net);
net.iw{1,1}
net.b{1}

Now we are ready to train the neural network. The following Matlab code
performs training.

net = train(net,p,t);

It is always good to check how well the neural network has been trained by
resimulating the training function, in this case the relay characteristic. The
following simulation and plot commands allow visual conÞrmation of the trained
neural network response. Figure 6.5 plots the original function with �o� and
the output �y1� of the trained function with �∗.�
y1=sim(net, p);
plot(p,t,�o�,p,y1,�*�);

© 2003 by Chapman & Hall/CRC

208 CHAPTER 6. NEURAL CONTROL

- 0 .6 -0 .4 -0 .2 0 0 .2 0 .4 0 .6 0 .8
-1

-0 .5

0

0 .5

1

1 .5

Figure 6.5. Original function �o� versus trained function �∗�

Referring to Figure 6.5, it is clear that the neural network has learned the
relay characteristic very well and that no further retraining is necessary. If, on
the other hand, the trained response were unsatisfactory, we may have had to
increase the number of neurons in the hidden layer or choose another topology,
perhaps one with an additional hidden layer, as a possible choice for a neural
network that would provide better learning capabilities. We must note from
this discussion that there is no unique design for a neural network.
Matlab allows us to view the error surface created by plotting the sum-

square error as a function of the weights and biases of a single neuron. This
surface gives some indication as to how well the neural network has been trained.
The segment of theMatlab code used to view the error surface is shown below,
and the error surface is illustrated in Figure 6.6.

wv=-1:0.1:1;
bv=-2.5:.25:2.5;
es=errsurf(p,t,wv,bv,�tansig�);
plotes(wv,bv,es,[60, 30]);

Figure 6.6. Error surface

© 2003 by Chapman & Hall/CRC

6.4. EXAMPLE: TEMPERATURE CONTROL 209

We are now in a position to test the performance of the neural network to provide
ON/OFF control in a closed-loop conÞguration. To test this performance, we
generate an arbitrary testing function as shown below.

w=16*pi;
time=0;
for i=1:100,
p2(i)=16*(exp(-time))*sin(w*time);
time=time+0.1;
end

We can then simulate the network response using the following Matlab com-
mand and obtain a plot of the testing function in relation to the trained function.
Figure 6.7 illustrates the trained and test results.

y2 = sim(net,p2)
plot(p,t,�go�,p2,y2,�b*�);

Figure 6.7. Simulated ON/OFF for a test function

6.4.2 Simulating PI control with a neural network

We now extend the previous example to include proportional and integral control
functions. Once again, we generate an exponentially damped sinusoid pattern
vector p(i), i = 1, 50. Note that this pattern vector is assumed to represent
the error between a reference and the actual output of the plant. A damped
sinusoidal response is typical of plant behavior for which a controller needs to be
designed. As before, we use the following Matlab code to generate the pattern
vector p(i).

w=2*pi;
time=0;
for i=1:50,

p(i)=(exp(-time))*sin(w*time);

© 2003 by Chapman & Hall/CRC

210 CHAPTER 6. NEURAL CONTROL

time=time+0.1;
end

We obtain a plot of the generated training pattern vector as shown in Figure
6.8.

Figure 6.8. Training pattern vector
We then compute and plot the gradient of the training pattern vector, shown
in Figure 6.9.

dp = gradient(p);
plot(dp,�*�);

Figure 6.9. Gradient of training pattern vector

The gradient of the pattern vector allows us to develop a prototype proportional
gain function and the pattern vector itself can be used to develop a prototype
integral gain function. These are obtained in Matlab as follows:

for i=1:50
tprop(i)=10.0*abs(dp(i));
tint(i)=exp(-abs(p(i)));
end

© 2003 by Chapman & Hall/CRC

6.4. EXAMPLE: TEMPERATURE CONTROL 211

Plots of the proportional gain versus the gradient and integral gain versus the
pattern vector are then obtained, as illustrated in Figures 6.10 and 6.11.

- 0 .4 - 0 .2 0 0 .2 0 .4 0 .6
0

1

2

3

4

5

6

Figure 6.10. Proportional gain versus gradient of the pattern vector

- 0 .6 - 0 .4 - 0 .2 0 0 .2 0 .4 0 .6 0 .8
0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

Figure 6.11. Integral gain versus pattern vector

We then set up two feedforward neural networks according to the Matlab
neural network function �newff� syntax:

net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF).

In our example, a two-layer feedforward network is created. The Þrst hidden
layer has 10 �tansig� neurons, and the output layer has one �poslin� neuron.
We once again use �trainlm� as the default neural network training function.
The default backpropagation learning function �learngdm� and mean-squared
error performance function �mse� are used as before. The Þrst neural network
�net1� is used to control the proportional gain and the second neural network
�net2� is used to control the integral gain.

net1 = newff([min(dp) max(dp)],[10 1],{�tansig�,�poslin�},
�trainlm�,�learngdm�,�mse�);

net2 = newff([min(p) max(p)],[10 1],{�tansig�,�poslin�},
�trainlm�,�learngdm�,�mse�);

As noted in the previous example, it is best to initialize all neural network
parameters prior to training. We initialize both the neural networks as follows:

© 2003 by Chapman & Hall/CRC

212 CHAPTER 6. NEURAL CONTROL

net1 = init(net1);

net1.iw{1,1}

net1.b{1}

net2 = init(net2);

net2.iw{1,1}

net2.b{1}

The training period is set up for 10,000 epochs along with a mean-squared error
goal of 0.0001.

net1.trainParam.epochs = 10000;

net1.trainParam.goal = 0.0001;

net2.trainParam.epochs = 10000;

net2.trainParam.goal = 0.00001;

The networks �net1� and �net2� can now be trained to the proportional gain
and integral gain functions developed previously.

net1 = train(net1,dp,tprop);

net2 = train(net2,p,tint);

The two trained neural networks �net1� and �net2� are resimulated to check
how well the networks have learned the control functions, and the plots shown
in Figures 6.12�6.15 are obtained.

- 0 . 4 - 0 . 2 0 0 . 2 0 . 4 0 . 6
0

1

2

3

4

5

6

Figure 6.12. Proportional gain versus gradient for �net1�

© 2003 by Chapman & Hall/CRC

6.4. EXAMPLE: TEMPERATURE CONTROL 213

- 0 . 6 - 0 . 4 - 0 . 2 0 0 . 2 0 . 4 0 . 6 0 . 8
0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

1 . 1

Figure 6.13. Integral gain versus pattern vector for �net2�

Figure 6.14. Variation in proportional gain to the training pattern

Figure 6.15. Variation in integral gain to the training pattern

We now plot the resulting error surfaces shown in Figures 6.16 and 6.17.

wv=-1:0.1:1; bv=-2.5:.25:2.5;
es11=errsurf(dp,tprop,wv,bv,�tansig�);
plotes(wv,bv,es11,[75, 25]);
es12=errsurf(p,tint,wv,bv,�tansig�);
plotes(wv,bv,es12,[75, 25]);

© 2003 by Chapman & Hall/CRC

214 CHAPTER 6. NEURAL CONTROL

Figure 6.16. Proportional control network error surface

Figure 6.17. Integral control network error surface

From the results of training the two neural networks, we conclude that both
neural networks have learned the control functions well. We do however need to
test the neural network performance and see whether the networks can perform
well as controllers. For this, an arbitrary testing function is now simulated to
see how well the neural networks are able to provide proportional and integral
control.

w=1*pi;
time=0;
for i=1:100,

© 2003 by Chapman & Hall/CRC

6.4. EXAMPLE: TEMPERATURE CONTROL 215

p2(i)=5*(exp(-time))*sin(w*time);
time=time+0.1;

end;
dp2=gradient(p2)

The plots in Figures 6.18 and 6.19 illustrate the generated test pattern vector
and its gradient.

Figure 6.18. Test pattern vector

Figure 6.19. Gradient of test pattern vector

We now simulate the trained networks to an arbitrary input and plot the re-
sulting variations in proportional and integral gain. These are shown in Figures
6.20 and 6.21.

© 2003 by Chapman & Hall/CRC

216 CHAPTER 6. NEURAL CONTROL

Figure 6.20. Variation in proportional gain to test pattern

Figure 6.21. Variation in integral gain to test function

From this example, we can see the beneÞts of using neural control in com-
parison with conventional PID control. Both proportional and integral gains are
variable and can be scaled externally to provide the desired response. We leave
as an exercise the development of a single neural network that can provide both
proportional and integral control. Choose an appropriate feedforward neural
network topology in which two output neurons can each provide proportional
and integral gain control.

6.5 Neural networks in indirect neural control

Indirect neural control design is based on a neural network model of the
system to be controlled. In this case, the controller itself may not be a neural
network, but it is derived from a plant that is modeled by a neural network.

© 2003 by Chapman & Hall/CRC

6.5. NEURAL NETWORKS IN INDIRECT NEURAL CONTROL 217

This is similar to standard control in that a mathematical model is needed, but
here the mathematical model is a neural network.
Indirect neural control designs involve two phases. The Þrst phase consists

of identifying the plant dynamics by a neural network from training data �
that is, system identiÞcation. In the second phase, the control design can be
rather conventional even though the controller is derived, not from a standard
mathematical model of a plant, but from its neural network identiÞed model.
Since the identiÞed neural network model of the plant is nonlinear, one way
to design the controller is to linearize its identiÞed neural network model and
apply standard linear controller designs. Another way is through �instantaneous
linearization,� as described in Section 6.5.3.

6.5.1 System identiÞcation

The system identiÞcation phase can be carried out by using neural networks.
Recall that a controller and the plant that it controls bear an inverse relation-
ship, and that a primary goal in the development of an autonomous system is to
build a controller whose behavior bears an inverse relationship to the plant. In
particular, system identiÞcation is necessary for establishing a model on which
the controller design can be based. The general problem of system identiÞca-
tion of nonlinear systems is daunting and, lacking sufficient theoretical results,
much needs to be done on a case-by-case basis. It is one of the areas where the
application of neural networks is promising.
The following Þgure depicts the general problem of system identiÞcation of

nonlinear systems. The parameters of the identiÞcation model are estimated as
the model changes over time, so that the difference between the plant output
and the model output is minimized.

Figure 6.22. System identiÞcation model

The idea is for the identiÞcation process to produce a model of the dynamical
system with no prior knowledge of the dynamics of the system. This is referred
to as black box modeling. The learning algorithm that is used to train the
network is commonly a version of backpropagation, as discussed in Section 5.5.
Of course, the identiÞcation model may be reliably trained only for the data it
experiences and may not produce the desired output for new data. However,

© 2003 by Chapman & Hall/CRC

218 CHAPTER 6. NEURAL CONTROL

in practice, system identiÞcation by neural networks works remarkably well for
reasonably well-behaved dynamical systems.
A neural network that is trained to classify plant behavior by observing the

output of the plant must be trained based on the errors that might occur in the
plant response compared to a desired response. The error function that results
from training the neural network must very closely approximate the inverse
behavior of the plant. A neural network can therefore be used to approximate
control laws that govern the controlling inputs to the plant. Neural networks
are particularly appropriate for system identiÞcation when the mathematical
model is unknown and the behavior of the system is known only in the form of
sample data. Neural networks can be used for nonlinear systems, and they can
also be used for optimal control.
The Þrst step in system identiÞcation is experimentation with the plant to

develop physical insight. A good experiment will result in a set of data that
includes responses to input over the entire range of operation of the plant. This
data set will be used to train the model.
The next step is to select a neural network model. This choice includes both

selecting the inputs to the network and selecting an internal network topology.
The two most widely used families of models for this purpose are multi-layer
perceptrons and the so-called radial basis function neural networks, a family of
neural network models that we do not treat in this book.
The model can be represented as

y (t) = g (x (t, θ) , θ) + e (t)

where x (t, θ) is a regression vector and θ is a vector containing the weights.
One form the regression vector can take is

x (t, θ) = [y (t) , ..., y (t− n) , u (t− d) , ..., u (t− d−m,) , e (t, θ) , ..., e (t− k, θ)]T

The choice of regressor will depend in part on knowledge of the plant behavior.
The model is then trained with the data that was obtained from the exper-

iment. After the training, the model should be validated to check whether it
meets the necessary criteria in terms of the intended use of the model. If the
results are not completely satisfactory, different neural network models can be
tried. If the data collected is not sufficient, it may be impossible to develop a
satisfactory model and one must start over, carrying out a new experiment to
obtain additional training data. It could be, for example, that not all actual
inputs that affect behavior of the system were recognized, and these must be
added to the experiment and to the model before achieving the desired result.
When system identiÞcation is implemented as part of the controller, the

controller is known as an adaptive controller. Such controllers are designed
to control systems whose dynamical characteristics vary with time. A more
detailed exposition of system identiÞcation can be found in advanced texts on
neural network control, such as [30] and [54].

© 2003 by Chapman & Hall/CRC

6.5. NEURAL NETWORKS IN INDIRECT NEURAL CONTROL 219

6.5.2 Example: system identiÞcation

As indicated previously, the goal in system identiÞcation is to obtain a satis-
factory model of the nonlinear system by observing the input-output behavior
of the system. Given a nonlinear process, we need to determine the functional
relationship between output and the input. The system itself is a black box
whose internal structure is not available. All we can observe is what goes into
the black box and what comes out of the black box. For such identiÞcation,
neural networks have been found to yield excellent results.
In this section, we discuss a step-by-step procedure for developing a neural

network-based identiÞcation of a nonlinear system. This example, originally
appearing on pages 731�733 in [40], has been adapted here with permission.
Let us consider a nonlinear system of the form:

yp(k + 1) = f (yp(k), yp(k − 1), · · ·) + u(k)
where f (yp(k), yp(k − 1), · · ·) is the nonlinear system to be identiÞed, and u(k)
is the input applied to the system. The function f (yp(k), yp(k − 1), · · ·) repre-
sents the internal structure of the nonlinear system that is used in obtaining the
next state yp(k + 1). Clearly, therefore, if the response yp(k) of the nonlinear
system can be sampled over a range of possible system operating conditions �
that is, for a range of inputs u(k) ∈ [min,max] over which stable plant opera-
tion can be guaranteed, then mapping the input-output behavior onto a neural
network becomes a viable choice for identifying the nonlinear system. In this
example, a nonlinear system is given by

yp(k + 1) =
yp(k) (yp(k − 1) + 2) (yp(k) + 2.5)
8.5 + (yp(k))

2 + (yp(k − 1))2
+ u(k)

which is of the form

yp(k + 1) = f (yp(k), yp(k − 1)) + u(k)
For this system, stable plant operation is guaranteed for u(k) ∈ [−2, 2]. The
objective in this example is to train a feedforward neural network with error
backpropagation such that the outputs of the trained neural network and the
actual plant are the same for the speciÞed inputs. We can now proceed to
demonstrate the identiÞcation process using Matlab.

Step 1. We Þrst need to obtain the input-output pairs of data that can be
used to train a neural network. In this example, we simulate the behavior of the
nonlinear system and develop the appropriate training data. For a real-world
process however, this amounts to obtaining measured data of the input and
output of the plant. Since we are computing the next state, yp(k + 1), we need
to initialize the parameters for yp(k) and yp(k−1). The followingMatlab code
provides this required Þrst step.

yp(1)=0; yp(2)=0; %yp(1) = yp(k − 1); yp(2) = yp(k)
Step 2. Generate an input vector �u� in the range [−2, 2]. Our objective in
this step is to develop a vector of random inputs for which we can generate a

© 2003 by Chapman & Hall/CRC

220 CHAPTER 6. NEURAL CONTROL

corresponding vector of outputs. Select a suitable number of vector elements. In
this example we have chosen to develop a vector of 301 random input elements.

u=rands(1, 301)*2; % u(k) ∈ [−2, 2]
Step 3. Simulate the response of the nonlinear system using the random input
vector generated in Step 2 and create the input-output pairs of training data.

for k=2:301
yp(k+1)=yp(k)*(yp(k-1)+2)*(yp(k)+2.5)/(8.5+yp(k)^2

+yp(k-1)^2)+u(k);
out(k-1)=(yp(k+1)-u(k))/20; %Output training data
in(k-1)=yp(k)/20; %Input training data
end;

Notice that the output and input training data have been scaled, in this case,
by a factor of 20. Scaling is needed when using sigmoidal functions so that we
create an adequate spread in the �squashed� data. The user must experiment
with this and select a suitable scaling factor that will help in the neural network
convergence. Over-scaling or under-scaling can signiÞcantly affect the network
convergence properties.

Step 4. Set up the input-output data vectors for neural network training. Here
the input data �plantin� is set up as pairs of the form·½

yp(k)
yp(k + 1)

¾¸
namely,·½

in(1)
in(2)

¾
,

½
in(2)
in(3)

¾
,

½
in(3)
in(4)

¾
, · · · ,

½
in(298)
in(299)

¾
,

½
in(299)
in(300)

¾¸
and the corresponding output �plantout� for each input pair is set up as

[out(1), out(2), out(3), · · · , out(299)]

These are the pattern and target vectors that the neural network uses for train-
ing. The following Matlab code performs this setup.

plantin=[in(1:299); in(2:300)]; plantout=out(1:299);

Step 5. As a Þrst attempt to obtain a suitable trained neural network, here we
need to choose the network topology. The number of layers and the number of
neurons in each layer are at issue. Choosing a large number of neurons obviously
increases the computations and hence affects the time to converge. For a trial,
we choose 1 neuron in the Þrst hidden layer, 10 neurons in the second hidden
layer, and 1 output neuron. The selection of the number of output neurons is
based upon the number of outputs in the system. Select the appropriate activa-
tion function that characterizes the input-output behavior. For this example, a
bipolar activation function is necessary and hence the Matlab �tansig� func-
tion is chosen in all three layers. The �trainlm� � algorithm is a network training

© 2003 by Chapman & Hall/CRC

6.5. NEURAL NETWORKS IN INDIRECT NEURAL CONTROL 221

function that updates weight and bias values according to Levenberg-Marquardt
optimization. Other training algorithms must be explored to determine their
effectiveness in meeting desired convergence criteria.

net = newff(minmax(nni),[1 10 1],{�tansig� �tansig� �tansig�},

�trainlm�,�learngdm�,�mse�)

Step 6. Initialize the chosen neural network structure.

net = init(net);

net.iw{1,1}

net.b{1}

Step 7. Set the number of training epochs and the desired error tolerance.
You may have to increase the number of epochs if the convergence tolerance
is not met within the number speciÞed. On the other hand, you may have to
increase the tolerance to obtain convergence. Nonconvergence generally is due
to ill-conditioned data. As such, some experimentation is needed in scaling the
training data to obtain a �suitable� set.

net.trainParam.epochs = 500;

net.trainParam.goal = 0.0005;

Step 8. Train the neural network for the input-output data.

net=train(net,plantin,plantout);

Step 9. Obtain the neural network response to the random input used for
training.

trainedout=sim(net,plantin);

Step 10. Compare the results of the actual plant response with that produced
by the neural network for the same input.

plot(plantout, �b�); %Actual plant output

hold on;

plot(trainedout, �:k�); %Trained neural network output

grid;

axis([0, 300, -0.1, 0.3]);

xlabel(�Time Step�); ylabel(�Plant (solid) NN Output (dotted)�);

© 2003 by Chapman & Hall/CRC

222 CHAPTER 6. NEURAL CONTROL

Figure 6.23. Plant and trained neural network
response to the same random input

At this stage, as shown in Figure 6.23, we have a trained neural network
that we hope will perform well when normally occurring input data is applied
to it. If the same input applied to the plant is applied to the neural network,
and both produce the same output, then we have identiÞed the plant behavior
and obtained a model of the plant. The next step therefore involves setting
up the input that would be normally applied to the plant and to simulate the
behavior of both the plant and the corresponding trained neural network.

Step 11. Generate a vector of input data and simulate both the original plant
response and the trained neural network. The followingMatlab code generates
a speciÞed input u(k) and simulates the behavior of the nonlinear system and
of the trained neural network.

yp(1)=0.0; yp(2)=0.0;out1(1)=0; out1(2)=0;
for k=2:500

if (k<=200)u(k)=2.0*cos(2*pi*k*0.01);
else

u(k)=1.2*sin(2*pi*k*0.05);
end;

yp(k+1)=yp(k)*(yp(k-1)+2)*(yp(k)+2.5)/(8.5+yp(k)^2
+yp(k-1)^2)+u(k);

out1(k)=yp(k)/20;
out1(k-1)=yp(k-1)/20;
nnout(k+1)=20*sim(net,[out1(k);out1(k-1)])+u(k);
end;
plot(yp, �b�);
hold on;
plot(nnout, �:k�);
grid;
axis([0, 500, -4.0, 10.0]);

© 2003 by Chapman & Hall/CRC

6.5. NEURAL NETWORKS IN INDIRECT NEURAL CONTROL 223

xlabel(�Time Step�); ylabel(�Plant (solid) NN Output (dotted)�);

Figure 6.24. Plant and trained neural network
response to speciÞed input

Step 12. If the results are satisfactory, as illustrated in the simulation results
of Figure 6.24, then we have identiÞed the nonlinear system and we can use
the trained neural network for control purposes. If however the results are not
satisfactory, some amount of experimentation would be required in selecting the
appropriate number of neurons in each of the hidden layers and/or increasing
the number of hidden layers, choosing a proper scaling factor, and by choosing
a different training algorithm. The reader is urged to conduct such experimen-
tation in order to obtain a better feel for how such parameters affect neural
network performance and training characteristics.
In the example discussed, it is clear that the neural network performs very

well in identifying the �unknown� plant. Several models for identiÞcation are
discussed in the reference cited on page 219, at the beginning of this example.
We strongly recommend that the reader obtain further information regarding
system identiÞcation issues from this and other sources.

6.5.3 Instantaneous linearization

The most common approach to the control of nonlinear systems is to approx-
imate the system by a linear system, in the region of concern, and then to
design a controller for this linear system. Neural network model structures pro-
duce discrete nonlinear models, and as mentioned earlier, one way to design
the controller is to linearize its identiÞed neural network model and apply stan-
dard linear controller designs. However, linearization of these discrete nonlinear
models can also be carried out at each sampling time by a process called in-
stantaneous linearization. This process extracts a linear model from the

© 2003 by Chapman & Hall/CRC

224 CHAPTER 6. NEURAL CONTROL

nonlinear neural network model at each sampling time.
Assume that a neural network input-output model of the system to be

controlled is described as a function of past outputs y(t − i) and past inputs
u (t− d− i) in the form

y (t) = g (x (t))

where the vector

x (t) = [y (t− 1) , ..., y (t− n) , u (t− d) , ..., u (t− d−m)]T

deÞnes the state of the system. At time t = τ , linearize the function

g = g (x1, ..., xn+m+1)

around the current state x (τ) to obtain the approximate model

�y (t) = −a1�y (t− 1)− . . . − an�y (t− n) + b0�u (t− d) + . . . + �u (t− d−m)

where

�y (t− i) = y (t− i)− y (τ − i)
�u (t− i) = u (t− i)− u (τ − i)

ai = − ∂g (x (t))

∂xi

¯̄̄̄
t=τ

for 1 ≤ i ≤ n

bi = − ∂g (x (t))

∂xn+i+1

¯̄̄̄
t=τ

for 0 ≤ i ≤ m

For a multi-layer perceptron (MLP) network with nx inputs, one hidden
layer of nh tanh units, and a linear output

y (t) =

nhX
j=1

Wj tanh

Ã
nxX
k=1

wkjxk (t) + w0j

!
+W0

the derivative of the output with respect to input xi (t) is calculated in accor-
dance with

∂g (x (t))

∂xi (t)
=

nhX
j=1

Wjwji

Ã
1− tanh2

Ã
nxX
k=1

wjkxk (t) + wj0

!!

where
(x1, ..., xnx) = (y1, ..., yn, u0, u1, ..., um)

The approximate model can also be expressed as

y (t) = −
nX
i=1

aiy (t− i)+
mX
i=0

biu (t− i)+
Ã
y (τ) +

nX
i=1

aiy (τ − i)−
mX
i=0

biu (τ − i)
!

© 2003 by Chapman & Hall/CRC

6.6. EXERCISES AND PROJECTS 225

where

ζ (τ) = y (τ) +
nX
i=1

aiy (τ − i)−
mX
i=0

biu (τ − i)

is the bias term. The approximate model may thus be interpreted as a lin-
ear model affected by a constant disturbance ζ (τ), depending on the current
operating point.
To apply the instantaneous linearization technique to the design of con-

trollers, a linear model is extracted from a neural network model of the system
at each sampling time and a linear controller is designed. The control design is
based on the certainty equivalence principle � that is, the design block assumes
the extracted linear model is a perfect description of the system. One can regard
this as a gain-scheduling controller with an inÞnite schedule.
One appealing feature of the linearization technique is that essentially any

linear control design can be incorporated in the process. Linearization results
in the bias term have to be compensated for, of course. This can be achieved
by introducing integral action into the controller, in which case other constant
disturbances will be compensated for as well.
Depending on the character of the nonlinearities of the system, and the se-

lected reference trajectory, the linear model can be considered valid only within
a relatively short time period. One must be careful to choose controller designs
not violating the limits of the approximation. Instantaneous linearization can
be applied to deterministic or stochastic models, but we have discussed only
the deterministic case. We refer you to [54] for more details on instantaneous
linearization.

6.6 Exercises and projects

1. A nonlinear system is deÞned by y(k) = f(y(k − 1)) + [u(k − 1)]3, where

f(y(k − 1)) = y(k − 1)
1 + y(k − 1)2

is the system to be identiÞed. Develop a backpropagation neural network
that can identify the nonlinear system. Examine the performance to the
following input

u (k) =

½
2e−0.02πk if 0 ≤ k ≤ 50
10e−0.01πk sin (0.2πk) if 50 < k ≤ 150

Compare the performance of the network using two of Matlab�s training
algorithms, namely, trainlm, the Levenberg-Marquardt optimization, and
traingd, the gradient descent optimization techniques.

2. A nonlinear chemical process is speciÞed as y(t) = f(y(t− 1), y(t− 2)) +
0.1 (u(t− 1))2, where f(y(t−1), y(t−2)) = 0.5y(t−1)−0.1y(t−1)y(t−2)
is the system to be identiÞed. Develop a backpropagation neural network
that can identify the nonlinear system.

© 2003 by Chapman & Hall/CRC

226 CHAPTER 6. NEURAL CONTROL

(a) Test the neural network performance to an input speciÞed by u (t) =½
0.2e−0.02πk sin (0.2πk) if 0 ≤ k ≤ 100
0.2e−0.02πk sin (0.2πk) + 0.8e(−0.02πk) cos (0.2πk) if 100 < k ≤ 300

(b) Simulate the performance of the trained neural network with u (t) as
speciÞed above, and with additive Gaussian noise η(t) = N(0, 0.04).
Discuss the performance.

3. A nonlinear process is characterized by a single input and two outputs as

y1(t) = f1(y1(t− 1), y1(t− 2), y2(t− 1), y2(t− 2)) + u(t)
y2(t) = f2(y1(t− 1), y1(t− 2), y2(t− 1), y2(t− 2)) + u(t)

where

f1(y1(t− 1), y1(t− 2), y2(t− 1), y2(t− 2)) =³
1.85 + 0.24e−y1(t−1)

2
´
y2(t− 1)−

³
0.35 + 0.34e−y1(t−2)

2
´
y2(t− 2)

f2(y1(t− 1), y1(t− 2), y2(t− 1), y2(t− 2)) =³
1.35 + 0.28e−y2(t−1)

2
´
y1(t− 1)−

³
0.65 + 0.25e−y2(t−2)

2
´
y1(t− 2)

(a) Determine through simulations the range of u(t) ∈ [min,max] for
which the nonlinear system is stable.

(b) Develop a backpropagation neural network that identiÞes f1 and f2.

(c) Choosing a variable frequency sinusoidal input within the range de-
termined in part (a), discuss the performance of the trained neural
network.

4. For the magnetic levitation exercise in Chapter 4, we are required to re-
place the fuzzy controller with a suitable neural network controller. The
equation of motion for the steel ball and the equation governing variation
in the current in the electrical circuit are reproduced here for convenience.
For the steel ball,

M
d2z

dt2
=Mg − F

and for the electrical circuit,

L
di

dt
+Ri = V

where L is the coil inductance and R is the coil resistance. The coupling
equation where the force F is related to the current i is given by

F = km
i2

z2

© 2003 by Chapman & Hall/CRC

6.6. EXERCISES AND PROJECTS 227

Assume that the ball position is measured using an optical sensor. Use
the following set of parameters in your model setup.

M Mass of steel ball 20 milligrams (mg)
km Magnetic constant 2.058× 10−4 N(m/A)2
R Coil resistance 0.92 Ohms (Ω)
L Coil inductance 0.01 millihenry (mH)
i Coil current [0, 3] Amps (A)
V Coil voltage [0, 5] Volts (V)
g Gravitational constant 9.80665 m/ s2

z Ball position [min, max] [3, 7] cm

(a) Through simulation, obtain a suitable set of training parameters to
train a backpropagation neural network. Use the speciÞed range of
parameters for the current i, the voltage V , and the distance z over
which the ball is allowed to move in the vertical direction.

(b) Test the neural network performance for various disturbances that
affect the ball position.

(c) Compare your results with the fuzzy controller developed in Chap-
ter 4. Does neural control offer any advantages over fuzzy control?
Explain why, or why not.

5. For the liquid level control problem in Chapter 4, we wish to replace the
fuzzy controller with a neural controller.

(a) Develop a suitable set of neural network training parameters using the
same set of system parameters used for the fuzzy controller design.

(b) Compare the neural network performance with the fuzzy control per-
formance.

6. A neural controller is desired to control the ball position in the ball and
beam problem of Chapter 4. For convenience, the nonlinear equations are
speciÞed here again along with the system parameters:·

J

r2
+M

¸
R̈+Mg sinα−mR (úα)2 = 0

The beam angle α may be approximated by a linear relationship α = D
L θ.

These equations form the set of coupled equations for the system. Using
the following system parameters

M mass of the ball 0.2 kg
R radius of the ball 0.02 m
D lever arm offset 0.03 m
g gravitational acceleration 9.8m/ s2

L length of the beam 1.5 m
J the moment of inertia of the ball 2.0e−6 kgm2

© 2003 by Chapman & Hall/CRC

228 CHAPTER 6. NEURAL CONTROL

(a) Simulate the nonlinear equations for small perturbations around the
equilibrium to obtain a suitable set of neural network training para-
meters.

(b) Test the performance of the controller for disturbances acting on the
ball.

(c) Comment on the neural controller performance in relation to the
fuzzy controller.

© 2003 by Chapman & Hall/CRC

Chapter 7

FUZZY-NEURAL AND
NEURAL-FUZZY
CONTROL

So far we have discussed two distinct methods for building controllers: fuzzy
and neural. Often the choice of method is dictated by the data available on
the plant involved. If the data are pairs of numbers, we may turn to a neural
method, and if the data are rules, fuzzy methods may be appropriate. Neural
methods provide learning capability, whereas fuzzy methods provide ßexible
knowledge-representational capability. Integrating these two methodologies, in
control in particular and in intelligent technologies in general, can lead to better
technologies that take advantage of the strengths of each methodology and at
the same time overcome some of the limitations of the individual techniques.
In this chapter, we discuss methods for combining neural and fuzzy methods

to build controllers. There are many ways in which these methods can be com-
bined. Complicated controllers can have different component problems, each
of which may require different types of processing, but such complex situations
are beyond the scope of this book. Within a single component, there are still
basically two ways that fuzzy and neural technologies can be combined. In
one direction, fuzzy logic can be introduced into neural networks to enhance
knowledge representation capability of conventional neural networks. This can
be done by introducing fuzzy concepts within neural networks � that is, at the
levels of inputs, weights, aggregation operations, activation functions, and out-
puts. Standard mathematical models for neurons can, for example, be changed
to �fuzzy neurons� with t-norms and t-conorms used to build aggregation oper-
ations. This leads to a fuzzy-neural system with which one can present fuzzy
inputs and develop an analog of the conventional backpropagation algorithm for
training.
In the other direction, neural networks can be used in fuzzy modeling and

control to provide fuzzy systems with learning capabilities. These methods lead

229

© 2003 by Chapman & Hall/CRC

230 CHAPTER 7. FUZZY-NEURAL AND NEURAL-FUZZY CONTROL

to a neural-fuzzy system � a fuzzy system represented as a modiÞed neural
network, resulting in a fuzzy inference system that is enhanced by neural net-
work capabilities. Fuzzy systems are generally more �user friendly� than neural
systems because their behavior can be explained based on fuzzy rules fashioned
after human reasoning. Although fuzzy logic can encode expert knowledge di-
rectly using rules with linguistic labels, it usually takes a lot of time to design
and tune the membership functions that quantitatively represent these linguistic
labels, and applications of pure fuzzy control systems are restricted mainly to
those Þelds where expert knowledge is available and the number of input vari-
ables is small. Neural network learning techniques can automate this process
and substantially reduce development time and cost while improving perfor-
mance. Neural networks are also used to preprocess data and to extract fuzzy
control rules from numerical data automatically, as well as to tune membership
functions of fuzzy systems. In this chapter, we Þrst address some issues of fuzzy-
neural systems for control problems, and then look at neural-fuzzy systems. Our
primary focus is on adaptive neuro-fuzzy systems for control.

7.1 Fuzzy concepts in neural networks

Fuzzy logic concepts can be incorporated into neural network structure at any
level. Recall that a Mamdani fuzzy rule is of the form

�If x is A then y is B�

and a Sugeno fuzzy rule is of the form

�If x is A then y is f(x)�

where A and B are fuzzy sets or products of fuzzy sets, and f is a real-valued
function. If A is the product of fuzzy subsets A1, ..., An of Ui, i = 1, 2, ..., n,
then

A :
nY
i=1

Ui → [0, 1] : (u1, ..., un) 7→ min {A1 (u1) , ..., An (un)}

and for x = (x1, ..., xn), �x is A� stands for �x1 is A1 and x2 is A2, ..., xn
is An,� and f is a real-valued function on Rn. The fuzzy inference THEN is
implemented most commonly by minimum, the �Mamdani implication,� or by
the product. Rules are combined by a fuzzy OR, namely by some t-conorm �
usually maximum.
One modiÞcation of a neural network structure is to replace some or all

components of a neuron by fuzzy logic operations. Such a neuron is called a
fuzzy neuron. For example, if addition (as an aggregation operation) in a
neuron is replaced by minimum, we have a min-fuzzy neuron. A neuron that
uses maximum as an aggregation operation is a max-fuzzy neuron.
A neural network with fuzzy neurons becomes amulti-layer fuzzy-neural

network (Figure 7.1). Note that conventional neural networks are used to

© 2003 by Chapman & Hall/CRC

7.1. FUZZY CONCEPTS IN NEURAL NETWORKS 231

Figure 7.1. Neural network with fuzzy neurons

approximate functions from numerical input-output data (xi, yi), i = 1, 2, ..., n.
Fuzzy-neural networks are a more general computational structure with which
function approximation can be extended to linguistic data.
Consider a set of fuzzy rules of the form

Ri : If x is Ai then y is Bi (7.1)

i = 1, ..., n, where Ai and Bi are products of fuzzy sets

Ai (x) =

 NY
j=1

Aij

 (x) = N̂

j=1

Aij (xj)

Bi (y) =

Ã
MY
k=1

Bik

!
(y) =

M̂

k=1

Bik (yk)

Each rule in (7.1) can be interpreted as a training pattern for a multi-layer
neural network, where the antecedent part of the rule is the input to the neural
network, and the consequent part of the rule is the desired output of the neural
net. Equation (7.1) therefore would constitute a

� single-input, single-output (SISO) system if N =M = 1.

� multi-input, single-output (MISO) system if N > 1, M = 1.

� multi-input, multi-output (MIMO) system if N > 1, M > 1.

© 2003 by Chapman & Hall/CRC

232 CHAPTER 7. FUZZY-NEURAL AND NEURAL-FUZZY CONTROL

The derived training set consists of input-output pairs (Ai, Bi). For a MIMO
fuzzy system, the derived training set can be written in the form

(
©
Aij
ªN
j=1

,
©
Bik
ªM
k=1
), i = 1, ..., n

For a MISO system, this simpliÞes to

(
©
Aij
ªN
j=1

, Bi), i = 1, ..., n

and for a SISO system, the derived training set can be written in the form

(A1, B1), ..., (An, Bn)

We also need to incorporate defuzziÞcation operations into neural networks.
These operations, when necessary, take place at the Þnal level of the neural
network and are the same operations as those discussed in Chapter 3.

7.2 Basic principles of fuzzy-neural systems
Rules express the behavior of a system. They allow us to specify the output,
given the input. This property is particularly useful in that we can deÞne
the desired output to obtain the �best� performance of the system being con-
trolled. For a PID controller, this gives the ßexibility to specify the various
gains, namely, the proportional gain, the derivative gain and the integral gains
to achieve the desired performance.
In this section we look at how fuzzy �If. . . then. . . � rules express the input-

output behavior of fuzzy-neural systems. Knowledge of rules allows us to ex-
amine appropriate trainable neural network architectures. We show how the
structure of fuzzy rules can be transformed into neural networks, giving rise to
fuzzy-neural systems.
There are two main approaches to implement fuzzy �If. . . then. . . � rules by a

standard-error backpropagation network � a method Þrst proposed by Umano
and Ezawa [75] in 1991, and a modiÞcation by Uehara and Fujise [74] in 1992
that uses a Þnite number of α-level sets to represent fuzzy numbers. In 1993 Jang
[35] extended these methods toward the development of an adaptive network
fuzzy inference system (ANFIS) that has spawned numerous applications. We
will discuss ANFIS later in this chapter.
In the method proposed by Umano and Ezawa, a fuzzy set is represented by

a Þnite number of its membership values. Suppose we have a set of fuzzy rules
of the form

Ri : If x is Ai then y is Bi

i = 1, ..., n, where Ai and Bi are fuzzy sets. Let the interval [a1, a2] contain the
support of all the Ai, plus the support of any other functions we might have
as input to the system. Also, let [b1, b2] contain the support of all the Bi, plus
the support of any other functions we can obtain as outputs from the system, i
= 1, ..., n.

© 2003 by Chapman & Hall/CRC

7.2. BASIC PRINCIPLES OF FUZZY-NEURAL SYSTEMS 233

We can work with a Þnite number of membership values by taking positive
integers M ≥ 2 and N ≥ 2, and setting

xj = a1 +
j − 1
N − 1(a2 − a1)

yk = b1 +
k − 1
M − 1(b2 − b1)

for 1 ≤ j ≤ N and 1 ≤ k ≤M . This gives us a discrete version of the continuous
training set consisting of the input-output pairs

(Ai (x) , Bi (y)) = ((Ai(x1), ..., Ai(xN)) , (Bi(y1), ..., Bi(yM)))

for i = 1, ..., n, and the fuzzy-neural network turns into an N -input and M -
output standard network that can be trained by the generalized delta rule (see
page 180).

Example 7.1 Assume our fuzzy rule base consists of three rules

R1 : If x is small then y is negative

R2 : If x is medium then y is about zero

R3 : If x is big then y is positive

where the membership functions of fuzzy terms are deÞned by

µsmall(u) = A1 (u) =

½
1− 2u if 0 ≤ u ≤ 1/2
0 otherwise

µmedium(u) = A2 (u) =

½
1− 2 |u− 1/2| if 0 ≤ u ≤ 1
0 otherwise

µbig(u) = A3 (u) =

½
2u− 1 if 1/2 ≤ u ≤ 1
0 otherwise

0

0.5

1

0.2 0.4 0.6 0.8 1u

Fuzzy sets small (dots), medium (solid), and big (dashed)

µnegative(u) = B1 (u) =

½ −u if − 1 ≤ u ≤ 0
0 otherwise

µabout zero(u) = B2 (u) =

½
1− 2 |u| if − 1/2 ≤ u ≤ 1/2
0 otherwise

µpositive(u) = B3 (u) =

½
u if 0 ≤ u ≤ 1
0 otherwise

© 2003 by Chapman & Hall/CRC

234 CHAPTER 7. FUZZY-NEURAL AND NEURAL-FUZZY CONTROL

0-1 1
u

Fuzzy sets negative (dots), about zero (solid), and positive (dashed)

The fuzzy training set derived from this rule base can be written in the form

{(small, negative), (medium, about zero), (big, positive)}

Let [0, 1] contain the support of all the fuzzy sets we might have as input to the
system. Also, let [−1, 1] contain the support of all the fuzzy sets we can obtain
as outputs from the system. Let M = N = 5 and

xj = (j − 1)/4
yk = −1 + (k − 1)2/4 = −1 + (k − 1)/2 = −3/2 + k/2

for 1 ≤ j ≤ 5 and 1 ≤ k ≤ 5. Substituting for i and j, we get

x = (x1, x2, x3, x4, x5) = (0, 0.25, 0.5, 0.75, 1)

y = (y1, y2, y3, y4, y5) = (−1,−0.5, 0, 0.5, 1)

A discrete version of the continuous training set consists of three input-output
pairs for use in a standard backpropagation network

(A1 (x) , B1 (y)) =
¡¡
1 0.5 0 0 0

¢
,
¡
1 0.5 0 0 0

¢¢
(A2 (x) , B2 (y)) =

¡¡
0 0.5 1 0.5 1

¢
,
¡
0 0 1 0 0

¢¢
(A3 (x) , B3 (y)) =

¡¡
0 0 0 0.5 1

¢
,
¡
0 0 0 0.5 1

¢¢
To demonstrate the distinction between a regular neural network and a fuzzy-

neural network, we brießy consider the crisp case of a neural network that was
discussed in detail in Chapter 5. Consider a simple neural net as in Figure
7.2. All signals and weights are real numbers. The two input neurons do not
change the input signal, so their output is the same as their input. The signal
xi interacts with the weight wi to produce the product

pi = wixi, i = 1, 2

The input information pi is aggregated by addition to produce the input

net = p1 + p2 = w1x1 + w2x2

© 2003 by Chapman & Hall/CRC

7.2. BASIC PRINCIPLES OF FUZZY-NEURAL SYSTEMS 235

Figure 7.2. Standard neuron

to the neuron. The neuron uses its transfer function f , often a sigmoidal function
f(x) = 1

1+e−x , to compute the output

y = f(net) = f(w1x1 + w2x2)

In the crisp case, we use addition and multiplication operators to perform
aggregation of the input signals (Figure 7.2). However, this is not possible in
the case of fuzzy numbers. If we employ operators like a t-norm or a t-conorm
to combine the incoming data to a neuron, we obtain what we call a hybrid
neural net. These modiÞcations lead to a fuzzy-neural architecture based on
fuzzy arithmetic operations. A hybrid neural net may not use multiplication,
addition, or a sigmoidal function because the results of these operations are not
necessarily in the unit interval.

DeÞnition 7.1 A hybrid neural net is a neural net with crisp signals and
weights and a crisp transfer function for which

� The signals and weights xi and wi, both of which lie in the interval [0, 1],
can be combined using a t-norm, t-conorm, or some other continuous op-
eration.

� The results p1 and p2 can be aggregated with a t-norm, t-conorm, or any
other continuous function from [0, 1] to [0, 1].

� The transfer function f can be any continuous function from [0, 1] to [0, 1].
A processing element of a hybrid neural net is called a fuzzy neuron.

We emphasize that all inputs, outputs, and weights of a hybrid neural net
are real numbers taken from the unit interval [0, 1].

Example 7.2 (AND) Figure 7.3 illustrates an AND fuzzy neuron. The signals
xi and weights wi are combined by a triangular conorm S to produce the output

pi = S(wi, xi), i = 1, 2

The input information pi is aggregated by a triangular norm T to produce the
output

y = AND(p1, p2) = T (p1, p2) = T (S(w1, x1), S(w2, x2))

© 2003 by Chapman & Hall/CRC

236 CHAPTER 7. FUZZY-NEURAL AND NEURAL-FUZZY CONTROL

of the neuron. If T = min and S = max, then the AND neuron realizes the
max-min composition y = min{w1 ∨ x1, w2 ∨ x2}.

Figure 7.3. AND fuzzy neuron

Example 7.3 (OR) Figure 7.4 illustrates an OR fuzzy neuron. The signal xi
and weight wi are combined by a triangular norm T to produce

pi = T (wi, xi), i = 1, 2

The input information pi is aggregated by a triangular conorm S to produce
the output

y = OR(p1, p2) = S(p1, p2) = S(T (w1, x1), T (w2, x2))

of the neuron. If T = min and S = max, then the OR neuron realizes the

Figure 7.4. OR fuzzy neuron

max-min composition y = max{w1 ∧ x1, w2 ∧ x2}.

7.3 Basic principles of neural-fuzzy systems

In order to process fuzzy rules by neural networks, it is necessary to modify
the standard neural network structure appropriately. Since fuzzy systems are
universal approximators, it is expected that their equivalent neural network
representations will possess the same property. As stated earlier, the reason to

© 2003 by Chapman & Hall/CRC

7.3. BASIC PRINCIPLES OF NEURAL-FUZZY SYSTEMS 237

represent a fuzzy system in terms of a neural network is to utilize the learning
capability of neural networks to improve performance, such as adaptation of
fuzzy systems. Thus, the training algorithm in the modiÞed neural networks
should be examined.

7.3.1 Adaptive network fuzzy inference systems

To illustrate the use of neural networks for fuzzy inference, we present some
successful adaptive neural network fuzzy inference systems, along with training
algorithms known as ANFIS. These structures, also known as adaptive neuro-
fuzzy inference systems or adaptive network fuzzy inference systems, were pro-
posed by Jang [35]. It should be noted that similar structures were also proposed
independently by Lin and Lee [40] and Wang and Mendel [77]. These structures
are useful for control and for many other applications.
To Þx the ideas, consider the problem of graphically representing the way

fuzzy control is achieved in the Sugeno-Takagi model. For a simple example,
consider a fuzzy rule base consisting of only two rules:

R1: If x1 is A1 and x2 is B1 then y = f1 (x)
R2: If x1 is A2 and x2 is B2 then y = f2 (x)

where Ai and Bi are fuzzy sets and

f1 (x) = z11x1 + z12x2 + z13

f2 (x) = z21x1 + z22x2 + z23

Recall that when numerical input x = (x1, x2) is presented, the inference mech-
anism will produce the numerical output

y∗ =
A1 (x1)B1 (x2) f1 (x) +A2 (x1)B2 (x2) f2 (x)

A1 (x1)B1 (x2) +A2 (x1)B2 (x2)

A fuzzy-neural network for implementing the above is shown in Figure 7.5. The
observed input x = (x1, x2) is presented to Layer 1 by Input Layer 0. The
output of Layer 1 is

(O11, O12, O13, O14) = (A1 (x1) , A2 (x1) , B1 (x2) , B2 (x2))

where the membership functions Ai, Bi, i = 1, 2, are speciÞed in some paramet-
ric way from a family of membership functions, such as triangular or Gaussian.
Layer 2 consists of fuzzy neurons with an aggregation operator being some

t-norm. We use the product t-norm in this example, in view of the way that
product is used in Sugeno-Takagi�s inference procedure. The output of Layer 2
is

(O21, O22) = (A1 (x1)B1 (x2) , A2 (x1)B2 (x2))

Layer 3 is a normalizer. The output of Layer 3 is

(O31, O32) =

µ
O21

O21 +O22
,

O22
O21 +O22

¶
=

³
A1(x1)B1(x2)

A1(x1)B1(x2)+A2(x1)B2(x2)
, A2(x1)B2(x2)
A1(x1)B1(x2)+A2(x1)B2(x2)

´

© 2003 by Chapman & Hall/CRC

238 CHAPTER 7. FUZZY-NEURAL AND NEURAL-FUZZY CONTROL

Figure 7.5. First-order Sugeno fuzzy model with two rules

The fuzzy neurons in Layer 4 output the values

(O41, O42) = (O31f1, O32f2)

=
³
(A1(x1)B1(x2))(z11x1+z12x2+z13)
A1(x1)B1(x2)+A2(x1)B2(x2)

, (A2(x1)B2(x2))(z21x1+z22x2+z23)A1(x1)B1(x2)+A2(x1)B2(x2)

´
Finally, the output layer calculates the control action by summing:

y∗ = O41 +O42 =
(A1(x1)B1(x2))(z11x1+z12x2+z13)+(A2(x1)B2(x2))(z21x1+z22x2+z23)

A1(x1)B1(x2)+A2(x1)B2(x2)

Of course, the above neural network type for representing the inference pro-
cedure for a rule base of two rules can be extended in an obvious way to an
arbitrary number of rules.

7.3.2 ANFIS learning algorithm

The representation in the preceding section of a neural network is simply a
graphical display of the computation steps in the Sugeno-Takagi procedure. In
order for this representation to be more useful in implementing the control law,
one needs to equip it with an efficient learning algorithm. In conventional neural
networks, the backpropagation algorithm is used to learn, or adjust, weights on
connecting arrows between neurons from input-output training samples. In the
ANFIS structure, the parameters of the premises and consequents play the role
of weights. SpeciÞcally, when the membership functions Aji used in the �If� part
of the rules are speciÞed parametrically � that is, the shape is speciÞed and
the function is determined by a Þnite number of parameters, these parameters
are called premise parameters, whereas the parameters ai, bi, ci, i = 1, 2 in
the �then� part of the rules are referred to as consequent parameters. The
ANFIS learning algorithm consists of adjusting the above set of parameters from
sample data

¡¡
xk1 , x

k
2

¢
, yk
¢
, k = 1, ..., N .

© 2003 by Chapman & Hall/CRC

7.3. BASIC PRINCIPLES OF NEURAL-FUZZY SYSTEMS 239

It is important to keep in mind that when we develop a set of prototype fuzzy
rules, we are in fact representing possibly nonlinear input-output relationships.
The effectiveness of fuzzy models representing nonlinear input-output relation-
ships depends on the membership functions involved. Thus, the tuning of mem-
bership functions is an important issue in fuzzy modeling. This tuning task
can be viewed as an optimization problem; neural networks offer a possibility
to solve this problem.
In order to train a fuzzy-neural network, we need a set of training data in

the form of input-output tuples, and a speciÞcation of the rules, including a
preliminary deÞnition of the corresponding membership functions. A standard
approach is to assume a certain shape for the membership functions so that the
membership functions depend on parameters that can be learned by a neural
network.
We describe one method for learning the membership functions of the an-

tecedent and consequent parts of fuzzy �If. . . then. . . � rules. Suppose an un-
known function, or control law, to be realized by a fuzzy inference system is
known only through the training set©¡

x1, y1
¢
, . . . ,

¡
xK , yK

¢ª
where xk =

¡
xk1 , ..., x

k
n

¢ ∈ Rn and yk ∈ R. To model the unknown function, we
use fuzzy �If. . . then. . . � rules Ri, i = 1, ...,m, of the following type

Ri : If xk1 is A
1
i and ... and x

k
n is A

n
i then y =

Pn
j=1 z

j
i x
k
j + zi

where Aji are fuzzy membership functions and z
j
i are real numbers.

Let Ok be the output from the fuzzy system corresponding to the input xk.
Suppose the fuzzy AND of each rule is implemented by the product, so that the
antecedent of the ith rule is given by

αki =
nQ
j=1

Aji
¡
xkj
¢

We could also use other t-norms for modeling the logical connective AND. We
compute the output of the system as

Ok =

Pm
i=1 α

k
i

³Pn
j=1 z

j
i x
k
j + z

0
i

´
Pm

i=1 α
k
i

=

Pm
i=1

³Qn
j=1A

j
i

¡
xkj
¢´³Pn

j=1 z
j
i x
k
j + z

0
i

´
Pm
i=1

Qn
j=1A

j
i

¡
xkj
¢

and deÞne the measure of error for the kth training pattern as

Ek =
1

2

¡
Ok − yk¢2

where Ok is the computed output from the fuzzy system corresponding to the
input pattern xk, and yk is the desired output, k = 1, ...,K. Standard neural
network learning methods are used to learn zji , j = 0, 1, ..., n in the consequent
part of the fuzzy rule Ri.

© 2003 by Chapman & Hall/CRC

240 CHAPTER 7. FUZZY-NEURAL AND NEURAL-FUZZY CONTROL

Example 7.4 We illustrate the above tuning process by a simpliÞed example.
Consider two fuzzy rules, with one input variable x and one output variable y,
of the form

R1 : If x is A1 then y = z1
R2 : If x is A2 then y = z2

where the fuzzy sets A1 and A2 have sigmoid membership functions deÞned by

A1(x) =
1

1 + eb1(x−a1)

A2(x) =
1

1 + eb2(x−a2)

Then a1, a2, b1, and b2 are the parameter set for the premises, and the an-
tecedent of the rule Ri is simply the value of the membership function Ai (x).
The output O (x) of the system, computed by the discrete center-of-gravity
defuzziÞcation method, is

O (x) =
A1(x)z1 +A2(x)z2
A1(x) +A2(x)

Given a training set
©¡
x1, y1

¢
, . . . ,

¡
xK , yK

¢ª
, we want to provide the two

fuzzy rules with appropriate membership functions and consequent parts to
generate the given input-output pairs. That is, we want to learn the parameters
a1, a2, b1, and b2 of the sigmoid membership functions, and the values z1 and
z2 of the consequent parts.
The measure of error for the kth training pair is deÞned as

Ek = Ek(a1, b1, a2, b2, z1, z2) =
1

2

¡
Ok(a1, b1, a2, b2, z1, z2)− yk

¢2
k = 1, ...,K, where Ok is the computed output from the fuzzy inference system
corresponding to the input pattern xk, and yk is the desired output.
The steepest descent method is used to learn zi in the consequent part of

the ith fuzzy rule, and the shape parameters of the membership functions A1
and A2. That is,

zi(t+ 1) = zi(t)− η∂E
k

∂zi
= zi(t)− η

¡
Ok − yk¢ Ai(x

k)

A1(xk) +A2(xk)

ai(t+ 1) = ai(t)− η ∂E
k

∂ai

bi(t+ 1) = bi(t)− η∂E
k

∂bi

where η > 0 is the learning constant and t indexes the number of adjustments
of zi, ai, and bi.
Assuming further that a1 = a2 = a and b1 = b2 = b simpliÞes the learning

rules because, in this case, the equation A1(x) +A2(x) = 1 holds for all x from

© 2003 by Chapman & Hall/CRC

7.3. BASIC PRINCIPLES OF NEURAL-FUZZY SYSTEMS 241

the domain of A1 and A2. The weight adjustments in this case become

zi(t+ 1) = zi(t)− η
¡
Ok − yk¢Ai(xk)

a(t+ 1) = a(t)− η ¡Ok − yk¢ (z1 − z2) bA1(xk)A2(xk)
b(t+ 1) = b(t) + η

∂Ek (a, b)

∂b

¡
Ok − yk¢ (z1 − z2) ¡xk − a¢A1(xk)A2(xk)

as shown in the following computations

zi(t+ 1) = zi(t)− η∂E
k

∂z1
= zi(t)− η

¡
Ok − yk¢Ai(xk)

a(t+ 1) = a(t)− η ∂E
k (a, b)

∂a

b(t+ 1) = b(t)− η∂E
k (a, b)

∂b

where

∂Ek (a, b)

∂a
=

¡
Ok − yk¢ ∂Ok

∂a
=
¡
Ok − yk¢ ∂

∂a

¡
z1A1(x

k) + z2A2(x
k)
¢

=
¡
Ok − yk¢ ∂

∂a

¡
z1A1(x

k) + z2
¡
1−A1(xk)

¢¢
=

¡
Ok − yk¢ ∂

∂a

¡
(z1 − z2)A1(xk) + z2

¢
=

¡
Ok − yk¢µ(z1 − z2) ∂A1(xk)

∂a

¶
=

¡
Ok − yk¢ (z1 − z2) b eb(x

k−a)¡
1 + eb(x−a)

¢2
=

¡
Ok − yk¢ (z1 − z2) bA1(xk) ¡1−A1(xk)¢

=
¡
Ok − yk¢ (z1 − z2) bA1(xk)A2(xk)

and similarly,

∂Ek (a, b)

∂b
= − ¡Ok − yk¢ (z1 − z2) ¡xk − a¢A1(xk)A2(xk)

The following example illustrates how to use the ANFIS algorithm with
Matlab. In practice, the situation is typically like the following. In system
identiÞcation for indirect neural control, or in direct neural control where we
seek to model the control law as a neural network, we are modeling an input-
output relationship � that is, approximating some function y = f (x) from the
data expressed as a set of fuzzy rules. An appropriate structure of ANFIS is
chosen for the approximation problem, guided by a theorem on universal ap-
proximation. In simulation studies, various choices of membership functions in
fuzzy rules, as well as choices of the number of rules, illustrate the approximation

© 2003 by Chapman & Hall/CRC

242 CHAPTER 7. FUZZY-NEURAL AND NEURAL-FUZZY CONTROL

capability of ANFIS. However, in real-world applications where the control law
is unknown, these choices belong to �engineering skill.� Because the intended
controlled system can be tested, a good approximation can be obtained with
time and patience. The point is this: The universal approximation property
of ANFIS, as a mathematical theorem, is the theoretical guideline for using
ANFIS.

Example 7.5 In this example, we use ANFIS to approximate a function that
we know (but pretend not to know). We take for our �unknown� function,
sin 10x sin 10y. The surface determined by this function looks like this:

0
0.2

0.4
0.6

0.8
1

x

0
0.2

0.4
0.6

0.8
1

y

-1

-0.5

0

0.5

1

z

Plot of sin 10x sin 10y

The training data was obtained from this function by evaluating 100 random
pairs (x, y) with x, y ∈ [0, 1], creating a text Þle, sinxsiny.dat, with three
columns of numbers.

� Open Matlab, and at the prompt, enter anfisedit
This brings up the following dialog. (The training data box will be empty

at this point.)

© 2003 by Chapman & Hall/CRC

7.3. BASIC PRINCIPLES OF NEURAL-FUZZY SYSTEMS 243

� Choose Load Data; browse and select sinxsiny.dat.
� Choose Generate FIS.
This brings up the fuzzy inference system dialog.

� Under INPUT MF Type, select gbellmf, and set INPUT Number of to 4.
Under OUTPUT MF Type, select linear. Choose OK.

� In the Train FIS box, set Error to 0.01 and Epochs to 25, and choose
Train Now.

� In the ANFIS Editor, under View, choose View surface to bring up the
Surface Viewer with a plot.

© 2003 by Chapman & Hall/CRC

244 CHAPTER 7. FUZZY-NEURAL AND NEURAL-FUZZY CONTROL

This is not a very good approximation to our function. We can test the
effect of increasing the number of membership functions.

� From the ANFIS Editor, choose Generate FIS and set Number of to 6.

The surface will change to something like the following, which is a much
better approximation to the function.

� In the ANFIS Editor, under View, choose View rules to open the Rule
Viewer.

The choice of 6 membership functions for each of the two inputs has generated
36 rules.

© 2003 by Chapman & Hall/CRC

7.4. GENERATING FUZZY RULES 245

� In the ANFIS Editor, under ANFIS Info, choose Structure. This shows
the structure of the adaptive network.

From the View menu, you can choose Edit FIS properties, Edit membership
functions, Edit rules, or Edit anÞs. These dialogs provide a number of options
for making changes.

7.4 Generating fuzzy rules

Linguistic labels in our natural language convey useful information in human
control strategies as well as in other cognitive decision processes. The fuzzy
set theory approach to modeling this type of information is based on the thesis
that each linguistic label can be represented as a fuzzy subset of an appropriate
set U , expressing the semantics of the label. While this seems quite reasonable
from a modeling point of view, the concern in applications is determining the
membership function of a label. This is related to the more general and more
difficult problem of determining rules.
There are several approaches to answer this concern. Rules and membership

functions can be given by experts, either in a subjective manner or by using
some statistical sampling methods. When experts are not available, but instead,
numerical experimental data are at hand, it is possible to use neural networks
as a solution to the problem of rule and membership function determination.
With ANFIS, the structure of the rules and the types of the membership

functions are speciÞed in advance, and the parameters of the membership func-
tions are learned from the data. However, rules and membership functions can
also be determined by using methods that do not presuppose a rule structure.
Both the extraction of rules and the determination of membership functions can

© 2003 by Chapman & Hall/CRC

246 CHAPTER 7. FUZZY-NEURAL AND NEURAL-FUZZY CONTROL

be implemented by some kind of clustering. Clustering using neural networks
belongs to the domain of unsupervised learning that relies on input data and
no corresponding outputs, as opposed to the supervised learning that we have
considered so far. Since the problems of membership function determination
and of extraction of fuzzy rules from numerical data by neural networks are
essentially based on unsupervised learning methods, which are not treated in
this text, we elaborate only slightly on these problems in order for the reader
to be aware of useful methods and some references.
As in conventional clustering, the goal is to group data points that are similar

to each other in some way � that is, forming clusters. Given a set of crisp input-
output tuples, or training data (xi,yi), i = 1, ..., n, fuzzy clustering techniques
utilizing neural networks are applied to the input data to determine a collection
of fuzzy clusters. Each fuzzy cluster represents one fuzzy �If. . . then. . . � rule,
where the fuzzy membership functions in the rule are obtained by projecting
the cluster to input and output spaces.
We refer readers who are interested in more detail on utilization of neural

networks in producing membership functions to a work like Adeli and Hung [2].
See also any of [1, 24, 36, 39, 68].

7.5 Exercises and projects

1. A multi-input/multi-output system is characterized by the following set
of nonlinear difference equations:·

y1(k + 1)
y2(k + 1)

¸
=

·
0.8 −0.3
−0.2 0.5

¸ ·
y1(k)
y2(k)

¸
+

· −0.1 −0.2
0.0 −0.1

¸ ·
y21(k − 1)
y22(k − 1)

¸
+

·
0.7 0.1
0.1 0.5

¸ ·
u1(k)
u2(k)

¸
The system is stable for inputs u1 = u2 ∈ [−0.1, 0.1].

(a) Generate a set of data for y1 and y2 using uniformly distributed
random inputs u1 and u2.

(b) Using the ANFIS editor, generate a trained set of fuzzy inference
rules.

(c) For the inputs u1(k) = A sin(2 ∗ πk/5) and u2(k) = B cos(2 ∗ πk/5),
test the performance of the trained ANFIS for A,B ∈ [−10, 10].

(d) Is ANFIS a suitable approach to identify the nonlinear system? Ex-
plain why or why not.

(e) Discuss the effects of sample size on ANFIS learning.

© 2003 by Chapman & Hall/CRC

7.5. EXERCISES AND PROJECTS 247

2. A nonlinear plant is governed by the following difference equation

y(k + 1) = 0.3y(k) + 0.6 [y(k − 1)]0.5 + f [r(k)]

where y(k) and r(k) are the output and input, respectively, at time step k.
The unknown function f [r(k)] has the form f(r) = 0.5 sin(πr) cos(3πr) +
0.3 cos(πr) sin(5r).

(a) Develop a backpropagation neural network to perform system iden-
tiÞcation of the unknown plant.

(b) Use ANFIS to identify the unknown system.

(c) How does the performance of the neural network compare with that
of ANFIS?

3. The following dynamical equation describes the behavior of a nonlinear
plant

y(k + 1) =
y(k)u(k)

1 + [|y(k − 1)|]0.3 −
·
1− e−u(k)
1 + e−u(k)

¸
where y(k) and u(k) are the output and input, respectively, at time step
k.

(a) Assuming the control law u(k) to the system is speciÞed, identify the
nonlinear plant dynamics using ANFIS.

(b) For the desired output of the plant speciÞed by

yd(k) = 0.5 sin(2πk) cos(2πk) + 0.3 sin
2(2πk/15)

how well can ANFIS predict the system behavior?

(c) Compare ANFIS results with that of a neural network-based system
identiÞcation.

4. Construct an ANFIS that is equivalent to a two-input, two-rule Mamdani
fuzzy model. Describe the function that you use to approximate centroid
defuzziÞcation. Explain how this function is converted into node functions
in the resulting ANFIS.

5. Construct an ANFIS that is equivalent to a two-input, two-rule Larsen
fuzzy model. Describe the function that you use to approximate centroid
defuzziÞcation. Explain how this function is converted into node functions
in the resulting ANFIS.

6. Approximate the function f (x1, x2) = 1
2x

2
1 +

1
2x

2
2 with a Sugeno fuzzy

inference system (FIS) using Gaussian antecedent membership functions
and linear consequent membership functions.

© 2003 by Chapman & Hall/CRC

248 CHAPTER 7. FUZZY-NEURAL AND NEURAL-FUZZY CONTROL

-2-1
12

-2

1
2

0

1

2

3

4

z

ANFIS info:
Number of nodes: 21
Number of linear parameters: 12
Number of nonlinear parameters: 8
Total number of parameters: 20
Number of training data pairs: 1681
Number of checking data pairs: 0
Number of fuzzy rules: 4

The four rules:

If x1 is A1 and x2 is B1 then y is C1
If x1 is A1 and x2 is B2 then y is C2
If x1 is A2 and x2 is B1 then y is C3
If x1 is A2 and x2 is B2 then y is C4

© 2003 by Chapman & Hall/CRC

Chapter 8

APPLICATIONS

In this chapter, we describe some industrial applications of fuzzy control, neural
control, neural-fuzzy control, and related neural-fuzzy technology. These exam-
ples are intended to give the reader some ideas about the type of problems that
are appropriate for using the technology discussed in this text, about how to
approach problems that arise in real-world situations, and how to evaluate the
performance of the approach.
These examples exemplify the need for soft computing approaches in decision-

making. They are intended to demonstrate the applicability of soft computing
techniques, their strengths and weaknesses, and the need for evaluating various
hybrid approaches. The Þrst two examples treat fuzzy control problems, and
the last two examples describe neuro-fuzzy approaches to classiÞcation. There
is no prescribed methodology or algorithm that dictates how problems can be
solved. This provides a motivation to experiment with techniques that allow
the combination of known variables in a manner that provides reasonable and
realistic outcomes.

8.1 A survey of industrial applications

We indicate brießy here some of industrial applications of fuzzy control, neural
control, and neural-fuzzy control. Beginning with Mamdani�s application in
1974 to a steam engine, fuzzy control has come to be applied in many areas. In
1987, the Sendai Subway Automatic Train Operations Controller started oper-
ating in Sendai, Japan. The fuzzy logic subway control system led to smooth
transitions between speeds and a comfortable ride. Today, when you have a par-
ticularly smooth ride on a hotel elevator, you might smile and assume that the
controller is based on fuzzy logic. Included in industrial applications are those
to water puriÞcation plants, subway operations, control of temperature, electric
current ßow, and motions of various machines. Many consumer products uti-
lize fuzzy control, including washing machines, vacuum cleaners, electronic fuel
injection systems and automatic cruise control systems of automobiles. There

249

© 2003 by Chapman & Hall/CRC

250 CHAPTER 8. APPLICATIONS

are many applications to the wide area of pattern recognition, and applications
to areas that involve processing of fuzzy information, such as medicine and eco-
nomics. When fuzzy systems are developed to solve appropriate problems, their
typical characteristics include rapid and smooth responses.
Neural networks are more suited than fuzzy logic systems to problems that

require a large number of input variables, for example, too many for a rule-based
fuzzy system to be feasible. On the other hand, they require large data sets for
training. Neural networks are widely used. We mention a few general areas:
telecommunication, pattern recognition, quality control, Þnancial and economic
forecasting, speech recognition, and many automotive applications.
Neural networks can be used to design membership functions for fuzzy logic

systems. Designing appropriate membership functions is at the heart of fuzzy
applications. Neural networks can automate the process, saving time and sim-
plifying the tuning process. Many applications are to consumer products such
as washing machines, vacuum cleaners, photocopiers, and air conditioning sys-
tems. They are also applied in the Þnancial industry. Below, we illustrate two
studies of fuzzy control for real-world applications.

8.2 Cooling scheme for laser materials

In this section, we present a fuzzy logic-based approach to the cooling of laser
materials developed by N.S. Prasad and N.R. Prasad [58]. The controller design
is based on the performance characteristics of commercially available thermo-
electric coolers. Simulation results are presented and discussed and the feasibil-
ity of implementing such a controller is evaluated.
Solid-state laser materials are susceptible to heating effects caused by opti-

cal pumping. The medium basically gets heated up due to the absorption of
the pump radiation and non-radiative decay processes. The heating and subse-
quent cooling gives rise to thermal effects. Thermal gradients result in stresses
and strains that produce variations in refractive index, leading to thermo-optic
distortions. The distortions lead to self-focusing, depolarization, and other un-
desired effects that is deleterious to the lasing medium and hence the laser
performance. There is extensive on-going research to characterize thermal be-
havior and to use the results for the design and development of various cooling
schemes to minimize detrimental effects [13, 34, 48].
Conventional cooling techniques include passive cooling by surrounding air,

liquid cooling, micro-channel cooling, and thermoelectric cooling [12, 38]. Ther-
moelectric coolers (TECs) are current operated devices that can provide preci-
sion cooling. They are easy to implement and operate and have the additional
advantages of size and weight. The theory and operation of thermoelectric cool-
ers is widely reported in the literature and they are commercially available [44].
Advances in semiconductor diode-laser pumped solid-state laser systems have
necessitated the use of more efficient and miniaturized cooling schemes. As a
consequence, TECs are becoming attractive in view of space constraints and
operational elegance.

© 2003 by Chapman & Hall/CRC

8.2. COOLING SCHEME FOR LASER MATERIALS 251

In a practical situation, the thermal modeling of a laser medium is a tedious
and cumbersome task. Variations in boundary conditions and pump energy,
the presence of surface coatings, presence of material impurities, and so forth,
can cause signiÞcant deviation from the theoretically predicted results. Since
accounting for all such nonlinearities is not possible, alternate methods are
needed for efficient heat removal.
Current technology in controlling the operation of thermoelectric devices is

restricted to a constant current setting at which optimal performance is ex-
pected. If there are changes in the operating environment, the cooling rate has
to be manually adjusted to the new operating conditions. Some recent advances
in TEC applications have required automatic controllers, which has led to the
design and implementation of classical PID type controllers. There is a need
for the dynamic control of the cooling process to achieve sustained optimality
conditions. It should be noted that over-cooling will cause thermal gradients
that severely affect the laser behavior. In this context, a fuzzy logic-based ap-
proach provides a promising technique for the control and operation of TECs
by providing a wide range of variability. The controller implicitly compensates
for highly nonlinear phenomena.

Fuzzy controller design Before proceeding to the design of a controller, it
is useful to understand the operating principle of a thermoelectric device. A
thermoelectric device is a solid-state energy converter that contains arrays
of n-type and p-type semiconductors thermally joined in parallel and electrically
joined in series at both ends to form a couple. The n-type semiconductor has ex-
cess electrons whereas the p-type is electron deÞcient, so these convert electrical
energy to thermal energy and thermal energy to electrical energy, respectively.
When a thermoelectric device is converting thermal energy to electrical energy
it is called a thermoelectric generator (TEG). When a thermoelectric device is
converting electrical energy to thermal energy it is called a thermoelectric cooler
(TEC).
TEGs operate on the principle of Seebeck Effect, a solid-state theory that

explains current generation through a pair of dissimilar semiconductors due to
temperature gradient. Such a heat engine is relatively inefficient and produces
power that is suited for systems that have low power requirements. One possible
application for such devices is for deep space applications.
TECs, on the other hand, operate on Peltier Effect. As noted above, the

n-type and p-type semiconductors are electrically connected in series and ther-
mally connected in parallel between two ceramic plates to form a couple. As
current passes through the couples, from the n-type to the p-type, it creates a
temperature gradient across the TEC when heat energy is absorbed from the
cold junction, transported through the semiconductors by electrons (n-type) and
holes (p-type) and transferred to the hot junction. If the direction of current is
reversed, heat is transported from the hot junction to the cold junction. The
rate of cooling is proportional to the current through the circuit and the number
of TEC couples. By appropriately controlling the current input to the TEC,

© 2003 by Chapman & Hall/CRC

252 CHAPTER 8. APPLICATIONS

optimum heat extraction can be achieved. For this purpose, a fuzzy logic-based
scheme is proposed. Figure 8.1 illustrates an overview of the control process.

Figure 8.1. Control scheme for thermoelectric cooling of laser materials

The thermal gradients generated by the pumping process in the laser medium
are detected by a temperature measurement scheme to provide an input to the
fuzzy controller. This temperature normally refers to the peak temperature of
the crystal. A temperature error signal is generated by comparing the actual
crystal temperature with a reference temperature. This is one of the inputs to
the fuzzy controller. For the effective performance of the controller, an addi-
tional input, namely, the rate of change in temperature is also required. The
output of the controller is the incremental change in current required to regulate
the operation of a TEC in order to extract an incremental amount of heat from
the surface of the crystal. This process is continued until a quiescent point is
achieved where the surface temperature of the crystal is at the desired tempera-
ture. For our analysis, a thin slab geometry for an LiNbO3 crystal was assumed.
In an ideal case, the one-dimensional temperature proÞle across the thickness
of the slab is parabolic in nature according to the relationship

∆T =
b2

8Kc
Q

where, b is the crystal thickness, Q is the heat deposition in watts per cubic
meter, Kc is the thermal conductivity of the slab in watts per meter Kelvin,
and ∆T is the maximum temperature difference that occurs between the surface
and the center of the slab. Without any loss of generality, we assume ∆T is
equivalent to the difference in the temperature between the hot and cold junc-
tions of a TEC. Note that these assumptions simplify the model development in
order to demonstrate the feasibility of a fuzzy controller implementation. Nev-
ertheless, deviations from ideal conditions are implicitly accounted for in the

© 2003 by Chapman & Hall/CRC

8.2. COOLING SCHEME FOR LASER MATERIALS 253

fuzzy logic-based system. This feature is the most signiÞcant beneÞt derived
from the proposed methodology.
Table 8.1 illustrates the fuzzy associative memory for the inputs and outputs

of the fuzzy controller.

Table 8.1. Fuzzy associative memory
←− Temperature Error −→

↑ LNE MNE SNE ZE SPE MPE LPE
Rate of LNR LA LA LA LA LA SIC SIC
Change SNR LA LA LA LA SIC MIC MIC
in Temp- ZR LA LA LA LA SIC MIC LIC
erature SPR LA LA LA SIC MIC LIC LIC
↓ LPR LA LA LA MIC LIC LIC LIC

The fuzzy sets for the temperature error, the rate of change in temperature, and
the incremental change in current are deÞned in Table 8.2.

Table 8.2. Fuzzy set deÞnitions
Temperature Error Rate of Change in Temperature
LNE = Large Negative Error LNR = Large Negative Rate
MNE = Medium Negative Error SNR = Small Negative Rate
SNE = Small Negative Error ZR = Zero Rate
ZE = Zero Error SPR = Small Positive Rate
SPE = Small Positive Error LPR = Large Positive Rate
MPE = Medium Positive Error
LPE = Large Positive Error

Incremental Change in TEC Current
LA = Leave Alone
SIC = Small Incremental Change
MIC = Medium Incremental Change
LIC = Large Incremental Change

These subsets are implemented by a set of triangular membership functions,
and the centroid method of defuzziÞcation is used. Figure 8.2 illustrates the
resulting fuzzy control surface.

Simulation results A Matlab Simulink model is developed to simulate the
TEC heat transfer dynamics and to examine the effectiveness of a fuzzy con-
troller to control a nonlinear process. These simulations are carried out for a
lithium niobate crystal of dimensions 1 cm × 1 cm × 3 cm whose thermal con-
ductivity is 5.6W/mK. A heat deposition of 5.6W/m3 per unit time interval,
a desired surface temperature of 300◦K, and initial cold junction temperature
of 500◦K, are assumed. The time interval chosen depends on the repetition
rate of the pumping source and the time constants associated with the cooler
and the crystal dynamics. To compute an incremental change in current, an

© 2003 by Chapman & Hall/CRC

254 CHAPTER 8. APPLICATIONS

empirical relationship governing the heat pumped at the cold surface given by
a commercially available typical Melcor Brand TEC [44] is considered.

Figure 8.2 Fuzzy control surface

Figure 8.3 displays the schematic of the Simulink model.

Figure 8.3. Simulink model for TEC heat transfer dynamics

Figures 8.4�8.6 illustrate the controller performance under various operating
conditions.

As shown in Figure 8.6, the TEC will achieve the desired temperature in a
manner that may be characterized by a �critical� response. However, it is noted
that the controller performance can be Þne-tuned to yield optimum results in a
practical implementation. The primary issue addressed in the simulations above
is the effectiveness of a fuzzy controller to achieve the target values in a simple
manner without resorting to the design and development of a conventional PID
controller. This methodology can be easily extended to include several TECs
that may be required to obtain a desired temperature proÞle across a given
surface.

© 2003 by Chapman & Hall/CRC

8.2. COOLING SCHEME FOR LASER MATERIALS 255

Figure 8.4. Simulation results with prototype membership functions

Figure 8.5. Effect of manual Þne-tuning of fuzzy control signal

© 2003 by Chapman & Hall/CRC

256 CHAPTER 8. APPLICATIONS

Figure 8.2. Figure 8.6. Critically damped response

8.3 Color quality processing

Color matching is an important issue in many industries such as textiles, auto-
mobiles, etc., to maintain uniformity in the color appearance. Although there
are analytical methods that provide a means for colorant analysis, their ap-
plication is cumbersome and involves complex calculations. In this section, we
describe a fuzzy logic-based approach for automating the color matching process
to obtain a conditional color match between a test sample and a standard based
on tristimulus values. A conditional color match implies obtaining a match
under a speciÞc set of illuminating and viewing conditions. For a given set
of such conditions, computer simulations are performed and discussed. Color
evaluation and color mixing for a given material surface are interdependent.
The use of a fuzzy logic-based approach yields satisfactory results in terms of
color correlation between visual assessment, computed color differences, and
colorant composition, and hence can replace the subjective assessments usually
performed by humans in the color matching process.
The development of high resolution spectrophotometers and colorimeters,

combined with their portability and large data processing abilities, has made
the color evaluation process easier and faster. Although these instruments are
very useful for rapid pass or fail color inspections in many industries such as
the automotive industry and textile industry, the Þnal decision depends pri-
marily upon a subjective visual assessment. Besides spectral analysis, which is
useful in colorant selection, the interrelationship between various environmental

© 2003 by Chapman & Hall/CRC

8.3. COLOR QUALITY PROCESSING 257

factors, metamerism, and texture and composition of the material (substrate),
has made visual coordination an acceptable methodology to obtain a repeatable
Þnish and color quality. Subjective assessment in color matching, especially in
colors that closely resemble one another, leads to laborious and time-consuming
adjustments that have to be performed to obtain the right concentration of the
colorants.
In the visual examination of colored objects, the standard � a fully char-

acterized substrate with known colorant concentrations � is compared with a
sample � a substrate whose characteristics are unknown, but with the same
colorant concentrations as the standard. These are usually placed side by side
and viewed at the same time. This visual observation is performed using stan-
dardized light sources to arrive at a consensus of whether or not the sample
and the standard match in their color representations. If the sample and the
standard do not match, the most important issue in this analysis that needs
consideration is by how much the sample and the standard deviate from one
another. In other words, it is not sufficient to know that the sample and the
standard do not match. We need to know the changes in the colorant concen-
trations to be applied to the sample substrate in order to ultimately match the
standard. This gives rise to an area of quantitative judgment in which the eye
is less adept than at judging whether two or more objects are identical in their
color, and therefore the situation requires the use of measuring instruments such
as spectrophotometers for color evaluation [7, 82].
Another important aspect in color evaluation is the issue of metamerism.

This is a phenomenon in which two or more colored objects viewed under one
illuminant may appear to match, while they do not match under another illu-
minant. This implies that the objects have different reßectance characteristics.
Therefore, a pair of objects having different spectral curves but the same color
coordinates are called metameric objects. They are said to exhibit metamerism.
Colorant evaluation is based on the computation of tristimulus values [82].

The tristimulus values, generally referred to by the X, Y , and Z coefficients, are
based upon the spectral energy and reßectance characteristics of the colorant
mixture (a mixture of primary colors) and the substrate (textile, paper, metal,
wood, plastic, etc.). The problem in color matching can therefore be stated as
follows: Given a standard comprising a colorant mixture of known concentra-
tions, say C1, C2, C3, with tristimulus values X0, Y0, and Z0, the objective
is to determine the changes in C1, C2, C3 such that the new colorant mixture
when applied to a different substrate sample will result in the desired tristimulus
values X0, Y0, and Z0.
Suppose a colorant mixture comprising 30% of C1, 40% of C2, and 30% of

C3 when applied to a speciÞc standard substrate produces a reference set of
tristimulus values X0 = 3.0, Y0 = 4.0, and Z0 = 5.0. If the same colorant mix-
ture were then applied to a sample fabric, the resulting tristimulus values would
be different due to the absorbance and reßectance characteristics of the new
substrate. To obtain the same tristimulus values as the reference, the colorant
concentrations have to be modiÞed appropriately. Present technology involves
the solution of complex mathematical formulas only to obtain an approximate

© 2003 by Chapman & Hall/CRC

258 CHAPTER 8. APPLICATIONS

solution to the changes required in the colorant concentrations. Final analysis is
based upon a visual assessment of the color quality that is both time-consuming
and prone to errors.

In a fuzzy logic-based approach, a qualitative description of the partial dif-
ferential equations, governing the change in tristimulus values due to changes
in colorant concentration, is coded in the form of a fuzzy associative memory
(FAM). Table 8.3 depicts the FAM table for one of the tristimulus coefficients.
In this table, one of the two inputs to the FAM is the change in tristimulus
value ∆X = X0 −X, where X0 is the reference and X is the tristimulus value
of the sample, and the other input is the rate of change in tristimulus value with
respect to the colorant concentration, namely, ∆X/C1. The output of the FAM
is the change in colorant ∆C1. Note that the behavior of the other tristimulus
values, namely, ∆Y and ∆Z bear similar relationships to colorants C2 and C3,
and consequently the association of subsets in each case will be identical. As
such, there are a total of nine FAMs that need to be generated.

Table 8.3. Fuzzy associative memory
←− ∆X −→

LN SN ZE SP LP
↑ LN SP SP ZE SN SN LN = Large Negative

∆X/C1 SN LP SP ZE SN SN SN = Small Negative
↓ ZE LN LN ZE LP LP ZE = Zero

SP SN SN ZE SP LP SP = Small Positive
LP SN SN ZE SP SP LP = Large Positive

In the preceding table, the fuzzy sets representing the input and output
may be deÞned in terms of triangular, trapezoidal, Gaussian, or any other suit-
able membership functions. Of particular signiÞcance is the column of entries
pertaining to the change in tristimulus value ∆X = ZE subset. Note that in
a real-time dynamical process, one needs to consider the appropriate control
actions to compensate for the degree of variation in the �velocity� term even
when the �position� term is part of the zero error subset. This is necessary
to prevent a deadband in the output control function and to maintain a stable
response. However, in the color matching problem when the tristimulus values
are in the zero subset, because the process is not a real-time system, the rate
of change in tristimulus value with respect to a colorant has no effect on the
change in colorant. This is so because the process is static and a rate of change
in tristimulus value with respect to a colorant cannot be associated. This would
imply that no change in colorant is required when the deviation between the
tristimulus value of the sample and that of the standard is part of the zero error
subset. Figure 8.7 illustrates the subsets in the form of triangular membership
functions.

© 2003 by Chapman & Hall/CRC

8.3. COLOR QUALITY PROCESSING 259

Figure 8.7 Triangular membership functions deÞning the inputs and the output

The fuzzy control surface for the set associations described in the preceding
table is shown in Figure 8.8.

Figure 8.8 Fuzzy control surface using triangular membership functions

Figure 8.9 illustrates the overall schematic of the fuzzy logic-based color match-
ing scheme. Consider, for example, the outputs corresponding to the FAMs
marked 1, 2, and 3. Note that the output of each FAM is the change in colorant
AC1. It is natural, in this case, to select the minimum value of the three outputs
to reduce the possibility of overshoot in the net colorant concentration. As such,
the minimum value of the outputs from each set of FAMs in Figure 8.9 are used
to update the colorant concentrations. This update is computed by adding the
change in colorant concentration to the previously computed value of colorant
concentration. These are shown in Figure 8.9 by the summing junctions where
C1 = C1 +∆C1, C2 = C2 +∆C2, and C3 = C3 +∆C3.

In an experimental setup, after computing the colorant concentrations, the
colorants are mixed and applied to the appropriate sample/substrate and a spec-
trophotometric analysis is conducted. The resulting reßectance curves provide
a basis for determining the new tristimulus values, namely, X, Y , and Z. Note
that in the spectrophotometric analysis, all nonlinearities attributable to the

© 2003 by Chapman & Hall/CRC

260 CHAPTER 8. APPLICATIONS

absorption characteristics of the sample, sample thickness, and sample texture
are implicitly accounted in the reßectance characteristics of the sample.

Figure 8.9. A fuzzy logic-based control scheme for colorant mixing

However, in a simulation environment, the mathematical equations govern-
ing the determination of the new tristimulus values X, Y , and Z are required.

© 2003 by Chapman & Hall/CRC

8.3. COLOR QUALITY PROCESSING 261

These equations, given in [7], are:

X −X0 = (X −X1)∆C1 + (X −X2)∆C2 + (X −X3)∆C3 (8.1)

Y − Y0 = (Y − Y1)∆C1 + (Y − Y2)∆C2 + (Y − Y3)∆C3
Z − Z0 = (Z − Z1)∆C1 + (Z − Z2)∆C2 + (Z − Z3)∆C3

Equations 8.1 can be rewritten as

X =
X0 −X1∆C1 −X2∆C2 −X3∆C3

1−∆C1 −∆C2 −∆C3 (8.2)

X =
Y0 − Y1∆C1 − Y2∆C2 − Y3∆C3

1−∆C1 −∆C2 −∆C3
Z =

Z0 − Z1∆C1 − Z2∆C2 − Z3∆C3
1−∆C1 −∆C2 −∆C3

The evaluation of Equations 8.2 to obtain the tristimulus values of the sample
require a set of nine look-up tables, namely, (X1 versus C1), (X1 versus C2),
(X1 versus C3), ..., (Z3 versus C3) that have to be experimentally determined
for a given sample. The tristimulus values X, Y , and Z of the sample are then
compared with that of the standard, namely, X0, Y0, and Z0. If the difference
in tristimulus values between the standard and that of the sample is within the
acceptable tolerance, the colorant concentrations will result in a match between
the standard and the sample. If not, a new change in colorant concentration is
computed and added to the previously computed values of C1, C2, and C3.

Simulation results Figures 8.10 and 8.11 illustrate simulation results for a
case where the initial colorants C1, C2, and C3, and the tristimulus values X0,
Y0, and Z0 are speciÞed.

Figure 8.10. Convergence of colorant concentrations to yield desired X0, Y0,
and Z0

For the purpose of simulation, values of the colorants that are smaller than
those of the standard are chosen initially and their tristimulus values are deter-
mined as a representative description of the sample. It is clear from the results
that the colorant concentrations are incrementally adjusted following each itera-
tion to yield ultimately the desired tristimulus values of the standard. It should

© 2003 by Chapman & Hall/CRC

262 CHAPTER 8. APPLICATIONS

be pointed out that in dye-mixing processes, the desired color match is obtained
by systematically adding the colorants until the desired color is obtained. Since
adjustments in color cannot be made by removing the colorant once it has been
applied to a sample, the initial concentrations of the colorant need to be less
than those speciÞed by the standard to assure an additive mixing process.

Figure 8.11. Convergence of the tristimulus values of the sample to the desired
X0, Y0, and Z0

Another important issue in dye mixing processes is that other additives
are required for pH control, mixture consistency, etc., and to develop proper
bonding characteristics between the colorant mixture and the sample substrate.
To include the effect of these additives, an additional set of FAMs similar to
that shown in Table 8.3 should be incorporated into the schematic shown in
Figure 8.9.
In the simulation study, no attempts were made to optimize the performance

of the fuzzy controller to yield a �critical� response in the color matching process.
This can be achieved by adjusting the membership functions appropriately to
produce a faster convergence and thereby minimizing the number of samples
that need to be examined under a spectrophotometer.
The proposed methodology can be easily implemented using commercially

available fuzzy rule chips that include appropriate AID and DIA converters and
other associated electronic components. The fuzzy logic hardware, the dye-
mixing process, and spectrophotometer and associated accessories can all be
integrated into a single color mixing and matching unit.

8.4 IdentiÞcation of trash in cotton

In order to maintain uniform cotton quality, the cotton industry adheres to
standards for cotton classiÞcation based on several quality factors. The pres-
ence of any extraneous material adversely affects some of these quality factors.
Mechanically harvested cotton contains large quantities of trash in addition to
useful cotton Þber. The ginning process separates cotton Þber from trash mate-
rial, and various cleaning machines are used to remove the trash. ClassiÞcation
of trash objects at critical locations in the ginning process can be used for the

© 2003 by Chapman & Hall/CRC

8.4. IDENTIFICATION OF TRASH IN COTTON 263

dynamic allocation of cleaning equipment to produce high-quality cotton. In
this example, we describe a computer-vision-based system for on-line identiÞca-
tion of trash types. A fuzzy inference system (FIS), namely ANFIS, is used to
classify trash types.
For the purposes of this study, trash is classiÞed into four types: bark, stick,

leaf, or pepper trash. Each training sample contained a single type of trash, and
two sets of training samples were prepared for each type of trash. Trash objects
were chosen from a bale of cotton to include all possible extremes with regards
to size and shape of the trash types. The features used to provide distinguishing
characteristics among the trash types were

� area (the number of pixels within the feature)
� solidity (area/convex area)
� Edif (the difference between extent measures at 0◦ and 45◦, where extent
= Net Area/Bounding Rectangle)

These shape descriptors are numerical values and for any classiÞer to perform
with a high degree of classiÞcation accuracy, it is required that these numerical
values are distinct among the trash types. This requires that the trash objects
commonly found in ginned cotton have forms or shapes that prescribe to the
deÞnition of a typical trash type. These deÞnitions can be easily expressed
based on human perception and judgment. This is based on the experience and
knowledge humans have acquired over a long period of time. Based on certain
physical attributes associated with each trash type, it is possible to describe a
certain type of trash object as bark, stick, leaf, or pepper.
In this section, an adaptive network is described that is functionally equiv-

alent to a fuzzy inference system used for the classiÞcation of the trash types.
The architecture that is used in the development of the classiÞer is referred to
as an adaptive network-based fuzzy inference system (ANFIS).
To understand better the performance of the structure, the ANFIS archi-

tecture is presented for a system with two inputs and a single output. The
principle is expanded in developing a system to classify the trash types using
area, solidity, and Edif as inputs to the structure. Fuzzy rules developed for
the structure are also presented and the classiÞcation results for the Þve test
samples are examined to evaluate the performance of the ANFIS as a classiÞer.

ANFIS architecture Consider a fuzzy inference system that has two inputs
x and y and a singleton z as its output. For a Þrst-order Sugeno model, a
common rule set with two fuzzy �If. . . then. . . � rules is as follows:

Rule 1: If x is A1 and y is B1 then z = f1 = a10 + a
1
1x+ a

1
2y

Rule 2: If x is A2 and y is B2 then z = f2 = a20 + a
2
1x+ a

2
2y

(8.3)

Figure 8.12 (a) shows the reasoning mechanism for this Sugeno model. The
corresponding equivalent ANFIS architecture, which we discuss now, is shown

© 2003 by Chapman & Hall/CRC

264 CHAPTER 8. APPLICATIONS

in Figure 8.12 (b), where nodes of the same layer have similar functions. In the
discussion, the term O l,i denotes the output of the ith node in layer l.

Layer 1: Every node i in this layer is an adaptive node with a node function

O1,i = Ai(x), for i = 1, 2
O1,i = Bi−2(x), for i = 3, 4

(8.4)

where x (or y) is the input to node i and Ai (or Bi−2) is a linguistic label
(such as �small� or �large�) associated with the node. In other words,
O1,i is the membership grade of a fuzzy set

A = (A1, A2, B1 or B2)

and it speciÞes the degree to which the given input x (or y) satisÞes a
quantiÞer A. Here the membership function for A can be an appropriately
parameterized membership function such as the generalized bell function

A(x) =
1

1 +
¯̄̄
x−ci
ai

¯̄̄2b
where {ai, bi, ci} is the parameter set. As the values of these parameters
change, the bell-shaped function varies accordingly, thus exhibiting various
forms of membership functions for fuzzy set A. Parameters in this layer
are generally referred to as premise parameters.

Layer 2: Every node in this layer is a Þxed node labeled π, whose output is
the product of all the incoming signals:

O2,i = wi = Ai(x)Bi(y), for i = 1, 2. (8.5)

Each node output represents the Þring strength of a rule. In general, any
other t-norm operators, all of which perform a fuzzy AND, can be used
as the node function in this layer.

Layer 3: Every node in this layer is a Þxed node labeled N . The ith node
calculates the ratio of the ith rule�s Þring strength to the sum of all rule�s
Þring strengths:

O3, i = bwi = wi
w1 + w2

for i = 1, 2 (8.6)

The outputs of this layer are referred to as normalized Þring strengths.

Layer 4: Every node i in this layer is an adaptive node with a node function

O4, i = bwifi = bwi(ai0 + ai1x+ ai2y) for i = 1, 2 (8.7)

where bwi is the normalized Þring strength from layer 3 and
©
ai0, a

i
1, a

i
2

ª
is the parameter set of this node. Parameters in this layer are referred to
as consequent parameters.

© 2003 by Chapman & Hall/CRC

8.4. IDENTIFICATION OF TRASH IN COTTON 265

Layer 5: The single node in this layer is a Þxed node labeled
P
, which

computes the overall output as the summation of all incoming signals:

overall output = O5 =
X
i

bwifi = P
iwifiP
iwi

The constructed adaptive network is functionally equivalent to a Sugeno
fuzzy model. It is important to note that the structure of this adaptive
network is not unique. For instance, Layers 3 and 4 can be combined to
obtain an equivalent network with only 4 layers. By the same notion, the
weight normalization can be performed in the last layer.

∏

∏

N

N

∑

A1

A2

B1

B2

w1 w1

f

w2 w2

x
w f1 1

w f2 2y

x y

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

x y

A1

A2

B1

B2

X

X

Y

Yx y

w1

w2

f a a x a y1 0
1

1
1

2
1= + +

f a a x a y2 0
2

1
2

2
2= + +

f w f w f
w w

w f w f

= +
+

= +

1 1 2 2
1 2

1 1 2 2

(a)

(b)

Figure 8.12.
(a) A two-input Þrst-order Sugeno model with two rules
(b) The equivalent ANFIS architecture

The extension from the Sugeno ANFIS to Tsukamoto ANFIS is straightfor-
ward, where the output for each rule (fi, i = 1, 2) is induced jointly by a

© 2003 by Chapman & Hall/CRC

266 CHAPTER 8. APPLICATIONS

consequent membership function and a Þring strength. For the Mamdani fuzzy
inference system with max-min composition, a corresponding ANFIS can be
constructed if discrete approximations are used to replace the integrals in the
centroid defuzziÞcation scheme. In this example, only the ANFIS architecture
for the Þrst-order Sugeno fuzzy model is used due to its transparency and ef-
Þciency. However, detailed discussion on the other ANFIS architecture can be
found in [36].

Hybrid-learning algorithm From the ANFIS architecture in Figure 8.12
(a), we observe that when the values of the premise parameters are Þxed, the
overall output can be expressed as a linear combination of the consequent pa-
rameters. The output f in Figure 8.12 (b) can be written as

f =
w1

w1 + w2
f1 +

w2
w1 + w2

f2 (8.8)

= bw1(a10 + a11x+ a12y) + bw2(a20 + a21x+ a22y)
= (bw1)a10 + (bw1x)a11 + (bw1y)a12 + (bw2)a20 + (bw2x)a21 + (bw2y)a22

which is linear in the consequent parameters a10, a
1
1, a

1
2, a

2
0, a

2
1, a

2
2.

The consequent parameters can be obtained by solving the following over-
constrained, simultaneous equations


bw(1)1 bw(1)1 x(1) bw(1)1 y(1) bw(1)2 bw(1)2 x(1) bw(1)2 y(1)bw(2)1 bw(2)1 x(2) bw(2)1 y(2) bw(2)2 bw(2)2 x(2) bw(2)2 y(2)

...
...

...
...

...
...bw(n)1 bw(n)1 x(n) bw(n)1 y(n) bw(n)2 bw(n)2 x(n) bw(n)2 y(n)





a10
a11
a12
a20
a21
a22


=


d(1)

d(2)

...
d(n)


(8.9)

where
£¡
x(k), y(k)

¢
, d(k)

¤
are the kth training pair k = 1, 2, · · · , n, and bw(k)1

and bw(k)2 are the outputs of Layer 3 associated with the inputs
¡
x(k), y(k)

¢
.

Equation 8.9 can be expressed in matrix-vector form as

Ax = d (8.10)

where

x = [a10, a
1
1, a

1
2, a

2
0, a

2
1, a

2
2]
T , d = [d(1), d(1), · · · , d(n)]T

and A is a matrix formed by the elements bw(k)1 , bw(k)2 , x(k), y(k). There are
several approaches to solve these kinds of constrained equations that can be
used to obtain the consequent parameters. One of the most concise ways to
solve Equation 8.10 if ATA is nonsingular is to use the pseudoinverse technique

x∗ = (ATA)−1ATd (8.11)

© 2003 by Chapman & Hall/CRC

8.4. IDENTIFICATION OF TRASH IN COTTON 267

In many instances, the row vectors of matrix A (and the corresponding
elements in d) are obtained sequentially; hence, it is desirable to compute the
least squares estimate of x in Equation 8.10 recursively. Let the ith row vector
of the matrix A deÞned in Equation 8.10 be ai and the ith element of d be d(i);
then x∗ can be calculated recursively using the formulas

xi+1 = xi + Si+1a
T
i+1

³
d(i+1) − ai+1xi

´
(8.12)

Si+1 = Si −
Sia

T
i+1ai+1Si

1 + ai+1SiaTi+1
, i = 0, 1, · · · , n− 1

x∗ = xn

with the initial conditions of

x0 = 0

S0 = γ · I
where γ is a positive large number and I is the identity matrix.
The least squares estimate of x in Equations 8.12 can also be interpreted as

a Kalman Þlter for the process

x(k + 1) = x(k) (8.13)

y(k) = A(k)x(k) + noise

where x(k) ≡ xk, y(k) ≡ d(k), and A(k) = ak. Therefore, the formulas in
Equation 8.13 are usually referred to as a Kalman Þlter algorithm.
In the forward pass of the hybrid learning algorithm, node outputs go for-

ward until Layer 4 and the consequent parameters are identiÞed by the least
squares method outlined above. In the backward pass, the signals that propa-
gate backwards are the error signals and the premise parameters are updated
by the gradient descent method. Table 8.4 summarizes the various activities
during each pass [36].

Table 8.4. Parameter update during the forward and backward
passes in the hybrid-learning procedure for ANFIS.

Signal ßow direction Forward pass Backward pass
Consequent parameters Least-squares estimator Fixed
Premise parameters Fixed Gradient descent method
Signals Node outputs Error signals

ANFIS classiÞcation results The ANFIS algorithm was used to identify
the trash types, and its performance was evaluated as a classiÞer. The classi-
Þcation results were compared with the results obtained from fuzzy clustering
and backpropagation neural network algorithms. The inputs to the network
are area, solidity, and Edif measures for the trash objects. These inputs form
the linguistic variables for the fuzzy �If. . . then. . . � rules and are assigned the
linguistic values as shown in Table 8.5.

© 2003 by Chapman & Hall/CRC

268 CHAPTER 8. APPLICATIONS

Table 8.5. Linguistic variables and linguistic
values for fuzzy �If. . . then. . . � rules

Linguistic Variable Linguistic Values
Area {small, large}
Solidity {small, medium, large}
Edif {small, large}

Formulation of membership functions Even though the training set used
to develop the �If. . . then. . . � rules is a set of number pairs, the membership
functions normally used to implement these rules have a universe of discourse
X consisting of the real line R. These membership functions are chosen from
known parameterized families of functions such as the generalized bell functions.
A generalized bell membership function, commonly referred to as bell MF,

is characterized by three parameters namely a, b, c.

bell(x; a, b, c) =
1

1 +
¯̄
x−c
a

¯̄2b
A desired, generalized bell membership function can be obtained with the proper
selection of the parameters a, b, c. The parameters a and c represent the width
and the center of the bell function, and b represents the slopes at the crossover
points. Figure 8.13 illustrates the parameters that describe the generalized bell
function.

0.0

0.5

1.0

c-a c c+a2a

Slope = -b /2a

MF

X

Figure 8.13. Parameter description of a generalized bell function

Various other membership functions such as triangular, trapezoidal, Gaussian,
and sigmoidal can be used in the formulation of membership functions. See
Section 3.2 for details. The triangular and trapezoidal membership functions,
due to their simplicity and computational efficiency, are used extensively in the
formulation of membership functions for many applications. However, these
membership functions consist of line segments and are not smooth at the corner
speciÞed by the parameters. The Gaussian, the generalized bell function, and

© 2003 by Chapman & Hall/CRC

8.4. IDENTIFICATION OF TRASH IN COTTON 269

the sigmoidal membership functions are smooth and nonlinear functions and
are increasingly popular for specifying fuzzy sets. The generalized bell function
has one more parameter than the Gaussian membership functions, resulting in
an extra degree of freedom to adjust the steepness at the crossover points [36].
This is one of the reasons the generalized bell function is used in the formulation
of the membership functions in this example.

Fuzzy partition of input space Since area measures for pepper objects are
small compared to the other types of trash, it is assigned the linguistic values
small and large. Solidity measures for bark objects are typically small compared
to the measures for leaf and stick objects. However, for some bark objects,
this value can be slightly higher than the typical values for ideal bark objects.
Hence, the linguistic variable solidity is assigned the values small, medium, and
large. Since Edif measure for bark and stick objects are the highest, while the
measures for leaf and pepper objects are small, it is assigned the values of small
and large to distinguish the stick objects from the other trash types. Table
8.5 is a summary of the linguistic variables and the linguistic values used to
obtain the premise and consequent parameters of the ANFIS structure. Figure
8.14 illustrates the ANFIS structure developed for the identiÞcation of the trash
types [63, 64, 65, 66].

Fuzzy rules for trash identiÞcation The linguistic variables area, solidity,
and Edif with the linguistic values assigned in Table 8.5 are used to develop the
Sugeno fuzzy rules for the various trash types. The fuzzy rules for describing
the four trash types are as follows:

R1: If area is small and solidity is small and Edif is small, then trash type is
pepper.

R2: If area is small and solidity is small and Edif is large, then trash type is
pepper.

R3: If area is small and solidity is medium and Edif is small, then trash type
is pepper.

R4: If area is small and solidity is medium and Edif is large, then trash type
is pepper.

R5: If area is small and solidity is large and Edif is small, then trash type is
pepper.

R6: If area is small and solidity is large and Edif is large, then trash type is
pepper.

R7: If area is large and solidity is small and Edif is small, then trash type is
bark.

R8: If area is large and solidity is small and Edif is large, then trash type is
bark.

© 2003 by Chapman & Hall/CRC

270 CHAPTER 8. APPLICATIONS

R9: If area is large and solidity is medium and Edif is small, then trash type
is bark.

R10: If area is large and solidity is medium and Edif is large, then trash type
is stick.

R11: If area is large and solidity is large and Edif is small, then trash type is
leaf.

R12: If area is large and solidity is large and Edif is large, then trash type is
stick.

Generally, the number of rules for any system is the product of the number of
linguistic values of all the linguistic variables. Since we have two linguistic values
{small, large} for area and Edif and three linguistic values {small, medium,
large} for solidity, we have a total of 12 fuzzy rules. The 12 rules that describe
the trash types are summarized in Table 8.6.

Table 8.6. TSK fuzzy rules for trash
identiÞcation with 232-partition1

IF AND AND THEN
Rule Area is Solidity is Edif is Trash Type is
R1 Small Small Small Pepper
R2 Small Small Large Pepper
R3 Small Medium Small Pepper
R4 Small Medium Large Pepper
R5 Small Large Small Pepper
R6 Small Large Large Pepper
R7 Large Small Small Bark
R8 Large Small Large Bark
R9 Large Medium Small Bark
R10 Large Medium Large Stick
R11 Large Large Small Leaf
R12 Large Large Large Stick

Based on these rules, the ANFIS is trained to modify the premise parameters
and the consequent parameters for a given pair of input-output training pairs.
The outputs at Layer 4 of the ANFIS structure are

f i = ai0 + a
i
1x1 + a

i
2x2 + a

i
3x3 i = 1, · · · , 12

1The membership partition of the input variable area, solidity, and Edif are {(Small,
Large), (Small, Medium, Large), (Small, Large)} and is represented as 232-partition in the
text.

© 2003 by Chapman & Hall/CRC

8.4. IDENTIFICATION OF TRASH IN COTTON 271

Figure 8.14. ANFIS structure for identiÞcation of trash types

There are a total of 69 parameters that are updated during one complete
forward and backward pass. During the forward pass, the node outputs are
computed until Layer 4 and the consequent parameters, which are the coef-
Þcients of the over-constrained equation, are obtained using the least squares

© 2003 by Chapman & Hall/CRC

272 CHAPTER 8. APPLICATIONS

estimator (Kalman Þltering algorithm) described on page 263. There are a total
of 48 consequent parameters and 21 premise parameters for the fuzzy partition
described above. These parameters, namely, the width, center, and slope of
the generalized bell function, are updated, or tuned, using the gradient descent
method. In the backward pass, the error signals propagate backwards and the
error at each layer is used to update the premise parameters.

Membership updates The selection of the membership function depends on
the application and the quality of data. As mentioned by one of the reviewers
of the original ANFIS paper [35], the learning mechanism should not be applied
to determine membership functions in the Sugeno ANFIS, since they convey
linguistic and subjective descriptions of possibly ill-deÞned concepts. However,
if the size of the data set is large, then Þne-tuning of the membership functions
is recommended (or even necessary) since human-determined membership func-
tions are seldom optimal in terms of reproducing desired outputs. If the data
set is too small, then it probably does not contain enough information about the
target system. In such a situation, the membership functions determined might
not represent important information pertaining to the data set. In a case like
this, it is recommended that the membership functions be Þxed throughout the
learning process. If the membership functions are Þxed and only the consequent
part is updated, the Sugeno ANFIS can be viewed as a functional-link network,
where the �enhanced representations�of the input variables are obtained via
the membership functions. These enhanced representations determined by hu-
man experts apparently provide more insight into the target system than the
functional expansion or the tensor (outer product) models. By updating the
membership functions, we are actually tuning this enhanced representations for
better performance [36].

ANFIS results The training data previously formulated to train the back-
propagation neural network is used to train the ANFIS and tune the premise
and consequent parameters. In the computation of the consequent parameters

aji , i = 0, · · · , 3 and j = 1, · · · , 12

using Equation 8.9, the outputs of each layer, until Layer 3, are computed for all
patterns. The target vectors d, which are the desired value for each trash type,
are fuzzy singletons. The desired value during training is 0.2 for bark objects, 0.4
for stick objects, 0.6 for leaf objects, and 0.8 for pepper objects. The consequent
parameters are calculated by solving the over-constrained equation to obtain the
consequent parameters. Table 8.7 illustrates the Þnal values of the consequent
parameters after 200 epochs of training for the 232-partition.
The outputs of Layer 4 are calculated, based on the consequent parameters.

The errors backpropagated at each layer are calculated using the gradient de-
scent method. The premise parameters are updated in Layer 1, based on the
errors at the input Layer 1. Table 8.8 shows the initial and Þnal values of the
premise parameters after 200 epochs of training.

© 2003 by Chapman & Hall/CRC

8.4. IDENTIFICATION OF TRASH IN COTTON 273

Table 8.7. Final values of consequent
parameters: 232-partition
Consequent Parameters aji

j i 0 1 2 3
1 5.6045 −0.0623 5.4067 10.2944
2 0.0746 0.2576 0.2428 −5.9242
3 −1.8363 0.0098 1.3515 −0.7228
4 0.1011 −0.0361 0.4841 2.0547
5 1.2008 −0.0002 −0.3727 −0.4426
6 0.7795 0.0028 0.3548 −1.0790
7 −3.5730 0.0003 −1.9937 4.0406
8 6.4012 0.0003 −28.0326 27.2515
9 5.9735 −0.0002 −4.8844 −3.2546
10 2.1531 −0.0001 1.4765 −4.9520
11 −1.4469 0.0002 2.1095 2.7445
12 −0.2404 0.0001 0.0892 1.3792

Table 8.8. Initial and Þnal values of the premise parameters: 232-partition.
Ling. Var. Area Solidity Edif

Ling. Val. Small Large Small Medium Large Small Large
Initial a 180.0000 4820.0000 0.3333 0.3333 0.3333 0.2500 0.2500
Para- b 2.0000 40.0000 2.0000 2.0000 2.0000 2.0000 2.0000
meters c 0.0000 5000.0000 0.0000 0.5000 1.0000 0.0000 0.5000
Final a 179.9964 4819.9983 0.4730 0.4839 0.0441 0.1097 0.0874
Para- b 2.2446 40.0018 1.9899 2.0003 2.0442 2.0230 2.0453
meters c -0.0010 5000.0017 0.0983 0.5528 0.9362 0.0057 0.3249

Figures 8.15�8.17 show the initial and the Þnal (tuned) membership func-
tions for area, solidity, and Edif measures. Based on the premise and consequent
parameters, the training data is classiÞed to evaluate the classiÞcation results.

The decision procedure for the identiÞcation of the trash types is as follows:
The input pattern for each object in the test sample is passed in the forward
direction. With the Þnal premise parameters deÞning the membership functions,
the outputs at each layer are calculated. The output y* which is the sum of the
outputs of Layer 4 is calculated. The outputs of the adaptive nodes at Layer
4 use the updated consequent parameters. Based on the output y*, the input
test pattern is classiÞed to belong to a particular trash type. If the output is in
the range of the target value ± 0.1, then the trash type is classiÞed to belong to
that trash type. For example, if the output of the network lies in the range of
0.2 ± 0.1, it is classiÞed as bark, since 0.2 is the desired value of bark objects.
For example, the output for object 16 (pattern 9) of test sample #1 (TA114) is
0.2777 and is classiÞed as a bark object (Table 8.10).

© 2003 by Chapman & Hall/CRC

274 CHAPTER 8. APPLICATIONS

Initial MF's on Area

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000

Area

Final MF's on Area

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000

Area

Figure 8.15. Initial and Þnal membership functions on area: 232-partition

Initial MF's on Solidity

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Solidity

Final MF's on Solidity

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Solidity

Figure 8.16. Initial and Þnal membership functions on solidity : 232-partition

Initial MF's on Edif

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5

Edif

Final MF's on Edif

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5

Edif

Figure 8.17. Initial and Þnal membership functions on Edif : 232-partition

The classiÞcation results of the training data are illustrated in Table 8.9.
The classiÞcation results indicated superior classiÞcation rates with ANFIS com-
pared to the fuzzy clustering and the backpropagation neural network. A total
of 5 trash objects out of 213 trash objects were misclassiÞed resulting in a clas-
siÞcation rate of 97.653%.

Table 8.9. ClassiÞcation results of trash objects
in the training data using ANFIS: 232-partition

Total number Actual ClassiÞed trash type
of objects trash type Bark Stick Leaf Pepper

18 Bark 16 2 0 0
34 Stick 0 33 1 0
54 Leaf, 0 1 53 0
107 Pepper 0 0 1 106

© 2003 by Chapman & Hall/CRC

8.4. IDENTIFICATION OF TRASH IN COTTON 275

ClassiÞcation results of test samples using ANFIS The classiÞcation of
various trash objects in test sample #1 (TA114) is illustrated in Table 8.10.

Table 8.10. ClassiÞcation results of trash objects in test sample #1
(TA114) using ANFIS: 232-partition

Pat-
tern

Blob
Id

Area Solidity Edif
Net
output

Actual
trash

Class-
iÞed
trash

1 1 22 0.9565 0.1222 0.7952 Pepper Pepper
2 3 100 0.9346 0.1172 0.8089 Pepper Pepper
3 4 17 1.0000 0.0283 0.7927 Pepper Pepper
4 6 28 1.0000 0.0952 0.8116 Pepper Pepper
5 7 124 0.9688 0.2085 0.7305 Pepper Pepper
6 9 113 0.9658 0.0395 0.8081 Pepper Pepper
7 10 13 0.8125 0.0867 0.9166 Pepper Pepper
8 13 84 0.7568 0.3180 1.7399 Stick Pepper
9 16 491 0.5696 0.1861 0.2777 Bark Bark
10 20 11 1.0000 0.2292 0.7963 Pepper Pepper
11 22 46 0.6479 0.0621 1.3404 Pepper Pepper
12 23 128 0.9343 0.1389 0.7993 Pepper Pepper
13 26 11 1.0000 0.0000 0.7815 Pepper Pepper
14 28 155 0.8908 0.2325 0.7408 Pepper Pepper
15 31 42 0.9545 0.0562 0.8004 Pepper Pepper
16 34 16 0.8421 0.0381 0.8223 Pepper Pepper
17 35 49 0.6622 0.0900 1.3191 Pepper Pepper
18 36 17 1.0000 0.1133 0.8045 Pepper Pepper
19 47 31 0.7209 0.0870 1.1874 Pepper Pepper
20 50 34 0.9444 0.0984 0.7982 Pepper Pepper
21 51 126 0.8873 0.2447 0.7873 Pepper Pepper
22 55 111 0.9407 0.2265 0.7727 Pepper Pepper
23 56 536 0.5714 0.2496 0.4998 Bark Stick
24 57 70 0.9091 0.0696 0.8050 Pepper Pepper
25 58 75 0.9494 0.0393 0.8065 Pepper Pepper
26 60 11 1.0000 0.0764 0.7952 Pepper Pepper
27 66 19 0.8261 0.2060 0.8072 Pepper Pepper
28 68 23 0.9200 0.1095 0.7966 Pepper Pepper
29 71 19 0.9500 0.0452 0.7913 Pepper Pepper
30 75 22 0.8148 0.3951 0.9282 Pepper Pepper
31 76 13 0.8667 0.0217 0.7838 Pepper Pepper

The classiÞcation results summarized in Table 8.11 for the Þve test samples
are unsatisfactory for bark, stick, and leaf objects in the samples. Even though
the classiÞcation rate is 91.8367%, the classiÞcation of the individual trash types
is poor � especially for bark, stick, and leaf objects. Due to the presence of pep-
per in high numbers in the cotton samples, and since all three classiÞers classify

© 2003 by Chapman & Hall/CRC

276 CHAPTER 8. APPLICATIONS

pepper objects at high accuracies, the computation of the classiÞcation rates
might be skewed as a classiÞcation criterion. However, it should be mentioned
that based on the classiÞcation results of the training data, it is evident that it
is possible to obtain superior classiÞcation rates for objects that prescribe the
typical shapes that deÞne the trash types. Also as mentioned previously, most
of the misclassiÞcation is due to segmentation defects. Research efforts with
segmentation techniques and acquisition of cotton images need to be addressed
in the future.

Table 8.11. ClassiÞcation results of trash objects
in Þve test samples using ANFIS: 232-partition

Total number Actual ClassiÞed trash type
of objects trash type Bark Stick Leaf Pepper

10 Bark 3 4 3 0
4 Stick 0 1 0 3
16 Leaf 1 2 6 7
215 Pepper 0 0 0 215

In order to evaluate the performance of the ANFIS, different membership
partitions were tested. The classiÞcation accuracy of the trash types with the
use of triangular and trapezoidal membership functions was also investigated.
The best classiÞcation results were obtained with the membership partition as
shown in Figures 8.18�8.20 for the three features.

Initial MF's on Area

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000

Area

Final MF's on Area

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000

Area

Figure 8.18. Initial and Þnal membership functions on area: 222-partition

Initial MF's on Solidity

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Solidity

Final MF's on Solidity

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Solidity

Figure 8.19. Initial and Þnal membership functions on solidity : 222-partition

© 2003 by Chapman & Hall/CRC

8.4. IDENTIFICATION OF TRASH IN COTTON 277

Initial MF's on Edif

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5

Edif

Final MF's on Edif

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5

Edif

Figure 8.20. Initial and Þnal membership functions on Edif : 222-partition

The linguistic variable solidity was partitioned as small and large instead of
small, medium, and large (membership partition-232). There are a total of 8
fuzzy rules for identifying the trash types; they are summarized in Table 8.12.
Tables 8.13 and 8.14 are the updated values of the consequent and premise
parameters after 200 epochs of training with the 222-membership partition.

Table 8.12. TSK fuzzy rules for trash
identiÞcation with 222-partition2

If and and then
Rule area is solidity is Edif is trash type is
R1 Small Small Small Pepper
R2 Small Small Large Pepper
R3 Small Large Small Pepper
R4 Small Large Large Pepper
R5 Large Small Small Bark
R6 Large Small Large Bark
R7 Large Large Small Leaf
R8 Large Large Large Stick

Table 8.13. Final values of consequent
parameters: 222-partition
Consequent Parameters aji

j i 0 1 2 3
1 2.2184 −0.0016 −0.6010 3.5199
2 −0.0841 0.0069 1.1953 10.1662
3 −0.0897 0.0010 0.7641 −0.5085
4 −1.2554 0.0004 2.1392 −1.8541
5 0.1818 0.0000 −0.1468 −0.1665
6 3.0904 0.0000 −7.5783 4.1122
7 0.8847 −0.0001 −0.1512 −0.1263
8 1.9480 0.0000 −0.7704 −1.0734

2The membership partition of the input variable area, solidity, and Edif are {(Small,
Large), (Small, Large), (Small, Large)} and is represented as 222-partition in the text.

© 2003 by Chapman & Hall/CRC

278 CHAPTER 8. APPLICATIONS

Table 8.15 illustrates the classiÞcation results of the training data. As seen
from the table, the ANFIS performance is excellent in identifying the trash
types. Of the 18 bark objects, 2 objects were misclassiÞed, one as stick and one
as leaf. Of the 34 stick objects, 2 were classiÞed as leaf. Only 1 object out of 54
leaf objects was classiÞed as stick. Similarly, only 1 object is classiÞed as leaf
out of the 107 pepper objects. This classiÞcation rate with the 222-membership
partition is 97.1831%.

Table 8.14. Initial and Þnal values of the premise parameters: 222-partition
Linguistic variable Area Solidity Edif

Linguistic value Small Large Small Large Small Large
a 160.0000 4840.0000 0.5000 0.5000 0.2500 0.2500

Initial b 2.0000 60.0000 2.0000 2.0000 2.0000 2.0000
parameters c 0.0000 5000.0000 0.0000 1.0000 0.0000 0.5000

a 160.0040 4839.9914 0.6568 0.3598 0.1485 0.0622
Final b 2.4631 59.9931 1.9984 1.9849 2.0060 2.0493

parameters c 0.0090 5000.0087 -0.0444 1.0529 -0.0332 0.2732

Table 8.15. ClassiÞcation results of trash objects
in training data using ANFIS: 222-partition

Total number Actual ClassiÞed trash type
of objects trash type Bark Stick Leaf Pepper

18 Bark 16 1 1 0
34 Stick 0 32 2 0
54 Leaf 0 1 53 0
107 Pepper 0 0 1 106

The identiÞcation results of the trash objects in 5 test samples with the 222-
partition are illustrated in Table 8.16. The classiÞcation results are superior
compared to all other classiÞers discussed so far. The classiÞcation rates for
leaf and pepper objects are excellent. However, the classiÞcation of bark and
stick objects is satisfactory. As previously mentioned, one of the reasons for
the misclassiÞcation of bark and stick objects in the test samples is due to
segmentation defects. The stick object in test sample #1 is a single object but
segmented as a stick and pepper object. During classiÞcation, both of these
objects are classiÞed as pepper objects. The stick object is partially buried
under the cotton, resulting in discontinuities of the object in the segmented
image.
Based on the classiÞcation results of the training data, it is seen that the

ANFIS gives the best classiÞcation results with excellent classiÞcation rates. Al-
though the classiÞcation accuracy of some of the trash types is low, with proper
segmentation it is possible to identify the trash types with increased accura-
cies. The results from the ANFIS indicate that the two sets of membership
partitions, namely, 232-partition and 222-partition, classify the trash types at
similar classiÞcations rates. This is illustrated in Table 8.17.

© 2003 by Chapman & Hall/CRC

8.5. INTEGRATED PEST MANAGEMENT SYSTEMS 279

Table 8.16. ClassiÞcation results of trash objects
in Þve test samples using ANFIS: 222-partition

Total number Actual ClassiÞed trash type
of objects trash type Bark Stick Leaf Pepper

10 Bark 6 4 0 0
4 Stick 0 2 0 2
16 Leaf 0 2 14 0
215 Pepper 0 0 0 215

Table 8.17. ClassiÞcation rates with 232- and 222-partition
Membership
Partition 232-Partition 222-Partition
Samples Training Test Training Test
ClassiÞcation
rate (%)

97.6526 91.8367 97.1831 95.1020

From the results of this application, we conclude that ANFIS produces far
superior results in terms of its performance as a classiÞer, and has potential
for on-line implementation based upon its ability to adapt. Due to the �fuzzy�
nature of the variables, the ANFIS architecture is ideally suited for applications
that require rule-based reasoning as part of the decision-making process. The
adaptive nature of the network architecture makes ANFIS a highly robust tool
for decision-making under uncertainty.

8.5 Integrated pest management systems

Control of pesticides in agricultural ecosystems is essential towards minimizing
environmental pollution. Lowering the use of pesticides requires the implemen-
tation of biological control wherein natural enemies and predators are used to
control the population of insects that are harmful to the agricultural commod-
ity. Therefore, the goal in Integrated Pest Management (IPM) systems is to
implement methodologies that can minimize pesticide use while maximizing the
use of biological controls. Achieving this goal requires carefully monitoring the
populations of speciÞc insect species and determining the appropriate mix of
pesticide and biological controls for the target agricultural ecosystem. In this
context, there is a need to develop methods to identify the class of insects that
populate speciÞc agricultural ecosystems. In this example, we discuss a neuro-
fuzzy approach to insect classiÞcation.
Statistical approaches to classifying insects have been met with limited suc-

cess. This is due primarily to the fact that the spatial patterns of insects are not
Þxed. This problem is made even more complex by changes in insect population
with season and time. Factors such as weather, host plants, soil, predator, para-
sitoid, and behavioral factors of the insect population can all contribute towards
an extremely complex problem in insect classiÞcation. Hence it is difficult, if not
impossible, to obtain satisfactory statistical models to predict or classify insect
categories. Figure 8.21 illustrates a framework for developing IPM systems.

© 2003 by Chapman & Hall/CRC

280 CHAPTER 8. APPLICATIONS

Referring to Figure 8.21, the collection of insects is a random sample that is
representative of the various insect types that may be present in the agricultural
setting such as a large cotton farm. As such, statistical methods for analyzing
the data could be applied. Samples of insects can be collected from various parts
of a farm, and population estimates of each class of arthropod can be obtained.

Figure 8.21. Integrated pest management scheme

Such estimates may be easy to obtain for small farm areas, but certainly
present a formidable task for large farms that could be thousands of acres in
size. For this reason, we need some automated means of collecting insects and
analyzing the sampled collection for various classes of insects. For this, a com-
puter vision-based approach can be used for classifying insects into two basic
classes, namely, desirable and undesirable insects. By desirable, we mean insects
that belong to the predator species, and undesirable implying pests.
In addition, we are also suggesting that each of the basic classes be further

divided into speciÞc insect types that form the biological control species and pest
species, respectively. Intuitively then, a ratio of desirable to undesirable insects
should provide a basis for developing decision rules for pesticide application.
It is clear that these decision rules would be fuzzy �If. . . then. . . � rules. For
example, a typical set of fuzzy rules might be of the form

© 2003 by Chapman & Hall/CRC

8.5. INTEGRATED PEST MANAGEMENT SYSTEMS 281

� If ratio of insects is small and pest A is high, then apply high concentration
pesticide Z.

� If ratio of insects is medium and pest A is medium, then apply medium
concentration pesticide Z.

While this example does not speciÞcally discuss the formulation of such
decision-making rules, we are merely suggesting that it is conceivable that such
rules can be generated. The signiÞcant attributes of such decision rules is based
upon the accuracy of insect classiÞcation and how well we can actually determine
the pest populations in terms of speciÞc species.

Note also that the objective is to perform such classiÞcation in an automated
manner with little or no human intervention. The intent is to develop Þeld de-
ployable IPM systems where there is little or no access to experts in entomology.
As such, the IPM system is expected to provide the expertise to the farmer di-
rectly in an agricultural setting. Classical statistical methods fail to provide the
necessary basis for such an approach to developing successful IPM systems.

There are several important functions that are desired in a vision-based clas-
siÞcation system. First, an imaging system is needed to obtain high resolution
images of the objects requiring classiÞcation. This can be obtained using a high
resolution digital camera.

The second function is an image processing system that is capable of seg-
menting the original image, performing thresholding to eliminate debris and
other unwanted material in the sample collection, and providing images of in-
sects at a high enough resolution to allow appropriate feature extraction.

The third function is the classiÞcation system. Statistical methods suffer
from their inability to provide a model that can account for the large variations
that can occur in the insect morphology. Nontraditional approaches such as
artiÞcial neural networks, fuzzy logic, and possibly other hybrid approaches
need to be investigated for classiÞer design.

ClassiÞer design Pattern classiÞcation is generally considered to be a high-
end task for computer-based image analysis. The complexities range from locat-
ing and recognizing isolated known objects, recognizing objects in poorly deÞned
classes, to much more open-ended problems of recognizing possible overlapping
objects or classes. The idea therefore is to select an appropriate set of features
that is common to all object classes and that can provide discrimination be-
tween various classes. Ideally, one would expect the features to be distinct for
each class in order to obtain �perfect� classiÞcation. Obviously, in a less than
ideal environment such �perfect� classiÞcation cannot be obtained.

Table 8.18 provides a list of insects that inhabit cotton and alfalfa agricul-
tural ecosystems, and that are referred to by their common names.

© 2003 by Chapman & Hall/CRC

282 CHAPTER 8. APPLICATIONS

Table 8.18. List of insects in cotton and alfalfa Þelds
Insect Type Good Bad Comments
Assassin bug X Harmful to humans
Big-eyed bug X Harmless
Green lacewing adult X Harmless
Lacewing larva X Harmless
Hippodamia lady beetle adult X Harmless
Hippodamia ladybug larva X Harmless
Nabid adult X Harmless
Stinkbug adult X Harmless
Collops beetle X Harmless
Leaf hopper X Can be destructive
Lygus adult X Destructive
Three-corned alfalfa hopper X Destructive
Cucumber beetle X Destructive

The list includes insects that have a destructive effect on the crop, and others
that are harmless to cotton plants but are considered biological predators. A
few of the insect types listed in Table 8.18 are shown in Figures 8.22�8.24.

Figure 8.22. Collops beetle

© 2003 by Chapman & Hall/CRC

8.5. INTEGRATED PEST MANAGEMENT SYSTEMS 283

Figure 8.23. Cucumber beetle

Figure 8.24. Lygus adult

The type of features used in a classiÞer design dictates classiÞer performance.
If the features are distinct, then one can expect excellent performance in terms
of classiÞcation. For objects of the type in this example, one has to rely on

© 2003 by Chapman & Hall/CRC

284 CHAPTER 8. APPLICATIONS

empirical relationships that describe the features of objects. Size, shape, and
other qualitative descriptors provide some level of discrimination between ob-
jects. Selection of these descriptors requires some judgment and testing to see
how well the classiÞer can be trained to provide a high level of classiÞcation.
The descriptors used in this example should by no means be assumed to repre-
sent a unique set. There may be other descriptors, a combination of which could
produce better results. This however is left as an exercise for those attempting
to pursue further studies in this area.
The features used in this example are computed using the following empirical

relationships:

1. Form Factor (FF) = (4πA/P 2)

2. Roundness Factor (RF) = 4A/πD2
max

3. Aspect Ratio (AR) = mDmax/Dmin

4. Compactness Factor (CF) =
p
(4/π)A/Dmax

where A is the area of an object in pixels, P is the perimeter of an object in
pixels, and Dmax and Dmin are lengths of the major and minor axes of an ellipse
Þtted around an object. Note that the Aspect Ratio is 1.0 for a circular object.
Table 8.19 provides a set of typical features computed for 13 insect classes.

Table 8.19. Typical feature set for various insect classes
Features

Insect Type AR P FF RF CF
Assassin bug 2.4773 109 2.5156 0.2549 0.5049
Big-eyed bug 2.0556 37 4.9074 0.4972 0.7051
Collops beetle 1.7586 51 5.2493 0.5319 0.7293
Cucumber beetle 1.7000 85 5.0970 0.5164 0.7186
Green lacewing adult 4.5000 99 1.8056 0.1829 0.4277
Hippodamia lady beetle adult 1.4375 69 6.4607 0.6546 0.8091
Hippodamia ladybug larva 2.1935 68 3.6090 0.3657 0.6047
Leaf hopper 3.1071 87 2.7873 0.2824 0.5314
Lacewing larva 2.5000 60 3.4566 0.3502 0.5918
Lygus adult 2.4400 61 3.6473 0.3696 0.6079
Nabid adult 2.8000 70 3.1217 0.3163 0.5624
Stinkbug adult 1.4028 101 6.7639 0.6853 0.8278
Three-corned alfalfa hopper 1.6136 71 5.0224 0.5089 0.7134

Clustering approach to classiÞer design Figure 8.25 conceptually illus-
trates clusters of class objects in two-dimensional feature space.

© 2003 by Chapman & Hall/CRC

8.5. INTEGRATED PEST MANAGEMENT SYSTEMS 285

Figure 8.25. Clustering approach

Referring to Figure 8.25, while class objects A and B are clearly separable,
clusters C and D represent groups of class objects that overlap and are therefore
inseparable. Features representing class types A and B, that are distinct, can
easily be trained using the classical feedforward multi-layered neural networks
whereas, objects in clusters C and D can only be determined using fuzzy logic-
based approaches. In a fuzzy approach, the clusters are partitioned optimally,
and a set of fuzzy �If. . . then. . . � rules are generated. These rules provide a
basis for pattern classiÞcation using ANFIS.
Fuzzy subsets, in the form of membership functions used in ANFIS, are

shown in Figure 8.26.

Figure 8.26. ClassiÞcation scheme

The features listed in Table 8.19 are typical of the input variables needed to
train ANFIS. A total of 222 training patterns from 13 different insect species
were used to train ANFIS. Figures 8.27�8.36 show the membership functions
before and after training. The range over which each of the input variables is
deÞned was obtained by looking at the minimum and maximum values of each

© 2003 by Chapman & Hall/CRC

286 CHAPTER 8. APPLICATIONS

feature. Because only two linguistic variables are used for each feature, a total
of 32 rules is generated by the ANFIS fuzzy inference system.

Figure 8.27. Aspect-ratio before training

Figure 8.28. Aspect-ratio after training

Figure 8.29. Perimeter before training

© 2003 by Chapman & Hall/CRC

8.5. INTEGRATED PEST MANAGEMENT SYSTEMS 287

Figure 8.30. Perimeter after training

Figure 8.31. Form-factor before training

Figure 8.32. Form-factor after training

© 2003 by Chapman & Hall/CRC

288 CHAPTER 8. APPLICATIONS

Figure 8.33. Roundness-factor before training

Figure 8.34. Roundness-factor after training

Figure 8.35. Compactness-factor before training

© 2003 by Chapman & Hall/CRC

8.5. INTEGRATED PEST MANAGEMENT SYSTEMS 289

Figure 8.36. Compactness-factor after training

Figure 8.37 illustrates the performance of ANFIS to a set of test data com-
prising 222 samples for the 13 classes of insects listed in Table 8.19. From this
analysis, it appears that ANFIS provides robust performance as a classiÞer.
Further details of this application can be found in [25].

Figure 8.37. ANFIS performance to test data

© 2003 by Chapman & Hall/CRC

290 CHAPTER 8. APPLICATIONS

8.6 Comments
The applications discussed in this chapter clearly illustrate the diversity of top-
ics that allow soft computing as a sure means for solving an otherwise difficult
problem. Color matching, trash identiÞcation in cotton, insect identiÞcation in
agricultural ecosystems, and control of thermoelectric cooling of laser materials
are all examples of highly nonlinear problems for which no other technology has
shown the potential of providing favorable solutions. Our goal in this Þnal chap-
ter has been to provide detailed discussions of how problems with no standard
mathematical model can be addressed with human-like reasoning. The exam-
ples and discussions are intended to motivate the reader to pursue solutions of
far more complex problems in the Þelds of medical diagnosis; socio-economic
forecasting; weather modeling and forecasting; biological and chemical identiÞ-
cation and detection; and a multitude of other Þelds where human knowledge
can be transformed into �models� for machine learning. Adaptation and ro-
bustness ultimately dictate how well machines can perform human-like tasks
that may lead us toward the successful development and deployment of systems
with self-diagnostic and self-repair capabilities.

© 2003 by Chapman & Hall/CRC

Bibliography

[1] S. Abe and M.S. Lan, A method for fuzzy rule extraction directly from
numerical data and its application to pattern recognition, IEEE Trans. on
Fuzzy Systems, 3, 18-28, 1995.

[2] H. Adeli and S.L. Hung, Machine Learning: Neural Networks, Genetic
Algorithms and Fuzzy Systems, John Wiley & Sons, New York, 1995.

[3] S. Amari and N. Kasabov, eds., Brain-Like Computing and Intelligent In-
formation Systems, Springer-Verlag, Berlin, 1998.

[4] M. Anthony and P.O. Bartlett, Neural Network Learning: Theoretical
Foundations, Cambridge University Press, Cambridge, 1999.

[5] S. Barnett and R.G. Cameron, Introduction to Mathematical Control The-
ory, 2nd Edition, Clarendon Press, Oxford, 1985.

[6] J.C. Bezdek and S.K. Pal, eds., Fuzzy Models for Pattern Recognition, IEEE
Press, Piscataway, NJ, 1992.

[7] F.W. Billmeyer, Jr. and M. Saltzman, Principles of Color Technology, John
Wiley & Sons, New York, 1966.

[8] C.M. Bishop, Neural Networks for Pattern Recognition, Clarendon Press,
Oxford, 1995.

[9] G. Bojadziev and M. Bojadziev, Fuzzy Sets, Fuzzy Logic, Applications,
World ScientiÞc, London, 1995.

[10] B. Bouchon-Meunier, V. Kreinovich, H.T. Nguyen, �Non-Associative Oper-
ations,� Proceedings of the Second International Conference on Intelligent
Technologies (InTech 2001), Faculty of Science and Technology, Assump-
tion University, Bangkok, Thailand, 39-46, 2001.

[11] M. Brown and C. Harris, Neurofuzzy Adaptive Modelling and Control,
Prentice-Hall, Englewood Cliffs, NJ, 1994.

[12] P.K. Cheo, ed., Handbook of Solid-State Lasers, Marcel Dekker, Inc., New
York, 1989.

291

© 2003 by Chapman & Hall/CRC

292 BIBLIOGRAPHY

[13] A.K. Cousins, Temperature and thermal stress scaling in Þnite-length end-
pumped laser rods, IEEE J. Quantum Electron., 28(4), 1057-1069, 1992.

[14] E. Czogała and J. Ł þeski, Fuzzy and Neuro-Fuzzy Intelligent Systems,
Springer-Verlag, Berlin, 2000.

[15] J. Dayhoff, Neural Network Architectures: An Introduction, Van Nostrand
Reinhold Co., New York, 1990.

[16] J.J. D�Azzo and C.H. Houpis, Linear Control Systems Analysis and Design
� Conventional and Modern, McGraw-Hill, New York, 1995.

[17] C.W. de Silva, Intelligent Control: Fuzzy Logic Applications, CRC Press,
Boca Raton, FL, 1995.

[18] R.C. Dorf, ed., The Electrical Engineering Handbook, CRC Press, Boca
Raton, FL, 1993.

[19] K. Dutton, S. Thompson, and B. Barraclough, The Art of Control Engi-
neering, Addison-Wesley Longman, Ltd., Essex, UK, 1997.

[20] R. Eberhart and B. Dobbins, Neural Network PC Tools: A Practical Guide,
Academic Press, New York, 1990.

[21] J. Farrell, Neural control systems, invited chapter in The Controls Hand-
book, W. S. Levine, ed., CRC Press, Boca Raton, FL, 1017-1030, 1996.

[22] L. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms,
and Applications, Prentice-Hall, Upper Saddle River, NJ, 1994.

[23] T.L. Fine, Feed Forward Neural Network Methodology, Springer-Verlag,
Berlin, 1999.

[24] R. Fuller, Introduction to Neuro-Fuzzy Systems, Advances in Soft Comput-
ing Series, Springer-Verlag, Berlin, 2000.

[25] H. Gassoumi, A Soft Computing Approach for ClassiÞcation of Insects in
Agricultural Ecosystems, Ph.D. dissertation, New Mexico State University,
Las Cruces, NM, 2000.

[26] M. Gehrke, C.L. Walker, and E.A. Walker, Normal forms and truth tables
for fuzzy logics, chapter in Proceedings of Linz2000 Conference, Fuzzy Sets
and Systems, to appear.

[27] I.R. Goodman, H.T. Nguyen, and E.A. Walker, Conditional Inference and
Logic for Intelligent Systems: A Theory of Measure-Free Conditioning,
North-Holland, Amsterdam, 1991.

[28] G.C. Goodwin, S.F. Graebe, and M.E. Salgado, Control System Design,
Prentice-Hall, Upper Saddle River, NJ, 2001.

© 2003 by Chapman & Hall/CRC

BIBLIOGRAPHY 293

[29] S. Grossberg, Neural Networks and Natural Intelligence, MIT Press,
Boston, 1988.

[30] F.M. Ham and I. Kostanic, Principles of Neurocomputing for Science and
Engineering, McGraw-Hill, New York, 2001.

[31] M.H. Hassoun, Fundamentals of ArtiÞcial Neural Networks, MIT Press,
Boston, 1995.

[32] S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan Col-
lege Publishing Co. Inc., New York, 1994.

[33] F. Höppner, F. Klawonn, and R. Kruse, Fuzzy Cluster Analysis, John Wiley
& Sons, New York, 1999.

[34] M.E. Innocenzi et al., Thermal modeling of continuous-wave end-pumped
solid-state lasers, Appl. Phys. Lett., 56(19)(5), 1831-1833, May 1990.

[35] J.S.R. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE
Transactions on Systems, Man and Cybernetics, 23(3), 665-684, 1993.

[36] J.S.R. Jang, C. T. Sun, and E. Mituzani, Neuro-Fuzzy and Soft Computing:
A Computational Approach to Learning and Machine Intelligence, Prentice-
Hall, Upper Saddle River, NJ, 1997.

[37] S.V. Kartalpoulos, Understanding Neural Networks and Fuzzy Logic, IEEE
Press, Piscataway, NJ, 1996.

[38] W. Koechner, Solid-State Laser Engineering, 3rd Edition, Springer-Verlag,
Berlin, 1992.

[39] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Ap-
proach to Machine Intelligence, Prentice-Hall, Upper Saddle River, NJ,
1992.

[40] C.-T. Lin and C.S. George Lee, Neural Fuzzy Systems: A Neuro-Fuzzy
Synergism to Intelligent Systems, Prentice-Hall, Upper Saddle River, NJ,
1996.

[41] R.J. Marks II, ed., Fuzzy Logic Technology, and Applications, IEEE Tech-
nology Update Series, IEEE Press, Piscataway, NJ, 1994.

[42] J.L. McClelland and D.E. Rumelhart, Explorations in Parallel Distributed
Processing, MIT Press, Cambridge, MA, 1988.

[43] W.S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in
nervous activity, Bull. of Math. Biophysics, 5, 115-133, 1943.

[44] Melcor Thermoelectric Handbook, http://www.melcor.com/handbook.htm,
Melcor Corp., Trenton, NJ, 1995.

© 2003 by Chapman & Hall/CRC

http://www.melcor.com

294 BIBLIOGRAPHY

[45] T.M. Mitchell, Machine Learning, McGraw-Hill, New York, 1997.

[46] K.S. Narendra, Intelligent Control, IEEE Control Systems, 39-40, January
1991.

[47] K.S. Narendra and S. Mukhopadhyay, Intelligent Control Using Neural
Networks, in Intelligent Control Systems: Theory and Applications, M.M.
Gupta and N.K. Sinha, eds., IEEE Press, Piscataway, NJ, 151-186, 1996.

[48] B. Neuenschwander, et al., Determination of the thermal lens in solid-state
lasers with stable cavities, IEEE J. Quantum Electron., 31(6), 1082-1087,
1995.

[49] M.B. Nevel-Son, Stochastic Approximation and Recursive Estimation,
American Mathematical Society, Providence, RI, 1976.

[50] H.T. Nguyen, M. Sugeno, and R. Yager, eds., Theoretical Aspects of Fuzzy
Control, John Wiley & Sons, New York, 1995.

[51] H.T. Nguyen, N.R. Prasad, V. Kreinovich, and H. Gassoumi, Intelligent
mining in image databases, with applications to satellite imaging and to
web search, in Data Mining and Computational Intelligence, Kandel et al.,
eds., Springer-Verlag, Berlin, 2000.

[52] H.T. Nguyen and E.A. Walker, A First Course in Fuzzy Logic, 2nd Edition,
CRC Press, Boca Raton, FL, 1999.

[53] N.S. Nise, Control Systems Engineering, 3rd Edition, John Wiley & Sons,
New York, 2000.

[54] M. NØrgaard, O. Ravn, N.K. Poulsen, and L.K. Hansen, Neural Networks
for Modelling and Control of Dynamic Systems: A Practitioner�s Handbook,
Springer-Verlag, Berlin, 2000.

[55] K.M. Passino and S. Yurkovich, Fuzzy Control, Addison-Wesley Longman,
Menlo Park, CA, 1998.

[56] W. Pedrycz, Fuzzy Sets Engineering, CRC Press, Boca Raton, FL, 1995.

[57] C.L. Phillips and R.D. Harbor, Feedback Control Systems, 4th Edition,
Prentice-Hall, Upper Saddle River, NJ, 2000.

[58] N.S. Prasad and N.R. Prasad, Fuzzy logic based cooling scheme for laser
materials, SPIE, 2755, 357-362, 1996.

[59] N.S. Prasad and N.R. Prasad, A fuzzy logic based approach to color quality
processing, SPIE, 2761, 111-118, 1996.

[60] T.J. Ross, Fuzzy Logic with Engineering Applications, McGraw-Hill, New
York, 1995.

© 2003 by Chapman & Hall/CRC

BIBLIOGRAPHY 295

[61] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York,
1976.

[62] R.J. Schalkoff, ArtiÞcial Neural Networks, McGraw-Hill, New York, 1997.

[63] M. Siddaiah, M.A. Lieberman, S.E. Hughs, and N.R. Prasad, Computation
of trash content in ginned cotton using soft computing techniques, Proceed-
ings of the 42nd Midwest Symposium on Circuits and Systems, 1, 547-550,
1999.

[64] M. Siddaiah, M.A. Lieberman, S.E. Hughs, and N.R. Prasad, A soft com-
puting approach to classiÞcation of trash in ginned cotton, Proceedings
of the Eighth International Fuzzy Systems Association World Congress, 1,
151-155, 1999.

[65] M. Siddaiah, M.A. Lieberman, S.E. Hughs, and N.R. Prasad, IdentiÞcation
of trash types in ginned cotton using neuro-fuzzy techniques, 1999 IEEE
International Fuzzy Systems Conference Proceedings, FUZZ-IEEE �99, II,
738-743, 1999.

[66] M. Siddaiah, M.A. Lieberman, S.E. Hughs, and N.R. Prasad, IdentiÞcation
of trash types and correlation between AMS and SWCGRL trash content
in ginned cotton, Proceedings of the 2000 Beltwide Cotton Conferences, 2,
1549-1555, 2000.

[67] M. Siddaiah, IdentiÞcation of trash in cotton using soft computing tech-
niques, Ph.D. Dissertation, New Mexico State University, Las Cruces, NM,
2000.

[68] P.K. Simpson, Fuzzy min-max neural networks: No. 1, ClassiÞcation, IEEE
Transactions on Fuzzy Systems, 3, 776-786, 1993.

[69] P.K. Simpson, ed., Neural Networks Theory, Technology, and Applications,
IEEE Technology Update Series, IEEE Press, Piscataway, NJ, 1996.

[70] E.D. Sontag, Mathematical Control Theory, Springer-Verlag, Berlin, 1998.

[71] M. Sugeno, Fuzzy Measure and Fuzzy Integral, Trans. SICE, 8(2), 95-102,
1972.

[72] T. Takagi and M. Sugeno, Fuzzy identiÞcation of systems and its applica-
tions to modeling and control, IEEE Trans. Systems, Man and Cybernetics,
15(1), 116-132, 1985.

[73] K. Tanaka and M. Sugeno, Stability analysis and design of fuzzy control
systems, Fuzzy Sets and Systems, 45, 135-150, 1992.

[74] K. Uehara and M. Fujise, Fuzzy inference based on families of alpha-level
sets, IEEE-Transactions on Fuzzy Systems, 1(2), 111-24, May 1993.

© 2003 by Chapman & Hall/CRC

296 BIBLIOGRAPHY

[75] M. Umano and Y. Ezawa, Execution of approximate reasoning by neural
network, Proceedings of FAN Symposium, 267-273, 1991 (in Japanese).

[76] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag,
Berlin, 2000.

[77] L.X. Wang and J.M. Mendel, Back-propagation fuzzy systems as nonlinear
dynamic systems identiÞer, Proceedings of the First IEEE International
Conference on Fuzzy Systems, San Diego, CA, March 1992.

[78] L.X. Wang, Fuzzy systems are universal approximators, Proceedings of
the First IEEE Conference on Fuzzy Systems, San Diego, CA, 1163-1170,
March 1992.

[79] P.J. Werbos, An overview of neural networks for control, IEEE Control
Systems, 40-41, January 1991.

[80] B. Werners, An interactive fuzzy programming system, Fuzzy Sets and
Systems, 23, 131-147, 1987.

[81] B. Widrow and M.E. Hoff, Jr., Adaptive switching circuits, IRE WESCON
Convention Record, part 4, 96-104, 1960.

[82] G. Wyszecki and W.S. Stiles, Color Science, Concepts and Methods, Quan-
titative Data and Formulas, John Wiley & Sons, New York, 1967.

[83] R.R. Yager, On a general class of fuzzy connectives, Fuzzy Sets and Systems,
4, 235-242, 1980.

[84] T. Yamakawa, Fuzzy controller hardware system, Proceedings of Second
IFSA Conference, Tokyo, Japan, 1987.

[85] J. Yen and R. Langari, Fuzzy Logic: Intelligence, Control, and Information,
Prentice-Hall, Upper Saddle River, NJ, 1999.

[86] H.J. Zimmermann, Fuzzy Sets, Decision Making, and Expert Systems,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1987.

[87] H.J. Zimmermann, Fuzzy Set Theory and its Applications, 2nd Edition,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.

[88] H.J. Zimmermann and P. Zysno, Latent connectives in human decision
making, Fuzzy Sets and Systems, 4, 37-51, 1980.

[89] J.M. Zurada, R.J. Marks II, and C.J. Robinson, eds., Computational Intel-
ligence Imitating Life, IEEE Press, Piscataway, NJ, 111-118, 1994.

© 2003 by Chapman & Hall/CRC

	Title Page
	Contents
	Preface
	Chapter 1: A PRELUDE TO CONTROL THEORY
	1.1 An ancient control system
	1.2 Examples of control problems
	1.2.1 Open-loop control systems
	1.2.2 Closed-loop control systems

	1.3 Stable and unstable systems
	1.4 A look at controller design
	1.5 Exercises and projects

	Chapter 2: MATHEMATICAL MODELS IN CONTROL
	2.1 Introductory examples: pendulum problems
	2.1.1 Example: fixed pendulum
	2.1.2 Example: inverted pendulum on a cart

	2.2 State variables and linear systems
	2.3 Controllability and observability
	2.4 Stability
	2.4.1 Damping and system response
	2.4.2 Stability of linear systems
	2.4.3 Stability of nonlinear systems
	2.4.4 Robust stability

	2.5 Controller design
	2.6 State-variable feedback control
	2.6.1 Second-order systems
	2.6.2 Higher-order systems

	2.7 Proportional-integral-derivative control
	2.7.1 Example: automobile cruise control system
	2.7.2 Example: temperature control
	2.7.3 Example: controlling dynamics of a servomotor

	2.8 Nonlinear control systems
	2.9 Linearization
	2.10 Exercises and projects

	Chapter 3: FUZZY LOGIC FOR CONTROL
	3.1 Fuzziness and linguistic rules
	3.2 Fuzzy sets in control
	3.3 Combining fuzzy sets
	3.3.1 Minimum, maximum, and complement
	3.3.2 Triangular norms, conorms, and negations
	3.3.3 Averaging operators

	3.4 Sensitivity of functions
	3.4.1 Extreme measure of sensitivity
	3.4.2 Average sensitivity

	3.5 Combining fuzzy rules
	3.5.1 Products of fuzzy sets
	3.5.2 Mamdani model
	3.5.3 Larsen model
	3.5.4 Takagi-Sugeno-Kang (TSK) model
	3.5.5 Tsukamoto model

	3.6 Truth tables for fuzzy logic
	3.7 Fuzzy partitions
	3.8 Fuzzy relations
	3.8.1 Equivalence relations
	3.8.2 Order relations

	3.9 Defuzzification
	3.9.1 Center of area method
	3.9.2 Height-center of area method
	3.9.3 Max criterion method
	3.9.4 First of maxima method
	3.9.5 Middle of maxima method

	3.10 Level curves and alpha-cuts
	3.10.1 Extension principle
	3.10.2 Images of alpha-level sets

	3.11 Universal approximation
	3.12 Exercises and projects

	Chapter 4: FUZZY CONTROL
	4.1 A fuzzy controller for an inverted pendulum
	4.2 Main approaches to fuzzy control
	4.2.1 Mamdani and Larsen methods
	4.2.2 Model-based fuzzy control

	4.3 Stability of fuzzy control systems
	4.4 Fuzzy controller design
	4.4.1 Example: automobile cruise control
	4.4.2 Example: controlling dynamics of a servomotor

	4.5 Exercises and projects

	Chapter 5: NEURAL NETWORKS FOR CONTROL
	5.1 What is a neural network?
	5.2 Implementing neural networks
	5.3 Learning capability
	5.4 The delta rule
	5.5 The backpropagation algorithm
	5.6 Example 1: training a neural network
	5.7 Example 2: training a neural network
	5.8 Practical issues in training
	5.9 Exercises and projects

	Chapter 6: NEURAL CONTROL
	6.1 Why neural networks in control
	6.2 Inverse dynamics
	6.3 Neural networks in direct neural control
	6.4 Example: temperature control
	6.4.1 A neural network for temperature control
	6.4.2 Simulating PI control with a neural network

	6.5 Neural networks in indirect neural control
	6.5.1 System identification
	6.5.2 Example: system identification
	6.5.3 Instantaneous linearization

	6.6 Exercises and projects

	Chapter 7: FUZZY-NEURAL AND NEURAL-FUZZY CONTROL
	7.1 Fuzzy concepts in neural networks
	7.2 Basic principles of fuzzy-neural systems
	7.3 Basic principles of neural-fuzzy systems
	7.3.1 Adaptive network fuzzy inference systems
	7.3.2 ANFIS learning algorithm

	7.4 Generating fuzzy rules
	7.5 Exercises and projects

	Chapter 8: APPLICATIONS
	8.1 A survey of industrial applications
	8.2 Cooling scheme for laser materials
	8.3 Color quality processing
	8.4 Identification of trash in cotton
	8.5 Integrated pest management systems
	8.6 Comments

	Bibliography

