


PREFACE
Being an interdisciplinary activity, computer modelling of bird flight

tends to fall into the chasm between ornithology and engineering.

Ornithologists mistrust calculation, while engineers think birdwatching

is frivolous. It may seem obvious that aeronautical theory can be

adapted to cover bird flight, but when I first attempted to do that, it

was seen in ornithological circles as an eccentric activity, with little or

no practical use. My earlier book Bird Flight Performance was politely

received but biologists were unconvinced that they needed it. The pres-

ent book, which is backed by a far more capable computer programme,

is a fresh attempt to show why a physical theory is necessary as a

framework for any quantitative discussion of animal flight.

The barrier to communication between ornithologists and aeronau-

tical engineers is due to their different attitudes to numbers. Biologists

readily accept that the rate at which a bird needs energy to support its

weight in air might be correlated with the wing span, but balk at the

idea that this measurement (the distance between the wing tips) actu-

ally determines the power requirement, and can be used to calculate it

for any bird, without the need to measure power or run regressions.

There is actually no way to use statistical methods to predict the power

requirements of even one species, because several variables are

involved. These include the wing span, the forward speed, the strength

of gravity, and the density of the air, and each of them affects the power

in different ways. All of this, and much more, is represented in classical

aeronautical theory, of which the relevant parts have been exhaustively

tested over the last hundred years, and I have built the Flight

programme on this foundation.

Ornithologists sometimes want to use the traditional ‘‘wing length’’

as a substitute for the wing span, but this will not do. The power esti-

mates are not correlations, but absolute numbers, calculated from

Newtonian mechanics, and the right input numbers have to be used.

The requirement to be aware of the definition of each variable and its

physical dimensions is obvious to engineers, but less so to those who

have been accustomed to relying exclusively on statistical methods.

A statistical package looks for patterns in sets of numbers, and will usu-

ally produce a result whatever the numbers mean, or even if they mean

nothing at all. The difficulty that many biologists seem to have with
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aeronautical theory is not in understanding the theory itself, but in

adjusting their attitude to numbers away from statistics, and towards

the engineering point of view.

Once this difficulty has been overcome, using the Flight programme

is easy. Users who study the output from its simulations of long-

dist ance migra tion (Chap ter 8) will see a level of deta il that statist ics-

based ecologists cannot even begin to dream about, and some may

be rightly sceptical that so much can be calculated from so little in

the way of input. The programme has been designed to make it easy

to set up and test hypotheses that reflect the underlying assumptions,

and it is for experimenters and field observers to determine what level

of confidence in its predictions is justified. This testing process is cur-

rently being transformed by the ever-increasing capabilities of satellite-

trackable transmitters that can be carried by birds, but many kinds of

training experiments, in wind tunnels or aviaries, can also be used to

tes t the programme (C hapter 15 ). It remains impor tant to keep a close

connection between the numbers and the real world of the flying bird,

and the best way to keep that in focus is to learn to fly oneself.

Colin Pennycuick

Bristol, December 2007



FOREWORD
In Larry McMurtry’s novel Comanche Moon, the Kickapoo tracker

Famous Shoes, who can track anything over any terrain, is musing over

his solitary camp fire somewhere in Texas, circa 1861, listening to the

geese migrating overhead in the starlight:

The mystery of the northward-flying geese had always haunted him; he

thought the geese might be flying to the edge of the world, so he made

a song about them, for no mystery was stronger to Famous Shoes than

the mystery of birds. All the animals that he knew left tracks, but the

geese, when they spread their wings to fly northward, left no tracks.

Famous Shoes thought that the geese must know where the gods lived,

and because of their knowledge had been exempted by the gods from

having to make tracks. The gods would not want to be visited by just any-

one who found a track, but their messengers, the great birds, were

allowed to visit them. It was a wonderful thing, a thing Famous Shoes

never tired of thinking about. . . . Many white men could not trust things

unless they could be explained; and yet the most beautiful things, such as

the trackless flight of birds, could never be explained.

People do not fly, obviously, but not all white men in Famous Shoes’

time knew this. A few years later two of them, Orville and Wilbur

Wright, found out how to fly, and now anyone can learn to do it, with

a little effort and perseverance. By living at the right time, my luck

has included personally migrating across the Nubian Desert in a Piper

Cruiser, and across the Greenland ice cap in a Cessna 182, both busy

routes for migrating birds, and that is indeed a wonderful thing. I have

migrated into Sweden with the cranes in that same Cruiser, and soared

with storks and vultures over the Serengeti in a Schleicher ASK-14.

Actually, birds do leave tracks in the air. They do not last long, but a

skilled tracke r can read them (Ch apter 4). Eat your he art ou t, Famous

Shoes. We may never know where the gods live, but some of the

things that birds do can be explained and understood, especially if

we do them ourselves, and this book is the song that I have made

about it.
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BACKGROUND TO THE MODEL
The Flight computer model, which calculates the rate at which a flying animal requires
energy for whatever it is doing, is based on classical aerodynamics. This is itself a
branch of Newtonian mechanics, which is basically the same for aircraft and birds.
Calculating the mechanical power requires information about wing measurements,
which are defined in this chapter. The physiological requirements for fuel and oxygen
are calculated as a second step, from the mechanical requirements. This approach
requires care with the physical dimensions of variables, introduced in this chapter.

My objective in writing this book is to understand what a bird does

when it flies, to explain in physical terms how it does it and to provide

tools that can be used to predict quantitatively what any bird (not just

those that have been studied) can and cannot do. The quest is ambi-

tious but not new. Would-be aeronauts have studied the wings of birds

with great care down the centuries, hoping to understand them well

enough to copy them, and fly themselves. With hindsight we can see

now why Otto Lilienthal’s meticulous studies and drawings of the

wings of storks (Lilienthal, 1889) produced disappointingly little at

the time, by way of insight into how wings work. His difficulty was that

he had no theory in the 1880s with which to describe and explain what
1
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2 MODELLING THE FLYING BIRD
he saw. Now we have theory aplenty, thanks to the efforts of the world’s

aeronautical research institutions, and it is time for us birdwatchers to

turn the process around, and look at birds through the new eyes that

aeronautical engineers have given us.

The book is descriptive in parts, especially in the chapters that intro-

duce the wings of flying vertebrates, but these descriptions will look

strange to many biologists, because the conventions of morphology

are hopelessly inadequate for describing how wings work. It is not pos-

sible to explain what wings do, without introducing concepts that are

not a traditional part of a biologist’s education. This chapter introduces

the aeronautical conventions for describing and measuring wings,

ad apted for birds, and Chapte r 2 is about the chara cteri stics of the

environment in which birds fly. Chapters 3 and 4, about the

principles of flight, introduce a number of concepts that are familiar

to engineers, but not to most biologists, and attempt to give the

biological reader an intuitive feel for what these ideas mean.

Chapters 5 and 6 describe the wings of birds, bats and pterosaurs,

and Chapte r 7 is on muscle s seen as en gines. After that the scope

broadens to cover such topics as the simulation of long-distance

migration, gliding and soaring, the sensory requirements of flight, the

use of wind tunnels and the design of experiments on flight. The

evolution of flight comes last, because it is not possible to

understand how it happened, without invoking the mechanical

principles covered in earlier chapters.

1.1 THE FLIGHT MODEL

The skeleton of the book is the Flight computermodel, a programme that

incorporates the concepts introduced in the book, and allows the user to

apply them to a chosen bird to answer questions about speed, distance,

energy consumption and suchlike performance matters. Flight is not a

model of a particular bird, nor is it based on regressions describing direct

measurements of the quantities that it calculates. It is essentially a set of

physical ruleswhich are assumed to be general, in the sense that they can

be applied to any bird, real or hypothetical, for which the user can pro-

vide the measurements required to define the bird and its environment.

Flight accepts the user’s input describing the bird, and provides a variety

of options that determine the assumptions to bemade in the calculation.

Then it predicts how the bird’s performance in flapping or gliding flight,

or in long-distance migration, would follow from that particular set of

assumptions. It is designed in away thatmakes it easy to vary the starting

assumptions, which can be seen as hypotheses about how the bird



1 Background to the Model 3
works, and immediately observe the effect of a changed assumption on

the predicted performance.

Flight is, in effect, a working model of a bird, according to the theory

given in the book. It comes with its own online manual and databases of

bird measurements, which can be loaded directly into the programme.

The book contains many examples that have been calculated with Flight,

showing how the output follows from the assumptions that underlie the

programme, and how it can be used to test hypotheses about how the bird

works. Flight is available as a free download from http://books.elsevier.

com/companions/9780123742995, and also from http://www.bio.bristol.

ac.uk/people/pennycuick.htm. These websites are updated from time to

time with the latest version of the programme.

1.1.1 THE MATHEMATICAL IDIOM

It is easiest to explainwhat Flight does, and the concepts underlying it, in

the idiom of aeronautical theory on which it is based, that is, in the lan-

guage of appliedmathematics, but this takes a little getting used to, and it

is a known fact that many biologists are somewhat resistant to it. I have

tried tomake the book accessible to readers who are averse to equations,

by structuring each chapter with an equation-free main text that

explains what the topic of the chapter is about, and isolating the more

technical aspects in boxes. I hope that the main text will convey the gist

of the argument to mathematical and non-mathematical readers alike,

while those who want to know what Flight actually does will find the

equations in the boxes. Each box that presents amathematical argument

contains its own local variable list, which applies within that box, but

not necessarily elsewhere in the book. The conventions for notation

and so on are outlined in Box 1.1 in this chapter. Not all the boxes are

mathematical. Some deal with the implications of a particular published

experiment, an anatomical digression or some other limited topic.
BOX 1.1 Mathematical conventions.

Variable names in this book follow the usual conventions of physics, to the
extent that a variable name is a single letter, with subscripts to distinguish
between different variables of the same physical type. Variable names are
italicised, but subscripts are not. For example, the letter P (for Power) is
used to stand for a number of different variables that have the physical
dimensions of work/time. Subscripts distinguish different kinds of power
from each other. Pmech, the mechanical power produced by a bird’s flight
muscles, and Pchem, the rate at which the bird consumes chemical energy

http://books.elsevier.com/companions/9780123742995
http://books.elsevier.com/companions/9780123742995
http://www.bio.bristol.ac.uk/people/pennycuick.htm
http://www.bio.bristol.ac.uk/people/pennycuick.htm


BOX 1.1 Continued.

from fuel, are different variables with the same dimensions. Lower case p is
used for ‘‘specific power’’, a related group of variables with different dimen-
sions, power/volume for volume-specific power (pv), and power/mass for
mass-specific power (pm).
Acronyms are not used as variable names, because they look like several

variables multiplied together. ‘‘BMR’’ is a familiar acronym that is men-
tioned in the text, but it is not used as a variable name, because it looks like
‘‘B times M times R’’. Basal metabolic rate is a variable with the dimensions
of power, and it is denoted by Pbmr. A notable exception to the one-letter
rule is that two-letter variable names are traditionally used in engineering
for dimensionless numbers named after famous scientists, notably Re for
Reynolds number. Like other variables, Re can be subscripted to distinguish
Rewing from Rebody.

Capital ‘‘B’’ for wing span
The use of particular symbols to represent particular variables is a tradition
that builds up over time, but it is not a law. The law, which applies internally
in boxes in this book, but not always globally throughout the book, is that
the definition of every symbol must be stated in the local context. It is legal
(if not always helpful to the reader) to assign any letter you like to a physical
variable, regardless of tradition. It sometimes happens thatmore thanone tra-
dition develops in different areas of science, and this can cause serious confu-
sion. A particularly awkward example is lower case b, which is traditionally
used in aeronautical engineering to denote an aircraft’s wing span, the dis-
tance from one wing tip to the other. This is the width of the swathe of air that
the wing influences as the aircraft or bird flies along, and it is themost impor-
tant morphological measurement for performance calculations. However,
there is another tradition, within aeronautics, in which fluid dynamics theor-
ists consider the air flow around a wing by starting at the centre line, and
working outwards to the wing tip. The other wing is not very interesting from
this point of view, being merely a mirror-image of the first, and unfortunately
it has become traditional in this area of theory to use the same symbol b for
the semi-span. The Flight programme comes from the ‘‘b for wing span’’ tradi-
tion, but in recent years, the fluid dynamics tradition has been the source of
major advances in wind tunnel studies of bird flight ( Chapter 4), in which b
denotes the semi-span. Ironically, the two traditions have coexisted
peacefully in their homeland, aeronautical science, for three-quarters of a
century, but now that both have invaded biology from different directions,
there is conflict. The same formula may appear from different sources,
apparently differing by a factor of 2 (or 4 if it involves the square of the wing
span).
In the hope of reducing the confusion, I have broken with tradition in this

book, and used capital B for the wing span, avoiding the use of lower case b
for anything. If others would just refrain from using capital B for the semi-
span, this might at least eliminate conflicting definitions of the same sym-
bol. The reader may be wondering why S should not be used for wing span.
The answer, unfortunately, is that S traditionally denotes area in all areas of
aeronautics. S for span would cause even worse confusion.

4 MODELLING THE FLYING BIRD
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1.1.2 DESCRIBING THE BIRD

It is not practical to describe what every feather and every muscle does

when a bird flies. Any model of a bird, whether it is constructed by a

programmer or an artist, is limited to those aspects of the original that

the chosen medium can realistically represent. The objective of this

computer model is to predict as much as possible about the bird’s

capabilities, from as few assumptions as possible. The description of

a particular bird needs to include only those measurements that deter-

mine the forces acting on it in level or gliding flight, and neglects other

information that would complicate the calculation, without producing

a useful improvement in the scope or accuracy of the predictions.

In Flight, a bird is described by only three numbers, its mass, wing

span and wing area. That may seem a rudimentary description, and

so it is. Not even the most clueless birdwatcher would confuse the

American Turkey Vulture with the Great Blue Heron, but they are the

same bird as far as Flight is concerned. I shall show in subsequent

chapters that despite the minimal amount of input information that

Flight needs about the bird, the programme predicts a surprisingly

wide variety of measures of flight performance. The reader who wishes

to test the accuracy of these predictions against field or laboratory

observations need only enter the bird’s mass, wing span and wing area

into the programme, and run it. Rudimentary as these measurements

may be, they are unfortunately not to be found in the traditional ‘‘mor-

phometrics’’ of ornithology, and they cannot be reliably determined

from museum specimens. The definitions come from aeronautics,

not from ornithology, and are given in Boxes 1.2–1.4 of this chapter,

together with the measurement procedures. These procedures are not

difficult or arduous, but they may be unfamiliar to some biologists,

and they need to be carefully followed.
BOX 1.2 Body mass and its subdivisions: Definitions.

The concept of ‘‘lean mass’’ is not used in Flight. This is an obsolete term
that refers to everything that is not fat, including the flight muscles. It was
originally conceived as a constant ‘‘baseline’’ against which other masses,
including the fat mass, could be compared, but this became untenable
when it was realised that large quantities of protein from the flight muscles
are consumed during long migratory flights, and smaller amounts from the
airframe. These changes are predicted in Flight’s migration calculation.
Flight considers that a bird’s empty mass consists of three components, the

flight muscle mass, the fat mass and the airframe mass, which is the mass
of everything else in the body, that is not flight muscles or consumable fat.



BOX 1.2 Continued.

All three components are reduced by substantial amounts in the course of a
long migratory flight, for different reasons, and this is represented in the
computation. The fraction corresponding to each component is the mass
component divided by the all-up mass.

List of variables defined in this box
Ffat Fat fraction
Fmusc Flight muscle fraction
Fframe Airframe fraction
m All-up mass
mcrop Mass of crop contents
mempty All-up mass with crop empty
mfat Mass of fat that is consumable as fuel
mmusc Mass of flight muscles
mframe Mass of airframe

All-up mass (m)
The total mass of everything that the bird has to lift (just weigh the bird),
including any hardware such as rings and radio transmitters. The all-up
mass, together with the strength of gravity (Chapter 2), determines the
amount of power required from the flight muscles to support the weight.

Empty body mass (mempty)
The all-up mass, measured with the crop empty. This dates from the early
development of Flight, when birds carrying heavy loads of food in their
crops happened to be a subject of special interest.

Crop mass (mcrop)
Wet mass of the crop contents, if any.

m ¼ mempty þmcrop:

mcrop is normally assumed to be zero on migratory flights.

Fat mass (mfat)
The mass of stored fat that is available to be used as fuel.

Fat fraction (Ffat)
The ratio of the fat mass to the all-up mass (NOT to the lean mass!). The
starting fat fraction is directly related to the distance a migrating bird can
fly before it runs out of fat, and this (not the fat mass as such) is the number
that is needed to represent the stored fuel energy in migration calculations
(Chapter 8).

Ffat ¼ mfat

m

Flight muscle mass (mmusc)
The combined wet mass of the wing depressor and elevator muscles of both
sides. In birds, these are the pectoralis and supracoracoideus muscles.
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Flight muscle fraction (Fmusc)
The ratio of the flight muscle mass to the all-up mass.

Fmusc ¼ mmusc

m
:

Note that as a bird takes on or consumes fat, it also builds up or con-
sumes its flight muscles. The flight muscle mass is greater when a bird is
fat than when it is thin, but the flight muscle fraction varies much less,
whether the bird is fat or thin.

Airframe mass (mframe)
The mass that is left after subtracting the fat mass and the flight muscle mass
from the emptymass. The ‘‘airframe’’ is perceived as the basic structure of the
bird, which has to carry the engine (flightmuscles) and the fuel (fat), although
actually a small part of the airframe also gets consumed on migratory flights.

mframe ¼ mempty mfat mmusc:

Airframe fraction (Fframe)
The ratio of the airframe mass to the all-up mass.

Fframe ¼ mframe

m
:

The three mass fractions change progressively during a long migratory
flight, but they always add up to 1:

Ffat þ Fmusc þ Fframe ¼ 1:

Entering masses into Flight
First enter the empty mass. This is what you get by weighing the bird with
its crop empty. If the effects of carrying a crop load are not important to
your calculation, you can consider the crop contents to be part of the air-
frame. In that case set mcrop to zero (the default), and set mempty to the mass
that you get by weighing the bird, including any crop contents.
Next, enter the fat mass. The programme will automatically calculate and

enter the fat fraction. Alternatively, if you enter the fat fraction first, the
programme will calculate and enter the fat mass. Likewise, enter either
the flight muscle mass or (preferably) the flight muscle fraction.
To fatten up a computer bird, first enter a higher value for the empty

mass, then increase the fat mass by a lesser amount (because additional
flight muscle mass is added as well as fat). This is not taken care of auto-
matically by the programme. It is best to use field data for the empty mass
and fat fraction of heavy pre-migratory birds. In some circumstances it is
possible to estimate the fat fraction from measurements of body mass
alone, without resorting to carcase analysis (Chapter 8, Box 8.4).

1 Background to the Model 7



BOX 1.3 Wing measurements: Definitions.

The only two wing measurements that are required by Flight are the wing
span and the wing area. In addition, there are a number of related variables
that are mentioned in the text and calculated by the programme, whose
definitions are given below.

Variables defined in this box
B Wing span
c Wing chord
cm Mean chord
Ra Aspect ratio
Swing Wing area

Wing span (B)
A bird’s wing span is the most important morphological variable for flight per-
formance calculations. It is the distance fromonewing tip to the other, with the
wings at full stretch out to the sides, that is, with the elbow andwrist joints fully
extended (Figure 1.1A). Wing span was denoted inmy own earlier publications
by lower case b, following themost usual aeronautical convention, but this has
led to someconfusion as someauthors from the theoretical fluid-dynamics tra-
dition define lower case b as the semi-span. This usage occurs in both the aero-
nautical and the ornithological literature, and is liable to cause major
misunderstandings anderrors.Hoping tominimise thisproblem, Idenotewing
span by capital B in this book, thus breaking with both traditions.

Wing area (Swing)
The wing area, denoted by Swing, is essentially the area that supports the bird’s
weight when it is gliding. It is defined as the area, projected on a flat surface,
of both wings, including the part of the body between the wings (Figure 1.1A).
Why include part of the body? Because the bird is supported in normal glid-
ing flight by a zone of reduced pressure which extends from one wing tip to
the other. There is no gap in the middle (Figure 1.1B). Measuring the wing
area is more complicated than measuring the span, more stressful for the
bird and harder to do repeatably. On the other hand, this is a less critical
measurement. The wing area is important in gliding performance, because
it determines gliding speeds, and also the minimum radius of turn for circling
in thermals. However, minor changes in the wing area have only a small
effect on performance in flapping flight (Spedding and Pennycuick, 2001).

Chord (c) and mean chord (cm)
Chord is an aeronautical term that dates from the nineteenth century, when
people built thin wings, with cross sections that were arcs of circles. Modern
aircraft wings are not thin arcs in cross section, but the ‘‘chord’’ is still the
distance from the leading edge of the wing to the trailing edge, measured
along the direction of the air flow (Figure 1.1A). Ornithological readers will
be aware that this term was borrowed at some time in the past for use in
bird morphometrics, and assigned a meaning that is unrelated to its aero-
nautical definition, and of no use for flight performance calculations of
any kind. The conventional aeronautical definition of ‘‘chord’’ is the only
one used in this book.
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BOX 1.3 Continued.

The chord of a particular wing, unlike its span, does not have a unique
value unless the wing is rectangular, which is unusual. Most wings have a
maximum root chord where the wing joins on to the body, and taper to a
smaller tip chord, with the chord diminishing along the span. A few flying
animals (butterflies) have negative taper, meaning that the tip chord is
greater than the root chord. The mean chord (cm), which does have a unique
value for the wing, is the ratio of the wing area (Swing) to the wing span (B):

cm ¼ Swing

B
: ð1Þ

Wing span

Chord

Wing area

Zone of reduced pressure

A

B

FIGURE 1.1 (A) Definitions of basic wing measurements. Thewing span is the distance
from wing tip to wing tip, and thewing area is the projected area of both wings, includ
ing the body between the wing roots (grey). These measurements are made with the
wings fully extended. It is important that the elbow joint is locked in the fully extended
position. The chord, which varies from point to point along thewing, is the distance from
the leading edge of the wing to the trailing edge, measured along the direction of the
relative air flow. (B) A gliding bird’s weight is balanced by the pressure difference
between the lower and upper surfaces, multiplied by the wing area. The area of
reduced pressure above the wings accounts for most of this pressure difference, and it
continues across the body. This is why the area of the body between the wing roots is
included in the wing area.

Flight calculates the mean chord internally, and uses it for calculating
Re yn o l d s n u m b er s ( Chapte r 4 , B ox 4.3) and red uc ed freq uencies ( Chap ter 4 ,
Box 4.4).
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BOX 1.3 Continued.

Aspect ratio
The aspect ratio (Ra) is the ratio of the wing span to the mean chord, and it
expresses the shape of the wing:

Ra ¼ B

cm
; ð2Þ

or, more conveniently:

Ra ¼ B2

Swing
: ð3Þ

Wing area is somewhat troublesome to measure (Box 1.4) and not as crit-
ical as wing span. If a few wing areas are measured among a sample of birds
of the same species, they can be used to get an estimate of the aspect ratio,
which may be assumed to be constant for the species. This means that the
wings are assumed to be all of the same shape, though not necessarily the
same size. Then, if a bird’s span has been measured, the aspect ratio can
be used to estimate its area by inverting Equation 3:

Swing ¼ B2

Ra
: ð4Þ

Flight will accept either the wing area or the aspect ratio for input. If
supplied with one, it will calculate and enter the other automatically, so
long as the wing span has already been supplied.

Tail area
The tail is an accessory lifting surface in birds, and is more analogous in its
function to a flap than to the horizontal tail of conventional aircraft. Birds’
tails have been represented as an expandable delta wing, behind the main
wing (Thomas, 1993). This is not included in Flight as most birds only
deploy and use their tails at low speeds that are below the range covered
by the calculations, and besides, the theory is somewhat conjectural. The
tail is usually furled at normal cruising speeds, from the minimum power
speed up, and may then be assumed to contribute no lift.
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The programme will be misled by numbers that mean something

different from what it assumes, which is not unusual for numbers iden-

tified by the same names in the ornithological literature. It serves no

useful purpose for a field or laboratory observer to collect infinitely

detailed statistics on variables that do not affect flight performance,

and then get wing spans and areas (which do) from bird field guides,

museum specimens or published figures from authors who neglected

to define exactly what their measurements mean. Body mass is

straightforward, but the manner in which the programme subdivides

it (Box 1.2) needs to be understood when calculating migration perfor-

mance. In particular, the concept of ‘‘lean mass’’ is not used in this



BOX 1.4 Procedures for measuring wings.

Measuring wing span
There are two ways to measure the wing span, both of which are quick and
easy to do on a live bird, with minimal stress. For a small bird, with both
wings in good condition, place the bird on a flat surface, the right way up
(not on its back). Stretch both wings out to the sides as far as they will go,
with the tips on the surface, and check that the elbow and wrist joints are
in their fully extended positions. Place markers, just touching each wing
tip. Then fold the wings up, remove the bird, and measure the distance
between the markers.
The other way is to measure the semi-span, which is usually easier for

large birds. This is the only option if one wing is damaged. Stretch the good
wing out as above, and use a tape measure to determine the distance from
the backbone to the wing tip. This is the semi-span. Double it to get the
span. The measurement is made from the body centre line (not the shoulder
joint) to the wing tip. The centre line is easy to locate by feeling for the neu-
ral spines of the vertebrae, which stand up from the backbone as a sharp
ridge. It is important to make sure that the elbow joint is fully extended,
by pushing it gently forward until it locks.

Measuring wing area
The wing area is measured in two stages. First make a tracing of one wing
(not forgetting to measure the wing span), and then measure the area from
the tracing. A wing tracing that is not accompanied by a wing span mea-
surement is completely useless, and cannot be used for measuring wing
area. The best idea is to write all the data about the bird, including the span,
directly on the wing tracing. Wings of small birds can be traced in a sketch-
book that opens flat, while a roll of parcel paper is good for large birds.

Tracing the wing
Put the drawing surface at the edge of a table, and hold the bird with one
wing spread on the drawing surface, and its body beside the table edge,
but not actually on it (Figure 1.2A). Spread the wing straight out to the bird’s
side, with the elbow and wrist joints fully extended. Do this with the bird
right-way up, not on its back. Find the elbow joint (quite close in to the side
of the body), and push it gently forwards until it locks in the fully extended
position. Then draw the outline of the wing, following in and out of the
indentations between the flight feathers. This results in a ‘‘partial wing’’,
which is incomplete (open) at the inner end.

Finding a partial wing area from the tracing
First complete the partial wing tracing by drawing a straight line across the
open end, parallel to the body centre line. This is the ‘‘wing root line’’. Its
exact position is not critical, so choose a position that gives a realistic root
chord (defined in Box 1.2). The first job is to measure the area of the partial
wing. Of course, there are digital ways of doing this, and it may be worth the
trouble of setting one up, if you have hundreds of small wings to measure. If
you have to measure occasional warblers, ducks, pelicans etc., low-tech
methods are easier, quicker, less error-prone and just as accurate if not
more so.

1 Background to the Model 11
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FIGURE 1.2 (A) A bird’s wing area is measured from a tracing of one wing, fully spread
over a drawing surface. The root end of the wing is left open at a point that is representa
tive of the root chord. (B) The tracing is closed by ruling a straight wing root line parallel to
the body centre line, and the enclosed area (grey) is measured by counting squares on a
transparent grid laid over it. The root box extends the wing root to the centre line (back
bone), and the combined area is then doubled to get the total wing area (see Box 1.4).

First use a drawing programme to make a rectangular grid of 1 cm � 1 cm
squares (or 0.5 cm � 0.5 cm for small birds). Number the lines along all four
edges. Print the grid out on acrylic sheet as used for overhead transparen-
cies, and check that the line spacing is indeed what it is supposed to be.
Lay the grid over your wing tracing, aligning one edge with the wing root
line, as shown in Figure 1.2B. Line up the leading edge of the wing so that
it roughly corresponds with one of the horizontal grid lines. Starting from
the left edge of the grid in Figure 1.2B, the third row of squares contains
8 full squares (allowing for the fact that the leading edge wanders up and
down across the grid line), and some partial squares beyond column 8. If
the filled parts of columns 11 and 12 were flipped over, they would fit in

12 MODELLING THE FLYING BIRD
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the unfilled parts of columns 9 and 10, making two complete squares
beyond column 8. That makes 10 filled squares for the first row of the partial
wing (row 3). Row 4 has a bit more than 11 filled squares, and row 5 has a bit
less than 11, so count them as 11 each. Row 6 has about 8 filled squares, and
all the small parts of the trailing edge in row 7 add up to about 1 filled
square. That makes 41 filled squares in all for the partial wing. If the bird
is so small that you get less than 100 squares in the partial wing, then it is
better to use a grid with smaller squares, so that you have a chance of mea-
suring the area within 1%. That is ample precision for the wing area mea-
surement. In practice, 0.5 cm � 0.5 cm squares are good for small
passerines, and 1 cm � 1 cm squares suffice for bigger birds.

Completing the wing area measurement
Although the squares in Figure 1.2B are bigger than ideal for the size of the
bird, that will not stop us from completing the wing area calculation. We
now know that the partial wing (the grey area) is 41 cm2, but this is not
the whole area for one side. You have to extend the root end of the wing
to the centreline, by adding a ‘‘root box’’. First measure the root chord on
the tracing, along the wing root line which you marked in. Then measure
the ‘‘partial wing length’’, which is the distance from the wing root line to
the tip of the longest primary. You already know the semi-span, having
measured it directly on the bird. The width of the root box is the difference
between the semi-span and the partial wing length (1.5 cm in Figure 1.2B),
and the length of the box is 4.4 cm, the same as the root chord. The area of
the root box is therefore 1.5 cm � 4.4 cm ¼ 6.6 cm2. You can now work out
the wing area as follows:

Partial wing 41.0 cm2

Root box 6.6

Area this side 47.6
�2

Both sides 95.2 cm2

The best place to do this little calculation is on the tracing, right beside the
partial wing. Flight wants the wing span (B) in metres (divide cm by 100)
and the wing area (Swing) in square metres (divide cm2 by 104). While you
are at it, work out the aspect ratio as well (B2/Swing), and write all three
results on the tracing:

B ¼ 0.258 m
S ¼ 0.00952 m2

Ra ¼ 6.99

An aspect ratio near 7 means that the wing is shaped about like the one in
Figure 1.2. If we had got a ridiculous aspect ratio of 70 or 0.7, that would
alert us to a mistake in the calculation.
Notice that the measured wing area is not very sensitive to the exact posi-

tion where you draw the wing root line, to complete the partial wing. If you
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move the wing root line outwards a bit, you get a smaller partial wing, but
this is compensated by a bigger root box, and vice versa. Little or no subjec-
tive judgement is required by this method of measuring wing areas, and it is
consequently very repeatable between different observers.

Entering wing measurements into Flight
The wing span must be entered first (in metres), and this should be a first-
hand measurement—never a guess, or an estimate from some dubious pub-
lished regression, or a quote from a field guide. The wing area is a less critical
measurement. If you have a measured value, then enter it (in square metres).
The programme will automatically calculate the aspect ratio, and display it in
the box. Check that it is a believable value, and if not, look for wrong units or
spurious factors of 10 in the entered wing span and area.
Sometimes you have a good value for the wing span (essential), but no

measured wing area. In that case, you can enter the aspect ratio, if you
can guess it from other birds that you have measured, whose wings are sim-
ilar in shape. The programme will then calculate and enter the wing area.
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book or in Flight, because its use in migration studies is obsolete and

misleading. ‘‘Mass fractions’’ are defined in Box 1.2 for components

such as the stored fat and flight muscles, and these are the ratio of

the mass component to the all-up mass, not to the lean mass.

Bats, pterosaurs and even mechanical ornithopters can be described

by their mass, wing span and wing area, and Flight will predict their

performance, interchangeably with birds. For such non-birds (and

birds with oddly shaped bodies), it may be necessary to adjust the

values of some non-morphological variables, which are set to default

values by the programme, but can be changed in the setup screens

for different calculations. The reader should not be intimidated by

the number of variables that can be adjusted, or by the somewhat

arcane nature of some of them. The defaults will do for most practical

purposes, but if one such variable (a drag coefficient for instance) is

suspected to be the source of an observed discrepancy, it is easy to

change the value systematically through several programme runs,

keeping all other values the same. The results can be saved as an Excel

Workbook, in which the results of each run are saved as a new Work-

sheet, together with the input from which they were generated. The

meanings of those variables that are accessible to the user, and the

effects and implications of tweaking their values, are explained in later

chapters, and in Flight’s online manual.
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1.1.3 DESCRIBING THE FLIGHT ENVIRONMENT

Besides the three morphological variables that describe the bird, Flight

also requires values for two further variables (only) that describe the

environment in which the bird flies. These are the acceleration due to

gravity and the air density, both of which have a major effect on Flight’s

perfor mance predictions. These v ariables are discusse d in Chapte r 2 ,

with methods of entering values into Flight. A default value is used

for gravity, but this can be changed by the reader who wants to

simulate flight elsewhere than here on earth. Air density is often

overlooked or ignored by biologists, although not by pilots, who are

acutely aware of its effects on flight performance. These effects also

apply to birds, and it is essential to supply a realistic value. There is

no default value for the air density, and Flight will not run until the

user selects one of a number of options. For example, the programme

will calculate and enter the air density if the user supplies measured

values of the ambient pressure and temperature, or it will calculate a

hypothetical value that corresponds to a specified height in the

Inter natio nal Standard Atmosphere ( Chapter 2 ).
1.2 THE ENGINEERING APPROACH TO NUMBERS

1.2.1 CALCULATION AS OPPOSED TO STATISTICS

In physiology, if you want an estimate of the rate of fuel consumption,

then you have to measure it directly, or else measure something that

you hope is proportional to it, like the rate of oxygen consumption.

The result comes out in whatever units happen to be inscribed on

the apparatus, such as watts, British Thermal Units per hour, calories

per minute or even millilitres of oxygen per hour. If you only have to

deal with one type of quantity, an arbitrary choice of units is fine for

collecting statistics fodder, and may even serve for very basic calcula-

tions, but that is not Flight’s approach. The programme does not get

its power estimates from regressions based on data of this type; in fact

it does not use regressions at all. Instead, it estimates the power from

other variables with other dimensions, basically the force that the

wings apply to the air, and the speed with which they move. The force

in turn comes from the rate at which momentum (mass times speed) is

added to the air flowing over the wings. Flight then goes on to assume

that the power estimated from force times speed must be accounted

for by the rate of consumption of fuel energy. The calculation does
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not depend on any direct measurements of power as such. Unnatural

as it may seem to many biologists, no statistics are involved.

The vast literature about measured rates of energy consumption in

birds gets barely a mention in this book, because total fuel consumption

is the end result of all processes that consume energy. A statistical sum-

mary of measurements of this type, on some particular bird, can be used

to predict the energy consumption of the same bird, but cannot be

transferred to other birds, flying under other conditions. The conditions

include the air density, a fact that would be difficult to account for

statistically, and seems to be unknown to most physiologists anyway.

Flight works in the opposite direction from physiological experiments.

It starts by simulating the underlying physical processes that result in

a requirement for fuel energy, estimates the contribution of each to

the fuel requirement, and adds in other assumed requirements (like

basal metabolism) to estimate the total fuel consumption. Physiological

experiments can be used to test whether the programme’s predictions

are accurate, but only if the required morphological measurements

are carefully made and tabulated, and the local air density during the

experiment is measured and recorded.
1.2.2 THEORY TELLS YOU WHAT TO MEASURE

If the model predicts that a bird can do something, which you know

from observation that it definitely cannot do, that is a discrepancy

which needs to be resolved by identifying and amending some wrong

value in the input data, or possibly an error in the structure of the

model itself. The resolution of discrepancies allows this type of model

to be progressively improved and refined, so that greater confidence

can be attached to its predictions. The time to think about this is at

the planning stage, by examining the output that Flight generates,

and using it to determine what measurements are needed. Too many

experimenters turn to theoretical models as an afterthought, only to

find that they have neglected to measure variables on which any kind

of performance calculation depends, such as the bird’s wing span and

the air density, and have made meticulous measurements of quantities

that cannot be predicted from any physical model. Before deciding

what exactly to measure in a new experiment, please check the pro-

gramme’s input to see what information it needs, and look at its output

to see whether you can measure anything that it predicts. The testing

of hypotheses, and resolution of discrepancies, is covered at greater

leng th at the end of the book (Chap ter 15 ).
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1.2.3 STATISTICAL TESTS AND SAMPLE SIZE

Many biologists and journal editors seem to regard copious and

intricate statistical tests as an essential part of any kind of biological

investigation, but this is not usually appropriate in flight studies. Statis-

tical tests have their uses, for example for checking whether a sample

of measurements can be reconciled with a predicted value, but not

for generating the predictions in the first place. The predictions come

from Newtonian physics, usually involving combinations of variables

with different dimensions. The mindset required for collecting mea-

surements that are to be used in this way differs radically from the

more usual biological situation, in which arbitrarily defined numbers

are collected for use as input data for a statistical package, without

regard to their physical meaning, even if they have any.

The idea of ‘‘uncertainty’’ as applied to numbers calculated by the

programme is different in concept from the statistical idea of confi-

dence limits, and applies to an output number (such as the power

output of the flight muscles) that is calculated by a formula from a

set of input numbers (body mass, wing span, air density etc.). The

uncertainty of the output is calculated by combining contributions

caused by the individual uncertainties of each of the input variables

(Spedding and Pennycuick, 2001), a procedure that is standard in phys-

ics and engineering, but less familiar in biology. Uncertainty calcula-

tions are not a major preoccupation in this book, but the principle is

used to draw ‘‘uncertainty bands’’ above and below the power curves

that Flight generates (power versus speed), and on either side of the

estimated minimum power speed, as this is an important benchmark

number (Ch apter 15 , Box 15.2).

No statistics are required to determine that a particular bird is able to

fly, and the observation that it can do so puts upper or lower limits on

some of the numbers that are involved in calculating the power output.

One of these, the maximum isometric stress that the flight muscles can

generate, has the status of a biological constant in that its value, once

determined, is expected to apply to all vertebrates, living or extinct,

including pterosaurs. This number is difficult to measure by direct

experim ent, but its valu e is estima ted in Ch apter 7 (Sect ion 7.3.7)

from the observation that a particular whooper swan was capable of

sustained level flight, and for this a sample size of N ¼ 1 is not

merely acceptable, but mandatory. The default value in Flight for the

isometric stress comes from the largest whooper swan for whom the

necessary data were available, not from a typical or average swan, for

the reasons expla ined in C hapter 7. It is the individual bird that flie s,
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not the mean of a sample. When comparing the results of wind tunnel

experiments with Flight’s predictions, it may be possible to repeat the

measurements on another bird, but this does not usually bring any

benefits in terms of increased precision, because the calculations

have to be reconciled separately for each individual, however many

there may be. N ¼ 1 is fine in most cases.

1.3 DIMENSIONS AND UNITS

It is possible to enter data, run the Flight programme, and get results,

without having any idea what the programme does or how it works,

but there are hazards in this type of approach. At the minimum, it is

essential to present input in the units that the programme expects,

which are the basic SI units, not multiples or submultiples. Mass is in

kilograms not grams, wing span is in metres, not millimetres, and so

on. The expected units are stated on the setup screens. Just enter the

right number, and press TAB (not Return). It is also a good idea to be

clear about the dimensions of every variable in the input and output,
BOX 1.5 Dimensions and units.

The ‘‘dimensions’’ of a variable are a statement of its physical nature, for
example power can be said to have the dimensions of work/time. The
dimensions of all physical quantities required in mechanics can be
expressed in terms of only three primary quantities. In physics, the favoured
three are traditionally mass (M), length (L) and time (T). In those terms,
force has the dimensions of mass (M) times acceleration (LT�2), so that
the dimensions of work (force times distance) are M � LT�2 � L, making
ML2T�2. The dimensions of power (work/time) are therefore ML2T�3. The
result is the same if you think of power as force (MLT�2) times speed
(LT�1). The SI unit of power, with dimensions ML2T�3, is called the watt
(abbreviated W) but that is a convenience to save the trouble of writing
out its full name, which is kg m2 s�3. All SI units used in mechanics are built
up in this way from the kilogram, metre and second. Compound units that
have names honouring famous scientists (newton, pascal, joule etc.) are
written with a lower case initial letter, although their abbreviations (N, Pa, J)
may not be. Table 1.1 is a summary of the dimensions and SI units of the
variables used in subsequent chapters of this book.
Equations of the kind found in the boxes in this book are actually sen-

tences, in which the ‘‘equals’’ sign is the verb. Each equation says that the
expression that stands on the left of the ‘‘equals’’ sign is the same as
the expression on the right-hand side, whether or not they look similar at
first sight. If that is so, then the dimensions must be the same on both sides,
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TABLE 1.1 Dimensions of variables and SI units.

Quantity SI Unit Dimensions

Mass kilogram (kg) Mass M
Length metre (m) Length L
Time second (s) Time T
Area square metre (m2) Length2 L2

Volume cubic metre (m3) Length3 L3

2nd moment
of area

metre to the fourth (m4) Length4 L4

Frequency hertz (Hz) Inverse time T�1

Density kilogram per cubic metre
(kg m�3)

Mass/volume ML�3

Moment of
inertia

kilogram metre-squared
(kg m2)

Mass �
length2

ML2

Velocity metre per second (m s�1) Length/time LT�1

Acceleration metre per second-squared
(m s�2)

Length/time2 LT�2

Force newton (N) Mass �
acceleration

MLT�2

Pressure pascal (Pa) Force/area ML�1T�2

Work, energy joule (J) Force � length ML2T�2

Moment,
torque

newton metre (N m) Force � length ML2T�2

Power watt (W) Work/time ML2T�3

Specific work joule per kilogram (J kg�1) Work/mass L2T�2

Specific
power

watt per kilogram
(W kg�1)

Power/mass L2T�3

Dynamic
viscosity

newton sec per square
metre (N s m�2)

Pressure �
time

ML�1T�1

Kinematic
viscosity

square metre per second
(m2 s�1)

Area/time L2T�1

and this is often useful as a quick way to check for errors in complicated
equations. In Box 7.3 of Chapter 7, this principle is taken further, and
usedto find an expression that predicts a bird’s wingbeat frequency in
cruising flight from five variables that affect the wingbeat frequency, but
have different dimensions, namely the bird’s mass, wing span and wing
area, plus the air density and the strength of gravity. Not only does the
calculation of wingbeat frequency in Flight not involve a regression,
actually it does not involve any measurements at all. The basic result
comes from considering the dimensions of the variables only. It is not
completely unique, but leaves only a small amount of scope for putting
more weight on one input variable at the expense of another.
Observations of wingbeat frequencies are used only in the final stage, to
resolve this residual ambiguity.
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and not to waffle (for example) about ‘‘flight costs’’ without specifying

whether this means energy, or energy per unit time, or energy per unit

distance. There is more information about dimensions and units in

Box 1.5, and also in my Conversion Factors (Pennycuick, 1988a).

If all of the variables in a physical calculation are expressed in units that

belong to an internally consistent family, like the SI, then no conversion

factors are needed for the results. Each calculated result comes out in

the SI unit with the appropriate dimensions, whatever thatmay be. Speed

is everywhere inflight calculations, and the SIunit is themetre per second.

If you insist onmeasuring speed in kilometres per hour, this introduces an

unnecessary conversion factor of 3.6, and if the speed has to be squared

or cubed, a massive tangle of conversion factors quickly takes over the

calculation. Physiologists will recognise this syndrome.

1.4 LITERATURE CITATIONS

This book presents the particular model of the mechanics of bird flight

that is embodied in the Flight programme, together with sufficient

background to understand how the programme works, and how to

use it for testing the underlying assumptions. The book is not a review,

and it does not attempt to provide an exhaustive bibliography, citing

everything that has ever been written about flight. Books in which

the literature is comprehensively reviewed include Norberg (1990)

and Videler (2005). The reference list is short for a book of this length,

and contains those publications from which I got information that was

used in the book, or built into the Flight programme. The list includes

some general textbooks on aeronautical engineering (von Mises, 1959;

Anderson, 1991) which cover the theoretical and experimental back-

ground on which the model is based, and other books and papers from

which I got items of theory or observation that I have used in the text.

I cite a source if I have used it to build Flight, or to explain it in the book,

otherwise not. Perhaps eccentrically, I do not even cite my own papers,

unless I have used the findings in the book or in the programme.
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THE FLIGHT ENVIRONMENT
The two most important environmental quantities for flight calculations are the strength
of gravity and the density of the air, neither of which is routinely recorded in tradi
tional biological investigations. This chapter outlines the properties of the earth’s
gravity field and atmosphere, gives practical methods for estimating the air density
at the bird’s flying height, and introduces the properties, uses and limitations of the
fictional International Standard Atmosphere. If the flight environment has changed
over geological time, this would affect the interpretation of fossil flying animals.

A bird’s flight performance is affected by the chemical composition,

humidity and temperature of the air in which it flies, but these effects

are physiological, and are not covered by the Flight program. Flight

deals with the physics of flight, and it requires values for just two envi-

ronmental variables, neither of which is routinely recorded by physiol-

ogists or ecologists. These are the strength of gravity and the air

density. Flying would be a very different proposition on either of

our planetary neighbours Mars and Venus, even if they had oxygen in

their atmospheres and benign temperatures, and were able to support

life. Both have weaker gravity than ours, which reduces the weight for a

given mass, and also the energetic cost of supporting it. Flying would
21rved.
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be slow on Venus, and cheap in terms of power, because the atmo-

sphere is two orders of magnitude denser than ours, but fast and

expensive on Mars, because the atmosphere there is two orders of

magnitude less dense than ours. Here on Earth, gravity is nearly

constant, anywhere that a bird is likely to go, but the density of the

air varies wildly from place to place, from day to day and (especially)

at different heights above sea level.

2.1 THE EARTH’S GRAVITY FIELD

The Newtonian view of gravity is sufficient for flight performance cal-

culations. It says that the earth exerts a force on the apple (its weight)

which is proportional to the product of the mass of the earth and that

of the apple, and inversely proportional to the square of the distance

between their centres of mass. The weight force actually attracts the

earth to the apple as well as vice versa, but since the earth is much

more massive than the apple, we perceive this mutual attraction as a

force that causes the apple to accelerate, if dropped, towards the earth.

The weight of a meteorite of constant mass (i.e., not burning up)

increases as it falls in from space because it is getting nearer to the cen-

tre of the earth, and reaches a maximum value at the surface. If it hap-

pens to fall down a mine shaft, its weight starts to decrease, because

some of the earth’s mass is now attracting it from above. Since different

objects experience weights proportional to their masses, all experience

the same acceleration in free fall, relative to the earth, at the same

point in the gravity field. This acceleration due to gravity is used as

the measure of the strength of gravity. The earth’s gravity at the surface

is strongest at the poles and weakest at the equator, for two reasons.

In the first place, the earth’s radius is greater at the equator, and an

object at the surface there is further away from the earth’s centre

than it would be at the poles. Secondly, the rotation of the earth forces

an object on the surface to accelerate towards the earth’s centre,

thereby reducing its weight. This centripetal effect is strongest at the

equator, and dwindles to nothing at the poles.

The effects of latitude and height on gravity are combined empiri-

cally in Helmert’s equation (Box 2.1, Table 2.1). At any latitude, the

earth’s gravity decreases with height above sea level. Taking the effects

of latitude and height together, the acceleration due to gravity varies

from 9.83 m s 2 at sea level at the poles, down to 9.75 m s 2 at a height

of 10,000 m above sea level over the equator (Table 2.1). Small ‘‘gravity

anomalies’’ are superimposed on this underlying gravity distribution,



BOX 2.1 The earth’s gravity.

Helmert’s equation is a polynomial expression which gives an approxima-
tion to the acceleration due to gravity (g) in m s�2, as a function of latitude
(L) and height (h) in metres above mean sea level:

g ¼ 9:80616 ½0:025928cosð2LÞ� þ ½0:000069cos2ð2LÞ� ½ð3:086� 10�6Þh�
Values of g from this formula are tabulated in Table 2.1 for latitudes from

0 to 90 degrees (either north or south), and heights up to 10,000 m above sea
level, which is near the top of the troposphere, and higher than any bird is
known to fly. The formula allows for the earth’s angular velocity and ellipsoi-
dal shape, but not for gravity anomalies due to topography, or variations of
density in the mantle and crust.

TABLE 2.1 Earth’s surface gravity.

Latitude

(N or S)

Height above mean sea level (m)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0� 9.780 9.777 9.774 9.771 9.768 9.765 9.762 9.759 9.756 9.753 9.749
10� 9.782 9.779 9.776 9.773 9.770 9.766 9.763 9.760 9.757 9.754 9.751
20� 9.786 9.783 9.780 9.777 9.774 9.771 9.768 9.765 9.762 9.759 9.755
30� 9.793 9.790 9.787 9.784 9.781 9.778 9.775 9.772 9.769 9.765 9.762
40� 9.802 9.799 9.795 9.792 9.789 9.786 9.783 9.780 9.777 9.774 9.771
50� 9.811 9.808 9.804 9.801 9.798 9.795 9.792 9.789 9.786 9.783 9.780
60� 9.819 9.816 9.813 9.810 9.807 9.804 9.801 9.798 9.794 9.791 9.788
70� 9.826 9.823 9.820 9.817 9.814 9.811 9.808 9.804 9.801 9.798 9.795
80� 9.831 9.827 9.824 9.821 9.818 9.815 9.812 9.809 9.806 9.803 9.800
90� 9.832 9.829 9.826 9.823 9.820 9.817 9.814 9.811 9.807 9.804 9.801

Acceleration due to gravity in m s
2
from Helmert’s equation.
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due to density variations in the earth’s mantle and crust. It is usually

assumed that gravity was much the same in past ages as it is now,

although it is not clear that the average density of the mantle has

always been the same as it is now. If the mantle were to expand,

surface gravity would decrease without any change in the earth’s mass,

and if it did that in mesozoic times, the existence of very large dino-

saurs and pterosaurs would be easier to understand (Box 2.4). The

default value used for gravity in Flight is 9.81 m s 2, and this will

usually be within half of one per cent of the present value of gravity,

anywhere that a bird is likely to go. The value of gravity in the

programme can be changed by the user, but this is intended for simu-

lating flight on other planets, or on earth at past or future times, rather

than for refining the present value of gravity at particular points.
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The effect of acceleration is indistinguishable from that of gravity as

far as any physical process is concerned. This includes the power

requirements for flight, and applies to all accelerations, not just the

one due to the earth’s rotation. The basic power curve or glide polar

is calculated in later chapters on the assumption that the bird is

proceeding at a constant speed in a straight line, relative to the earth’s

surface, but if it accelerates upwards or downwards, then the accelera-

tion produces effects that are indistinguishable from those due to a

change in the strength and/or direction of gravity. For example, in the

flapping phase of ‘‘bounding’’ flight, as commonly seen in small pas-

serines, the flight path curves upwards, meaning that the bird acceler-

ates in a direction perpendicular to its flight path. The effect of this

acceleration on the bird’s requirement for power is the same as that

of an increase in gravity, and its power requirements and wingbeat

frequency are affected acco rdingly (Ch apter 9, Box 9.1).
2.2 THE EARTH’S ATMOSPHERE

The earth’s atmosphere consists mostly of nitrogen and oxygen, and its

continued existence depends on the gravity field being strong enough

to retain these gases. The lower layers of the atmosphere are compressed

by the weight of the gas molecules above, and the three basic physical

properties of the atmosphere, its pressure, temperature and density, all

decrease in a regular way with height above the surface. The atmosphere

is the source of oxygen for aerobic flight, and the sink for disposing of

carbon dioxide, water and heat. The temperature and relative humidity

of the air affect the physiology of flight, while its transparency (or lack

of it) affects orientation and navigation. However, the only property of

the air for which a value is required for the mechanical calculations in

Flight is its density, which appears in all of the performance equations

in the boxes accompanying Chapters 3 and 10. A measured or estimated

value must be entered before Flight will run. Double-clicking on the box

for air density in any of Flight’s Setup screens will invoke several easy

options for setting the air density, either from direct measurements, or

from estimates derived from the International Standard Atmosphere

(below), or a combination of the two.
2.2.1 THE INTERNATIONAL STANDARD ATMOSPHERE

The International Standard Atmosphere is a convenient fiction repre-

senting the physical properties of a typical sample of the atmosphere,

somewhere between the tropics and poles, and between fair weather



BOX 2.2 The International Standard Atmosphere.

The International Standard Atmosphere is a much-simplified ‘‘average’’
atmosphere, which consists of defining the vertical distribution of a number
of physical properties of the air, as functions of height above sea level. The
following information is from von Mises (1959). Readers who consult this,
and have difficulty with the archaic units that von Mises used, will find
conversion factors, and background information about unit systems, in Pen-
nycuick (1988a).

Variable definitions for this box
h Height above sea level (ASL)
p Air pressure
T Air temperature (Celsius)
l Air temperature lapse rate
n Air kinematic viscosity
r Air density

Air temperature
The lowest zone of the International Standard Atmosphere is the tropo-
sphere, in which the temperature is 15 �C at sea level, and declines with
height at a lapse rate (l) whose value is constant at 0.0065 �C m�1 up to
11,000 m above sea level (ASL). The temperature (T) in degrees C at a height
h (metres) above mean sea level is:

T ¼ 15 0:0065h ð1Þ
The top of the troposphere (the tropopause) is at 11,000 m ASL, and the

temperature there is 56.5 �C. Above the tropopause is an isothermal zone,
the stratosphere, where the temperature remains at 56.5 �C, although the
pressure and density continue to decrease with height. Bird flight is essen-
tially confined to the lower half of the troposphere.

Air pressure
The barometric pressure at sea level in the International Standard
Atmosphere is 1013.2 millibars. The millibar is the same as the hectopascal
(hPa), meaning 100 pascals. The pressure (p) at a height h (in metres ASL) is:

p ¼ 1013½1 ð2:26� 10�5Þh�5:256 ð2Þ

Air density
The air density at sea level in the International Standard Atmosphere is
1.226 kg m�3. Taking the sea level pressure to be 1013 hPa and the tempera-
ture 15 �C (or 288 K), the local air density (r) at any point in the troposphere
can be found from Boyle’s Law, using the locally measured values of pres-
sure (p) and temperature (T):

r ¼ 1:226ðp=1013Þ½288=ðT þ 273Þ� ð3Þ
If the pressure is in hPa (same as millibars) and the temperature is in

Celsius, then the density from Equation (3) will be in kg m�3. As both the
pressure and temperature decrease with height, so also does the air density,
steeply at first, and then ever more gradually.
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BOX 2.2 Continued.

Kinematic viscosity
The air’s kinematic viscosity is the ratio of its viscosity to its density. Kine-
matic viscosity has the dimensions of area/time, and the SI unit is the
square metre per second. It is nearly independent of pressure or density,
but increases with decreasing temperature, and thus with height in the
troposphere. It is represented by the symbol n (Greek ‘‘nu’’), and its value
in the International Standard Atmosphere may be approximated up to
the tropopause by the polynomial:

n ¼ 1:466þ 0:09507hþ 0:01047h2 ð4Þ
Note that h in this formula is the height in kilometres (not metres), and

that the kinematic viscosity is in units of 10�5 m2 s�1. Thus the sea-level
value (h ¼ 0) is n ¼ 1.466 � 10�5 m2 s�1. A graph of Equation (4) is shown
in Figure 2.1. Flight calculates the air’s kinematic viscosity internally from
the flying height [Equation (4)] and uses it to calculate Reynolds numbers,
which are included in the program’s output (Chapter 3, Box 3.6).
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FIGURE 2.1 The kinematic viscosity of air in the International Standard Atmosphere is
1.466 � 10�5 m2 s�2 at sea level, increasing with altitude according to Equation (4) of
Box 2.2, which is a second degree polynomial fitted through figures tabulated by von
Mises (1959).

26 MODELLING THE FLYING BIRD
and foul. Its physical properties are functions of height above sea level

only (Box 2.2). They do not vary with geographical location, or with the

seasons, unlike those of the real atmosphere. The temperature at sea

level in the International Standard Atmosphere is 15.0 �C, and the

‘‘lapse rate’’ is constant at 0.0065 �C per metre of height, up to a height

of 11,000 m, where the temperature is �56.5 �C. This level is the tropo-

pause, the upper boundary of the troposphere. Above the tropopause
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the stratosphere begins, where the lapse rate in the International Stan-

dard Atmosphere is zero, and the temperature is constant at �56.5 �C.
The real atmosphere conforms reasonably well to this tidy picture in

the mid-latitudes, but the real tropopause is higher (more like 18 km)

over the tropics, and lower (about 9 km) over the poles. The average

sea-level temperature is, of course, higher in the tropics than in the

polar regions, while the temperature in the stratosphere is around

�80 �C over the tropics, and warmer (around �50 �C) over the poles.

The International Standard Atmosphere was devised for such practi-

cal purposes as standardising aircraft altimeters, and it is also useful

for hypothetical scenarios, in which (for instance) a bird is assumed

to fly at a particular altitude, and estimates of atmospheric variables

are needed. It should not be used as a substitute for measuring the

air density when observing bird flight in the field or the laboratory,

as the local properties of the real atmosphere vary according to the

weather, and the climate at any particular location. Monitoring
BOX 2.3 Measuring air density.

All flight performance calculations involve the air density. The ambient air
density at the observer’s position can be calculated from the barometric
pressure and the air temperature, and these two measurements should
always be recorded when observing bird flight, either in the field or in the
laboratory.

Variable definitions for this box
hft Height in feet above datum indicated by altimeter
h Height in metres above datum indicated by altimeter
Dh Measured height in metres of bird above observer
p Barometric pressure
T Temperature (Celsius)
r Air density
r1 Air density at the observer’s position
r2 Air density at the bird’s flying height

Measuring ambient air density directly
The local air density (r), in kg m�3, can be found from the measured baro-
metric pressure (p) in millibars (same as hectopascals) and air temperature
(T ) in degrees Celsius, from the Boyle’s Law equation:

r ¼ 1:226ðp=1013Þ½288=ðT þ 273Þ� ð1Þ
Laboratory-grade instruments are permanently installed in wind tunnels,

so that the barometric pressure and air temperature in the test section can
be read electronically, and the air density can be calculated from these mea-
surements. For field observations, the barometric pressure can be measured
with a small aneroid barometer, or from an electronic barometer wristwatch
as used by hikers. A barometer watch should be checked for temperature



BOX 2.3 Continued.

compensation, by putting it in the fridge for an hour or two. The pressure
reading should not be affected by a 20 �C change in temperature. If it is,
get a more expensive barometer watch. Ambient air temperature can be
measured with a small liquid or electronic thermometer, taking care to place
the sensor in a shady, well-ventilated place that is not too near warm objects
like cars. The thermometer needs to be out in the breeze, not strapped to
the observer’s wrist!

Measuring air pressure in an aircraft
When observing birds from an aircraft, the ambient barometric pressure can
be obtained from the altimeter, which is actually an aneroid barometer,
calibrated to indicate height directly. The pressure-setting adjustment
on the altimeter should be set to 1013 mbar (or 29.92 inches of mercury).
If the altimeter indicates a height (hft) in feet, what this really means is that
the pressure (p) in millibars is:

p ¼ 1013½1 ð6:88� 10�6Þhft�5:256 ð2aÞ
If the altimeter indicates the height (h) in metres, this formula becomes:

p ¼ 1013½1 ð2:26� 10�5Þh�5:256 ð2bÞ

Air density for flying birds
When using tracking radar or an ornithodolite, the bird and the observer are
usually at different heights, but the height difference (Dh) is measured. Dh is
considered positive if the bird is above the observer, negative if it is below.
The air density at the observer’s position (r1) is found from the ambient
temperature and pressure, using Equation. (1) above. A correction is then
applied to get the density at the bird’s flying height (r2), on the basis that
the air temperature and pressure decrease with height according to
Equations (1) and (2) of Box 2.2, in the manner assumed for the troposphere
in the International Standard Atmosphere. In that case:

r2=r1 ¼ f1 ½0:00650Dh=ð273þ T Þ�g4:256 ð3Þ

Data files from radar or optical tracking
Tracking projects that use tracking radar or optical tracking typically gener-
ate a data set in which air speeds (for example) have been observed for birds
flying at a range of different (measured) heights. Before such observations
can be compared with each other, and/or with a value predicted by Flight,
they have to be ‘‘reduced’’ to a common altitude, such as sea level. This type
of data reduction is discussed in Chapter 15, Box 15.3. It requires an esti-
mate of the air density for each individual observation. The best idea is to
record the air pressure and temperature at the tracking site while observa-
tions are in progress, and apply the correction of Equation (3), at the time
that each observation is recorded. Then each tracking record can include
an estimate of the bird’s local air density. This can later be used to reduce
each observation to sea level, before proceeding with the analysis of the
whole data set.
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BOX 2.3 Continued.

It is not valid to compare speed observations of birds that were flying at
different heights, without taking account of the differences in air density
(Chapter 15, Section 15.1.5).

Entering air density and/or altitude into Flight
The Flight program requires a value for the air density to be entered before
it will do any calculations. When you save a bird in the User Birds database,
the air density that you used in the last calculation is saved as part of the
data for the bird, and will be re-entered when you run the same bird again.
Some (but not all) of the birds in the Preset Birds database also have
associated air densities, which can of course be changed by the user after
entering the bird.
Otherwise, you have to enter a value for the air density. Double-clicking

on the box for air density in any Setup screen brings up a small screen,
which offers you a choice of five methods for estimating and entering a suit-
able value. These are based either on direct observation, which should
always be used for field or laboratory observations, or on the International
Standard Atmosphere, which is useful for hypothetical scenarios. A combi-
nation of both methods is provided for tracking-radar and ornithodolite
observations. The five options are as follows:

1. Enter air density directly
If you know the air density in kg m�3, then just enter it—but usually you
don’t.

2. Enter barometric pressure and air temperature
If you are observing birds flying at your own level, either in the field or in
the laboratory, then record the ambient barometric pressure and air
temperature, and enter these values. Flight will work out the air density
from Equation (1), and enter it into the program.

3. Enter bird’s height above the observer
For tracking-radar or optical tracking, in which you are measuring the
heights at which individual birds fly above the observer, record the
pressure and temperature at the observer’s position as above, then
enter the bird’s height above the observer (negative if it is below you).
Flight will first work out the air density at the observer’s position, and
then apply a correction for the height difference by using Equation (3).

4. Specified height in International Standard Atmosphere
This is strictly for hypothetical calculations, as the International Standard
Atmosphere is not a reliable guide to conditions in the real atmo-
sphere, which vary widely from day to day and from place to place,
according to the weather. Never use this method for field observations,
just to save the trouble of measuring the air pressure and temperature
(no trouble at all). An easy way to enter an estimate for the air density
at a given altitude, on any of the Setup screens, is to enter the altitude
(in metres) in the box below the one for air density, and press TAB.
Flight will calculate the air density that corresponds to that altitude
in the International Standard Atmosphere, and enter it. Conversely,
if you enter the air density directly, the altitude will be adjusted to suit.
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5. Sea level in the International Standard Atmosphere
Entering zero altitude sets the air density to 1.226 kg m�3. Use this to

calculate sea-level performance estimates. If you have a lot of field
observations at different heights, then reduce them to sea level before
plotting them on a graph, or comparing them to a sea-level perfor-
mance cur ve (Chapter 15, Box 15.3).
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the air density at the observer’s level is simply a matter of recording the

air pressure and temperature (Box 2.3). Portable instruments (includ-

ing wristwatches) that will make these measurements are readily

available. The real air density at sea level commonly varies by 5% ormore

above or below the sea-level value in the International Standard Atmo-

sphere, and the density decreases progressively with height above sea

level, all the way to zero in the vacuum of space. Pilots calculate the ‘‘den-

sity altitude’’ before attempting to take off at tropical upland airports,

meaning the height in the International Standard Atmosphere that corre-

sponds to the prevailing air density at the surface. The density altitude can

be hundreds of metres higher than the actual altitude in ‘‘hot and high’’

conditions. Most bird flight occurs in the lower levels of the troposphere,

where the air density is 60% or more of the sea-level value.
2.2.2 WIND AND WEATHER

Weather in the familiar form of clouds and precipitation is mainly con-

fined to the troposphere. Bradbury (1989) explains how the large-scale

processes work, and produce the small-scale weather in which birds

and pilots fly. Although solar energy arrives from above, only a small

percentage of the incoming radiation is absorbed in the atmosphere,

mostly by smoke or aerosol particles. Some of it is reflected back into

space by clouds, or by reflective parts of the surface, especially ice

and snow fields. The remainder is absorbed and heats up the ground

or water, which in turn heats the atmosphere from below. Heat trans-

ferred upwards from the surface to the atmosphere is the energy source

that drives the weather. It results in horizontal temperature gradients,

which, in turn, result in gradients of pressure. One might expect a body

of air to accelerate down a pressure gradient, from high pressure to low,

and so it does in the tropics, but in the mid-latitudes, somewhat

counter-intuitively, the effect of the earth’s rotation is to deflect the

flow of air so that it flows along the lines of equal pressure (isobars)

rather than across them. The result is that in the northern hemisphere
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the air circulates anti-clockwise around an area of low pressure

(depression) and clockwise around an area of high pressure (anticy-

clone), and vice versa in the southern hemisphere. At the surface, friction

with the ground deflects the flow, so that the air rises gently in a depres-

sion because of the converging flow at the bottom, and conversely the

air sinks in an anticyclone because it diverges at the bottom.

2.2.3 CONVECTION AND CLOUD FORMATION

If we consider a small ‘‘parcel’’ of air rising through the troposphere, it

expands because the pressure decreases with height. If the expansion is

adiabatic, meaning that no heat passes into or out of the parcel of air,

then in the absence of cloud, the temperature decreases with height at

the dry adiabatic lapse rate, which is about 1 �C per 100 m of height.

If the water vapour content of the parcel of air remains constant in

terms of mass percentage, then the relative humidity increases,

because a lower mass percentage of water vapour is needed to saturate

the air as the temperature drops. When the relative humidity reaches

100% (saturated air), cloud forms. The condensation of water vapour

into liquid water droplets releases heat, with the result that the

saturated adiabatic lapse rate, which prevails in cloud, is only about

0.5 �C per 100 m of height. The nominal lapse rate in the International

Standard Atmosphere is 0.65 �C per 100 m of height (above), intermedi-

ate between the dry and saturated values. Cumulus clouds, growing in

clear air, have a well-defined cloudbase level, where air coming up from

below becomes saturated. The characteristic ‘‘cauliflower top’’ develops

as the saturated air in the cloud becomes ever more buoyant, relative

to the dry air outside. On larger scales, cloud forms where air is rising

gently over a large area, as in a depression, and clears in areas of slowly

subsiding air, as in an anticyclone, although there are many factors that

modify these basic trends.
2.3 AIR DENSITY IN FLIGHT

When you save a bird in the ‘‘User Birds’’ database of Flight, the air

density is saved together with the bird’s morphological measurements,

because this is an integral part of the scenario for any performance

calculations. When observing bird flight, whether in the laboratory or

in the field, it is essential to record the prevailing air density if you want

to compare the results with similar observations, on other birds in

other places. The air density at the observer’s position can be found

as explained in Box 2.3, from the readings of a barometer and an air



TABLE 2.2 Mass of the earth’s atmosphere.

Whole atmosphere 5.2
Nitrogen 3.9
Oxygen 1.2
Carbon dioxide 0.0026 (rising)
Water vapour 0.12

Mass of the earth’s atmosphere and its main constituent
gases, in units of 1018 kg, from Budyko et al. (1985).
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thermometer, recorded in the field. This value of the density is only

valid for the bird if it is flying at the observer’s height, as in a wind

tunnel. If the bird is flying at a measured height above or below

the observer, as in tracking radar observations, then the density at

the observer’s position can be corrected for the height difference, by

assuming that the air density varies with height in the same manner

as in the International Standard Atmosphere (Box 2.2). Flight will

accept a value for the air density in kg m 3, or calculate a value from

information that you provide. For example, you can supply observed

values of barometric pressure and air temperature (and a height differ-

ence if applicable), or you can specify a height, and get Flight to calcu-

late the air density that would prevail at that height, according to the

International Standard Atmosphere (Table 2.2).
2.4 GRAVITY AND THE ATMOSPHERE IN
FORMER TIMES

Today’s atmosphere is the end product of thousands of millions of

years of evolution, and some of its major features, including its oxygen

content, are biological in origin. Reconstructing the chemical composi-

tion and physical properties of the atmosphere in past geological eras

is difficult, but there are indications that the atmosphere was denser

in mesozoic times than it is now (Dudley 1998), possibly a lot denser.

Performance calculations for the large pterosaurs that flourished

throughout the Jurassic and Cretaceous periods are conjectural for sev-

eral reasons, among which lack of information about the prevailing air

density is not the least important. Prolonged volcanic episodes that

would have involved increased outgassing, such as the formation of

the Deccan Traps at the end of the Cretaceous, would have injected

large amounts of water vapour and carbon dioxide into the atmo-

sphere, and although neither of these gases would have an appreciable

effect on the sea-level air density, an indirect effect on the mass of



BOX 2.4 Constancy of the flight environment.

The two environmental variables that occur in the equations for speed and
power (Chapter 3) are the acceleration due to gravity and the air density. It is
often assumed (explicitly or not) in discussions of the flight performance of
fossil flying animals that the strength of gravity and the air density were the
same when those creatures lived as they are now. This raises some
difficulties in the case of flying animals that were bigger than any living
birds, namely, the larger Cretaceous pterodactyls (Chapter 6, Section 6.2.5)
and the giant Miocene bird Argentavis, as scaling considerations indicate
that there is an upper limit to the size and mass of an animal that can main-
tain height by muscle power (Chapter 7, Box 7.4). Also, it seems that
present-day swans are ver y near that limit (Chapter 7 , Box 7.5). The
favoured explanation for still larger flying fossil animals is that they must
have been incapable of level flight, and therefore dependant on soaring.
However, if the air density were higher in ancient times than it is now, or
the strength of gravity lower, or both, the difficulty would be reduced, and
might disappear altogether. Is this possible?

Variable definitions for this box
G Newton’s gravitational constant
g Acceleration due to gravity at the earth’s surface
m Mass of a small body resting on the earth’s surface
ma Mass of the earth’s atmosphere
me Mass of a spherical earth
p0 Atmospheric pressure at sea level
R Gas constant
re Radius of a spherical earth
Se Surface area of a spherical earth
T Absolute temperature
W Weight of a small body resting on the earth’s surface
re Mean density of the earth
r0 Air density at sea level

The mass of the earth is constant
Particles of dust fall into the earth’s atmosphere every day from space, some-
times making visible trails as they burn up (meteors). Larger objects
(meteorites) reach the surface and produce craters, and a few are large
enough to cause widespread devastation on the scale that wiped out the
dinosaurs. Kyte and Wasson (1986) estimated that all of these different-sized
objects together increase the earth’s mass by around 78 million kilograms
per year on average, and that this rate has not varied much over past
intervals of tens of millions of years. If we go back 100 million years into
the Mesozoic, then the earth’s mass would have increased by about
8 � 1015 kg since then, according to this estimate. However, as the earth’s
present mass is just under 6 � 1024 kg, or 109 times the estimated amount
added in the last 100 million years, it is safe to say that the accretion of mass
has been negligible for all practical purposes, throughout the time when
there have been flying animals. The earth’s mass may be considered
constant at 5.976 � 1024 kg (Beatty et al. 1981).
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Radius of the earth and surface gravity
Constant earth mass does not necessarily imply that the earth’s radius,
surface area or volume have been constant through time. This depends on
the density of the solid earth, or of its major components, which might
not be constant. Our knowledge of the physical properties of the minerals
that make up the earth’s interior is based almost exclusively on indirect
evidence, because they are inaccessible to direct observation, so that study-
ing the effects of the enormous pressures that must exist deep in the earth,
on minerals whose composition is conjectural, is at best an uncertain enter-
prise. It is conceivable that some mineral components of the mantle might
undergo phase changes whereby the application of a very large pressure
could cause the atoms within a molecule, or the molecules within a crystal,
to be rearranged so as to take up less volume. This would cause a discontin-
uous increase in density, reversible when the pressure is relieved. Such an
effect, if it existed, might be regenerative in either direction. If a layer of rock
were lifted by some disturbance such as a rising mantle plume, the weight of
the rocks would decrease as they moved further from the earth’s centre, and
the pressure in the layer would decrease. If this were to trigger a phase
change to lower density, positive feedback would set in. Likewise the change
to a higher density in descending rocks might also be regenerative, so that a
widespread change in density might follow from a small initial disturbance.
What would be the effect on surface gravity of a large-scale change in
the density of the mantle? For a spherical earth of radius re, the mass (me)
would be:

me ¼ ð4=3Þprer3e ð1Þ
where re is the earth’s mean density. If the mass is constant (above), then
the radius can be expressed as a function of the density:

re ¼ ð3me=4preÞ1=3 ð2Þ
Higher density leads to a lower radius, in proportion to the cube root of

the density. Newton’s law of gravitation says that the weight (W ) of a small
body of mass m, sitting on the earth’s surface is:

W ¼ Gmem=r2e ð3Þ
where G is the gravitational constant (6.6732 � 10�11 N m2 kg�2). Since a
spherical earth of constant density, or one composed of spherical shells,
each of constant density, exerts the same gravitational attraction as a single
mass concentrated at the centre, the distance separating the earth from a
small body on its surface is the same as the earth’s radius [re in
Equation (3)].
Dividing the small body’s weight by its mass (m), and substituting for the

square of the radius from Equation (2), the acceleration due to gravity at the
surface (g) is:

g ¼ Gð4p=3Þ2=3m1=3
e r2=3e ð4Þ
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BOX 2.4 Continued.

If the earth’s mean density decreases, then its radius increases, and
the strength of surface gravity decreases in proportion to the two-thirds
power of the density, for example a 10% reduction in the density would
result in a 3.5% increase in the radius and a 6.8% decrease in surface gravity.
It will be seen in later chapters that such a reduction in gravity
would increase the upper limit for the mass of a flying animal that is able
to maintain height by muscle power, and it so happens that a very similar
effect would apply to the maximum mass of walking animals, albeit for
different reasons (Pennycuick 1987c). If the earth’s surface gravity were
weaker throughout the Cretaceous than it is now, this might account for
the existence throughout the period of pterosaurs that were larger than
any modern bird, and also of dinosaurs that were larger than modern
elephants, although big dinosaurs first appeared somewhat earlier, in
late Jurassic times. Later, in Miocene times, there were dinosaur-sized
mammals such as Baluchitherium, and also a very large bird (Argentavis)
which was apparently able to fly (Campbell and Tonni 1983; Chatterjee
et al. 2007).
Is it possible that the earth was larger than it is at present, with lower sur-

face gravity, from late in the Jurassic until the Miocene, and then gradually
contracted to its present size? This might sound far-fetched, but something
similar was proposed by Carey (1976), whose initial observation was that the
continents (with their continental shelves) do not fit together very well if
moved around on a sphere of the present radius, but fit more snugly on a
smaller sphere. Carey proposed that the earth was smaller than at present
at the beginning of the Jurassic, when the super-continent Gondwanaland
started to break up, and has been increasing in size ever since, and he
assembled enough supporting evidence for this expanding-earth theory to
fill a thick and densely-argued book. Carey’s scenario would need some
modification to account for the occurrence of giant animals from the Creta-
ceous through to the Miocene. The initial expansion would have had to be
rapid, overshooting the earth’s present size by the end of the Jurassic.
The earth would then have had to remain larger than at present until after
the Miocene, before contracting to its present size.
In view of the limited amount of direct information that is available about

the physics of the earth’s deep interior, it would perhaps be rash to dismiss
the possibility of further surprises, comparable to the discovery of plate tec-
tonics. It will be remembered that Wegener’s theory of continental drift was
not taken seriously until long after his death, despite the mass of evidence
that he assembled, indicating that drift had occurred. Likewise Carey’s
expanding-earth theory is not taken seriously today, but his efforts may
yet be recognised, if a mechanism comes to light that could account for slow
but significant changes in the earth’s mean density.

Mass and density of the atmosphere
The pressure that the atmosphere exerts on the earth’s surface is simply the
weight of the column of air resting on each square metre of the surface.
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BOX 2.4 Continued.

If ma is the mass of gas in the atmosphere, and Se is the earth’s surface area,
the surface pressure (p0) is

p0 ¼ mag=Se ð5Þ
This neglects the decrease in g with height above the surface, but the error
from this is small, as the atmosphere is not very thick in relation to the
radius of the earth. The sea-level air density (r0) depends on the absolute
temperature (T) and the pressure:

r0 ¼ p0=RgT
¼ ma=SeRT

ð6Þ

where R is the gas constant, whose value is 29.3 m K�1. Above sea level, both
the pressure and the density decline with height (Box 2.2).
Equations (5) and (6) show that estimates of past atmospheric surface

pressure and density require estimates of both the mass of the atmosphere,
and the also of the earth’s surface area, if the possibility is recognised that
this might have changed over time. Although there is an extensive literature
on the evolution of the atmosphere, much of it is concerned with changes in
the proportions of different gases, and it is usually difficult to extract esti-
mates of mass, let alone of the area on which the pressure was acting, and
the surface density.
According to Budyko et al. (1985), who did provide mass estimates for

individual gases in the past, the mass of the atmosphere as a whole was
higher throughout Mesozoic times than it is now. Their estimate of the
current mass of the atmosphere is approximately 5.2 � 1018 kg, which is
only about one millionth of the total mass of the planet. They assume that
the mass of nitrogen, the largest component of today’s atmosphere, has
not varied much, because the known routes by which it is added or removed
are very slow. However, there is little evidence one way or the other for
changes in nitrogen mass, whereas the mass of oxygen, which can be added
and removed rapidly in geological terms, appears to have peaked in the
Carboniferous, and again in the Cretaceous. Transient episodes of high
atmospheric density are possible, due to volcanism or other causes, and
such an episode could have accounted for the brief and other wise anoma-
lous appearance of the giant pterosaur Quetzalcoatlus at the very end of
the Cretaceous (Chapter 6, Section 6.2.5).
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oxygen in the atmosphere might do this (Box 2.4). A density spike at

the end of the Cretaceous might explain the brief appearance of the

giant pterosaur Quetzalcoatlus in the fossil record at that particular

inst ant in evolutiona r y time (Chapte r 6, Section 6.2.5). If the pos sibility

is allowed that the earth’s surface gravity might have been weaker in

Cretaceous times than it is now, this would make giant terrestrial dino-

saurs easier to account for, in addition to giant pterosaurs (Box 2.4).



3

MECHANICS OF LEVEL FLIGHT
A flying animal’s weight is supported by the reaction from air that is continuously
accelerated downwards. The non mathematical main text explains how the Flight
programme calculates the mechanical power needed to do this, and to propel the
animal along, while the equations used by the programme are given in the boxes.
The effects of air density and the significance of wing morphology and body shape
are considered. The method of deriving the physiological requirements from the
mechanical calculations is explained.

Flight is locomotion in a fluid medium that is much less dense than the

animal. This is only possible for animals that have special adaptations.

Non-flying animals sink if dropped in air, because their bodies are typ-

ically at least 800 times denser than air. A gangster thrown off a roof

accelerates uncontrollably earthwards, acquiring kinetic energy which

is dissipated catastrophically on arrival at ground level, whereas a

pigeon suffers no inconvenience from similar treatment. It flies around

apparently ignoring gravity, climbs or descends at will, and lands in

a controlled manner, where and when it wants to. It can do that

because it has wings, whereas the gangster does not. Everybody knows

that a bird is supported in the air by its wings, but how exactly the

wings perform this magic remained a mystery until the late nineteenth
37
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century. It is not enough to imitate the appearance of birds’ wings,

however carefully, as many a painful experiment down the centuries

has demonstrated. A theory is needed.

The classical theory of low-speed aerodynamics describes what a

wing is and what it does, in a way that can be used by an engineer to

design and build a wing that works, and by a biologist to describe an

existing wing that belongs to a flying animal. An authoritative introduc-

tion may be found in Anderson (1991), and some older textbooks such

as von Mises (1959) still retain their following. Anderson (1997) has also

written a fascinating account of the evolution (as biologists would see it)

of aeronautical theory and practice, highlighting the many obstacles

and difficulties that had to be overcome in the development of practi-

cal aircraft, in a way that has direct implications for the evolution of

ani mal flight ( Chapte r 16 ). This chap ter is about what wings do, as

represented in the Flight programme, and some further information

on how they do it follows in Chapter 4. Chapters 5 and 6 are about

the mechanics of the two main categories of wings that have evolved

in vertebrates, feathered wings and membrane wings, which are seen

as alternative solutions to the same adaptive problems.

3.1 POWER REQUIRED FOR HORIZONTAL FLIGHT

The basic flapping-flight calculation performed by the Flight

programme estimates the rate at which a bird’s muscles have to do

mechanical work (the mechanical power), in order to fly horizontally

at a steady speed, and at this level it is not necessary to specify whether

the animal is a bird, a bat, a pterosaur or even an artificial ornithopter.

The power depends on a small set of attributes that all flying animals

have, namely a mass, a wing span, an aspect ratio and a streamlined

body to which the flapping wings are attached, and also on the envi-

ronment in which the animal flies, represented by the air density and

the strength of gravity. The programme will predict a number of

aspects of a specified animal’s flight performance, and it can be used

by anyone who can supply the basic measurements needed to describe

the bird and its environment, without necessarily understanding how

the programme works. The reader who wishes to use the programme

to generate hypotheses, to be tested against observations of real flying

animals, can do that by tinkering with the many options that the

programme provides. For this, it helps to understand the equations

that actually do the calculation. These can be found in the boxes that

accompany this chapter, while the main text is an informal explanation
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of how the equations work. Ch apter 7 covers the characte ristics of the

engine (flight muscles) that supplies the work required by the wings,

and Flight combines this with the power curve calculation to generate

a numeri cal simulat ion of long-di stance migra tion (Ch apter 8).

3.1.1 MOMENTUM BALANCE—DOWNWASH SUPPORTS

THE WEIGHT

In Newtonian terms, a flying bird is immersed in the earth’s gravita-

tional field, which exerts a force, the bird’s weight, directed towards

the earth’s centre. Newton’s First Law of Motion says that if the pigeon

is maintaining a constant height, and not accelerating upwards or

downwards, then the net vertical force acting on it must be zero, i.e.

the weight is balanced by an upward force of equal magnitude. This

is an aerodynamic force, generated by the air flowing past the wings.

It depends on Newton’s Second Law, which says that ‘‘force’’ is the

same as rate of change of momentum. Air has mass, and the bird gen-

erates an upward force on its body by imparting downward momen-

tum to a stream of air passing over its wings. All flying animals and

aircraft (except balloons) generate downwash, and support their weight

in level flight by maintaining momentum balance. In steady, unacceler-

ated flight, this means that the rate at which downward momentum is

imparted to the air must be equal to the bird’s weight.

A bird has to supply work at a steady rate from its flight muscles to

impart downward momentum to a stream of air. If the downwash

stops, the bird falls. Power is the rate of doing work, and it is this unre-

mitting requirement for power to support the weight (the induced

power) that makes flight fundamentally different from other forms

of locomotion. The underwater wing-swimming of auks and diving

petrels is not a form flight, despite the superficially similar motion,

because the bird’s weight is supported hydrostatically by the water,

not by downwash. Gliding is a form of flight (also covered by the Flight

programme) which differs from powered flight in that the work comes

from the bird’s gravitational potential energy rather than from its mus-

cles, meaning that the flight path has to be inclined downwards relative

to the surrounding air. Gliding differs from falling in two respects: the

speed can be held constant instead of increasing uncontrollably, and

the flight path can be made to descend at a small angle to the horizontal.

If speed is to be maintained when the flight path is horizontal, or

inclined upwards, then work has to be supplied by an engine, meaning

an organ or device that converts fuel energy into work. Ultimately the
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work done by a bird’s muscles comes from oxidising a fuel substrate,

but that is a later stage of the calculation. The first stage is to estimate

the rate at which mechanical work is needed to support the weight and

for propulsion.

3.1.2 LIFT, DRAG AND POWER

Lift and drag are components of the aerodynamic force on the bird,

caused by the relative motion between the bird and the air, and they

are defined by their directions relative to the incident airflow (not to

gravity). Lift is the component of force that is perpendicular to the inci-

dent airflow, and drag is the component in line with it. Only the relative

motion between the bird and the air (the airspeed) is involved. If the air

is motionless relative to the ground, and the bird is flying horizontally,

then its view of any suspended particles, such as snow flakes, is that they

appear to approach horizontally, whereas if the bird is descending, it sees

the incident airflow angled up at it from below. Whatever direction the

flow is coming from, lift is the component of force perpendicular to that

direction, and drag is the component in line with it. Any upward force

that results from downwashmay be pure lift (as in level flight), or a com-

bination of lift and drag, depending on the direction fromwhich the inci-

dent airflow is coming. In the case of a symmetrical parachute,

descending vertically, the aerodynamic force is entirely drag, although

it is directed upwards, and supports the weight (Figure 3.1). In a flapping

wing, the incident airflow comes from different directions on different

parts of the wing, and consequently local contributions to the total lift

and drag forces also act in different directions.

A wing is a structure that generates a resultant force that is nearly

perpendicular to the local incident airflow, so maximising the lift:drag

ratio. The secret of flight, in birds and aircraft alike, is to use lift forces

for supporting the weight and for manoeuvring, but to arrange that

work is done against much smaller drag forces. Perhaps counter-

intuitively, the rotor of a hovering helicopter does no work directly

against gravity. The work is done by an engine which applies torque

to the rotor shaft, or by jets which apply a horizontal force at the tip

of each blade. The engine spins the blades around horizontally, and

does work against their drag, but not against their lift. If the lift:drag

ratio of a rotor blade were infinite (aerodynamic force perpendicular

to incident airflow), then the helicopter would be able to hover with-

out expending any power. That is not possible with a rotor of finite

diameter, because the induced power (needed to generate the down-

wash) appears as induced drag on the blades. The bird’s wing span
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FIGURE 3.1 Any object’s weight (mg) always points towards the centre of the earth,
the direction we call ‘‘down’’. When a glider (A) flies straight at a constant speed,
its weight (mg) is balanced by the resultant (R) of the lift and drag which is nearly
(but never quite) perpendicular to the relative airflow. R has to point vertically
upwards, therefore the lift, (L) which is the component of R that is perpendicular to
the relative airflow, is not vertical in this case, but inclined forwards. The drag (D),
points backwards and slightly upwards, along the flight path. The addition of a pro
peller (B) generates a thrust force, which balances the drag. As there is now no net
force along the flight path, the weight can be balanced by the lift alone which means
that the flight path can be horizontal. The propeller does work against the drag force,
which is much smaller than the weight. A parachutist’s weight (C) still points down
wards, but a pure parachute produces only drag, with no lift, and the flight path is
therefore directed straight down. The function of an emergency parachute is to slow
down the speed sufficiently, so that the parachutist can survive the impact with the
ground. Skydivers’ parachutes produce sufficient lift to give the parachutist some ability
to steer to a chosen landing spot.
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(or a helicopter’s rotor diameter), appears in the denominator of the

expression for induced power (Box 3.1), meaning that a helicopter with

a rotor of infinite diameter, or a bird with infinite wing span, would

indeed be able to remain aloft with no induced power. In the real

world, the larger the wing span, the less the induced power.
BOX 3.1 Induced power.

The induced power is the rate at which the flight muscles have to provide
work, in order to impart downward momentum to the air at a sufficient rate
to support the weight.

Variable definitions for this box
B Wing span
Di Induced drag
g Acceleration due to gravity
k Induced power factor
m Bird’s all-up mass
Pind Induced power in horizontal flight
Pind0 Induced power in hovering
rm Mass rate of flow
Sd Disc area
Vt True airspeed
Vi Induced velocity
r Air density

Induced power in hovering
We begin with the special case of a hovering hummingbird, in which the air-
speed (Vt) is zero. This is quite similar to a hovering helicopter, the difference
being that the helicopter’s blades sweep out a ‘‘wing disc’’ by rotating steadily
in one direction, whereas the hummingbird’s wings beat horizontally back
and forth, each sweeping out half the disc. Either case can be approximated
by an ‘‘actuator disc’’ (Figure 3.3). This is a theoretical thin disc throughwhich
the air can freely pass, experiencing an instantaneous increase in pressure as
it does so. The air passes through the disc at the induced velocity (Vi), and the
mass rate of airflow through the disc (rm) is

rm ¼ SdVir; ð1Þ

where Sd is the disc area and r is the air density. To get the rate of change of
momentum, the mass rate of flow has to be multiplied by the eventual
downward velocity, which is actually not Vi but 2Vi. This is because the pres-
sure above the disc is below ambient, but the pressure below the disc is
higher than ambient by the same amount. The result is that the air acceler-
ates to Vi by the time it reaches the disc, but continues to accelerate after it
passes through the disc, eventually reaching 2Vi far below the bird. The rate
of increase of downward momentum is equal to the weight:

2Virm ¼ mg ð2Þ



BOX 3.1 Continued.

Substituting for rm as above,

2V 2
i Sdr ¼ mg ð3Þ

This equation can be rearranged to give the induced velocity in terms of
four variables whose values are known (mass, gravity, disc area and air
density):

Vi ¼ mg

ð2SdrÞ
� �1=2

: ð4Þ

The weight is the force with which the bird is pushing downwards, at
a speed Vi, on the air. Hence the induced power in hovering (Pind0) is
simply

Pind0 ¼ mgVi: ð5Þ

Substituting for Vi from Equation (4),

Pind0 ¼ ðmgÞ3
ð2SdrÞ

" #1=2

: ð6Þ

The ‘‘disc area’’ (Sd) is not, as might be thought, the area that is actually
swept out by the wings, but the area of the complete circle, of which the
wing span is the diameter (more on this below):

Sd ¼ pB2

4
; ð7Þ

where B is the wing span. Substituting this in Equation (6):

Pind0 ¼ 2ðmgÞ3
pB2r

" #1=2

: ð8Þ

This is the induced power in hovering for an ideal actuator disc. It pro-
duces a result that is closely related to the chemical power (or rate of oxygen
consumption) in terms of four easily measured physical variables, the mass,
the acceleration due to gravity, the wing span and the air density. It does not
require direct measurements of power as such, but subject to an adjustment
(the ‘‘induced power factor’’) to account for the imperfections of real flap-
ping wings (below), it works for a hovering helicopter and, so far as we
know, for a hovering hummingbird.

Induced power in forward flight
If we relax the condition that the forward speed is zero, and allow the bird to
fly horizontally at a speed Vt, then the mass flow through the wing disc is no
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BOX 3.1 Continued.

longer due entirely to the induced velocity (Vi), as assumed in Equation (1),
but to the resultant of Vt and Vi:

rm ¼ Sd ðV 2
t þ V 2

i Þ
q

r: ð9Þ
As the forward speed builds up, so the required induced velocity

decreases. If we skip to a speed where Vi makes a negligible contribution
to the mass flow, as compared to the contribution from Vt, then Equation (9)
for the mass flow (rm) becomes

rm ¼ SdVtr: ð10Þ

The bird still has to accelerate the air to a downward velocity 2Vi, so
Equation (2) for momentum balance becomes

2Virm ¼ mg ; ð11Þ
and substituting for rm,

2VtViSdr ¼ mg ; ð12Þ

when the induced velocity in fast forward flight is

Vi ¼ mg

ð2VtSdrÞ ; ð13Þ

and the induced power is

Pind ¼ mgVi

¼ ðmgÞ2
ð2VtSdrÞ :

ð14Þ

Substituting pB2/4 for Sd, as above, gives

Pind ¼ mgVi

¼ 2
ðmgÞ2

ðVtpB2rÞ :
ð15Þ

This is a provisional expression for the induced power, which needs to be
modified to allow for the fact that the flow through the wing disc differs
from that through an ideal actuator disc, by introducing the ‘‘induced power
factor’’ (below).
The induced power in fast forward flight is inversely proportional to the

airspeed, so that it plots as a hyperbola against airspeed. Equation (15)
would make the induced power infinity at zero speed, but actually it is Pind0

from Equation (8). Equation (15) applies at high speeds, where the
mass flow through the disc can be approximated by Equation (10).
This approximation is not actually used in Flight, as the mass flow is calcu-
lated from the resultant of the forward speed and the induced velocity
(Equation 9) whether or not the latter is large enough to merit being taken
into account.
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BOX 3.1 Continued.

The induced power factor
Is the actuator disc realistic? The short answer to that question is: Not very,
but it also has its merits. Of course the air does not experience an instanta-
neous increase of pressure as it passes through the disc, nor does the air
accelerated by the wings form a distinct tube, separated by an infinitely thin
boundary from the stationary air round about. At best, the boundary will be
a thin vortex sheet, and more probably a system of vortices which is not
very thin. Some power will go into maintaining those vortices, but only
experiment and observation can determine how much. This is horrendously
complicated and difficult to study, either theoretically or experimentally, but
the complications invariably represent additional power. The actuator disc
represents an ‘‘ideal’’ arrangement, a baseline that can never be attained
in practice, in which all of the power supplied by the bird goes into support-
ing the weight, and none into extraneous energy-consuming processes. The
real induced power will always be more than that calculated for the actuator
disc, by a factor which we can call k, the ‘‘induced power factor’’.
k is a number that is more than 1, but not necessarily very much more.

Experimental values of k on aircraft wings and helicopter rotors are typi-
cally 1.1–1.2. Spedding (1987a) measured k ¼ 1.04 in a gliding kestrel. It
is not practicable in the present state of knowledge to calculate or measure
k for a bird in flapping flight, but this may become feasible in the future. If
it does, the best way to use the new knowledge to estimate a bird’s power
requirements will still be to start with the actuator disc as a baseline, and
then multiply this minimal induced power estimate by a measured or cal-
culated value of k, rather than guessing a value as one has to do at present.
Flight sets the default value of k (which can be changed by the user) to 1.2,
and inserts it in the numerator of Equation (15), which becomes:

Pind ¼ 2kðmgÞ2
ðVtpB2rÞ : ð16Þ

Flight does not extend the power calculation down to zero speed, but if it
did, a similar adjustment would be needed to the induced power in hovering,
so that Equation (8) becomes:

Pind0 ¼ 2k2ðmgÞ3
ðpB2rÞ

" #1=2

: ð17Þ

Of course, the value of k may vary at different speeds.

Induced drag
Another way of looking at Equation (16) is to consider that any component of
mechanical power can be represented as the product of a drag force and the
forward speed. In the case of induced power, we now know the power and
the speed, so we can invent a virtual ‘‘induced drag’’ force (Di), given by:

Di ¼ Pind

Vt
¼ 2kðmgÞ2

ðV 2
t pB2rÞ : ð18Þ
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In the case of a fixed (non-flapping) wing, as in a glider or propeller-
driven aircraft, this is the natural way to look at it, as the induced drag is
an identifiable component of force, which can be measured in experiments.
Equation (16) for the induced power was derived by considering a rotor or a
pair of flapping wings, sweeping out a wing disc, whose diameter is the
wing span. A fixed wing does not flap or rotate, and does not sweep out
any area. If the ‘‘swept’’ area were used to calculate the mass flow, rather
than the full circle whose diameter is the wing span as in Equation (10),
the induced velocity from Equation (13) would have to be infinite (because
Sd would be zero), and the induced power would also be infinite.
The induced drag of a fixed wing is traditionally calculated by a some-

what different route from that taken here, so we can take the standard
formula and turn it round, to see what disc area is implied. This turns
out to be very simple, as the standard formula for induced drag of a fixed
wing is exactly the same as Equation (18). A fixed-wing aircraft, flying
steadily along horizontally, supports its weight by imparting a downward
induced velocity to a tube of air, whose diameter is the wing span. For a
bird, the induced power is given by Equation (16), regardless of whether
the wings sweep out the whole of the wing disc, or a part of it, or none
of it (gliding). The difference in gliding is not in the amount of the
induced power, but in the source of the energy from which it is
provided–from the bird’s gravitational potential energy instead of from
its muscles.
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3.2 THE POWER CURVE CALCULATION IN FLIGHT

The power curve is a graph of the power required to maintain horizontal

flight, as a function of speed. It serves as a basis for discussing many

aspects of performance in powered flight. The Flight program will calcu-

late a power curve if you, the user, first define your bird by assigning

values to three morphological variables (mass, wing span and wing area)

and also to gravity and the air density. These wing measurements cannot

be obtained from museum specimens or ornithological ‘‘morpho-

metrics’’. They have to be measured carefully, according to the aeronau-

tical definitions in Chapter 1. Then, if you select the ‘‘Power curve’’

option, the programme will assign default values (which you can

change) to gravity, and a number of other variables. Having set or

amended the numbers in the Setup screen to your satisfaction, you

can run the power curve calculation, view a summary of the results

and a graph, and optionally save more comprehensive output, together
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with the input data, in an Excel spreadsheet or a text file. The online

manual explains how to do this under ‘‘Saving Output’’, and also how

to generate a record of the effect of varying an input variable on some

variable in the output.

The graph actually shows two curves, for mechanical and chemical

power, plotted against True airspeed in metres per second

(Figure 3.2). The True airspeed is the speed at which suspended parti-

cles, such as snow flakes, stream past, relative to the bird, and it is usu-

ally different from the Equivalent airspeed, which determines the

magnitude of aerodynamic forces (below). The mechanical power is

the rate at which the flight muscles have to do work, while the chemi-

cal power is the rate at which fuel energy has to be consumed. The

chemical power is typically around 4–5 times larger than the mechani-

cal power, although this factor varies at different speeds. This is

because only a fraction of the chemical energy consumed is converted

into wor k (th e rest being los t as heat), and also because of some addi-

tiona l ‘‘overhea ds’’ whic h have to be ad ded (bel ow and Chapte r 7). The

units (watts) are the same for both mechanical and chemical power.

A watt is the SI unit of power, and represents a rate of doing work of

1 joule per second. A joule is the work done when a force of 1 newton

moves its point of application through a distance of 1 metre. A newton

is the amount of force that will impart an acceleration of 1 m s 2 to a

mass of 1 kilo gram (C hapter 1 ).

The mechanical power in Flight’s output applies to measurements

made in unaccelerated flight, even if a steady speed and height is

maintained only briefly. It is calculated from forces and speeds, and

does not involve physiology. The chemical power is about the variables

that are measured in physiological experiments, such as rates of con-

sumption of fuel and oxygen, and it is only meaningful in sustained,

aerobic flight, as in migration. The mechanical power directly

expresses the effort required from the bird’s muscles to support its

weight against gravity and propel it along. Flight calculates it first,

and then estimates the chemical power by asking at what rate fuel

energy must be consumed, in order to sustain the mechanical power

required from the muscles.

This has nothing to do with basal metabolism. The basal metabolic

rate (BMR) is a property of a resting animal that has no direct connec-

tion with the energetics of flight, or indeed of any kind of locomotion.

It is misleading to express ‘‘flight metabolism’’ as a multiple of BMR, as

there is no connection between the two. Expressing measured rates of

oxygen consumption in this way serves only to make the original
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FIGURE 3.2 The Flight programme will calculate the mechanical power required from
the flight muscles for any bird, as a function of the forward speed. This example is
for the starling from the ‘‘Preset Birds’’ database, flying at sea level. The lower curve
shows the mechanical power, which passes through a minimum at the ‘‘minimum power
speed’’ (Vmp), which is just below 10 m s�1 in this case. The upper graph shows the
chemical power, which is the rate at which fuel energy is required in aerobic flight.
According to the rules by which Flight derives the chemical power from the mechanical
power, the minimum is at the same speed (Vmp) for both curves, but the chemical power
is larger in amount because of losses in converting fuel energy into work, and also
because a number of ‘‘overheads’’, assumed to be speed independent, have been
added. The upper diagram also shows a graph of the effective lift:drag ratio, which is
not shown in Flight’s own graphs. This is proportional to the distance flown per unit of fuel
energy consumed. It passes through a maximum at the ‘‘maximum range speed’’ (Vmr),
which is nearly 18 m s�1 in this case. Vmr can also be found graphically by drawing a
tangent to the chemical power curve from the origin.
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power measurements difficult or impossible to extract from

the published results. It is, of course, absurd to calculate ‘‘flight meta-

bolism’’ as a function of the body mass alone, without taking account

of the morphology of the wings, the strength of gravity or the air

density.

Flight estimates the total mechanical power required to fly at any par-

ticular speed by calculating three components of power, the induced

power (needed to support the weight), the parasite power (needed to
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overcome the drag of the body) and the profile power (needed to over-

come the drag of the wings). The following six paragraphs are an outline

of the thinking behind Flight’s method of calculating these three

mechanical components, assembling them into a power curve, and then

estimating the chemical power. The calculations themselves are

described in Boxes 3.1–3.3.
BOX 3.2 Parasite power.

Parasite power is the rate at which work must be done to overcome the drag
of the body, not including the wings. Birds (but not insects) have stream-
lined bodies in the aeronautical sense. A typical bird’s body, in the posture
for level flight, is approximately circular in cross section and elongated, with
the widest cross section roughly a quarter to a third of the body length
behind the front end, and the rear end tapering to a point.

Variable definitions for this box
A Equivalent flat-plate area
CDb Body drag coefficient
Db Drag of the body
m Bird’s all-up mass
Ppar Parasite power
Vmp Minimum power speed
Vt True airspeed
Sb Body frontal area
r Air density

The drag (Db) of a streamlined body can be expressed as:

Db ¼ ðrV 2
t SbCDbÞ
2

; ð1Þ

where r is the air density, Vt is the True airspeed, Sb is the frontal area of the
body and CDb is the body drag coefficient. The parasite power is found by
simply multiplying the body drag by the speed:

Ppar ¼ ðrV 3
t SbCDbÞ
2

: ð2Þ

This result comes about as follows. The factor ½rVt
2 is called the dynamic

pressure. It is the pressure increase (above ambient) in a blind tube with its
open end pointing into wind. Such a tube is called a pitot tube and is used
in aircraft as an airspeed sensor (Chapter 14, Box 14.1) and also in alba-
trosses (Chapter 11, Box 11.3). We multiply the dynamic pressure by the
body frontal area, which is the cross-sectional area at the widest point.
A pressure times an area is a force. This particular force is a drag force,
because it acts in the same direction as the incident airflow. It is a
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theoretical ‘‘reference’’ drag force that would be developed, if the incident
air were brought to a halt over the whole of the frontal area. The actual drag
is less than this, because of the streamlined shape of the body. The incident
air divides around the body, and joins up again downstream. It is not
brought to halt, but it is slowed down a bit by the obstruction in the flow.
This causes some drag, but not nearly as much as the reference drag. The
body drag coefficient (CDb) is a dimensionless number less than 1, which
is the ratio of the actual drag to the reference drag, and it expresses the
degree of streamlining. A drag coefficient of 1 means that the body behaves
like a flat plate perpendicular to the flow, while the ideal value of zero (never
attained in practice) means that the body creates no drag at all.

Practical estimates of parasite power
Estimating parasite power comes down to measuring or estimating a partic-
ular bird’s body frontal area and drag coefficient. The frontal area, of course,
varies from one bird to another, whereas the drag coefficient should be
much the same for different birds whose body shapes are similar. Frontal
area can be measured by photographing the body from the front with a
scale in the picture, or by wrapping a tape around the body at the widest
part. This measurement is not very repeatable, because of the compressible
nature of the feather layer, and doubt about how much it would be com-
pressed in flight. It appears that the frontal area of many different kinds of
birds can be estimated quite well from the formula

Sb ¼ 0:00813m0:666; ð3Þ
where Sb is in square metres, and m is in kilograms (Pennycuick et al. 1988).
The implication is that different bird bodies have roughly the same shape,
so that the frontal area varies with the two-thirds power of the mass, as
expected for isometric scaling. Some authors claim that passerines have
higher frontal areas than Equation (3) predicts, implying that their bodies
are shorter and thicker than those of other birds, but it is difficult to be sure
whether the difference is real, or due to variations in technique when mea-
suring the frontal area. The drag coefficient is even harder to measure,
because experiments designed to measure it actually measure the product
of the frontal area and the drag coefficient, sometimes called the equivalent
flat-plate area (A), where

A ¼ SbCDb; ð4Þ
The body frontal area (Sb) has to be measured, with whatever accuracy can
be achieved, before a measurement of A can be converted into an estimate
of CDb. An overestimate of Sd results in an underestimate of CDb and vice
versa.

The body drag anomaly
It would seem to be quite straightforward to get a measurement of the drag
of a bird’s body by removing the wings from a dead bird, freezing the wing-
less body and mounting it on a drag balance in a wind tunnel. This has been
done many times by different authors and, when combined with a
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measured frontal area, always produces anomalously high estimates of the
drag coefficient, usually between 0.2 and 0.4. Such high drag coefficients
would be associated with ‘‘bluff bodies’’ in engineering experiments, mean-
ing bodies that are blunt rather than pointed at the downstream end.
Streamlined bodies, tested at a similar scale to birds’ bodies, give much
lower values, below 0.1. The high drag of frozen birds’ bodies is known as
the ‘‘body drag anomaly’’, and results from separation of the airflow from
the surface soon after it passes the widest point, leaving a wide, turbulent
wake behind the bird, in which the pressure is lower than over the front
end of the body (Figure 3.4A). The pressure difference between the front and
back of the body accounts for the high measured drag. The feathers at
the rear end of a frozen bird’s body in a wind tunnel can be seen lifting
and fluttering, making the separated boundary layer plainly visible. Close-
up film of live birds, either in wind tunnels or in free flight, does not show
this. It seems that the flow follows the tapering body shape and closes up
downstream, leaving only a thin wake caused by viscous effects along the
surface (Figure 3.4B), and much less drag. The massive flow separation seen
on frozen bodies (and associated high drag) appears to be an artefact that
does not occur on live birds.
Direct evidence that the body drag coefficient of live birds is much less

than that of frozen bodies eventually came from measurements of the wing-
beat frequencies of two different birds, a thrush nightingale and a teal, fly-
ing horizontally in a wind tunnel, over a range of different speeds
(Pennycuick et al. 1996a). Although the variation of wingbeat frequency
with speed was small, the measurements at each speed were very consis-
tent, and it was possible to identify a speed at which the wingbeat frequency
passed through a minimum. This speed was much higher than the value for
Vmp, estimated on the basis that the body drag coefficient was in the region
of 0.3–0.4 (from measurements on frozen bodies), and actually neither bird
would fly as slowly as these Vmp estimates. Adjusting the value of CDb down-
wards to 0.08 raised the estimate of Vmp to agree with the speed at which the
wingbeat frequency was a minimum, for both birds. Identifying this ‘‘mini-
mum-frequency speed’’ as being the same as Vmp was justified by a second
experiment in which the wind speed was kept constant, and the tunnel was
tilted by various amounts. The wingbeat frequency increased linearly with
tunnel tilt, in the sense that it increased if the bird was forced to climb,
i.e. if the bird had to work harder, the wingbeat frequency increased. Thus,
the minimum in the frequency curve should coincide with the minimum in
the power cur ve. See Chapter 15, Box 15.4 for more about this experiment.

Default values in Flight
The default body drag coefficient in Flight is now 0.1. Early versions of the
programme used higher default values based on drag measurements on fro-
zen bird bodies, which are now known to be erroneous (above). There is a
theoretical expectation that drag coefficients would be lower in large birds
than in small ones, but this is not represented in the programme as the
effect has not been observed in experiments. The current default is that
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CDb ¼ 0.1 goes for all birds, but the real value may be higher for species
whose bodies are not well streamlined, such as those with long legs (storks)
or big heads (pelicans). Flight also assumes that the bird is aerodynamically
‘‘cleaned up’’, especially that the legs and feet are folded and covered by the
body feathers, where that is possible. Any bird has the option to lower its
feet into the air stream in order to provoke flow separation, thereby increas-
ing its drag coefficient. The webbed feet of sea birds make especially
effective airbrakes, and are used in this way in steep descents.

BOX 3.3 Profile power.

As noted in the main text, calculating profile power by strip analysis does not
lead to a simple general formula for profile power that can be applied to any
bird, in the same way that induced and parasite power can be estimated
(Boxes 3.1 and 3.2). However, early attempts to do this yielded one insight
which can be exploited to create a simplified approach. The bird needs profile
power to overcome the drag resulting from the airflow over thewings, and this
flow has two components in flapping flight. The first component is the flow
due to the forward speed of the whole bird. The wing profile drag arising from
this comes from the whole wing, and would be expected to increase roughly
with the square of the speed. The associated component of profile power
would increase with the cube of the speed, like parasite power. The second
component arises from the flapping motion, which rotates the wing, relative
to the bird’s body. This component of the flow depends on the flapping fre-
quency and amplitude, and comesmore from the distal part of thewings than
from the shoulder region. The associated profile power is dominant at low
speeds, where flapping frequency and amplitude are highest, and is expected
todrop to aminimumroundabout theminimumpower speed, and thenbuild
up gradually at higher speeds.
Adding the two components together, the total profile power first builds

up because of the increasing forward speed, then levels off or drops slightly
through the middle range of speeds as a result of decreasing wingbeat fre-
quency and amplitude, before (conjecturally) rising again at very high
speeds. This suggests an easy way to approximate the profile power. First,
Flight restricts its performance estimates to ‘‘middle speeds’’, which can
be defined as speeds between the minimum power speed (Vmp) and the
maximum range speed (Vmr), with minor extensions at both ends of this
range. It does not attempt to provide performance estimates for very low
speeds, at which unsteady aerodynamic processes are likely to be impor-
tant, or at very high speeds, for which there are no data. Second, Flight
assumes that the profile power is independent of speed within this limited
speed range. This means that adding profile power to the induced and
parasite power does not change the minimum power speed.
If the profile power is independent of speed (within the specified limits)

then how can its amount be estimated? The notion behind Flight’s simple
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method is that profile power in level flight, at medium speeds, is essentially
a by-product of the bird’s efforts in generating induced and parasite power,
and can be found from the minimum value of the sum of these two
components.

Variable definitions for this box
B Wing span
Cdb Body drag coefficient
Cpro Profile power constant
g Acceleration due to gravity
k Induced power factor
m All-up mass
Pam Absolute minimum power
Pmech Mechanical power required to fly
Ppro Profile power
Ra Aspect ratio
Sb Body frontal area
Vmp Minimum power speed
Vt True airspeed
X1 Profile power ratio
r Air density

The mechanical power (Pmech) for an ideal bird (i.e. one with no profile
power), flying at a True airspeed Vt, is first computed as the sum of the
induced power from Equation (16) of Box 3.1, and the parasite power from
Equation (2) of Box 3.2

Pmech ¼ 2kðmgÞ2
ðVtpB2rÞ

" #
þ ðrV 3

t SbCDbÞ
2

� �
; ð1Þ

where m is the all-up mass, g is the acceleration due to gravity, r is the air
density, Vt is the True airspeed, Sb is the body frontal area and CDb is the
body drag coefficient. The minimum power speed (Vmp) can be found by
differentiating this expression with respect to Vt, setting the result to zero,
and solving for the speed, which gives:

Vmp ¼ ð0:807k1=4m1=2g1=2Þ
ðr1=2B1=2

S
1=4
b C

1=4
Db Þ

: ð2Þ

Substituting this speed for Vt in Equation (1) gives the absolute minimum
power (Pam), meaning the power required for the ideal bird to fly at Vmp:

Pam ¼ ð1:05k3=4m3=2g3=2S
1=4
b C

1=4
Db Þ

ðr1=2B3=2Þ : ð3Þ

The profile power is then set at a fixed multiple (X1) of the absolute
minimum power.
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Ppro ¼ X1Pam: ð4Þ
X1 is called the ‘‘profile power ratio’’, and it was assigned a fixed value of

1.2 in early versions of the Basic programmes from which Flight was devel-
oped. It was later noted that profile power would most likely be propor-
tional to wing area, other things being equal, so an additional constant
was introduced, the ‘‘profile power constant’’ (Cpro), with a default value
of 8.4. X1 is then defined as Cpro divided by the aspect ratio Ra:

X1 ¼ Cpro

Ra
: ð5Þ

The effect of this for a bird with an aspect ratio of 7 (like a pigeon), is that
X1¼1.2, which was the original, fixed default value. For a bird with a higher
aspect ratio than 7, X1 is lower than this, and vice versa. The calculation of
profile power is the only part of the power curve calculation in Flight that
involves the wing area. The value of Cpro can be adjusted by the user in
Flight’s Setup screens.
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3.2.1 INDUCED POWER

The induced power is the rate at which a bird has to do work with its

muscles, continuously accelerating air downwards so as to produce

an upward reaction that supports its weight. If you think of the bird

as stationary, with the air streaming horizontally towards it, as in a

wind tunnel, the air has zero downward velocity as it approaches the

bird. The bird’s wings deflect the air downwards as it flows past, adding

a vertical component of velocity, the ‘‘induced velocity’’. The rate of

change of downward momentum is the same as the upward aerody-

namic force and must be equal in magnitude to the weight. It is the

rate (mass/time) at which air is streaming past the wings, multiplied

by the eventual downward component of velocity, which is actually

twice the induced velocity (Box 3.1). The power required to impart this

downward push to the air is proportional to the induced velocity. At

high speeds, with plenty of air flowing past the wings, only a small

induced velocity is needed, and the power required is also low. The

lower the speed, the less the mass rate of flow, the higher the induced

velocity, and hence the higher the induced power. At zero speed, there

is no air flowing past at all, but a hovering bird or helicopter avoids the

need for an infinite induced velocity (and induced power), by sucking

stationary air down from above and creating its own vertical induced

wind. The induced power is not infinite in hovering, but it is higher

than at any non-zero forward speed.
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FIGURE 3.3 (A) The wing disc of a hovering bird develops an area of reduced pressure
above it, which sucks stationary air down from above, accelerating it to the induced
velocity Vi as it passes through the wing disc. Increased pressure below the wing disc
makes the air continue to accelerate downwards, to an eventual velocity of 2Vi. The tube
of air passing through the wing disc eventually narrows until its cross sectional area is
half that of the wing disc, and its diameter is reduced by a factor of 1/ 2

p
. (B) In level

flight the bird is flying along horizontally at an airspeed V, or alternatively, from the
bird’s point of view, it ‘‘sees’’ a relative wind V blowing towards it from ahead. The cir
cular tube of air that passes through the wing disc is deflected downwards, acquiring a
downward component of velocity Vi at the wing disc, and continuing to accelerate to
an eventual downward velocity 2Vi behind the bird. The downwash angle is
sin�1(2Vi/V ), and it is exaggerated in the diagram to about 11 degrees, so that it can
be easily seen. For a bird flying at Vmp, the downwash angle (calculated by Flight) is
typically between 2 and 4 degrees.
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FIGURE 3.4 (A) When a frozen bird’s body is tested in a wind tunnel, the flow separates
from the surface at the widest part, leading to a broad area of chaotic flow downstream.
This results in drag similar in amount to that behind a ‘‘bluff body’’ or a sphere. (B) The
flow follows the surface of the same bird, when alive, leaving only a narrow turbulent
wake, and creating much less drag.
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3.2.2 PARASITE POWER AND THE MINIMUM POWER SPEED

In addition to the induced power, which is the cost of supporting the

weight in air, the bird also has to do work to propel its body along,

against the resistance of the air. This resistance is a drag force, meaning

one that acts parallel to the incident airflow, as seen by the body. In

horizontal flight (only) the body drag acts horizontally backwards.

Without a forward-directed thrust force to balance it, the body drag

would cause the bird to decelerate. Fixed-wing aircraft have a propeller

or jet, which generates a horizontal thrust force that balances the drag,

whereas birds achieve the same result in a more roundabout way by

flapping the wings. The term ‘‘parasite power’’ is an old one from the

early days of aeronautics, when structures such as the cockpit, under-

carriage and wing struts, which added drag but did not contribute to

supporting an aircraft’s weight, were considered ‘‘parasitic’’. In birds,

the parasite power is the drag of the body (not including the wings)

times the forward speed.

If no air is flowing past the bird (zero speed), then there is no body

drag, and no power is required to overcome it, but as the speed

increases above zero, the curve of parasite power curves strongly
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upwards, following the cube of the speed (Box 3.2). The bird has to

supply both induced and parasite power at the same time. When these

two components are added together, and plotted against the speed, the

curve first slopes downwards, because of the steeply decreasing

induced power, then levels off, then increases ever more steeply at

higher speeds, where the parasite power predominates. A flying bird

is never ‘‘at rest’’ in the sense of a dog dozing on a chair, but it does

have an identifiable minimum power speed, at which the power

required to fly is less than at either slower or faster speeds. If the mus-

cles cannot produce this level of power, then the bird cannot fly hori-

zontally, and if the heart and lungs cannot sustain the minimum

power aerobically, then it can only fly in short bursts, if at all. The min-

imum power required to fly is a matter of physics, and depends

not only on the bird’s mass and wing measurements, but also on some

environmental variables, especially the strength of gravity and the

air density. The maximum power available from the muscles is a matter

of physiolo gy ( Chapte r 7 ). Calculations of perform ance in sustaine d

flapping flight depend on comparing the physiology with the physics.

3.2.3 PROFILE POWER

Like any obstruction, a wing resists the flow of air past it, and creates

drag. Part of that drag results directly from generating downwash to

support the weight. In a fixed wing this can be identified as the induced

drag, a steady force which can be multiplied by the speed to find the

induced power (above). However, all wings produce more drag than

that which can be attributed directly to creating downwash. Any addi-

tional drag is the profile drag which, when multiplied by the speed,

gives the profile power. Rotary and flapping wings also require profile

power, but it is not possible to identify a steady profile drag force

in these more complicated cases. It is possible to calculate profile

power for a helicopter rotor blade by dividing it into a number of

chordwise strips, estimating the speed and direction of the incident

airflow (different for each strip), and then estimating the magnitude

of the lift and drag force acting on each strip from wind tunnel experi-

ments on wing cross-sectional shapes. Such a ‘‘strip analysis’’ was

attempted for a pigeon flying in a wind tunnel (Pennycuick 1968b),

but this proved unduly complicated, and involved many variables that

were difficult or impossible to measure. It yielded a result for the

pigeon, but did not lead to a formula like those of Boxes 3.1 and 3.2,

that could readily be generalised to calculate the profile power for

any bird.
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A simpler method was devised for such general performance esti-

mates by Pennycuick (1969), and this is still used by the Flight pro-

gram, with only one modification (Box 3.3). Rather than attempting

to calculate profile power directly, Flight assumes, in effect, that it is

essentially a by-product of the bird’s efforts in generating induced

and parasite power. The absolute minimum power for an ‘‘ideal’’ bird,

i.e. one with no profile power, would be the sum of the induced and

parasite powers, when the bird is flying at the minimum power speed.

Flight calculates this first and then multiplies it by a ‘‘profile power

factor’’ to get the profile power. This factor was fixed in early versions

of the programme, which meant that the profile power depended on

the wing span, but was independent of the wing area, as the formulae

for induced and parasite powers do not involve the wing area. The

modification that was later introduced made the profile power factor

inversely proportional to the aspect ratio, which also means that it is

proportional to the wing area, other things being equal.

This method of calculating profile power lacks the direct link to clas-

sical aeronautical theory that can be claimed for induced and parasite

powers. It has the merit of being simple, and involving no greater

degree of guesswork than a complex strip analysis. It is not entirely sat-

isfactory since, as Figure 3.5 shows, the profile power that it calculates

is usually not a trivial fraction of the total power. There is now an indi-

rect way to get at it experimentally, by measuring the total power from

vert ical acce leratio ns of the bird’s body (Chapte r 14 , Box 14.4 ), then

estimating the induced and profile powers, whose theoretical basis is

more robust, and finding the profile power by subtraction. Experiments

on different birds along these lines would help to show whether Flight’s

method for estimating profile power gives realistic estimates. Present

indications, so far as they go, are that Flight’s estimates for the total

power at medium speeds, and the fuel consumption needed to account

for it, are consistent with the known performance of long-distance

m igrants (Ch apter 8 ).

3.2.4 ‘‘INERTIAL POWER’’ IS NOT REQUIRED

Some authors attach great importance to a supposed further compo-

nent of power, due to angular acceleration of the wing’s inertia. At

the beginning of each downstroke, the wing is fully extended but sta-

tionary, in terms of angular motion about the shoulder joint. The pull

of the pectoralis muscle is balanced partly by the aerodynamic force

on the wing, and partly by the wing’s inertia. As the wing accelerates

into the downstroke, it acquires a component of kinetic energy, which
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FIGURE 3.5 Flight calculates the mechanical power curve by adding together induced,
parasite and profile power, over a range of speeds from just below Vmp to just above Vmr.
At any given speed, the values of the three thin lines at the bottom of the graph are added
together to get the thick line for mechanical power above. This example is for the wigeon
(Anas penelope) in the Preset Birds database. The power components are not available
separately in the Flight output. The tangent construction of Figure 3.2 would not identify
Vmr correctly on this graph, because Flight calculates this from the chemical power.
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is proportional to its moment of inertia, and to the square of its angular

velocity. This energy comes from work done by the pectoralis muscle,

and, so the theory goes, must be multiplied by the wingbeat frequency

to get the ‘‘inertial power’’. This would be true if the kinetic energy

gained by the wing were dissipated and lost at each wingbeat, but that

is unlikely. Unlike work done against drag, which is dissipated irrevers-

ibly, the wing’s kinetic energy is a high-grade form of energy which can

be reconverted into work. If that work can be used to accelerate air

downwards, then it contributes to the induced power, and if it acceler-

ates air backwards, it contributes to the parasite and/or profile power.

To achieve this, the wing’s rotation has to be stopped at the end of the

downstroke by aerodynamic forces, which themselves result from

acceleration of air in the required direction.

A perfectly efficient bird would recover all of the original inertial

work, and use it as part of the aerodynamic work that has to be done

at each wingbeat. If the bird is not perfectly efficient, then the work

that is lost appears as additional induced power in the form of an

increase in the induced power factor, and/or as an increase in the body
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drag coefficient, and/or as an increase in the profile power ratio (see

Boxes 3.1–3.3). It is not necessary, practical, or even meaningful to

attempt to account for inertial power separately, and this component

does not feature in Flight’s power calculation.

3.2.5 ASSEMBLING THE POWER CURVE: THE MINIMUM

POWER SPEED

Adding together the three components of mechanical power (induced,

parasite and profile power) gives the rate at which the flight muscles

have to supply mechanical work at any particular speed (Figure 3.5).

Flight does not begin calculating the power curve at zero speed (hover-

ing), because the assumptions on which the calculation is based are

insecure at very low speeds. Instead, it begins by estimating the mini-

mum power speed (Box 3.4), and then moves to a slightly lower speed

to start calculating the curve. It finds the induced power at that speed

from Equation (16) of Box 3.1, the parasite power from Equation (2) of

Box 3.2 and the profile power from Equation (4) of Box 3.3, and adds

these three components together to get the total power. Then it

increases the speed by 0.1 m s 1, repeats the calculation, and continues

repeating this. As the starting speed was below the minimum power

speed, the power first decreases at each speed step. When the power

levels off, the programme notes the speed and identifies it as Vmp,

the minimum power speed. This is the speed at which the lowest rate

of muscular exertion is required to fly, and at which a given amount

of fuel will last for the maximum flying time.

3.2.6 FINDING THE CHEMICAL POWER

The chemical power, which is also listed in the output, is required for

migration calculations, and is considered further in Chapters 7 and 8.

At each speed, the largest component of it is found by dividing the

mechanical power by the conversion efficiency, which is assumed to

be constant, with a default value of 0.23. This is the direct equivalent

in fuel energy of the work that is done by the flight muscles. Basal

metabolism is then added as an ‘‘overhead’’, which is assumed to be

independent of speed, but declines during migration because it is

ba sed on the declin ing body mass (see C hapter 8, Box 8.5). Fi nally, a

10% overhead is added to the total chemical power to allow for the

power required to operate the lungs and circ ulator y s ystem (Chapter 7).

Besides the chemical power, the programme also calculates a number

of other variables at each speed step, which can be inspected and



BOX 3.4 Effective lift:drag ratio and range.

Variable definitions for this box
A Equivalent flat-plate area of the body
B Wing span
Cdb Drag coefficient of the body
g Acceleration due to gravity
k Induced power factor
m All-up mass
N Effective lift:drag ratio from fuel consumption
Nmech Effective lift:drag ratio from mechanical power
Nult Maximum mechanical effective lift:drag ratio for ideal bird
Pchem Chemical power required to fly
Pind Induced power
Pmech Mechanical power required to fly
Pmr Mechanical power required to fly at the maximum range speed
Ppar Parasite power
Ppro Profile power
Sb Frontal area of the body
Sd Disc area
Vt True airspeed
Vmp Minimum power speed
Vmr Maximum range speed
� Conversion efficiency
r Air density

Effective lift:drag ratio and maximum range speed
When flight calculates a power curve, it first estimates the minimum
power speed from Equation (2) of Box 3.3. Starting at a speed a little
below this, it works out the mechanical power required from the muscles
(Pmech) at speed intervals of 0.1 m s�1, by adding together the induced
power (Pind) from Equation (16) of Box 3.1, the parasite power from
Equation (2) of Box 3.2 and the profile power (Ppro) from Equation (4)
of Box 3.3:

Pmech ¼ Pind þ Ppar þ Ppro: ð1Þ

It also works out the effective lift:drag ratio (Nmech), whose original defini-
tion, based on the mechanical power (Pmech) is

Nmech ¼ mgVt

Pmech
: ð2Þ

As power is force times speed, the ratio Pmech/Vt can be seen as the aver-
age horizontal force needed to propel the bird along, and Nmech is then the
ratio of the weight to this horizontal force. It is proportional to the ratio of
distance travelled forwards to mechanical work done by the muscles. In bird
migration studies, one is usually more interested in the distance flown per
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unit of fuel energy consumed, and Flight therefore calculates N, a slightly
different version of the effective lift:drag ratio, from the chemical power
(Pchem) rather than from the mechanical power:

N ¼ mgVt

�Pchem
; ð3Þ

where � is the conversion efficiency of the flight muscles. N is still the ratio
of two mechanical powers, but its value is lower than that of Nmech, because
Pchem includes some metabolic ‘‘overheads’’, in addition to the direct fuel
equivalent of the mechanical power. Under this definition, N is proportional
to the distance flown per unit of fuel energy consumed. Flight calculates N
at each speed step, as it computes the power curve. As the speed increases
above Vmp, N increases strongly at first, but eventually levels off and starts
going down again. Flight identifies the speed at which N ceases to increase
as the maximum range speed (Vmr), and terminates the power curve calcu-
lation just above this speed. Vmr is the speed at which the bird covers the
greatest distance for each unit of fuel energy consumed. It is not necessarily
the ‘‘optimum’’ speed for migration, because the power required is higher
than at lower speeds, and may be beyond the bird’s aerobic or mechanical
capacity, especially if the bird is carr ying a heavy load of fat (Chapter 8).

Maximum effective lift:drag ratio
The maximum value of N occurs when the bird is flying at Vmr, but as it
involves metabolic overheads, it is more practical to compute it numeri-
cally as Flight does, rather than trying to calculate it. The mechanical ver-
sion (Nmech) can, however, be calculated for an ideal bird (one with no
profile power) by finding the speed and power at which Nmech passes
through a maximum, in the same manner as Vmp and Pam were calcu-
lated in Box 3.3. This time, two of the morphological variables will be
expressed in a slightly different form. Instead of the wing span (B) we
use the disc area (Sd), which is the area of a circle whose diameter is
equal to the wing span:

Sd ¼ pB2

4
; ð4Þ

and we multiply the body frontal area (Sb) by the body drag coefficient
(CDb), and call the result the equivalent flat-plate area of the body (A):

A ¼ SbCDb: ð5Þ
A may be thought of as the area of a flat plate that is perpendicular to

the airflow, and stops the approaching air completely, developing the
same amount of drag as the larger, streamlined body. In terms of these
two variables, and the others defined above, the maximum range speed is:

Vmr ¼ ðk1=4m1=2g1=2Þ
ðr1=2A1=4S

1=4
d Þ

; ð6Þ

62 MODELLING THE FLYING BIRD



BOX 3.4 Continued.

and the mechanical power (Pmr) required to fly at that speed is:

Pmr ¼ ðk3=4m3=2g3=2A1=4Þ
ðr1=2S3=4d Þ

: ð7Þ

By substituting from Equations (6) and (7) in Equation (2), we can get the
‘‘ultimate’’ lift:drag ratio (Nult) for an ideal bird with the given wing span and
body frontal area.

Nult ¼ mgVmr

Pmr

¼ ðSd=AÞ
p

: ð8Þ
If the ideal bird is reduced to a wing disc swept out by the wings, with an

equivalent flat-plate representing the body in the middle (Figure 3.6), then
the ratio of the areas of the two discs is the square of the ultimate effective
lift:drag ratio. The practical maximum value of N for a real bird is consider-
ably lower, because of the profile drag of the wings, and metabolic over-
heads. It is computed step by step for each value of the speed, when
Flight generates a power curve. In Flight’s Migration calculation, the current
value of N is used to calculate the fuel used at each time step, and N is then
re-computed, taking account of changes of mass, body frontal area and
speed due to the consumption of fuel.
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plotted if the results are saved as an Excel workbook or a text file. These

include the effective lift:drag ratio, which is closely related to the dis-

tance flown per unit of fuel energy used (Box 3.4). When the effective

lift:drag ratio peaks, the programme notes the speed as Vmr, the maxi-

mum range speed, and terminates the calculation after a few more

steps. The power required to fly at Vmr is more than that to fly at

Vmp, but there is an even greater gain of speed, so that Vmr is the speed

at which the most air distance is covered per unit amount of fuel

energy consumed. Vmp and Vmr are the two characteristic speeds that

can be used to characterise a particular bird’s power curve. As the cal-

culated value of Vmp does not involve physiology, it is more robust than

that of Vmr, which does (Figure 3.6).

3.3 SIGNIFICANCE OF THE CHARACTERISTIC
SPEEDS

The minimum in the power curve means that a bird that is exerting a

little more than the minimum power required for level flight can main-

tain either of two different speeds, one below Vmp and the other above.
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Body frontal area

Equivalent flat-plate area

FIGURE 3.6 The same wigeon whose mechanical power curve is shown in Figure 3.5,
represented by three circles, drawn to scale. The large circle is the wing disc, whose area
is Sd, and whose diameter is equal to the wing span. The dashed circle is the body cross
section at the widest part, whose area is Sb, the body frontal area. The small grey circle
in the middle is the equivalent flat plate, whose area (A) is one tenth of the body frontal
area, because the default value of the body drag coefficient in Flight is 0.1. If this wigeon
were an ‘‘ideal bird’’, with no profile power, its maximum effective lift:drag ratio, from
the mechanical power curve, would be (Sd/A)

p
, which works out to 27.9. The actual

maximum effective lift:drag ratio from the chemical power curve is much lower, because
it has to take account of profile power and metabolic overheads. Flight estimates it as
12.0, at a speed (Vmr) of 23.1 ms�1.
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However, a speed below Vmp is inherently unstable, whereas the speed

requiring the same amount of power above Vmp is stable. This is

because a bird that is exerting exactly the right amount of power to

maintain a steady speed that is below Vmp needs slightly less power

than before if a gust or some other disturbance causes it to speed up

slightly, because of the downward slope of this part of the power curve.

Unless the bird responds very quickly by reducing its power output, it

will be exerting more power than is needed to maintain the new speed,
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and this will cause it to speed up further, until it reaches the speed on

the rising part of the power curve, above Vmp, where the power

required is once again the same as the power that it is exerting

(Figure 3.7). Flying around at speeds below Vmp is possible in both

birds and aircraft, but flying faster than Vmp is easier in terms of control

input, and does not necessarily require any more power. Thus, it is no

surprise that airspeed measurements of wild birds flying steadily along

in the field are usually slightly above Vmp (se e Chapte r 15 ). Birds like

flycatchers that require low-speed manoeuvrability for catching insect

prey in the air may be regarded as specialised for flight at speeds below

Vmp, and there are suggestions that most or even all insectivorous bats

are also specialised for doing this.

Flying steadily at Vmr requires more power than flying at Vmp, and a

higher rate of oxygen consumption. This puts it beyond the reach of

large birds like swans, and probably of many smaller birds as well,

especially when they are flying high and/or heavily loaded with fat

(Ch apter 7 ). Howeve r, long-dista nce migra nts gain both increased

range and reduced flight time by flying as near to Vmr as possible.

The migration section of the Flight programme offers various options

for ultra long-distance migrants of medium size, like knots and
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FIGURE 3.7 A speed (V1) below the minimum power speed (Vmp) is unstable for a bird
that is exerting just enough power to maintain that speed. If the speed increases by a
small amount (DV ), the power required drops below the power that is coming from the
muscles, and the bird continues to accelerate until the speed reaches the rising part of
the power curve at V2, which is the stable speed for the same about of power. Flying
around at speeds below Vmp is difficult, and something that birds (and fixed wing aircraft)
only do if they have a special reason, such as hawking for flying insects (after Pennycuick
1997).
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godwits, representing different strategies to work the airspeed up to

Vmr, as the weight declines in the early stages of a long flight

( Chapte r 8).

3.4 EFFECT OF AIR DENSITY ON SPEED
AND POWER

Flight calculates the power curve as a function of the True airspeed,

which is the relative speed at which small particles are carried past

the bird by the air. At each speed the power is a function of the air den-

sity. At higher altitudes, the air density is lower, and the whole power

curve moves upwards on the graph, and expands to the right. The

two characteristic speeds, Vmp and Vmr, increase in inverse proportion

to the square root of the air density. The effect of changes in the air

density can be seen by running a power curve for some bird at sea

level, then running it again at different heights (1000, 2000, 3000 m

etc.), without changing any other variables. As you increase the height

(reducing the air density), both the minimum power speed (Vmp) and

the power required to fly at that speed (i.e. the minimum mechanical

power Pmin) vary inversely with the square root of the air density. At a

height of 6700 m, where the air is only half as dense as at sea level,

Vmp is 2
p

times as fast as for the same bird at sea level, and Pmin is also

2
p

times higher. If the bird could fly at all in such thin air (unlikely), it

would have to go 41% faster, and supply 41% more power from its

muscles, to maintain the higher Vmp. If a bird has enough muscle

power to fly a bit faster than Vmp at sea level, then it can only just

maintain Vmp at some higher level (where Vmp itself is faster), and at

a still higher level, it no longer has enough power to maintain height.

In terms of True airspeed, a bird which is flying at Vmp at a height of,

say, 3000 m, will be flying about 5% faster than its own Vmp at sea level

(Figure 3.8). Every point on the power curve is shifted to the right by

about 5% (higher speed) and also raised by the same amount (more

power) at the higher altitude, although the bird is flying at the

corresponding point on the curve in both cases (for example at Vmp).

The airspeed indicator on an aircraft’s instrument panel actually mea-

sures the dynamic pressure from a forward-pointing pitot-static tube

( Chapte r 14 , Box 14.1). Instead of the True ai rspeed, it indicat es the air-

speed that would correspond to the measured dynamic pressure, if the

air density were the same as at sea level. Pilots call this the Equivalent

airspeed. The dynamic pressure is the basis of the aerodynamic forces

acting on the wings and body, consequently corresponding points on

the power curve, such as Vmp, occur at a fixed value of the dynamic
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FIGURE 3.8 Mechanical power curves for the song thrush from the ‘‘Preset Birds’’ database,
calculated by Flight. The effect of reducing the air density from 1.23 to 0.909 kg m�3,
corresponding to sea level and 3000 m above sea level in the International Standard Atmo
sphere, is to raise the whole curve and shift it to the right. Vmp increases in proportion to the
square root of the air density, and Vmr approximately so. At low speeds, the power required
is higher at the higher altitude, where the air density is lower, but the curves cross over, and at
speeds above about 18 ms�1 the reverse is the case. Since both speed and power increase
by the same factor, the effective lift:drag ratio is unaffected by changes of air density (more
or less).
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pressure and of the Equivalent airspeed, not at a fixed True airspeed.

If the prevailing air density happens to be the same as at sea level in

the International Standard Atmosphere, then Equivalent and True air-

speed are the same, but at higher levels, where the air density is less than

at sea level, the True airspeed is higher than the Equivalent airspeed.

Care is needed when observing flight performance over a range of

different heights. If you measure a bird’s speed by radar, and make due

allowance for the wind, you get a True airspeed, but this is not directly

comparable with the True airspeeds of other birds that were measured

at different heights where the air density was different. One possible

solution would be to compare each bird’s measured True airspeed with

the value of Vmp predicted by Flight for that species, but that would

require a separate prediction for every observation, because the value

of Vmp depends on the air density as well as on the bird’s mass and wing

morphology. An easier way is to ‘‘reduce’’ each of the observed speeds

from its original height to sea level (Chapter 15, Box 15.3), w hi ch is the

same as plotting the observations against Equivalent rather than True
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airspeed. Then, only one power curve needs to be calculated for each

species, in which the air density has been set to the sea-level value for

the International Standard Atmosphere (just set the altitude to zero in

Flight). Reducing all the observations to the same level makes them com-

parable with each other, so that it is valid to plot the whole data set

together on the same graph. It is not valid to do this with raw tracking-

radar data.
3.5 ADAPTIVE SIGNIFICANCE OF MORPHOLOGY

3.5.1 SIGNIFICANCE OF WING MORPHOLOGY

In forward flight at any given speed, the induced power is inversely

proportional to the square of the wing span (Box 3.1). In other words,

long wings are the basic adaptation for economical hovering, or flight

at low speeds. On the other hand, the wing area does not appear in

any of the expressions for induced power in Box 3.1. It is an error to

suppose that a low wing loading is the key to successful flight, as the

Wright brothers discovered in the most frustrating way in 1901, when

they increased the wing area of their unsuccessful 1900 glider, and

found that the new glider performed even worse than before. The suc-

cessful 1902 glider, which paved the way for powered flight, had

roughly the same wing area as its predecessor, but the wing shape

was different. It had a higher aspect ratio, meaning that the wing area

was redistributed out to the sides, away from the centre line.

It is not the wing span by itself that determines how well a wing

works, and certainly not the wing area by itself, but the aspect ratio,

the rati o of wing span to mean c hord ( Chapte r 1 , Box 1.2) . A long , nar-

row wing works better than a short, wide one with the same area and

profile, because it develops more lift, and less induced drag at the same

angle of attack. These are classical results from Prandtl’s lifting-line

theo r y ( Chapte r 4 ). On the othe r hand, a long, narrow wing, is more

cumbersome, and provides less space in which to incorporate the nec-

essary strength. The wings of flying animals have to compromise

between having aspect ratios that are high enough to fly well, while

being strong enough to allow the wing to be flapped in the air, and

folded and manipulated on the ground. Alternative solutions to these

practical problems have evolved in birds, bats and pterosaurs, and

these are introduced in Chapters 5–6.

The significance of ‘‘wing loading’’ (weight divided by wing area) is

that it determines the speed at which air is required to flow past the

wing. This is useful as a fixed-wing notion, where the speed of the
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relative airflow is the same over all parts of the wing, and equal to the

airspeed of the whole bird or aircraft. The airflow produces a pressure

difference between the lower and upper surfaces of the wing, and this,

when multiplied by the wing area, has to balance the weight in steady

flight. The pressure difference is directly related to the dynamic pres-

sure. The higher the wing loading, the more pressure is needed, and

the faster the bird has to fly. The wing loading is useful in gliding calcu-

lations, where the wing is essentially fixed, for determining characteris-

tic speeds. It also determines a bird’s circling radius in gliding (not in

flapp ing fligh t), whi ch is impor tan t in therm al soaring ( Chapte r 10 ).

The wing loading has no special significance in flapping flight calcu-

lations. If the wings can be moved relative to the body, by rotation or

flapping, then air can be made to flow at different speeds over different

parts of the wings and body, and any simple relationship between flight

performance and wing loading breaks down. Wing loading does have a

connection with the circulation about the wing in flapping flight, but

that is bey ond the scope of the Flight programm e ( Chapte r 4).

3.5.2 SIGNIFICANCE OF BODY SHAPE

The reason why streamlined bodies taper to a point at the rear end is to

induce the flow to close up downstream, rather than separating from

the surface. If the airflow separated from living birds’ bodies as readily

as it does from frozen bodies (Box 3.2), then there would be no adap-

tive advantage in the elaborate ‘‘fairings’’ provided by body feathers,

which smoothly taper the rear end of the body to a point in flight.

On the smaller scales of insect flight, the flow separates from the body

anyway, regardless of whether the outline is streamlined or not. Insects,

especially in the smaller sizes, usually have blunt or angular bodies,

often with protruding legs or spines, as there is no biological advantage

in a smoothly faired outline. The fact that birds do fair their body out-

lines indicates that there is a performance advantage in this, and that

the high drag measured on frozen bodies is an artefact. It remains a

mystery how exactly the living bird keeps the flow attached to the

tapered, feathered shape, while the same body cannot do this when

dead and frozen (see al so C hapter 15 , Box 15.4 ).

3.6 TWO-DIMENSIONAL AEROFOIL PROPERTIES

Some of the essential terminology that is used to describe the perfor-

mance of wings is derived from a huge volume of empirical experi-

ments that were done in the twentieth century on the properties of
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FIGURE 3.9 (A) The angle of attack (a) is the angle between the relative airflow and the
chord line. A cambered wing section normally develops zero lift at a negative angle of
attack, in other words, when the zero lift line is parallel to the relative airflow. (B) The
graph of lift coefficient versus angle of attack, for a wing of infinite aspect ratio, with a
section such as the one shown above, is approximately linear from the zero lift angle to
the stalling angle. The break in the curve at the stall is due to separation of the airflow
from the wing surface, and is accompanied by a marked rise in the drag coefficient.
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‘‘aerofoil sections’’, or ‘‘profiles’’, meaning shapes that can be used as

the cross sections of wings. Aerofoil properties are often called ‘‘two-

dimensional’’, as they refer to the cross-sectional shape of a wing only,

isolated from any effects that are due to a real wing’s finite span, with

flow around the wing tips. When the effects of wing span are taken into

account (below), the aerofoil properties refer to a wing of infinite span.

This is an abstraction, but it can actually be simulated quite well in a

wind tunnel, by testing a model wing whose chord and cross-sectional

shape are constant, and whose span extends from one wall of the test

section to the other.

Systematic measurements of the properties of aerofoil sections are

traditionally based on measuring the lift, drag and pitching moment

developed by the aerofoil, which of course depend on the size of the
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model, the wind speed and the air density. The results are invariably

presented in the form of dimensionless coefficients, in which the effects

of these variables have been eliminated, leaving a number that is pri-

marily a function of the angle of attack. This latter term is often

wrongly used, and further confusion arises from failure to distinguish

between lift and drag forces and the corresponding coefficients (see

Box 3.5). The lift coefficient is closely related to the downwash angle

induced by the aerofoil, and the drag coefficient measures the extent

to which the aerofoil slows down the air flowing past it.
BOX 3.5 Properties of aerofoils and wings.

Variable definitions for this box
a Lift slope
a0 Lift slope for a wing of infinite aspect ratio
c Chord of a wing model
CD Drag coefficient
CDind Induced drag coefficient
CDpro Profile drag coefficient
CL Lift coefficient
D Drag
D0 Drag per unit span
k Span efficiency factor
L Lift
L0 Lift per unit span
q Dynamic pressure
Ra Aspect ratio
Swing Wing area
Vt True airspeed
a Angle of attack
r Air density

Properties of wing sections
Vast numbers of wind-tunnel experiments were done in the twentieth cen-
tury to measure the lift and drag developed by different ‘‘aerofoil sections’’
or ‘‘profiles’’, meaning shapes that might be used as wing cross sections
(Abbott and von Doenhoff 1959). Although the conclusions of these experi-
ments are not easily transferred to the jointed and infinitely adjustable
wings of birds and bats, the associated terminology, which is introduced
in this box, permeates all discussions of wings of every kind. Wing sections
intended for low-speed flight have a rounded leading edge, a pointed trail-
ing edge, and some camber, which means that the mean line is curved, con-
vex upwards. Families of wing section shapes were created and tested by
systematically varying these characteristics. The chord line of such a section
is defined as a straight line joining the centre of curvature of the leading
edge with the point of the trailing edge. The angle between the chord line
and the direction of the incident airflow is the angle of attack (Figure 3.9).



BOX 3.5 Continued.

Some biological authors have been known to use the term ‘‘angle of attack’’
to refer to the angle between some plane on the wing and the axis of a wind
tunnel, irrespective of the direction from which the local incident airflow is
coming. This is wrong and highly misleading, especially in flapping flight,
where the direction of the incident airflow varies from one point to another
along the wing, depending on the flapping motion, and is usually very
different from the general flow direction along the tunnel axis.

Lift and drag coefficients
The absolute magnitudes of the lift and drag forces are not very informative
by themselves, but they can be given a context by expressing them as non-
dimensional coefficients, the lift coefficient (CL) and the drag coefficient (CD).
Each coefficient is the ratio of the actual force to a reference force, which
takes account of the air speed, the wing area and air density. This reference
force is made up by multiplying the dynamic pressure by the wing area.
The dynamic pressure (q) is the pressure in a blind tube pointing into the
relative wind, and is given by:

q ¼ rV 2
t

2
; ð1Þ

where r (Greek rho) is the air density, and Vt is the True airspeed. The lift
coefficient (CL) of a real wing with a finite area (Swing) is defined as

CL ¼ 2L

ðrV 2
t SwingÞ ; ð2Þ

where L is the lift force. Alternatively, in wind-tunnel experiments that sim-
ulate a wing of infinite span (and area), the primed variable L0 is used to
denote the lift per unit span. The lift coefficient in that case is

CL ¼ 2L0

ðrV 2
t cÞ

; ð3Þ

where c is the chord of the constant-chord model. Being the ratio of two
forces, CL is, of course, dimensionless. Whereas the lift force is a function
of the air density, the speed, and the wing area, the effects of those variables
are eliminated in Equation (3), so that the lift coefficient is primarily a func-
tion of the angle of attack. It also depends on the Reynolds number, but
investigating that involves replicating whole experiments at different scales.
Figure 3.8 shows a typical graph of lift coefficient versus angle of attack for a
lightly cambered aerofoil section, like those traditionally used for the wings
of light aircraft, at a light aircraft Reynolds number of half a million or so.
Because of the camber, a section like this develops some lift when the chord
line is set parallel to the incident airflow, that is, at zero angle of attack. The
graph is nearly a straight line from about 4�, where the lift coefficient is
zero, up to about 16�, where it is about 1.4. Further increase in the angle
of attack causes the lift coefficient to drop sharply. The wing is then said
to be ‘‘stalled’’.
Over the linear portion of the lift coefficient curve, the airflow follows the

upper surface of the wing, and leaves the trailing edge with a downward
component of velocity, which it did not have as it approached the wing. This
downwash is responsible for the lift force, and the downwash angle,
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measured downstream of the wing, is closely related to the lift coefficient.
As the angle of attack increases, the suction above the wing increases, and
so does the downwash angle, until the angle of attack reaches the stalling
angle. The wing is said to stall when the angle of attack becomes so steep
that the airflow can no longer follow the upper surface of the wing, and
breaks away from it, which results in an abrupt drop in the lift coefficient.
The drag coefficient (CD) of a wing is defined in the same way as the lift

coefficient:

CD ¼ 2D

ðrV 2
t SwingÞ ; ð4Þ

where D is the drag. For a wing model of infinite span, whose chord is c, the
drag coefficient is calculated from the drag per unit span (D0):

CD ¼ 2D0

ðrV 2
t cÞ

: ð5Þ

In wing sections like that of Figure 3.9, the drag coefficient is lowest at low
angles of attack, and increases at higher angles of attack until the wing
stalls, while the ratio of CL to CD passes through a maximum at some inter-
mediate angle of attack. Above the stalling angle, the lift collapses, and the
drag coefficient increases more steeply than before, so that the ratio of lift
to drag drops catastrophically. The CL/CD ratio is the most basic figure of
merit for any wing, and it peaks at a particular value of the angle of attack,
which itself corresponds to a particular value of the lift coefficient. When
the wing is incorporated into an aircraft (or bird) this also defines a partic-
ular speed at which the wing works best, given specified conditions of
gravity and air density.

Wings of finite aspect ratio
The Wright brothers and their contemporaries were intuitively aware that a
wing will not work if its aspect ratio is too low, but it was not until 1919 that
Ludwig Prandtl and colleagues published the ‘‘lifting line’’ theory that they
had developed during the First World War (see also Chapter 4, Section
4.2.4). This relates the properties of a wing of given aspect ratio to the
two-dimensional properties of the profile. All later aeronautical textbooks
have presented this theory as part of the bedrock of classical aerodynamics,
and the reader who is in search of a particularly clear modern explanation
will find one in Anderson (1991). It is a fixed-wing theory, that deals with
induced drag (rather than induced power as in Box 3.1), but its main results
give a valid intuitive feel for the effects of increasing the aspect ratio of
any wing, whether fixed, rotary or flapping. The drag coefficient of a wing
or a wing profile (Equations 4 and 5) is represented as the sum of two
components, the profile and induced drag coefficients:

CD ¼ CDpro þ CDind: ð6Þ
The profile drag coefficient (CDpro) is due partly to skin friction and partly

to the pressure difference between the upstream and downstream sides of
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the wing. It is not much affected by the wing’s aspect ratio, or the amount of
lift it develops, and is considered to be constant in the lifting-line theory.
However, the induced drag coefficient depends directly on the square of
the lift coefficient (CL), and inversely on the aspect ratio (Ra):

CDind ¼ kC2
L

pRa
; ð7Þ

where k is an ‘‘induced drag factor’’, greater than 1, that accounts for any
deviation from an ‘‘ideal’’ elliptical lift distribution (Chapter 4 Box 4.2). Over
the straight-line portion of Figure 3.9, CL is proportional to the angle of
attack, so that CDind varies with the square of the angle of attack, measured
from the zero-lift angle.
The Wright brothers’ 1901 glider had an aspect ratio of 3.3 and it would

not fly, because the lift coefficient could not be increased enough to support
a man’s weight, without also raising the induced drag coefficient to a cata-
strophic level. Their 1902 glider, with an aspect ratio of 6.5, flew well enough
to allow them to develop an effective control system, and teach themselves
to fly. There is a second reason, also predicted by the lifting-line theory, for
the dramatic effect on performance of increasing the aspect ratio. This con-
cerns the ‘‘lift slope’’ (a), which is the gradient of the straight-line portion of
the curve of Figure 3.9:

a ¼ dCL

da
; ð8Þ

where a (Greek alpha) is the angle of attack. If a0 is the value of a for a wing
of infinite aspect ratio, then the lift slope for the special case of a wing of
aspect ratio Ra with elliptical lift distribution is:

a ¼ a0

½1þ ða0=pRaÞ� : ð9Þ

Delta-winged aircraft, such as Concorde and the Vulcan bomber, have
low aspect ratios, and consequently a low lift slope, which means that
such aircraft have to be pitched nose-up to a very high angle for take-
off and landing. The Wrights’ unsuccessful 1901 glider simply could not
be pitched up enough to develop enough lift to fly. Published data on
wing section properties are sometimes given for infinite aspect ratio,
but are commonly reduced with the aid of Equation (9) to a standard
aspect ratio, usually 5 or 6. The lift slope for other, more general lift dis-
tributions can also be correctly predicted from the lifting-line theory,
although this is more complicated.

Low-speed flight
Strongly cambered wing sections are often described as ‘‘high-lift’’ sections,
but it is more accurate to describe them as having a high maximum lift
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BOX 3.5 Continued.

coefficient. As an aircraft slows down when approaching to land, the lift
stays the same (equal to the weight), and the lift coefficient therefore has
to increase. The pilot achieves this by progressively raising the nose, so
increasing the angle of attack. The lift coefficient of most aircraft wings
can be increased further by trailing-edge flaps, which effectively increase
the camber when deflected downwards. Airliners often have a cascade of
flaps, which can be deployed at low speeds behind the main wing, with slots
in between them. Such an arrangement deflects the air downwards through
a larger downwash angle than would be possible by simply increasing the
angle of attack with the flaps retracted, and can increase the maximum lift
coefficient to 3 or even more, allowing a corresponding reduction of the
landing speed. A drooped leading edge, with or without a slot, further
increases the maximum angle of attack at which the wing will fly without
stalling. In cruising flight, when a high lift coefficient is not required, these
‘‘high-lift devices’’ are retracted or ‘‘cleaned up’’, which minimises drag, and
maximises the lift:drag ratio.

Lift coefficients of bird wings
Because of the complicated structure of bird wings, it is not possible to test
them in a wind tunnel like wing models, but it is possible to train a bird to
glide in a tilting wind tunnel, and determine the minimum speed at which it
can glide (Chapter 14, Section 14.4). Results indicate that both birds and
bats with aspect ratios of 6–8 can glide steadily, under full control, at lift
coefficients around 1.5–1.6, but that their wings are not quite fully extended.
Birds can manage a slightly higher lift coefficient, perhaps 1.8, by momen-
tarily extending the elbow and wrist joints to get maximum wing span and
area, in transient low-speed manoeuvres such as landing. At very low speeds
and high angles of attack, the primary feathers splay apart at the wing tips,
and twist in the nose-down sense, meaning the local angle of attack at the
tip is automatically reduced. This prevents stalling of the wing tips, and flat-
tens out the sharp break in the lift coefficient curve that is seen in simple
wings like the one illustrated in Figure 3.9. Bird wings have an automatic
mechanism that increases the camber when the wing is fully extended
(Chapter 5, Section 5.2), while bats have fore-and-aft muscles in the wing
membrane that flatten the camber when a low lift coefficient is required,
but relax to allow the membrane to bulge upwards in low-speed flight
(Chapter 6, Box 6.1). The patagial tendon of birds pulls the leading edge of
the patagium downwards when the wing is fully extended, so drooping
the leading edge, and at very high angles of attack the feathers on the ven-
tral side hinge downwards and outwards, in a manner that suggests a
leading-edge flap. The leading edge of the propatagium of bats is also pulled
down when the wing is fully extended, and it seems that the pteroid bone,
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BOX 3.6 Reynolds number and the effects of scale.

The Reynolds number is a ‘‘similarity criterion’’, defining the scale of the
flow. For two flows to be dynamically similar, both must have the same Rey-
nolds number. One of its most common uses in engineering is for transfer-
ring the results of tests on small-scale models to full-sized aircraft. It is also
an indicator of the type of flow to be expected around a body or wing of a
given size, flying at a given speed.

Variable definitions for this box
cm Mean chord of wing
db Body diameter at widest part
‘ A reference length
Re Reynolds number
Rewing Reynolds number based on wing mean chord
Rebody Reynolds number based on body diameter at widest part
Vt True airspeed
m Air viscosity
n Air kinematic viscosity
r Air density

Reynolds number
The Reynolds number (Re) is defined as

Re ¼ Vt‘r
m

; ð1Þ

where Vt is the True airspeed, ‘ is a ‘‘reference length’’, r is the air density
and m is the viscosity of the air. The reference length is used to compare
two objects of different size but similar shape, and can to some extent be
arbitrarily chosen. For wing sections, the reference length is by convention
the chord length, or the mean chord for a complete wing (Chapter 1, Box
1.2). The ratio of the viscosity to the density is often called the kinematic vis-
cosity and given its own symbol n (Greek ‘‘nu’’), where

n ¼ m
r
: ð2Þ

Equation (1) for the Reynolds number then becomes

Re ¼ Vtl

n
: ð3Þ

The Reynolds number can be seen as expressing the relative importance
of inertial and viscous forces. Because of their small size and low speeds,
most insects operate at Reynolds numbers of tens to hundreds, below those
of most birds, and far below those of most aircraft (millions). Below a body
mass of about 5 g, insects take over from vertebrates as the dominant flying
animals, and one of the reasons that they look so different, and are con-
structed so differently, is that air, to them, is a viscous fluid. The lower the
Reynolds number, the harder it is to get air to follow a curved surface. Wher-
ever a wing or body has a convex surface, the airflow follows the surface as
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BOX 3.6 Continued.

far as the widest point, then tends to separate from it. This results in a lot of
drag, and not much lift. Special adaptations are needed to maximise lift and
minimise drag at low Reynolds numbers, and they are found in insects but
not in birds or bats.
Birds occupy an ‘‘intermediate’’ range of Reynolds numbers between

about 15,000 and 500,000, where lift and drag are created by inertial forces
as in aircraft, but there is more difficulty in keeping the flow attached to
wings and bodies. Despite this, even small birds have bodies that are faired
by a covering of feathers into smoothly streamlined shapes, which would
not have any advantage unless the flow could be made to follow the shape.
Some large insects (hawk moths) exhibit a degree of streamlining, but the
smaller ones do not, as their Reynolds numbers are too low to have any
hope of keeping the flow attached.

Drag coefficients at different scales
The drag of a wing section is partly ‘‘pressure drag’’, which is due to a pres-
sure difference between the upstream and downstream sides, and partly
‘‘skin friction drag’’ which is due to viscous forces produced as the air slides
over the surface. Pressure drag is due to forces that act perpendicularly to
the surface, and depend on the square of the speed, whereas skin friction
drag is due to tangential forces, which depend directly on the speed. Pres-
sure drag depends on the cross-sectional area presented to the flow,
whereas skin friction drag depends on the ‘‘wetted area’’ over which the
air slides. The definition of the drag coefficient (Box 3.5) is more appropriate
to pressure drag than to skin friction drag.

Reynolds numbers in Flight
Separate Reynolds numbers are calculated in Flight for the wing and the
body. They differ in the choice of a measurement for the ‘‘reference length’’
(‘ ). The wing Reynolds number is defined as

Rewing ¼ Vtcm
n

; ð4Þ

where cm is the mean chord of the wing (wing area divided by the wing
span). It has no connection with the arbitrary measurement known to
ornithologists as the ‘‘chord’’, and conversely this has no significance in
flight mechanics. The body Reynolds number is

Rebody ¼ Vtdb

n
; ð5Þ

where db is the diameter of a circle with the same area as the body frontal
area. The programme calculates both Reynolds numbers at the minimum
power speed in flapping flight, and at the best glide speed in gliding, these
being the speeds at which birds are most often seen flying around in flap-
ping and gliding flight respectively.
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3.7 SCALE AND REYNOLDS NUMBER

The notion of scale is expressed by the Reynolds number (Box 3.6). The

lower the Reynolds number (small size, low speed), the harder it is to

keep the flow attached to curved surfaces, which is the key to maximis-

ing lift and minimising drag on both bodies (above) and wings.

The feathered wings and bodies of birds seem to be more effective at

doing this than the wings of model aircraft, which fly in the same range

of Reynolds number (Schmitz 1960; Simons 1987), but it is far from

clear exactly what it is about the feathered surface that is responsible

for this.



4

VORTICES AND VORTEX WAKES
Vortex principles provide an alternative way to derive the same laws that underlie
the work and power calculations of Chapter 3. A flying bird leaves tracks in the
air in the form of a vortex wake, and this can be examined and used to deduce
the forces that the wings exerted on the air, and to estimate the work that they
did. Vortex principles are not explicitly used in the Flight programme, but are the
basis of recent and current wind tunnel investigations on flight mechanics.

Work and power were discusse d in Ch apter 3 in terms of linea r

motions and accelerations in the air, but in the world of real fluids this

is at best an approximation. Any process that involves work being done

on a fluid invariably involves shear (gradients of velocity) and this in

turn results in rotation. Vortices appear on every scale wherever work

is done on a fluid, whether the scenario is a cup of tea stirred by a

spoon, or a hurricane driven by heat from the warm ocean below.

When a bird flies by, it leaves vortices behind it in the air, which persist

for a while. The vortex wake can be observed and measured, and it

carries a record of the work that the bird’s wings have done on the

air. Vortex concepts are not used explicitly in the Flight programme,

but some of the most interesting experiments of recent times have
Modelling the Flying Bird
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approached the same mechanical questions that the programme

addresses from a different direction, by looking at the vortex wake,

rather than at forces on the wings and in the flight muscles.

What exactly is a vortex, and what rules do vortices obey? Those

questions are easily asked, but finding answers that lead to useful

predictions about real flows has taken the best efforts of some of the

most famous mathematicians of the last two centuries. Leonhard Euler,

Daniel Bernoulli, Jean le Rond d’Alembert, Pierre-Simon Laplace, Her-

mann Helmholtz, Lord Kelvin, Wilhelm Kutta, Nikolai Joukowski and

Ludwig Prandtl all made major contributions. The body of theory that

they and others built is not exactly simple, but it is an alternative way

of looking at the flight of birds and aircraft, which has evolved in par-

allel with the more direct approach based on considering the impact

that every air particle has on the pressure and velocity of its neigh-

bours. In mathematicians’ terms, the direct approach amounts to solv-

ing the Navier-Stokes equations, which fully describe what the fluid

does, but are notoriously difficult to solve for particular cases, whereas

vortex concepts are less exact but deliver practically useful results in

terms of entities that can be visualised, and obey simple rules. Follow-

ing the advent of huge computers, it has become practical to solve the

Navier-Stokes equations numerically, but vortex concepts still provide

a useful and compact way to describe many processes.

An authoritative modern account that covers both approaches can

be found in Anderson (1991), and the same author’s History of Aerody-

namics is also highly recommended (Anderson 1997). My objectives in

this chapter are limited to attempting to present the basic vortex

concepts in an essentially pictorial form. This can be seen as an alter-

nat ive v iew of the princip les of flight covered in Ch apter 3 , and also as

background to modern experiments on the vortex wakes of birds, and

how they relate to calculations of the work done by the wings.

4.1 THE CONCEPT OF THE LINE VORTEX

A line vortex is basically a mathematical abstraction that corresponds,

under the right conditions, to a physical entity with two components, a

vortex filament, which is a thin, rotating thread of fluid particles,

surrounded by an induced flow, which is where the physical effects take

place. The induced flow is the visible, whirling vortex, but despite that, it

is said to be irrotational. This means that although individual particles

of fluid may (or may not) circulate around closed paths, they do not

rotate on their own axes. Only the fluid particles that make up the vortex

filament actually rotate.
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Figure 4.1A is a cross section through a line vortex. In this two-

dimensional view the point in the middle is a point vortex, which is

actually a cross section through the vortex filament. The filament can

be imagined as a line passing through the point, and extending above

and below the page. The filament (only) is where the air is actually

rotating, and it induces the surrounding air to circulate around it, with-

out the individual particles of air themselves rotating. As the radius

from the filament increases, so the tangential speed of the air decreases

in each cylindrical shell of air surrounding the rotating filament, in

inverse proportion to the radius. If the cross section of the vortex fila-

ment were really a point (with zero radius), the speed and the angular

velocity within it would have to be infinite, making what mathemati-

cians call a ‘‘singularity’’, a place where the rules break down. However,

the induced flow looks essentially the same if the vortex filament is

replaced by a spinning core that has a finite radius (Figure 4.1B). The

tangential velocity in the core (grey) is zero at the centre, and increases

linearly with the radius. The outer surface of the core (at radius 2 in this

case) pulls the layer of air in contact with it along, and at larger radii the

tangential speed decreases in the same way as it does in the induced

flow around the one-dimensional vortex filament of Figure 4.1A. Some

of the most useful theoretical results of classical aerodynamics depend

on the assumption that real vortices, such as those shed from the

wing tips of fixed-wing aircraft, conform to the pattern shown in

Figure 4.1B, with a thin core of rotating air surrounded by an irrotational

induced flow.
4.2 VORTEX CONCEPTS APPLIED TO FIXED WINGS

4.2.1 CIRCULATION AND LIFT

The speed along any of the circular paths in Figure 4.1A or B is constant

around the path, and inversely proportional to the radius of the circle.

If we integrate the speed around the circumference of one of the circles,

the result is the same for any circle. The speed is halved for a bigger circle

with twice the circumference, and therefore the integral of speed around

the closed path is the same as before. This integral is called the circulation

and the result is the same forany closedpath, circular or not, so long as the

vortex filament (or the finite core) is entirely contained within it. The

circulation therefore has a fixed and measurable value for a particular

vortex, and is often called the strength of the vortex.

If a cylinder is mounted in a wind tunnel, perpendicular to the wind

(coming from the left in Figure 4.2A) the air divides symmetrically
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FIGURE 4.1 (A) Cross section through a line vortex. The ‘‘vortex filament’’, represented by
the point in the middle, is the only region where particles of air actually rotate on their own
axes. The ‘‘induced flow’’ around the filament is ‘‘irrotational’’, meaning that particles of
air follow circular paths, but do not rotate on their own axes. Each particle moves at a tan
gential velocity (V ) that is inversely proportional to its radial distance (r) from the filament.
The ‘‘circulation’’ (G) can be found by integrating V cos ’ (where ’ is the angle between
the path and the direction of V ) around any closed path that contains the filament. The
result is the same whether the path is one of the concentric circles shown (where ’ 0),
or any arbitrary closed path that contains the vortex filament. The value of the circulation
so measured is often called the ‘‘strength’’ of the vortex. (B) The need for infinite angular
velocity in the vortex filament can be avoided by replacing it with a core (grey) whose
diameter is finite. Within the core the velocity increases linearly from zero at the centre
to the core boundary. Outside the core, the velocity decreases in the same way as
the induced flow around the vortex filament in (A). The circulation around any closed path
that completely encloses the core is the same as that around an infinitely thin filament.
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FIGURE 4.2 (A) A cylinder (dark grey) in a wind tunnel is a bluff body from which the
flow separates on the downwind side to form a turbulent wake (light grey), resulting in
a large amount of drag. (B) If the cylinder is spinning the induced flow of Figure 4.1B
is added to the steady wind, resulting in the airflow being deflected in a direction perpen
dicular to the incident flow. This results in a lift force (L), but there is also a large drag
force (D) due to the turbulent wake.
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around it and separates from the surface, forming a turbulent wake on

the downwind side (grey). This results in a lot of drag but no lift, since

the airflow is slowed down by the obstruction, but not deflected

upwards or downwards. If we now set the cylinder spinning as in

Figure 4.2B, the effect is to add the circular induced flow of

Figure 4.1B to the steady wind of Figure 4.2A. The turbulent wake is

still there, along with the drag that results from it, but the induced flow

from the vortex that is bound to the spinning cylinder imparts some

downwash to the air leaving the cylinder on the right. This in turn

produces a lift force on the cylinder (perpendicular to the incident

airflow), equal to the rate at which transverse momentum is imparted

to the air (Ch apter 3 , Section 3.1.1) .

Lift results when a vortex is added to the steady flow. This is called the

Magnus Effect when the vortex is due to a spinning cylinder. The amount

of the lift force, per unit length of the cylinder, is directly proportional to
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the circulation, as defined above, and also to the wind speed, and the air

density (Box 4.1). Some asymmetrical shapes develop circulation when

exposed to a steady wind, without needing to spin round, and this also

produces lift according to the same law. The essential characteristic of an

‘‘aerofoil’’ shape, that is, one that can be used as the cross section of a

wing, is that a bound vortex develops around it when it is set at a suitable

angle of attack to the incident flow, and that the lift force due to the

resulting circulation is associated with a much smaller drag force.
BOX 4.1 Lift, circulation and vorticity.

The idea of a vortex
A ‘‘vortex’’ is a construct with properties that may appear somewhat
artificial at first sight. It consists of a ‘‘vortex filament’’, which is a one-
dimensional line that meanders through the fluid, surrounded by a region
of ‘‘induced flow’’. A cross section through the vortex shows the vortex fila-
ment as a point, and it is only in this infinitely small region that particles of
fluid actually rotate. The surrounding induced flow is said to be ‘‘irrota-
tional’’. Particles of fluid may travel in closed paths around the vortex, or
they may stream past, faster on one side than the other, but they do not
actually spin around on their own axes.

Variable definitions for this box
C A constant
L0 Lift per unit span
r Distance from vortex filament
s Distance along integration path
V Local fluid velocity
V1 Free stream fluid velocity
G Circulation
’ Angle between local velocity vector and path of integration
r1 Free stream fluid density

Circulation
‘‘Circulation’’ is a property that is measured in the irrotational flow around
the vortex filament, not in the vortex filament itself. Figure 4.1 shows a
section through an isolated vortex, in which each particle of air (outside
the vortex filament) is moving in a circular path around the filament, at a
speed (V ) which is inversely proportional to the radius (r) from the fila-
ment. In other words,

V ¼ C

r
; ð1Þ

where C is a constant. This distribution of velocity is not as arbitrary as it
looks, as it expresses the condition that the flow is irrotational. We can define
the circulation (G) around any particular circular path that encloses the vor-
tex filament as the integral of the velocity around that path:



BOX 4.1 Continued.

G ¼ ð"VdsÞ; ð2Þ
where s is distance along the circular path, and the symbol ‘‘"’’ refers to
integration around the closed path. For this case,

G ¼ C

r

� �
� ð2prÞ ¼ 2pC; ð3Þ

in other words, the circulation is the same around any circle, irrespective of
the radius. More generally, for a closed path of any shape that contains the
vortex filament, the component of the local velocity along the path at any
point is V cos ’, where ’ is the angle between the local velocity vector
and the path of integration, and the circulation is:

G ¼ ð"V cos’dsÞ; ð4Þ
The result of the integration is the same (Equation 3) for any closed path
that contains the vortex filament. This is still true if the vortex filament is
inside (or on the surface of) a body of arbitrary shape, such as a wing cross
section, provided that the path of integration encloses the body, and the
flow outside the body is irrotational. The circulation has the dimensions
of length-squared/time (L2T�1), and it is a property of the vortex, often
called its ‘‘strength’’.

Bound vortex on a wing
An aerofoil shape is one which, when immersed in a steady flow of fluid,
and set at a suitable angle of attack to the incident flow, develops a vortex
around it, such that the fluid velocity on one side of the shape is higher than
the free-stream velocity, and that on other side is lower. This vortex is forced
into existence on a wing by the ‘‘Kutta condition’’ (see main text), which
expresses the effect of viscous forces that equalise the speed at which the
fluid leaves the upper and lower surfaces at the trailing edge. Although this
type of flow does not involve particles of air moving in closed curves, but
only differences in speed on the two sides of a wing, it can be seen as the
combination of a free stream whose velocity is V1 and a vortex of strength G.
The lift on the wing, that is, the component of force at right angles to the free
stream can be calculated directly from the Kutta-Joukowski theorem, which
states that:

L0 ¼ r1V1G; ð5Þ
where r1 is the free-stream density. The primed variable L0 stands for the
lift per unit span of the wing. The total lift is obtained by integrating L0

across the span from one wing tip to the other.

Vorticity
Unlike circulation, vorticity is not a property of a vortex. It is a ‘‘field vari-
able’’ like pressure and density, with a continuous distribution that can be
mapped in a region of fluid, and may vary with time. Vorticity is a vector
quantity equal to the ‘‘curl’’ of the velocity, which is itself a function of the
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partial derivatives of velocity in the three directions of space. Vorticity can
also be seen as circulation per unit area, as measured in a plane that is
perpendicular to the axes of the vortices. Its dimensions are those of inverse
time (L2T�1/L2). The intuitive meaning of the vorticity at any point in
the measurement plane is that it is twice the angular velocity of a fluid
particle at that point. One of the more arcane properties of a vortex as
defined above is that the vorticity is infinite in the vortex filament, and zero
everywhere else, which is another way of saying that the induced flow is
irrotational.

Where there is shear, viscous effects lead to distributed vorticity that is
not confined to identifiable filaments, and can be mapped. For example,
where air flows over the surface of a wing, the boundary layer can be seen
as a ‘‘vortex sheet’’, a layer of very small vortices with their axes lying along
the wing span, transverse to the flow. At the trailing edge of the wing, the
flow above the wing has an inward component of velocity due to the
reduced pressure there, while that below the wing has an outward compo-
nent of velocity. Where the two layers merge as they leave the trailing edge,
this lateral motion produces a free vortex sheet with its axes aligned back
along the flight path. These vortices are of course the same as the horseshoe
vortices that are shed from the trailing edge (Figure 4.3B), and eventually
roll up (behind a fixed wing) to form a pair of concentrated trailing vortices
(Figure 4.4).
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4.2.2 THE KUTTA CONDITION

How is a bound vortex initiated and maintained around an object like a

wing, which is moving along, but not spinning around? If we consider

an aircraft just starting its take-off run, the flow around a cross section

of the wing first follows a pattern like that in Figure 4.3A. There is a dis-

continuity where the air sliding along the lower surface comes to the

sharp trailing edge, and doubles back on to the upper surface. Then

it doubles back again, to merge with the air coming over the upper sur-

face as the flow leaves the wing along the same line that it followed

when it approached. This pattern would persist if the viscosity of the

air were zero. In the real world, the zigzag path of the air around the

trailing edge results in strong local shear, which in turn produces vis-

cous forces that force the flow to speed up over the upper surface,

and slow down below. This is equivalent to adding circulation to the

steady flow. The circulation around the wing builds up until the air

flowing off the upper surface merges smoothly with that coming from

below (Figure 4.3B). This is the ‘‘Kutta condition’’, and it prescribes

the strength of the bound vortex that forms, and hence also the
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FIGURE 4.3 (A) A fluid with no viscosity flowing around the lower side of a wing would
double back around the trailing edge and leave from a stagnation point displaced on to
the upper surface, following the same line by which it approached. Although the surface
pressure would vary on different parts of the wing, the variations would cancel one
another, producing no net lift. There would also be no net drag (d’Alembert’s paradox).
(B) In reality, viscous forces in the zone of strong shear around the trailing edge force the
flow over the upper surface to speed up and that on the lower surface to slow down, until
the fluid from both surfaces leaves the trailing edge smoothly at the same speed (the Kutta
condition). This amounts to forcing a circulation (G) to be added to the flow, which causes
upwash in the air approaching the wing, and downwash as it leaves the trailing edge.
This in turn gives rise to the lift. There could be neither circulation nor lift without viscosity.
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amount of lift that develops. The physical meaning of the bound vortex

is that the air flows faster past the top surface of the wing than past the

lower surface. Air molecules do not circulate in closed paths around

the wing, because the steady component of the flow is always faster

than the circulating flow due to the vortex.

4.2.3 HELMHOLTZ’S LAWS

To see how this works in a three-dimensional wing, we need a couple of

general properties of line vortices that were discovered by Hermann
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Helmholtz in the nineteenth century. The first of Helmholtz’s laws is that

the circulation (strength) of a line vortex, defined as above, is the same

at every cross section along the vortex, however long it is. The second

is that a line vortex cannot end in the fluid. It can end by butting against

a solid surface, or it can bend round and join on to itself as a vortex ring,

but it cannot just end. Helmholtz’s laws imply that a line vortex, once

present, lasts for ever, and conversely, if no vortex already exists, it is

not possible for one to start.

The resolution of this paradox lies in the small print. The conditions

that Helmholtz assumed when he derived his laws included the

assumption of an ‘‘inviscid’’ fluid, which is one whose density is finite,

but whose viscosity is zero. In practice, Helmholtz’s laws describe the

behaviour of vortices in viscous fluids like air or water rather well, so

long as the flow does not contain any regions of strong shear, meaning

regions where the speed changes sharply over a short distance in the

fluid. There is always shear wherever the fluid slides along a solid sur-

face. The layer of fluid in contact with the surface sticks to it without

slip, and viscous forces tend to hold back the layers of fluid sliding

past above. Conversely, the motion of the fluid tends to pull the

surface along with it. For fluids of low viscosity like air and water,

these effects are confined to a thin boundary layer next to the

surface. It is here that rotation is introduced into the fluid, in the

form of a vortex sheet, rolling along the surface. Once a vortex is

carried away from the solid surface by the flow, forces due to viscosity

become negligible, and the vortex behaves (more or less) according to

Helmholtz’s laws.
4.2.4 THE THREE-DIMENSIONAL FIXED WING

Once a bound vortex has formed on a wing of finite span, it is forbid-

den to end in the fluid. It cannot just stop at the wing tips. It bends

round to form a pair of trailing vortices, whose strength is the same

as that of the bound vortex, leading back along the flight path from

the wing tips, to the point on the runway where the lift developed.

There they are joined together by a ‘‘starting vortex’’, which has the

same strength as the bound vortex, but the opposite direction of rota-

tion. A fixed-wing aircraft that flies from one airport to another actually

creates an elongated, rectangular vortex ring, closed at one end by the

starting vortex which is left behind on the departure runway, and at the

other by a ‘‘stopping vortex’’, which is left on the landing runway, when

the bound vortex is shed from the wing on landing.
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FIGURE 4.4 (A) A wing (grey) seen from above and behind. The lift per unit span is pro
portional to the strength of the bound vortex (black line), which cannot end at the wing
tips, and bends back to form two parallel trailing vortices. (B) The number of vortex fila
ments making up the bound vortex is here shown as highest in the middle, decreasing as
filaments are shed one by one from the trailing edge. In reality a continuous ‘‘vortex
sheet’’ is shed from the trailing edge, but it rolls up a short distance downstream, to form
a pair of trailing vortices of the same strength as in (A) but closer together.
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When an aircraft is cruising along at a constant speed in level flight,

its weight is balanced by the lift associated with the bound vortex on

the wing. A pair of trailing vortices whose strength is the same as that

of the bound vortex, stretch out behind (Figure 4.4A). The starting vor-

tex has been left far behind, and for practical purposes the trailing

vortices extend backwards to infinity. They grow continuously as the

aircraft moves forwards creating new vortex at the front, and leaving

the existing vortices behind where they persist, convecting slowly

downwards as each vortex is carried down by the induced flow of the
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other and (in the case of large aircraft) creating a hazard to other air-

craft that may happen to fly through them. As the trailing vortices

grow, downward momentum is continuously added to the downwash

zone between them (Figure 4.4A), at a rate which has to account for

the lift force (C hapter 3). At the same time, wor k is need ed to set each

newly created section of the vortex pair spinning. The rate at which this

work has to be done can be calculated from the strength and spacing of

the vortex pair, and the forward speed. It is the same as the induced

power required from the aircraft’s engine, as calculated in a different

wa y in Ch apter 3 , Box 3.1. The rates at whi ch moment um and en ergy

appear in the wake can be measured, and used to deduce the forces

acting on the aircraft, and the power that is being supplied by the

engine. The persisting vortex wake is a kind of ‘‘footprint’’ in the air.

It contains a record of the forces that the aircraft (or bird) has applied

to the air, and the work that has been done by the engine or flapping

wings.

A single ‘‘horseshoe vortex’’ as shown in Figure 4.4A would imply that

the circulation of the bound vortex is the same at every cross section

from one wing tip to the other, which is not usually the case. Typically,

the circulation is strongest in the middle, and tapers off to zero at

the wing tips. As we pass outwards from the wing root towards the wing

tip, the circulation around each cross section gets less, and this

means that a part of the vortex bound to the wing root must have bent

round and left the wing as a trailing vortex. In Figure 4.4B, the bound

vortex near the wing root is made up from five horseshoe vortices, all

of equal strength. Together, they make a ‘‘lifting line’’ along the wing,

whose strength decreases in steps, as the vortex filaments are shed one

by one from the trailing edge. Bymaking the number of vortex filaments

larger, and the strength of each smaller, the strength of the lifting line

can be made to decline smoothly to zero at the wing tip, while the circu-

lation is shed as a continuous vortex sheet from the trailing edge of the

wing. Such a sheet is unstable, and soon rolls up into a concentrated,

tightly wound vortex, whose circulation is the same as that due to the

lifting line at its strongest point. The end result, as far as the cross-

sectional view of the wake is concerned, a short distance behind the

wing, is nearly the same as for a single horseshoe vortex. There are two

trailing vortices, each with the same strength as the strongest part of

the lifting line, but they are a little closer together than they would be

if the lifting line were of constant strength (Figure 4.5). The wake of a

gliding kestrel was measured and analysed by Spedding (1987a), and

found to conform closely to this pattern.
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FIGURE 4.5 A cross section through the wake a short distance downstream from the wing
of Figure 4.4B. Each vortex of the pair induces additional downward flow on the near side
of the other, so that the downward velocity (Vz) in the centre is stronger than either vortex
would produce on its own. Also, each vortex makes the other convect downwards at
a velocity Vz/4. The upward velocity on the outside of each vortex is less than it would
be without the other vortex. As the vortex pair grows along the direction of flight, net down
ward momentum is added at a rate that must balance the aircraft’s weight. The rate at
which work is done (induced power), must account for all of the motion irrespective of its
direction.
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4.3 LIFTING-LINE THEORY APPLIED
TO FLAPPING WINGS

4.3.1 VORTEX RINGS AND TRAILING VORTICES

IN BIRDS’ WAKES

Prandtl’s lifting-line theory assumes that the vortex sheet, which forms

where the air slides over the surface of the wing, can be regarded as the

combined effect of a large number of vortex filaments which individually

obey Helmholtz’s laws, and which, once shed from the wing, roll up into

the pair of trailing vortices which are actually observed. The theory gives

a good account of the properties of fixed wings, and this indicates

that the flow over such wings does indeed consist of vortex filaments

surrounded by irrotational induced flow, as outlined above. If Helmholtz’s

laws are true in general, then one would expect that the theory could be

extended to cover flappingwings, a notionwith great creativepossibilities,

which has given rise to a minor industry in recent years.

Rayner (1979a,b) postulated a simple type of wake for a pair of

flapping wings, in which the wings are assumed to build up a circulation

during the downstroke, and to be completely unloaded (zero circulation)
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during the upstroke. As the wing tips separate at the beginning of the

downstroke, vortices begin to stream from their tips as soon as the circu-

lation becomes established. These join to become a single vortex con-

necting the wing tips, which grows in length as the wing tips move

apart. At the end of the downstroke, the circulation ceases and the two

ends of the vortex are shed from the wings. Being forbidden to end in

the fluid, they join together to form a complete vortex ring, which is left

behind as the wings are repositioned for the next downstroke. Just as an

aircraft creates one long, rectangular vortex ring per flight, so a slow-

flying bird creates one vortex ring per wingbeat, comprising starting

and stopping vortices, connected by very short trailing vortices. The

momentum of the vortex ring, divided by the wingbeat period, gives

the average lift force, which must be equal to the bird’s weight if the

flight path is horizontal on average. Likewise, the energy of the vortex

ring, divided by the wingbeat period, is the induced power.

In the first quantitative study of the wake of a flying bird, Spedding

(1986) trained a jackdaw to fly very slowly through a cloud of tiny

helium-filled soap bubbles, and mapped the motion of the air in three

dimensions by taking stereoscopic multiple-flash photographs. He

observed vortex rings which resembled Rayner’s predictions, but found

that he could only account for about half the momentum needed to

support the jackdaw’s weight (Spedding et al. 1984). The reason for this

‘‘momentum deficit’’ remained a mystery for another twenty years.

Spedding (1987b) also observed a different type of wake, which had

not been predicted, in a kestrel which had been trained to fly through

a bubble cloud at a normal cruising speed. In this case, the circulation

of the bound vortex did not drop to zero during the upstroke, in fact it

did not change at all. As the wing tips moved up and down, they

streamed a pair of continuous vortices of constant strength, as a fixed

wing would do, implying that the lift per unit span did not change.

However, the wing tips moved in during the upstroke, as the bird

reduced its wing span by flexing the elbow and wrist joints, and out to

full span during the downstroke. By varying its wing span in this way,

the bird developed more lift during the downstroke than during the

upstroke, which is necessary to produce a net forward force over the

wingbeat cycle, to balance drag forces. This ‘‘concertina’’ wing motion

is invariably seen in high-speed films of birds in fast flapping flight.

4.3.2 BIRDS DO NOT NEED GAITS

Spedding’s observations were misinterpreted by others to imply that

birds must either use a ‘‘vortex-ring gait’’ at low speeds, or a ‘‘con-

stant-circulation gait’’ at cruising speeds, and must ‘‘shift’’ from one
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to the other as they speed up or slow down, in much the same way that

a horse shifts back and forth between a walk and a trot. Although this

idea has been widely repeated, there is actually no evidence for it,

and there is no known reason why a bird cannot change smoothly from

one type of wake to the other as it speeds up, without any discontinu-

ous shift. In the hypothetical sequence of Figure 4.6, discrete vortex

rings form at very low speeds, because the local airspeed over the wing

during the upstroke is so low that the circulation cannot be main-

tained, and the wing has to be unloaded (Figure 4.6A). Once the bird

accelerates to a modest forward speed, a small amount of circulation

(and lift) can be maintained during the upstroke (Figure 4.6B). A stop-

ping vortex forms to close the ring as the wing is partially unloaded at

the end of the downstroke, but it does not contain the full amount of

circulation that comes off the wing in the form of trailing vortices

during the downstroke. The difference remains in the form of weaker

trailing vortices that continue, closer together, during the upstroke. As

the forward speed continues to increase (Figure 4.6C), the trailing

vortices become stronger during the upstroke, and the ‘‘rungs’’ of the

ladder become weaker until finally they disappear altogether, leaving

a pair of trailing vortices of constant strength, but variable spacing.

No gait shift is required.

4.4 WIND TUNNEL STUDIES OF BIRD WAKES

4.4.1 DPIV EXPERIMENTS

Experimental studies of bird wakes entered a new phase with a series

of papers by Spedding et al. (2003a,b), Rosén et al. (2004) and Heden-

ström et al. (2005) on the wakes of small birds flying in a wind tunnel,

observed by digital particle imaging velocimetry (DPIV). Like the

helium-bubble method, this technique depends on tracking particles

in the air, but in the wind tunnel the bird is stationary and the air

streams past, carrying any vortex structures in the wake along with it.

The particles were tiny liquid droplets introduced into the circulating

air stream by a fog generator, and they were illuminated by a thin light

sheet coming from a pulsed laser. The light sheet illuminated a vertical

plane aligned along the direction of the air flow behind the bird, and

the particles in it were photographed from the side. By statistically

comparing two photographs, separated by a short time interval, varia-

tions of velocity in the plane of the light sheet could be mapped. In

slow flight, when the bird was generating vortex rings, the starting

and stopping vortices of each ring could be identified and measured,

but the structure of the ‘‘trailing’’ parts of the vortex structure had to
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FIGURE 4.6 Schematic bird wakes, seen from behind and slightly above the bird, which
is shown during the upstroke of flapping flight, at three different speeds. A (observed).
In very slow flight the wing is unloaded during the upstroke, shown by separated flight
feathers. The starting vortex formed during the previous downstroke, shown as a bundle
of vortex filaments, is shed from the wing when the lift collapses at the end of the down
stroke, and its ends join to make a free vortex ring. B (hypothetical). At a moderate for
ward speed, some lift continues during the upstroke, and some vortex filaments
continue to stream from the wing tips, while others are shed and join up to form a vortex
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be inferred by comparing maps in which the illuminated plane varied

from the centre line to beyond the wing tip.

The experiments of Spedding et al. (2003b) on a thrush nightingale

covered a speed range from well below the thrush nightingale’s esti-

mated minimum power speed (Vmp) to about 2 m s 1 above Vmp, and

the results demonstrated a couple of important points. In the first

place, there was no suggestion of any discontinuous ‘‘shift’’ between

two or more different ‘‘gaits’’ at different speeds. The bird could fly at

any speed between minimum and maximum, adjusting its wake struc-

ture continuously to suit the speed. Secondly, the results at intermedi-

ate speeds did not display a regular ‘‘ladder’’ structure as proposed in

Figure 4.6B. A well-defined starting vortex could be identified at the

beginning of each downstroke, but the stopping vortex was less well

defined, and weaker than expected. When the results were analysed

in terms of vortex filaments and irrotational flow, there was a momen-

tum deficit as observed in the earlier helium-bubble experiments.

Hedenström (2006) has described these experimental wakes, with

diagrams of their inferred structure.

4.4.2 DISTRIBUTED VORTICITY

In the case of a vortex filament, which is the only part of a line vortex

where the air actually rotates, the vorticity can be defined as twice the

angular velocity of the filament. The induced flow surrounding the fila-

ment is irrotational, meaning that its vorticity is everywhere zero. How-

ever, vorticity can also be measured at a point in the fluid as the ‘‘curl’’

of the three-dimensional velocity. This is a vector quantity, derived

from the local gradients of velocity in the three dimensions of space.

Spedding et al. (2003a,b) and Hedenström et al. (2005) used the DPIV

technique to map the magnitude and direction of the vorticity in the

space immediately downstream of the bird, and found that the

vorticity was not wholly confined to well-defined vortex filaments. Start-

ing and stopping vortices could be seen at each wingbeat, but they were

not of equal strength. The flow around them was not irrotational, but
ring. The combined effect is a pair of continuous wing tip vortices, which move out as the
wings are fully extended during the downstroke, and in as they are flexed in the upstroke,
together with a series of transverse vortices circulating alternately in opposite directions.
C (observed). At higher speeds, the transverse starting and stopping vortices dwindle in
strength and eventually disappear, leaving only the trailing vortices, undulating up and
down, and moving in during the upstroke and out during the downstroke. The circulation
of the bound and trailing vortices remains constant. The lift per unit span is therefore also
constant, but the lift is reduced during the upstroke by shortening the wing span.
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contained distributed vorticity that was not concentrated into thin

filaments. When this distributed vorticity was taken into account, the

momentum deficit disappeared.

It seems that real, flapping-flight bird wakes do not necessarily con-

sist of structures made up of vortex filaments obeying Helmholtz’s

laws, as postulated by Rayner (1979a,b,c), or as shown in Figure 4.6.

There are identifiable vortex cores, but the flow around them is not,

in general, irrotational. This means, unfortunately, that it is not practi-

cal to calculate the momentum and energy of the wake by elaborating

Prandtl’s lifting-line theory, as this depends on representing the wake

as an array of line vortices, which individually conform to Helmholtz’s

laws. Although it should be possible in principle to estimate the three

m ain componen ts of mechanica l power (outline d in Chapte r 3 ) from

a quantitative analysis of these wakes, a full accounting of the momen-

tum and energy will have to include distributed vorticity that is not

confined to thin vortex cores. This is difficult, and is a major challenge

for theorists. It may also underlie some of the performance differences

between bird wings and their artificial counterparts, especially their

resistance to boundary-layer separation (below).

4.4.3 IMPLICATIONS OF WAKE STUDIES FOR FLIGHT

PERFORMANCE CALCULATIONS

The power calcu lation used in Fligh t, and describe d in Chapte r 3 for

flapping wings, does not explicitly take account of the structure of

the vortex wake. If it were possible to do that, the effects would include

changing the method of calculating the induced power. The present

method depends on the much-derided concept, introduced in

Ch apter 3 , of an ‘‘actuat or disc’’, which is swept out by the pai r of flap-

ping wings, and imparts a downward induced velocity to the air pass-

ing through it. The actuator disc is imagined as adding a constant

downward velocity to the whole of a circular tube of air passing

through the disc, whose diameter is the same as the wing span. In this

it resembles a fixed wing with an elliptical spanwise lift distribution

which, according to Prandtl’s lifting-line theory, produces a constant

downwash velocity across the span, from one wing tip to the other.

This case is discussed at length in every aeronautical textbook, together

with the proof that this particular lift distribution results in a lower

induced drag than any other. Despite its somewhat artificial appear-

ance, the actuator disc predicts the same amount of induced power

as a wake like that of Figure 4.7, coming from a fixed wing with an

elliptical spanwise lift distribution. The formula for induced power,
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deriv ed from the actu ator disc in Chapter 3 , Box 3.1, is exactl y the same

as the standard formula for the induced drag of a fixed wing with ellip-

tical lift distribution, if the drag is multiplied by the speed to get the

induced power (Box 4.2).

4.4.4 BETTER ESTIMATES OF THE INDUCED POWER FACTOR

Because an elliptical lift distribution produces the lowest induced drag

that is possible with a fixed wing, corrections to induced drag or

induced power calculations take the form of multiplying the calculated

drag or power by a number that is somewhat greater (but not much

greater) than 1, to account for losses due to deviations from the

assumed constant downwash velocity across the span. In Flight, the

default value for the induced drag factor in gliding flight is 1.1, and that

for the induced power factor in flapping flight is 1.2. These values are

essentially guesses based on aeronautical experience. The power curve

calculation in Flight currently identifies two speeds that characterise a

particular bird, as defined by its mass, wing span and wing area, taking

account of the strength of gravity and the air density. These are the

minimum power speed (Vmp) and the maximum range speed (Vmr)

which define the lower and upper limits of the speed range in which
FIGURE 4.7 A fixed wing (grey) seen from behind. The strength of the bound vortex,
shown by the curve above the wing, is greatest in the middle, declining to zero at the
wing tips. The curve represents the local circulation, and also the lift per unit span, at
each point along the span. If (and only if) this curve is half of an ellipse as shown, then
the downwash velocity immediately behind the wing (arrows), caused by the shedding
of a vortex sheet as in Figure 4.4B, is constant across the span. According to Prandtl’s
lifting line theory, this ‘‘elliptical lift distribution’’ gives a lower induced drag coefficient
than any other, for a given lift coefficient.



BOX 4.2 The actuator disc versus vortex wakes.

Variable definitions for this box
B Wing span
CDind Induced drag coefficient
CL Lift coefficient
Dind Induced drag
g Acceleration due to gravity
k Induced drag (or power) factor
m Bird’s all-up mass
Pind Induced power in horizontal flight
Ra Aspect ratio
Vt True airspeed
Swing Wing area
r Air density

Induced drag from lifting-line theory
The induced drag of a fixed wing can be deduced from Prandtl’s classical
lifting-line theory, which begins by representing the circulation around the
wing as a stack of horseshoe vortices as shown in Figure 4.3B. The total cir-
culation at any particular point along the span depends on the number of
vortex filaments still bound to the wing at that point. By specifying where
vortex filaments are shed, the theorist can define a particular ‘‘lift distribu-
tion’’, in which the strength of the circulation is plotted along the wing span,
from one wing tip to the other (Figure 4.6). The same graph also represents
the lift-per-unit-span at each point along the span, since this is proportional
to the circulation. All aeronautical textbooks (such as the excellent one by
Anderson 1991) give a detailed account of the ‘‘elliptical’’ lift distribution,
in which the graph is one half of an ellipse. This particular lift distribution
is ‘‘ideal’’ in the sense that it produces less induced drag than any other,
for a given amount of lift. It also has another (related) characteristic, that
the downwash velocity immediately behind the wing, shown by the vertical
arrows in Figure 4.6, is constant across the span. According to the lifting-line
theory, the coefficient of induced drag (CDind) for this special case depends
only on the lift coefficient (CL) and the aspect ratio (Ra):

CDind ¼ C2
L

pRa
: ð1Þ

The aspect ratio (Chapter 1) is

Ra ¼ B2

Swing
; ð2Þ

where B is the wing span, and Swing is the wing area. For a fixed-wing aircraft
in level flight, the lift force must balance the weight (mg), and the lift coeffi-
cient is therefore

CL ¼ 2mg

ðrV 2
t SwingÞ ; ð3Þ
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where r is the air density, and Vt is the true airspeed. Substituting this
expression for CL in Equation (1) makes the induced drag coefficient

CDind ¼ 4ðmgÞ2
ðpr2B2V 4

t SwingÞ : ð4Þ

The induced drag itself (Dind) is

Dind ¼ CDindrV 2
t Swing

2

¼ 2ðmgÞ2
ðprB2V 2

t Þ
ð5Þ

Since the induced drag for an elliptical lift distribution, given by Equation (5),
is the lowest that is possible, the induced drag of a real wing has to be multi-
plied by an induced drag factor (k), which is a number that is never less than 1,
to account for any deviations from the ideal lift distribution, and from
constant downwash velocity along the span:

Dind ¼ 2kðmgÞ2
ðprB2V 2

t Þ
: ð6Þ

This formula is used when calculating a bird’s glide polar in Flight
(Chapter 10, Box 10.1) to find the induced drag. The default value assigned
to k in gliding is 1.1.

Induced power from the actuator disc
The starting point for calculating the induced power in flapping flight comes
from helicopter theory rather than fixed-wing theory. A helicopter rotor
sweeps out a circular disc, which can be approximated as an ‘‘actuator disc’’,
whose theoretical property is that the air pressure increases in a stepwise
manner as the air passes through the disc. This pressure step imparts a
downward induced velocity to a tube of air that flows through the disc.
The cross-sectional area of this tube is assumed to be that of a circle, whose
diameter is the same as the rotor diameter in the case of a helicopter, or the
wing span in the case of a bird (even though the wings do not sweep out the
full area of the disc). The derivation of the induced power (Pind) needed to
support the weight (mg) is given in Chapter 3, Box 3.1, and the result is

Pind ¼ 2ðmgÞ2
ðVtpB2rÞ : ð7Þ

This is for an ‘‘ideal’’ actuator disc which produces a constant induced
velocity from edge to edge of its circular area, which is also the condition
for minimum induced power to support a given weight. In practice, varia-
tions of induced velocity across the disc require an ‘‘induced power factor’’
(k), which is a number whose value is never less than 1. The default value
of k in Flight is 1.2 for flapping flight, and the formula used for induced
power in the power curve calculation is
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Pind ¼ 2kðmgÞ2
ðVtpB2rÞ : ð8Þ

The reader who believes that it is more ‘‘realistic’’ to calculate induced
power from the vortex wake than from an actuator disc should notice that
the induced drag for a fixed wing with an elliptical lift distribution
(from Equation 5), when multiplied by the speed to get the corresponding
power, gives exactly the same result as the induced power from Equation (8).
The lifting line and actuator disc calculations are actually different views of
the same theory. The basic assumption in both cases is that the downwash
velocity is constant across the wing span.

The ‘‘ bow-tie’’ fallacy
The advantage of the actuator disc approach for flapping flight is that it
requires no information about the wings except the wing span. It does not
require that the airspeed ‘‘seen’’ by a point on the wing is the same as the for-
ward speed of the whole aircraft or bird, or that the local airspeed has to be
constant across the span, and this permits a massive simplification in consid-
ering rotary or flapping wings. The calculation does not even require the angle
through which the wings are flapped to be specified, although it does require
the ‘‘disc area’’, through which air passes as it is accelerated downwards. If a
bird or insect flaps its wings through an angle that is less than the full 180�

available to each wing, then the wings sweep out a double sector shaped like
a bow tie, and some authors have assumed that this ‘‘swept area’’ should be
used instead of the area of the full circle, when calculating the induced power.
If this were so, the argument of Chapter 3 Box 3.1 would require that the
induced velocity would have to be inversely proportional to the swept area.
Extending this line of thought to a fixed wing, in which no area is swept at
all, the induced velocity would have to be infinite. However, we know from
the lifting-line theory, which has been part of the bedrock of theory for gen-
erations of aeronautical engineers, that the induced velocity for a fixed
(non-flapping) wing is not infinite, but the same as that for a circular actuator
disc,whosediameter is the sameas thewing span.Commonsense ismisleading
in this case. The ‘‘bow-tie’’ concept is wrong.
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most birds fly most of the time, and for which the calculations are

reasonably robust. Speeds lower than Vmp are reserved for unsteady

activities, such as landing, taking off and hawking for flying insects,

while speeds higher than Vmr may be used, if they are used at all, by

predatory birds such as falcons and skuas for pursuing other birds.

Improved understanding of the vortex wakes may make it possible to

identify these characteristic speeds with particular types of wake struc-

ture, which can themselves be associated with particular values of a
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variable such as the reduced frequency (Box 4.3) that summarises the

wing motion in a single number. If this proves to be feasible, then it

may be possible to go further, and predict a value for the induced

power factor (k) from the reduced frequency. When Flight calculates

a power curve, it would then calculate the reduced frequency at each

speed, and recalculate k, instead of using a fixed value for k at all

speeds, as it does at present.
BOX 4.3 Reduced frequency and Strouhal number.

Wind-tunnel experimenters tend to describe different wake geometries in
terms of the forward speed at which they are observed, but obviously the
same wake pattern, if it is seen in different species, is not likely to occur
at the same speed. To achieve a more general description, wake patterns will
need to be connected with some variable that involves the ratio of the
wingbeat frequency to the speed. To make such a variable dimensionless,
a reference length is also required. Two dimensionless variables, the red-
uced frequency and the Strouhal number, which involve different
reference lengths, have been introduced by theorists for various purposes.

Variable definitions for this box
A Wingtip amplitude
cm Mean chord
f Wingbeat frequency
fred Reduced frequency
St Strouhal number
Vt True airspeed

The ‘‘reduced frequency’’ (fred) is defined by Spedding (1992) as

fred ¼ pfcm
Vt

; ð1Þ

where f is the wingbeat frequency, cm is the mean chord (ratio of wing area
to wing span) and Vt is the true airspeed. It characterises the wake geometry,
being equal to the ratio of the distance that the bird travels forwards in one
wingbeat cycle to the mean chord. High values of the reduced frequency
(high frequency, low speed) indicate rapid changes of flow geometry
through the wingbeat cycle, and the likelihood that unsteady aerodynamic
effects will need to be considered, whereas a low reduced frequency (low
frequency, high speed) indicates that quasi-steady aerodynamics may give
a satisfactory account of the flow.
‘‘Strouhal number’’ (St) is a related dimensionless variable. A version of it

used by Nudds et al. (2004) is:

St ¼ fA

Vt
; ð2Þ
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where A is the wingtip amplitude, defined as the vertical linear excursion of
the wing tip above and below its position with wings level. This is the same
as Equation (1), except that A is substituted for pcm. Some care is needed
with the term ‘‘amplitude’’. The traditional mathematical usage refers to a
sine wave, in which the value of some quantity swings in each cycle from
zero to þA, then down to A, before returning to zero. A is the amplitude,
and on this definition, the difference between the positive and negative
peaks (the ‘‘peak-to-peak swing’’) is 2A. However, some authors define the
‘‘amplitude’’ as the peak-to-peak swing, and others neglect to mention what
exactly they mean by the term.
The Strouhal number gives an indication of the angle with which the wing

tip moves up and down, relative to the flight path, whereas the reduced fre-
quency does not, and this could be seen as an advantage for describing
wake geometries. The practical difficulty with the Strouhal number is that
the wingtip amplitude is difficult to measure. Bird wing tips are thin and
pointed, and are apt to disappear in photographs when seen edge-on.
Measuring wingtip amplitude is challenging in the wind tunnel, and
impractical in the field, where the observer has no control over the camera
geometry. The reader should not be unduly impressed by papers in which
large numbers of Strouhal numbers have been calculated from published
observations, whose original authors were not paying special attention to
measuring wingtip amplitudes, and were not measuring them in a standard
way. The reduced frequency is less susceptible to such uncertainties, as it
depends on the wingbeat frequency, which is easy to measure from video,
and on the standard morphological variables defined in Chapter 1.
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4.5 FEATHERED WINGS

There are two possible reasons why bird wakes might have different

characteristics from those of fixed wings. The differences might be

inherent in the flapping motion, and in that case one would expect

bats to show similar wakes, with distributed vorticity and ill-defined

vortex structures. Another possibility is that the feathered surface of

birds’ wings and bodies is responsible, and if that were the case, the

wakes of birds and bats would differ. It has been noted elsewhere in

this book that the boundary layer appears to remain attached far more

tenaciously over a living bird’s body, than over the same body at the

same Reynolds number when dead and frozen, or over a smooth-

sur faced mod el of similar shap e (Ch apter 15 , Box 15.4 ). It appear s from

the DPIV studies that the wings of small birds are also more resistant to

flow separation than model aircraft wings at a similar scale, but not

much is known about the proneness or otherwise of bat wings and
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bodies to boundary-layer separation. Hedenström et al. (2007) have

recently studied the wakes of a small nectar-feeding bat by the DPIV

technique (above), but their measurements were limited to speeds

from the minimum power speed downwards, which were said to be

the normal speed range for the species. It may be that Microchiroptera

generally are specialised for manoeuvrable flight in the unstable speed

range below Vmp, and that they differ in that respect from the majority

of birds. This would complicate comparisons between bird and bat

wakes, but be that as it may, two interesting possibilities have been

raised. Birds (but not bats) may be able to suppress boundary-layer

separation by exploiting some property of the feathered surface, or

alternatively, both birds and bats may be able to do this in some way

that does not depend on feathers. Either way, new aerodynamic

principles are likely to be involved.



5

THE FEATHERED WINGS OF BIRDS
A bird’s flight feathers are elaborate structures that could only have evolved to meet
the need to resist bending and torsion in a wing of moderate to high aspect ratio,
and to transmit aerodynamic forces to the arm skeleton. The shafts of the flight feath
ers form a distributed spar, arranged in such a way that the bird can vary the span
and area of its wings in flight, with automatic adjustment of the cross sectional
shape. The whole wing can be instantly deployed or folded away. The legs are
independent of the wing structure.

The physical principles ofwings, whichwere introduced in Chapters 3–4,

determine some structural characteristics that must be shared by all

wings, whether they belong to animals ormachines. Building or evolving

a wing is not just amatter of increasing the surface area, as some authors

suppose. A structurewith a large areamay behave as a wing, or as a para-

chute, or as something in between. It will only work as awing if the cross-

sectional shape is able to create abound vortex, and if the area is arranged

in the right way, that is, sticking out to the sides. This is because the effi-

ciency of a wing is expressed by its lift:drag ratio, and that depends

strongly on its aspect ratio. The aspect ratio is the ratio of the wing span

to the mean chord (Ch apter 1, Box 1.2). An effici ent win g has to be long

(large wing span) and also narrow (not too much chord). The evolution
105
Modelling the Flying Bird
# 2008 C.J. Pennycuick. Published by Elsevier Inc. All rights reserved.



106 MODELLING THE FLYING BIRD
of animal wings, at least in the early stages, is a matter of modifying an

existing structure to one that combines an aerofoil cross-sectional shape

with an adeq uate asp ect rati o (Ch apter 16 ). Some mod ern glider s have

aspect ratios exceeding 35, which results in extreme performance, espe-

cially at low speeds, at the expense of being somewhat unwieldy. The

majority of bird and bat wings have aspect ratios in the range 5–12.
5.1 GENERAL STRUCTURAL REQUIREMENTS

5.1.1 WINGS HAVE TO RESIST BENDING AND TORSION

In level flight, a wing develops a lift force that acts upwards, some dis-

tance out from the side of the body (Figure 5.1) and therefore exerts an

upward bending moment about the wing root. The need for bending

strength to resist this determines the maximum aspect ratio that can

be achieved with given structural materials and a given type of con-

struction, because making the wing longer and narrower not only

increases the moment arm, but also reduces the depth of the wing root,

which has to incorporate the structural strength that resists the bend-

ing moment. The aspect ratios of bird wings begin at around 5 in the

short, stubby (and inefficient) wings of small passerines, and reach a

maximum of about 16 in the largest albatrosses.

In addition to creating a bending moment as shown in Figure 5.1, the

aerodynamic forces also tend to twist the wing in the nose-down sense.

The basic structural requirement of any wing is that it is an elongated

structure supported only at the root end, which has to resist large

bending and torsional (twisting) moments. The arm skeletons of bats

and pterosaurs, which are described in Chapters 6 and 7, look very dif-

ferent from those of non-flying animals, because they are modified to

form a ‘‘spar’’, meaning a structure that resists bending and torsion,

but is not required to resist compression (as in the legs of ungulates)

or tension (as in the arms of apes). The arm skeleton of birds also acts

as a spar in the inner part of the wing, but distally the shafts of the

flight feathers take over this function. They are made of a more elastic

material (keratin rather than bone), and act as a ‘‘distributed spar’’, an

arrangement unique to birds (Figure 5.2).
5.1.2 THIN-WALLED TUBES AND EULER BUCKLING

Box 5.1 introduces the characteristics needed by a structure that is to

resist bending and torsion, in particular the notion of the second

moment of area of the cross section, which expresses the way in which
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FIGURE 5.1 (A) In steady gliding flight, each wing provides a lift force that balances half
the weight, but is displaced outwards from the body, typically by about 20% of the wing
span (i.e. 40% of the semi span, as shown). The moment arm of the lift force about the
shoulder joint is the distance between its line of action (thick dashed line) and the axis
about which the shoulder joint rotates (thin dashed line). Wing Planform (C) has the same
area as Planform (B), but its span is greater by a factor of 1.25, and its chord is less by a
factor of 0.80. This amounts to increasing the aspect ratio by a factor of 1.56, which
would have a major effect on flight performance. The lift force stays the same, but the
moment arm (and also the wing root bending moment) increases by a factor of 1.25.
At the same time the depth of the wing skeleton decreases by a factor of 0.80 (left).
The second moment of area of the bone cross section, which has to resist the bending
moment, being proportional to the square of the depth, decreases by a factor of 0.64.
Reconciling this by allometric changes of wing proportions is the basic difficulty in
making high aspect ratio wings.
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the material is distributed in a cross-sectional view. Practical methods for

making these and other measurements on wings are given in Box 5.2.

The swan humerus shown in Figure 5.5 is essentially a bony tube with

a thin wall, which means that its second moment of area is large, in rela-

tion to themass of bone that it contains. Thewider the tube, the lessmate-

rial is needed to resist given bending and torsional loads. On the other

hand, if the wall is too thin, a bending moment may cause the wall to

buckle on the compression side. This is called ‘‘Euler buckling’’. It is a com-

monmode of failure of thin-walled structures, and it is due to instability of

thewall shape, rather than to any lackof strength in thewall itself. Thehol-

low humerus of Figure 5.5 contains bony struts (‘‘trabeculae’’) whose



BOX 5.1 Strength and stiffness of beams.

A wing is a beam that is supported at one end (the wing root), and loaded
with bending and torsional moments, but not with significant amounts of
compression or tension. The bending of beams is a classical topic in engi-
neering, which has been presented in a biological context by Wainwright
et al. (1976). The strength and stiffness of a beam are two different quanti-
ties, both of which depend partly on the geometry of the structure, and
partly on the properties of the material from which the beam is made. This
box introduces the concepts of strength and stiffness, while Box 5.2 gives
practical methods of making the measurements.

Variable definitions for this box
A Area of beam cross section
DA Area of thin strip of cross section
E Modulus of elasticity
Ft Tension force
DFt Tension on strip of cross section
G Shear modulus
H First moment of area
Hna First moment of area about neutral axis
I Second moment of area
Ixx Second moment of area in the X direction
Iyy Second moment of area in the Y direction
J Polar second moment of area
M Applied moment
R Radius of curvature
y Distance above arbitrary baseline
yna Distance of neutral axis above arbitrary baseline
e Strain
s Stress

Stress, strain and elastic modulus
Stress is force applied per unit area. It has the same dimensions (force/area) as
pressure, and the same SI unit, the pascal (Pa), is used tomeasure it. One pas-
cal is equal to one newton per square metre, and it is an inconveniently small
unit. Discussions of mechanical stress usually involve megapascals (MPa) or
even gigapascals (GPa).When a stress (s) is applied to a sample of somemate-
rial, the resulting strain (e) is a dimensionless measure of the distortion that
the stress causes. The strain is the ratio of the change in the length of the sam-
ple to the original length. Thus, if the sample shortens (or lengthens) by 1%
when the stress is applied, the strain is 0.01. The ratio of the stress to the strain
is the elastic modulus (E ) of the material

E ¼ s
e

ð1Þ

Since strain is dimensionless, E has the same dimensions as stress. A ‘‘stiff’’
material is one with a high elastic modulus. A linear or ‘‘Hookean’’ material is
one in which the strain is directly proportional to the stress, and E is constant,
over some range of stress that is of practical interest. The strength of a material
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may be variously defined as the stress at which the linear stress/strain relation-
ship breaks down, or atwhich thematerial is permanently deformed, or breaks.

Stress distribution in a bent beam
We consider a beam whose cross-sectional shape is arbitrary, although it
remains constant along the length of the beam (Figure 5.2A). One end of
the beam is fixed, and a force is applied to the other end, perpendicular to
the axis of the beam. The beam is straight when unloaded, but the moment
due to the force applied to the tip causes it to bend. This bending moment
is greatest at the root, because the moment arm is greatest there, dwindling
to nothing at the tip. At some intermediate point, the moment is M, and it
bends the beam to a radius of curvature R at the same point. The curvature
means that the top edge of the beam has lengthened by a small amount
and the bottom edge has shortened, but not necessarily by the same amount.
The length is unchanged on a two-dimensional surface part-way down the
beam, which appears as the neutral axis in a cross-sectional view, that is, as
a line across the section. Above the neutral axis the material of the beam is
subjected to a tensile stress, and below it to a compressive stress.

ΔA

Neutral axisy

YY

X

X

A

B

C

D

Force

Section

Shear

Torsion

FIGURE 5.2 (A)Abeamthat isfixedatoneendbendswhenaforce isapplied to the freeend.
The upper part of the beam is stretched by tensile stress, and the lower part is compressed
by compressive stress. Somewhere in between is a plane where the stress and distortion are
zero. (B) In a cross section view this plane is seenasa line, the ‘‘neutral axis’’. The tensile force
applied by elements of area above the neutral axis has to balance the compressive force
applied by elements of area below it. (C) A neutral axis (YY) drawn horizontally through the
sectionrefers tobendinginthedorso ventral (y)direction.Asecondneutralaxis (XX)perpendic
ular to this refers to bending from side to side (the xdirection). (D) Shear stress and torsion.
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If y is the distance of a point in the beam above the neutral axis (nega-
tive if it is below), then the strain at that point due to the curvature is

e ¼ y

R
; ð2Þ

and if the elastic modulus of the material is E (and constant), then the
stress is

s ¼ Ey

R
ð3Þ

In the cross-sectional view, the point at position y is seen as part of a thin
strip (Figure 5.2B), parallel to the neutral axis (i.e. constant y), whose area is
DA, so that the tension force (DFt) exerted by that strip, being the stress
times the area, is

DFt ¼ EyDA
R

; ð4Þ

and the total tension (Ft) is

Ft ¼ E

R

� �Z
ydA; ð5Þ

where the integral is taken from the neutral axis to the top of the beam on
the tension side. Likewise, the total compression force on the compression
side is the same integral, taken from the bottom of the beam up to the neu-
tral axis. If the beam is in equilibrium, then the tension and compression
forces must be equal, and this requirement can be used to locate the posi-
tion of the neutral axis.

First and second moments of area
The integral

R
ydA inEquation (5) is called the ‘‘firstmomentofarea’’ of thecross

section, denoted here byH. If y is measured from an arbitrary baseline, and the
height (yna) of the neutral axis above this baseline is initially unknown, it can be
found by dividing the first moment of area, which has the dimensions of vol-
ume, by the total cross-sectional area (A) of the cross section:

yna ¼ ðR ydAÞ
A

ð6Þ

This equation can be approximated by a summation, to find the neutral axis
on a drawing of a beam cross section (Box 5.2). If the first moment of area is
calculated about the neutral axis (Hna), the result is of course zero, because
the contributions from the elements of area above the neutral axis (positive y)
balance those below the neutral axis (negative y). In other words:

Hna ¼
Z

ðy ynaÞdA ¼ 0 ð7Þ

Calculations of beam stiffness require the ‘‘second moment of area’’ (I ),
which is

I ¼
Z

ðy ynaÞ2dA ð8Þ
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The position of the neutral axis has to be known before I can be calculated.
The integral is taken from the bottom to the top of the beam. I is always pos-
itive because the deviations from the neutral axis are squared. If the cross
section were cut from sheet metal of constant thickness and density, I would
be its moment of inertia about the neutral axis. This is the reason why it is
traditionally denoted by the symbol I, and sometimes (confusingly) referred
to as the ‘‘moment of inertia’’ of the cross section. Actually, the definition of
the second moment of area [Equation (8)] does not involve mass or inertia,
and it is best to think of it as a purely geometrical quantity.

The beam equation
The second moment of area of the cross section appears in the ‘‘beam equa-
tion’’, which determines the radius of curvature (R) to which the beam will
be bent by an applied moment (M ):

R ¼ EI

M
ð9Þ

The bigger the moment (M ), the smaller the radius of curvature (R), i.e. the
more the beam is bent. The product EI is called the ‘‘flexural stiffness’’ of the
beam. Increasing the flexural stiffness results in a stiffer beam (less deflec-
tion for a given moment), and this can be achieved either by making it from
a stiffer material (higher E ), or by redistributing the material so as to
increase I. The value of I depends both on the amount of material in the
cross section (which determines its mass per unit length) and also on the
way the material is distributed, in terms of its distance from the neutral axis.
A beam shaped as a hollow box or tube weighs the same as a solid bar with
the same amount of material in its cross section, but is stiffer, because the
material is further from the neutral axis, making I larger.

Bending in different directions and twisting
For a beamwith a circular cross section, any diameter of the circle will serve as
a neutral axis, and the second moment of area is the same, regardless of the
direction in which the beam is bent. This is not true of beams in general, with
no restrictions on the cross-sectional shape. In Figure 5.2C, the same cross
section as in Figure 5.2B is shown with a second neutral axis, at right angles
to the first. The two neutral axes (and any others thatmay be calculated) inter-
sect at a point called the centroid of the cross section, which would also be its
centre ofmass if the shapewere cut from sheetmetal. The choice of directions
is, of course, arbitrary, but in the case of wing spars (or bird humeri) there is a
‘‘primary’’direction for bending, which is normally assumed to be the dorso-
ventral direction. If this is assumed to be upwards in the figure, then the
corresponding neutral axis can be marked ‘‘YY’’ to indicate that it refers to
bending in the Y direction, and a second one is marked ‘‘XX’’ for bending in
the X direction. The corresponding second moments of area about these two
axes will generally be different, and can be denoted by Ixx and Iyy respectively.

While a bending moment applied to a beam results in compression in
one part of the cross section and tension in another, twisting results in
‘‘shear’’. This is a different type of stress (Figure 5.2D). If two plates are held
together by a screw passing through a hole in both plates, then shear is the
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type of stress applied to the screw, by trying to force one plate to slide past
the other. In this case the shear stress has the same magnitude and direc-
tion over the whole cross section of the screw. If a spanner is used to apply
a twisting moment (torque) to the screw, this also results in shear stress, but
varying in magnitude and direction over the cross section. The stress is
everywhere tangential (perpendicular to the local radius), and increases lin-
early from the centre of the circle, where the stress is zero.
The stiffness of a beam when subjected to a torsional moment depends

on the polar second moment of area ( J ), which is simply the sum of the sec-
ond moments of area, measured in any two directions mutually at right
angles, such Ixx and Iyy above:

J ¼ Ixx þ Iyy: ð10Þ
The ‘‘torsional stiffness’’ JG determines the angle through which a beam

will twist when subjected to a twisting moment or ‘‘torque’’, and is the prod-
uct of the polar second moment of area and the shear modulus (G ). The
shear modulus is the ratio of shear stress to shear strain in the material,
and it is analogous to the flexural stiffness EI, which determines the
response to a bending moment [Equation (9)]. As it refers to a different type
of stress, G is not expected to be numerically the same as the elastic modu-
lus (E ) as defined in Equation (1).
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function is to hold the wall in shape, and prevent it from buckling under

load. The trabeculae are densest near the ends of the bone, where muscle

attachments apply strong local forces that tend to distort the wall, and are

sparser in the middle part of the tube (Figures 5.3 and 5.4).

Flight feather shafts are responsible for the bending and torsional

stiffness of the outer part of the wing. They are made of keratin, which

is a more elastic material than bone, but not necessarily any less

strong. They too are cylindrical tubes in cross section, but only at their

bases. Further out, where the vanes of the feather begin, the shaft cross

section changes to a box shape, in which dorso-ventral bending is

resisted by slabs of keratin that form the top and bottom of the box

(Figure 5.6). The sides of the box serve to hold these ‘‘spar booms’’

apart, so as to maintain the second moment of area of the whole cross

section. The upper spar boom, whose function is to resist compression,

has ridges that project into the cavity of the feather and stiffen it

against buckling, while the interior of the shaft is filled with a light-

weight keratin foam or ‘‘parenchyma’’, which holds the walls in shape

without itself carrying significant loads. The side and bottom walls

are grooved in a way that allows the shaft some freedom to twist, while

resisting bending (Figures 5.5– 5.7).



BOX 5.2 Structural measurements on wings.

This box introduces practical methods for measuring the quantities intro-
duced in Box 5.1. Unlike the basic morphological measurements described
in Chapter 1, these structural measurements involve cutting up the wings
of dead birds. Quantities which are defined as integrals, like moment of
inertia and second moment of area, can be approximated in practice by
summation, dividing the wing into strips. Kirkpatrick (1990, 1994) surveyed
a number of such quantities in birds and bats, and some of his regression
equations can be found in Chapter 13, Table 13.3.

Variable definitions for this box
alin Linear acceleration
aang Angular acceleration
Ai Area of strip i
F Force
H First moment of area
I Second moment of area
Ixx Second moment of area in the X direction
Iyy Second moment of area in the Y direction
Iw Moment of inertia of wing
J Polar second moment of area
M Moment about shoulder joint
m Mass
mi Mass of strip i
ri Radius of strip i about shoulder joint
rm Mean radius of lift
yi Distance of strip i above datum
yna Distance of neutral axis above datum

Spanwise centre of lift
The bending moment which the lift force on a wing exerts about a bird’s
shoulder joint is made up of contributions from elements of area, at dif-
ferent distances from the axis of the joint. This can be approximated by
ruling a tracing of the wing (fully extended) into chordwise strips, parallel
to the axis of rotation of the joint (Figure 5.3). If the strips are narrow,
and the bird is gliding, the lift on each strip can be assumed to act
through the quarter-chord point, that is, a quarter of the local chord,
measured back from the leading edge. If strip i has an area Ai, and the
pressure difference across the wing is the same all over, then the strip
applies a moment proportional to Airi about the shoulder joint, where ri
is the radius of the strip about the shoulder joint. The total moment M
is then proportional to the sum of the contributions of all the strips:

M /
X

Airi; ð1Þ
and the mean radius (rm) can be estimated by dividing this by the total area:

rm ¼
P

AiriP
Ai

ð2Þ
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In the downstroke of flapping flight, the local air speed varies along the
wing, because the whole wing has a component of forward speed, and this
is combined with a component due to flapping, which increases with the
radius. The area of each strip can be weighted by a factor that involves
the square of the local airspeed. The effect of this is to move the spanwise
centre of lift outwards. The amount of the adjustment depends on the pos-
tulated combination of forward speed and angular velocity of the wing,

Moment of inertia
According to Newton’s Second Law of Motion, a linear force F, when applied
to a body of mass m results in a linear acceleration alin (rate of increase of
velocity), where

alin ¼ F

m
ð3Þ

The analogous relationship for rotation says that the rate of change of
angular velocity (aang) is the ratio of the applied moment (M) to the body’s
moment of inertia (Iw for a wing).

aang ¼ M

Iw
ð4Þ

The dimensions of Iw are those of force times distance (M L2 T�2), divided
by those of angular acceleration (T�2), that is, M L2. If the body is made up
of particles at different distances (radii) from the axis of rotation, each par-
ticle’s contribution to the moment of inertia is its mass, multiplied by the
square of its radius.
When a bird’s wing starts on the downstroke, the axis of rotation passes

through the head of the humerus. To measure the wing’s moment of inertia,
a tracing of the wing is first marked into chordwise strips as in Figure 5.3.
Each strip contributes to the moment of inertia an amount equal to the
mass of the strip times the square of its radius. Measuring the mass of each
strip (mi) is a somewhat messy operation, involving a sharp knife or paper
guillotine, and a saw if the bird is large. The wing is stretched fully out,
and carefully cut into strips, starting at the tip. After each cut, the material
that was in the strip, including any fragments of feathers, is collected and
weighed. The moment of inertia is then estimated as

Iw ¼
X

mir
2
i ð5Þ

Second moment of area of bone and feather cross sections
To measure the second moment of area (Box 5.1) of a bird’s humerus or of a
flight feather shaft, the first step is to cut cleanly through the shaft, and pho-
tograph the cut surface, remembering to include a length scale in the picture.
The neutral axis can be located on a drawing of a cross section by first super-
imposing a grid on the cross section as in Figure 5.4. The scale at the top shows
that this particular grid has 1 mm�1 mm squares. An arbitrary baseline is
drawn below the cross section. For each strip (such as strip number i), the ver-
tical distance from the baseline to the middle of the strip
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FIGURE 5.3 The spanwise centre of area of a bird’s wing can be found by ruling a
tracing of the wing into chordwise strips, and measuring the area of each strip (Ai) and
its radius (ri) about the shoulder joint. The first moment of area is found by adding up con
tributions equal to the area of each strip times its radius. Dividing this by the total area
gives the mean radius. The same diagram can be used to find the moment of inertia about
the shoulder joint, but in this case thewing has to be physically cut into strips. Strip number
imakes a contribution to the total moment of inertia equal to its mass (mi) times the square
of its radius (ri) about the shoulder joint.
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FIGURE 5.4 The cross section of Figure 5.2 overlaid by a 1 mm � 1 mm grid. The
first column at right is the ordinate (yi) of the middle of each row of squares, above the
arbitrary baseline drawn in below. The next column is the area (Ai) in each row that is
occupied by structural material (grey). The third column is the contribution of each row
to the first moment of area relative to the baseline, obtained bymultiplying the first column
by the second. The total of this column (2601 mm3) when divided by the total area
(242 mm2) gives the ordinate of the neutral axis (yna) above the baseline. The last column
is the contribution of each row to the second moment of area about the neutral axis. The
largest contributions come from the rows at the top and bottom of the section, because
they are furthest from the neutral axis, and these distances are squared.
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(yi) is measured, and the area (Ai) is measured by counting squares along the
strip that are occupied by structural material. The strip then makes a contri-
bution yiAi to the first moment of area. Each contribution can be thought of
as a volume, obtained by multiplying an area by a length. In Figure 5.4 the
sum of the contributions for all the strips is 2592 mm3 (bottom right). This
is the first moment of area, about the baseline. The ‘‘average y’’ for all the
strips can be found by dividing this by the total area (242 mm2), which gives
10.7 mm as the height of the neutral axis above the baseline. To summarise,
the first moment of area (H) is

H ¼
X

Aiyi; ð6Þ
and the height of the neutral axis (yna) above the arbitrary baseline is

yna ¼
P

AiyiP
Ai

ð7Þ

The neutral axis can now be drawn in. The second moment of area, for
bending about the neutral axis in the Y direction, can now be calculated
from the existing measurements as:

Iyy ¼
X

½Aiðyi ynaÞ2� ð8Þ
If required, another neutral axis, at right angles to the first, can be found

and drawn in, as in Figure 5.2C, and a separate second moment of area (Ixx)
can be calculated about that axis for bending in the X direction. The polar
second moment of area (J), for torsion, is the sum of the second moments
of area in the X and Y directions.

J ¼ Ixx þ Iyy ð9Þ

Scaling the second moment of area
Each of the contributions that makes up the second moment of area in
Equation (8) is made up of an area, multiplied by a length squared. Thus,
its dimensions are those of length raised to the fourth power (L4), and the
SI unit is the m4. In Figure 5.4 heights above the baseline are measured in
mm, and areas in mm2. The estimate for the second moment of area (bot-
tom right) is therefore 9655 mm4. It is best to convert this to the basic SI
unit (m4) before attempting to do any calculations with it. The factor to con-
vert mm to m is 10�3. Therefore, the factor to convert mm4 to m4 is 10�12,
and the estimate for the second moment of area is 9.655 � 10�9 m4.
If the cross section can be made into a digital drawing, in which the struc-
tural material is shown as black and everything else (including holes in the
material) is white, then it is a simple matter to program the above calcula-
tions, using a pixel as the unit of area, and the pixel interval (the distance
between neighbouring pixels) as the unit of distance. In that case, the sec-
ond moment of area comes out in units of pixel interval raised to the fourth
power. To find the factor to convert these units into m4, first determine the
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FIGURE 5.5 Upper: Humerus of a whooper swan (Cygnus cygnus) seen from the ventral
side, with the head (proximal end) to the left, and the anterior side of the bone down
wards. The vertical white line marks the outer end of the pectoralis muscle insertion,
which runs along the anterior edge of the proximal end of the bone. The centre of rota
tion is difficult to locate because of the rolling action of the shoulder joint, but is near
the left edge of the smooth convex bulge at the left end of the picture. Lower: Cross
section through the bone as marked by the white line in the upper picture, looking dis
tally. This is the point of maximum bending and torsional moments carried by the bone
in flight. The cavity inside the bone is connected to the inter clavicular air sac, and is
air filled. Bony trabeculae in the cavity brace the outer wall, and prevent it from buckling
under load. This structure is not a truss. The loads are carried by the wall, not by the
trabeculae. Photos by C.J. Pennycuick.

BOX 5.2 Continued.

linear factor to convert pixel intervals to metres on the original bone, by
referring to the scale that was photographed with the cross section, and
included in the drawing. Then raise this linear factor to the fourth power.
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FIGURE 5.6 A primary feather of a Greylag Goose, with enlarged cross sections of the
shaft at stations 1 7 shown on the right. Different length scales are shown for the feather
as a whole (left) and for the cross sections (right). The solid keratin walls are shown black
in the cross sections. The two mutually perpendicular straight lines across each section
are the neutral axes about which the second moments of area were calculated (listed
at right). Iyy is the second moment of area for bending in the dorso ventral (y) direction,
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FIGURE 5.7 The three second moments of area (tabulated at the right side of Figure 5.6)
decrease as the feather tapers from root to tip. This is because the shaft at any point has
to resist the moments applied by the feather area distal to that point. Further out along the
feather, the remaining area dwindles, and its mean moment arm shortens. All three sec
ond moments of area are, of course, zero at stations 0 and 8, but this cannot be shown
on the graph, as a logarithmic y scale has been used.
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5.2 MECHANICS OF THE BIRD WING

5.2.1 ADJUSTABLE WING SPAN AND AREA

A bird’s wing looks very strange to anyone accustomed to aircraft

wings, because the spar has three joints in it (elbow, wrist and metacar-

pal joint), which are used to adjust both the span and the area of the

wing. The elbow and wrist joints are hinges, which allow movement

only in one plane. In a gliding bird, the effect of flexing the elbow

and carpal joints is to make the planform of the wing into an ‘‘M’’

shape (Figure 5.8). Each flight feather slides over its neighbour on the

distal side, and under its neighbour on the proximal side, so that the
Ixx is for the x direction, and J is the polar second moment of area, for torsion. The hollow
interior of the shaft is filled with a foam or ‘‘parenchyma’’, made of thin keratin sheets,
whose function is to stabilise the shape of the load bearing walls, and prevent them from
buckling when the feather is subjected to bending and torsional moments. Except at the
base of the shaft, which is oval in cross section, the section shape is a modified box,
which resists dorso ventral bending, but allows some twisting. The upper wall of the
box is subjected to compressive stress, and has longitudinal ridges, which increase its
depth and its resistance to Euler buckling. The posterior vane (right) is wider than the
anterior one, which causes the feather to twist in the nose down sense when loaded,
pressing the posterior vane of each feather against the underside of the anterior vane
of its neighbour.
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FIGURE 5.8 Tracings from photographs taken by a camera looking perpendicular to the
(tilted) air stream, of a pigeon gliding at different speeds in a tilting wind tunnel (from
Pennycuick 1968a). (A) Equivalent air speed 8.6 ms�1, wing span 0.65 m (near maxi
mum). (B) 12.4 ms�1, wing span 0.57 m. (C) 22.1 ms�1, wing span 0.25 m. At low
and medium speeds the wing area is reduced by approximately the same factor as the
wing span, so that the mean chord remains roughly constant, but at very high gliding
speeds (C), the hand wing rotates to be parallel to the air flow, and the mean chord
increases. After Pennycuick (1968a).
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wing surface closes like a fan. The wing span can be reduced to less

than half its full extent, without any effect on the structural stiffness

or strength of the wing. As the joints flex, the wing area is reduced by

approximately the same factor as the span, meaning that the mean

chord stays much the same. The ability to adjust the wing span and

area in this way gives birds major performance advantages in both

gliding and flapping flight, which may possibly have been shared by

ptero saurs, but are not shared by bats ( Chapte r 6).

A gliding bird can achieve better gliding performance, by adjusting

its wing span and area, over a wider range of speed than would other-

wis e be possi ble (Chapte r 10 ). In flapp ing fligh t, the elbow and wrist

joints are flexed and extended during every wingbeat cycle, extending

the wing to its maximum span and area during the downstroke, and
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reducing it during the upstroke. This shortening of the wings during

the upstroke is too fast to be obvious to the naked eye, but is plainly

visible in television films of flying birds of any kind, where the motion

is usually slowed down to make it look steadier. Wing span variation

during the wingbeat cycle is implied by the notion of a ‘‘constant-

circulation wake’’. It has been argued that this minimises or eliminates

energy expenditure in creating transverse vortices at each wing beat,

and thus is an adaptation to economical long-distance cruising

(Ch apter 4 ). On the othe r han d, the wing has to cont inue dev eloping

some lift during the upstroke to achieve this, and this means that the

pectoralis has to be forcibly extended while still exerting tension, rather

than relaxing completely and allowing the lift force to raise the wing

passively. This would involve some expenditure of fuel energy, but

not enough is known to compare the cost of maintaining a constant-

circulation wake with the gain due to eliminating transverse vortices.

Observed values of the ‘‘span ratio’’, meaning the ratio of the wing span

during the upstroke to that in the downstroke, are compatible with a

constant-circulation wake in cormorants, but falcons in level flight

reduce the wing span too much in the upstroke (Pennycuick 1989;

Pennycuick et al. 1994). Corvids also reduce their wing span during

the upstroke to an extreme degree that makes their wing motion read-

ily recognisable to the eye, especially jays, which appear to close their

wings completely at each wingbeat. This may have some connection

with the ‘‘bounding’’ flight seen in smaller species of the same order

(Passeriformes), in which a burst of several wingbeats alternates with

a ballistic pha se with the win gs fu lly clo sed ( Chapte r 9 , Box 9.1).

Unlike a bat’s wing membranes, which are an encumbrance when

folded around the body, a bird’s wings can be folded instantly by fully

flexing the elbow and wrist joints. They fit snugly against the sides of

the body, and can be extended just as quickly, ready for instant flight.

Pilots of sailplanes and hang-gliders, who are accustomed to rigging

and de-rigging their unwieldy wings, are perhaps the only ones who

fully appreciate what a remarkable adaptation this is.

5.2.2 MECHANICS OF THE WING SKELETON

The wing skeleton starts at the head of the humerus, and extends only

about half way to the wing tip. The most proximal element is the

humerus, which angles back from the leading edge at the wing root. It is

a thin-walled, air-filled tube of bone, a shape that is very effective for

resisting bending and torsional moments with a minimum amount of

material (Box 5.1), especially as the bone structure is adapted to resist
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torsionat thesubmicroscopic level (deMargerieetal. 2005). Its articulation

at the shoulder joint has far more freedom of movement than any air-

craft wing root. It can rotate through large angles up and down, forward

and back, and nose-up and nose-down about its own axis. In flight, the

root bending moment is balanced by the downward pull of the pectora-

lis muscle, inserting on the underside of the deltoid crest, which projects

forwards from the proximal end of the shaft (Figure 5.5). The forward

position of the insertion also results in a nose-down torsional moment,

which balances the nose-up moment caused by the fact that most of the

wing’s area lies ahead of the axis of the humerus (Figure 5.9).

The bending and torsionalmoments carried by the humerus are trans-

ferred in their entirety to its outer end from the radio-ulna, through the

elbow joint. The ulna, which is the main structural element of the ‘‘fore-

arm’’ section of the wing, is also a thin-walled tube of bone, although it

is not filled with air. Its characteristic curved shape, with a thin, straight

radius between its ends, is the basis of the unique bird system for the
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FIGURE 5.9 A gliding wing divided into chordwise strips, with the centre of lift marked at
the quarter chord point of each strip. Nearly all the lift contributions exert a nose up moment
about the torsion axis of the humerus. Thismoment has to be balanced by the downward pull
of the pectoralis muscle, which inserts ahead of the humerus axis. If similar axeswere drawn
for the radio ulna, the torsional moment would be predominantly nose down. The bending
moment at the base of the radio ulna is transmitted through the elbow joint as a torsional
moment applied to the outer end of the humerus. After Pennycuick (1967).



5 The Feathered Wings of Birds 123
control of thewing’s profile shape (below). Theulna angles forwards from

the elbow joint, and runs obliquely to the leading edge of the wing at the

wrist. Depending on the degree of flexure of the elbow joint, the ulna is

often roughly perpendicular to the humerus in flight, although the joint

typically opens to an angle of about 150 degrees when fully extended.

Unlike the shoulder joint, which can move in any direction, the elbow is

a hinge joint, which is only free to move in flexion and extension. The

radio-ulna cannot rotate up and down, relative to the humerus. Conse-

quently, the bending moment applied by the outer part of the wing to

the ulna becomes a torsional moment when it is transferred to the outer

end of the humerus.Most of the area of thewing lies behind the extended

axis of the radio-ulna, which therefore has to carry a nose-down torsional

moment, in addition to the bending moment. These moments come

partly from the ‘‘hand’’ wing through the wrist joint, and partly from the

secondary flight feathers, which are attached to the rear side of the ulna.

The carpal (wrist) joint connects the outer ends of the radius and ulna

with thenext sectionof thebony spar,which consists of twocurvedmeta-

carpal bones, fused together at their ends to form a single unit, with a

space between them in the middle. When the outer part of the wing is

producing an upward force, the carpal joint behaves as a hinge joint,

allowing rotation in only one plane. The hinge axis is not parallel to that

of the elbow joint, but tilted so that the hand-wing swings in a plane that

is inclined nose-up relative to the plane of the humerus and radio-ulna.

The joint unlocks if the wrist joint is flexed, and the outer (hand) part

of thewing candrop if there is noaerodynamic force tohold it up.Beyond

themetacarpals thereare twosmall bony elements, representing an inde-

terminate number of fusedphalanges. These have only a small amount of

fore-and-aft movement relative to the metacarpals.

The outer end of the second of these bones is the end of the bony skele-

tonof thewing, but it is nowherenear thewing tip. Inmostbirds, the skele-

ton extends only about half way from the shoulder to the wing tip. The

shafts of the flight feathers radiate outwards and backwards from thewing

skeleton, forming a ‘‘distributed spar’’, which collects the aerodynamic

forces from thewhole wing surface, and transfers it in the formof bending

and torsional moments to the wing skeleton. This arrangement is unique

to birds. Nothing like it is found in any other animal or machine.

5.2.3 MECHANICS OF FLIGHT FEATHERS

Most of the area of the wing is supported by primary flight feathers,

which radiate from the hand skeleton, and secondary flight feathers,

which are attached to the rear side of the ulna. Each flight feather
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has a shaft or ‘‘rhachis’’, which acts as an independent spar, made of

keratin rather than bone. The lifting area consists of two vanes on

either side of the rhachis, which are made from closely packed ‘‘barbs’’,

each of which is a thin, tapered cantilever beam, supported at its base

by the rhachis. Feathers are dead structures made of keratin. The base

of each feather is surrounded by a follicle, which is a pocket in the skin

containing the chemical machinery that creates a new feather. When

the feather is fully formed, its base remains in the living follicle, which

then provides the mechanical anchorage that holds the feather in the

skin. In the case of flight feathers, the follicle is reinforced with connec-

tive tissue to form a robust socket, whose function is to transfer the

bending and torsional moments at the base of the feather to the under-

lying skeleton. Each feather is connected to the wing skeleton at one

point, the follicle at its base, unlike the wing membrane of a bat, which

has to be stretched between two skeletal supports.

The function of the feather shaft is to resist deformation due to the

bending and torsional moments set up by the aerodynamic force act-

ing on the vane, and to transmit these moments to the skeleton. The

cross section of the shaft at any particular point has to resist the

moments generated by forces acting further out along the feather.

At a point near the tip, such as Section 7 in Figure 5.6, the cross section

is very small, because there is only a small amount of vane area further

out, and the forces acting on it have only a short moment arm about

that point on the shaft. On the other hand Section 1 has to resist the

entire force acting on the whole of the feather, and the bending

moment arm, averaged for the whole of the vane, is a substantial frac-

tion of the length of the feather. Still nearer the base, where the shaft

enters the follicle, the moments are progressively transferred to the

skeleton, and the cross section dwindles, eventually to nothing. The

second moments of area (Box 5.2) are shown in Figure 5.6, and plotted

on a logarithmic scale in Figure 5.7. They decrease gradually at first,

and then ever more steeply, through three orders of magnitude from

Section 1 to Section 7 (Figure 5.10).
5.2.4 RELATION OF PRIMARY FEATHERS TO THE SKELETON

When a bird’s wing is extended, the primaries and secondaries spread

out like a fan, and appear to form one continuous series, but actually

these two sets of flight feathers transmit forces and moments to the

skeleton in different ways (Figure 5.10). The follicles of the innermost

primaries are bound by robust connective tissue to the metacarpal unit
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FIGURE 5.10 (A) A bird’s wing skeleton (also shown in C) collects all of the aerodynamic
force generated by the wing, although it extends less than half the distance from the shoul
der joint to the wing tip. (B) Looking along the axis of the ulna (thick circle), the hinge axis of
thewrist joint is inclined at an angle of 40 45 degrees relative to the hinge axis of the elbow
joint, in the nose down sense. (C) The area coloured pink is occupied by patagia (skin mem
branes), which are supported by the skeleton. Patagia constitute the entirewing area of bats
and pterosaurs, but provide only a small fraction of the wing area in birds. Most of the wing
area is made up of ‘‘flight feathers’’ (remiges), which are divided into ‘‘primary’’ feathers
attached to the hand skeleton, and ‘‘secondary’’ feathers attached to the ulna. The gap
between the innermost secondary feather and the body is faired by ‘‘scapular’’ feathers
(not shown). Although the scapulars are similar in structure to flight feathers, their follicles
are not attached to the skeleton, but are embedded in the postpatagial membrane. The post
patagial tendon (red line) runs along the upper side of the primary and secondary follicles,
connecting them together, and controlling the fanwise spreading of the flight feathers when
the elbow and wrist joints are extended. Because of the curvature of the ulna, this tendon
also increases the camber of the wing by forcing the secondaries downwards, when the
joints are fully extended. The cross sections X1 and X2 are shown in Figure 5.11.
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(two fused bones), while those further towards the wing tip are simi-

larly bound to one or other of the two phalanges. In flight, each pri-

mary feather tries to bend upwards, and to twist in the nose-down

sense, and it transmits a bending and a twisting moment via its follicle

to the underlying bone. The moments contributed by all the primaries

are collected at the base of the metacarpal unit, and thence transmit-

ted via the wrist joint to the outer end of the radio-ulna. None of the

primary feathers have any freedom of movement relative to the bones

to which they are attached. The joints between the metacarpals and the

phalanges allow a small amount of movement, but this is constrained

to fanwise spreading, in the plane of the wing. Birds do not have any

means of moving primary feathers up or down relative to the bones,

or of moving individual primaries in any direction relative to their

neighbours.

5.2.5 RELATION OF SECONDARY FEATHERS

TO THE SKELETON

Secondary flight feathers are mechanically similar to primaries, but the

way in which they transmit moments to the wing skeleton is different.

Like primaries, their bases are supported by reinforced follicles, but

instead of being rigidly attached to the ulna, these are bound by con-

nective tissue to the rear side of the ulna. In many birds there are reg-

ularly spaced ‘‘tubercles’’ (bumps) on the ulna, marking the points to

which the secondary follicles are attached. The attachment is strong

but flexible, so that the secondaries can hinge up and down, relative

to the ulna. To transmit their bending moments, they depend on a

basal tendon, which connects the outer ends of all the primary and

secondary follicles together (Figure 5.10). The tendon is anchored at

its inner end to the ulna at the elbow joint, and at the other end to

the outer phalanx bone. Its action depends on the unique curved

shape of the bird ulna, to which the bases of the secondary follicles are

attached in an arc. As the wrist joint is extended, the outer end of the ten-

don is pulled outwards, so straightening the tendon as it curves around

behind the ulna. The hinge axis of the wrist joint is at a ‘‘nose-up’’ angle

relative to that of the elbow, so that the basal tendon pulls the secondary

follicles downwards. This arrangement automatically adjusts the ‘‘cam-

ber’’ of the inner part of the wing, between the elbow and wrist joints,

meaning the curvature of the wing cross section. When the elbow and

wrist joints are fully extended, the flight feathers not only spread out to

their maximum area, but the secondaries are also pulled downwards by
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the basal tendon, so increasing the camber. This is a ‘‘high-lift’’ configu-

ration, seen during the downstroke of flapping flight at low speeds, and

when gliding at minimum speed or landing. At higher gliding speeds,

or when lift is reduced in the upstroke of flapping flight, the elbow and

wrist joints are flexed, so reducing the wing span and area, and also

allowing the cross section to take up a flatter (less cambered) shape

(Figure 5.11).
Force due to tension in
  postpatagial tendon
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FIGURE 5.11 The elbow andwrist joints are fully extended in slow flight, causing the propa
tagial tendon to pull downwards, extending and drooping the leading edge in Section X1
(from Figure 5.10). The samemovement tightens the postpatagial tendon resulting in a down
ward force on the outer ends of the secondary feather follicles. This droops the follicles, which
are flexibly attached to the ulna, and increases the camber of the inner part of thewing. In fast
flight, flexing of the elbow andwrist joints relaxes the tension in the postpatagial tendon, and
allows the secondary follicles to hinge upwards, so flattening the camber. The profile of the
handwing (Section X2 from Figure 5.10) consists of a single layer of primary feathers, whose
follicles are rigidly attached to the metacarpals and phalanges. The feather shafts form a
distributed spar. Stiff barbs attached to each side of each shaft form the anterior and posterior
vanes of the each feather. Each vane overlaps the neighbouring feathers on either side, and
can slide over them as the joints are flexed and extended, so varying the wing area.
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5.2.6 PATAGIAL MEMBRANES

The cross section of the inner part of thewing is also partly determinedby

the small triangular patagium (wingmembrane) aheadof the elbow joint.

The leading edge of this is supportedby thepatagial tendon,whichhas an

elastic section in themiddle, and is attached to the radiusnear thewrist at

its outer end, while its inner end is tensioned by a slip of the deltoidmus-

cle, coming off the shoulder. When the elbow joint is fully extended, this

‘‘pro-patagium’’ is pulled into a curved shape, concave on the underside.

This effectively droops the leading edge of the wing ahead of the elbow

joint, complementing the downward deflection of the secondaries to

the rear, caused by tightening of the basal tendon.

There is also a ‘‘post-patagium’’, which bridges the angle between the

elbow joint and the side of the body, behind the humerus. This sup-

ports a number of large feathers that appear mechanically similar to

flight feathers, but they are actually contour feathers, not flight feath-

ers, because their follicles are embedded in the skin of the post-

patagium, without any direct mechanical connection to any part of

the skeleton. When it is extended, the post-patagium, and the feathers

it supports, form a ‘‘wing-root fairing’’ which connects the wing surface

aerodynamically to the side of the body.

5.3 FLAPPING THE WINGS

5.3.1 THE DOWNSTROKE IN FLAPPING FLIGHT

A bird’s shoulder joint is very different from any aircraft’s wing root, in

that the head of the humerus (corresponding to the root end of the

main spar) can rotate through large angles up or down, and forward

or back, as well as being able to rotate either way around its own axis.

The lift force on a gliding bird’s wing acts upwards, far out from the

body, creating an upward bending moment about the shoulder joint,

which has to be resisted in order to prevent the wings from ‘‘clapping

hands’’ above the animal’s back. In gliding flight, this lift moment is

balanced by a downward moment, produced by a steady tension force

in the pectoralis muscle, pulling downwards on its attachment on the

humerus, a short way out from the shoulder joint. Using a muscle

rather than a passive structure to maintain a steady force or moment

requires some expenditure of metabolic power, even though the muscle

do es no wor k s o long as it m aintains a constant length (Chapte r 7,

Box 7.2). If the muscle shortens, it does work. In that case the muscle

becomes an ‘‘engine’’ that converts some fraction of the fuel energy con-

sumed into work. In level flight, the downstroke is the power stroke. The
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amount of work done in each wingbeat, by the right and left pectoralis

muscles together, must account for the aerodynamic work done in the

same period against the drag of the wings and body. The mechanical

power is the work done in each downstroke by both pectoralis muscles,

multiplied by the wingbeat frequency, and this has to equal or exceed

the aero dyna mic power, c alculated in Chapte r 3. This in turn is the main

component of the metabolic (or chemical) power in prolonged flight,

which is the rate of consumption of fuel energy.

The pectoralis is a tapered muscle. At its ‘‘origin’’ or inner end, the

muscle fibres exert a force which is distributed over a large area of bone,

mostly on the expanded sternum, but also on the coracoid and clavicle.

The fibres do not run the full length of the muscle, but progressively

transfer their force to connective tissue elements within the muscle.

The muscle ‘‘attachment’’ on the humerus consists entirely of tendinous

connective tissue, and covers a much smaller area than the origin,

because the stress that can be transmitted by a passive tendon is about

200 times greater than the isometric stress that a muscle fibre can exert.

Even so, the insertion is spread along the bone so that its outer end is

typically twice as far (or more) from the centre of rotation of the shoul-

der joint than the inner end, and therefore the insertion at that end

moves twice as far when the humerus rotates through a given angle.

5.3.2 THE UPSTROKE IN FLAPPING FLIGHT

The wing is raised by the supracoracoideus muscle, which is much

smaller than the pectoralis in most birds, and arranged in a manner

that is unique to birds. The muscle originates along the sternum, where

it is completely covered by the pectoralis. Its tendon runs up beside the

coracoid, through the foramen triosseum where the coracoid, clavicle

and scapula meet, to its insertion on the top side of the humerus. In

most flight regimes the upstroke is a recovery stroke, whose function

is to position the wing, ready for the next downstroke. In fast flight,

the aerodynamic force on the wing raises it passively, but some work

may be required from the supracoracoideus in very slow flight, below

the minimum power speed. Hummingbirds differ from other birds in

that they are specialised for hovering, which they do with the body in

an upright posture, sweeping the wings forward and back, rather than

up and down. During the ‘‘upstroke’’ (which should perhaps be more

accurately named a ‘‘backstroke’’), the wings are rotated at the shoul-

der so that what is normally the upper surface faces downwards, and

the wings develop inverted lift, directed upwards. The upstroke and

downstroke are both power strokes in a hovering hummingbird,
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whereas in other birds that are able to hover (flycatchers, kingfishers)

the upstroke is a complex ‘‘flick’’ movement, whose function is to

extract the wing from the vortex ring that has been created by the

downstroke, and position it for the next downstroke. The supracoracoi-

deus is relatively much larger in hummingbirds than in other birds,

although still not as large as the pectoralis.

5.4 THE REST OF THE SKELETON

5.4.1 THE AXIAL SKELETON

The bird skeleton (Figure 5.12) is based on that of bipedal saurischian

dinosaurs, but apart from the wings, it has some other unique modifi-

cations, which set birds apart from other vertebrates. Dinosaurs stood

and walked in an oblique head-up posture, with a long tail that approx-

imately balanced the body weight about the hip joint. The visible tail of

birds is a fan of feathers which weigh very little, and although birds

stand in a posture that is much the same as that of dinosaurs, their tail

skeleton is reduced to a size that is far too small to act as a counter-

weight. There is no way that birds can balance their weight about their

hips, because the hip joint is too far back, and the body leans forwards

from it. The head-down moment about the hip joint is instead bal-

anced by postural muscles that pull downwards on the rear end of

the pelvis, so levering the front end up.

The pelvic lever is the synsacrum. The saurischian pelvis is a ring

made up of three bones on each side. The ilium, and behind it the

ischium, articulate with the sacral vertebrae, while the two pubic bones

join together ventrally, as they do in our own skeletons. In birds, the

ilium and ischium are fused to the vertebrae rather than articulating

with them, and they are hugely expanded. The ilium is a long plate

extending forwards as far as the base of the neck, with lumbar and

some thoracic vertebrae fused to it, while the ischium is an expanded

curved plate behind the hips, also fused to the vertebrae, and to the

ilium. The two pubes do not join ventrally, but are elongate elements

fused to the rest of the synsacrum, and lying below the edge of the

ischium. Although the whole structure is thin and light, its curvature

gives it a large second moment of area in a section through the hip

region, making it a stiff longitudinal lever (Box 5.1). It is also a curved

plate with the concave side downwards, and in a cross section through

the bird’s body, it faces the oppositely curved dorsal plate of the ster-

num (Figu re 5.12 C). Intercostal m uscles flex and extend the joint s

between the ribs and ventral ribs, so moving the sternum up and down
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FIGURE 5.12 (A) The weight of a standing or running bird’s body is supported at the hip
joint, but as there is no balancing tail, the body’s centre of mass is well ahead of the hip.
The bird has to hold the front end of the body up, by pulling downwards on the rear end
of the synsacrum (arrows). The synsacrum is shaped to resist longitudinal bending, and
acts as a ‘‘pelvic lever’’. (B) The synsacrum consists of the three pelvic bones (ilium,
ischium and pubis) together with the sacral and lumbar vertebrae and some thoracic ver
tebrae, all fused together into a single rigid unit. It is connected to the sternum by the ribs
and sacral ribs. Air is pumped in and out of the respiratory system by intercostal muscles,
which flex and extend the joints between the ribs and the sternal ribs, so moving the ster
num up and down relative to the synsacrum. (C) Section along the dashed line in B. The
synsacrum and sternum operate as the two halves of a bellows in ventilation. The pubic
bones of the two sides do not join ventrally, as they do in most other tetrapods. The syn
sacrum is a thin sheet of bone that is curled downwards at the sides, forming a light chan
nel girder that is very resistant to longitudinal bending.
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relative to the synsacrum. A bird breathes by this bellows action, not

with a diaphragm as mammals do.

5.4.2 THE KEELED STERNUM

Birds differ from bats and pterosaurs in having a prominent keel on the

sternum, on which both the pectoralis and supracoracoideus muscles

originate. This serves no obvious function as regards the mechanics

of flapping the wings. Bats have no such keel. Their pectoralis muscles

pull against one another in the ventral midline, with no bony septum

between them, and since both always contract together, this causes
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no problems. There is no way that a bird or a bat can flap one wing and

not the other. That would make the body roll, without doing any work

on the air. The function of the keel must be something that applies to

birds but not to bats. The clue is in the unusual arrangement of the

avian respiratory system, which is radically different from that of any

m amma l, inclu ding bats. More details ab out this are in Ch apter 7,

Box 7.6. In birds (only), a system of thin-walled, non-respiratory ‘‘air

sacs’’ draws air right through the actual lung, which is a small and com-

pact structure. The inter-clavicular air sac is the one that sends

branches into the cavities inside the hollow humeri of birds, and it also

sends channels inside the keel of the sternum. These in turn send

branches into the pectoralis muscle itself, lying parallel to the muscle

fibres (Figure 5.13).

Everybody knows that birds have ‘‘pneumatic bones’’, but it is not so

widely known that their pectoralis muscles are also pneumatic. The air

channels can sometimes be demonstrated in dissections in which

coloured latex is vacuum-injected through the trachaea of a pigeon,

although the flexibility of the surrounding muscle makes the penetra-

tion difficult to achieve. When the pectoralis is dissected away from

its origin on the keel in an ordinary dissection, the cut surface has an
FIGURE 5.13 Dissection of a wandering albatross (Diomedea exulans), seen from the
ventral side. The keel of the sternum runs across the bottom of the picture, and the bird’s
head is to the left. The ventral edge of the pectoralis muscle has been detached from its
origin on the side of the keel, and reflected out to the bird’s left side, revealing conspicu
ous cavities inside the muscle. It is sometimes possible to demonstrate corresponding cav
ities in a latex injected pigeon dissection, and they are then seen to branch off the inter
clavicular air sac. Photo by C.J. Pennycuick.
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obvious rough texture, not seen in transverse cuts of other muscles. In

some large birds such as albatrosses, the cut surface contains plainly

visible channels (Figure 5.13). Themost likely function of these air chan-

nels is as sites of evaporative cooling, allowing heat to be extracted

directly from the muscle fibres during flapping flight. Without the

keeled sternum to hold the muscles away from the ventral side of the

body, the air channels would close up when the muscles contract, so

preventing water vapour from escaping from the interior of the muscle.

No such arrangement is needed in bats, because they can dispose of

large amounts of heat by passing blood through the wing membrane,

which presents a vast area to the air stream, andmakes a highly effective

convective cooler. Birds have a much smaller area that can be used

for convective cooling of the blood, limited to the undersides of the

forearms, and the sides of the body that are covered when the wings

are folded.

5.5 ADAPTATIONS FOR GLIDING

‘‘Gliding’’ is flight on outstretched wings, without flapping, something

that most birds do for some of the time. Some glide nearly all the time,

resorting to flapping flight only at moments of dire necessity. A gliding

bird loses height or speed or both, relative to the air, but these losses

can be offset by ‘‘soaring’’ behaviour, in which the bird extracts useful

energy from m otions of the atm osphere (C hapter 10 ). A bird that glides

for most of the time has to support its weight by exerting a steady

downward moment on its humeri with its pectoralis muscles. There

are two ways to reduce the metabolic power required to maintain this

moment, first by moving the muscle insertion further out from the

shoulder joint, which reduces the force required, second by using a

‘‘slow’’ muscle, meaning one with a low maximum strain rate. The met-

abolic power required to maintain a given force is proportional to the

maximum strain rate, which is a property of the biochemistry of the

partic ular mus cle (Chapte r 7 , Box 7.2). The pectorali s m uscles of Old

World vultures have two distinct parts, a large superficial part which

is deep red in colour, and a smaller deep part which is pale pink. The

colour difference indicates that the superficial part is adapted to main-

tain a higher level of aerobic specific power than the deep part. The

likely interpretation is that the superficial part is a ‘‘fast’’ muscle whose

maximum strain rate is matched to flapping the wings, while the deep

part is a slower muscle, used to maintain tension economically in glid-

ing flight. The ultimate ‘‘slow muscle’’ is a tendon, which cannot

shorten at all. Having a maximum strain rate of zero, a tendon can
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maintain tension indefinitely at no metabolic cost. Albatrosses are the

only birds known to exploit this, with a wing lock based on a tendinous

sheet in parallel with the pectoralis muscle. This is arranged in such a

way that it prevents the wing from rising above the horizontal position

when the humerus is protracted fully forward, but unlocks to allow

flapping flight when the humerus is retracted (swung back) by a small

amount.

As to the wing morphology of soaring birds, it is an interesting oddity

that only albatrosses and frigatebirds show any resemblance to the

planform shapes of sailplanes, and even they have modest aspect ratios

of 14 to 16. Most birds that are specialised for soaring in thermals, such

as vultures, eagles, cranes, storks and pelicans, have almost rectangular

wings with aspect ratios of 8 to 10, but they also have characteristic

slotted wing tips, due to ‘‘emarginated’’ distal primary feathers. This

means that, instead of tapering smoothly like the goose primary

feather of Figure 5.6, the distal primaries of these soaring birds show

an abrupt narrowing of both the anterior and posterior vanes, some

distance from the tip, which results in the primaries separating into a

series of ‘‘winglets’’ at the wing tip. The flexibilities of the feather shafts

are graduated, so that the first feather bends in gliding flight until its

tip points almost straight up, and subsequent feathers bend less,

resulting in a cascade of up to 6 feathers around the wing tip, each

one of which is in the downwash of the feather in front of it. It would

appear that this arrangement modifies the flow around the wing tip,

presumably by moving the trailing vortices outwards, so making the

wing perform as though its span were greater than it really is. The

low aspect ratios of wings of this type are likely to be an adaptation

for take-off performance and manoeuvrability, rather than for gliding

performance.
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THE MEMBRANE WINGS OF BATS
AND PTEROSAURS
Unlike a wing made of feathers, one that evolved by extending a lateral patagium,
like that of flying squirrels, has to be tensioned between two or more skeletal members.
The diversity of bats is much less than that of birds, because of their less versatile wings,
whose structure also constrains the evolution of the legs. The wings of pterosaurs also
involved the legs, but may have had an elastic membrane that allowed control of span
and area, with a degree of versatility nearer to birds than to bats.

This book is primarily about birds, but any animal that flies has to

overcome the same mechanical problems, in the process of transform-

ing its ancestral limb structure into a pair of wings. The other two

groups of flying vertebrates, bats and pterosaurs, started from the same

basic tetrapod limb structure as birds, but evolved wings in which

the surface area is provided by a patagium. This is essentially a double

layer of skin, which has no bending stiffness in itself, and has to be

stretched out like a hang glider’s sail by a skeletal frame, rather than

being supported at one end only, as sailplane wings and flight feathers

are. The diversity of both groups has been restricted in comparison
Modelling the Flying Bird
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with that of birds, as a direct result of the mechanical basis of the pata-

gium, in ways that can be observed in bats, and inferred in pterosaurs.

Beyond the limitations inherent in patagial wings, the two groups are

very different.

6.1 BATS

Bats (Chiroptera) are a widespread and highly successful order of

mammals, with more living species (over 1000) than any other order.

The earliest known bat fossils are from the Eocene period, some

millions of years after the last pterosaur died at the end of the Creta-

ceous. The few survivors of the catastrophe that ended the Mesozoic

Era included the ancestors of modern birds and mammals, and most

of the modern orders of both groups are first known from Eocene fos-

sils. Bats are similar in size and mass to small and medium-sized birds,

but there are no goose-sized or larger bats. Like birds, they originated

from ancestors that did not fly, and modified their original anatomy

so as to fulfil the requirements for flight. They have wing spans and

aspect ratios in the same range as birds of similar size, and the Flight

programme, which only requires that information, will calculate their

flight performance without distinguishing between them and birds.

The physical problems of evolving wings are the same for birds and

ba ts ( Chapte r 3) but the solutions that the two gro ups have evolved

are different in almost every respect. Bats are excluded from a vast

range of ecological niches in which birds use their legs for walking,

perching, running, swimming and catching prey, because the leg is a

primary element of the wing structure in bats, whereas in birds it is

not. Most bats find their way around and locate their prey by echoloca-

tion rather than vision, which makes them pre-eminent as nocturnal

aerial insectivores, but not so good at other forms of predation. There

are bats that eat other bats, and one bat species (Nyctalus lasiopterus)

is believed to prey on nocturnally migrating songbirds, on the basis

of feathers in its droppings at migration time. On the other hand two

entire orders of birds (raptors and owls) are specialised as predators,

including many raptor species which catch birds and bats in flight.

Likewise, whole orders of birds are specialised for living and hunting

in the wa ter ( Chapte r 12 ), wh ereas there are no true water bats. Carib-

bean fishing bats can detect ripples on the water surface caused by a

fish swimming just below, and catch the fish by dipping their hooked

hind claws in the water, but no bat can swim around under water

like a cormorant in pursuit of fish, or plunge-dive like a kingfisher.

The mammalian method of reproduction requires bat mothers to carry



FIGURE 6.1 A female Rousettus aegyptiacus carrying a baby in flight. This is a small fruit
bat (Megachiroptera) with a mass of about 120 g and a wing span of about 0.5 m. The
plagiopatagial muscles can be seen on the left wing. The soles of the feet point forwards
because of rotation of the leg at the hip joint. The ankle joints are deflected downwards
to produce a downward curl at the trailing edge of the plagiopatagium. Unusually for
a fruit bat, this species uses a primitive form of echolocation for obstacle avoidance.
The lips are drawn back to emit clicks that are audible to the human ear. Photo by
C.J. Pennycuick.
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embryos and babies in flight (Figure 6.1), rather than laying eggs in a

nest, and the limitations of mammalian lungs exclude bats from

high-al titude flig ht ( Chapter 7, Box 7.7) . Birds are seen over the pola r

ice fields, but bats are not. Some bats migrate over land in short stages

of a few tens or hundreds of kilometres, but no bat flies non-stop for

thousands of kilometres over ocean or desert, as many bird species

do. The abilities and limitations of bats begin with the mechanical

principles of their wings.

6.1.1 MECHANICS OF THE BAT WING

Whereas birds have a pure cantilever wing, in which a stiff structure

delivers all the bending and torsional loads to the shoulder joint, the

wing membrane of a bat is flexible, with no resistance to bending or

torsion. The only type of stress that the membrane can resist is tension.

It has to be stretched between two stiff bony supports, which pull out-

wards at opposite edges. If the membrane were flat, it would only pull

on the bony framework in the plane of the membrane, and would not
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FIGURE 6.2 A bat’s wing membrane can only resist tension, not bending or torsion.
It has to be stretched between two or more skeletal supports (grey). The membrane bulges
towards the low pressure side of the wing, so that it pulls on the supports at an angle to
the plane of the wing. The middle support is pulled by a force R2 by the membrane on
its left, and by a force R3 by the membrane on its right. The horizontal components of
these two forces (H2 and H3) cancel, while the vertical components (V2 and V3) add
together, and contribute to the aerodynamic force on the wing. The vertical components
on the outer supports (V1 and V4) also add to the aerodynamic force, while the horizontal
components H1 and H4 have to be balanced by forces Fin and Fout, applied by the
supports. These outward forces are necessary to ‘‘tension’’ the wing.
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exert any force perpendicular to that plane (lift). It works as a wing

because the membrane bulges when excess air pressure is applied to

one side of it (Figure 6.2). At every point around the edges of the mem-

brane, where it attaches to the skeleton, it exerts a large component of

force pulling inwards, which is balanced by an opposing force at the

opposite edge, and a smaller component, which is unbalanced, per-

pendicular to the wing surface. The sum of these unbalanced compo-

nents makes the aerodynamic force on the wing, which is then

resolved into drag (parallel to the incident air flow) and lift (perpendic-

ular to the incident air flow). As always, the measure of the wing’s effi-

ciency is the ratio of lift to drag. The skeletal supports have to resist the

unbalanced forces that translate into the aerodynamic force on the

wing, as they do in a bird’s wing, and in addition, they have to provide

the tension in the membrane by pulling against one another.

Figure 6.3 shows the main structural components of a bat’s skeleton,

and the nomenclature of different parts of the wing membrane from

Norberg’s (1972a) account of Rousettus aegyptiacus. This is a small

member of the suborder Megachiroptera (fruit bats), but the same

description of the main wing components also applies to the other

suborder (Microchiroptera, insectivorous bats), which includes the

majority of bat species. From the shoulder to the wrist, a bat’s wing

skeleton is similar to that of a bird, except that, as usual in mammals,

the radius rather than the ulna is the main structural element of the

forearm.

The way in which aerodynamic forces are developed by the different

panels of a bat’s wing, and transferred to the skeleton, was analysed by
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FIGURE 6.3 Nomenclature of the parts of a fruit bat’s wings, according to Norberg
(1972a).
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Norberg (1972b). Outboard of the wrist, where the bones of a bird’s

hand skeleton are reduced and thickened, those of a bat are hugely

elongated and slender. The five elongated metacarpals radiate from

the wrist joint, and each digit continues with three or four similarly

elongated phalanges. Digit 1 (the thumb) points forwards and supports

a drooped leading edge in flight, as well as being used for clambering,

while Digits 2–5 support the wing surface. Digit 3 runs to the wing tip,

and is augmented by the shorter Digit 2, ahead of it, to make the rhom-

boidal ‘‘Norberg panel’’, described by Norberg (1969) and shown in

Figure 6.4. This is a characteristic feature of the wings of all bats, that
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FIGURE 6.4 A bats’s wing is tensioned by the musculus extensor carpi radialis longus,
which exerts a force (Fmusc) on the anterior side of the base of the second metacarpal.
The Norberg panel (grey) is the rhomboid shaped unit formed by the second and third
digits, and the dactylopatagium minus between them. This is stiff in the plane of the wing,
and transmits the pull to the membrane between Digits 3 and 4. Norberg (1969) explains
in detail how this works. The forward pull due to the muscle rotating Digits 2 and 3 is
eventually balanced by an inward pull exerted by the leg. The short arrows correspond
to the forces Fin and Fout in Figure 6.2 The tension path between them (dashed lines)
changes direction as it pass through Digits 4 and 5, which are held in compression by
the pull of the membrane.
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is light but stiff in the plane of the wing. It allows the hand-wing to be

pulled forwards against a strong drag moment, but does not require

the phalanges to be thick and heavy, as they are in a pterosaur’s wing-

finger (below). A hypothetical Norberg panel probably also formed an

essential part of the wing of the ancestors of birds, up to and including

Archaeopteryx, although its function has been taken over in modern

birds by the fused metaca rpals ( Chapte r 16 ).

The last two fingers (Digits 4 and 5) run through the membrane from

the wrist to the trailing edge, and perform two distinct functions.

The first is to resist the bending moment caused by the pull of the

membrane as it bulges towards the low-pressure side on both sides

of the finger. The bending moment in the finger is much the same as

that in a flight feather shaft, but it originates differently, from the

upward component of tension in the membranes attached to each side

of the finger skeleton, rather than from the attachment of the cantile-

ver bases of the stiff barbs to the sides of the feather rhachis. Besides

tending to bend the finger, the tension in the membrane also tends

to compress the finger towards the wrist. In resisting this compression,

each finger allows the tension path in the membrane to turn. Working

outwards from the body, the tension paths turn a corner as they pass

Digit 5, and another at Digit 4. As a result, Digit 3 can pull forwards
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on the outer edge of the wing, directly opposing the leg, while pulling

in an almost perpendicular direction. This allows the wings of some

bats, especially Molossids, to be tensioned straight out from the body,

in a rather narrow, pointed shape. Because pterosaurs lacked fingers

through the membrane, they would not have been able to bend the

tension path in this way, and must have depended instead on back-

ward curvature of the wing finger to tension the membrane (below).

6.1.2 THE LEG AS WING SUPPORT IN BATS

Besides tensioning the patagium at the inner edge, the leg also controls

its camber. The knees of non-flying mammals, such as ourselves, bend

the wrong way for this. Flexing knees like ours would camber the trail-

ing edge of the wing upwards instead of downwards. The two stereo-

scopic pairs of photographs in Figure 6.5 show a Rousettus fruit bat

gliding in a wind tunnel, seen from above. Both pictures show that

the hip joints allow the femurs to rotate outwards to such an extreme

degree that the knees project outwards and upwards in flight, a posi-

tion which is not ideal for walking on the ground. The feet are rotated

around so that the toes curl downwards, with Digit 1 (the big toe) on

the outside and Digit 5 towards the centreline. The ankle joint can flex

so as to curl the trailing edge of the plagiopatagium sharply down-

wards, as seen in Figure 6.1 in the downstroke of flapping flight. Most

bats have a limited ability to walk quadrupedally on their wrists and

feet, with the thighs splayed wide apart. Some (especially vampires)

are surprisingly agile on the ground, and can even jump, but they can-

not stand or walk upright on their hind legs, because the hip joint has

to be very far back, in order for the leg to support the posterior part of

the wing membrane. Bats’ toes are armed with sharp, hooked claws,

and they typically roost hanging head downwards from their feet, with

the wing membranes wrapped around the body. Unlike the versatile

feet of birds, this simple bat foot is not readily adaptable to functions

other than hanging up, or clambering about in branches (Figure 6.6).

6.1.3 CONTROL OF PLANFORM AND PROFILE SHAPE IN BATS

Like a hang-glider’s sail, a bat’s wing has to be tensioned, meaning that

a steady tension force has to be applied to the outer part of the mem-

brane, and balanced by an inward pull, where the membrane attaches

to the leg skeleton, and to the side of the body. This means that if a bat

reduces its wing span by sweeping back the hand wing, in the way that

birds do, the membrane has to contract, which reduces the tension in

its internal elastic fibres, so that the sail billows upwards (Figure 6.7).





FIGURE 6.6 A typical bat foot, belonging to the fruit bat Rousettus aegyptiacus. All five
toes are similar, with hooked claws, used for hanging inverted while roosting. Fishing
bats hook fish by trailing the claws in the water. Photo by C.J. Pennycuick.
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While birds drastically reduce both the span and area of their wings at

every upstroke of flapping flight, without impairing the wing’s ability to

resist bendi ng and tw isting momen ts ( Chapte r 5), bats can only do thi s

to a minor extent, and not without affecting the strength of the wing.
FIGURE 6.5 Stereoscopic photographs of a small fruit bat (Rousettus aegyptiacus) flying in
a wind tunnel (from Pennycuick 1971). The air stream was inclined upwards by tilting the
wind tunnel, so that the bat was able to glide. It was trained to maintain a constant position
by feeding it with banana pulp, supplied through the tube on the right. The camera was
aligned perpendicular to the air flow, and the upper stereo pair was taken by reflected
light, from a flashgun mounted above the tunnel. The lower pair was taken by transmitted
light, by mounting the flashgun below the bat, so that the light shone directly towards the
camera, through the wing membranes. The stereoscopic effect can be seen by diverging
the eyes, so that the left eye looks at the left picture, and the right eye at the right picture.
The viewer will then see three images, the centre one being three dimensional, formed by
fusing the two pictures. This is easiest to achieve by holding the page in bright light, perpen
dicular to the line of sight, and starting with the upper (reflected light) image.When fusion is
achieved, the wire netting will recede below the bat, and the central image will become
solid. Viewers who are new to this may find it helpful to start by looking over the top of
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FIGURE 6.7 A pigeon (left) trained to glide in a tilting wind tunnel could reduce its wing
span by a factor of 0.38 when the wind speed was increased from 8.6 ms�1 to 22 ms�1

(Pennycuick 1968a) while a fruit bat (centre) trained to glide in the same wind tunnel had
a narrower speed range from 5.5 ms�1 to 10 ms�1, and could only reduce its wing span
by a factor of 0.82 (Pennycuick 1971). If pterosaurs’ wings (right) worked as postulated
in Figure 6.10, with an elastic membrane, they would have been better able than bats to
vary their wing span and area, and perhaps comparable with birds in this respect. These
planform changes also occur between the downstroke and upstroke of every wingbeat,
and may be responsible for the superiority of birds over bats in long distance migration,
in which case pterosaurs’ flight performance may have been more comparable to that of
birds than to that of bats.
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If the conj ecture in Chapte r 4 is correct, that birds use this planf orm

variation to obtain an energetically efficient vortex wake, then the

inability of bats to do the same thing might be one reason why their

migrations seem to be confined to much shorter distances than those

of birds. On the other hand, Digits 4 and 5 give a bat a much greater

degree of control of the cross-sectional shape of the hand-wing than

is possible in a bird (Norberg 1972b), and this is the basis of the incred-

ible agility at low speeds for which bats are famous, for instance when

catching flying insects. Bats can also control the camber of the plagio-

patagium to a limited extent, by shortening a set of plagiopatagial mus-

cles that run fore-and-aft in the membrane, behind the ulna, without

attaching to the skeleton at either end. In gliding flight, these muscles

flatten the cross section at higher speeds, and relax to allow the mem-

brane to bulge upwards into a more cambered shape at low speeds.

A similar arrangement in hang gliders is called ‘‘variable billow".

Figures 6.8 and 6.9 show contour maps of the wings of a gliding bat,

at speeds near the minimum and maximum at which it would fly in a

wind tunnel. Changes of profile shape and angle of attack at different

speeds canbe seen (Box6.1). Thesemapsweremadebyphotogrammetry

from stereoscopic photographs like those of Figure 6.5.



BOX 6.1 Bat contoured plots.

Figures 6.8 and 6.9 were made from two stereo pairs like the lower pair in
Figure 6.5, taken by transmitted light (Pennycuick 1971, 1973). Enlarged
positive transparencies were made from the original negatives and placed
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FIGURE 6.8 Contourmapof a Rousettus fruit bat gliding steadily in a tiltingwind tunnel at
an equivalent air speed of 5.5 ms�1, from a stereo pair of photographs taken by transmit
ted light, as in Figure 6.5. The thick contour lines are numbered with the height in centi
metres above a datum plane just below the bat’s feet. The thin lines marked A L are the
positions of profiles whose upper surface is shown on the right, with the cross sectional
shapes of the bones filled in approximately. The zero lift line through the trailing edge of
eachprofilewas calculated from thinaerofoil theoryaccording to themethodof Pankhurst
(1944), andas thisbatwasgliding, theangleofattackwasmeasured relative to theaxisof
the wind tunnel. Data for the bat are in Table 6.1. From Pennycuick (1973).

6 The Membrane Wings of Bats and Pterosaurs 145



BOX 6.1 Continued.

3456789
10

17.1�
A

B

C

D

E

F

G

H

I

J

K

L

A

B

C

D

E

F

G

H

I

J

K

L

11 11

12

1211

11
10

9
8

8

9
8

9
763

4 5
6

7

8 8

1 2

1
2

3
4
5
6

7

9

9
8
8

7
6 6

7

8

8.7�

12.4�

6.6�

18.2�

29.9�

32.1�

21.4�

15.9�

15.9�

14.0�

18.5�
10 cm

FIGURE 6.9 Contour map as in Figure 6.8, but at a higher speed (9.0 ms�1). The bat
reduces its wing span and area slightly, flattens its profile by tightening the plagiopa
tagial muscles, and reduces its angle of attack. From Pennycuick (1973).

in a map-making machine, normally used for making contour maps from
pairs of vertical aerial photographs. A spot that appeared to the operator to
float at a constant (but adjustable) height was steered by hand along the
three-dimensional surface, while themachine reproduced its track on a draw-
ing. The resulting contours (thick lines) are numbered with the height of the
membrane in centimetres, above a datum level just below the bat’s feet. In
Figure 6.8 the highest level is Contour 10 on the outer part of the right wing,
which is 10 cm above the datum level, that is, nearer to the camera.
Besides drawing the contours, transects were taken along each of the 12

chord lines A–L, and plotted as wing profiles on the right of each figure.
The cross-sectional shapes of the bones are approximate, as these are seen
in silhouette by transmitted light. The profiles from the upper surface can

146 MODELLING THE FLYING BIRD
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be considered according to the classical theory of thin wing sections as
explained by Abbott and von Doenhoff (1959). A practical numerical
method due to Pankhurst (1944) allows the zero-lift angle of attack to be
calculated (see Chapter 3, Box 3.5). This is the angle between the chord line
and the direction of the incident air flow, which would make the lift coeffi-
cient zero if this were a rigid profile made of, say, sheet metal. The chord
line is not shown in the profiles in Figures 6.8 and 6.9 (it joins the leading
and trailing edges), but they show an estimated zero-lift line drawn through
the trailing edge, and a line which is parallel to the axis of the wind tunnel,
and assumed (as the bat was gliding) to represent the incident air flow. The
angle between these two lines is an estimate of the local angle of attack.

TABLE 6.1 Data for Rousettus contour maps.

Figure 6.8 Figure 6.9

Body mass (kg) 0.120 0.120
Lift (N) 1.14 1.16
Wing span (m) 0.523 0.500
Wing area (m2) 0.0495 0.0484
Aspect ratio 5.52 5.17
Lift coefficient 1.27 0.485
Equivalent air speed (ms�1)a 5.45 9.00
Tunnel tilt (�) 13.50 9.00
Downwash angle (�) 4.18 1.71
Reynolds number (mean chord) 34,000 57,000

a Reduced to sea level air density 1.22 kg m�3.
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6.1.4 FLIGHT MUSCLES OF BATS

Thedownstroke inflappingflight is poweredby thepairedpectoralismus-

cles, which originate over a wide area of the ribs and sternum, much like

those of birds. The sternum of bats does not have an expanded curved

dorsal plate like that of birds, because bats breathe with a diaphragm,

not with a sternal bellows. Bats also lack the prominent ventral keel of

the bird sternum, having only short bony sections at the forward and aft

ends of the sternum, with a median ligamentous sheet stretched longitu-

dinally between them. A bat’s pectoral muscles originate on either side of

this sheet of connective tissue, through which the left and right muscles

pull directly against each other. No bony keel is needed for the muscles

to flap the wings. The keel of the bird sternum serves a different function

that does not apply to bats, allowing evaporative cooling directly from
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cavities in the pectoralis muscles (Chapter 5). As in birds, the pectoralis of

bats inserts on the underside of a ridge that projects forwards from the

head of the humerus, so applying a nose-down moment to the wing,

which is necessary for the same reason as in birds (Figure 5.5). Bats elevate

the wing with the deltoid group ofmuscles, which originate on the side of

the vertebral column, and pull upwards on the dorsal side of the humerus

(Norberg 1970, 1972a).
6.1.5 THERMOREGULATION AND RESPIRATION IN BATS

When a bat’s wing is not tensioned, the sail hangs loose with little con-

traction of its area. It does not fold in the fanwise manner of a bird’s

wing, or contract in the manner seen in pterosaur fossils (below). Bats

cannot stand upright on their back legs, and they roost by hanging

head-down from the feet, with the sail wrapped around the body. The

sail has a vast surface area and a copious blood supply, which can be

controlled in flight to dispose of heat by convection, provided that

the air temperature is below that of the bat’s blood. In sunlight, the

wing collects heat if the blood supply is turned on, and this may be

the main reason why most bats are nocturnal, or at least crepuscular.

Bats can also dispose of heat to a limited degree by fluttering the sail

when roosting, but they have no system for evaporative cooling, either

internal like the air sacs of birds, or external like the sweat glands of

many other mammals. Their last resort in a thermal emergency is to

lick their chests, and use saliva for cooling.

The lungs of bats are like those of other mammals, but very different

from those of birds (se e Chapte r 7 , Box 7.7). Oxyg en diffuse s into the

blood from the gas in the blind cavities (alveoli) that line the wall of the

lung, and carbon dioxide diffuses out. The lungs are ventilated by con-

traction of a muscular diaphragm which closes the posterior end of the

thoracic cavity, as in other mammals. Bats’ lungs are no more effective

than those of mountaineers at high altitudes, unlike the lungs of birds,

which canmaintain blood oxygen levels sufficient for strenuous activity,

at lower atmospheric pressures. Some bird species routinely migrate at

heights above 6000 m ASL, whereas bats are confined to more modest

altitudes, perhaps 2000 m.

6.1.6 TAKE OFF AND LANDING IN BATS

Most bats roost in places like trees or the roofs of caves, where they can

take off by dropping into a clear space, although a few (vampires)

can take off by jumping upwards from a level surface. Landing involves
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attaching the claws to a suitable toe-hold, and rotating the body from

the flight attitude to the head-down roosting position. Small bats can

land on a vertical or inverted surface, either by hooking the thumb

claws on to the surface and swinging the feet up, or by rotating in

the air and attaching the feet directly. Fruit bats have a somewhat differ-

ent technique for landing on branches. The bat approaches slowly above

the branch, with its feet trailing, and hooks the branch with its

downward-curving claws, then swings over forwards into the head-down

posture, furling its wings as it does so.

6.2 PTEROSAURS

Pterosaurs are an extinct order of reptiles. They belonged to the archosaur

branch of the Class Reptilia, which comprises birds, crocodiles and the

two orders of dinosaurs, Saurischia (which were closely related to birds)

and Ornithischia which were somewhat different. The archosaurs may

be considered a sub-Class, or a super-Order, depending on how you look

at it. The relationship between the different archosaur orders is that they

all sprang from a common ancestor. That was a long time ago, but not

so long ago as the still earlier ancestor that the archosaurs as a whole

shared with other branches of the reptiles, such as turtles, lizards and

the synapsid line that eventually led tomammals (including bats and our-

selves). The commonancestor of birds andpterosaurswasnot aflying ani-

mal. Birds and pterosaurs each evolved flight separately, in different ways,

from an ancestor that did not fly (Chapter 16). Neither group inherited any

flight adaptations from the other, or from a common ancestor.

The first pterosaur fossils are themost ancient knownflying vertebrates,

dating from Triassic times. Wellnhofer (1991) has written an authoritative

account of their history, with sketches of all known genera drawn to the

same scale. In terms of general shape, pterosaurs were like frigatebirds,

with large wings relative to the size of the body, not like swans or guille-

mots. Early pterosaurs, characterised by a long, bony tail with a paddle

on the end, are assigned to the suborder Rhamphorhynchoidea, which

survived until late in the Jurassic. Some of the best-preserved rhamphor-

hynch specimens were found in the famous upper-Jurassic Solnhofen

limestone formation of south Germany, alongside the first members of

the other pterosaur suborder (Pterodactyloidea) which differed in having

very short tails that could not have been used to balance the body weight

about the hips. The loss of the balancing tail typical of dinosaurs was not

accompanied by any drasticmodification and expansion of the pelvis, like

that seen in birds (Chapter 5), presumably because rhamphorhynchs had

given up bipedal walking long before, when they modified the legs to
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support the inner end of the wing (below). The Solnhofen formation also

yielded several specimens of Archaeopteryx, the first bird known to have

had a wing that (more or less) fitted the description in Chapter 5, although

the rest of its skeleton did not yet show the characteristicmodifications of

the limb girdles and tail that distinguish birds from dinosaurs. Pterodac-

tyls flourished until the last days of the Cretaceous, when they disap-

peared along with the dinosaurs and many other groups of animals.

Birds later reappeared and prospered, but pterosaurs sadly did not.

6.2.1 MECHANICS OF THE PTEROSAUR WING

Pterosaurs are known only from their fossilised skeletons, and from sur-

face impressions of the wing membranes in the relaxed (dead) state. As

there is no prospect of observing pterosaurs in flight, still less of flying

one in a wind tunnel, the way that their wings worked has to be inferred

from the similarities and differences between their wings and those of

birds and bats. The pterosaur skeleton was basically dinosaur-like, and

to that extent it resembled a birdmore closely than a bat. However, while

birds retained the bipedal stance of their dinosaur ancestors, the legs of

pterosaurs were modified like those of bats to support the inner end of

a flexible sail, with only a limited capacity for walking.

The wing skeleton of pterosaurs differed from those of both birds and

bats, in that there was a single, jointed bony spar, running all the way to

thewing tip (Figure 6.10).Wellnhofer (1991) illustrates a sectioned ptero-

dactyl humerus, which is a thin-walled tube very similar to the swan

humerus of Figure 5.5, complete with internal trabeculae. The cavity

may have been connected to the respiratory system and filled with air,

as in birds. The radio-ulna was quite similar to that of bats, but instead

of dividing into five digits at the carpal joint as in bats, the spar continued

with four tightly bundled and partially fused metacarpals. These are

thought to represent Digits 1–4, while Digit 5 is presumed to have been

lost at an early stage of pterosaur evolution. The metacarpal unit was

short in rhamphorhynchs, but in the later pterodactyls it was longer,

and formed a prominent section of the spar. Three short, clawed digits

(1–3) projected forwards from the outer end of themetacarpal unit, while

the spar continued along the leading edge of the wing to the tip as a
whales (Figure 6.14), becoming prominent when the membrane is fully contracted. (D)
Rhamphorhynchus foot after Wellnhofer (1991). If the feet were simply rotated back in
C, the soles would be upwards, and Digit 1 would be on the inside. Outward rotation
at the hip brings the dorsal side of the foot upwards, with Digit 1 on the outside. Digit
5 still supports the trailing edge tendon, as in the unrotated ancestor, and therefore has
to be modified so that the tendon can pass over Digits 1 4 to the outside.



Humerus

Radio-ulna

Carpus

Pteroid

Metacarpals

Digits 1−3

Wing finger

Propatagial tendon

Wing-finger
extensor muscle

Trailing-edge tendon
  (hypothetical)

Fmusc

Fmusc

A

B C

1

23

4

5

14
5

D

Relaxed

Tensioned

Tendon

FIGURE 6.10 Pterosaur reconstruction based on Rhamphorhynchus muensteri, a small,
tailed pterosaur from the Upper Jurassic Solnhofen limestone of southern Germany, as
described by Wellnhofer (1975). The hypothetical elements of this reconstruction are
from Pennycuick (1988b). (A) Arm skeleton (enlarged from (B) below). The distinctive
hammer headed humerus articulates with a straight radio ulna (not curved like the ulna
of birds). The pteroid, projecting forward from the carpus, is a bone that is peculiar to
pterosaurs. The metacarpals are bound together to form a single structural unit. Beyond
them the phalanges of Digits 1 3 form fingers with hooked claws, while Digit 4 is the
hugely elongated ‘‘wing finger’’. (B) To spread the wing, the elbow joint would have
been fully extended, and the wing finger fully protracted. It is proposed that a muscle ori
ginating on the head of the humerus exerted a force Fmusc to pull the wing finger for
wards, against the pull of elastic fibres in the membrane. A hypothetical trailing edge
tendon connects the fifth toe with the tip of the wing finger. The joints between the
wing finger’s phalanges are assumed to be bound by elastic material, so that the finger
as a whole would flex like a bow when the wing was tensioned. The isolated wing finger
above the diagram is copied from (C), where the tension is partially relaxed, allowing the
joints to straighten. (C) When the pull of the extensor muscle was relaxed, the elastic
membrane would have been free to contract, pulling the wing finger back, reducing
the wing’s span and area. The fully relaxed wing would contract so that its planform
would be similar to that seen in the dead wings of fossils. The contraction would cause
wrinkles to appear on the surface (thin black lines), which have been interpreted as struc
tural ‘‘fibres’’, although they are strictly surface features seen in casts of dead wings.
More probably they are analogous to the ‘‘pleats’’ seen in the throat pouches of rorqual
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FIGURE 6.11 Two photographs of the carpus, and the outer end of the radio ulna, of a
Cretaceous pterodactyl Santanadactylus spixi, held by Prof. Peter Wellnhofer to show that
the pteroid can be articulated with the carpus in two alternative positions. It is proposed here
thatextensionof thewingcaused thepteroid to ‘‘snap’’ from theupper to the lowerposition, so
deploying the propatagium as a drooped leading edge. Photos by C.J. Pennycuick.
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single, vastly elongated ‘‘wing-finger’’ with four phalanges, believed to be

Digit 4. A small pteroid bone, peculiar to pterodactyls, projected from the

wrist, usually pointing inwards in fossils, towards the shoulder. Its func-

tion is uncertain, but it most probably controlled the leading edge of a

propatagium that stretched from the shoulder to the inner end of the

wing finger (Figures 6.11 and 6.12).

The nature of the wing membrane is known from a few fossils in which

surface impressions of deadwings have beenpreserved, especially a num-

ber of famous late-Jurassic specimens of both rhamphorhynchs and small

pterodactyls from the fine-grained Solnhofen limestone. These show the

outer part of the wing contracted into a narrow, sharply pointed shape

which some authors (not very imaginatively) have assumedwas also their
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FIGURE 6.12 (A) Pteroid pointing inwards towards the shoulder, in the position normally
seen in the contracted wings of fossils. (B) Pteroid in the ‘‘down’’ position proposed for
the extended wing, deploying the leading edge tendon to droop the propatagium.
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shape in flight. In a few specimens, especially the famous ‘‘Zittel wing’’

now in Munich (Figure 6.13) a pattern of fine surface ridges can be seen,

which were first described in 1882 as ‘‘Fasern’’ (fibres), and have been

widely assumed ever since to be stiff structural elements made of keratin.

Thepattern of these ‘‘fibres’’ is vaguely reminiscent of the fan-like arrange-

ment of flight feathers of a bird’s wing, but there are farmore of them, and

they aremuch thinner—far too thin tobe spars like feather shafts. They are

also closely packed side by side, and as they radiate towards the trailing

edge of the wing, new ones are interpolated between those that start fur-

ther forward. At the forward end, they peter out, and there is no sign of

any mechanical attachment to the wing bones. In the inner part of the

Zittel wing, the ‘‘fibres’’ wrap around the elbow joint, appearing soft and

flexible at that point, which suggests that they might have been soft

and flexible over the rest of the wing as well.

It has been claimed that the ‘‘fibres’’ must represent solid structures,

because they are so regular and sharply defined. However, elsewhere

in this same Solnhofen limestone, fossilised medusae have been found,

showing patterns of wrinkles where the surface contracted as the animal

died in hypertonic brine. Such a soft creature would have to be pre-

served in a two-stage process, whereby some encrusting microorgan-

isms such as blue-green algae first deposited a hard, negative ‘‘mould’’

on the surface, and mud particles were later compacted into the mould,

after the organic remains had decayed away. The preservation of surface

detail implies nothing at all about the mechanical strength of the origi-

nal jellyfish, or about that of the Zittel wing’s membrane. These ptero-

saur fossils were revealed when a slab was split from its counter-slab.



FIGURE 6.13 The Zittel wing from which the supposed ‘‘fibres’’ were first described. The
sketch shows the contracted outline of the wing, with two rectangles corresponding to
the photographs below. The ridges are even and regular in the right hand photograph,
but in the left hand one they fold around the elbow joint. Additional ridges are interpolated
as the wing widens towards the trailing edge. There is no separation or fraying of the
ridges at the trailing edge, as might be expected if they were stiff fibres. Photos by
C.J. Pennycuick.
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Bones may be preserved in one slab or the other, but no internal struc-

ture is preserved in the wing membranes. They are strictly surface

impressions, positive in one slab and negative in the other.

6.2.2 TENSIONING THE PTEROSAUR WING MEMBRANE

If we doubt the assumption that the surface ridges represent ‘‘fibres’’,

then we may ask whether anything that resembles them is known in liv-

ing animals. There is actually a striking resemblance (albeit on a larger

scale), with the throat pouches of rorqual whales, the group that includes

Blue, Fin and Humpback whales, whose feeding methods have been

described by Minasian et al. (1984). When relaxed, a rorqual’s throat
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pouch has prominent, closely packed, parallel ridges, running in a fore-

and-aft direction. Whale biologists refer to the pattern of ridges and

grooves as ‘‘pleats’’. Despite their robust appearance, the pleats do not

contain longitudinal stiffening elements of any kind, and their function

has nothing to do with resisting bending forces. They are a by-product

of the internal structure of the wall of the pouch, which is highly elastic

in the direction transverse to the pleats, but not in the longitudinal direc-

tion. The whale feeds by taking in a huge volume of water through its

mouth, so expanding its throat pouch into an enormous balloon

(Figure 6.14). The pouch then slowly contracts, expelling the water

through the baleen plates along the sides of the mouth, while any fish,

squid or krill that it contained go down thewhale’s throat. The pleats flat-

ten out as the pouch expands, and reappear as it contracts. If this was

also the basis of the ridges on pterosaur wing membranes, then the

implication is that themembrane (unlike a bat’s wing) was highly elastic,

in a direction transverse to the ridges, and that the ridges (or pleats)

appeared on the surface when the wing was relaxed, allowing the elastic

membrane to contract. Of course, all the fossil wings are relaxed.

The outer part of the relaxed, dead wing of a pterodactyl fossil has

much the same narrow, sharply pointed shape as the outer part of

the wing of a dead bird, or of a living one in fast gliding flight, or during

the upstroke of flapping flight. The corrugated surface and narrow

planform shape of the relaxed (dead) membrane suggest that it

contained much stronger elastic fibres than are present in a bat wing,

and was expanded in flight by the outward pull of the wing finger,

which was much thicker than the fingers of bats, and raises the possi-

bility that this expansion and contraction might have taken place dur-

ing each wingbeat cycle, as it does in birds (Figure 6.7). A bird can

expand its wing to its full span and area without exerting any large

forces, but a pterosaur, constructed as suggested, would have had to

do work against the elastic fibres when expanding the wing at the

beginning of the downstroke. However, this work would have been

temporarily stored in the elastic fibres, and could in principle have

been converted into aerodynamic work, when the wing was allowed

to contract at the end of the downstroke. In that case, pterosaurs would

have been able to vary their wing span and area in flapping flight in the

same manner as birds, which is something that bats cannot do, or only

to a small extent. If the implication of this kind of motion for long-

distance migration, as sugge sted in Chapte r 5 is correct, then it is pos-

sible that some pterosaurs could have been long-distance migrants,

with all the adaptive opportunities that migration opens up for birds

but not for bats ( Chapte r 8 ).
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FIGURE 6.14 (A) Rorqual whales (Balaenopteridae) feed by engulfing prey in a highly
distensible throat pouch, then closing the mouth and contracting the pouch, so that the
water flows out through the array of baleen plates along the sides of the upper jaw.
The name of the sub order to which rorquals belong (Mysticeti) refers to the baleen plates
(Greek mystax: moustache). (B) The contracted throat pouch fairs into the streamlined
shape of the whale’s body, and the contracted membrane surface then shows prominent
longitudinal ‘‘pleats’’. It is argued here that these are directly analogous to the parallel
‘‘fibres’’ seen on the surface of the contracted (dead) wing membranes of some pterosaur
fossils, implying that the membranes were stretched in flight to a much larger area than
that seen in the fossils. See also Figures 6.10 and 6.13.
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6.2.3 THE TRAILING-EDGE TENDON AND THE FIFTH TOE

The reconstruction shown in Figure 6.10, based on an elastic mem-

brane, requires a tendon that runs from the foot to the tip of the wing

finger, and pulls the trailing edge of the elastic patagium back when the

wing finger is protracted. No such tendon is visible in any of the fossils,

but that is not a compelling argument against its existence, as no other

tendons are preserved in these fossils either. Pterosaur feet have an

unusual feature, which at first sight appears to conflict with existence

of a trailing-edge tendon. Digits 1–4 of the pterosaur foot are slender

like the toes of bats, with hooked claws that look suitable for hanging

up, but for little else, whereas Digit 5 is different, more robust than
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the other toes, and with a bend at the joint between the first and sec-

ond phalanges. This looks like the anchorage for the inner end of the

trailing-edge tendon, but there is a difficulty. Because of the rotation

of the thighs to make the knees project dorsally, as they do in bats,

the fifth toe lies on the inside of the foot in flight, towards the centre-

line. Some authors have argued that the fifth toe supported a ‘‘uropata-

gium’’ between the legs and the tail, but have not explained why such a

sturdy support would be needed for this, even if a uropatagium existed.

A more likely interpretation is that the tendon originated at an early

stage of evolution, at a stage when the pterosaur ancestor’s fifth toe

was still on the outside of the foot, as it is in flying squirrels. Subsequent

rotation of the leg in the course of pterosaur evolution meant that the

tendon crossed from the fifth toe above the other toes, so requiring

the toe skeleton to be modified to control it.

6.2.4 MECHANICS OF THE WING FINGER

The pterosaur patagium was a single expanse of membrane, without

any bony supports running through it, as Digits 4 and 5 do in a bat’s

wing. These two digits are loaded in compression, and serve to turn

the direction of the tension paths in the membrane (Figure 6.4). Most

reconstructions of pterosaur skeletons show the wing finger sticking

straight out from the body, but this overestimates the wing span, as

the wing could not have been tensioned in this position. The tension

paths in a pterosaur’s wing would have had to run directly from the

inner edge of the membrane to the wing finger, without any corners,

and this would mean that the wing finger had to bend back when the

wing was fully extended. The wing finger was made up of four phalan-

ges, each of which had oblique and slightly expanded end plates at

both ends (except at the wing tip). The phalanges were connected by

butt joints where the end plates met. If these joints were bound

together by elastic ligaments, the finger as a whole would bend like a

bow when tensioned, and this is shown in the greater curvature of

the wing finger in Figure 6.10B than in C.

6.2.5 LARGE AND GIANT PTEROSAURS

Wellnhofer (1991) gives wing span estimates for a number of pterosaur

species throughout the history of the group, and these include large

pterodactyls with estimated spans between 5 and 6.2 m, throughout

the Cretaceous. These estimates are based on the assumption that

the wing finger ran straight out to the wing tip. The span would be less

if the wing finger were bowed as in Figure 6.10A, but even so it seems
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that the largest Cretaceous pterodactyls had functional wing spans

which were greater than those of living vultures and albatrosses, both

of which reach about 3 m in the largest species. Some tertiary fossil

birds such as Teratornis and Argentavis may have had larger wing

spans but this depends on extrapolating from the skeleton. This is

unreliable in birds, because much of the span is made up by primary

feathers, which have not been preserved in these fossils.

At the extreme end of the Cretaceous, something seems to have

changed with the brief appearance of the giant pterodactyl Quetzalcoa-

tlus northropi. The enormous size of this animal may be judged by com-

paring its humerus (Figure 6.15) with that of the little rhamphorhynch in

Figure 6.10. Both humeri have the same distinctive, hammer-headed

shape, but the one in Figure 6.10 is only about 4 cm long, a convenient

size to handle with tweezers. The Quetzalcoatlus remains are fragmen-

tary, but Chatterjee and Templin (2004) estimate from the size of the

known bones that the mass of Q. northropi was 70 kg, its wing span
FIGURE 6.15 Prof. Peter Wellnhofer, Director of the Bavarian Museum of Palaeontology,
where many of the most famous pterosaur specimens from Solnhofen are kept, holding a
cast of a humerus of the giant end Cretaceous pterodactyl Quetzalcoatlus northropi. The
hammer head shape of the humerus is similar to that of the little Rhamphorhynchus illu
strated in Figure 6.10, but that humerus is about 4 cm long, and if it were free from the
matrix, it could be conveniently handled with tweezers. Photo by C.J. Pennycuick.
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was 10.4 m, and its aspect ratio 11.3, i.e. around twice the linear size of

the ‘‘standard’’ large Cretaceous pterodactyls.

If Chatterjee and Templin’s numbers are input to Flight’s power curve

calculation, together with a flight muscle fraction of 0.15 and today’s

sea-level air density and gravity, its maximum rate of climb would be

negative, meaning that it would not be able to maintain height when fly-

ing at its minimum power speed and exerting full power. This is a

mechanical argument, not a physiological one. It makes no assumptions

about the availability of oxygen, but assumes that the sea-level density of

the air was much the same as in modern times. However, it seems likely

that the atmosphere was denser throughout Mesozoic times than it is

now (Budyko et al., 1985; Dudley, 1998), and there may also have been

an episode of extremely high air density right at the end of the Creta-

ceous, when Quetzalcoatlus lived, caused by outgassing associated with

the prolonged and massive volcanic eruptions that created the Deccan

Traps (Officer and Drake, 1985). Increasing the air density reduces the

minimum power speed, and also the power needed to fly at that speed,

in inverse proportion to the square root of the air density, whereas the

power available from the flight muscles is proportional to the wingbeat

frequency, which varies in inverse proportion to the 3/8 power of the

air density. These two graphs are shown in Figure 6.16B, representing

nine power-curve runs, in which the air density was increased in steps

of 0.5 kg m�3 from 1 to 5 kg m�3, while everything else was held con-

stant. The maximum rate of climb (Figure 6.16A) is initially about

�0.1 m s�1, but increases through zero when the air density is just below

4 kg m�3. This is 3.25 times the sea-level air density in the International

Standard Atmosphere, and would correspond to an altitude of 14,000 m

below sea level today. It is not inconceivable that Earth could retain such

a dense atmosphere, considering that Venus currently retains an atmo-

sphere whose surface density is more than 90 times ours, even though

its gravity is weaker, and its surface temperature is much higher. So long

as sufficient oxygen is still present to support the reduced level of meta-

bolic activity needed to fly, any gas that is not actually toxic or corrosive

will serve to increase the air density (see also Chapter 2, Box 2.4).

6.2.6 WATER PTEROSAURS?

It is a common idea that many of the larger pterosaurs were fish-eaters,

although no known pterosaur shows a body form like that of wing-

swimming birds such as auks. If any pterosaur could swim with its

bat-like legs, then one would expect some bats to be able to swim

too, but they do not. Pterosaurs did, however, fly with toes 1–4 of each
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FIGURE 6.16 Output from nine runs of Flight ’s power curve calculation for Quetzalcoa
tlus northropi, using estimated mass and wing measurements from Chatterjee and Templin
(2004), with the flight muscle fraction set to 0.15, gravity to 9.81 m s�2, and all other
input variables set to default values, including the isometric stress for the myofibrils at
560 kN m�2 (Chapter 7). (A) Rate of climb according to the calculation of Chapter 7, Box
7.5 rises above zero when the air density is just below 4 kgm�3. As the air density increases
from 1 to 4 kg m�3, the specific work decreases from around 50 J kg�1 (too high), to about
42 J kg�1, which is only a little over the value for delivering maximum power (Chapter 7).
(B) The minimum power speed (and with it the power required to fly) drops by a factor of
2.2 when the air density increases from 1 to 4 kg m�3, whereas the wingbeat frequency,
which determines the power available, drops by a factor of only 1.7. This is the reason for
the increasing power margin, which permits the maximum rate of climb to increase.
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foot curled downwards, which raises the possibility that they could

have caught fish that were swimming just below the surface, by trailing

their claws in the water like the fishing bat Noctilio leporinus (Novick

and Leen, 1969). Some raptors such as ospreys and fish eagles, which

snatch fish in their talons without actually entering the water, are

fish-eaters without being true water birds, and the same may have

been true of some pterosaurs. Such a lifestyle would be sufficient to

explain the occurrence of fish remains, apparently in the body cavities

of pterosaur fossils, without necessarily implying that any pterosaur

could actually swim.



7

MUSCLES AS ENGINES
Amuscle does work by exerting tension and shortening. The work that can be done by
unit mass of muscle in one contraction is essentially fixed, and the power is found by
multiplying this by the contraction frequency. This is the same as the wingbeat
frequency in a flying animal, and is lower in large animals than in related smaller ones.
An animal’s maximum rate of climb is estimated and output by the Flight programme,
and must be at least zero if the animal is to be capable of level flight in a given
environment.

The work required for powered flight comes from muscles in all flying

animals. The theory of engines from aeronautics is not a great deal of

help in biology, since nearly all aircraft engines are heat engines, which

first convert fuel energy into heat, then convert some fraction of the

heat into work, and dispose of the rest. Muscles are not heat engines,

and they do not share the basic requirement of all heat engines, that

the largest possible difference is needed between the temperature at

which work is done (for instance in a cylinder or turbine), and that at

which waste heat is dumped to the outside world. Muscles are isother-

mal engines, which convert chemical energy into work without first

converting it into heat, and there is no thermodynamical requirement
161
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for any part of the system to operate at a high temperature. If a muscle

were 100% efficient, that is, if it could convert all of the fuel energy that

it consumes into work, then it would not heat up at all. In practice,

there is some heating because only a part of the fuel energy is con-

verted into work, and the remainder appears as waste heat, which

has to be disposed of. A flying animal’s capacity to dispose of waste

heat determines the temperature rise in its flight muscles, which may

amount to a few degrees during maximal exertion, but not hundreds

or thousands of degrees as in jet or rocket engines. Even so, all flying

animals except possibly the smallest insects require adaptations to dis-

pose of waste heat, which would otherwise cause overheating. On the

other hand, keeping warm is seldom if ever a problem in powered

flight, even at sub-zero air temperatures.

This chapter is about those properties of vertebrate skeletal muscle

that an engineer-god would need to know before attempting to design

a muscle-powered flying animal. The approach has its origins in a

famous paper by A.V. Hill (1950) in which he generalised his own ear-

lier studies of the mechanical properties of isolated muscles, so as to

predict the limits of performance in different types of locomotion, in

animals of different size. Muscles differ from most artificial engines

in that the only kind of force they can produce is tension, and they only

do work by shortening. Skeletal levers or hydraulic converters are

required to convert a muscle’s inherent ‘‘pull’’ force into a push force

or a torque. Some ‘‘tonic’’ muscles are specialised for maintaining ten-

sion, without doing work, but most skeletal muscles are specialised to

function as engines, whose primary function is to convert fuel energy

into work. A muscle does this intermittently, producing a certain

amount of work when it shortens against a load, after which it has to

be lengthened passively, usually by an antagonistic muscle, before it

can do some more work in another contraction. This intermittent

action, with a work stroke alternating with a recovery stroke, is some-

what analogous to that of a reciprocating engine, at the level of the

individual piston. The actual mechanism is basically the same in differ-

ent animals, with no broad divisions such as that between piston and

turbine engines. The differences between vertebrate and insect flight

muscles, due to the higher contraction frequencies at which the latter

operate, amount to variations of the same basic mechanism rather than

radically different types of engine. Within vertebrates, it is possible to

generalise about the structure and mechanical properties of skeletal

muscles, because there is a remarkable degree of uniformity between

different vertebrates, large and small.
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7.1 GENERAL REQUIREMENTS

7.1.1 ENGINE AND SUPPORT SYSTEMS

Like any artificial engine, muscles need to be supplied with fuel and

oxygen, while carbon dioxide and heat, the main waste products of

their operation, need to be removed and disposed of. Animals cannot

simply suck in air and ignite the fuel as aircraft do, because the oxida-

tion process takes place in an aqueous medium at body temperature.

Oxygen first has to diffuse from the air into a liquid medium, the blood,

which then carries it around the body and delivers it to tissues that

require it. The ‘‘support systems’’ for the muscles are the lungs, where

oxygen is extracted from the air and carbon dioxide is disposed of, and

the blood system which provides the internal transport. The blood

(at least in bats) also carries waste heat from tissues that generate it to

sites where it can be disposed of, either by convection or evaporation.

In prolonged exertion, as in long-distancemigration, flight is said to be

aerobic, meaning that themaximumpower available from themuscles is

limited by the capacity of the support systems to keep pace with their

requirements. The support systems themselves consume mechanical

power, to pump air in and out in the case of the respiratory system, and

for the heart to pump the blood around a closed system of blood vessels.

Flight accounts for this when calculating the chemical power from the

mechanical power, by multiplying the power calculated for the flight

mus cles (Ch apter 3) by a ‘‘respiration and circulation factor’’ whose

default value is 1.1. This is somewhat crude, but there is currently no the-

ory that would provide a better estimate of the amount of power needed

to support a given level of power in the flight muscles. In a short burst of

maximal exertion, for instance during take-off, the power output of the

muscles can exceed the capacity of the support systems by using reserves

of fuel stored locally in the muscle fibres, and oxidising it anaerobically.

This results in an oxygen debt which eventually has to be repaid, by oxi-

dising the products of the initial energy-yielding reaction. The upper

limit of power output in such sprint activities is determined by the

mechanical properties of the engine itself, not by the support systems.

The maximum power output may greatly exceed the capacity of the

support systems in some animals, for instance in ambush predators like

crocodiles, whose lives consist of long periods of inactivity punctuated

by infrequent explosions of violent activity. Many large birds, such as

condors and albatrosses, avoid the need for sustained aerobic activity

by soaring, and are generally believed to be incapable of continuous flap-

ping flight. Spiders, one may note, can only operate anaerobically,
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because their bodies are so arranged that they can either run or breathe,

but cannot do both at the same time—hardly, perhaps, an example of

intelligent design!

7.1.2 FUELS FOR MUSCLES

Fuels for muscular contraction fall into three broad groups, fat, carbo-

hydrate (glycogen) and protein. Glycogen and protein are stored in

hydrated form, meaning that a quantity of water is bound to the actual

combustible molecule, so reducing the energy density of the stored fuel

and increasing the mass of fuel that has to be carried, for a given

amount of usable energy. Mainly because it does not require water of

hydration, the energy density of stored fat is far higher than that of

other fuels (Table 7.1). Aerobic oxidation of fat is the only practical

option as the primary energy source for long-distance migration for

this reason. However, it is not possible, for biochemical reasons, to

burn fat only. The metabolic pathways for metabolising fat involve

the consumption of some protein, and it seems that this protein

accounts for around 5% of the total energy released, in a bird that is

primarily consuming fat (Jenni and Jenni-Eiermann, 1998). As it hap-

pens, a long-distance migrant can meet more than half of this require-

ment by consuming protein from its flight muscles, in effect burning

part of the engine as well as the fuel as it gets lighter. This has some

int erest ing consequ ences whi ch are conside red furthe r in Ch apter 8 .

Anaerobic oxidation of carbohydrate can be activated more quickly

than fat metabolism, and is better suited to sprint activities involving

short bursts of maximum power, for instance at take-off.

7.2 THE SLIDING FILAMENT ENGINE

7.2.1 THE ACTO-MYOSIN ARRAY

In transmission electron micrographs, sections through skeletal muscle

tissue show a regular array of protein filaments, which are of two

types, thick and thin (White and Thorson, 1975) (Figure 7.1). In transverse
TABLE 7.1 Energy density of biological fuels.

Fuel Percent water Energy density J kg�1

Fat 0 3.9 � 107

Glycogen 73 4.6 � 106

Protein 69 5.7 � 106
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FIGURE 7.1 (A) In a transmission electron micrograph, a cross section of vertebrate skele
tal (striated) muscle (left) shows a regular hexagonal array of thick filaments made of the
protein myosin, each of which is surrounded by a hexagonal ring of thinner filaments made
of another protein actin. In the asynchronous flight muscles of insects (right), the array has a
3:1 ratio of actin to myosin filaments, instead of 2:1 in vertebrates, and the myosin fila
ments have a core made of a different material. (B) In longitudinal section, the actin
filaments are about the same length in both vertebrates (left) and insects (right), but themyosin
filaments are longer in insects, almost reaching the Z lines at either end of the sarcomere,
evenwhen the muscle is at its extended length. Skeletal constraints typically allow 26% strain
in vertebrates, but only about 2% in insects. After White and Thorson (1975).
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section, the thick (myosin) filaments are arranged in a hexagonal array,

while the thin (actin)filaments formadenser array,with ahexagonof actin

filaments surrounding eachmyosin filament. The ratio of actin tomyosin

filaments is 2:1 in vertebrate skeletal muscle, but 3:1 in insects, where the

geometry of the array is slightly different. In longitudinal section, the array

is divided into ‘‘sarcomeres’’, which are the contractile units of themuscle.

Each sarcomere is separated from its neighbours at either end by trans-

verse membranes (Z-lines). The actin filaments are attached to each side

of theZ-line, and run inwards towards the centre of the sarcomere.Neither

the actin nor the myosin filaments themselves shorten when the muscle

contracts. The sarcomere shortens because the actin filaments slide past

the myosin filaments, pulling the Z-lines at either end towards the centre.

The sarcomeres in vertebrate skeletal muscle fibres are around 2 mm long,

and can be observed with a light microscope as striations, whose spacing

can be measured in living muscles. The contractile filaments themselves

can only be resolved by an electron microscope, which requires fixed

preparations.

At the molecular level, each thick filament is built up of bundles

of myosin molecules, each of which has a long ‘‘stem’’, and a pair of

short ‘‘heads’’ that project from one end at an angle, like the bowl of
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an old-fashioned clay pipe. The heads or ‘‘cross-bridges’’ project from the

side of the filament at intervals of 14.5 nm, and connect with attachment

sites on the nearest actin filament. There is a short segmentwithout cross-

bridges in themiddle of eachmyosinfilament. The cross-bridges on either

side of this gap pull against one another, and shorten the sarcomere by

pulling opposing sets of actin filaments inwards towards the centre. To

cut a very long story short, when the muscle contracts, each myosin

cross-bridge exerts a forceon the actinfilament bybending, then reattach-

ing to another site further along the actin filament. The effect is that

the myosin filaments walk like centipedes along the actin filaments.

7.2.2 THE FORCE–LENGTH RELATIONSHIP

Any muscle varies in length, but in vertebrate skeletal muscle, the max-

imum and minimum lengths of a muscle in the intact animal are, in

most cases, constrained by the skeleton. Figure 7.2 refers to a frog mus-

cle that was removed from the animal and maintained in a saline solu-

tion that allowed it to work normally, in a classic experiment by Gordon

et al. (1966). One end of the muscle was connected to an apparatus

that held its length constant, at a value that could be varied over a

range that extended beyond the maximum length in the intact animal.

The other end was attached to a force transducer, which measured the

tension that the muscle developed when it was stimulated by a contin-

uous series of electrical impulses, but not allowed to shorten. The scale

above the graph is the length of a sarcomere in micrometres (mm),

observed in the living muscle with a microscope. This is correlated in

the lower part of the diagram with the relative positions of the actin

and myosin filaments, as determined from electron micrographs.

When the sarcomere length is about 3.7 mm (right), the tips of the actin

filaments have been pulled right to the tips of the myosin filaments, so

that no cross-bridges are connected, and there is no tension apart from

that due to stretching of the cell membrane. As the muscle is allowed

to shorten, the actin filaments slide in and make contact with more

cross-bridges. The force builds up until all the cross-bridges are

connected at a sarcomere length of about 2.25 mm (point A). The ten-

sion remains constant as the muscle shortens to point B (2.00 mm),

where the ends of the actin filaments coming in from opposite direc-

tions meet. The muscle continues to shorten with a small decrease of

force, as the ends of opposing actin filaments overlap, until the ends

of the myosin filaments arrive at the Z-line membranes at either end

(point C, 1.67 mm). The isolated muscle will shorten even further,

crumpling the ends of the myosin filaments until the tension finally
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FIGURE 7.2 Graph of the isometric tension developed by an isolated frog semitendinosus
muscle at different lengths, as measured by observing the length of a sarcomere through a
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560 kN m�2 for the average stress between points A and C. This length range, which cor
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work that would be done if the muscle were allowed to shorten infinitely slowly from point
A to point C (146 kJ m�3), and dividing this by the density of muscle (1060 kg m�3) gives
the mass specific work (137 J kg�1). When the muscle is shortening during locomotion, the
stress is lower and so therefore is the specific work. According to Hill’s equation (Box 7.1),
if the muscle is allowed to shorten at a finite strain rate such that the efficiency of converting
ATP energy into work is maximised, the stress falls to 0.56 smax and the specific work (grey
rectangle) is 76.7 J kg�1. At a higher strain rate that maximises the power output, the stress
is 0.30 smax and the specific work (hatched rectangle) is 41.1 J kg�1.
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falls to zero (left), but the normal range of length permitted by the

skeleton in the intact animal is from point A to point C.

7.2.3 REPETITIVE CONTRACTION AND THE WORK LOOP

The raw experimental data for Figure 7.2 were force on the Y-axis and

length on the X-axis, rather than stress and strain as shown. In that

form, the diagram looks the same, but the dimensions are different. If

the muscle shortens from length A to length C, exerting a constant
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amount of tension as it does so, then the amount of work done is the

force times the distance shortened. If the muscle now relaxes, and

the apparatus stretches it back to length A, then a lesser amount of

work is done by the apparatus on the muscle, equal to the same dis-

tance times a lower tension. The difference between the two amounts

of work is the cycle work, meaning the net work done in one contrac-

tion. Any area on the diagram has the dimensions of distance times

force (i.e. work), and the cycle work is the area of the loop that is drawn

when the muscle first shortens at a constant tension, and is then

lengthened at a lower tension. A muscle that is producing positive work

in locomotion goes anti-clockwise around a work loop at each contrac-

tion, shortening at a higher tension than that at which it is lengthened.

Its average mechanical power output over a number of cycles is the

cycle work (area of the work loop) times the contraction frequency.

If we plot stress (force/area) against strain (distance shortened/

extended length) as shown in Figure 7.2, then the dimensions of the

work loop are

Force

Area
� Distance

Length
¼ Work

Volume

The isometric stress times the maximum strain is the maximum pos-

sible volume-specific work, meaning the amount of work that can be

done by unit volume of muscle in one contraction. When the term ‘‘spe-

cific work’’ is used without qualification, it usually refers to the mass-

specific work, found by dividing the volume-specific work by the density

of muscle. This should be clear from the units, joules per cubic metre for

volume-specific work and joules per kilogram for mass-specific work.

Of course, the work loop does not have to be rectangular. The con-

cept was introduced by Boettiger (1957) to describe the dynamics of

the asynchronous flight muscles of dipteran flies, which he did by con-

necting a force transducer to one end of an isolated muscle and a

length transducer to the other end. Then, with the length displayed

on the X-axis of his oscilloscope and force on the Y-axis, the work loop

was drawn directly on the screen. The work loops of these asynchro-

nous muscles, which oscillate while being continuously stimulated,

were oval in shape, and quite narrow, as the force while the muscle

was shortening was not much more than when it was lengthening.

The specific work of muscles of this type is much lower than that of

vertebrate muscles, but despite that they can still produce high values

of specific power, because they operate at higher frequencies. There is a

substantial literature on work loops allegedly measured in the flight
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muscles of living birds, but at these larger sizes it is difficult or impos-

sible to disentangle the properties of the muscle from the dynamic

characteristics of the measuring apparatus. The discussion below refers

to a rectangular work loop with zero stress during lengthening. Obvi-

ously, this is a simplified scenario, but when combined with the

dynamic principles discovered by A.V. Hill in the 1930s (Box 7.1), it

provides a readily intelligible basis for outlining the ‘‘engine’’ character-

istics of a flying vertebrate’s flight muscles, in a way that replaces the

discussion of engines in aeronautical textbooks.

7.2.4 UNIFORMITY OF THE SLIDING-FILAMENT MECHANISM

Gordon et al. (1966) used frog muscle for the experiments on which

Figure 7.2 is based, so one might wonder whether the results are repre-

sentative of other vertebrate muscles, such as the flight muscles of

birds and bats, or the swimming muscles of whales. It seems that they

are. According to H.E. Huxley (1985), who surveyed this, the thickness

and length of both the actin and myosin filaments are the same in

the locomotor muscles of all vertebrates, and so is the scale of sarco-

mere lengths along the top of Figure 7.2. The cross-sectional geometry

and the density of the filaments are also constant in different verte-

brates, as is the force that each filament can exert. The most probable

reason is that, given the basic hexagonal geometry, which is the same

in all vertebrates but not in all other groups of animals, there is very

little scope for reshaping the filaments in a way that would enhance

their performance. It might be possible to make each myosin filament

exert more force, by lengthening it and adding more cross-bridges at

each end, but that would require the middle section to be stronger,

and therefore thicker, and then the surrounding hexagon of actin fila-

ments would no longer fit. The conclusion is that such quantities as

isometric stress and active strain applied to the myofibrils (not to the

whole muscle) can be regarded as constant in all flying vertebrates.

7.3 MUSCLE PERFORMANCE IN LOCOMOTION

7.3.1 ISOMETRIC STRESS AND ACTIVE STRAIN

AS PERFORMANCE CONSTANTS

An isometric contraction is one in which the muscle is maximally

stimulated by a stream of electrical impulses, but not allowed to

shorten, so that its length remains constant. The isometric stress is

the force exerted by each unit of cross-sectional area, and this is one

of two quantities that determine the amount of work that a muscle
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can do in one contraction. The isometric stress may be considered

constant in vertebrates, reflecting the force exerted by each myosin fil-

ament, since these are packed at a constant density of about 5.7 � 1014

filaments per square metre (White and Thorson, 1975). However, it

would be something of a challenge to measure this force at the level

of the individual myosin filament, and measuring the stress over a

whole muscle tends to underestimate the stress in the myofibrils. This

is because the measured cross-sectional area includes components

that do not contribute to the force, and also because it is difficult to

be sure that an isolated muscle, set up as a physiological preparation,

can exert as much force as it would under normal conditions in the

intact animal. Estimates of isometric stress in the literature (Alexander

and Bennet-Clark, 1977; Alexander, 1985) mostly range from 300 to

450 kNm 2 for vertebrate muscles, and generally refer either to whole

muscles or isolated muscle fibres. However, indirect estimates based

on the known flight performance of very large birds (swans) indicate

that the myofibrils must be capable of exerting an isometric stress of

at least 560 kNm 2 (Section 7.3.7). This figure, which is used as the

default in Flight, is above the experimental range for vertebrates, but

well below figures of 800 kNm 2 reported for crayfish skeletal muscles,

and 1400 kNm 2 for bivalve shell closer muscles.

The second constant that determinesmuscle performance is the active

strain, which is the distance through which themuscle shortens, divided

by the initial (extended) length. The measurements of Gordon et al.

(1966), on which Figure 7.2 is based, supply a good estimate of the upper

limit of the active strain. We can take the length of a sarcomere at point A

in Figure 7.2 (2.25 mm) to represent the extended length, as the skeleton

will not normally allow the muscle to be extended beyond the greatest

length where all cross-bridges are still connected. If the muscle shortens

frompoint A to point C, the length of each sarcomere decreases by 0.58 to

1.67 mm. The maximum strain is therefore 0.58/2.25 ¼ 0.26, when the

muscle is working between points A and C, and that goes for sparrow

andwhalemuscles alike.Multiplying 560 kNm 2 by 0.26 gives 146 kJm 3

for themaximumvolume-specificwork. Ifwe divide this by the density of

muscle (1060 kgm 3), we get 137 Jkg 1 for the maximum mass-specific

work. This is represented by the area under the curve between points A

and C in Figure 7.2.

The Y-scale in Figure 7.2 is ‘‘relative stress", meaning the ratio of the

actual stress to the isometric stress. Of course, if the relative stress is 1,

the muscle cannot shorten (by definition), and the rate at which it does

work (the power) is zero. If the relative stress is zero, the muscle shortens

freely along the X-axis in Figure 7.2, but produces no power in this case
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either, because no work is done. To produce positive power, the relative

stress has to be between zero and 1, and it follows from Hill’s equation

(Box 7.1) that themaximum instantaneous power is produced at a relative

stress of 0.30,while adenosine triphosphate (ATP) energy is converted into

work with maximum efficiency at a higher relative stress of 0.56. In these

two special cases, the specific work is proportional to the area of the box

in Figure 7.2 between points A and C and between theX-axis and the hori-

zontal line formaximumpower ormaximumefficiency. The specificwork

formaximumpower (hatchedareaat thebottom) is41.1 Jkg 1, and that for

maximum efficiency (grey area) is 76.7 Jkg 1. Maximumpower is attained

by lowering the stress so that lesswork isdone,butdoing thework faster (or

more often in the case of repetitive contraction).
BOX 7.1 The force–velocity relationship.

The study of muscle mechanics was put on a quantitative basis in a famous
paper by A.V. Hill (1938), in which he analysed the activity of isolated frog
muscles, at a time long before the molecular basis of muscular contraction
was known. The method was to remove the muscle from the animal, and
install it in an apparatus that applied a measured, constant tension force
for the muscle to pull against, and measured the speed at which it short-
ened when stimulated.

Variable definitions for this box
a Stress constant
b Strain rate constant
l Active strain
smax Isometric stress
s Active stress
c Strain rate
cmax Maximum strain rate

The force–velocity relationship
The original form of Hill’s equation related the speed of shortening to the ten-
sion in an isotonic contraction, that is, one in which the tension against
which the muscle pulled was held constant and measured by the apparatus.
As the tension was increased, so the speed of shortening decreased, until at
some value of the tension, the muscle was unable to shorten, and the speed
was zero. This tension is the isometric tension, meaning that the muscle stays
at the same length. In order to make the same equation apply to muscles of
any size and shape, Hill (1950) later re-expressed it to relate strain rate (rather
than speed) to stress (rather than force). The strain rate (c) is the speed
divided by the extended length, and the stress (s) is the tension divided by
the cross-sectional area of the muscle (which is itself directly related to the
force that each myosin filament exerts). In this form, Hill’s equation is:

c ¼ bðsmax sÞ=ðsþ aÞ ð1Þ



BOX 7.1 Continued.

0.4

S
tr

ai
n 

ra
te

In
st

an
ta

ne
ou

s 
po

w
er

E
ffi

ci
en

cy

0

ψ
max

(fast)

ψ
max

(slow)

Pmax
(fast)

Pmax
(slow)

0.280 ψmax

0.116 ψmax
M

ax
 p

ow
er

0.30

Fast

Slow

Slow

Fast

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0

0.1

0.2

0.3

Relative stress

M
ax

 e
ffi

ci
en

cy

Li
m

iti
ng

 s
tr

es
s

A

B

C

0.56 0.74

FIGURE 7.3 Muscle properties plotted against ‘‘relative stress’’, defined as the tensile
stress exerted by the muscle while shortening, divided by the isometric stress. (A) Strain
rate is the speed of shortening divided by the extended length. The maximum strain rate
(cmax), obtained when the muscle shortens freely against zero stress, is a variable prop
erty of the muscle, which distinguishes ‘‘fast’’ from ‘‘slow’’ muscles. It also determines
the rate of fuel energy consumptionwhen themuscle is exerting steady tension but doing
no external work (Box 7.2). (B) The instantaneous power output while the muscle is
shortening shows a maximum when the relative stress is 0.30, and is higher for a fast
muscle than for a slow one. (C) The efficiency of converting ATP energy into work peaks
at nearly 0.39 at a relative stress of 0.56, whether the muscle is fast or slow. 0.74 is a
limiting value of the relative stress, above which declining efficiency offsets any gain
of power due to increasing the stress. After Pennycuick (1992).
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BOX 7.1 Continued.

where smax is the isometric stress, a is a constant with the dimensions of
stress, and b is another constant with the dimensions of strain rate. This curve
is a hyperbola, and it is shown in Figure 7.3A. If the stress is zero, then themus-
cle shortens freely at its maximum strain rate, which is:

cmax ¼ bsmax=a ð2Þ

Multiplying cmax by the extended length gives the speed at which the
muscle shortens with zero tension. Hill called this the muscle’s ‘‘intrinsic
speed’’, indicating that its value is a property that characterises the muscle
as slow or fast. cmax differs from the intrinsic speed in having the dimen-
sions of inverse time (T�1), rather than those of speed (LT�1). Its advantage
is that it does not depend on the length of the muscle, whereas the intrinsic
speed does. At the molecular level, the value of cmax comes down to the rate
constants that determine the frequency with which myosin cross-bridges
detach and reattach from binding sites on adjacent actin filaments. These
are not fixed, but are slowly adjustable (during growth, for example), so as
to match the muscle to the characteristics of its load.

Matching the muscles to the load
An animal has only a limited amount of control over the strain rate at which a
muscle shortens during locomotion, as this is determined mainly by the
mechanical characteristics of the load to which it is attached. It depends
strongly on the size of the animal (higher in smaller animals). ‘‘Matching’’
the muscle to its load consists in adjusting the maximum strain rate (cmax).
For example, the flight muscles of a bird that requires a wingbeat frequency
of 5 Hz (like a cormorant) must be able to complete one cycle of contraction
and relaxation in one wingbeat period, lasting 0.2 s. In maximal exertion,
the muscle has to shorten through a strain of about 0.25 in about half the
wingbeat period (0.1 s), which amounts to a strain rate of 0.25/0.1 ¼ 2.5 s�1.
For the muscle to deliver maximum power, the strain rate at which the mus-
cles shorten needs to be about 28% of cmax (Figure 7.4), in other words, cmax

needs to be set to 2.5/0.28 ¼ 8.9 s�1. The bird has only a limited capacity to
alter its wingbeat frequency to suit the characteristics of its muscles, as the
wings cannot be driven far from the natural wingbeat frequency, which is
set by the physics of the beating wings (Box 7.3). The matching adjustment
consists in setting the rate constants of the sliding filaments, to give the
required value for the maximum strain rate. It is not known whether this
adjustment is fully determined genetically, or whether (as seems likely) the
setting can be modified on a short time scale, by exercise training or other-
wise. During a long migratory flight, the reduction of body mass caused
by consumption of fuel is expected to lead in turn to a reduction of wingbeat
frequency, and this would require a corresponding in-flight adjustment of
the maximum strain rate of the flight muscles, if maximum efficiency is to
be maintained.
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7.3.2 THE FORCE–VELOCITY RELATIONSHIP

To see where these numbers come from, we have to consider the

dynamics of muscular contraction, a subject that was explored in a

famous series of papers by A.V. Hill and colleagues in the 1930s,

before the invention of the electron microscope led to the discovery

of the sliding-filament mechanism. If the muscle is allowed to shorten

instead of being held at a constant length, the stress that it develops

falls below the isometric stress, as shown in Figure 7.3A. The two

curves in the figure were calculated from Hill’s equation, which relates

the speed of shortening to the tension in an ‘‘isotonic’’ contraction,

that is, one in which the apparatus holds the force constant

while the muscle shortens. A variant of Hill’s equation is given in

Box 7.1, which expresses the same relationship in terms of the strain

rate (rather than speed) at which the muscle shortens and the stress

(rather than force) that it exerts. The strain rate is the speed,

divided by the initial length of the muscle. It can be thought of as

speed expressed in muscle lengths per second, but it is not necessary

to measure strain rate in units of m s 1 per metre, as some physiolo-

gists have been known to do. The metres cancel, and the units are

simply s 1 or ‘‘per second’’, corresponding to the dimensions of

inverse time (T 1).

To avoid being too long-winded, I shall refer to stress and strain rate

by the Greek letters commonly used as variable names, that is, s (sigma)

for stress and c (psi) for strain rate. The X-axis of the three graphs of

Figure 7.3 is ‘‘relative stress’’ (srel) which means the actual stress (s),
divided by the isometric stress (smax). smax can be considered constant

for all vertebrate skeletal muscles, as its value is set by the properties of

the myosin filaments (above). The stress may exceed smax when an

active muscle is forcibly lengthened, but this is outside the scope

of this account. With that restriction, srel is a dimensionless measure

of stress, whose value goes from 0 to 1. At the right-hand side of

Figure 7.3A, srel ¼ 1, and the strain rate is zero because the muscle can-

not shorten (by definition). At the left-hand end (srel ¼ 0), the muscle

shortens freely, at some maximum strain rate (cmax).

cmax is not the same for different muscles. On the contrary, cmax is a

very important characteristic that distinguishes one muscle from

another. Two curves are shown in Figure 7.3A for a ‘‘fast’’ and a ‘‘slow’’

muscle, which differ in having different values of cmax. The value of

cmax is adjustable in the individual muscle over a wide range, and this

adjustment is essential to match the muscle’s properties to those of the

load against which it operates (below).
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7.3.3 POWER AND EFFICIENCY

The rate at which a muscle does work, as it simultaneously exerts ten-

sion and shortens, is the instantaneous power output, while shortening

is in progress. Multiplying the stress by the strain rate during

shortening gives the instantaneous volume-specific power, and this is

plotted as a function of the relative stress in Figure 7.3B. It is zero when

srel ¼ 0, because the muscle is shortening against zero force, and also

at srel ¼ 1, because then the strain rate is zero. The relative stress for

maximum power can be found from Hill’s equation, and marks the

peak of the curve in Figure 7.3B at srel ¼ 0.30. The work done over a

given amount of strain is the same for a fast muscle (high cmax) as

for a slow one, but the slow muscle takes longer to do it, and so its

instantaneous power output at any given value of s is less.

In the same paper in which he introduced the force–velocity relation-

ship now known as Hill’s equation, Hill (1938) also studied the time

course of the tiny amounts of heat produced by the muscle. An active

muscle produces heat whether it is doing work or not, showing that

ATP energy, stored inside the isolated fibre, is being consumed. If the rel-

ative stress is above zero but less than 1, the muscle produces both heat

and work. The ‘‘efficiency’’ with which the muscle converts fuel energy

into work is the ratio of the amount of work produced to the sum of

the work and the heat (Box 7.2). This is zero at srel ¼ 0, and also at srel
¼ 1, and Hill’s results showed that it passes through a rather broad peak

in between. Figure 7.3C is calculated from a later quantitative sliding-

filament theory by A.F. Huxley (1957), which successfully reproduced

Hill’s results, and also other results that were discovered later, a tour de

force which has been described in a complete but highly readable form

by McMahon (1984). The efficiency in Huxley’s theory refers to the con-

sumption of ATP energy inside the muscle fibre, not to the consumption

of fat or carbohydrate fuel. According to this theory, the efficiency peaks

at 0.39 when the relative stress is 0.56. Although a fast muscle produces

work faster than a slow one, it also produces heat faster, and the effi-

ciency curve of Figure 7.3C is the same for either fast or slow muscles.

7.3.4 MUSCLE POWER AND WINGBEAT FREQUENCY

Because of the intermittent action of muscle, doing work only while it is

shortening, the instantaneous power during shortening is not the appro-

priate variable to match the power available from the muscles to that

required by the flapping wings. For that, we need to estimate the average

power available from the muscle, which comes down to estimating the

work that it can do in one contraction, and the frequency with which
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it can contract. Muscles of the same type, whether large or small,

develop the same stress and strain in the myofibrils, and therefore the

same specific work. Mass-specific power is the average mechanical

power output per unit mass of muscle, and is equal to the specific work

times the contraction frequency. Since the flight muscles drive the wings

directly, their contraction frequency is the same as the wingbeat fre-

quency. The animal has only a limited amount of control over the wing-

beat frequency, as it cannot deviate too far from a natural frequency

which is determined by the morphology of the wings, the strength of

gravity, and the air density (Box 7.3). Large birds flap their wings at lower

frequencies than small ones, and it follows that they have less specific

power available from their flight muscles, even though the specific work

may be the same. Flight calculates both the specific work and the spe-

cific power required at a given speed, and monitors changes in both dur-

ing long migratory flights (Chapter 8).
BOX 7.2 Efficiency of muscle.

In the same paper in which he studied the force-velocity relationship, Hill
(1938) also measured the amounts of heat produced when muscles con-
tract, and its time course. Noting that all of the fuel energy consumed when
a muscle contracts is converted either into work or into heat, Hill defined
the efficiency in terms of the work and heat generated, as:

Efficiency ¼ Work=ðWork þHeatÞ ð1Þ
According to Gnaiger (1989), all of the input energy is not necessarily con-

verted intowork and heat, if entropy changes are also taken into account. How-
ever, Hill’s definition of efficiency holds for the conversion of ATP energy into
work in themyofibrils (although hewas unaware of their existence at the time),
and it is also a good approximation for the aerobic (but not anaerobic) conver-
sion of fuel energy into ATPenergy. Hill’s results were later accounted for quan-
titatively by Huxley (1957), in terms of the molecular dynamics of the sliding
filaments, and this theory was reviewed and assessed in the light of a large
amount of later evidence by McMahon (1984). McMahon’s Equation (4.32) is a
molecular version of Equation (1) in Box 7.1, relating stress to strain rate, and
his Equation (4.37) relates the rate of consumption of ATPenergy by the sliding
filaments to strain rate. These equations are somewhat complicated, in effect
relating the external stress produced by themuscle to the strain rate, the sarco-
mere length, the density and spacing of crossbridges, themaximum deflection
of a crossbridge, the amount of ATP energy consumed by a crossbridge in one
cycle of attachment and detachment, themaximumwork done (three quarters
of the ATP energy), and three rate constants (adjustable from one muscle to
another) that determine the rates of attachment and detachment of cross-
bridges. These equations were later combined and simplified to give the effi-
ciency (Pennycuick, 1991), but it should be noted that this published version
containserrors in theequations (rectifiedbelow), owing toaneditorial accident.



BOX 7.2 Continued.

Variable definitions for this box
pATP Volume-specific rate of consumption of ATP energy
s Active stress
smax Isometric stress
srel Relative stress
c Strain rate
cmax Maximum strain rate
crel Relative strain rate (c/cmax)
� Efficiency

Efficiency of the sliding filaments
McMahon’s (1984) Equations (4.32) and (4.37) can be combined to give the
efficiency (�) in terms of a single variable, the ‘‘relative strain rate’’ (crel).
This is the actual strain rate (c) divided by the maximum strain rate (cmax),
which is itself the adjustable property that distinguishes a fast muscle from
a slow one (Box 7.1). The efficiency refers to the conversion of ATP energy
(not fuel energy) into work, and is defined as the ratio of the volume-
specific mechanical power during shortening (the stress times the strain
rate) to the volume-specific ‘‘ATP power’’ (pATP), which is the rate of con-
suming ATP energy per unit volume of muscle:

� ¼ sc=pATP

¼ ð48=13Þcrel½ð1 4crelÞÞð1 expð 1=4crelÞÞ
ð1þ 0:13crelÞ�=½ð3=13Þ þ 4crelð1 expð 1=4crelÞÞ�

ð2Þ

The efficiency peaks (Figure 7.4) just below 0.4 at a low value of crel (about
0.12). To look at it another way, if the muscle is to convert ATP energy into
work with maximal efficiency, then cmax must be adjusted to about 8 times
the strain rate at which the muscle normally shortens during locomotion.
The strain rate in flapping flight is determined by the wingbeat frequency
(Box 7.3). The flight muscles have to be matched to their load, by adjusting
cmax to suit the strain rate imposed by the wings and the air (Box 7.1).
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FIGURE 7.4 If efficiency is plotted against ‘‘relative strain rate’’ (ratio of strain rate
to cmax for the particular muscle), the peak efficiency is the same as Figure 7.3C,
at a relative strain rate of about 0.12. After Pennycuick (1992).
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Since c in Equation (2) is related by Hill’s equation (Box 7.1) to the stress
(s), the efficiency in Equation (2) can also be expressed as a function of the
dimensionless relative stress (srel), which is the ratio of the actual stress to
the isometric stress (smax). This curve (Figure 7.3C) is more symmetrical
than the curve of efficiency versus relative strain rate, with an ill-defined
maximum at srel ¼ 0.56. It shows that a muscle can operate without much
loss of efficiency at any stress between about 20% and 80% of smax, but that
the efficiency falls steeply to zero at either end of the curve, where the stress
is either so high that the muscle can hardly shorten or so low that it has
insufficient resistance to shorten against.

Efficiency of mitochondria
The conversion efficiency of mitochondria was included in classical studies
of human exercise physiology (Wilkie, 1968; Margaria, 1976), with an
approximate value of 60% for the conversion of the energy liberated by oxi-
dising a substrate (fuel energy) to ATP energy. Combining this with a peak
efficiency near 40% for converting ATP energy to work (above) gives an esti-
mate of 24% for the overall efficiency of converting fuel energy to work,
under optimal conditions. In bird migration, where conversion efficiency
is most important, the fuel substrate is nearly all fat, with a small percentage
(probably 5%) of the energy coming from protein. It is not known whether
the different substrates used by human athletes would lead to a large differ-
ence in the conversion efficiency of the mitochondria (one way or the
other), but there is no reason at present to think so.

Overall conversion efficiency
Flight calculates the mechanical work that the flight muscles are required to
produce, and then asks what mass of fat is required to account for that
amount of work. The energy density of fat from bomb calorimetry is used to
find the fuel energy available from a givenmass of fat, and the conversion effi-
ciency is the fraction of this energy that is assumed to appear as work. This is
difficult to measure, but two experimental results have been published
(Tucker, 1972; Bernstein et al, 1973), using birds flying in a tilting wind tunnel,
and wearing oxygen masks. The efficiency was determined by an ‘‘incremen-
tal’’method, tilting the tunnel by a small amount, and comparing the change
in the rate of oxygen consumption with the change in mechanical power due
to the gradient. Only the increments of mechanical and chemical powers had
to bemeasured, not the absolute value of either. Therewas a good deal of scat-
ter, but the mean values of both experiments were near to 0.23, and this is the
default value used in Flight.

There have been claims that birds are spectacularly inefficient, based on
measurements of chemical power of birds flying horizontally in wind tun-
nels, compared with calculated (not measured) mechanical power. This is
wholly invalid. A low estimate of efficiency from this method actually means
an unexpectedly high measurement of chemical power, which can be due to
all kinds of reasons, not least poor training, with birds not flying steadily
during the experiment.
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Maintenance of tension
As noted at the beginning of this chapter, animals use muscles for two dis-
tinct functions, converting fuel energy into work and maintaining steady ten-
sion in an element of variable length. A muscle that is maintaining a steady
force does no work, but consumes fuel energy because the crossbridges con-
tinually attach and detach whenever the muscle is active, whether or not it is
allowed to shorten. The efficiency, as defined above in terms of producing
work, is zero, but this is not a fair reflection of the muscle’s success in
performing its function, which is to maintain tension in this case, not to do
work. The ‘‘cost’’ of maintaining tension can be represented as the ratio of
the chemical power expended to the steady force maintained. This ratio has
the dimensions of power/force, the same as speed (LT�1). It is not difficult
to guess that the cost of maintaining tension is connected in some way with
the speed at which the muscle could shorten, if it were allowed to, and indeed
it has long been known that slow muscles are more economical for maintain-
ing tension than fast ones. This characteristic is measured by the maximum
strain rate (cmax), which has dimensions of inverse time (T�1), as does the
ratio of volume-specific power to stress. The ratio of the volume-specific
ATP power (pATP) to the isometric stress (smax), when the strain rate is set
to zero, can be determined from McMahon’s equations (Pennycuick, 1991)
and turns out to be:

pATP=smax ¼ cmax=16 ð3Þ
There is no need to make measurements of force and metabolic rate to

determine the metabolic cost of maintaining tension. All you have to do is
measure cmax, the maximum strain rate. This is a measurement that a
determined observer can make on his own biceps muscle. Divide it by 16,
and multiply by the volume of the muscle to get the absolute ATP power
(because pATP is volume-specific). To get the metabolic power, you have to
allow for the efficiency of the mitochondria (try 60%).

The flexor muscles of a concert pianist’s fingers require a high cmax to
perform their function, and this makes them very inefficient at maintaining
steady force, in the event that the pianist is required to hang from a window
ledge by his finger tips. Conversely, orangutans require slow finger flexor
muscles as they hang by their fingers from branches for hours at a time,
and this makes them incapable of rapid and intricate finger movements.
The pectoralis muscles of gliding birds have both of these conflicting
requirements at the same time, as they have to hold the wing steadily in
the horizontal position when the bird is gliding, but shorten at a strain rate
that is set by the flapping frequency in powered flight. Birds like vultures
and albatrosses, that spend a lot of time gliding, but also have to be able
to flap their wings when necessary, have a pectoralis muscle that is divided
into two parts, a dark red superficial part and a deeper part which is lighter
in colour. It is assumed that the darker part is a fast muscle used for flap-
ping the wing, and the lighter part is a slow, tonic muscle used to hold the
wing level while gliding. If both parts can operate aerobically, the deeper
colour would indicate a higher specific chemical power in the fast part.
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Equation (3) indicates that a muscle that cannot shorten at all (cmax ¼ 0)
would not require any power to maintain a steady tension, and indeed a
passive wire or tendon will do this without consuming any energy, if the
length does not need to be adjustable. Albatrosses, apparently alone among
birds, have a tendon sheet in parallel with the pectoralis muscle, which
restrains the wing from rising above the horizontal position when the
humerus is pulled fully forwards, but unlocks to allow the wing to flap,
when the humerus is pulled back by a small amount. In other soaring birds,
gliding flight is not as ‘‘effortless’’ is it may appear. The bird has to support
its weight on its elbows in a manner somewhat similar to a man between
two filing cabinets.
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7.3.5 MATCHING THE MUSCLE TO THE LOAD

If a bird beats its wings through a fixed angle, but varies the wingbeat

frequency, then the strain rate during the downstroke is directly pro-

portional to the wingbeat frequency. The Huxley sliding-filament the-

ory can be used to produce a curve of efficiency versus strain rate

(Figure 7.4). The efficiency is zero when the strain rate is zero (isomet-

ric contraction), and also when the muscle shortens at its maximum

strain rate (because the stress is zero). Unlike the curve of efficiency

versus relative stress, this curve is strongly skewed. The efficiency

peaks at a low strain rate, about 0.12 cmax, while maximum power calls

for a higher strain rate, about 0.28 cmax, where the efficiency is still

high, about 93% of the maximum. Unlike the isometric stress, which

can be considered constant for all muscles of the same type, the maxi-

mum strain rate (cmax) varies from one muscle to another (above). The

actual strain rate in flight is constrained by the size of the animal and

its wing morphology, and the rate constants have to be set (by adjust-

ing the biochemistry of the sliding-filament mechanism) so that the

muscle’s maximum strain rate is matched to the actual strain rate,

imposed upon it by the load. Hummingbird flight muscles would effec-

tively be in permanent isometric contraction if installed in a swan,

because their maximum strain rate is too high. Conversely, swan mus-

cles in a hummingbird would not be able to shorten fast enough to

keep up with the wings, and would not generate any stress.

A particular bird requires a lower wingbeat frequency for maximum

efficiency in cruising flight than for maximum power in takeoff and

climb. Pilots who are familiar with variable-pitch propellers will see a

direct analogy. For take-off, the pilot sets the propeller blades in fine

pitch, so that they offer a low resistance to the air, and allow the engine
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to run at its maximum revolutions. For economical cruising, the blades

are set to a coarser pitch, which forces the engine to slow down and

increase its torque. Likewise a bird sets its wings at takeoff to allow

the muscles to shorten with a low stress and high strain rate, maximis-

ing the wingbeat frequency and the power, but when cruising it sets up

higher stress and lower frequency for maximum efficiency.

There is not enough information to allow the Flight programme to

simulate changes of wingbeat frequency, as the wingbeat amplitude

(the angle through which the wings beat) also affects the stress, strain

and power, and is under the bird’s control to some extent. Flight calcu-

lates a single value for the wingbeat frequency (Box 7.3), which seems
BOX 7.3 Wingbeat frequency.

A bird’s wingbeat frequency in flapping flight (wingbeats per second) deter-
mines the amount of power available from each gram of flight muscle, and
also has aerodynamical implications which are mentioned in Chapter 4.
To some degree, the wingbeat frequency is under the bird’s control, but obvi-
ously small birds beat their wings at higher frequencies than large ones with
wings of similar shape. Among birds of similar mass, those with small wings
(ducks) beat them at higher frequencies than those with larger wings (gulls).
Onemay surmise that there is a ‘‘natural’’ frequency, at which a particular bird
can beat its wingsmost easily, and that this is determined by the physics of the
beating wings. Actually calculating such a natural frequency, if it exists, is a
much harder proposition than calculating power. However, there is another
approach. Instead of attempting to calculate the wingbeat frequency directly,
one can consider its dimensions, and also the dimensions of any variables
believed to be involved in determining its value.

Variable definitions for this box
B Wing span
f Wingbeat frequency
g Acceleration due to gravity
m All-up mass
S Wing area
r Air density

The dimensions of all quantities encountered in mechanics can be
expressed in terms of only three primary quantities, the choice of which is
to some extent arbitrary. The convention in physics is to select mass, length
and time as the three primary quantities (written M, L and T), and to repre-
sent the dimensions of all other quantities in terms of combinations of
those three. For example, velocity has the dimensions of length divided by
time (written LT�1), while acceleration has the dimensions of length divided
by time-squared (LT�2). Any equation says that the expression on the left-
hand side of the ‘‘equals’’ sign is numerically identical to the expression
on the right, and if the equation represents physical quantities, then the
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dimensions must also be the same on both sides. Having noted that the
physical quantity ‘‘frequency’’ has the dimensions of inverse time (T�1),
the problem is to list those physical variables that are likely to determine
the wingbeat frequency and find a way to combine them, so that the result
also has dimensions T�1. I will skip ahead to the solution:

f / m3=8g1=2B�23=24S�1=3r�3=8 ð1Þ

where m is the all-up mass, g is the acceleration due to gravity, B is the wing
span, S is the wing area and r is the air density. The symbol ‘‘/’’ means ‘‘is
proportional to’’; in other words, the frequency is equal to the expression on
the right, multiplied by an unknown constant. The dimensions of the five
variables on the right-hand side are as follows:

m M
g LT�2

B L
S L2

r ML�3

If Proportionality 1 is correct, and the unknown constant is dimensionless,
then the dimensions must be the same on both sides of the proportionality
sign:

T�1 ¼ ðMÞ3=8ðLT�2Þ1=2ðLÞ�23=24ðL2Þ�1=3ðML�3Þ�3=8 ð2Þ

We can separately collect the exponents of mass, length and time on the
right-hand side:

Mass: 3/8 3/8 ¼ 0
Length: 1/2 23/24 2/3 þ 9/8 ¼ (12 23 16 þ 27)/24 ¼ 0
Time: 1

The exponents of mass cancel, and so do those of length. This leaves
inverse time, confirming that Proportionality 1 is dimensionally correct,
and also that any unknown constant is dimensionless.

Unlikely as it may seem at first sight, the expression on the right-hand
side of Proportionality 1 is indeed a frequency. Two data sets consisting of
observed speeds and wingbeat frequencies of a heterogeneous set of wild
bird species, whose masses, wing spans and wing areas were approximately
known for each species (but not for individual birds), were used in the orig-
inal derivation (Pennycuick 1990, 1996) to adjust the exponents to give a
best fit to the field data. It was first noted that g is the only variable whose
dimensions (LT�2) contain time, so that the required dimensions for the
result (T�1) can only be obtained if the exponent of g is 1/2. That left four
other exponents to be determined, for m, B, S and r, and only two condi-
tions, that the dimensions of length and mass must both be zero. However,
it turned out that the scope for adjusting the four remaining exponents was
quite limited because of various constraints, within which a ‘‘best fit’’ solu-
tion was found by examining partial regression coefficients of the observed
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frequency on mass, wing span and wing area. It turned out that the constant
of proportionality is indistinguishable from 1. In other words, for predictive
purposes, Proportionality 1 may be replaced by an equation:

f ¼ m3=8g1=2B�23=24S�1=3r�3=8 ð3Þ
Figure 15.13 in Chapter 15 is from a later data set, which also included

measurements of speed. It showed that Equation (3) predicted the actual
wingbeat frequency quite well, except in passerine species that use ‘‘bound-
ing’’ flight, where the actual frequency was higher than predicted. This
intermittent flight style requires the bird to pull up during the flapping
phase, which results in an increase of gravity, and when this is taken into
account, the observed frequencies match the predictions for these species
also (Chapter 15). The speeds in all cases appeared to be close to the mini-
mum power speed for each species. Thus, the frequency calculated from
Equation (3) is used in Flight as an estimate of the wingbeat frequency of
a bird flying at its minimum power speed.

Allometry of wingbeat frequency
It is an error to conclude from Equation (3) (as some authors have done)
that the wingbeat frequencies of a set of birds of different body mass should
vary with the 3/8 power of the body mass. This is because two other vari-
ables in Equation (3), B and S, themselves vary allometrically with the mass.
From Equation (3):

f / m3=8 �m�ð1=3Þð23=24Þ �m�ð2=3Þð1=3Þ;
¼ mð27�23�16Þ=72 ¼ m�1=6 ð4Þ

Bigger birds have lower wingbeat frequencies, as everybody knows. When
comparing species, and not taking account of systematic trends in wing
span and wing area, we expect that the wingbeat frequency will vary with
the 1/6 power of the mass. However, the situation in an individual bird
is different again. Here, the mass may increase as a result of feeding and
fat deposition, or decrease during a long flight because of the consumption
of fat, but the wing measurements stay the same. In this case, the wingbeat
frequency varies with the square root of the mass: For an individual:

f / m1=2 ð5Þ
Why not m3/8? Because the extra 1/8 in the exponent of mass comes

from the wing’s moment of inertia, an additional variable which was
‘‘hidden’’ in the original formulation because it cannot be measured without
killing the bird (Pennycuick, 1990). When the bird gains or loses mass, the
wing moment of inertia is assumed to remain constant, like the span and
the area. Proportionality 5 is used to adjust the wingbeat frequency of a
long-distance migrant in the ‘‘Migration’’ section of Flight, as the bird con-
sumes fuel and loses mass.

Measuring wingbeat frequency from video
Standard frame rates for analogue video are 25 Hz in Europe and 30 Hz in
America, but in equipment that records interlaced frames, it is sometimes
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possible to separate the two fields that make up each frame, so obtaining
pictures with reduced vertical resolution, at rates of 50 and 60 Hz, respec-
tively. These rates are sufficient for large and medium-sized birds, but mar-
ginal for small passerines. High-speed video cameras exist, but these are
expensive, specialised devices that are mostly not ideal for field use.

An ideal sequence for measuring wingbeat frequency, either in the field
or in the wind tunnel, consists of 20 or so wingbeats of steady flapping,
and the measurement consists of counting the number of frames for a given
number of wingbeats. A video editing system that keeps count of the frames
is essential for this. Counting wingbeats in a consistent way depends on
selecting an identifiable event that can be used to mark the beginning of
each wingbeat cycle. The best marker is the beginning of the downstroke,
at the moment when the wing rotates at the shoulder to develop a positive
angle of attack, and bends upwards as the lift develops and pulls against the
pectoralis muscle. This happens quickly, and the appearance of the wing
alters abruptly, when seen from a variety of different directions. Single-step
the video to determine the frame number at the first such transition (num-
ber zero) then run it in slow motion, counting transitions, and single-step
again to find the frame number of the last one in the sequence.

If the bird is bounding, or flap-gliding with clear-cut transitions between
flapping and gliding, then the wingbeat frequency should be measured
within a period of steady flapping, not averaged over periods when the bird
is flapping and periods when it is not.
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to agree with values observed in cruising flight (Pennycuick, 2001). This

‘‘natural’’ wingbeat frequency is determined by the mass and wing

measurements of the bird, and strength of gravity and the air density.

The properties of the flight muscles have to be matched to it, and

one might suppose that the maximum strain rate (cmax) of the flight

muscles would be set to give maximum efficiency at the cruising wing-

beat frequency. However, if this were so, the bird would have to

increase its wingbeat frequency by a factor of 2.4 when maximum

power is required for takeoff and initial climb. Birds do not appear to

do that, probably because the stresses at the wing root would become

excessive if the frequency were increased so far above the cruising

level. It ismore likely that themaximumstrain rate is normally set so that

the cruising wingbeat frequency is only slightly below that for maximum

power. That would make maximum power readily available when

needed, and still allow the bird to approach the maximum-efficiency

point in cruising flight, by reducing the wingbeat frequency and/or

amplitude, and increasing the stress. In considering climbing perfor-

mance (below), it is assumed that the muscles are already contracting
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near the frequency for maximum power when the bird is in level flight.

When reduced power is required, as in a gentle descent, some birds

(especially gulls and terns) flap steadily at a reduced frequency, while

others flap at the cruising frequency, but do so intermittently, gliding

between periods of flapping.

7.3.6 SCALING OF MUSCLE POWER OUTPUT

AND POWER MARGIN

The notion of ‘‘scaling’’ (Box 7.4) refers to the changes that occur in

different variables if you ‘‘scale’’ an animal up or down, meaning

enlarge or diminish it, keeping the shape unchanged. The most casual

observation of finches, pigeons and herons is enough to reveal the
BOX 7.4 Scaling of power available and required.

Variable definitions for this box
A Area
f Contraction frequency
l Length
m Mass
P Power
Q Cycle work
Vmp Minimum-power speed
v Volume

The notion of ‘‘scaling’’ refers to a set of objects that are ‘‘geometrically
similar’’ to one another. This is straightforward if the objects are simple geo-
metrical shapes like cubes and spheres. For a set of spheres of different size,
we say that the ‘‘surface area varies with the square of the radius’’ meaning
that if you double the radius, the surface area goes up by a factor of 4 (22),
and if you triple the radius, the surface area goes up by a factor of 9 (23), and
so on. In shorthand, this is written:

A / l2 ð1Þ
where A stands for ‘‘any area’’, l stands for ‘‘any length’’, and the symbol ‘‘/’’
means ‘‘is proportional to’’. Proportionality 1 works equally well if A is the
area of one face of a cube and l is the length of a side, in fact it works with
objects of any shape, so long as we compare corresponding areas and
corresponding lengths, in different-sized object of the same shape. Likewise,
volumes (v) vary with the cube of the length:

v / l3 ð2Þ
If the density of all the objects is the same, then the mass (m) varies directly
with the volume, and with the cube of the length:

m / v / l3 ð3Þ



BOX 7.4 Continued.

Scaling relationships in biology are most commonly expressed in terms
of the mass, rather than the length. Inverting the above relationships, one
can say that the length varies with the one-third power of the mass, and
the area with the two-thirds power of the mass:

l / m1=3 and A / m2=3 ð4Þ

A.V. Hill (1950) applied this type of reasoning to hypothetical sets of geo-
metrically similar animals, and also extended it to dynamical quantities,
such as speed, power, rate of heat production and so on. The cycle work
(Q), meaning the amount of work that a muscle can do in one contraction,
is directly proportional to the mass of the muscle. The power that the mus-
cle can produce is the cycle work times the contraction frequency, which is
the same as the flapping frequency in flying animals. If birds were all geo-
metrically similar, then the flapping frequency ( f ) would vary with the
1/6 power of the mass (Box 7.3):

f / m�1=6 ð5Þ

The power that the flight muscles can produce would vary with the
five-sixths power of the mass:

P ¼ Qf / m�m�1=6 ¼ m5=6 ð6Þ

Thus, if you scale up a small duck to a larger duck by doubling all linear
measurements, the mass increases by a factor of 8 (23), but the power avail-
able from the flightmuscles increases by a factor of 85/6¼ 5.7. The larger duck
has less power available, per unit of its body mass. On the other hand, the
power required to fly at Vmp increases by a larger factor than the body mass.
The reader may like to try scaling up the teal in the ‘‘Preset birds’’ in Flight.
With the measurements given, and sea level air density, its minimum
mechanical power is 2.43 W, but if you scale it up to a super-teal, with eight
times the mass (1.88 kg), twice the wing span (1.16 m), and the same aspect
ratio as before (7.40), the minimum power is now 27.6 W, up by a factor of
11.4, which is 87/6. The super-teal requires more power to fly at Vmp, relative
to its body mass, than the original, because Vmp itself has gone up from 11.4
to 16.2 m s�1. On the other hand, it has less power available from its flight
muscles, relative to its body mass, because its wingbeat frequency has gone
down by a factor of 0.71, from 7.92 to 5.62 Hz, i.e. by a factor of 8�1/6.

To some degree, bigger birds can defeat these trends by not being geo-
metrically similar to their smaller relations. The wing spans of birds within
a family usually vary with about the 0.37 power of the mass, rather than the
one-third power as expected, whereas the wing areas vary with about the
0.63 power of the mass instead of the two-thirds power as expected; in other
words, large birds usually have longer and narrower wings than smaller
members of the same group. This reduces the slope of power required,
but does little if anything to increase that of power available.
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FIGURE 7.5 Logarithmic plot of power required to fly at Vmp, and power available from the
flight muscles, versus bodymass in geometrically similar birds. As real birds are not geomet
rically similar, the slope of power requiredmay be slightly less steep than shown, and that of
power available slightly steeper. There seems to be a practical upper limit around 16 kg for
birds that can fly horizontally under present environmental conditions. This is a purely
mechanical argument that does not involve aerobic capacity. After Pennycuick (1969).
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general trend, that a larger bird beats its wings at a lower frequency

than a smaller one. In a series of geometrically similar birds, the power

available from the flight muscles would increase less steeply than the

body mass, because of the decreasing wingbeat frequency

(Figure 7.5), whereas the power required to fly at the minimum power

speed would increase more steeply than the body mass. These differing

trends imply that there is an upper limit to the mass of an animal that

flies by flapping its wings. Above some maximum mass, more power is

required than is available. Still bigger birds may be able to glide, but

cannot fly horizontally. In practice, the maximum all-up mass of birds

that are able to fly horizontally would appear to be around 16 kg,

because still larger birds would have a ‘‘negative power margin’’. This

means that the power available from the flight muscles is less than

the power required to fly at Vmp, but it does not necessarily mean that

such a bird would be unable to fly. One can imagine a huge bird that

could walk up a hill like a hang-glider pilot, and launch itself off the

top, and then carr y on by soaring (Chap ter 10 ). This same limi t app lies

to ornithopters of the type proposed by Leonardo da Vinci, in which

the flapping wings are driven directly by the pilot’s legs, but not to

pedal-powered aircraft like MacCready’s Gossamer Condor and Gossa-

mer Albatross. In these fixed-wing designs, a propeller is driven

through a gear train, so that it can rotate at its own optimum angular

velocity, without constraining the contraction frequency of the pilot’s

muscles.
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Small birds have sufficient power to fly at speeds below and above

Vmp, and still smaller birds have enough to fly at air speeds all the

way down to zero (hovering). Some large kingfisher species seem to

be the largest birds that can do this, and the still smaller humming-

birds are specialised for prolonged, aerobic hovering. In the context

of the evolution of flight, a non-flying animal has the best chance to

develop powered flight if its body mass is in the range 10–100 g, since

flying animals of that size have sufficient power margin to tolerate

wings that do not yet work very well, without requiring wingbeat

frequencies that are only possible for insects.
BOX 7.5 Rate of climb.

If the maximum mechanical power that can be produced by the flight mus-
cles exceeds that required to fly horizontally, then the excess power can be
used to increase the bird’s potential energy, i.e. to climb. The maximum rate
of climb at any speed is given by dividing the excess power available at that
speed by the bird’s all-up weight. The maximum excess power (and hence
rate of climb) is obtained by flying at Vmp, because that is by definition
the speed at which the least power is required to fly horizontally. It seems
than many or most migrants begin a long flight by climbing to a cruising
altitude of a few thousand metres, when fully loaded with fat, before level-
ling off for the cruise phase of flight, and as this climb is likely to take a mat-
ter of hours, the flight muscles must presumably be operating aerobically.
This means that the mitochondria fraction in the flight muscles must be
high enough to sustain the power required in the climb, and considerably
higher than that needed in the cruise phase of level flight. No doubt future
field observers will measure changes in the mitochondria fraction of the
flight muscles of migrants, but until someone does that, the following
account should be regarded as provisional.

Variable definitions for this box
Fmusc Flight muscle fraction
f Wingbeat frequency
g Acceleration due to gravity
kmito Inverse power density of mitochondria
m All-up mass
mmusc Flight muscle mass (including mitochondria)
Pex Excess mechanical power available for climbing
Pmax Maximum power available from the flight muscles
Pmech Mechanical power required for horizontal flight
pm Mass-specific power in the whole muscle including mitochondria
qm Specific work required from the myofibrils for horizontal flight
qmlim Limiting specific work available from the flight muscles
Vz Rate of climb (vertical component of air speed)
z Volume fraction of mitochondria in flight muscles (level flight)
zclimb Volume fraction of mitochondria in flight muscles (aerobic climb)



BOX 7.5 Continued.

l Active strain
rmusc Density of muscle
s Stress
smax Isometric stress

It is argued in Box 7.1 that a muscle that is producing the maximum
power of which it is capable must be matched to the wings (by setting its
maximum strain rate) so that when it is operating at the wingbeat frequency
used in climb, the stress is �30% of the isometric stress (smax). For an active
strain l, the upper limit to the specific work (qmlim) available from the myo-
fibrils is

qmlim ¼ 0:30smaxl=rmusc; ð1Þ
where rmusc is the density of muscle. The maximum power available Pmax is
then

Pmax ¼ qmlimmmuscð1 zÞf ; ð2Þ
where mmusc is the mass of the flight muscles, including mitochondria and f
is the wingbeat frequency. z (Greek zeta) is the volume fraction of mito-
chondria, and as other muscle components are neglected (1 – z) is the vol-
ume fraction of myofibrils. It is implicitly assumed in Flight that
mitochondria and myofibrils have the same density (rmusc), and that the
mass fractions of the two components are the same as their volume frac-
tions. At any given speed, the excess power available for climbing (Pex) is
found by subtracting the power required to fly horizontally (Pmech) from
the maximum power:

Pex ¼ Pmax Pmech; ð3Þ

and the maximum rate of climb Vz at that speed is

Vz ¼ Pex=mg ð4Þ
where m is the all-up mass and g is the acceleration due to gravity.

When it comes to calibrating predicted performance against observa-
tions, it is better to expand Equation (4) so as to express the rate of climb
(Vz) in terms of the difference between the limiting specific work available
[qmlim from Equation (1)] and the specific work required for horizontal flight
(qm), which is

qm ¼ Pmech=ðmmuscð1 zÞf Þ: ð5Þ
qm an d Pmech are calculated by Flight’s Power Curve calculation (Chapter 3)

and tabulated in the Excel output. The excess power for climbing is:

Pex ¼ ðqmlim qmÞmmuscð1 zÞf ; ð6Þ
This has to be divided by the all-up weight (mg) to get the rate of climb,
which means that the flight muscle mass is replaced by the flight muscle
fraction (Fmusc), where

Fmusc ¼ mmusc=m; ð7Þ
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so that the rate of climb is:

Vz ¼ ðqmlim qmÞFmuscð1 zÞf =g : ð8Þ
Equation (8) shows that calculating the rate of climb does not require a
value for the flight muscle mass as such, only for the flight muscle fraction.
The default assumption in Flight’s Migration calculation is that enough
flight muscle mass is consumed in flight to hold the specific work in the
myofibrils constant. Unlike the alternative assumptions offered, this
assumption results in the flight muscle fraction remaining nearly constant
during a long period of level flight, although a large amount of fat is con-
sumed, as is some protein from other organs. This is in general agreement
with field observations of the consumption of flight muscle tissue in flight,
and also of its replacement during the refuelling process (Lindström and
Piersma, 1993). It means that, even though the flight muscle mass may be
very different in different specimens of the same species, the flight muscle
fraction usually is not, and that this measurement may be obtained from
fat or thin birds without any need for large samples or full carcase analysis.

Definition of Flight Muscle Fraction
Readers who encounter unexpectedly high values of the flight muscle frac-
tion in the literature should pay close attention to the Methods section of
the paper, as there are some authors who use the term ‘‘flight muscle frac-
tion’’ to refer to a different ratio, that of the flight muscle mass to the ‘‘lean
mass’’, which means the all-up mass minus the fat mass. This ratio does not
remain even approximately constant as the bird slims down or fattens up,
and it has no significance for calculating the rate of climb or any other
aspect of performance. Performance calculations require the ratio of the
flight muscle mass to the all-up mass, meaning everything that the bird
has to lift, including fat, crop contents, mud on the feet, and any hardware
with which it may be burdened, such as rings and radio transmitters.
Likewise, the fat fraction is the ratio of the fat mass to the all-up mass,
not to the lean mass.

Changes of mitochondria fraction
In Flight’s Migration calculation, the mitochondria fraction (z) in cruising is
found foreach6-minute interval of flightby rearrangingEquation (6) ofBox 7.6:

z ¼ pmkmitormusc; ð9Þ
where pm is the mechanical power per unit mass of the whole muscle
(myofibrils and mitochondria). pm is calculated for level flight, at the start-
ing configuration of mass, fat and flight muscle, and it is assumed that the
bird consumes mitochondria in the course of the flight, as necessary to hold
the power density in the mitochondria constant. If the bird starts its migra-
tion by climbing aerobically to a cruising height of a few thousand metres,
as many or most migrants apparently do, then a higher mitochondria frac-
tion (zclimb) will be needed for the initial climb. This in turn reduces the
power available from the muscles, and needs to be taken into account when
calculating the maximum rate of climb.
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The value of z given by Equation (9) comes from the aerodynamical
power required to fly level at the selected cruising speed, whereas the value
needed to calculate the maximal aerobic rate of climb from Equation (8) has
to come from the power available when the muscles are operating at maxi-
mum power. This depends on the isometric stress (smax), the active strain
(l), the wingbeat frequency ( f ) and the inverse power density of the mito-
chondria (kmito), as in Equation (4) of Box 7.6. At the required stress for
maximum power (0.30 smax), the mitochondria fraction needed is:

zclimb ¼ 0:30kmitosmaxlf =ð1þ 0:30kmitosmaxlf Þ: ð10Þ
The difference between the mitochondria fraction required for aerobic

climb at maximum power [Equation (10)] and that required for level flight
[Equation (9)] depends on the power margin that the bird has in level flight.
For example, the Whooper Swan considered in the main text of this chapter
requires nearly full power to fly level at Vmp, and has almost no powermargin.
It is capable of a marginal rate of climb of 0.039 m s�1, and to maintain that
aerobically, it would have to increase the mitochondria fraction in its flight
muscles to 0.152, from the cruising value of 0.149, which is not a measurable
difference. On the other hand, the Great Knot considered in Chapter 8, a much
smaller bird with about the same flight muscle fraction, should be capable of
climbing at 2.50 m s�1 when fully loaded with fat and ready for departure. To
maintain this rate of climb aerobically, it would require a mitochondria frac-
tion of 0.30, as compared to 0.089 for level flight. This difference should be
readilymeasurable. In the absence of field observations, wemay surmise that
ultra long-distance migrants like knots do boost their mitochondria fraction
before departure, and consume the excess mitochondria after levelling off at
the cruising height.

Rate of climb in Flight
From Version 1.17 of Flight, the Excel output from the Power Curve calcula-
tion tabulates the maximum rate of climb as a function of speed, and the
Summary screen displays the highest possible rate of climb, obtained by fly-
ing at Vmp with maximum power output from the muscles. It also shows the
mitochondria fraction required for level flight at Vmp from Equation (9) and
that for maximum aerobic rate of climb from Equation (10). The maximum
rate of climb must be zero or above for the bird to be capable of sustained
horizontal flight. If it is not, then the most that the bird can achieve by max-
imum exertion is to delay its descent. This can be used to calibrate the
assumed value of the isometric stress, from which qmlim is calculated
[Equation (1)]. The default value of the isometric stress (560 kN m�2) was
obtained in this way from the observation that an exceptionally large
whooper swan (Cygnus cygnus), whose wing span and area were known,
was able to take off and fly normally when his all-up mass was 13.5 kg.
His flight muscle fraction was of course not measured, but was estimated
to be 0.131 from a sample of 5 whoopers that were dissected after fatal col-
lisions with power wires. Flight’s Migration programme does not cover
climb and descent, but simply launches the bird at the chosen cruising
height. More information about how real migrants manage climb and
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descent would be needed before this could be realistically simulated. Obser-
vations of the mitochondria fraction in the flight muscles would provide
some clues.

The wingbeat frequency in a bird that is climbing to cruising altitude at
the beginning of a long flight may be a little more than the value estimated
by Flight for cruising flight, but probably not very much more, as the flight
muscles are likely to be matched to a frequency only slightly below the max-
imum that the wing structure will tolerate. Using the wingbeat frequency
provided by Flight may slightly underestimate climbing performance. For
example, Hedenström and Alerstam (1992) reported that the wingbeat fre-
quencies of knots departing from West Africa at the start of a long migratory
flight averaged about 9% higher than the value given by the same formula
that is used by Flight to estimate the cruising wingbeat frequency, but there
are uncertainties in this estimate.
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7.3.7 MAXIMUM RATE OF CLIMB AND ISOMETRIC STRESS

If a bird has more power available from its flight muscles than is

required to fly horizontally, then it can convert some of the work that

the muscles do into potential energy, that is, it can climb. A bird that

can only just fly must have enough power available to maintain at least

zero rate of climb at its minimum power speed, while a margin of

power available over power required will allow it to maintain or

increase its height over a range of speeds that extends below and above

Vmp. Flight’s Power Curve calculation tabulates the maximum rate of

climb against air speed (introduced in Version 1.17). This calculation

(Box 7.5) requires estimates of (1) the isometric stress, (2) the active

strain, (3) the bird’s muscle fraction (not muscle mass) and (4) the

wingbeat frequency that it uses when climbing.

Three of these four variables can be estimated with confidence as

follows. (1) The experiment of Gordon et al. (1966), on which

Figure 7.2 is based, established 0.26 as a good estimate of the strain

in maximal exertion (above). (2) The flight muscle fraction can be esti-

mated by dissecting dead specimens of a given species, regardless of

whether the birds are light or heavy. The reason that this is possible

is exp lained in Chapte r 8, and indi cated in Box 7.5 . Caution is needed

in taking data from the literature, as some authors have used the term

‘‘flight muscle fraction’’ to mean the ratio of flight muscle mass to lean

mass, which is the wrong ratio for performance calculations. These

require the ratio of flight muscle mass to all-up mass, that is the total

mass of everything that the bird has to lift. (3) The wingbeat frequency

at Vmp is provided by Flight’s Power Curve calculation (Box 7.3). Flight’s
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estimates of rate of climb, being based on the natural frequency, should

be good for migrating birds that are climbing to their cruising altitude,

but may underestimate the ultimate performance that can be sustained

by briefly increasing the wingbeat frequency in moments of emergency.

That leaves the isometric stress, for which published estimates based

on dividing isometric tension by the measured cross-sectional area of a

muscle have given a rather wide range of figures from 300 to 450 kN m 2

(Alexander and Bennet-Clark, 1977; Alexander, 1985). The term ‘‘stress’’

is used in this book and in Flight to refer to the force exerted by the

myofibrils only, not to the force averaged over the cross-section of both

myofibrils and other muscle components that do not contribute to the

force. This is difficult to measure directly, but it can be estimated from

the measurements of a very large bird that is known to be marginally

capable of level flight. Figure 7.6 shows maximum rate of climb calcu-

lated by Flight for a very large whooper swan (Cygnus cygnus), for values

of the isometric stress from 500 to 580 kNm 2. This particular swan is in

Flight’s Preset Birds database, but his mass was set to 13.5 kg for this cal-

culation, as this was the highest mass at which he was known to be able

to fly normally (Table 7.2). The line intersects zero rate of climb at an iso-

metric stress between 540 and 550 kN m 2. Figure 7.7 shows curves of

rate of climb versus air speed for three values of the isometric stress, of

which the highest one (for 560 kN m 2) indicates that this swan would

be able to maintain level flight up to 24.6 m s 1 but no faster. This is

1.17 times his estimated minimum power speed. This is consistent with

the behaviour of wintering whoopers at Caerlaverock, which clearly

require maximal effort to take off and clear obstructions, but are able
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FIGURE 7.6 Maximum rate of climb (when flying at Vmp), calculated by Flight for a very
large Whooper Swan who was known to be able to fly when his all up mass was 13.5 kg
(Table 7.2). Each point represents a different value for the isometric stress, which can
be set in the Power Curve Setup screen. The line intersects zero rate of climb when the
isometric stress is between 540 and 550 kN m�2.



TABLE 7.2 Whooper Swan JAP (Figures 7.6 and 7.7).

Measurements and assumptions
All-up mass 13.5 kg
Wing span 2.56 m
Wing area 0.756 m2

Aspect ratio 8.67
Flight muscle fraction 0.131
Fat fraction 0.200
Active strain 0.26

Calculated performance at sea level (1.23 kg m�3)
Minimum power speed (Vmp) 21.1 m s�1

Wingbeat frequency 3.44 Hz
Specific work in myofibrils at Vmp 40.2 J kg�1

Chemical power at Vmp 1.02 kW
Effective lift:drag ratio at Vmp 11.9
Ratio of chemical power to BMR at Vmp 48.1
Maximum rate of climb at Vmp 0.045 m s�1

Maximum air speed in level flight 24.6 m s�1

Maximum range speed (Vmr) 33.3 m s�1

Maximum rate of climb at Vmr –0.486 m s�1

The letters JAP refer to this swan’s telescope readable leg ring. I am indebted to Jenny Earle
of the Wildfowl and Wetlands Trust for the following biographical information. JAP was a
highly successful swan, who migrated between the breeding grounds in Iceland and the
Wildfowl and Wetlands Trust’s reserve at Caerlaverock, Scotland each year between 1983
and 2001, and brought 36 cygnets to Caerlaverock during that time. He was identifiable by
eye as the largest swan in the flock. He was caught and weighed at Caerlaverock in
most winters. His highest recorded mass was 13.5 kg on 14 January 1993 and his wing
measurements were taken on the same occasion. He was tracked by the Argos satellite
system in 1995 on his spring migration to Iceland (Pennycuick et al., 1996b).
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to keep going over level terrain, once they are airborne and up to speed.

This is the reason why 560 kN m 2 was selected as Flight’s default

isometric stress. Both this value and the default active strain (0.26) can

be adjusted from the Power Curve Setup screen.

7.4 ADAPTATIONS FOR AEROBIC FLIGHT

The characteristics of flight muscles that determine their performance

as engines have been discussed so far with hardly a mention of physi-

ology or the support systems. The physiology of flight, as usually

understood, is about the consumption of fuel and oxygen, and the dis-

posal of heat. For continuous aerobic operation, the support systems

have to be capable of supplying fuel and oxygen to the flight muscles,

and removing waste products and heat, at rates that are set by the

required mechanical power, which itself depends on the bird’s mass

and wing morphology, the density of the air in which it flies and the
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FIGURE 7.7 The same calculation as Figure 7.6, but plotting maximum rate of climb
against air speed, for three different values of the isometric stress. At the middle value
(550 kN m�2), the swan is barely able to maintain level flight at speeds very near Vmp. At
560 kN m�2, the swan can maintain height from below the minimum power speed
(21.1 m s�1) up to 24.6 m s�1, which is 1.17 times the estimated Vmp. The value of
560 kN m�2 is selected as the default for Flight. This figure refers to the stress across the
myofibrils (not the whole cross section of the flight muscles), and it should be valid for any
vertebrate, not just for whooper swans.
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strength of gravity. Physiological limitations may restrict performance

variables such as speed, rate of climb, or the maximum height at

which level flight is possible, to values that are below those that are

mechanically possible under given conditions.

7.4.1 AEROBIC MUSCLES

Muscles themselves can be classified as ‘‘aerobic’’ or ‘‘anaerobic’’, the

main difference being that an aerobic muscle contains mitochondria

in among the contractile filaments (myofibrils), whose function is to

replenish ATP on a continuous basis, so as to maintain a constant level

in the cytoplasm. The mitochondria increase the cross-sectional area

and volume of the cell, so reducing the stress that the muscle as a

whole can exert, and the specific work and power that it can produce.

The fraction of the cell’s volume that has to consist of mitochondria,

and the resulting dilution of the specific power, depend on the contrac-

tion frequency. The ultimate limit of specific power depends only on

the properties of the mitochondria, and not on those of the sliding fila-

ments (Box 7.6 and Figure 7.8). Muscle fibres containing approximately

equal volumes of mitochondria and myofibrils are known in both



BOX 7.6 Aerobic muscles.

Exercise is aerobic if it can be sustained for a prolonged period, without
incurring an oxygen debt. Some birds can apparently sustain level, aerobic
flight continuously, for as long as a week (Chapter 8). Two requirements
have to be met, to sustain continuous flight beyond a few minutes. First,
within each muscle fibre, there have to be sufficient mitochondria to regen-
erate ATP from ADP, at the same rate that the contractile filaments consume
it. Second, support systems external to the muscle have to supply fuel and
oxygen for the mitochondria to consume, and remove the carbon dioxide
and heat that the muscle generates. The support systems are basically the
blood system and the lungs.

The addition of mitochondria to the contents of a muscle cell, alongside
the contractile filaments, results in an increase in the cross-sectional area of
the cell, without any increase in the tension that the muscle exerts. The
mitochondria ‘‘dilute’’ the acto-myosin array, resulting in a decrease of iso-
metric stress, and also of the active stress while the muscle is contracting.
This in turn decreases the specific work and specific power, if these are
measured relative to the volume or mass of the whole muscle, rather than
to that of the contractile filaments alone.

Variable definitions for this box
fop Operating frequency
kmito Inverse power density of mitochondria
pm Mass-specific power output
pv Volume-specific power output
Pmech Mechanical power output
v Volume of muscle
vc Volume of contractile filaments
vt Volume of mitochondria
z Volume fraction of mitochondria
l Active strain
rmusc Density of muscle
s Stress in the contractile filaments

Volume of myofibrils and operating frequency
In an aerobic muscle, a volume (vc) of contractile filaments is required to
produce the mechanical power (Pmech), and in addition a volume (vt) of
mitochondria is needed to keep the contractile filaments supplied with
ATP. Other muscle components are assumed to be small enough in volume
to be neglected in this account. The volume of myofibrils needed for a given
level of power can be found by dividing the power by the volume-specific
power of the myofibrils, which is itself the product of their active stress
(s) and strain (l) while shortening, and the operating frequency ( fop):

vc ¼ Pmech=ðslfopÞ ð1Þ
The operating frequency is defined as the frequency at which the muscle

is adapted to contract aerobically. It is a property of the muscle which can
be estimated by measuring the volume fraction of mitochondria from
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BOX 7.6 Continued.

electron micrographs (below). fop is not some arbitrary frequency at which a
muscle is forced to contract by an experimental apparatus, as some experi-
menters have assumed.

Volume of mitochondria required
We next assume that a fixed volume of mitochondria is required to regener-
ate ATP at a rate sufficient to support each watt of mechanical power. This
number is called the inverse power density of mitochondria, and is denoted
by kmito. It determines the volume (vt) of mitochondria that is needed to
sustain the mechanical power output Pmech:

vt ¼ Pmechkmito ð2Þ
The default value for kmito in Flight is 1.2 � 10�6 m3 W�1, meaning that

1.2 ml of mitochondria is assumed to be required for each watt of mechani-
cal power produced by the muscle. This estimate was obtained by measur-
ing the percentage volume of mitochondria in various bird flight muscles,
whose volume-specific power output could be estimated (Pennycuick and
Rezende 1984). Presumably kmito would decrease at higher temperatures.
This is not an issue when comparing homeothermic animals with similar
body temperatures, but it has implications for the evolution of home-
othermy in the first place (below).

If we neglect other cell components, then the total volume (v) of the
muscle is the sum of the volumes of contractile filaments and
mitochondria:

v ¼ vc þ vt ¼ Pmech½ð1þ kmitoslfopÞ=slfop�: ð3Þ
and the volume fraction of mitochondria (z) needed is:

z ¼ vt=v ¼ kmitoslfop=ð1þ kmitoslfopÞ: ð4Þ
If z is measured from electron micrographs, and estimates are available

for s, l and kmito, then the operating frequency (fop) can be estimated as:

fop ¼ z=½kmitoslð1 zÞ�: ð5Þ
The operating frequency corresponding to a given value of z is much

higher in insects with asynchronous flight muscles than in vertebrates,
because the active strain of such muscles is less than 10% of that in their
vertebrate counterparts.

Volume-specific power of the whole muscle
The volume-specific power output of an aerobic muscle is less than that of
the contractile filaments by the factor 1/(1 þ kmito slfop):

pv ¼ slfop=ð1þ kmitoslfopÞ: ð6Þ
At low operating frequencies, the denominator in Equation (6) is only

just over 1, and the volume-specific power is nearly proportional to the
operating frequency. As the operating frequency increases, diminishing
returns set in, and the volume-specific power levels off at an asymptotic
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value of 1/kmito, representing an infinitesimally small contractile component
operating at infinite frequency, embedded in a muscle consisting otherwise
entirely of mitochondria. In practice, the highest volume fraction of mito-
chondria found in both vertebrates (hummingbirds) and flying insects is
about 0.5, that is, equal volumes of contractile filaments and mitochondria.

Aerobic performance and temperature
The mass-specific power (pm) that an aerobic muscle can sustain depends
on the mitochondria fraction (z), the inverse power density (kmito) of the
mitochondria and the density of muscle (rmusc), but not on the mechanical
properties of the contractile filaments:

pm ¼ z=ðkmitormuscÞ: ð7Þ
For a given volume fraction of mitochondria, the mass-specific power is

inversely proportional to kmito. As noted above, one would expect kmito to be
a negative function of temperature, that is, less mitochondria would be
needed to sustain a given level of mass-specific power at a higher tempera-
ture. To put this another way, the higher the temperature at which the mus-
cles operate, the less total muscle mass (contractile filaments and
mitochondria) is required for a given level of power output. This is actually
the only reason why it is advantageous for active animals to be homeother-
mic. A high power output from anaerobic muscles depends on matching the
maximum strain rate to suit the load, and that can be done at any tempera-
ture within a wide range, as in fishes that live in cold water. While any mus-
cle that has to be accurately matched to its load needs to run at a constant
temperature, a high temperature is only advantageous for aerobic muscles,
to keep the volume of mitochondria down.

Vertebrate versus insect muscles
Vertebrate muscles are said to be synchronous, which refers to their
response to stimulation. Each contraction of a vertebrate muscle (i.e. each
wingbeat in a flying vertebrate) is initiated by a short burst of nerve
impulses, each of which triggers a wave of electrical activity in the mem-
brane enclosing the muscle fibre, which in turn activates the myofibrils. At
the end of the downstroke, the stimulation stops, allowing the myofibrils
to relax, so that they can be passively extended during the upstroke. The
minimum time needed for this cycle of activation and relaxation is around
20 ms, so limiting the maximum contraction frequency of hummingbird
muscles to around 50 Hz. Honeybees, however, beat their wings at much
higher frequencies, around 250 Hz, and some small midges can exceed
2 kHz. Their flight muscles are asynchronous, meaning that the muscle is
held in the active state by a sustained sequence of nerve impulses at a com-
paratively low frequency. While the muscle is ‘‘on’’, the wings beat continu-
ously at a higher frequency, which is determined by the mechanical
resonance resulting from the inertia of the wings, and the elasticity of the
thorax to which they are attached. Clipping the tips off a bee’s wings retunes
its wingbeat to a higher frequency, whereas no such resonance is involved in
determining a bird’s wingbeat frequency.
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As asynchronous muscles work at higher frequencies than vertebrate
muscles, they can develop similar levels of specific power with less strain.
The active strain is only about 0.02 in the flight muscles of bees and flies.
The length of the sarcomere hardly changes at all in operation, and the
myosin filaments extend almost from Z-line to Z-line. The cross-section
has a different arrangement from that shown in vertebrates, with three actin
fibres per myosin filament rather than two (Figure 7.1). It is not clear
whether there is a difference in the isometric stress, but it is known that
the stress does not drop to zero while the muscle is lengthening. The active
stress for calculating specific work and power in insect muscles is the differ-
ence between the stress while shortening and that while lengthening. The
low strain means that the flight muscles of insects cannot drive the wings
directly as those of vertebrates do. They work by distorting the exoskeleton
of the thorax by a small amount, and this small movement is then geared up
by the wing articulation, to rotate the base of the wing by a larger amount.
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FIGURE 7.8 Mass specific power, averaged over many cycles of contraction and relax
ation, for a muscle that contains a sufficient volume of mitochondria to support continu
ous aerobic activity. The higher the operating frequency for which the muscle is
adapted, the larger the ratio of mitochondria to myofibrils required. If this ratio is
50:50, the specific power is just under 400W kg�1 regardless of the mechanical char
acteristics of the muscle, but the operating frequency at which this occurs is about 19 Hz
for bird muscles, and about 250 Hz for insect muscles, assuming that the isometric stress
is the same for both, and the active strain is much smaller in insect asynchronous flight
muscles. The unattainable asymptote towards which both curves tend (nearly 800W
kg�1), is independent of the properties of the myofibrils. It represents a muscle that con
sists entirely of mitochondria, except for an infinitesimally small contractile component,
contracting at an infinite frequency. After Pennycuick and Rezende (1984).
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hummingbirds and insects, and this seems to be the practical upper

limit for the relative volume of mitochondria.

Aerobic muscles are invariably red, for three reasons. First, the mito-

chondria themselves apparently have a red colour in bulk. Second, the

cytoplasm of aerobic muscle cells contains myoglobin, a red respira-

tory pigment related to haemoglobin, whose function is to buffer the

pressure of dissolved oxygen within the cell. Third, an aerobic muscle

requires a blood supply that can provide fuel and oxygen, and remove

carbon dioxide and heat, at a sufficient rate to match the muscle’s

needs in continuous operation, and the copious blood capillaries con-

tribute to the red colour. Muscles that are specialised for anaerobic

operation in short bursts of ‘‘sprint’’ activity do not have these require-

ments. They are paler in colour, and are often characterised as ‘‘white’’.
BOX 7.7 Bird and bat respiratory systems.

Birds have some capabilities that are not shared by bats, especially in high-
altitude performance, and these depend on the unique arrangement of the
avian respiratory system, which is very different from that of mammals. This
account is summarised from reviews of the anatomy by Duncker (1985) and
of the physiology by Scheid (1982). The lungs of birds are small, dense
organs that are firmly fixed to the ribs on the dorsal side of the body cavity,
and (unlike mammal lungs) they do not expand when the bird breathes in.
The incoming air passes through the lungs, and into a system of air sacs
beyond them (Figure 7.9). The air sacs expand and contract as the bird
breathes in and out, but gas exchange takes place only in the lungs, not in
the air sacs. The walls of the air sacs are thin and transparent, with no blood
supply, and this makes them difficult to see in dissection. They can be made
visible by sucking the air out of a dead bird’s respiratory system through the
trachea, and then injecting latex under atmospheric pressure. They are then
found to ramify everywhere, around and between the organs in the body
cavity. There are seven air sacs in all, comprising three pairs (thoracic, ante-
rior abdominal and posterior abdominal), and one medial air sac, the inter-
clavicular (Figure 7.9A). This last is connected to the lungs of both sides,
and sends branches into the bones, not only the cavities of the hollow
humeri but also fine channels inside the pectoral and pelvic girdles, the ver-
tebrae and the skull. Branches of the inter-clavicular air sac also penetrate
into the interior of the pectoralis muscles (See Chapter 5, Figure 5.13).

Bronchi, lungs and air sacs
Figure 7.9B shows first of all that air enters and leaves via the same route,
the primary bronchus, as the bird breathes in and out, so that the system
as a whole is tidal, as is a mammal’s lung. In the primary bronchus, the flow
reverses direction at each breath, but once inside the system, the air moves
around inside it in one direction only. The primary bronchus leads to a
system of secondary bronchi, which have been drastically simplified in
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FIGURE 7.9 (A) Air enters and leaves a bird’s respiratory system through the trachea,
which divides at the syrinx (the voice organ of birds) into two primary bronchi, lead
ing to the lungs (pink), which are compact organs attached to the ribs along the
dorsal wall of the body cavity. Their volume does not change when the bird breathes.
Instead, air is drawn through the lungs by expansion and contraction of the air sacs,
which are thin walled, non respiratory structures with no significant blood supply of
their own. The inter clavicular air sac sends branches into the interior of the hollow
humeri, and also into fine cavities in the bones of the limb girdles, vertebral column
and skull, and the interior of the pectoralis muscles. (B) Primary bronchi deliver air
to the lungs, mesobronchi are channels interconnecting different parts of the system,
and parabronchi are an array of thin, parallel channels, with blind air capillaries
branching off them. Air flows downwards along the parabronchi in the diagram, both
when the bird breathes in and when it breathes out (see Figure 7.10A). Gas exchange
takes place in the air capillaries, which are embedded in a mesh of blood capillaries.

Figure 7.9 into dorsal and ventral mesobronchi. When the bird breathes in,
the air flows along the ventral mesobronchus to the posterior group of air
sacs, comprising the anterior and posterior abdominal air sacs, but when
the bird breathes out, the expired air comes from the anterior air group of
air sacs (thoracic and inter-clavicular). In between is the lung, where the
actual gas exchange takes place in the parabronchi. These are an array of
fine, parallel air channels that connect the dorsal and ventral mesobronchi.
The air flows through the parabronchi in the same direction, both when the
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bird is breathing in and when it is breathing out. Oxygen diffuses from the
lumen of each parabronchus into a series of blind ‘‘air capillaries’’, which
are embedded in a mesh of blood capillaries. Carbon dioxide likewise dif-
fuses from the blood capillaries into the air capillaries, whence it diffuses
into the parabronchus and is carried away.

Heat disposal from the air sacs
There are no valves directing the flow in the bronchial system, and no
obvious structures that would force the air to flow through the parabronchi
in one direction, or indeed to prevent it from flowing in and out of the air sacs
without passing through the parabronchi at all. It seems that the parabronchi
and the air sacs are effectively in parallel, and that the proportion of the
inspired air that passes through the parabronchi is determined by the resis-
tance of the parabronchi to air flow. This can be adjusted by smooth muscles
in the walls of the parabronchi, which can vary their diameter by a factor of
two. Since the resistance of a tube to the flow of fluid along it is inversely pro-
portional to the fourth power of the diameter, this would change the resis-
tance of the parabronchi by a factor of 16. The respiratory system actually
combines two functions, gas exchange in the parabronchi, and evaporative
heat loss from the thin, moist non-respiratory walls of the air sacs. By con-
stricting the parabronchi, and increasing the depth and/or frequency of its
breathing, a bird can increase the rate of heat disposal without excessively
increasing the rate of gas exchange. Birds do this when heat-stressed. Unlike
bats, they can flywithout overheating in air temperatures that are too high for
convective heat disposal, provided that the relative humidity is not too high,
and water is available. Heat is not carried away from the air sacs by the blood,
as they have no significant blood supply. Hence the air sacs have to penetrate
everywhere that cooling is needed, and the water vapour must escape by
diffusion from the finer passages.

Gas exchange in the parabronchi
Although the respiratory system as a whole is tidal, the air flow through the
parabronchi is uni-directional, and this raises the possibility that the para-
bronchi might act as counter-current gas exchangers, with air flowing in
one direction and blood in the other. Many experiments have been done
on this, and Scheid (1982) considered that the system should properly be
described as a ‘‘cross-current’’ arrangement, as the actual blood capillaries
do not flow parallel to the parabronchi. Functionally, however, the arrange-
ment that he describes is a true counter-current gas exchanger. The arter-
ioles bring deoxygenated blood in at the end of the parabronchi where air
is flowing out, and run parallel to the parabronchi, dwindling to nothing
by the time they reach the other end (Figure 7.10A). Capillaries connect
each arteriole to a parallel venule, which increases in diameter as it collects
blood from successive capillaries. The gas exchange occurs where the blood
capillaries form a meshwork in close contact with the air capillaries. Accord-
ing to this interpretation, oxygen is progressively withdrawn from the air as
it passes along the parabronchus, so that the partial pressure of oxygen
decreases from one air capillary to the next, along the array. The blood flows
in the opposite direction to the air, and the partial pressure of oxygen that it
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FIGURE 7.10 (A) A parabronchus (left) is a fine channel with air flowing along it,
always in the same direction. Gas exchange occurs in the blind air capillaries that
branch off it on both sides. The dashed line marks the plane of the section at right,
through the air capillaries. Each air capillary is supplied by blood capillaries (thin
lines) that carry blood from an arteriole to a venule. The oxygen gets depleted in
the parabronchus, and the air capillaries, as the air moves from top to bottom of
the diagram. The arteriole supplies deoxygenated blood to all the blood capillaries,
and the blood entering the venule is progressively more oxygenated (red tint) as it
flows from bottom to top. (B) An alveolus of a mammal lung is a blind sac, with an
elastic wall containing a plexus of blood capillaries. When it expands and fills with
fresh air, the oxygen partial pressure in the cavity drops while that in the blood rises,
until there is insufficient pressure difference to maintain further movement of oxygen.
(C) In any lung, the partial pressure of oxygen in the air entering the lung is higher
than that in the blood. The counter current arrangement of the bird lung allows the
blood leaving the lung to reach a higher oxygen partial pressure than the expired
air, whereas this is not possible in a mammal lung.

contains increases along the venule. The partial pressure of oxygen in each
air capillary exceeds that in its associated blood capillary by a roughly
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constant amount from one end of the parabronchus to the other, although
the air in the parabronchus is progressively depleted of oxygen as it goes.

The advantage of this arrangement is that it allows the partial pressure of
oxygen in the blood to rise above that in the air as both air and blood leave
the lung. This is not the case in the alveoli of mammal lungs, which are
expandable blind cavities, with a blood plexus in the elastic walls
(Figure 7.10B). When the alveolus expands to suck in fresh air, the oxygen
partial pressure in the lumen drops as that in the surrounding blood capil-
laries rises, but the transfer of oxygen requires a gradient of partial pressure
from the air into the blood, and stops when the two partial pressures meet
(Figure 7.10C). This means that a bird can maintain a higher level of oxygen
concentration in its blood than can a mammal, when the partial pressure of
oxygen in the inspired air is low, as it is at high altitudes. Tucker (1968a) put
sparrows and mice in a hypobaric chamber, and lowered the air pressure to
simulate an altitude of 6100 m ASL, where the pressure is less than half that
at sea level. In these conditions the sparrows continued to hop about and
make short flights, whereas the mice were comatose.

Fractal properties of the parabronchial system
Another conjectural property of the parabronchial arrangement is that the
fine structure of the air and blood capillaries may have fractal properties,
meaning that its geometry is ‘‘self-similar’’ over a certain range of scale.
The consequences of this were explored by Mandelbrot (1982). In this case,
it would not be meaningful to talk of the ‘‘surface area’’ of the air capillaries,
because their surface does not necessarily have any such property as ‘‘area’’,
meaning a measurable quantity with dimensions L2. In Euclidean geometry,
this is distinct from a ‘‘volume’’ having dimensions L3, but the dimensions
of a fractal surface are Ld, where d does not have to be an integer. In Man-
delbrot’s terminology, the exponent d is called the ‘‘dimension’’ of a line or
surface. d is between 1 and 2 for fractal lines such as coast lines, and
between 2 and 3 for fractal surfaces such as mountainsides and (perhaps)
bird lungs. This would have consequences for the rate at which a lung of
given mass can absorb oxygen, when the whole structure is scaled to different
si ze s ( Chapter 13).

Breathing
Air is forced in and out of the respiratory systems of both birds and mam-
mals by changes of volume. A mammal’s lungs are surrounded by the rib
cage, which is divided from the abdominal cavity by a curved, muscular dia-
phragm. The mammal breathes in by contracting and flattening the dia-
phragm, so increasing the volume of the rib cage, and forcing air to flow
into the lungs under atmospheric pressure. A bird has no diaphragm, but
the volume of the whole body cavity can be changed by intercostal muscles
that flex or extend the joints between the ribs and the ventral ribs. This
moves the sternum and the synsacrum towards or away from each other,
so that these two curved surfaces, with their concave sides facing inwards,
act as the two halves of a bellows (Chapter 5, Figure 5.12). Those air sacs
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that are enclosed in the body cavity, and not surrounded by bone, expand
and contract, forcing air to flow through the lungs, although the lung
volume is constant.
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7.4.2 BIRD AND BAT RESPIRATORY SYSTEMS

The lungs of bats work in the same way as those of other mammals

including ourselves, and are subject to the same limitations, but those

of birds are somewhat different (Figure 7.9). They are often described

as ‘‘through-draught’’ lungs, as opposed to the ‘‘dead-end’’ or ‘‘tidal’’

lungs of mammals. There is an element of truth in this, although a

bird’s respiratory system as a whole is tidal like ours, insofar as air

alternately enters and leaves through the trachea. Bird lungs are not

distensible sacs like those of a mammal, but small, dense organs whose

volume is constant, with fine air channels (the parabronchi) through

which air flows in one direction only, whether the bird is breathing in

or out. It appears that this arrangement is responsible for the high-

altitude capabilities of birds, which depend on maintaining a high

enough partial pressure of oxygen in the blood for strenuous activity,

at air pressures and densities that are too low for mammals to function

normally (Box 7.7).

The tidal bellows action that ventilates a bird’s lungs depends on a

system of distensible, thin-walled air sacs, which lie beyond the lungs,

but are not themselves respiratory. The air sacs also serve an entirely

different function, as the sites of a highly effective and controllable sys-

tem of evaporative cooling. The air sacs ramify everywhere in the body

cavity where they are in intimate contact with all of the internal organs,

and also penetrate into many of the bones, and into the interior of the

pectoral muscles. It would appear that evaporation of water from the

moist inside walls of the air sacs removes heat directly from these inte-

rior sites, without the intervention of the blood system, an arrange-

ment that is in some respects reminiscent of the insect tracheal

system, although it involves only water and heat, not respiratory gas

exchange. A heat-stressed bird can increase the ventilation of its air

sacs without also increasing the ventilation of the lungs. Birds may

often be seen flying around with their beaks open when the air is

hot, or fluttering the throat pouch when on the ground. This ventilates

the inner surface of the gular sac, and also the upper part of the tra-

chea, where heat is lost by evaporation. Most birds do not have any
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method of external evaporative cooling, corresponding to the sweat

glands of mammals, although a few (storks and New World vultures)

urinate down their legs when overheated, apparently as a cooling

procedure.

The primary method of heat disposal in bats is convection, which

requires a plentiful supply of blood to be passed through a surface that

is exposed to a flow of air that is cooler than the blood. The wing mem-

branes of bats, with their copious and controllable blood supply, and

huge surface area exposed to the air flow, are ideal convective cooling

surfaces. Heat passes from the blood to the air, and is convected away.

In birds, the thinly feathered skin surfaces on the underside of the

inner part of the wing, and on the sides of the body below the wings,

are used for convective cooling. When the bird is not flying, the wings

are folded, so covering up both of these surfaces and preventing loss of

heat, but in flight both are exposed to the air flow. Although the cooling

area is much less than that of bat wing membranes, it could be argued

that convection is the primary method of cooling for both birds and

bats, since evaporative cooling requires expenditure of water, which

may be in short supply in arid environments. Birds rely on convective

cooling so long as the air is cool enough, but differ from bats in having

the option to resort to controlled evaporative cooling when necessary.

Migrating birds have some control over the air temperature, as a bird

can reach cooler air by climbing, at the rate of about 1 �C per 100 m

of height, and thus increase the effectiveness of convective cooling.

Also, the oxidation of fat in flight generates water as a by-product,

and this seems to be sufficient to replace water losses in a number of

migratory bird species that fly continuously for several days and nights

without stopping, with no source of water.

7.4.3 THE CIRCULATORY SYSTEM

Fuel, respiratory gases and heat are generated in one part of the bird’s

body (the source), and conveyed by the blood to another part (the

sink). The flight muscles are the sink for a large and steady flow of fuel

(from the fat storage organs) and oxygen (from the lungs), and the

source for carbon dioxide (going to the lungs), and heat (going to the

skin and/or the respiratory system). In round numbers, it appears that

the heart, which supplies the mechanical power needed to circulate the

blood, is about 1% of the body mass in birds and bats, as compared to

0.5% in non-flying mammals. The power needed by the heart can be

found by multiplying the pressure difference in the aorta above that

of the venous return by the volume rate of blood flow. The required
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mass of the heart could be estimated, if the heartbeat frequency could

be estimated. The mechanical power required from the flight muscles

can be est imate d ( Chapter 3 ), but there is no theo r y that connects

the power required from the heart with that required from the flight

muscles. It seems intuitively reasonable to expect that birds would

require big hearts, and unsurprising that the heart mass should decline

during long migratory flights, in a similar way to that of the flight mus-

cles, but there is no quantitative basis to account for this. These

changes are known to occur (Piersma, 1998) but they cannot be

accounted for in Flight.

7.4.4 MASS AND POWER REQUIREMENTS

OF SUPPORT SYSTEMS

Because of scale relationships, it is more difficult for large birds than

for small ones to get sufficient power from their flight muscles to fly.

This is for purely mechanical reasons (Box 7.4). One might expect to

see disproportionately large flight muscles in large birds, but this does

not seem to be the case (Ch apter 13 , Figure 13.8 ). Swan s are the la rgest

birds capable of migrating by continuous flapping flight, and the mass

of their flight muscles is typically about 13% of the all-up mass, a lower

flight-muscle fraction than in many smaller birds. Mechanical limita-

tions due to their large size limit migrating swans to air speeds only

slightly above their minimum power speeds (above), and they land

from time to time on the ground or water, but it is not clear whether

the primary limitation for continuous flight is in the muscles them-

selves or in the support systems. Increasing the capacity of the lungs

would increase the total mass, so requiring more flight muscle to main-

tain the minimum power speed, and it is conceivable that the

increased power requirements of the lungs and heart themselves would

be greater than those of the additional muscle. This remains conjec-

tural, in the absence of any quantitative theory that allows one to

calculate what mass of the lungs and heart are needed, to support a

given level of mechanical power output in the flight muscles.
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SIMULATING LONG-DISTANCE MIGRATION
The Flight programme uses a time marching computation to simulate a long migra
tory flight, revising the bird’s mass and body composition at 6 minute intervals as
fuel is consumed. Sufficient protein is taken from the flight muscles to hold the
mechanical conditions in the muscles constant as the mass declines. Predictions
are in satisfactory agreement with field data on long distance migrants. Range calcu
lations are greatly simplified by expressing energy reserves in the form of ‘‘energy
height’’, which applies to potential and kinetic energy, as well as fuel energy.

Tiny birds fly airline distances without refuelling, although they take

longer about it than airliners, flapping steadily along over oceans and

deserts as day follows night, and one climatic zone replaces another.

Should we be surprised that such small creatures can fly so far? Not

really. A migrating bird (or aircraft) does work against drag, and the

amount of work it has to do is the distance times the drag. The fuel

consumed has to account for the work done. If a bird (or aircraft) starts

with a given proportion of its all-up mass consisting of consumable

fuel, and the drag force is proportional to the weight, then birds of all

sizes will go the same distance before they run out of fuel. This line

of thinking is enshrined in Breguet’s range equation, which dates from
209
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the early days of aviation, and is named after the French aviation

pioneer Louis-Charles Breguet (Anderson 1997).

8.1 ESTIMATING RANGE

8.1.1 FUEL FRACTION AND LIFT:DRAG RATIO

Although Breguet’s analysis was somewhat simplified (Box 8.1), it

focused attention on two fundamental generalisations which apply to

anything that flies. These remain as valid now as they were in 1922,

when Breguet presented them to a London audience, in a famous lec-

ture that pointed the way for the development of commercial aviation

(Breguet 1922). Breguet’s first fundamental point was that an aircraft’s

range is directly proportional to the ratio of the lift developed by the

wings (which supports the weight) to the total drag, and his main mes-

sage to aircraft designers in 1922 was that much work needed to be

done at that time on reducing drag. His second point was that his

range equation did not mention the mass of either the aircraft or the

fuel, but only the fuel fraction, which is the ratio of the fuel mass to

the all-up mass. The equation says that a willow warbler would go

the same distance (relative to the air) as a jumbo jet, provided that

both start with the same fraction (say 25%) of the all-up mass as con-

sumable fuel, and both use fuel of the same energy density, convert

fuel energy to work with the same efficiency, and have the same lift:

drag ratio. The warbler would take longer to get there, but its eventual

range (relative to the air) would be the same. Actually, warblers do not

go as far as jumbo jets, but Breguet’s equation predicts this, if the two

main reasons are known. The first is that there are several effects that

combine to make the lift:drag ratio less by a factor of 2–4 for small

birds than for large aircraft, and the second is that the energy density

of bird fuel (fat) is only about 83% that of jet fuel. Breguet’s two mes-

sages for the modern ornithologist are that the key to estimating a

bird’s range is to calculate its lift:drag ratio, and that the fuel reserve

is measured by the fat fraction, not the fat mass.
8.1.2 THE TIME-MARCHING MIGRATION

COMPUTATION IN FLIGHT

It is not practical to adapt Breguet’s equation to give an instant esti-

mate of a migrating bird’s range, because of some of the things that

migrating birds are known to do. They slim down their bodies as fat

is consumed, so progressively increasing the effective lift:drag ratio,



BOX 8.1 The Breguet range equation.

The classical range calculation is for a fixed-wing aircraft, flying horizon-
tally, in which the wing provides a lift force that supports the weight, while
a separate engine-driven propeller provides a horizontal thrust force that
balances the drag. As fuel is consumed, the weight decreases, and so do
both the lift and the drag, but the ratio of lift to drag (or of thrust to weight)
is assumed to remain constant. The work done by the engine is found by
integrating the product of the thrust and the distance flown, and this is
assumed to be proportional to the mass of fuel consumed. The range is
found by integrating the distance flown until the fuel is finished. Birds differ
from fixed-wing aircraft in that they get both lift and thrust from their flap-
ping wings, they consume other body components in flight besides the fuel
(notably part of the engine), and the ratio of lift to drag tends to increase
during a long flight, but the principle is the same if the flight is broken into
short segments. The Flight program does this, and deals with the complica-
tions by integrating distance flown and fuel consumed numerically rather
than analytically.

Variable definitions for this box
D Drag
e Energy density of fuel
F Fuel fraction
g Acceleration due to gravity
L Lift
m All-up mass
m1, m2 Mass at beginning and end of flight
N Lift:drag ratio
Pmech Mechanical power
t Time
V True airspeed
Y Distance flown
� Conversion efficiency

The function of the wing in a fixed-wing aircraft in level flight is to
develop a lift force (L) perpendicular to the flight path (i.e. vertical in this
special case), which balances the weight (mg), with the smallest possible
amount of drag (D) acting backwards along the flight path. The fuselage
and other non-lifting parts add to the drag but do not contribute to the lift.
The overall ratio of lift to drag (L/D) is a measure of the aircraft’s ‘‘aerody-
namic efficiency’’. We name this N, where

N ¼ L

D
ð1Þ

For the case of a bird, N has to be defined in a different way (Chapter 3,
Box 3.4), because of the flapping wings, and metabolic complications, but
its significance for calculating the range is the same. In level flight, the rate
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BOX 8.1 Continued.

(Pmech) at which the engine has to do mechanical work to overcome the
drag is simply the drag times the speed:

Pmech ¼ DV ; ð2Þ
and the lift:drag ratio is mg/D, where mg is the weight, so that

Pmech ¼ mgV

N
: ð3Þ

The aircraft starts its journey with an all-up mass of m1. Part of this initial
mass consists of consumable fuel, with an energy density e. The energy den-
sity is the chemical energy liberated by oxidising unit mass of the fuel. At
any particular point in the flight, the mass is declining at a rate which is
proportional to the mechanical power:

dm

dt
¼ Pmech

e�
¼ mgV

e�N
; ð4Þ

where � is the efficiency with which the engine converts fuel energy into
work. If Y is the distance travelled, then the speed V ¼ dY/dt. Dividing this
by dm/dt from Equation (4), the distance flown per unit mass of fuel con-
sumed at any point during the flight is:

dY

dm
¼ e�N

mg
: ð5Þ

The range is the total distance flown while the mass declines from m1 to a
smaller value m2, assuming that this is entirely due to the consumption of
fuel. The range can be found by integrating Equation 5:

Y ¼ e�N

g

� �
ln

m1

m2

� �
: ð6Þ

It is more convenient to express the ratio m1/m2 in terms of the ‘‘fuel frac-
tion’’ (F), which is the mass of fuel to be consumed, divided by the initial all-
up mass. In that case:

Y ¼ e�N

g

� �
ln

1

ð1 FÞ
� �

: ð7Þ

This formula is known as ‘‘Breguet’s equation’’ after its discoverer, the
French aviation pioneer Louis-Charles Breguet (Anderson 1997).
With due deference to its historical importance in aeronautics, we have to

recognise that Equation (7) does not give a satisfactory prediction of the range
attainable by migrating birds. One reason is that the assumption that N
remains constant throughout a long flight may be satisfactory for an aircraft
whose external shape is unaffected by the consumption of fuel, but in birds
thebody slimsdownas fat is consumed, and that causes aprogressive increase
inN. Also a bird can consume part of its engine (the flight muscles) as it flies,
and get additional energy by doing so, and this dramatically increases the
range. Rather than trying to incorporate these complications in an analytical
equation, the approach used in Flight is the time-marching computation,
revising the bird’s body composition after every 6 minutes of flight.
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and they consume part of the engine (the flight muscles) as the power

requirements dwindle, using the protein as supplementary fuel. Flight

takes account of these complications by using a ‘‘time-marching com-

putation’’ rather than an analytical range equation. The programme

calculates a snapshot of the bird’s body composition and performance

characteristics at the start of the flight, including the power and

the effective lift:drag ratio, which replaces the fixed-wing concept of

the lift:d rag ratio for rotar y or flapping wings (Ch apter 3 , Box 3.4). Then

it estimates the distance flown and the amount of fuel used in a short

period of flight (6 minutes). Then it revises the mass, body frontal

area and so on to take account of the fuel used, and recalculates the

power and the effective lift:drag ratio for the next 6 minutes of flight,

and repeats this until all the fat has been consumed. No range equation

is needed, and complicated rules can easily be incorporated in the

process of revising the speed and body composition (Figure 8.1).
8.2 ULTRA LONG-DISTANCE MIGRANTS

Flight’s migration simulation predicts the time course of many vari-

ables which can, in principle, be measured in real long-distance

migrants, and these predictions follow from assumptions which can

be varied by the user. By comparing the predictions with field data,

alternative hypotheses can be tested about (for example) the way in

which the bird manages its fuel reserves in flight. Getting suitable field

data is easier said than done, but the examples in this chapter illustrate

the potential of this approach. Table 8.1 gives the necessary input

details for simulating known flights of two ultra long-distance

migrants, whose routes are shown on the map of Figure 8.1. They are

a migration stage of 5,420 km from Australia to China that is believed

to be flown non-stop by Great Knots (Calidris tenuirostris) on their

way to their Siberian breeding grounds in the northern spring, and

on the same map, the route of the Alaskan Bar-tailed Godwit (Limosa

lapponica) which leaves the Alaskan peninsula in the northern autumn

with over half of its body mass as fat, and flies non-stop 10,300 km to

the northern tip of New Zealand (Piersma and Gill 1998). Using default

assumptions for input variables other than those in Table 8.1, Flight

predicts that both birds start with enough fat to get well beyond their

destinations, and that the Godwit should just about be able to reach

the South Pole.

The Excel output from Flight’s simulation of the Great Knot’s migra-

tion from Pennycuick and Battley (2003) is reproduced in full in

Table 8.2. The first section of the table shows the input data from
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FIGURE 8.1 Routes flown non stop by two ultra long distance migrants, the Great Knot
(Calidris tenuirostris) from Pennycuick and Battley (2003) and the Alaskan Bar tailed
Godwit (Limosa lapponica) from Piersma and Gill (1998). The Godwit had insufficient
fuel to fly back non stop from New Zealand to Alaska, but is known to stage in Australia
in this direction. Note that the projection distorts directions. The lines of longitude are
great circles, but the straight lines showing the birds’ routes are not. Circles: Points where
samples of birds were collected. Crosses: Calculated distance from start, where bird runs
out of fuel.
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Table 8.1, with the air density set for 3000 m in the International Stan-

dard Atmosphere, and other variables set to their default values. The

rest of the table is the output, showing 30 variables whose changing

values have been calculated every 6 minutes throughout the flight,

and tabulated at intervals of 6 hours. The reader who wishes to repeat



TABLE 8.1 Data for Great Knot and Alaskan Bar-tailed Godwit.

Observed before flight: Great Knot Bar-tailed Godwit

Wing span (m) 0.586 0.748
Wing area (m2) 0.0397 0.0568
Aspect ratio 8.65 9.85
All-up mass (kg) 0.233 0.367
Fat mass (kg) 0.0898 0.201
Flight muscle mass (kg) 0.0336 0.055
Airframe mass (kg) 0.110 0.111
Fat fraction 0.385 0.548
Flight muscle fraction 0.144 0.150
Airframe fraction 0.472 0.302

After flight (Great Knot): Observed Predicted
All-up mass (kg) 0.125 0.134
Fat mass (kg) 0.0107 0.0166
Flight muscle mass (kg) 0.0255 0.0215
Airframe mass (kg) 0.0888 0.0955

Mass components observed in the Great Knot before flight are in bold type, as are the
corresponding figures, both observed and predicted, after the 5420 km migration (from
Pennycuick and Battley 2003). The Bar tailed Godwit was observed before departure from
Alaska, but not on arrival in New Zealand (from Piersma and Gill 1998). The mass
subdivisions are defined in Chapter 1, Box 1.2. Note that the mass fractions for each bird
add up to 1.
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this exercise will find the data for the Great Knot in Flight’s Preset Birds

database, from which they can be entered directly into the programme.

To get an Excel spreadsheet the computer must have Microsoft Excel

installed, otherwise the programme will output the same information

in the form of a text file.

8.2.1 TESTING HYPOTHESES

Some of the features that are represented in Flight’s migration simula-

tion are described in the following paragraphs, and illustrated by the

graphs accompanying the commentary on the Great Knot’s flight in

Box 8.2. The programme incorporates current hypotheses or guesses

about how a migrating bird works, which are explained elsewhere in

this book. Discrepancies between its predictions and field observations

can be used to test, and if necessary correct, the hypotheses and

assumptions underlying the model. For example, it predicts the total

amounts of mass consumed in the course of the flight from the stored

fat, the flight muscles and other parts of the body (the ‘‘airframe’’), and

Table 8.1 lists the observed and predicted masses of these three com-

ponents at the end of the flight. The birds’ all-up mass declined by



TABLE 8.2 Great Knot Migration.
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108 g in the course of the flight, which was 9 g more than predicted.

The predicted consumption of protein from the flight muscles was 4 g

too high, that from the airframe was 7 g too low, and that of fat was 6 g

too low. This is not bad agreement considering that the winds along the

route were not known, and that there was a degree of uncertainty about

the interval between the time the samples were collected and the actual
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times of departure and arrival. If larger discrepancies had been seen, there

might have been a case for revising some of the default values for input

variables, such as the body drag coefficient, and the assumptions that

determine the relative amounts of protein taken from different sources.

Some variations were tried in the original paper, but no case was made

for changing any of the defaults (Pennycuick and Battley 2003).



BOX 8.2 A simulated migratory flight by a Great Knot.

This box is a commentary on a single run of the Migration calculation in
Flight, described by Pennycuick andBattley (2003), whose output is presented
in full in Table 8.2. Two sets of data were collected by Phil Battley from the
same population of Great Knots (Calidris tenuirostris), before and after
migrating from Broome on the north-west coast of Australia to the coast of
China near Shanghai. The birds are believed to fly this route non-stop in a sin-
gle flight taking between 4 and 5 days. The great-circle distance between the
two sample stations, marked by circles in Figure 8.1, is 5420 km. The reader
who wishes to repeat the calculation will find the starting data for the Great
Knot in the ‘‘Preset Birds’’ database that comes with the Flight programme.
The effect of varying the values of different input variables can be tried simply
by returning to theMigration Setup screen,making any changes required, and
running the programme again. Any input values that were changed since the
previous run will appear in red in the Excel output.
Extracts from the output are presented here in the form of a dozen graphs

selected from the 30 columns of data available, all plotted against distance
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FIGURE 8.2 Data from two points in the Great Knot’s Migration output (Table 8.2)
have been used to run Flight’s power curve calculation for the start of the flight (upper
curve), and after flying for 24 hours (lower curve). In this simulation the altitude was
constant at 3000 m ASL throughout the flight. The curves represent specific work in
the flight muscles (not power), but they are almost the same shape as power curves,
with a minimum at Vmp. The selected muscle burn criterion was ‘‘Constant Specific
Work’’ (the default), and the starting curve was used to select the value of the specific
work (10.1 J kg�1) which was sufficient to fly at 1.2 Vmp at the starting mass. Under
the ‘‘Standard’’ speed control rules, the specific work was held constant initially by
allowing the speed to increase, and later by consuming material from the flight mus
cles. After 24 hours of flight, using up fat, the same value of the specific work (thin
horizontal line) was sufficient to fly about 4 m s�1 faster that at the start. This speed
is beyond the (decreasing) value of the maximum range speed Vmr on the lower
curve. After this the speed tracks Vmr (which continues to decrease), and the specific
work is held constant by consuming protein from the flight muscles.
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flown. Variables in the output table are referred to by the cell in Table 8.2 in
which the column of output starts, for instance B30 is the distance flown,
starting at 0 and ending at 7363 km when the bird consumes the last of its
fat. This is, of course, air distance. The air mass through which the bird flies
is the frame of reference, relative to which Flight computes its progress. If the
earth’s surface also moves relative to the air mass while the flight is in prog-
ress (wind) then the ground distance is different, exceeding the air distance
with a following wind, and less with a headwind. The flight time from the
start can be read in the left-hand column of each of the three blocks of output
(A30, A54 and A78). The calculated points from the Excel output are shown in
the graphs as small solid circles, joined together by ‘‘smooth links’’, which are
purely cosmetic. Four-digit precision has been used only because graphs do
not look smooth when plotted from the default three-digit output.

Airspeed control
Before launching the migration simulation, the programme requires a set of
rules to determine the speed at which the bird will fly at different stages of
its flight. If the standard option for Air Speed Control is selected in the
Migration Setup screen, the programme will begin by calculating the mini-
mum power speed (Vmp) at the start of the flight, and set the initial speed to
a multiple of Vmp, for which the default value is 1.2. It will then find the spe-
cific work in the flight muscles at this speed (Chapter 7). If ‘‘Constant Spe-
cific Work’’ is chosen as the Muscle Burn Criterion, it will hold this initial
value constant for the rest of the flight. Figure 8.2 shows how the specific
work at 1.2 Vmp is located initially at 10.1 J kg�1. The curve of specific work
against speed drops as the bird gets lighter, and after about 24 hours of
flight, the original value of the specific work is enough to maintain the max-
imum range speed (Vmr). After this, the speed tracks the decreasing value of
Vmr for the rest of the flight, as there is no range advantage in flying any fas-
ter. The specific work is held constant by consuming excess flight muscle.

Climb and descent
The initial climb is not represented in this version of the Migration calcula-
tion. The bird is simply launched at its assumed cruising altitude, which is
3000 m in this case. The assumption that the fully loaded bird is only just capa-
ble of level flight at 1.2 Vmp is justified in the case of swans (Chapter 7), but
not so easily reconciled with Table 8.1. The Great Knot requires a specific
work of 10.1 J kg�1 from the myofibrils of its flight muscles, whereas they
should be able to produce 41.1 J kg�1 when operating at maximum power
(Chapter 7). Other medium-sized birds also seem to have a generous margin
of muscle power available over that required for level flight, even when bur-
dened with large fat loads, and it now seems likely that long-distance
migrants use this power margin for the initial climb to cruising altitude.
The rate of climb calculation described in Box 7.5 was added to Flight in
Version 1.17. It takes due account of the additional mitochondria that would
be needed in the flight muscles to sustain an aerobic climb, and gives an
initial maximum rate of climb at sea level of 2.5 m s�1 for the Great Knot,
when fully loaded and flying at Vmp. This is at the high end of tracking radar
observations by Hedenström and Alerstam (1992) in southern Sweden, and
Piersma et al. (1997) in West Africa of waders and ducks departing on what
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BOX 8.2 Continued.

were presumed to be long migratory stages. Rates of climb were mostly
between 1 and 2 m s�1, with a few above 2 m s�1. This suggests that most
birds prefer to climb at a somewhat faster airspeed than that for maximum
rate of climb, as do most pilots. The real bird has a range of options, which
would be difficult to encapsulate in Flight’s Migration calculation, although
field observations of mitochondria fraction might allow the possibilities to
be narrowed down somewhat.
In terms of energy height (below), the effect is that the bird converts some of

its energyheight into actualheight at thebeginningof theflight, andconverts its
actual height into distance at the end. Although it is true that more energy is
expended on the initial climb, when the bird is heavy, than is retrieved on the
final descent when it is light, there is little effect on the distance flown, because
this depends on height (or energy height) not on energy as such (Box 8.3).
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(scale at right) plotted against distance flown from the Migration output for the Great
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which the specific work is held constant by consuming flight muscle, instead of
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of the energy height graph. Data from the Great Knot simulation in Table 8.2.
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Speed, energy height and effective lift:drag ratio
The time course of several variables is shown in Figures 8.3–8.5. The air-
speed (Figure 8.3 upper graph, and C30) builds up for the first 24 hours
and 1600 km of the flight, until it converges with the maximum range speed
(Vmr), which is coming down. The ratio of Vmr to Vmp (E30) is around 1.6 in
the early part of the flight, and the ratio nearly levels off at that point,
continuing to increase very slightly. After this, the bird progressively reduces
speed so as to continue flying at Vmr, and also starts to consume protein
from the flight muscles (J30). In each 6-minute period, it consumes suffi-
cient flight muscle to hold the specific work constant (H54), at the value
that it had at the beginning of the flight (10.1 J kg�1).
The energy height for both fat and protein together (Figure 8.3 lower

graph, and K78) starts at 514 km at departure, and declines to zero after
the bird has flown 7363 km. This gives an average gradient of 14.3:1, which
is also the average effective lift:drag ratio for the whole flight. The virtual
descent is not so perfectly linear as it at first appears. Its gradient at any
point is the effective lift:drag ratio (D54), which starts at 11.7:1 and increases
in the early hours of the flight, as the airspeed converges on to Vmr. It con-
tinues to increase gradually while the bird maintains Vmr, because the con-
sumption of fat and muscle slims down the body’s frontal area, so reducing
the drag of the body. After increasing to about 13.5:1 after 24 hours, it even-
tually reaches 14.9:1 by the end of the flight.

Mass, flight muscle fraction and specific power
In the upper graph of Figure 8.4, the all-up mass (H30) declines smoothly
from its starting value of 0.233 kg to less than half of that when the
programme terminates because all the fat has been consumed. The fat
fraction (G78) was 0.385 at the start of the flight (a high value but not
extreme), whereas a bigger fraction than that (52%) of the starting mass
disappears by the end of the flight. The remaining mass loss is made
up of protein taken partly from the flight muscles and partly from other
unspecified organs, which no doubt include the heart, digestive system
leg muscles and so on.
The flight muscle fraction (H78) increases for the first 24 hours, because fat

is being consumed but flight muscle tissue is not (above). The bird starts con-
suming flight muscle after flying for about 24 h, when the speed converges on
Vmr. By then the flight muscle fraction is 0.158, and thereafter it declines very
gradually to 0.146, very near its initial value of 0.144. In other words, the
flight muscle fraction does not change very much in the course of a long
migratory flight. Conversely, migrants accumulate both fat and protein
during stopovers, also resulting in only minor variation of the flight muscle
fraction. A practical consequence is that although the flight muscle mass
may vary wildly in healthy birds of the same species at different levels of con-
dition, the flight muscle fraction only varies a little. Consequently, this mea-
surement can be obtained by dissecting birds that have been shot, or that
have met with accidents, without worrying overmuch about variations in
condition.

8 Simulating Long Distance Migration 221



BOX 8.2 Continued.

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

Air distance flown (km)

S
pe

ci
fic

 p
ow

er
 (

W
/k

g)

0

5

10

M
ito

ch
on

dr
ia

 fr
ac

tio
n 

(%
)

0

0.05

0.10

0.15

0.20

0.25
A

ll-
up

 m
as

s 
(k

g)

0

0.05

0.10

0.15

F
lig

ht
 m

us
cl

e 
fr

ac
tio

n

Flight muscle fraction

All-up mass

5420 km

Specific power

Mitochondria fraction

Airspeed reaches Vmr

A

B

FIGURE 8.4 (A) The flight muscle fraction increases during the initial acceleration
phase, because fat is consumed but flight muscle protein is not. Once the consump
tion of flight muscle begins, the flight muscle fraction declines, but only slightly. The
‘‘Constant specific work’’ assumption agrees quite well with the empirical observation
that the flight muscle fraction of migrants does not vary much, despite large changes
of all up mass. (B) The mitochondria fraction in the flight muscles is closely related to
the specific power, and both decline progressively throughout the flight. Mitochondria
fraction is a quantity that could be observed. Data from the Great Knot simulation in
Table 8.2.

In the lower graph of Figure 8.4, the specific power in the flight mus-
cles (G54) declines steadily throughout the flight, if the specific work
(H54) is held constant, as it was in this programme run. As an alternative
option, the programme allows the specific power to be held constant. If
that option were selected, the flight muscle mass would decrease more
steeply than seen here, while the specific work would progressively
increase throughout the flight, neither of which results accord with obser-
vations. The mitochondria fraction in the flight muscles depends directly
on the specific power and is expected to decline throughout the flight if
the specific work is held constant. This is a prediction that could be
tested, if flight muscle samples suitable for electron microscopy were
collected in future field studies.
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FIGURE 8.5 (A) The chemical power declines throughout the flight, and so does the ratio
of the chemical power to the basal metabolic rate (BMR). If the chemical power is
expressed as amultiple of BMR, it declines fromabout 14 to7 times BMR. This ratio is also
higher in large birds than in small ones. This traditional method of expressing chemical
power conveys no useful information, and obscures the original power measurements.
(B) The calculated BMR is based on the mass excluding fat, and declines throughout the
flight. The cumulative fraction of the total energy that is expended on basal metabolism
increased from about 7 to 9%. These percentages would be higher in a smaller bird
and lower in a larger one. Data from the Great Knot simulation in Table 8.2.

Chemical power and basal metabolism
The chemical power (Figure 8.5 upper graph and C54) is the rate of con-
sumption of fuel energy. This is what physiologists measure by such meth-
ods as the rate of oxygen consumption, and doubly labelled water. In this
simulation the chemical power declines from the beginning of the flight
because the bird is getting lighter, and also because the speed is initially
increasing towards Vmr, so increasing the effective lift:drag ratio. However,
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as the speed increases, the power (mechanical and chemical) moves up the
ever-steepening power curve, which offsets these gains until the speed
reaches Vmr. The small decrease in chemical power seen in the first day or
so of the flight is actually due to a decrease in wingbeat frequency (E54)
which itself results from the decrease in all-up mass. So long as both the
flight muscle mass (J30) and the specific work (H54) are being held constant
under the options selected, the mechanical power is proportional to the
wingbeat frequency, and the chemical power nearly so. Once the airspeed
is tracking the (decreasing) value of Vmr, and protein is being removed from
the flight muscles, the chemical power drops more steeply, and ends the
flight at only 41% of its starting value.
The BMR (Figure 8.5 lower graph and I54) is calculated from the body

mass excluding fat, and is therefore assumed to decline as protein is con-
sumed from the flight muscles and other organs. It is actually unknown
what happens to the BMR in flight, but under these assumptions, the basal
metabolism burn fraction (F78) is the fraction of the total fuel energy con-
sumed so far in the flight that is due to basal metabolism. This is undefined
at the beginning of the flight, before any fuel energy has been consumed, so
the curve only starts 6 hours into the flight. The curve climbs from about 7%
to 9% as the flight proceeds (note the suppressed zero on this graph). The
BMR in Flight is a somewhat crude statistical estimate, which is added to
the computed mechanical power as an ‘‘overhead’’, so it is not to be
expected that this fraction would have any particular significance. Estimates
depend strongly on the size of the bird, from around 2.5% for a whooper
swan to about 25% for a chaffinch.
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8.2.2 BURNING THE ENGINE

Migrating birds typically set out with a substantial fat fraction, that is

with a proportion of the body mass consisting of fat which is available

for consumption in flight. As the flight proceeds, the bird gets lighter as

the fat is progressively used up, and the power required from the flight

muscles, which depends strongly on the all-up mass, declines even

more steeply than the mass. If the bird has just enough flight muscle

to cover its power requirements at departure, then it soon has excess

power available, as the mass declines. In aircraft, the simplest option

is to run the engine(s) at reduced power, but this is inefficient as air-

craft engines are designed to operate most efficiently at near-

maximum power. Alternatively a multi-engined aircraft can shut down

one or more engines, which allows the aircraft to run the remaining

engine(s) at a higher power level, but leaves it burdened by the weight

and drag of the inactive engines. A migrating bird has a third option

that no aircraft can emulate. Rather than shutting down part of its
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flight muscles, it can oxidise the excess muscle tissue, and use it as

supplementary fuel. It was shown by Lindström and Piersma (1993)

that migrating birds do indeed consume both fat and protein in flight,

and replace both during stopovers. ‘‘Burning the engine’’ not only pro-

vides some extra fuel energy, but also gets rid of both weight and drag,

so further reducing the power required, and stretching the distance

that the bird can fly on the remaining fuel.

8.2.3 ALTERNATIVE MUSCLE BURN CRITERIA

How much muscle tissue, exactly, is enough to continue flying? Flight

provides two alternative muscle burn criteria (selectable by the user)

to determine how much muscle is still needed at each 6-minute inter-

val. Excess muscle is consumed, and the energy released is treated as a

‘‘credit’’, by putting back an equivalent amount of fat. At the beginning

of the flight, the mechanical power is calculated and divided by the

mass of the myofibril component of the flight muscles to get the

mass-specific power, that is, the average mechanical power produced

by unit mass of contractile filaments. This in turn is divided by the

wingbeat frequency to get the mass-specific work which is the amount

of work done by unit mass of myofibrils in each wingbeat. Both of

these variables decline as the mass declines if no muscle tissue is con-

sumed,but the specificworkdeclines less steeply than the specificpower,

because the wingbea t frequency also declines ( Chapte r 7 , Box 7.3).

The default muscle burn criterion in Flight is ‘‘Constant Specific

Work’’, meaning that just enough muscle is consumed to hold the spe-

cific work constant, at the value it had at the beginning of the flight.

The alternative is ‘‘Constant Specific Power’’, in which enough muscle

is consumed to hold the specific power constant at its initial value.

It turns out that if Constant Specific Work is selected, the muscle mass

(including mitochondria) declines at a rate that keeps the flight muscle

fraction approximately constant, which is in general agreement with

field observations, whereas Constant Specific Power results in a steeper

decline of the flight muscle fraction than is observed (Pennycuick

1998a). Also, maintaining Constant Specific Work results in a progres-

sive decline in the specific power, whereas maintaining Constant Spe-

cific Power causes the specific work to increase in the course of the

flight. Since the specific work is directly related to the mechanical

propert ies of the myofib rils (Chapte r 7), a procedu re that forces it to

increase above its initial value is questionable, whereas the alternative

procedure, which causes the specific power to decline, raises no such

questions. The programme also provides a third option, in which no
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muscle tissue is consumed at all, but this produces results at variance

with field observations on long-distance migrants, with possible excep-

tions in very large birds such as swans.

8.2.4 MITOCHONDRIA IN THE FLIGHT MUSCLES

TheMigration calculation in Flight represents the flight muscles as a two-

component system, consisting of the contractile filaments (myofibrils)

which do the work, and the mitochondria which oxidise fat in aerobic

flight, and supply ATPas the immediate sourceof energy for themyofibrils

(Chapter 7, Box 7.6). It is assumed that both myofibrils and mitochondria

are consumed asmusclemass is reduced, but themitochondria have their

own default criterion, which is to hold the specific power (or ‘‘power den-

sity’’) constant, referred to the mass of mitochondria. There are no field

data to go on here, as no field observer has preserved muscle samples

for electron microscopy, to observe the mitochondria fraction. If and

when someone does this, Flight will predict the expected mitochondria

fraction, according to various combinations of options, and any discre-

pancies will shed some light on the way in which migrating birds manage

the components of their flight muscles.

8.2.5 AIRSPEED CONTROL

To travel the maximum air distance per unit of fuel energy consumed,

a bird has to fly at its maximum range speed (Vmr), which is typically

between 1.6 and 1.8 times the minimum power speed (Vmp) (Chapter 3).

As fuel is used up, both Vmp and Vmr decrease, and the ratio of Vmr to

Vmp increases (but only a little). One might suppose that the appropriate

strategy for a bird that requires to cover the maximum distance for its

starting fuel load is to accelerate to Vmr immediately after take-off,

and then reduce speed progressively so as to track the (declining) maxi-

mum range speed throughout the flight. However, extreme long-

distance migrants commonly accumulate fat until their body mass is

40% fat or even more (55% for the Alaskan Bar-tailed Godwit), meaning

that the bird takes on fat until it is barely able to fly. A bird that can only

just fly is limi ted to speed s ne ar the minimu m power speed ( Chapte r 3 ),

although as the power curve is almost horizontal near Vmp, increasing

the speed to 1.2 Vmp increases the power by only 1 or 2%. The standard

Air Speed Control option in Flight assumes that the bird is capable of fly-

ing at 1.2 Vmp at the start of the flight, but no faster. It begins by estimat-

ing Vmp for the bird in its initial configuration, before it has used up any

fat, and sets the initial airspeed to 1.2 Vmp. The flight then proceeds in

two phases, as follows:
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InPhase 1, noflightmuscle tissue is consumed. Instead, as excessmus-

cle power becomes available because of the declining mass, it is used to

increase the speed, while holding the specific work or the specific power

constant, depending on the Muscle Burn Criterion selected. Meanwhile,

Vmr is coming down, and Phase 1 endswhen the increasing airspeed con-

verges with Vmr. There is no range advantage in speeding up beyond Vmr,

so in Phase 2 the bird maintains Vmr (which continues to decrease), and

also holds the specific work (or specific power) constant at the starting

value, by consuming muscle tissue as necessary, as above. A small bird,

starting with a fat fraction that is not too high, may be able to maintain

a speed faster than 1.2 Vmp from the start, and in that case a higher value

can be entered in the Migration Setup Screen for the starting ratio of Vmr

to Vmp. One extreme assumption is to get the starting ratio of Vmr to Vmp

by clicking the box so labelled, and set it as the starting ratio of the

airspeed to Vmp. That will cause the bird to fly at Vmr for the whole

flight, so getting the theoretical maximum range, but it should be

understood that this is unlikely to be a practical option for any

serious long-distance migrant. At the other extreme, no swan gets any-

where near being able to fly at Vmr, even when all of its fat has been

consumed.

8.3 THE CONCEPT OF ENERGY HEIGHT

A bird’s energy height is a virtual height, to which its stored energy would

lift it under certain assumptions (Pennycuick 2003 and Box 8.3). The

stored energy can be of three kinds, fuel energy, potential energy and

kinetic energy. Potential energy height is the easiest kind to visualise,

as it is the same as ordinary height, above some reference level such

as a ground or water surface. The bulk of bird migration takes place at

heights between sea level and 3000 m above sea level (ASL). A bird that

is using thermals as its source of energy for migration gains height (and

also potential energy) by allowing itself to be carried up in a thermal.

Then it converts the height into distance, gliding down on a gradient that

depe nds on its aer odynamic efficiency (Ch apter 10 ). 20 00 m in a single

climb would be typical in good weather conditions. An albatross rolling

off the crest of thewave gains no height in the process, but it gains kinetic

energy, which can optionally be converted into height. However, the

height that it can gain by pulling up is two orders of magnitude less than

the height gained in a typical thermal, say 20 m. A moderate store of fat,

on the other hand, could supply enough fuel energy to raise the bird

two orders of magnitude higher than a typical thermal, say 200 km. In

the real world that is far above the level where the atmosphere is dense



BOX 8.3 Energy height.

A bird’s fuel energy height is defined as the height to which the bird would
be lifted, if all of its fuel energy were progressively converted into work, with
the same efficiency that its muscles convert fuel energy into work, and used
to lift the bird against gravity. The result is not the same as simply dividing
the work by the weight (i.e. turning the converted fuel energy directly into
potential energy), because of the requirement to do the imaginary lifting
operation ‘‘progressively’’. The bird gets lighter as it is lifted, because of
the fuel consumed, and therefore the height gained for each unit of work
done increases.

Variable definitions for this box
efat Energy density of fat
efp Energy density of combined fat and protein fuel
epwet Energy density of wet protein
E Chemical energy released by oxidation of fuel
Ffat Fat fraction
Ffp Fuel fraction for combined fat and protein fuel
g Acceleration due to gravity
h Height
hfat Fat energy height
kp Proportion of fuel energy from protein
m All-up mass
mfat Fat mass
mfp Combined fuel mass of fat and protein
mpwet Mass of wet protein consumed
N Effective lift:drag ratio
Y Distance flown
� Conversion efficiency

We begin with the restriction (later to be relaxed) that the bird’s only fuel
is fat with an energy density efat, meaning that when a mass Dmfat of fat is
oxidised, an amount DE of chemical energy is released, where:

DE ¼ efatDmfat; ð1Þ
and also with the assumption that the reaction products are lost from the
body, so that the all-up mass declines by Dmfat. We may imagine the bird
consuming its stored fat bit by bit, converting a proportion � of the energy
released into work, where the conversion efficiency (�) is a number between
0 and 1. At some point in the imagined ascent, the bird is lifted a small ver-
tical distance Dh, for the consumption of a small amount of fuel energy DE,
of which a proportion � is converted into work, and thence into potential
energy. Equating the potential energy gained to the work done:

mgDh ¼ �DE; ð2Þ
where m is the current value of the bird’s all-up mass, and g is the accel-
eration due to gravity. The fuel energy (DE) comes from reducing the mass
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of stored fat (and also the all-up mass), by a small amount (Dm), which is
converted into energy by multiplying the energy density (efat) of fat:

DE ¼ efatDm: ð3Þ
The minus sign indicates that the mass decreases when the energy is sup-

plied. Combining Equations (2) and (3):

Dh
Dm

¼ ðefat�Þ
mg

: ð4Þ

The height to which the bird would be lifted by the consumption of fat
corresponding to a given part of its initial mass can be found by integration.
Suppose that the bird starts at ground level with all-up mass m, which
includes a mass mfat of fat, then the energy height hfat to which it is lifted
when all of the fat has been consumed is:

hfat ¼ efat�

g

� �
ln

m

ðm mfatÞ
� �

: ð5Þ

This can be expressed more conveniently in terms of the initial fat
fraction (Ffat),where

Ffat ¼ mfat

m
: ð6Þ

Note that m is the all-up mass, not the ‘‘lean mass’’. This because m,
including fat, is the mass that the bird has to lift when it flies. In terms of
Ffat, Equation (5) becomes:

hfat ¼ efat�

g

� �
ln

1

ð1 FfatÞ
� �

: ð7Þ

If this is multiplied by N, the lift:drag ratio, it gives the migration range
according toBreguet’s equation (Box 8.1). Breguet’s equation could bewritten:

Y ¼ hfatN ; ð8Þ
where Y is the distance flown. The first factor (hfat) represents the fuel
reserve, taking into account the efficiency with which it can be converted
into work, and the strength of gravity. The second factor (N) represents
the bird’s aerodynamic efficiency. It is the slope on which the bird comes
‘‘down’’ from its initial energy height, like the glide ratio in gliding flight.

Protein as supplementary fuel
It would appear that the oxidative machinery in the mitochondria is not
capable of metabolising fat alone, but must get a certain fraction of the total
energy released (perhaps 5%) from oxidising protein (Jenni and Jenni-Eier-
mann 1998). Protein in living tissue is always hydrated, and we assume that
the water of hydration is lost from the body when the protein is oxidised, as
well as the mass of the protein itself. The energy density of wet protein
(epwet) is what determines the mass lost when the protein is oxidised, and
is nearly seven times less than efat. If the fuel energy released is divided
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between a proportion kp from protein and 1 – kp from fat, then the mass of
wet protein (mpwet) lost in the course of oxidising a mass mfat of fat is:

mpwet ¼ mfat
efat
epwet

� �
kp

ð1 kpÞ
� �

ð9Þ

The combined mass (mfp) of fat and protein consumed is:

mfp ¼ mfat þmpwet ¼ mfat 1þ efat
epwet

� �
kp

ð1 kpÞ
� �� �

: ð10Þ

The energy density (efp) of the combined fuel is intermediate between
that of fat and wet protein:

efp ¼ efatepwet

½kpefat þ ð1 kpÞepwet� : ð11Þ

The fuel fraction (Ffp) for the combined fat and protein fuel can be found
from the fat fraction by dividing Equation (10) by the all-up mass:

Ffp ¼ Ffat 1þ efat
epwet

� �
kp

ð1 kpÞ
� �� �

: ð12Þ

The energy height for the combined fuel can then be found from
Equation (7), using Ffp instead of Ffat for the fuel fraction, and efp instead
of efat for the fuel energy density.
Figure 8.6 shows the energy height as a function of the fat fraction on the

alternative assumptions that fat is the only fuel (lower curve), or that 5% of the
energy comes from protein and 95% from fat (upper curve). It might be sup-
posed that the energy heights resulting from these two assumptions would dif-
fer by a constantpercentage, but theydonot. Thepercentage increase in energy
height (and therefore also in range) resulting from the use of protein as supple-
mentary fuel increases froma gain of 10% for amoderate starting fat fraction of
0.20, to 33% for an extreme starting fat fraction of 0.55. This is because the
energy density of wet protein, considered as a fuel, is much lower than that of
fat, because of thewater of hydration. Although only a small fractionof the total
energy comes from protein, its consumption gets rid of a lot of mass, so reduc-
ing the amount of energy required per metre of distance flown. ‘‘Burning the
engine’’ is a highly effective method of stretching the range, more so than
appears at first sight. The process can be followed step by step from the com-
puter output and commentary in Box 8.2.

Regaining energy height at stopovers
The consumption of both protein and fat during long flights implies that
muscle tissue has to be built up at the same time that fat is stored, as a bird
prepares for a long flight, or refuels during a stopover during a multistage
migration. It is clear from physiological experiments that birds do this
(Lindström and Piersma 1993), and presumably they put on flight muscle
tissue fast enough so that they remain able to fly at any stage during the
recovery process. This is a topic that needs to be investigated with the
energy height concept in mind.
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enough to sustain flight, but if it were possible to fly at such a height, the

bird would be able to glide for perhaps 3000 km on the way down, which

is enough tomigrate across the Sahara. Fat is theonly form inwhichabird

can store energy in sufficient quantity to fly a distance of this order, with-

out replenishment (Figure 8.6).

8.3.1 ENERGY HEIGHTS FOR FAT AND PROTEIN FUEL

A bird’s fat energy height is closely related to its fat fraction (not fat

mass). It can be seen as one component of Breguet’s range equation

(Box 8.1). The other component is the effective lift:drag ratio, which

is the gradient on which the bird comes ‘‘down’’ from its initial energy

height, expressing the bird’s aerodynamic efficiency in flapping flight

(Ch apter 3, Box 3.4). Stored fuel can raise a bird to en ergy heights of

hundreds of kilometres, and therefore requires infrequent replenish-

ment in the course of migration. In some cases, a single period of

refuelling is sufficient for the migration flight and for the initial nesting

activities after arrival. On the other hand, stored potential energy

corresponds to a much smaller height, and therefore has to be replen-

ished more often (as in thermal soaring), while an albatross has to

replenish its kinetic energy at intervals of a minute or two at most

(Ch apter 10 ).
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FIGURE 8.6 Fat energy height as a function of fat fraction, assuming that fat is the sole
fuel (dashed line), or that 5% of the total energy comes from oxidising protein (solid line).
This graph is the same for any bird, large or small. The proportional effect of consuming
protein on the energy height becomes appreciable at fat fractions above about 0.2, and
increases dramatically at higher fat fractions. After Pennycuick (2003).
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The consumption of protein from the flight muscles (and elsewhere)

increases the energy height corresponding to a given fat fraction (Box

8.3). The primary fuel remains fat, and the bird can fly until its fat

(not its protein) is used up, but it seems that there are physiological

constraints that require, in effect, that about 5% of the total fuel energy

must come from oxidising protein (Jenni and Jenni-Eiermann 1998).

One might imagine that this would increase the energy height for a

given fat fraction by 5%, but this is not so. Besides providing supple-

mentary fuel energy, the consumption of protein early in the flight also

reduces the mass, so that the remaining fat corresponds to more

energy height than it otherwise would have. The lower curve in

Figure 8.6 shows the energy height corresponding to fat only, as a func-

tion of the fat fraction up to 0.60. It curves gently upwards, while the

upper curve, showing the energy height if 5% of the total energy comes

from protein, curves upwards more strongly, so widening the gap

between the two curves. For a fat fraction of 0.2, the energy height

for fat and protein is about 10% higher than that for fat alone, while

for a fat fraction of 0.55, it is 33% higher. The range is extended by

the same amount as the energy height, or actually somewhat more,

as the reduction of body cross-sectional area due to consumption of

fat and protein increases the lift:drag ratio.

8.3.2 ESTIMATING INITIAL ENERGY HEIGHT FROM BODY

MASS ALONE

The practical question of how one estimates the energy height at the

start of a migratory flight, without killing a lot of birds to determine

their fat fractions, can also be addressed by Flight’s migration calcula-

tion. The method is illustrated in Box 8.4 for that remarkable bird the

African Lesser Flamingo (Phoenicopterus minor) studied by Tuite

(1979). It can be applied to any bird in which a large number of indivi-

duals have been weighed, ranging from very fat pre-migratory birds to

very thin ones. Box 8.4 shows how several runs of the programme were

used to determine from Tuite’s field data (which did not include car-

case analyses) that Lesser Flamingos reach a maximum fat fraction of

0.46. Table 8.3 is the output for this starting value, and it looks exactly

like Table 8.2 for the Great Knot. This is because both tables were out-

put by the same programme. Flight is a general model that works for

any bird (or bat or pterosaur), for which the input data are known from

field observations, or can be set up with hypothetical values.
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Some birds, such as geese, store fat in places that alter the external

shape of the body, so that a field observer can assign a ‘‘fat index’’ score

to an individual on the basis of its shape as seen through a telescope or

on a photograph. Ecologists usually calibrate these scores in terms of

the mass of stored fat which, besides being unnecessarily complicated,

is not the appropriate variable to turn these scores into an estimate of

energy height. The variable needed for that is the fat fraction, which is

probably more directly related to the visible shape in the first place

(Figures 8.7 and 8.8).
8.3.3 ENERGY HEIGHT AS AN INDICATOR OF CONDITION

Migrating birds, like aircraft, normally arrive at their destinations with

some fuel in hand. The energy height on arrival can be seen as a mea-

sure of the bird’s "condition", which can be directly compared across

different species and different habitats. For example, an individual

Alaskan Bar-tailed Godwit (Section 8.2 above) has recently been

satellite-tracked around a complete annual circuit, consisting of three

non-stop flights around the western Pacific, from New Zealand to

north-eastern China (stopover), then to Alaska (breeding) and finally

back to New Zealand (http://alaska.usgs.gov/science/biology/

shorebirds/barg updates.html). This allows the Flight migration simu-

lation from Pennycuick and Battley (2003) to be re-run with the actual

distances. If the bird started on its southward migration from the

Yukon-Kuskokwim delta in Alaska with a fat fraction of 0.548,

corresponding to an energy height of 940 km, as previously assumed

from Piersma and Gill (1998), then it would have arrived at the Firth

of Thames in New Zealand (10,880 km) with 316 km of energy height

in hand, as a reserve for dealing with headwinds or getting drifted off

course. The first leg of the northward migration was almost as long,

9980 km to the Yalu Jiang Reserve in north-east China, where the god-

wit would have arrived at an energy height of 364 km, if it started from

the same energy height as previously observed. It then flew 5550 km to

the nesting grounds in Alaska, where it would have arrived at an energy

height of 608 km, if it recovered its original 904 km during the stopover

in Yalu Jiang. The godwit was clearly capable of flying the whole dis-

tance from New Zealand to Alaska non-stop (as it did that in the other

direction), but the stopover in China allowed it to arrive on the breed-

ing grounds with more energy height in hand, as a reserve for nesting.

Those arctic-breeding species that arrive before the habitat is

http://alaska.usgs.gov/science/biology/shorebirds/barg_updates.html
http://alaska.usgs.gov/science/biology/shorebirds/barg_updates.html
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producing enough food to support them (e.g. some species of geese)

presumably require more energy height on arrival than those that nest

in habitats that are already productive when they arrive.
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BOX 8.4 Estimating fat fraction from body mass.

Variable definitions for this box
mmin Body mass of a bird with zero fat reserves, but not actually starving
mmax Body mass of a bird with maximum stored fat

Measuring a bird’s fat fraction directly is a lengthy, messy and expensive
operation that involves killing birds. However, it is possible to use Flight
to get an estimate of the fat fraction corresponding to any mass, without
killing any birds. The key is to weigh a lot of birds of a given species, either
from a wild population or from captive birds under different feeding
regimes, and get estimates of the following two variables. mmax is the maxi-
mum mass ever seen in a bird that is heavily loaded with fat but able to fly,
and mmin is the mass of a bird that has used up all of its disposable fat, but
is not yet actually starving. One cannot get the fat mass simply by subtract-
ing mmin from mmax, because the difference between them is only partly due
to fat. Part of it is due to changes in muscle mass, which accompany the
deposition or consumption of fat. Flight will take account of this, and can
be used to find the fat fraction at mmax by the following method, applied
here to field data on Lesser Flamingos (Phoenicopterus minor), which were
studied by Tuite (1979) in the East African Rift Valley. This species is adapted
to cope with unpredictable variations in its food supply that swing errati-
cally between abundance and famine, so giving Tuite opportunities to esti-
mate mmax at 2.20 kg, and mmin at 0.825 kg. Wing spans and areas were
measured on captive birds with the help of staff at the Wildfowl and Wet-
lands Trust, Slimbridge.
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FIGURE 8.7 The final mass from five runs of the Migration calculation for Tuite’s
Model Flamingo (Table 8.3), starting at the estimated maximum mass of 2.2 kg. Dif
ferent values of the starting fat fraction were tried, from 0.44 to 0.48. The curve
shows that a starting fat fraction of 0.46 leads to a final mass of 0.825 kg, which
is Tuite’s estimate for the minimum mass. The fat fraction corresponding to any value
of the mass between the minimum and the maximum can then be read from Table 8.3
(third block, Column G). See also Figure 8.8.
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BOX 8.4 Continued.

The first step is to run Flight’s Migration calculation, with the starting mass
set to mmax, and the fat fraction set to any reasonable guess (0.3, say).
The output shown in Table 8.2 is from one of several runs, each starting with
the same all-up mass and flight muscle fraction, but a different fat fraction.
For each run, the final mass is noted, when the fat is exhausted. If this is
more than mmin, then the starting fat fraction is increased for the next
run, or vice versa. The starting fat fraction (0.46 in this case) that leads to
a final mass of mmin is found by trial and error (Figure 8.7). The fat fraction
corresponding to any mass between mmin and mmax can then be read in
column G of the third block of the migration printout, against the mass in
column H of the first block, and the energy height for combined fat and pro-
tein is in Column K of the third block. Both lines are plotted against all-up
mass in Figure 8.8.
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FIGURE 8.8 Graphs plotted from the Lesser Flamingo migration simulation in
Table 8.3, showing the estimated fat fraction (solid line) and energy height (dashed
line) corresponding to a Lesser Flamingo’s measured body mass. Similar graphs
can be constructed for any species for which estimates of the minimum and maximum
body mass (mmin and mmax) are available (Box 8.4), and can then be used to estimate
the fat fraction and energy corresponding to any body mass between these limits,
without any need for carcase analysis.

Tuite (1979) was aware that breeding concentrations Lesser Flamingos
appear erratically over a vast area of Africa from Kenya to Namibia, and also
that the flamingos in his study area would disappear for prolonged periods
when feeding conditions were poor, and mysteriously reappear when condi-
tions improved. Surveys failed to reveal the missing flamingos in nearby Rift
Valley lakes, and Tuite speculated that the flamingos of eastern and south-
ern Africa were actually a single population that roamed over the entire
region. These would be exploratory flights in search of good feeding condi-
tions which might or might not be found, not a predictable seasonal migra-
tion. For such a strategy to be possible, a flamingo would have to be able to
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BOX 8.4 Continued.

make a reconnaissance flight, with enough fuel in reserve to come back if
no food supply were found. The same output that is used for finding the
fat fraction indicates that the range for a starting fat fraction of 0.46 would
be 11,700 km. However, this is for a body drag coefficient of 0.1, which is
perhaps over-optimistic for a flamingo, with its prominent head and long,
trailing legs. Doubling the body drag coefficient to 0.2 does not affect the
estimate of the starting fat fraction, but it does affect the distance that can
be flown. The range is reduced to 8320 km, which is still more than enough
to fly from Kenya’s Lake Bogoria to Namibia’s Etosha Pan and back again,
without refuelling. Thus, the conclusion is that it would be feasible for fla-
mingos to undertake such long exploratory flights, provided that the strat-
egy, of which these flights would be a part, involves departing from their
current location when conditions are good.
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8.3.4 ENERGY RATES OF CLIMB AND SINK

In addition to losing energy height due to the exertions of migration, a

bird also loses energy height whether it is active or not, due to basal

metabolism (below). This is metabolic sink, and small animals sink fas-

ter than large ones. Two birds of different size with the same fat frac-

tion are at the same energy height, and would be able to migrate the

same distance if their effective lift:drag ratios were the same. However,

metabolic sink effectively decreases the lift:drag ratio, and steepens the

virtual ‘‘descent’’, more so for the smaller bird than for the larger one. If

both birds sit still without migrating, then both will ‘‘descend’’ at their

respective metabolic sink rates, and the smaller one will reach zero

energy height (starve) sooner than the larger one.

Conversely, the objective of hyperphagia before migration, or during

a stopover, is to gain energy height as quickly as possible, and in this

direction also, it seems that small birds can achieve a higher maximum

energy rate of climb than larger birds. The capabilities of different birds

in this respect have been studied under the heading of ‘‘stopover ecol-

ogy’’ (Lindström 1991; Lindström and Kvist 1995), but the results were

unfortunately expressed in terms of rate of increase of fat mass, relative

to ‘‘lean mass’’. As migrants build up protein in the flight muscles and

other organs, at the same time as they build up fat mass, the ‘‘intake

rate’’ for fat, expressed in this way, is not very enlightening. It is not

possible to determine from the published results whether a bird can

maintain a constant energy rate of climb until refuelling is complete,

or whether (more probably) the rate of climb starts high, and decreases

as the fat fraction increases. A constant rate of energy climb would
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mean that the rate of energy intake would have to increase as the mass

builds up during the refuelling process. This would need to be clarified

before drawing any conclusions about the maximum possible average

migration speed, including stopovers.

8.4 EFFECT OF FLYING HEIGHT ON RANGE

Flight allows the user to set the air density to a value corresponding to

a chosen altitude in the International Standard Atmosphere (Ch apter 2 ,

Box 2.2). The effect of height on range can be seen by loading a bird,

such as the Great Knot, into the programme (from the Preset Birds

database) and launching it with a large initial fat fraction, first at sea

level, then at a height of, say, 3000 m. This makes very little difference

to the range, but reduces the flight time. Both the speed and the

mechanical power increase by the same amount, in inverse proportion

to the square root of the air density, and therefore the ratio of speed to

chemical power, which determines the range, does not change much.

However, if the bird is flying at or near maximum power at sea level,

then it will not be able to meet the increased power requirement at

the higher altitude, at least not until it has used up some fuel. Flight

only considers the mechanical power requirements, not the demand

for oxygen. As the partial pressure of oxygen in the atmosphere is less

at higher altitudes, while the demand for oxygen increases, there is pre-

sumably some maximum height at which the bird is just able to get

oxygen fast enough to meet its aerobic requirements, and a lower level

at which it can fly at its maximum range speed, if it can do that at all. It

is likely that bird lungs, with their ‘‘cross current’’ arrangement

(Ch apter 7 , Box 7.7) are more effective than mamma l lungs at satu rat-

ing the blood with oxygen when the air density is low. Tucker (1968a)

demonstrated this in an experiment with birds and mice in a hypobaric

chamber, but there is no quantitative theory that could be incorporated

into Flight.

From Version 1.18, the Flight programme allows the user to specify

an optional Cruising Altitude, in addition to the Starting Altitude which

is required. If a cruising altitude is specified, which is higher than the

starting altitude, the programme first estimates the maximum rate of

climb of which the bird is capable in its starting configuration, using

the metho d in Chap ter 7 , Box 7.5. To do thi s, it need s the new defaul t

value for the maximum isometric stress of the muscles (560 kN m 2)

from the observations of a Whooper Swan’s performance in Chapter 7.

The bird climbs at maximum power until it reaches the cruising

altitude, then levels off, and continues at that height until its fat runs
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out, according to whichever speed control option has been selected.

During the climb, the bird uses continuous flapping regardless of

which flight style option has been selected, and the selected flight style

option takes effect when it levels off at the cruising altitude.

Flight’s Excel output gives the total time and distance from take-off

to the point where the fat runs out, at the cruising altitude, including

the time and distance for the climb if one was specified. The total dis-

tance is less that it would be if the bird had been launched at the cruis-

ing altitude, because of the energy used in the climb. However, the time

and distance to glide back down to the starting altitude is also listed,

although it is not included in the totals. If the glide distance is added

to the total, then this will usually exceed the distance for flying the

whole way at the cruising level.

In terms of energy height (above), a real bird converts some of its fuel

energy height into actual height in the initial climb to the cruising

level, and then glides down at the end, converting height into distance

without using any fuel. The distance covered in a flight profile consist-

ing of an initial climb, a level cruise, and a final descent is little differ-

ent from that covered by flying level all the way, because the gradient

on which height is converted into distance is much the same for fuel

energy height as for actual height, being determined by the bird’s effec-

tive lift:drag ratio. Although it is true that more fuel energy is converted

to potential energy in the climb than is dissipated against drag in the

descent, because the bird is heavier at the beginning of the flight than

at the end, this does not directly affect the total distance flown.

8.5 AEROBIC CAPACITY AND CLIMB

Available muscle power is likely to be limited in an aerobic climb by

the declining rate at which the bird can extract oxygen from the air,

whose density is progressively decreasing. Although the principle is

straightforward, and was spelled out with a diagram by Pennycuick

(1975a), this effect cannot be simulated in Flight because of the

absence of quantitative information about the performance of bird’s

lungs at low air densities. The programme recognises that the speed

and power required to fly level increase with height, and that a declin-

ing amount of excess power is available for climbing, but it does not

recognise that the rate of climb may be limited to a lower level by aer-

obic capacity which (presumably) also declines with height. The

programme has no way to determine a bird’s service ceiling, meaning

the maximum height at which a climb can be sustained, and the pre-

dicted rate of climb is likely to become over-optimistic as the climb
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proceeds. For example, the reader may like to try launching the Great

Knot of Table 8.2 (whose starting data may be loaded directly from the

Preset Birds database) with a starting altitude of zero (sea level) and a

cruising altitude of 5000 m. The programme estimates the initial rate

of climb as 2.48 m s 1, and says that the bird will reach its cruising

height 35 minutes after take-off, still climbing at 2.26 m s 1 when it gets

there, despite the fact that the air density at 5000 m is only 74% of its sea

level value. The estimate of the starting rate of climb may be realistic,

but field observations suggest that a real bird would probably be forced

to level off sooner by shortage of oxygen. However, there is no basis at

present for estimating the height at which that would happen.

8.6 BASAL METABOLISM

An animal’s basal metabolic rate (BMR) is the rate at which it con-

sumes fuel energy when it is inactive, after allowing for any account-

able items of chemical power, such as the power required for

maintaining body temperature, or for digesting food. Although it is

unclear exactly what the BMR is needed for, it is clear that it has no

direct connection with the power required for flight, which comes

mainly from the mechanical power needed to support the weight and

overcome aer odynami c drag. As no ted in Chapte r 3, calcula ting the

mechanical power involves taking note not only of the body mass,

but also of a number of other variables not usually considered in stud-

ies of BMR, such as the strength of gravity, the air density and the bird’s

wing span.

The BMR is not required in the calculation of mechanical power in

Flight, but when this is converted to chemical power, the BMR is

added. The underlying assumption (very difficult to test) is that

the BMR is a ‘‘maintenance overhead’’, which is required at the same

rate whether the bird is active or not. In the Migration calculation,

the BMR is recalculated at 6-minute intervals of flight time from the

Lasiewski and Dawson regressions (Box 8.5), using the remaining body

mass, excluding fat. These equations assume that the BMR varies with

approximately the 0.75 power of the mass, whereas the mechanical

power for geometrically similar birds would vary with the 7/6 power

of the all-up mass. Flight takes account of deviations from geometrical

similarity, but still shows that the ratio of the chemical power required

to fly at Vmp to the BMR is much higher in large birds than in small

ones. In swans, the BMR is a trivial component of the total power

requirements (like 2%), whereas estimates of this fraction are around

20% or even 25% in small passerines. This point is illustrated in
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Ch apter 13 . Stratage ms that increase the cruis ing speed , such as flying

high, or using ‘‘bounding’’ flight, increase the range in small birds, by

reducing the flight time, which in turn reduces the fuel energy wasted
BOX 8.5 Basal metabolism in Flight.

Variable definitions for this box
mempty Body mass less mass of crop contents (if any)
mfat Mass of consumable stored fat
Pbmr Basal metabolic rate

There is a vast empirical literature on basal metabolism, and related arbi-
trarily defined quantities like ‘‘existence metabolism’’ and so on. These
quantities sometimes have the dimensions of power, sometimes those of
power/mass. Summaries are commonly expressed in the form of regres-
sions of ‘‘metabolism’’ on ‘‘body mass’’, which are themselves not always
unambiguously defined. There is no theory behind any of this. The concept
in Flight is that basal metabolism is a component of chemical power, due to
the maintenance requirements of living tissues. It is seen as an ‘‘overhead’’
that has to be added to the mechanical power requirements, which are
themselves calculated from the mechanics of locomotion ( Chapter 3). The
two regressions used to implement it come from Lasiewski and Dawson
(1967), who measured the rates at which birds sitting quietly in a respirom-
eter chamber consumed oxygen. They published different regressions for
passerines and birds of other orders. This may reflect a real difference,
and is the reason why Flight’s Setup screens ask whether the bird is a pas-
serine or not.
The basal metabolic rate, being a power, gets the variable name Pbmr (not

the acronym BMR—see Chapter 1, Box 1.1). The ‘‘mass’’ to which it is
referred is the difference between the empty mass mempty and the fat mass
mfat (Chapter 1, Box 1.2), in other words the all-up mass excluding the fat
mass and any crop mass. In the Migration calculation, it is recalculated at
6-minute intervals of flight time, as the mass declines, and added to the
chemical power required to cover mechanical demands. Lasiewski and
Dawson’s regressions, translated into SI units (power in watts, mass in kilo-
grams) are:

Pbmr ¼ 6:25ðmempty mfatÞ0:724 for passerines; and

Pbmr ¼ 3:79ðmempty mfatÞ0:723 for non passerines:

No useful purpose is served by expressing chemical power as a multiple of
BMR, or per unit of body mass. These practices make it difficult or impossi-
ble to retrieve the original measurements of power from published results. If
the measured power is published (preferably in watts), together with the
essential input data for Flight’s calculations (mass, wing span, wing area,
air density etc.), then the results can be compared with the predicted chem-
ical power, but this has seldom been done.
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on BMR. They are less useful to large birds, whose BMR is relatively

small in the first place.

One of the columns of the Migration Excel output from Flight lists

the ratio of the chemical power to the BMR, not because this ratio is

meaningful, but because some physiologists continue to express

powers in this form. This ratio will be seen to change in the course of

a long migratory flight, and to vary wildly between different birds.

The common practice among physiologists of expressing measure-

ments of total chemical power as a multiple of BMR serves only to

make the actual power measurements (which could be compared

with Flight’s predictions) difficult or impossible to retrieve from the

published results.
8.7 WATER ECONOMY

Migrating birds of many species fly for days at a time, working likemara-

thon runners, sowhat aboutwater? Birds do not sweat likemammals, but

dispose of waste heat mainly by convection from the thinly insulated

surfaces under the wings and on the sides of the body, which are exposed

in flig ht to a copiou s stream of cooling air (Ch apter 7 ). If the air is so hot

as to require evaporative cooling, they do this through the respiratory

tract, which is in any case the primary route for water loss. However, as

the air temperature in clear air decreases by about 1 �C per 100 m of

height, a moderate climb will usually bring relief in cooler air.

The oxidation of fat produces water as a by-product, so the question

is whether enough water is produced in flight to offset the losses in the

expired air. Carmi and Pinshow (1995) attempted a mathematical anal-

ysis, and concluded that a bird probably would be able to cover its

losses in cool, moist air, but probably not in hot, dry air. However,

the analysis contained too many hard-to-measure variables for clear-

cut predictions in particular cases. There are numerous instances of

long-distance migration routes used by land birds crossing the sea,

with no possibility of replenishing their water, which suggests that

migrating birds probably can cover losses, except possibly in unusually

unfavourable circumstances. The observation that swans drink copi-

ously on completing a migratory flight has probably been misinter-

preted, as these birds, being folivores, have to maintain a liquid

bacterial culture in the caecum for breaking down plant cell walls. They

probably empty the caecum contents to reduce the all-up mass before

departure, and have to drink to replace it on arrival.
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8.8 SLEEP

One can only speculatewhether or notmigrating birds sleepwhile flying,

as it is difficult to determine whether a warbler over the middle of the

Sahara is or is not wide awake. Actually, it is far from clear why animals

need to sleep, or exactly what happens when they do. Maintaining level

flight and a constant heading are straightforward functions that can be

managed in aircraft by a simple autopilot, and it is possible that birds

have an autopilot function, which allows prolonged straight-and-level

flight with some other brain functions disabled. Common swifts are gen-

erally believed never to land except when nesting, and have been

observedby radarmaintaining an into-windheadingwhenflying at night

(Bäckmann and Alerstam 2002). This would imply that they can observe

their drift relative to the ground, and adjust the heading to minimise it.

Whether or not they need to be awake to do that is, however, unclear.
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ACCELERATED FLIGHT AND MANOEUVRING
Flight is controlled by changes of wing shape that lead to angular accelerations
about the three axes of a bird’s body (pitch, roll and yaw). If these lead in turn to
accelerations in the dorso ventral direction, the effect is to alter the value of gravity,
together with anything that depends on gravity, including the power required to fly.
Small birds exploit this by ‘‘bounding’’ flight, in which they use increased gravity to
increase their cruising speeds. Structural strength limits the gravity increase that can
be tolerated in manoeuvres such as tight turns.

The power cur ve of Chap ter 3 and the gl ide polar of Chapte r 10 are per-

formance curves for a bird in ‘‘unaccelerated’’ flight, that is, flying in a

straight line at a constant speed. Actually only straight gliding flight is

truly unaccelerated. Flapping flight can only be unaccelerated in the

sense that there is no change of speed or direction over one or more

complete wingbeat cycles. Within each wingbeat cycle, a bird in hori-

zontal flapping flight accelerates upwards during the downstroke of

each wingbeat, and downwards during the upstroke, and these are

not trivial accelerations. It does this because the aerodynamic force

exerted by the wings on the body has to be greater during the down-

stroke than during the upstroke, in order to overcome drag. If this force
245
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drops to zero during the upstroke, then the body’s upward acceleration is

momentarily equal to�1g,whereg is the accelerationdue to gravity. If the

upstroke and the downstroke are of equal duration, thenþ1g is required

during the downstroke, to keep the flight path horizontal on average. The

bird actually feels an acceleration that is offset by 1g, and oscillates at the

wingbeat frequency between zero (free fall) and þ2g, because the wings

have to generate an average upward force equal to the weight, to keep

the flight path horizontal. This might be considered an extreme case,

but actually the range of acceleration observed in each wingbeat cycle

of level flight can be somewhat greater than 0g–2g (Pennycuick et al.

2000). Pilots who know what 0g and 2g feel like will recognise that the

apparently untroubled flight of migrating birds involves enduring this

constant juddering, at a frequency of several Hz, for hours or days at a

time. However, there is no reason to believe that the power required to

fly horizontally by flapping is either more or less than that required from

an engine driving a steadily rotating propeller.
9.1 INTERMITTENT FLIGHT STYLES IN
FLAPPING FLIGHT

Cyclic changes of speed, with a period longer than the wingbeat

period, are also considered to be ‘‘unaccelerated’’ by Flight, provided

that the average speed remains constant from one cycle to the next.

Some unnecessary confusion has been introduced into the study of

flight styles of this kind by obscure and misleading terminology. The

cyclic accelerations are caused by the bird flapping during only a part

of the cycle (the power phase). Two different styles can be distinguished,

depending on what the bird does during the other phase, when it is

not flapping (Figure 9.1). In flap-gliding, which is common in large glid-

ing birds like eagles, pelicans, etc., the power phase alternates with a

gliding phase, resulting in cyclic changes of height, or speed, or both.

The term ‘‘undulating flight’’ for this type of motion is misleading and

should be avoided, because a flap-gliding bird does not necessarily

undulate. It may go along perfectly level, increasing and decreasing

its speed in each cycle. The obscure term bounding has become en-

trenched in the literature for the other intermittent style, in which the

power phase alternates with a ballistic phase, so called because the bird

wraps its wings tightly around the body while it is not flapping, and

becomes in effect a wingless, streamlined body that develops no lift,

and follows a ballistic trajectory. Bounding is often (but not always) used

by small passerines, and by a few larger birds, notably woodpeckers.
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FIGURE 9.1 (A) A flap gliding cycle consists of a power phase and a gliding phase. The
flight path does not necessarily ‘‘undulate’’. The bird either climbs or increases its air
speed during the power phase, or does some combination of the two, and reverts to its
original height and airspeed during the gliding phase. The height and airspeed return
to their original values after each complete cycle. (B) In bounding, the bird is in free fall
during the non flapping phase, because its wings are closed and wrapped round the
body. It follows a downward curving, ballistic trajectory, and compensates by curving
the flight path upwards during the power phase. This increases the value of gravity,
against which the wings have to work, to g/q, where g is the acceleration due to
gravity, and q is the power fraction, defined as the duration of the power phase, divided
by that of the complete cycle. Wingbeat frequency in either flap gliding or bounding is
defined as the number of wingbeats in the power phase, divided by the duration of the
power phase (not that of the complete cycle). After Pennycuick (2001).
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An undulating flight path is obligatory in bounding, because the bird is

in free fall during the ballistic phase.

The calculations in Flight for flap-gliding and bounding are outlined in

Box 9.1, and refer to a bird which is flying steadily along in a straight line,

with a regular cycle of flapping and non-flapping periods, maintaining a

constant height and speed from one cycle to the next. They do not apply

to a bird that is performing an irregular sequence of short climbs anddes-

cents, turns, accelerations and decelerations (as in a swallowhawking for

insects), and they definitely do not apply to a bird that is flying erratically

in awind tunnel, because it has not been trained to fly steadily. Thewing-

beat frequency in either style is measured by counting the number of

wingbeats within the power phase, and dividing by the duration of the

power phase, not by the period of the complete cycle. The accelerations

in bounding result in an increase in thewingbeat frequency, over its value

in continuous flapping (Box 9.1).



BOX 9.1 Intermittent flight styles.

Flight offers three alternative ‘‘styles’’ for flapping flight, all of which refer to
flight that is level and unaccelerated, when averaged over a complete cycle.
Continuous flapping is the default flight style. The other two are flap-gliding
in which the bird regularly alternates between short periods of flapping and
gliding, and bounding, in which the bird flaps for a few wingbeats on an
upwardly curved flight path, then closes its wings and follows a ballistic tra-
jectory. If you select either of the intermittent flight styles in the Setup
screens for power curves or migration, Flight will ask for a value for the
‘‘power fraction’’, which is the duration of the flapping phase, divided by
the duration of the full cycle. It will not accept a value below 0.2 for the
power fraction in bounding, as this would imply that the bird has to pull
more than 5g during the flapping phase, which is considered improbable.
If you enter 1 for the power fraction, the programme will revert to continu-
ous flapping flight.

Variable definitions for this box
g Acceleration due to gravity
hb Bound height
Pind Induced power
Ppro Profile power
Ppar Parasite power
Pmech Total mechanical power
q Power fraction
t Bound period

Flap-gliding
As explained in the main text of this chapter, the average power over a
complete flap-glide cycle is the same as in continuous flapping, but the
work is done in a fraction of the cycle period. The mechanical power dur-
ing the gliding phase is zero, but the power during the flapping phase has
to be higher than in continuous flapping flight, to make up for energy
losses during the gliding phase. Flap-gliding may be necessary in some
birds with high wingbeat frequencies, to raise the specific work during
fla p p in g t o a l e v e l a t w h ic h t h e m u sc l e c a n w o r k e f fic i e n t l y ( Chapter 7,
Box 7.1).

Bounding
The term ‘‘bounding’’ (not ‘‘flap-bounding’’, whatever that means) refers to
a style with alternating flapping and ballistic phases. Passerines in bounding
flight fold the wings tightly against the body in the ballistic phase, making
the whole bird into a streamlined body of approximately circular cross sec-
tion. A body of this shape may, if it has a tail, develop a moment that aligns
its head into the relative wind, as in a feathered arrow, but it is not capable
of developing aerodynamic lift. Wings do that, but they are removed from
the airflow during the ballistic phase of bounding, by wrapping them
around the sides of body. The notion that ‘‘body lift’’ affects the trajectory
in the ballistic phase appears to have arisen from a mistaken belief that
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‘‘lift’’ acts upwards, which is not necessarily so. The body does, of course,
have drag, and the assumption in Flight is that the drag of the body with
wings folded is the same as that of the wingless body, as used for calculating
parasite power (Equation 1, Box 3.2). In that case, parasite power is not
affected by the bounding action, and is required at the same rate as in
continuous flapping.
Induced power is zero during the ballistic phase, but higher in the flap-

ping phase than in continuous flapping. It is only required for a fraction q
of the time (where q is the power fraction), but the value of gravity against
which the weight has to be supported is g/q instead of g, because of the
upward acceleration in the flapping phase. Likewise, the profile power is
required only during the flapping phase, but is found from the ‘‘absolute
minimum power’’ as in Box 3.3, which becomes a function of g/q instead
of g. The total mechanical power Pmech is found by adding together the
induced power (Pind), the profile power (Ppro) and the parasite power (Ppar)
as before:

Pmech ¼ q½Pindðg=qÞ þ Pproðg=qÞ� þ Ppar: ð1Þ
This shorthand notation says that Pind and Ppro are functions of g/q, and

that both of them are multiplied by the power fraction (q), whereas Ppar is
calculated in the same way as in continuous flapping. Flight computes the
power curve in the same way as usual, by incrementing the true airspeed
in steps of 0.1 m s�1 and calculating the power at each step. Figure 9.2
shows curves of mechanical power and effective lift:drag ratio versus air-
speed, calculated by Flight for a chaffinch in bounding flight. Each graph
shows curves for values of the power fraction from 0.2 to 1.0 (continuous
flapping). 0.3 would be a typical power fraction for a chaffinch in level
flight. Figure 9.2A shows the power increases, gradually at first and then
ever more strongly, as the power fraction is reduced, while Figure 9.2B
shows the effective lift:drag ratio decreasing in a similar manner. The char-
acteristic speeds Vmp and Vmr increase progressively as the power fraction
is reduced.
The increased power requirement in bounding may explain the anomaly

that small passerines have similar or even higher flight muscle fractions
than larger birds, despite the scaling argument of Chapter 7, which indicates
that their power margin in that case should be unnecessarily large. Bound-
ing raises the specific work from a very low value to a level where more effi-
cient energy conversion would be anticipated. The extra muscle then allows
small birds to fly efficiently at higher airspeeds than would otherwise be
possible, and this must be a major factor in their ability to penetrate against
head winds. Predictions of migration range with a large initial fat fraction
(0.4) may show slightly increased range, despite the reduction in the effec-
tive lift:drag ratio. This is due to reduced wastage of fuel for basal metabo-
lism, because the higher speed shortens the flight time for a long flight.
Flight will simulate bounding migration in swans, but no such advantages
are seen in this case. The specific work is already near the upper limit in
swans, and is raised by bounding to a wholly impractical level (Chapter 7).
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FIGURE 9.2 (A) Power curves from the Flight programme for a chaffinch in level
bounding flight, for values of the power fraction from 0.2 to 1 (continuous flapping).
At a power fraction of 0.2, the bird would be pulling 5g during the power phase,
which is probably more than the practical upper limit. As the power fraction is
reduced the entire power curve moves up the graph (more power) and to the right
(faster). The dashed line connects the values of the minimum power speed Vmp in each
curve. (B) Effective lift:drag ratio from the same set of power curves. These curves
come down with decreasing power fraction, while the maximum range speed Vmr,
defined as the speed for maximum effective L/D, increases. After Pennycuick (2001).

Wingbeat frequency in bounding
A bird’s wingbeat frequency in cruising flight is a function of gravity
(Chapter 7 Box 7.3). Specifically, it varies with 

t
g, where g is the acceleration

due to gravity. In the flapping phase of bounding, g is increased to g/q
(above). If no allowance is made for the increased gravity, observed wing-
beat frequencies are higher than predicted by Equation (3) of Box 7.3, but
if g/q is used in place of g in the formula, this discrepancy is resolved
(Figure 9.3) (Pennycuick 2001).

Bound height
If a bird in bounding flight starts a new bound cycle at the same height as it
started the previous one, then its flight path can be said to be horizontal on
average. However, in the course of each cycle it rises above the mean flight
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FIGURE 9.3 Wingbeat frequencies for bounding flight in migrating chaffinches and
starlings, measured from video sequences in which the power fraction was also
measured. The horizontal lines show the estimated wingbeat frequency in cruising
flight from Equation (3) of Box 7.3 (Chapter 7 ), and the curves show the corrected
frequency which takes account of the gravity increase caused by bounding (Box 9.1).
After Pennycuick (2001).

path during the ballistic phase, and drops below it during the flapping phase. The ‘‘bound
height’’ (hb) is the vertical distance from the highest point of the ballistic phase to the lowest
point of the flappingphase. It depends on the power fraction (q), andalsoon the squareof
the bound period (t):

hb ¼ ½gt2ð1 qÞ�
8

: ð2Þ

Even for short bound periods, bound heights are quite large. For example
for a bound period of 1 second and a power fraction of 0.5 (half a second
flapping, and half a second ballistic), the bound height is 0.61 m. Thus
reports in the literature that a bird was bounding in a wind tunnel with a
test section only 50 cm high need to be read with caution. If the bird does
not have enough headroom for the full bounding motion, it will partially
open its wings during the ballistic phase to avoid hitting the floor.
A test section around 4 m high would be needed to train typical passer-
ines to bound without undue constraint, and no bird wind tunnel in current
use has that.
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9.1.1 POWER REQUIREMENTS IN FLAP-GLIDING

Inter mitt ent flight styles do not save energ y, any more than a cycl ist

save s energy by alternatel y peda lling and freewheeling. All of the wor k

done by a bird’s flight muscle s is use d eventu ally either to suppor t the
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weight or to overcome drag, and those two things have to be done for

the whole cycle, whether the muscles work continuously or intermit-

tently. In the case of flap-gliding, the bird slows down in the gliding

phase, and/or loses height, and it has to compensate for this during

the power phase, by accelerating and/or climbing. In energy terms,

some of the work that the bird does during the power phase is used

to overcome drag at the same time, as in continuous flapping, but

the muscles have to do additional work, which is converted into poten-

tial energy by climbing, and/or into kinetic energy by speeding up.

As the bird descends and/or slows down in the gliding phase, the

energy that was stored as in increment of height and/or speed during

the power phase is reused to overcome the gliding drag.

Both potential and kinetic energy are high-grade forms of energy

which can, in principle, be stored and recovered without loss. Of course,

some losses are inevitable in practice, but as there is no basis for calcu-

lating them, Flight assumes that the losses are small and neglects them.

In that case, the work done over a complete flap-glide cycle is the same

as in continuous flapping flight. The average power is the same as in

continuous flapping, but the power during the power phase is higher,

because the work for the whole flap-glide period has to bedone in a frac-

tion of that time (the power fraction). The power during the power phase

is used to calculate the specificwork in theflightmuscles. The reasonwhy

many raptors do a lot of flap-glidingmay be that their wingbeat frequen-

cies aremostly rather high (an adaptation for high-poweredmanoeuvres

in chasing prey), so that if they were to flap continuously in level flight,

the specific work might be too low for efficient conversion of fuel energy

int o wor k (Chap ter 7 Box 7.2).

9.1.2 POWER REQUIREMENTS IN BOUNDING

In the case of bounding flight, the wings are fully closed in the ballistic

phase, and the bird is essentially a streamlined body in free fall. It fol-

lows a flight path that curves downwards, accelerating earthwards at

1g. During the power phase, it has to compensate by curving the flight

path upwards and ‘‘pulling g’’ as pilots say (a notion which is discussed

further below). As far as the mechanics of flight are concerned, the

effect of curving the flight path upwards is identical with that of an

increase in the strength of gravity. The amount of the increase is the

reciprocal of the power fraction. If the power phase lasts for half of

the bound period, then the bird has to pull 2g during the power phase,

while if the power fraction is one-third, it has to pull 3g, and so on. The

calculation of induced and profile power during the power phase is the
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same as in Boxes 3.1 and 3.3 of Ch apter 3 , except that gra vity is increased

in inverse proportion to the power fraction. Parasite power is unaffected

by gravity, and continues at the same rate throughout the bound cycle.

Unlike flap-gliding, bounding always results in a substantial increase

in the average power required, as compared to continuous flapping,

but the speeds for minimum power and maximum range are also

increased. Bounding allows small birds, whose airspeeds would other-

wise be unduly low in relation to commonly encountered wind speeds,

to fly faster while maintaining an acceptable level of muscle efficiency.

It is also very effective at increasing the specific work required in the

flight muscles, which would otherwise be very low in small passerines,

forcing them to use only a part of the muscles, or else to run the whole

muscle very inefficiently. This is a result of the scaling relationship

that limits the size of large birds because of lack of muscle power, and

conver sely lead s to excess mus cle in smal l birds (C hapter 7 , Box 7.4).
9.2 MANOEUVRING FRAME OF REFERENCE:
FLIGHT CONTROLS

The view from the cockpit is different from that of a ground observer

who perceives an aircraft manoeuvring, relative to the landscape. The

controls available to a pilot (or bird) cause angular accelerations about

three axes in a frame of reference that is fixed to the bird or aircraft, not

to the ground (Box 9.2). These accelerations are in pitch about the

transverse axis, in roll about the longitudinal axis and in yaw about

the dorso-ventral axis (Figure 9.4), and in an aircraft the control

moments about these axes are generated by separate and distinct con-

trols, the elevator, ailerons and rudder respectively. The principle is the

same in birds, but the adjustments of the wings that produce control

moments are more complicated, and not always easy to disentangle

from one another (Figure 9. 5). The aerodynamic forces on the wings

that produce the control moments themselves depend on air flowing

over the wings, that is the controls require some airspeed to operate.

Airspeed is motion relative to the air, which is not necessarily, or usu-

ally, the same as motion relative to the ground, because the air is itself

usually in motion relative to the ground (wind). The lift force devel-

oped by the wings is perpendicular to the direction from which the air-

flow is coming (by definition), but that direction is itself defined in the

bird-centred coordinate system of Figure 9.4.

Linear accelerations are limited to two directions relative to the bird,

along the flight path, and perpendicular to it in the dorsal direction,



BOX 9.2 Frames of reference and flight controls.

Performing aerobatics is a challenging art, not least because it requires the
pilot to think in three different coordinate systems at once. A spectator on
the ground, watching an aerobatic display, sees the aircraft climbing, loop-
ing, diving and rolling relative to a frame of reference that is fixed to the
local earth’s surface. If the observer is tracking the aircraft, its changing
position will most likely be monitored by assigning numbers to three recti-
linear coordinates, of which two are horizontal distances from a north-
south and an east-west axis, and the third is the height above some datum.
Besides keeping track of the aircraft’s position and orientation relative to the
earth’s surface, the pilot also needs to be aware of its three-dimensional
speed relative to the air, which may be moving invisibly along, relative to
the landscape (wind). To manoeuvre the aircraft, the pilot has to apply
forces that make it accelerate either along the flight path or perpendicular
to it, and to do that, he has to think in a third coordinate system, which is
fixed to the aircraft, and loops and rolls with it. In principle, there are six
ways in which the pilot can make the aircraft accelerate, relative to itself,
although not all of them are equally useful. Three of them are angular accel-
erations, about the three mutually perpendicular axes of pitch, roll and yaw
(Figure 9.4). The flight controls produce moments about these three axes
(Figure 9.5), and these in turn lead to linear accelerations, as follows.

Angular acceleration about the pitch axis
Thepitch axis is the transverse axis that runs through thewings fromone side to
the other. Conventional aircraft create a pitchingmoment by deflecting the tail-
plane, which is a small, movable, auxiliary wing, some distance aft of the main
wing. Birds do not have a tailplane, and produce a pitchingmoment in a differ-
ent way, by sweeping the wings forwards or back (Figure. 9.5A). This is essen-
tially the same method as the weight-shift control of hang gliders. The effect
of pitching in thenose-updirection (relative to the aircraft or bird) is to increase
the angle of attack of the wings, which in turn increases the lift force. A nose-up
pitching moment therefore results in a linear acceleration in the dorsal direc-
tion, perpendicular to the flight path. The lift force produces curvature of the
flight path, but does not necessarily act upwards. The direction depends on
how the wings are oriented, relative to the ground. If the bird wants to bend
the flight path in some other direction than upwards, it first has to ‘‘roll’’ until
the wings are oriented to generate lift in the required direction.

Angular acceleration about the roll axis
The roll axis is the longitudinal axis of a bird’s body or an aircraft’s fuselage.
A rolling moment (about the roll axis) is created by increasing the lift on one
wing, and reducing it on the other. Birds do this by simply rotating the
whole wing at the shoulder by a small amount, one wing in the nose-up
sense, increasing its angle of attack and the lift that it develops, and the
other nose-down (Figure 9.5B). In manoeuvring, the purpose of rolling is
to rotate the bird until its dorsal direction is aimed in the direction in which
a manoeuvring force is required. The force that bends the flight path is then
produced by applying a pitching moment (above), so increasing the angle of
attack of both wings.
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Angular acceleration about the yaw axis
The yaw axis passes dorso-ventrally through the mid-point of the wings,
and a yawing moment causes an angular acceleration in the plane of the
wings, swinging the nose left or right. This is effected in conventional air-
craft by a movable rudder, which is a small wing some distance behind
the main wing, whose plane is perpendicular to that of the main wing. Yaw-
ing produces only a minor sideways force, and the effect is that the aircraft
proceeds in nearly the same direction as before (relative to the air) but side-
slips. The function of the rudder is not to steer the aircraft (the wings do
that), but to balance and cancel ‘‘asymmetric drag’’, which is a side effect
of creating a rolling moment (above). The up-going wing experiences
increased drag as well as increased lift, while drag is reduced on the
down-going wing. This produces an unwanted yawing moment, and the
rudder is used to cancel this, and avoid sideslip. Birds do not need a rudder,
as they have other ways in which they can adjust the shape of the wings
asymmetrically, so as to produce a rolling moment without adverse yaw
(Figure 9.5C).

Linear accelerations
Manoeuvring is effected by linear accelerations perpendicular to the flight
path. As only the wings can generate a large enough force for this, curvature
of the flight path is invariably controlled by pitching, which in turn varies
the angle of attack of the wings (above). Sideways accelerations, towards
one wing tip or the other, are not significant, as there is no lifting surface
that can produce a large sideways force. Longitudinal accelerations are pro-
duced by thrust or drag, and are used to control airspeed, but the accelera-
tions are small compared to those produced by lift on the wings.

Inverted flight
Most small aircraft can perform a loop, but this manoeuvre does not involve
inverted flight as usually defined, although the aircraft is upside down as it
passes over the top. In a properly executed loop, the wings are lifting
towards the dorsal side, that is towards the centre of the loop, throughout
the manoeuvre. The pilot’s weight acts towards the seat as usual, and his
coffee does not spill. Inverted flight means that the wings are lifting towards
the ventral side of the aircraft. Momentary inverted loading occurs in level
flight when an aircraft enters a strong down-draught, causing the angle of
attack to become negative. When this happens in an airliner, unsecured
objects, including passengers, gravitate towards the cabin roof, as the air-
craft accelerates downwards. Special aerobatic aircraft are designed to be
capable of sustained inverted flight and manoeuvring, but most aircraft
are not.
Among birds, only hummingbirds have wings that are adapted to with-

stand inverted loads, and an elevator muscle comparable in size to the
pectoralis. Hummingbirds do not fly around upside down, or perform
inverted manoeuvres, but their wings develop inverted lift (directed
upwards) during the upstroke in hovering. A hovering hummingbird’s body
has approximately zero airspeed, and the wings beat back and forth in a
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nearly horizontal plane, inverted as they swing towards the dorsal side.
Other birds develop minor amounts of inverted lift on the primary feathers
during the upstroke in very slow flight, but the wing as a whole is not capa-
ble of withstanding inverted loading. The same is true of bats’ wings, and
(probably) those of pterosaurs. The dorsal direction is the only direction in
which large forces can be generated for manoeuvring in any flying animal,
including hummingbirds.
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FIGURE 9.4 Flight controls apply moments that produce angular accelerations about the
three axes of the bird centred co ordinate system, pitch, roll and yaw.
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and they are produced as secondary effects of the rotations produced

by the controls. For the discussion of linear accelerations, we assume

that the bird has some airspeed, and that the relative airflow comes

from ahead, approximately parallel to the bird’s longitudinal axis. The

relative airflow does not have to be horizontal, or in any particular

three-dimensional direction relative to the earth’s surface.

9.2.1 ACCELERATION ALONG THE FLIGHT PATH—CONTROL

OF AIRSPEED

Airspeed can be increased by simply angling the flight path down-

wards. This increases the component of the weight that acts forwards

along the flight path. The drag builds up as the airspeed increases, until

the net force along the flight path returns to zero, and the airspeed
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FIGURE 9.5 (A) Sweeping the wings back produces a nose down pitching moment
which leads to an increase of airspeed, while sweeping them forward causes a nose
up pitching moment and slows the bird down. (B) Small rolling moments are produced
by rotating the wings in opposite directions at the shoulder joints, nose up to increase
the lift on one side, and nose down to decrease it on the other. Larger rolling moments
can be produced by shortening the down going wing, by flexing the elbow and wrist
joints. (C) Shortening one wing moves the centre of drag nearer the body, and generates
a yawing moment. Birds do not have a rudder.
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settles at a new value, faster than before. A gliding bird initiates a

change of airspeed by essentially the same method as a hang-glider

pilot, by moving the centre of lift of the wings forwards or back, relative

to the centre of mass. The difference is that the geometry of a hang-

glider’s wings is fixed, and control depends on moving the pilot’s mass

forwards or back, relative to the structure, whereas a bird can reorga-

nise the shape of its wings, using the shoulder, elbow and wrist joints

to move the whole wing, or particular parts of it, relative to the body.

Moving the wings forwards results in a nose-up pitching moment,

whose immediate effect is to increase the angle of attack of the wings.

This produces a momentary upward acceleration accompanied by

increased drag, which slows the bird down until it is once again in

equilibrium, but at a lower speed than before.

The effect of adding power by flapping in horizontal flight depends

on the airspeed. A bird that is flying horizontally at a speed below its

minimum power speed is unstable if it is generating just enough power
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to maintain that speed, in the sense that if it speeds up by a small

amount, the power required is less than before. If the bird continues

to produce the same amount of power, it continues to accelerate, until

it meets the rising part of the power curve at a stable speed (see

Ch apter 3, Figure 3.7). Both birds and aircraft norma lly acceler ate

through Vmp after take-off for this reason, and settle at some higher

speed. Some birds and bats that need to fly very slowly because of their

feeding methods are adapted to fly at speeds below Vmp, but this is not

something that is easy for them to do. As a general rule, a bird that is

flying steadily along can be assumed to be flying at Vmp or faster.

A gliding bird can decelerate by pulling up, or by setting the wings

into a configuration that generates extra drag, or (very commonly) by

extending the feet as air brakes. Glider pilots usually perceive air brakes

as a device for controlling the angle of descent rather than the speed,

while pilots of fast aircraft such as airliners use them either for slowing

down or for rapid descent, as required. A bird that slows down below

Vmp prior to landing has to increase power as it does so, by increasing

the amplitude and/or frequency of the wingbeat.

9.2.2 ACCELERATIONS TRANSVERSE TO THE

FLIGHT PATH—PULLING g

A large acceleration requires a large force, and that can only be pro-

duced by the wings, and only in the dorsal direction. The lift force on

the wings is controlled by changing their angle of attack, that is the

angle between the incident wind and the plane of the wings.

Figure 9.6A shows a powered aircraft flying along horizontally, which

implies that the angle of attack has been adjusted so that the lift equals

the weight. The pilot sits on the wing, and feels gravity (1g) just as he

would if he were sitting on the ground. If the angle of attack is

increased so that the lift exceeds the weight (Figure 9.6B), then the

resultant of the lift and the weight is an upward force (R), which bends

the flight path into a curve in the dorso-ventral plane. If this plane is

vertical, and the flight path is initially inclined downwards, the resul-

tant force leans forwards, causing the aircraft to accelerate along the

flight path as it comes down to the level position, and then leans back

as the flight path bends upwards, causing the aircraft to decelerate.

In Figure 9.6C the lift is less than the weight, and the resultant force

causes the flight path to curve downwards. The pilot feels more than

1g in the first case, and less than 1g in the second. If the lift force is

adjusted to zero, the pilot feels weightless, and loose objects float about

in the cockpit. The flight path is a downward-curving parabola, but its
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FIGURE 9.6 (A) In a powered aircraft in level flight, the lift L (perpendicular to the flight
path) balances the weight mg (downwards), while the propeller thrust T (forwards), bal
ances the drag D (backwards). The resultant force on the aircraft is zero, and it proceeds
in a straight line at a constant speed, not accelerating in any direction. (B) If the lift
exceeds the weight but the wings are level, and thrust and drag remain balanced, there
is a resultant force R in the dorsal direction, which bends the flight path into an upward
curve. The pilot feels increased gravity, in proportion to the lift and in the same direction.
The weight now has a forward component which makes the aircraft accelerate as it
comes down to the bottom of its arc, and a backward component which makes it decel
erate as it starts to climb. (C) If the lift is less than the weight, the pilot feels reduced grav
ity, and the flight path bends downwards.
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shape is only directly apparent to a ground observer. The pilot has to

refer to outside visual references to detect this, or to artificial sensory

aids, wh ich birds do not have (Ch apter 11 ).

The process of increasing the lift on the wing is usually referred to as

‘‘pulling g ’’, because the effect, as perceived by a bird or by a person in

an aircraft is indistinguishable (by any physical test that does not

involve observing the ground) from that of a change in the strength

of the local gravity field. ‘‘Pulling 2g’’ means increasing the angle of
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attack until the lift is twice the aircraft’s all-up weight. An object inside

the aircraft then has twice its weight in level flight, relative to the air-

craft. The weight of such an object, as measured with a spring balance,

is directly proportional to the lift on the wings, and is not affected by

the external gravity field. If the aircraft executes a loop, and the wings

pull 1g as it passes over the top, meaning that they exert a force equal

to the all-up weight towards the aircraft’s dorsal side, then the weight

feels the same as in right-way-up level flight, although the aircraft is

inverted, and the flight path is curved downwards by the combined

effect of gravity and the (downward-directed) lift. There is no practical

way to deduce the orientation of an aircraft, solely from the forces

experienced by the occupants, because it is not possible to distinguish

the effect of lift from that of gravity, without additional information

from visual observation of the horizon, or from gyroscopic instruments

( Chapte r 11 ).

9.2.3 MAXIMUM g AND THE FLIGHT ENVELOPE

The maximum g that a bird or aircraft can pull depends on the maxi-

mum lift coefficient at low speeds, and on the strength of the structure

at high speeds. This is described by the flight envelope, a graph of max-

imum g (both positive and negative) as a function of speed. Construct-

ing a flight envelope is an essential step in the design process for any

aircraft, but it is difficult to construct one empirically for birds, hence

the example in Figure 9.7 should be regarded as somewhat conjectural.

For a fixed-wing aircraft or a gliding bird, the maximum g that the wing

can develop starts at zero when the speed is zero, and then increases

with the square of the speed, passing through 1g at the stalling speed

(the minimum speed for unaccelerated flight), and through 4g at twice

the stalling speed. At some speed, the maximum g that could theoreti-

cally be pulled reaches the maximum that can be safely resisted by the

structure. The point where the curve of the flight envelope breaks away

from the speed-squared curve is shown as 4g in Figure 9.7. In light air-

craft and gliders this point is usually located somewhere between 3g

and 6g, by the simple expedient of prohibiting pilots from pulling more

than the maximum permitted g.

It is possible to break the wings off any aircraft by diving to a high

speed, and pulling too much g, but in birds the maximum g is limited

automatically by the maximum moment that the pectoralis muscles

can exert about the shoulder joints. If this is exceeded, the wing rotates

dorsally, overcoming the pull of the pectoralis muscles. This converts the

bird into a high-drag configuration (as used intentionally by pigeons
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FIGURE 9.7 The maximum lift that a fixed wing can develop is proportional to the square
of the airspeed, and equal to the weight when the airspeed equals the stalling speed (by
definition). At twice the stalling speed, the wing is able to develop lift equal to four times
the weight, that is it can ‘‘pull 4g’’, which is here assumed to be the maximum that the
structure can safely withstand. Above this speed, the envelope becomes a nearly horizon
tal line, meaning that the lift is limited to 4g or slightly less by some method other than the
maximum lift coefficient of the wing. This limit is imposed in birds by the maximum
moment that can be exerted isometrically by the pectoralis muscles about the shoulder
joints. Most aircraft wings are designed to withstand a lesser amount of negative loading,
but if birds can generate negative lift at all, the limit would certainly be less than 1g.
Thus the lower boundary of a bird’s flight envelope is conjectural, and so is the right hand
boundary, which defines the maximum speed at which the bird can fly.
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dropping steeply from a high roof) that slows it down to a safe speed,

without any risk of structural damage. In experiments in which pigeon

wing bones were tested to destruction by applying bending and tor-

sional moments, the humerus broke in both bending and torsional

modes when the applied moment was approximately nine times the

value estimated for level, gliding flight, in other words a pigeon flying

at three or more times the stalling speed could theoretically pull 9g

before the humerus would fail (Pennycuick 1967). This is more than

twice the acceleration that the pectoralis muscles can withstand before

they are forcibly lengthened (about 4.2g). The wing bonesmay be said to

have a ‘‘safety factor’’ of about 2.1, over the strength required to support

the weight in a 1g glide.

Peregrines can allegedly dive at over four times their stalling speed

(Tucker 1998) but this does not imply that they are able to pull 16g. All

parts of a bird’s body must be strong enough to withstand the maximum
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acceleration that the isometric pectoralis moment permits. If a peregrine

were able (and rash enough) to pull 16g while recovering from a dive, the

probable effect would be to tear its viscera out of its body cavity, but in

practice forcible extension of the pectoralis muscles would occur well

before structural failure of any part of the body. In the absence of acceler-

ometer measurements, 4g will serve as a current round-number ‘‘best

guess’’ for the upper limit to the acceleration that manoeuvring birds

can pull. Grodzinski et al. (2008) used the acoustic location of echoloca-

tion calls to construct three-dimensional tracks of Pipistrellus kuhlii bats

in foraging and commuting flight, and showed that there was a sharp

upper limit to the curvature of the flight path, corresponding to about

3.5g throughout the observed speed range.
9.2.4 FLIGHT IN A CIRCLE—THE BALANCED TURN

The simplest type of curved flight path is a turn at a constant airspeed,

which can be in the horizontal plane for a powered aircraft, or at a con-

stant rate of descent for a glider or gliding bird. Gravity always pulls

towards the earth’s centre whatever the bird is doing, but the lift force

developed by the wings acts in the dorsal direction, and this may not

be vertical. If the wings are banked (tilted to one side relative to the

horizon), the resultant of the lift and the weight has a horizontal com-

ponent which is unbalanced, and this causes the flight path to bend

into a curve (Figure 9.8). A balanced turn is one which the vertical

component of the lift balances the weight, which implies that the mag-

nitude of the lift exceeds the weight, by an amount that depends on the

angle of bank. The acceleration felt by the pilot depends only on the

magnitude of the lift (above), and so a balanced turn can only be main-

tained by pulling more than 1g. The acceleration is inversely propor-

tional to the cosine of the angle of bank (Box 9.3). As Figure 9.9

shows, it starts at 1g when the wings are level, passes 2g at 60� of bank,
and thereafter rises more and more steeply to 4g at about 75� and, of

course, infinity at 90�. Birds typically fly around at bank angles below

about 35�, requiring accelerations up to 1.2g or so. Steeper angles of

bank do not necessarily imply g according to Figure 9.9, as the turn

may not be balanced. An unbalanced turn, with the wings banked near

or even beyond the vertical, but pulling only 1g or less, is the least

stressful way initiate a steep dive, and such ‘‘wingover’’ manoeuvres

are often used for that purpose by both birds and aircraft.

In a balanced turn at a given angle of bank, the radius of the circle is

proportional to the square of the speed, so that the ability to turn in

tight circles depends on being able to fly slowly. This is important to
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FIGURE 9.8 Seen from in front, a gliding bird that is executing a turn at a constant speed
banks its wings at an angle ’ to the horizontal, so that the lift L is tilted at the same angle
to the vertical. For a ‘‘balanced’’ turn, the bird increases its angle of attack sufficiently to
make the vertical component of the lift equal in magnitude to the weight, so that there is
no vertical acceleration. If the lift is not adjusted to match the angle of bank, then the turn
is not balanced, and the flight path bends either upwards or downwards. The horizontal
component C of the lift is the force that causes the bird to accelerate horizontally, in a
direction perpendicular to the flight path. The effect of this continuous acceleration is to
bend the flight path into a circle, whose radius depends on the angle of bank, and on
the square of the speed (Box 9.3).
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FIGURE 9.9 The centripetal acceleration required to maintain a balanced turn depends
on the angle of bank [Box 9.3, Equation (2)]. A 2g balanced turn is one with 60� of
bank. If the angle of attack is increased to 76�, about 4g is needed to maintain a
balanced turn.
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soaring birds that need to circle continuously within a thermal, whose

horizontal extent may be limited. The same principle applies to man-

oeuvres in any plane, not only to balanced turns. Manoeuvring in



BOX 9.3 Flight in a circle.

Variable definitions for this box
CL Lift coefficient
CLmax Maximum lift coefficient
F Centripetal force
g Acceleration due to gravity
L Lift force on wings
m Body mass
r Radius of turn
rlim Limiting circling radius
V Velocity
Vs Stalling speed in a straight glide
Vt True airspeed
S Wing area
’ Angle of bank
r Air density

It is shown in elementary calculus books that if a body of mass m moves
at a steady speed V along a circular path of radius r, then there must be a
steady force F acting on it, directed towards the centre of the circle, where

F ¼ mV 2

r
: ð1Þ

This ‘‘centripetal’’ force makes the object accelerate continuously towards
the centre of the circle, without affecting its tangential speed along the cir-
cle. In the case of a bird or aircraft flying around a horizontal circle, the cen-
tripetal force, and the acceleration it produces, act in a direction
perpendicular to the flight path. Apart from aircraft with vectored thrust,
only the wings can produce a controllable transverse force that is large
enough to deflect the flight path into a circle. If a horizontal component
of force (F) is produced by banking towards the centre of the circle, at an
angle ’ to the horizontal (Figure 9.9), then:

F ¼ mgtan’; ð2Þ
and the bird or aircraft follows a curved path whose radius of curvature
(r) is:

r ¼ V 2

ðgtan’Þ : ð3Þ

These are the conditions for a ‘‘balanced turn’’, in which a passenger feels
no sideways force, and the coffee does not spill, even though the aircraft
may be banked at 30� or more. This is because ‘‘weight’’, as perceived in
the aircraft, is the reaction to the lift force (L) on the wings, which is no lon-
ger vertical. The lift also has to be increased to maintain level flight in the
turn, because only its vertical component balances gravity:

L ¼ mg

cos’
: ð4Þ
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BOX 9.3 Continued.

If ’ is increased to 60�, then the lift has to be increased to 2mg, to main-
tain a balanced turn. Pilots say that they have to ‘‘pull 2g’’ to hold the air-
craft in the turn, meaning that the weight of the aircraft, and everything in
it, including the occupants’ body parts, appears to be doubled. There is
actually no way to distinguish the effects of acceleration due to a gravita-
tional field from those caused by acceleration due to a lift force. In powered
flight, more power is needed to maintain horizontal flight in a turn than in
straight flight, and the steeper the angle of bank, the more power is needed.
In gliding flight, the rate of sink is increased in a turn.

Circling flight with a fixed wing
Flight in steady circles is the basic manoeuvre for soaring in thermals
(Chapter 10). Soaring birds typically (though not necessarily) glide when cir-
cling in thermals, and in that case circling flight is the same for a gliding
bird as for a fixed-wing aircraft or glider. The following argument does not
apply to flapping flight!
The lift force (L) developed by the wing can be expressed in terms of a

non-dimensional ‘‘lift coefficient’’ (CL), defined as:

CL ¼ 2L

ðrV 2
t SÞ

; ð5Þ

where r is the air density, Vt is the true airspeed and S is the wing area,
defined as in Chapter 1 Box 1.3. The lift coefficient expresses the angle
through which the wing deflects the incident air to create the downwash.
For a particular wing, CL is a function of the angle of attack, increasing as
the wing is tilted nose-up, until it reaches a maximum value (CLmax). Further
increase of the angle of attack causes the airflow to break away from the
upper surface of the wing, with a decrease in the lift coefficient. A wing in
this condition is said to be ‘‘stalled’’.
Inverting Equation (5) to get the airspeed at which the bird flies around

the circle:

V 2
t ¼ 2L

ðCLrSÞ : ð6Þ

In a balanced turn, we can substitute for the lift (L) from Equation (4):

V 2
t ¼ 2mg

ðCLrScos’Þ ; ð7Þ

and substitute this value in Equation (3) to get the radius of turn:

r ¼ 2mg

ðCLrSsin’Þ : ð8Þ

If the angle of bank (’) is zero (wings level), then the radius of turn is
infinity (straight flight). For a moderate angle of bank, like 30�, the radius
of turn is inversely proportional to the lift coefficient. Bearing in mind that
the lift coefficient is inversely proportional to the square of the speed
[Equation (5)], this is the same as saying that the radius of turn is propor-
tional to the square of the speed, if the bank angle is held constant.
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BOX 9.3 Continued.

If the lift coefficient is fixed at CLmax, then Equation (8) gives the minimum
circling radius for any angle of bank, while at the same time Equation (7)
gives the speed for any combination of CL and the angle of bank. If the wings
are banked vertically, the speed required from Equation (7) is infinite, and the
circling radius tends to a limiting value (rlim) of:

rlim ! 2m

ðCLrSÞ : ð9Þ

There is no way to turn in a smaller circle than rlim with a fixed wing, but
this limit does not apply to flapping flight. Obviously, helicopters and hum-
mingbirds can turn at zero radius, just rotating while hovering. They can do
that because they get air to flow over the wings by moving the wings relative
to the body, so generating lift without having to move the bird or aircraft as
a whole.

Wing loading and circling performance
Equation (8) shows that for a particular lift coefficient and angle of bank,
the radius of turn is directly proportional to the ratio of the mass (m) to
the wing area (S). The ‘‘wing loading’’ is usually defined as the ratio of the
weight rather than the mass to the wing area, but either way, it determines
the minimum circling radius, and also the stalling speed (Vs) in gliding
flight. From Equation (7) the stalling speed in straight flight is

Vs ¼ 2mg

ðr S CLmaxÞ
� �s

; ð10Þ

and this is increased by a factor
q
(1/cos ’) in a balanced turn at an angle of

bank ’. Of course, a bird’s wing can stall while it is flapping, but in that case
the ‘‘stalling speed’’ refers to the relative speed between the flapping wing
and the air flowing past it, not to the forward speed of the bird as a whole.
The ability to fly slowly, and turn in small circles, is critical for exploiting

thermals, and therefore the wing loading is a useful indicator of a gliding
bird’s capacity for this activity. The section of Flight that calculates glide
polars gives an indication of circling performance by calculating the mini-
mum circling radius in gliding flight, for a bank angle of 24�, a representa-
tive value observed in the field for large soaring birds (Pennycuick 1972).
This depends on the bird flying at the particular speed (in gliding) which
results from setting the lift coefficient to the value corresponding to mini-
mum sink in the glide polar calculation. A gliding bird cannot fly any slower
than its minimum gliding speed, which is set by CLmax, but no such limit
applies in flapping flight. If it flaps its wings, and has enough muscle power,
the bird can reduce its speed and also its turning radius to zero, regardless
of its wing loading. The wing loading does not have any special significance
for performance in powered flight. There is no theoretical basis for using
wing loading as a morphological variable, against which to plot measure-
ments of powered flight performance.
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pursuit of prey is a compromise between being able to fly fast enough

to overtake the prey, and flying slowly enough to be able to follow its

twists and turns.
9.2.5 RATE OF ROLL AND MANOEUVRABILITY

Initiating a change of direction is a two-stage process. First, the bird has

to roll, that is rotate about its longitudinal axis until the wings are appro-

priately oriented to pull the flight path in the direction required,meaning

that the resultant of the lift force and theweight lies in the required plane

of curvature. Asymmetry of the wings does not in itself result in a turn,

but is needed temporarily, to rotate the wings into the required orienta-

tion, before the actual turn is initiated. Then both wings pull together,

so as to produce the required curvature of the flight path.

At anyparticular speed, themanoeuvrabilityofabirdoraircraft depends

on two characteristics, the maximum g, discussed above, and the maxi-

mum rate of roll, which determines the time needed to roll the wings into

the requiredorientationbeforepullingg.Mostfixed-wingaircraft useailer-

ons to initiate a roll. These are hinged surfaces at the trailing edges of the

wings, arranged so that when one is deflected downwards, the other is

deflected up. This increases the lift on the side with the down-going aile-

ron, and decreases it on the other side, so producing a rolling moment

about the longitudinal (roll) axis. This in turn causes angular acceleration

about the roll axis. As the angular velocity about the roll axis builds up,

the rollingmoment for a givenailerondeflectiondwindles to zero, because

the angle of attack of the up-goingwing decreases, while that of the down-

going wing increases. The asymmetry is only maintained for a short time,

until the plane of the wings has rotated into the orientation required for

the turn. Then, symmetry of the wings is restored, and both wings pull

together, to deflect the mass of the aircraft into a curved trajectory.

Birds do not have ailerons, but they can rotate the entire wing nose-

up or nose-down at the shoulder joint, which is even more effective in

producing a rolling moment. Birds and bats can achieve very high rates

of roll by flexing the elbow and wrist joints of one wing, while keeping

the other wing fully extended. This moves the centre of lift of the short-

ened wing in towards the body, so that the rolling moment produced

by the fully extended wing is unbalanced, resulting in a high angular

acceleration. The maximum rate of roll determines the time needed

to initiate a turn, while the curvature of the flight path in the turn itself

depends on the airspeed and the maximum g.
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9.3 TRANSIENT MANOEUVRES

9.3.1 TAKE-OFF

Take-off is the transition from being supported by something that is

essentially part of the earth’s surface to being supported entirely by

the air. Since the weight is supported by aerodynamic forces in flight,

and these depend on air flowing over the wings, take-off is the process

of acquiring ‘‘flying speed’’, which refers to the relative speed between

the wing and the air flowing over it, not the speed relative to the

ground or water. Birds up to pigeon-size can take off from level ground

in still air by simply jumping, and at the same time flapping the wings

downwards and forwards through their maximum arc. The speed of the

wing relative to the air generates a force upwards and forwards, suffi-

cient to support the weight, even though the bird’s body is hardly

moving yet. Once the bird starts to move forwards, the power required

to fly dro ps as the airsp eed increases ( Chapte r 3). The acce leratio n

continues with subsequent wingbeats until the airspeed of the whole

bird reaches the minimum power speed (Vmp). This is the speed at

which the bird has the most excess muscle power for accelerating,

climbing or turning. In larger birds, Vmp is higher, and less muscle

power is available, relative to that required to fly at very low speeds.

A swan, for example, cannot fly at all until it has attained an airspeed

near Vmp, and requires a take-off run to gain enough airspeed to lift

off the ground or water. Once airborne, it continues accelerating to

Vmp before initiating a climb. Take-off is a dangerous manoeuvre for

many birds that are subject to predator attack, because a bird that

has just taken off has little or no excess power available for manoeuvr-

ing to evade a predator, until it has accelerated to Vmp. A flamingo

ambushed in the shallows can be caught by even a hyaena or baboon

as it tries to accelerate to flying speed, while a grouse that has been

spotted on the ground by a falcon has no excess power to take evasive

action in the first few seconds after it explodes into the air.

The time and effort required for the initial acceleration is greatly

reduced if the bird can take off along a path that slopes downwards. It is

much easier to acquire flying speed by dropping from a branch or an

elevated rock than by accelerating upwards from a level surface. Launch-

ing down a slope requires only minimal initial effort, and seabirds take

off whenever possible down the windward slope of a wave. By taking off

against the wind (if there is any), the bird starts with an airspeed equal to

thewind speed, before it evenbegins tomoveover the ground. This greatly

reduces the effort required to take off and accelerate to Vmp. Conversely,

taking off downwind is at best hazardous and often impossible.
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9.3.2 LANDING

Landing is the reverse transition, whereby the weight is transferred from

the wings to some solid object, or to a water surface. Avariation on this is

seen in the larger alcids (guillemots and razorbills), which have small

wings adapted for dual use in air and water, and consequently fly faster

than other birds of similar size, and have smaller power margins. These

birds spendmost of their lives at sea, but nest on sea cliffs, and use a bal-

listic technique for landing on cliff ledges. The bird approaches the cliff

in a shallow dive, levelling out below the landing ledge with excess air-

speed, and then pulling up into a near-vertical climb. If the climb is well

judged, the bird’s ground speed drops to zero just above the landing

ledge, and it drops on to its feet, but its air speed is too low to correct

any but minimal errors. The only way to correct larger errors is to regain

air speed by diving away from the ledge, then climb up a short way out

from the cliff, and initiate another approach. Essentially the same

method is used by cliff-nesting vultures, and variants are seen in many

birds that nest on vertical surfaces, such as house martins nesting on a

wall below an overhanging roof.

Landing against the wind reduces the ground speed at which the bird

has to touch down, often to zero. A pigeon can approach directly

towards a window ledge, in level flight and no wind, and arrive slowly

enough to absorb the impact with its legs, and not crash into the win-

dow, but larger or faster birds have to resort to a climbing approach to

land on a cliff ledge (above), and need some help from a head wind to

drop on to their feet on level ground.
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GLIDING FLIGHT AND SOARING
A gliding bird expends energy at much the same rate as one that is flying horizon
tally, but it gets it by consuming potential energy (losing height) rather than by doing
work with its muscles. Soaring is behaviour that replaces this energy by exploiting
movements of the atmosphere. Storks, vultures and pelicans use thermals to gain
potential energy, while albatrosses replenish their kinetic energy by pulling up
through the detached boundary layer in the lee of ocean waves. ‘‘Energy height’’
allows either method to be analysed on the same basis as powered flight.

All flight involves mechanical work being done against aerodynamic

drag. In powered flight this work comes from fuel energy, which is con-

verted into wor k by an en gine ( Chapte r 7 ). The definiti on of gliding

flight is that no work is done by the engine (if there is one). The work

comes instead from depleting the bird’s potential energy, or its kinetic

energy or some combination of the two. A gliding bird must either lose

height (relative to the air) or slow down, or both. Kinetic and potential

energy can also be exchanged with each other. A bird can pull up at the

expense of losing speed, or gain speed in a dive at the expense of losing

height, but work continues to be done against drag whatever the bird

does. The energy dissipated against drag has to be replenished, either
271
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from fuel energy or from some other source. The term soaring refers to

adaptations or behaviour whereby the bird replenishes its potential or

its kinetic energy by exploiting movements of the atmosphere, in such

a way that gliding flight can be continued for prolonged periods, with-

out using fuel energy.
10.1 GLIDING PERFORMANCE

10.1.1 THE GLIDE POLAR

In steady gliding flight, the bird loses height (relative to the air) and the

resulting rate of loss of potential energy has to account for the power

required to overcome drag. The basic performance curve for a bird or

glider in straight flight is the glide polar, which is a graph of the down-

ward vertical component of velocity (the sinking speed or sink), plotted

as a function of the forward speed (Figure 10.1). There is a well-defined

minimum speed for gliding, the stalling speed (Box 10.1), defined as the

lowest speed at which the wing is capable of generating enough lift to

support the weight. As a gliding bird slows down, the sink increases

sharply as the speed is pulled back to the stall, so that continued flight

is only possible at a very steep angle of descent. Conversely, as a gliding

bird increases its speed on recovering from a stall, the sink first

decreases, but as speed is further increased, the sink soon levels off,

and then increases at still higher speeds. Vms is the speed for minimum

sink. As the speed is increased above Vms, the sink increases, but not by

much at first, so that the ratio of forward speed to sink (the glide ratio)

continues to increase. The glide ratio reaches its maximum value at

the best-glide speed Vbg. At still higher speeds the glide ratio declines

ever more steeply.

The approach used in Flight to calculate a glide polar for a particular

bird (Box 10.1) follows Welch et al. (1977), and is similar to that used

for a power cur ve (Ch apter 3 ), except that the calcu lation takes the

form of calculating drag forces rather than components of power.

As in flapping flight, a gliding bird’s weight is balanced by the rate at

which downward momentum is added to the air, in the downwash

region behind the wing. The induced drag results directly from generat-

ing this downwash, and is the component of the total drag that is due

to supporting the weight in air. The second component is the profile

drag of the wings, and the third is the parasite drag. This last compo-

nent is the same as in flapping flight, being the drag of the body

excluding the wings. For any particular speed, these three components

of drag are calculated and added together to get the total drag, which is
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FIGURE 10.1 (A) Glide polar calculated by Flight for the Wandering Albatross in the Pre
set Birds Database. Both airspeed and sink are equivalent speeds, meaning that the polar
has been calculated for sea level air density (Compare Figure 10 5). The minimum sink
and the best glide ratio are shown, together with the characteristic speeds Vms and Vbg

at which they occur. Vbg is the speed at which a tangent drawn from the origin meets
the polar. (B) Under the ‘‘Linear’’ wing span reduction option (the default), the wing span
reduction factor starts at 1 at the stalling speed, and decreases linearly to about 0.6 at
30 m s�1. If the alternative ‘‘Minimum Drag’’ option were selected, the wing speed
reduction factor would stay level initially at 1, and then break sharply downwards.
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multiplied by the speed to get the rate at which potential energy is lost.

This is then divided by the weight to get the sink.

Flight will calculate a glide polar for any bird, and display a summary

and a graph if required, in the same way as it does for a power curve.

Flight plots both the power curve and the glide polar with power (or

sink) increasing upwards on the Y-axis, regardless of whether the

power comes from muscular work or from gravitational potential

energy. This convention makes the two curves look generally similar,

reflecting the fact that they have much in common. However, it is



BOX 10.1 Computing the glide polar.

Variable definitions for this box
B Wing span
Bstop Wing span reduction constant
CDb Body drag coefficient
CDpro Wing profile drag coefficient
CL Lift coefficient
CLmax Maximum lift coefficient
CR Reaction force coefficient
D Total drag
Db Body drag
Di Induced drag
Dpro Wing profile drag
g Acceleration due to gravity
k Induced drag factor
L Lift
m All-up mass
R Aerodynamic reaction
Vbg Speed for best glide ratio
Vms Speed for minimum sink
Vs Stalling speed
Vt True airspeed
Vz Sinking speed
Sb Body frontal area
Sw Wing area
b Wing span reduction factor
bopt Optimum wing span reduction factor
d Planform slope
e Wing area reduction factor
r Air density

Gliding equilibrium
A bird gliding in a straight line at a constant true airspeed (Vt), follows a
path that slopes downwards, so that its airspeed has a downward vertical
component (Vz), called the ‘‘sinking speed’’, or just sink. The glide polar is
a graph of the sinking speed against the airspeed (Figure 10.1). It is the basic
performance curve for gliding flight, and is the gliding counterpart of the
power curve for powered flight. The drag force (D) is not horizontal in this
case, but is directed backward along the flight path, while the lift force (L)
is directed, as always, perpendicular to the flight path. The total reaction
(R) is the resultant of the lift and the drag, and in straight gliding flight at
a constant speed it acts vertically upwards, balancing the weight. It can
be converted into a dimensionless coefficient by comparing it to a reference
force made up from the dynamic pressure and an area, in this case the wing
area (Sw):

CR ¼ 2R

rV 2
t Sw

: ð1Þ
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BOX 10.1 Continued.

CR is the reaction coefficient. In steady gliding it has to balance the weight
(mg), so Equation (1) becomes

CR ¼ 2mg

rV 2
t Sw

: ð2Þ

If the lift:drag ratio is reasonably high, the magnitude of R is nearly the
same as that of the lift (L), and it is customary to express Equation (2) in
terms of the lift coefficient (CL), although this is only approximately correct:

CL ¼ 2mg

rV 2
t Sw

ð3Þ

The lift coefficient is related to the downwash angle. The slower the glid-
ing bird tries to fly, the higher the value of CL required (Equation 3) and the
larger the angle through which the wing must deflect the incident airflow, in
order to generate enough downwash to support the weight. When this angle
becomes too large, the airflow separates from the wing surface, lift is lost,
and the wing is said to stall. Gliding flight at a speed below the stalling
speed is only possible (if at all) at a very steep angle of descent. The wing
stalls when the lift coefficient reaches some maximum value (CLmax), whose
value is believed to be in the region of 1.8 for the wings of birds like eagles
and gulls, which are adapted for gliding flight. If we turn Equation (3)
around, then the maximum lift coefficient defines the stalling speed (Vs):

Vs ¼ 2mg

ðrSwCLmaxÞ
� �1=2

ð4Þ

Calculating sinking speed
At true airspeeds above the stall (Vt > Vs), the power equilibrium condition
for steady gliding flight says that the power expended against drag (DVt)
must equal the rate of loss of potential energy (mg Vz), where m is the mass
and g is the acceleration due to gravity. This allows the sink (Vz) to be
expressed in terms of the forward speed.

Vz ¼ DVt

ðmgÞ
� �

ð5Þ

Equation (5) involves the drag (D), which is itself a function of the speed
(Vt). The calculation proceeds in much the same manner as that of the
power curve, but in this case it calculates three components of drag (rather
than power), and adds them together to get the total drag, which is then
inserted in Equation (5) to get the sink.

Induced drag
Downwash has to be continuously created to balance the weight, as in pow-
ered flight, and this results in a drag force on the wing, the induced drag
(Di), given by

Di ¼ 2kðmgÞ2
ðV 2

t pB2rÞ

" #
; ð6Þ
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where k is the induced drag factor. It was noted in Box 3.1 of Chapter 3 that
the induced power for a pair of flapping wings approximated by an actuator
disc can be divided by the speed, so as to represent it as a virtual drag, and
the formula that results from doing that is the same as Equation (6) for a
fixed wing.

Parasite drag
The parasite drag is the drag of the body, not including the wings (Db), and
is calculated in the same way as for flapping flight:

Db ¼ ðrV 2
t SbCDbÞ
2

ð7Þ

The default value in Flight for the parasite drag coefficient (CDb) is 0.1, but
this may not be appropriate for all birds, as noted in Chapter 3, Box 3.3.

Profile drag
The profile drag of a gliding wing is easier to represent than the profile
power of a flapping wing. The wing can be assigned a profile drag coeffi-
cient (CDpro), which is characteristic of the profile shape of the wing. The
profile drag (Dpro) can then be found from the speed and the wing area,
in the same manner as the parasite drag in Equation (7):

Dpro ¼ ðrV 2
t SwCDproÞ

2
ð8Þ

where Sw is the wing area. The default value used in Flight for CDpro is 0.014,
which is based on experimental measurements (Pennycuick et al. 1992).

Wing span reduction
We are not yet quite ready to estimate the drag, as gliding birds have a com-
plication all their own, not found in gliders or in the power calculations for
flapping flight. They reduce both the wing span and the wing area as speed
increases, by flexing the elbow and wrist joints. The definitions of wing span
and area require these to be measured with the joints fully extended
(Chapter 1), but a gliding bird only holds its wings at full stretch when flying
actually at the stalling speed. As soon as it speeds up, even slightly, it
‘‘cracks’’ the elbow and wrist joints. The wing tips move in slightly, reducing
the wing span, and the flight feathers begin to close up fanwise, reducing
the wing area. In a fast glide, the wing planform, seen from below, acquires
a distinctive M-shape, with the leading edge of the hand wing swept
strongly back. The effect of shortening the wings is to flatten the glide polar,
that is, to reduce the sink at high speeds, as compared to a bird that keeps
its wing span constant at all speeds, like a glider. This is an option that is not
available to gliders which, being unable to shorten their wings, have to
resort to other, less effective methods of reducing drag at high speeds.
Shortening the wings is represented in Flight by a wing span reduction

factor (b), whose maximum value (only used at the stalling speed) is 1. As
the bird speeds up, b is progressively reduced, perhaps down to 0.5 or even
below. Flight also provides a constant called the planform slope (d), which
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determines the variable factor (e), by which the wing area is reduced, when
the wing span is reduced by the factor b, as follows:

e ¼ ½1 dð1 bÞ� ð9Þ
The default value (which can be changed) is d ¼ 1, which results in the

area being reduced by the same factor as the span, so that the mean chord
is not affected by shortening the wings. The value of the wing span (B)
entered into the programme is measured with the wings at full stretch,
but the value used for calculating the drag at each speed is not B but bB,
and the wing area used for calculating profile drag eSw instead of Sw. The
induced drag is modified from Equation (6) to:

Di ¼ 2kðmgÞ2
ðV 2

t pðbBÞ2rÞ
; ð10Þ

and the profile drag from Equation (8) becomes

Dpro ¼ ðrV 2
t eSwCDproÞ

2
ð11Þ

Calculating the glide polar
Before Flight starts to calculate a glide polar, the user must select a ‘‘law’’ for
making the wing span reduction factor (b) a function of the true airspeed
(Vt). Two options are provided, Linear and Minimum drag (of which more
below). It then calculates the stalling speed (Vs), and selects a slightly lower
speed to start the polar. It increments the airspeed in steps of 0.1 m s�1, first
setting b at each step according to the chosen law, then calculating the
induced drag from Equation (10), the body drag from Equation (7) and
the wing profile drag from Equation (11), and adding the three components
together to get the total drag (D). Then it finds the sink from Equation (5).
The sink declines at first as the speed increases, then levels off and starts
increasing. When the sink levels off, the programme notes the speed as
the minimum sink speed (Vms). This corresponds to the minimum power
speed in flapping flight. At each speed step, the programme also calculates
the lift:drag ratio (L/D) from the approximation

L

D
¼ Vt

Vz
ð12Þ

This at first increases at each speed step, then levels off and starts to
decline. When it levels off, the programme identifies the speed as the best
glide speed (Vbg). This is the speed at which the bird covers the greatest air
distance for a given loss of height. The programme also does a MacCready
cross-country speed calculation at each step, and uses this to determine
when to terminate the polar (Box 10.2).

Alternative wing span reduction laws
At low speeds, induced drag predominates, but at high speeds induced drag
is small, and profile drag predominates. The effect of a value of b less than 1
is to increase the induced drag in inverse proportion to b2, but at the same
time to reduce the profile drag by a factor of b. By making b a decreasing
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function of speed, profile drag is reduced at higher speeds, at the expense of
an increase of induced drag (which is small at high speeds anyway). At any
particular speed, there is an ‘‘optimum’’ value of b that makes the sum of
induced and profile drag a minimum. This can be found by differentiating
the wing drag (Dw), which is the sum of the induced drag from Equation
(10) and the profile drag from Equation (11), with respect to b.

Dw ¼ Di þDpro

¼ ½ð2km2g2Þ=ðV 2
t pb

2B2rÞ� þ ½ðrV 2
t eSwCDproÞ=2�: ð13Þ

Substituting for e from Equation (9) and differentiating,

dDw

db
¼ ð4km2g2Þ

ðV 2
t pb

3B2rÞ

" #
þ ðdrV 2

t SwCDproÞ
2

� �
: ð14Þ

Setting this expression to zero gives the optimum value of b, for minimum
wing drag at a given speed:

bopt ¼
ð8km2g2Þ

ðdpr2B2CDproSwV 4
t Þ

� �1=3
ð15Þ

If the ‘‘Minimum drag’’ option is selected for ‘‘Wing span reduction’’ in
the Glide Polar Setup screen, the programme begins the calculation at each
speed step by setting b to bopt, unless Equation (15) makes bopt more than 1,
which it does at low speeds. In that case, b has to be limited to 1 (maximum
wing span). The result can be seen by viewing the graph from the Glide
Polar Summary screen, which also shows a graph of b versus speed. The line
remains level at b ¼ 1 up to quite a high speed, then suddenly breaks down-
wards. This does not appear to be what gliding birds actually do. Instead
they start reducing the wing span directly above the stalling speed, and then
reduce it linearly as the speed increases.
Instead of using Equation (15), the ‘‘Linear’’ option for wing span reduc-

tion sets b according to this formula:

b ¼
Bstop

Vt

Vs

� �h i
ðBstop 1Þ ð16Þ

Bstop is a constant whose default value is 5. Equation (16) sets b to 1 at the
stalling speed (maximum wing span), and reduces it linearly to zero at Bstop

times the stalling speed. If Bstop ¼ 5, no ordinary bird is going to glide fast
enough to require a wing span approaching zero. The law is based on mea-
surements by Rosén and Hedenström (2001) of a jackdaw gliding in a tilting
wind tunnel, generalised to other birds by assuming, in effect, that the same
value of b occurs at the same lift coefficient. It might have to be modified in
the future if data become available for wing span selection in birds that
actually do glide at high multiples of the stalling speed, such as (possibly)
peregrines. Meanwhile, linear span reduction is currently the default option
for glide polar calculations in Flight. ‘‘Minimum drag’’ was the only method
provided in early versions of the programme, and remains available as an
alternative option.
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conventional in the gliding literature to plot glide polars with sink

increasing downwards, and some polars are drawn in this way in the dis-

cussion of soaring performance later in this chapter, for reasons of

tradition.

10.1.2 CONTROL OF SPEED IN GLIDING

The very idea of a glide polar implies that a glider or a gliding bird is

able to control its speed. A glider pilot does that by adjusting a tail-

plane, but birds use a different method, which works even if the tail

is damaged or missing. A gliding bird controls its speed by adjusting

the angles of the shoulder, elbow and wrist joints. In a most elegant

adaptation, the adjustment that changes the speed is the same as the

one that trades induced against profile drag to suit the new speed (Pen-

nycuick and Webbe 1959). At low speeds, the bird spreads its wings to

the maximum wing span and area, and this movement also produces a

nose-up attitude which reduces the speed. Conversely, the bird moves

the centre of lift back to increase speed, by flexing the elbow and wrist

joints, and this movement also reduces the span and area to suit the

higher speed. Bats can only do this to a very limited extent, because

sweeping back the outer part of a bat’s wing releases tension in the sail,

without which the wing cannot function. Pterosaurs, on the other

hand, would have been able to adjust their wing shape nearly as effec-

tively as birds, if their pata gium wa s elastic as proposed in Chapte r 6.

10.1.3 WING SPAN REDUCTION

The three major components that make up a gliding bird’s drag all

depend strongly on the airspeed (Box 10.1). Two of them (induced drag

and profile drag) are due to the wing, while the third (parasite drag) is

due to the body. If the bird’s wing geometry were fixed, then the

induced drag would decrease strongly with speed (inversely propor-

tional to the square of the speed), while the profile drag would increase

directly with the square of the speed. However, gliding birds change the

wing geometry by progressively flexing both the elbow and wrist joints

as they increase speed, which has the effect of reducing both the wing

span and the wi ng area (Ch apter 5).

At any particular speed, reducing the wing span increases the

induced drag, while the simultaneous reduction of the wing area

decreases the profile drag (Box 10.1). The wings are fully extended at

the stall, and nearly so at Vms, where the induced drag is higher than

the profile drag, and the wing span needs to be maximised. At higher

speeds, the induced drag dwindles, and the penalty for reducing the
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wing span becomes small, while there is increasing benefit from reduc-

ing the wing area, as this gets rid of some of the (increasing) profile

drag. Shortening the wings at higher speeds reduces the sink by an

ever-increasing amount, relative to the sink that would have occurred

at the same speed, with the wings fully extended. The effect is to ‘‘flat-

ten’’ the polar, meaning that as the speed increases, the sink increases

less than it would for a wing whose shape is fixed. An alternative

method of flattening the polar, sometimes used in gliders, is to add

area to the trailing edge of the wings by deploying ‘‘Fowler flaps’’ at

low speeds, but this leaves the glider with more wing span than it

needs for flight at high speeds. Shortening the wings, as birds do, is

more effective, but has never been implemented in an aircraft, because

of the mechanical difficulty of building a jointed spar, with actuators to

flex and extend the elbow and wrist joints.

10.1.4 ALTERNATIVE WING SPAN REDUCTION LAWS IN FLIGHT

Flight provides two alternative ‘‘laws’’ that determine what wing span

the bird selects at any given speed, and plots the wing span on the

same graph as the polar. Linear wing span reduction is the default,

because it seems to be what birds do (Rosén and Hedenström 2001.).

The wing span is set to its maximum value at the stalling speed (as

defined by the maximum lift coefficient—Box 10.1), and then reduced

at higher speeds, as a linear function of speed. The alternative mini-

mum drag law selects the wing span that minimises the sum of

induced and profile drag at each speed. At low speeds, this law indi-

cates an optimum wing span that is longer than the anatomical maxi-

mum. Flight truncates this, with the result that the wing span remains

constant at its maximum value up to quite a high speed, and then sud-

denly plummets as the bird pulls its wings sharply in. While minimis-

ing drag seems to be what one would expect, this type of span

reduction is definitely not what birds do! The linear span-reduction

law does not minimise drag, but presumably it has some other advan-

tage, perhaps to do with speed control. Figure 10.2 shows glide polars

calculated by Flight for the same bird (a Swainson’s Hawk) for the

above two span-reduction laws, and also for a fixed-span wing.
10.2 SOARING

Soaring is behaviour that results in the bird extracting potential and/or

kinetic energy from the atmosphere, and using it to overcome drag.

A flying bird possesses stored energy in three forms, fuel energy,
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FIGURE 10.2 Three polars for a Swainson’s Hawk from the Preset Birds Database, with
different span reduction assumptions. Flight’s minimum drag option coincides with a
fixed wing polar (no span reduction) at low speeds, because the span remains at its full
value (b 1) up to about 13 m s�1. At higher speeds, the minimum drag option flattens
the polar dramatically, by reducing the wing area, and the profile drag. The default
linear option is also better than the fixed wing polar at speeds above about 16 m s�1,
but noticeably worse at lower speeds and worse than the minimum drag option at all
speeds. It is Flight’s default because it resembles observed bird behaviour more closely
than the minimum drag option.
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potential energy and kinetic energy, and the amount of each can be

represented as a virtual energy height. The concept of fuel energy

heigh t has been introd uced in Chapte r 8 (Section 8.3 and Box 8.3) as

the height to which the bird would be lifted, if the whole of its fuel

energy were to be converted into work (reducing the mass in the pro-

cess), and used to raise it against gravity. The bird’s potential energy

height is the same as its actual height above some datum (usually the

land or water surface), and its kinetic energy height is the height to

which it can pull up at the expense of reducing speed, converting

speed to height as pilots say. Birds that start at the same virtual or

actual height go the same distance if they are equally efficient, regard-

less of the size of the bird or of the type of energy represented by the

energy height.

In round numbers, a migrating bird whose all-up mass is 20% fat

would have a fuel energy height of about 200 km, it might climb in

thermals to a height of 2 km, and it might have enough kinetic energy

to pull up to 20 m. Practical heights for potential and kinetic energy are
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respectively around two and four orders of magnitude smaller than fat

energy heights. However, these small energy stores are more significant

than they might appear, because, unlike fuel energy, they can be repea-

tedly used to overcome drag, and replenished directly from energy that

is freely available in the atmosphere, without eating. Alaskan Bar-tailed

Godwits allegedly cross the Pacific Ocean from north to south in flap-

ping flight, from Alaska to New Zealand. They do this by fuelling up

once before departure, to a vast fat energy height of about 730 km,

and then flying non-stop for a week, coming ‘‘down’’ on an average

gradient of about 14:1 (Pennycuick and Battley 2003). Albatrosses of

various species fly similar distances about the Southern Ocean, but

they do it by alternately consuming part of their kinetic energy, and

replenishing it at intervals of seconds or minutes, from the wind dis-

continuity where the atmospheric boundary layer separates from the

crest of a wave. Since the energy height that an albatross can gain each

time it does this is 10,000 times smaller than a godwit can gain by put-

ting on fat, the albatross has to replenish its miniscule energy store

10,000 times to go the same distance that a godwit can fly by refuelling

once. However, albatrosses know how to do that, and in consequence

they can roam the windier regions of the world’s oceans, almost free

of metabolic cost. Migrants that replenish their potential energy by

climbing in thermals are intermediate in the frequency with which

they need to replenish their height, typically gaining up to 2 km in

each of a hundred or so climbs, in the course of a migration from the

temperate regions to the tropics.
10.2.1 SOARING BY REPLENISHMENT OF POTENTIAL ENERGY

10.2.1.1 Linear soaring

The way in which a gliding bird uses potential energy to overcome drag

is shown by the glide polar (Figure 10.1), in which rate of sink (the

downward component of speed) is plotted against the forward speed.

If the bird flies in air that is rising at the same speed (relative to the

ground) as the bird is sinking (relative to the air), then its potential

energy loss is offset by energy supplied by the rising air. It maintains

height, without having to do any muscular work. That is the simplest

method of soaring. Birds and gliders slope-soar for hours at a time in

places where a steady wind blows against a slope, simply by tacking

back and forth along the slope, so as to stay in the zone where the air

is deflected upwards. The term ‘‘lift’’ is used by glider pilots to refer

to a zone of air that is rising fast enough to climb in, independently
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its original meaning as the lift force on a wing. If the slope lift exceeds

the bird’s minimum sink, then it can either gain height, or alternatively

maintain height at a faster speed, at which its sink is equal to the

upward air velocity.

Slope lift along the windward side of a slope is not the only kind of

linear lift. In appropriate conditions, standing waves may form down-

wind of a hill. Sometimes, the wave crests are marked by linear ‘‘lenti-

cular’’ clouds, which lie across the wind, continually forming along the

windward edge and dissolving along the downwind edge, so that the

clouds remains stationary over the ground. Wave systems often remain

usable up to many times the height of the hill that triggers them, unlike

slope lift, which typically extends 300 m above the top of any slope,

whether it is an alpine wall or a modest English sea cliff. In parts of

the world where strong prevailing winds blow across mountain ranges,

as in the Southern Alps of New Zealand, and the Andes of Argentina

and Chile, persistent wave systems often provide strong, linear lift in

which a glider can fly fast and straight for hundreds of kilometres, at

a height far above the mountain tops. Distance flights of over

3000 km in a day have been made by shuttling back and forth along

an Andean wave system. Migrating Canada geese have been observed

by glider pilots using a wave system in Colorado, but little is known

about the extent that birds are able to exploit waves.

10.2.1.2 Soaring in thermals

A ‘‘thermal’’ is a vortex structure in the atmosphere that drifts along

with the wind, powered by heat fed into the atmosphere from below

by contact with a warm land or water surface (Figure 10.3). Strong solar

heating of the surface, as in hot, arid areas, usually triggers columnar

thermals, or dust devils, in which a column of air rotates about a verti-

cal axis. The pressure in the centre of the column is reduced because of

the rotation, and this causes air to converge inwards at the bottom

of the column, where the rotation is retarded by friction with the

ground. The only way the air can escape is upwards. The core of a dust

devil may contain strong lift, but is usually narrow. Birds that rely

heavily on this type of lift have to be capable of gliding in circles of

small radius, with a low rate of sink, and have adaptations that permit

this (Box 10.2). A columnar thermal powered by a persistent source of

heat, such as a grass fire, may extend from ground level up to 2000 m

or more above ground level (AGL), but low-level dust devils powered

by solar heating of the surface more often extend upwards no more

that a few hundred metres. They may then peter out, or trigger
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FIGURE 10.3 (A) Strong solar heating of dry ground produces a steep temperature
gradient near the surface, and often results in columnar thermals, which may be visible
as dust devils. The reduced pressure in the rotating column sucks air in at the bottom,
producing a strong but narrow thermal core, embedded in a wider region of weak
and turbulent lift. (B) If the air above is unstable, low level columnar thermals may trigger
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vortex ring thermals, which are toroidal vortex structures that lose contact with the
ground. Lift is strong and smooth in the core, but surrounded by a ring of sink. As a vortex
ring continues to rise, it grows by entrainment of the surrounding air. (C) A vortex ring
thermal expands and cools as it rises, and may give rise to a cumulus cloud, based at
the condensation level, where the moisture content of the rising (and cooling) air
becomes sufficient to saturate it. The height of cumulus tops is often limited by an inver
sion, a layer of air (shown pink) in which the temperature is warmer than that of the air
below, or at least decreases at a lower lapse rate.

BOX 10.2 Soaring performance in thermals.

If a soaring bird simply needs to stay airborne for a prolonged period with
minimum exertion, as in a vulture patrolling over a wildebeest herd, then
it requires adaptations that enable it to fly in small enough circles, with a
low enough rate of sink, to maintain or gain height in the smallest and
weakest thermals that it needs to use. If it needs to travel across country,
in addition to remaining airborne, then there are additional requirements
which conflict to some degree with those for staying up.

Variable definitions for this box
CL Lift coefficient
m All-up mass
r Radius of turn
rlim Limiting radius of turn
S Wing area
Vbg Best-glide speed
Vc Achieved rate of climb in thermals
Vit Inter-thermal air speed
Vopt Optimum value for Vit that maximises Vxc

Vxc Average speed across country
Vzc Sink while circling
Vzmin Minimum sink in straight flight
r Air density
’ Angle of bank

Thermal profile and the circling envelope
Gliding in circles increases the rate of sink, relative to the air, and the tighter
the circle, the greater the sink. Circling performance can be expressed by a
graph of sink versus radius of turn, when flying in steady circles at the same
lift coefficient that results in minimum sink in straight flight, at different
angles of bank. This curve is called the circling envelope for a particular bird
or glider. To calculate it, we first note from Chapter 9, Box 9.3 that the radius
(r) of the circle is related to the angle of bank (’) by

r ¼ 2m

ðCLrSsinfÞ ; ð1Þ

where m is the all-up mass, CL is the lift coefficient, r is the air density, S is
the wing area, and ’ is the angle of bank. As the bank is increased, the
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radius decreases, but the speed has to increase so that the upward compo-
nent of the lift still supports the weight at the steeper angle of bank, while
keeping the lift coefficient constant. As the wings approach vertical bank,
the speed approaches infinity, and the radius approaches a limiting value
which is not zero, but rlim, where

rlim ! 2m

ðCLrSÞ : ð2Þ

This is strictly a fixed-wing argument, because it assumes that the airspeed
over the wing is the same as the forward speed of the whole bird or aircraft. It
does not apply to birds or bats manoeuvring in flapping flight (or to helicop-
ters), as they can increase the lift by moving their wings relative to the
body. However, it does apply to those birds, and one or two bats, that exploit
thermals by gliding in steady circles, with the wings essentially fixed.
The output of Flight’s Glide Polar calculation gives the lift coefficient for

minimum sink in straight flight. Holding the lift coefficient constant at this
value, the turning radius for different angles of bank (’) can be found from
Equation (1), and the sink while circling (Vzc) is given by the formula:

Vzc ¼ Vzmintðcos3’Þ ; ð3Þ

where Vzmin is the minimum sink in straight flight (Haubenhofer 1964). The
circling envelope is the graph of the sink against the radius, for different
values of the bank angle. Two examples for different birds are shown on
the same graph in Figure 10.4. Each curve approaches the minimum sink
in straight flight as the radius approaches infinity, while in the other direc-
tion the radius approaches rlim as the bank approaches 90�. The curve is
called an envelope (i.e. a boundary) because the bird can circle at combina-
tions of radius and sink to the right of the curve and below it, by selecting a
lower lift coefficient, but it does not have access to the region above the
curve and to the left of it.
Equation (1) shows that the radius at any particular combination of bank

and lift coefficient is directly proportional to the ratio m/S, also known as
the wing loading. The upper part of Figure 10.4 shows the profile of a hypo-
thetical weak, narrow thermal, with an upward air velocity about 0.58 m s�1

in the centre of the core, falling to zero at a radius of about 18 m. The friga-
tebird is able to circle at a radius of about 9 m (vertical dashed line) at a
bank angle of about 26�, where its sink is marginally less than the upward
air velocity in the thermal, while the albatross, with a higher wing loading,
would not be able to maintain height at any radius below its circling enve-
lope. Frigatebirds, with their very low wing loadings, as adapted to soaring
in weak narrow thermals over the trade-wind zones of the oceans, whereas
albatrosses also soar over the oceans, but in an entirely different way that
does not involve flying in small circles. For them, a low wing loading is
not an advantage, nor is it necessarily an advantage for a bird that uses ther-
mals to travel long distances, as opposed to simply remaining airborne in
weak conditions.
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Cross-country speed in thermals—the MacCready theory
The speed at which a glider can fly across country using thermals is central
to the sport of gliding, and also to those birds that use thermals for migra-
tion, or for covering distance on foraging trips. Simplifying a little, a cross-
country flight consists of a series of climbs in thermals at a rate of climb
(Vc) separated by straight inter-thermal glides through stationary air, in
which the pilot is free to select an inter-thermal speed (Vit). The average
cross-country speed (Vxc) over one or more cycles of climb and glide
depends on the rate of climb in thermals, on the pilot’s choice for Vit, and
on the particular glider’s glide polar.
Glider pilots everywhere use the MacCready theory of cross-country

speed, incorporated into mechanical or electronic calculating devices, as
an in-flight guide to selecting the speed to fly between thermals, according
to the conditions. Figure 10.5 shows a graphical form of the theory applied
to two glide polars calculated by Flight for a Rüppell’s Griffon Vulture, an
African species that commonly forages at distances over 100 km from the
nest, using thermals to travel out and back between the nest and the forag-
ing area (Pennycuick 1972). The polars are plotted in the traditional way
with sink increasing downwards, and the Y-axis is extended upwards to rep-
resent rate of climb in thermals. The thin curve in Figure 10.5 is the polar
for the outward journey when the vulture’s crop is empty, and the thick
curve is for the return journey, with a crop load of 2 kg. The best glide ratio
is the same (14.4) with or without the crop load, but the best-glide speed Vbg

increases from 16.6 m s�1 when empty to 18.8 m s�1 when loaded. The
effect of the added load is to move the curve to the right and downwards,
increasing the sink at low speeds. However, the two curves cross in the
vicinity of Vbg, and at higher speeds (somewhat counter-intuitively) the
ballasted vulture’s rate of sink is less than when it is unloaded.
The MacCready theory says that for any given rate of climb, the cross-

country speed for a complete cycle of climb and glide can be found by
drawing a straight line from the point on the Y-axis representing the rate
of climb to the point on the polar representing the chosen inter-thermal
speed. The cross-country speed is the point where this line crosses the
X-axis. The maximum cross-country speed for a given rate of climb is found
by drawing the line as a tangent to the polar. The tangent meets the polar
at the optimum inter-thermal speed (Vopt), and crosses the X-axis at
the maximum cross-country speed. In this example, the unloaded vulture’s
maximum cross-country speed of 15.2 m s�1 increases to 16.2 m s�1 when
an extra 2 kg is added as crop load, for the same rate of climb (3 m s�1) in
thermals. The extra load increases the wing loading and hence the circling
radius, and also increases the sink slightly. Both effects reduce the rate of
climb to a degree that may make soaring difficult in narrow, weak thermals.
However, griffon vultures normally make their unloaded outward journey
early in the day, when thermals may be weak, but return with their food
load in the afternoon, when thermals are usually wider and stronger, and
the reduced climbing performance is not noticeable. Likewise, all high-
performance soaring gliders are equipped with ballast tanks, into which
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BOX 10.2 Continued.

pilots load large amounts of water ballast before take-off, on days when
soaring conditions are expected to be good. This greatly increases cross-
country speeds in strong thermals, and if conditions deteriorate, the water
can be jettisoned to maximise climbing performance.
Flight increments the speed in steps of 0.1 m s�1 as it calculates the glide

polar, and at each step, it finds the rate of climb for which the current speed
would be Vopt. It stops calculating the polar after it passes Vopt for a climb
rate of 3 m s�1. The output includes a table of optimum inter-thermal
speeds and cross-country speeds, calculated from the MacCready theory
for rates of climb up to 3 m s�1. Two values of Vxc are given for each value
of the rate of climb, the first calculated on the assumption that the bird flies
at the optimum speed between thermals, while the second is a lower cross-
country speed for the alternative assumption that the bird flies at the best-
glide speed (Vbg) between thermals. This is a more cautious strategy that
covers the greatest distance between thermals, so reducing the chance of
being forced to land or resort to flapping flight. Looked at another way, fly-
ing at a speed below the theoretical optimum increases the bird’s chance of
finding strong thermals, so increasing the cross-country speed. Glider pilots
normally fly at speeds between these extremes, depending on their assess-
ment of conditions ahead.
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vortex-ring thermals higher up. This type of thermal is a toroid with a

vertical axis, in which air flows up the centre and down the outside.

A vortex-ring thermal is a self-contained structure that is not necessar-

ily in contact with the ground, and does not depend on continuous

input of heat from below to sustain it. Provided the temperature lapse

rate in the surrounding air is steeper than the rate at which a rising

parcel of air cools as it expands, a vortex-ring thermal can rise through

its surroundings, growing in size as it does so by entrainment of envi-

ronmental air. Depending on the humidity of the air mass, and the

air temperature at the surface, thermals may be marked by cumulus

clouds, which form when the rising air in the thermal cools to the

dew point. Thermals often remain usable for gliders inside growing

cumulus clouds, but flight in cloud depends on gyroscopic instru-

ments. It is not known whether birds have any sense that would pro-

vide the same information, but so far as is known, they do not

und ertake intent ional, sus tained cloud climb s (Ch apter 11 ).

10.2.1.3 Thermal profiles

Most glider pilots would say that no two thermals are alike, but on the

other hand there are certainly conditions when thermals are strong but

‘‘too narrow to climb in’’, and other conditions when thermal cores

seem to be a kilometre or two across. The core of a thermal may be
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imagined to have a profile, in which the upward air velocity is strongest

in the middle, and tapers off to zero at some radius from the centre.

Vortex-ring thermals typically have a zone of sink around the core,

caused by the downward-flowing outer parts of the ring, while columnar

thermals tend to have a strong but narrow core, embedded in a larger

area of weak and turbulent lift. If we assume that the bird has centred

its circle accurately around the thermal core, then its circling envelope

(Box 10.2) can be plotted on the same axes, together with the thermal

profile. At any particular radius, the bird’s rate of climb is the difference

between the upward air velocity in the thermal and the bird’s sink. The

upper part of Figure 10.4 shows an imaginary thermal profile with

upward air velocity (increasing upwards on the graph) as a function of

radius from the centre of the core. The lower part of the figure shows cal-

culated circling envelopes for two marine soaring birds, a Magnificent

Frigatebird and a Black-browed Albatross, showing the minimum sink

of each (increasing downwards on the graph) as a function of circling

radius. The frigatebird would be able to climb in this particular thermal

at a radius of about 9 m (vertical dashed line), but the albatross would

not be able to climb at all at such a narrow radius. These two species have

quite similar wing measurements, but the albatross is twice as heavy as

the frigatebird. Frigatebirds roam over the trade-wind zones of the

oceans, where the sky is typically filled with small, evenly-spaced cumu-

lus clouds, each with a narrow thermal underneath it, whereas alba-

trosses do not normally soar in thermals, either over land or sea

(Pennycuick 1983). They are specialised for an entirely different method

of soaring in other parts of the same oceans (below).
10.2.1.4 Cross-country flying in thermals

Many birds, especially predators and scavengers, use thermals primar-

ily as a means of staying aloft for long periods with minimum expendi-

ture of effort. For this the bird needs a circling envelope that is good

enough to maintain or gain height, in thermals of a size and strength

that it typically encounters. Thermals can also be used to travel when

migrating or foraging, and this imposes additional requirements, which

to some extent conflict with the requirements for simply staying air-

borne. The basic method of cross-country flying in thermals consists

of alternating two phases, a climb in a thermal in which the bird gains

height but covers no distance, followed by a straight glide, in which the

bird loses the height it has gained, converting it into distance travelled

over the ground. A high average of rate of climb in thermals has a

strong effect on the average cross-country speed, by minimising the
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FIGURE 10.4 Circling envelopes calculated for a Black browed Albatross and a Magnif
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maintain height in this thermal, but the albatross, with nearly twice the wing loading
(8.7 kg m�2) cannot.
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time spent in climbing, when no forward progress is made. The speed

at which the bird elects to fly on the straight inter-thermal glides also

affects the cross-country speed, and there is an ‘‘optimum’’ inter-

thermal speed, which maximises the cross-country speed for any par-

ticular rate of climb (Box 10.2). The Summary Screen for Flight’s glide

polar calculation includes a ‘‘MacCready table’’, showing optimal
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inter-thermal speeds and cross-country speeds for rates of climb in

thermals up to 3 m s 1. Two cross-country speeds are shown in the

table, one based on flying between thermals at the optimum speed

(Vopt), and the other for flying at the best-glide speed (Vbg), regardless

of the rate of climb. These represent extreme options in a spectrum of

choices available to the bird, in which haste is balanced against

caution. By flying at Vbg, the bird flies the greatest distance for a given

loss of height, and scans the greatest amount of air in its search for a

strong thermal. At any speed faster than Vbg, the glide angle is steeper,
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and the chance of finding a strong thermal for the next climb (or

indeed a usable thermal) is reduced. Because thermals vary in strength,

the steeper, shorter glides that result from flying at Vopt are liable to

result in the average rate of climb being less that it would have been

if Vbg had been used, and this may offset the theoretical speed advan-

tage of flying at the higher inter-thermal speed (Pennycuick 1998b).

This probabilistic element is not included in the MacCready theory,

but it is well understood by glider pilots, who only fly at Vopt between

thermals if conditions are strong, and thermals ahead are well marked

by cumulus clouds, with plenty of clear air between their bases and the

ground. If conditions ahead look weak, cautious pilots reduce speed

between thermals, so as to stretch their glides as far as possible, and

maximise the chance of finding a strong thermal for the next climb.

10.2.1.5 Cross-country speed and wing loading

The difference in the two circling envelopes shown in Figure 10.4 is due

mostly to the wing loading of the albatross being higher than that of

the frigatebird by a factor of 2 or so. In the hypothetical thermal

shown, the frigatebird would be able to maintain height or marginally

climb, whereas the albatross would not. However, a thermal with a

much wider core, as commonly found in inland tropical and temperate

regions, would accommodate both birds’ circles, with only a minor

difference in rate of climb, due to the albatross’ minimum sink being

about 0.1 m s 1 more than that of the frigatebird. If both birds were

achieving a rate of climb of, say, 3 m s 1, the albatross would go con-

siderably faster across country. This is because a higher wing loading

actually reduces the sink at higher gliding speeds. This is the reason

why glider pilots who are preparing to compete in a race load up their

gliders with water ballast if strong thermals are anticipated. The

increased wing loading results in higher cross-country speeds if the con-

ditions come up to expectations, while if not, the water can be dumped

to restore a lower wing loading. Likewise griffon vultures, when foraging

to feed their young, typically set off for the foraging area with an empty

crop in the first, weak thermals of the day, and come back later in the

day when the thermals are stronger, ballasted with a load of meat whose

extra weight increases their cross-country speed (Figure 10.5).

10.2.1.6 Aircraft as platforms for observing birds

Light aircraft and gliders can be used in a variety of ways to observe

birds in the air. This is a natural way to observe soaring flight, because

the behaviour of soaring birds and glider pilots is essentially the same,
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at least over land. The basic difficulty is illustrated by the two glide

polars in Figure 10.6, for an African White-backed Vulture and the

Schleicher ASK-14 motor-glider which the author used to observe this

species and other African soaring birds (Pennycuick 1972). The vul-

ture’s speeds are lower because its wing loading is lower, owing mainly

to a simple scale effect, whereby the weight of geometrically similar

machines or birds varies with the cube of the length, whereas the wing

area varies with the square. The wing loading therefore varies directly

with the length or with the one-third power of the mass. This speed

mismatch also applies to fixed-wing powered aircraft but not, of

course, to helicopters or birds in flapping flight, in which the wings

can be moved relative to the body. The second major difference

between the polars in Figure 10.6 is that the glider is capable of much

better glide ratios than the vulture, which is mostly due to its higher

aspect ratio (longer, narrower wings).

10.2.1.7 Observing circling flight

Figure 10.7 represents the same vulture and motor-glider circling

together in a thermal. If both fly at the same lift coefficient and the

same angle of bank, then the glider flies in a bigger circle than the bird,

because of its higher wing load ing (Chap ter 10 , Box 10.2 ). The trend

can be resisted to some degree by allometry, but it would be impracti-

cal to build a glider with such huge wings that its wing loading and cir-

cling radius would match those of a vulture or stork. Figure 10.8 shows

that the circling radius does indeed vary as expected with wing loading,

even in very dissimilar birds. No glider can circle at a radius of 12 m

with the frigatebirds, or even at 18 m with the pelicans. Consequently,
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birds outclimb gliders in narrow thermals because of their superior

ability to circle in small cores, whereas gliders leave birds behind and

below in straight glides, because of their higher speeds and better glide



FIGURE 10.9 A flock of white storks about 2000 m above the Serengeti Plains, photo
graphed from a motor glider. Photo by C.J. Pennycuick.
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ratios. However, it is possible to stay with soaring birds for periods of

hours, especially with species that soar in flocks, and to observe their

tactics in exploiting thermals in some detail (Figure 10.9).

The wing-loading mismatch means that a glider or light aircraft

that is trying to stay with a bird in straight flight is obliged to fly elon-

gated loops around the bird, or weave from side to side behind it.

Figure 10.10 is a record of a flight in a Piper PA-12 light aircraft, which

belonged to the author at the time, in which a flock of cranes was

followed for 125 km, as they migrated northwards over southern

Sweden in April 1978 (Pennycu ick et al . 1980: see al so Chapte r 11 ,

Figure 11.10). Rates of climb in thermals were measured by circling

around the outside of the thermal, using the engine to maintain the

same rate of climb as the cranes, and the straight glides were observed

by weaving behind the flock. The graph looks somewhat like a glider’s

barograph trace, and was used to check the speeds against the theory

of cross-country soaring flight (Box 10.2), besides directly measuring

the cranes’ achieved cross-country speed, and observing their soaring

tactics, which included intermittent flapping during the inter-thermal

glides. When thermals were strong and cloudbase was high, they pro-

ceeded by pure thermal soaring like storks, but as conditions deterio-

rated, they flapped progressively more during the glides, and could

keep going even in unsoarable conditions, by flapping steadily along

like swans.
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10.2.2 SOARING BY REPLENISHMENT OF KINETIC ENERGY

The dominant soaring birds of the oceans belong to the Order Procel-

lariiformes, comprising albatrosses and their smaller relatives the pet-

rels, shearwaters and storm-petrels. Although they venture into some

parts of the trade-wind zones of the tropics, these ‘‘tube-nosed’’ birds

do not soar in marine thermals like frigatebirds. Their stronghold is

in the windy, middle latitudes of the oceans, and they get their energy

from horizontal rather than vertical movements of the atmosphere,

spending their entire time when at sea within 30 m of the water sur-

face. They soar along cliffs and slopes when they come ashore to breed,

but do not climb to hundreds or thousands of metres simply to gain

potential energy, as thermal soarers do. Their flight at sea is charac-

terised, especially in the larger species, by frequent, transient ‘‘pullup’’

manoeuvres, in which kinetic energy is converted into potential energy,

‘‘converting speed into height’’ as pilots put it. Their flying heights are

in the same range as their typical kinetic energy heights, namely, 10 m

or less for storm-petrels up to perhaps 25 m for the larger albatrosses.

Albatrosses exploit wind shear, meaning differences in horizontal

velocity between different layers of air. One can imagine a layer of air

sliding smoothly over another layer below it, with the wind speed,

measured relative to the bottom of the shear layer, increasing from bot-

tom to top of the layer. The wind gradient is the rate of change of wind

speed with height, measured in metres per second, divided by metres of
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height. The SI unit of wind gradient strength is just ‘‘per second’’ (s 1).

A bird is said to climb ‘‘against the wind gradient’’ if the air in higher

layers is coming towards it as it climbs, so tending to increase its airspeed.

If the wind shear is caused by retardation of the wind by friction with the

surface, then the same direction is also against the wind.
10.2.2.1 Flight of theoretical albatrosses

The copious theoretical literature about albatross flight, reviewed by

Tickell (2000), is based on the classical idea that albatrosses exploit

the wind gradient in the shear layer that extends from the sea surface

to a height of 20 or 30 m, caused by frictional retardation of the wind

at the surface (Lord Rayleigh 1883). In a stiff breeze, the wind speed

(relative to the surface) might be 15 m s 1 at 30 m, and zero at the sur-

face, giving an average wind gradient of 0.5 s 1 over this height band.

Theoretically, the gradient is not linear, but steepest near the surface,

tapering off with height. This picture is quite realistic at heights of tens

of metres, but gets progressively less realistic close to the surface,

where the gradient is strong. This is because ‘‘height’’ is difficult to

define above a reference level that moves, and is not flat. A level can

be assigned by the practical observer to the ‘‘mean sea surface’’, but

the actual surface at any particular point may be several metres higher

or lower. The wind gradient presumably adapts itself in some way to

the ups and downs of the rough ocean surface, but it certainly is not

accurately described by a logarithmic increase of speed with height

above a definable, flat surface, as implied by classical theories of

‘‘dynamic soaring’’.

If this difficulty is ignored, the albatross may be imagined climbing

against the wind gradient, so that its airspeed tends to increase as it

climbs, perhaps enough to offset the loss of speed due to aerodynamic

drag, and to going ‘‘uphill’’. Then, if the albatross turns and glides down

with the wind gradient, it encounters a decreasing tailwind during the

descent, which also tends to increase its airspeed. If some rather inse-

cure assumptions are made about the gliding performance of alba-

trosses, it can be shown by solving elaborate differential equations

that it may be marginally possible for an albatross to replace its energy

losses by doing endlessly repeated cyclic manoeuvres, in which it pulls

up against the wind gradient, and descends with the gradient. This

cycle can be an elliptical or a zigzag pattern, but since it takes place rel-

ative to the air, it always involves a net downwind displacement each

time round the cycle, relative to the sea surface. It does not provide

for making progress against the wind, relative to the water.
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10.2.2.2 Flight of real albatrosses

The very first day that I saw albatrosses at sea was 26 November 1979,

from the deck of the British Antarctic Survey’s supply ship Bransfield,

which was steaming south from Rio to South Georgia at the time in lat-

itude 32� south, making 6 m s 1 through the water, directly against a

headwind of 8 m s 1. Wandering Albatrosses were appearing in the dis-

tance far astern, catching up with the ship and overtaking it. They were

staying close to the surface most of the time, pulling up a few metres

from time to time, but going back down, and continuing their pro-

longed into-wind glide. They were not doing regular cyclic man-

oeuvres. They were not flapping their wings, and it was obvious that

they could go in any direction at will, and that their performance was

anything but marginal. Later observations on the same voyage showed

albatrosses pulling up from near the surface to 15 m, when the wind

gradient might conceivably have been strong enough to keep them

going without losing airspeed up to 3 m (Pennycuick 1982). None of

this behaviour was consistent with any variant of the classical theory.

10.2.2.3 The ocean boundary layer

The ocean surface is never flat, and the wind speed above it does not

decrease in a smooth gradient. The friction at the interface between

air and water drags the water surface forwards, as well as holding the

bottom layer of air back. The uppermost layer of water is rolled into

eddies, which become unstable, and lead to the formation of waves.

In the open ocean, the waves start to form crests at wind strengths over

about 5 m s 1. The wind speed is zero at the water surface, and

increases to the full wind speed through the boundary layer, which is

a shear layer a few centimetres thick, whose top cannot be exactly

defined. The boundary layer remains attached to the water surface

where the wind blows up the windward slope of each wave. Where

the water surface abruptly drops at the wave crest, the boundary

layer separates from the surface, but continues as an identifiable, thin

shear layer, arcing over the hollow on the lee side of the wave, and reat-

taching to the surface somewhere on the windward slope of the next

wave. Underneath the separated boundary layer is a separation bubble,

in which the wind is light. In the long swells of the Southern Ocean, a

yacht’s sails flap as it descends into the shelter of each separation bub-

ble, and fill again as the next wave lifts the boat up through the bound-

ary layer. In such conditions, every wave has a separation bubble on its

lee side, big enough for an albatross to fly around in.
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Albatrosses do not perform regular cyclic manoeuvres in the main

shear zone above the boundary layer, as required by the classical the-

ory. Instead, they gain their energy in pulses, by flying out of a sep-

aration bubble, upwards through the separated boundary layer

(Pennycuick 2002). As the albatross passes through the thin layer of

strong wind gradient at the separated boundary layer, it perceives a

sudden change of wind strength, or gust. By doing the manoeuvre in

a special way (below), it can exploit this to increase its airspeed, with-

out any expenditure of muscular effort. The bird’s kinetic energy

depends on its airspeed, not on its speed relative to the water surface.

It acquires some kinetic energy by pulling up through the boundary

layer, which it can then expend against aerodynamic drag over the next

few tens of seconds of flight (Box 10.3).
BOX 10.3 Kinetic energy gained from the ‘‘Roll off the crest’’.

Variable definitions for this box
M Bird’s all-up mass
V1,V2 Speeds on the glider polar
DEk Increment of kinetic energy

Frame of reference for kinetic energy
Everybody knows that a bird’s kinetic energy is ½mV 2, where m is the
mass and V is the speed, but this statement is actually ambiguous, because
it gives different answers, depending on the frame of reference to which
the speed is referred. Kinetic energy in flight is interchangeable with poten-
tial energy, in that the bird can convert excess kinetic energy into potential
energy by pulling up. The variometer, which is the soaring pilot’s primary
source of information, measures rate of climb, but only very primitive vario-
meters do that literally. Standard instruments correct the actual rate of
climb for changes of speed. They measure, in effect, the rate of change
of the sum of potential and kinetic energy. A positive indication on such a
‘‘total-energy variometer’’ means that the glider is really climbing, and not
momentarily gaining height at the expense of losing speed. The speed
that is used to make this correction is the glider’s airspeed, measured via
the dynamic pressure in an open-ended ‘‘pitot tube’’ pointing into wind,
which looks exactly like the tubular nostrils of procellariiform birds, and
doubtless serves the same purpose.
It is difficult to think about a frame of reference for airspeed, as the air

does not keep still, but the albatross exploits that very difficulty, by moving
between layers of air that are themselves moving relative to each other. If an
albatross inclines its flight path upwards and passes from a lower layer of air
into an upper layer that is moving (relative to the lower layer) at a speed of
1 m s�1 (say) towards the albatross, then the albatross observes a ‘‘gust’’
whereby its airspeed increases by 1 m s�1. Its kinetic energy increases
accordingly, even though the albatross observes no acceleration. This is
basically what albatrosses do, by pulling up out of the sheltered spot in
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the lee of a wave, through the separated boundary layer, into the unob-
structed wind above (Figure 10.11). However, the albatross does not face
into wind when doing this. Instead, it rolls to a very steep angle of bank
(typically 60�–70�) belly-to-wind, that is, presenting its ventral side to the
direction from which the gust appears to come.

Airspeed gain from a gust
The effect of receiving a gust from the ventral side can be understood by
considering the case of a glider flying with its wings level into a thermal.
As the glider enters the core, there is a sudden increase in the upward air
velocity, which is represented in aeronautical theory as a ‘‘sharp-edged
gust’’ coming from below (Figure 10.12). In terms of the vertical component
of the glider’s airspeed, this is aerodynamically the same as a sudden
increase in the glider’s sink, but the effect perceived by the pilot is not just
a transient thump. The glider tries to speed up, and pilots often comment
that the surge of speed seems to continue for longer than they expect. The
reason can be seen by inspecting the glide polar (Figure 10.13). The effect
of the sudden increment in the glider’s sink is to transfer the equilibrium
position on the polar from its previous speed (V1) to a higher speed (V2),
and if the sink is sustained, the glider will speed up until it reaches that
speed. Depending on the ‘‘flatness’’ of the polar, the speed increment from
V1 to V2 is much greater than the increment of sink. If the glider is allowed
to speed up to V2, the kinetic energy gain (DEk) is

DEk ¼ 1
2mðV 2

2 V 2
1 Þ

� ð1Þ
Normally, a thermal-soaring pilot is looking for potential rather than

kinetic energy, and holds the speed down in readiness for circling in the
thermal. In that case the same amount of energy is gained, but it is con-
verted from kinetic to potential energy. Pilots pay little attention to this,
because the amount of energy gained is trivial in comparison to the
expected gain of potential energy from circling for a few minutes in the
thermal. However, albatrosses keep flying by using ‘‘surge’’ as their sole
energy source.
The energy gained from the surge does not depend on the gust being ver-

tical, unless the wings are horizontal. It depends on the gust being directed
against the ventral side of the wings. If the wings are vertically banked, then
a horizontal sharp-edged gust produces exactly the same gain of kinetic
energy, and that is what the albatross gets when it rolls to a steep angle as
it passes through the separated ocean boundary layer.
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10.2.2.4 The roll-off the crest

A conspicuous characteristic of the flight of albatrosses is their use of

very steep angles of bank, close to the water surface. They always roll

to a steep angle, typically 60�–70�, belly-to-wind, just as they pull up

from the crest of a wave (Figure 10.11). The larger petrel species,
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FIGURE 10.11 The ‘‘roll off the crest’’ manoeuvre on which albatross soaring is based.
The boundary layer (shown pink) is the thin layer of air within which viscous forces are
appreciable, as the wind speed increases from zero at the water surface to the speed
observed just above the wave crests. The boundary layer separates from the water sur
face at the crest of each wave, and reattaches on the upslope of the next wave, leaving
a ‘‘separation bubble’’ in which the wind is light, along the windward side of each wave
trough. The albatross flies upwards out of the separation bubble, through the boundary
layer (which persists as a thin layer of strong shear) banking steeply belly to wind as it
does so. Sufficient kinetic energy is gained from this to glide level for a minute or two
in any direction including upwind. Alternatively the albatross can pull up, typically to
15 20 m, converting the kinetic energy gained into potential energy. After Pennycuick
(2002).
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especially Giant Petrels, do the same thing. In turbulent air, downwind

of a ship or an iceberg, Black-browed Albatrosses often roll their wings

past the vertical, when pulling up only two or three metres above the

surface. Rather than relying on extracting energy from smooth climbs

and descents through the main wind gradient, albatrosses perform this

apparently obligatory roll just as they come up above a wave crest,

passing upwards through the separated boundary layer. Why roll

belly-to-wind when receiving the gust? The reason is that the albatross

gains a much larger increment of airspeed by receiving the gust from

the ventral side, perhaps by a factor of 20, than it would if it simply

climbed through the boundary layer heading directly into wind. The

gust is used in effect to add an increment of sink, and this leads to a

much larger increment of airspeed, according to the bird’s glide polar

(see Box 10.3 for an explanation of how this works). It is actually the

same effect (although in a different orientation) that is known to glider

pilots as ‘‘surge’’, when they fly with wings level, directly into the core

of a thermal (Figures 10.12 and 10.13).
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FIGURE 10.12 An albatross that flies with wings level through a sharp edged vertical
gust gets an instantaneous increment of its sinking speed (Vz), with no change in its hori
zontal speed. This causes the resultant aerodynamic force to increase, and lean for
wards, causing the bird to accelerate upwards and forwards. If the bird suppresses the
upward component by control inputs, the horizontal speed increases until equilibrium is
restored at a new value determined by the glide polar (Figure 10.13). The speed
increase depends on the gust coming from the ventral side, not necessarily from below.
To extract energy from the predictable horizontal gust as it pulls up through a separated
boundary layer, the bird rolls to present the ventral side of its wings to the wind. After
Pennycuick (2002).
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Black-browed albatross
Mass
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Aspect ratio

3.08 kg
2.19 m
0.354 m2

13.5
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FIGURE 10.13 An albatross that pulls up through a thin shear layer with a speed differ
ence of 1 m s�1 gets an airspeed increase from 10 to 11 m s�1 if it flies directly into
wind, but if it rolls belly to wind, the 1 m s�1 increment is applied to its sink, not to its for
ward speed. From the polar this sink increment results (eventually) in an air speed
increase from 10 to 22.4 m s�1. About 19 times as much kinetic energy is gained by
taking the gust against the ventral side as by taking it head on. After Pennycuick (2002).
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10.2.2.5 Covering distance

The albatross can use the kinetic energy gained from a roll-off-the-

crest manoeuvre in various ways. If its objective is to make progress

against the wind, it rolls back immediately after rolling off the crest

of a wave, gets down as close as possible to the surface where the wind

is weakest, and glides along against the wind, losing airspeed as its

kinetic energy is dissipated against drag. The energy pulse from one

pullup is sufficient to last a Wandering Albatross for several tens of sec-

onds of flight in typical conditions. This straight-glide phase is termi-

nated by another brief pullup from the shelter of another wave, and

another roll off the crest, followed by another into-wind glide, and so

on. If the intended direction of travel is downwind, the albatross uses

the energy gained in the roll off the crest to climb to nearly its full

kinetic energy height, which may be 15 or 20 m, then turns downwind

and glides back to the surface, getting the benefit of the stronger tail-

wind higher up, and also flattening the glide a little by descending

downwind through the wind gradient. Crosswind travel is achieved

by a succession of pullups to an intermediate height, presenting regu-

lar flashes of white to an observer far to windward. This is the only sit-

uation in which albatrosses show regular cyclic behaviour, but not for

the reason indicated by the classical theory.

Boundary layer transit was never considered by the classical theo-

rists, presumably because it was not thought to be possible to fly under

the boundary layer. Rather than gaining energy at a low rate by moving

up and down through the main shear zone, an albatross gets a large

pulse of kinetic energy, from each upward transit through the bound-

ary layer. The magnitude of the kinetic energy gain is also much greater

than would be calculated under traditional assumptions, because the

significance of the roll-off-the-crest manoeuvre was overlooked. This

manoeuvre is the basis of albatross soaring, not cyclic patterns flown

in the main shear zone. The mathematical theories so ably reviewed

by Tickell (2000) are irrelevant to albatross flight, because they are

concerned with exploiting the wrong part of the wind gradient, by

means of manoeuvres that albatrosses do not use.

10.2.3 SEA-ANCHOR SOARING IN STORM-PETRELS

Soaring in detached boundary layers is practical in medium-sized and

large procellariiform birds, from prions to albatrosses, that normally fly

around with kinetic energy heights of 10–25 m, that is, they fly at

speeds that can be converted into heights of that order, by pulling
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FIGURE 10.14 A feeding storm petrel glides with its body clear of the surface, sustained
by the relative airflow coming from ahead, due to the wind. The aerodynamic drag
pushes the bird backwards so that its feet move slowly backwards through the water.
The relative water flow comes from behind and produces forward directed drag on the
feet. When this sea anchor drag balances the drag on the wings, the bird remains
suspended, at a height where it can pick up small food items from the surface.
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up. Storm-petrels (Hydrobatidae) are the smallest members of the

order, and fly more slowly than the larger species, because of general

scal ing relationships (Chapte r 13 ). Thei r kinetic energ y heights at nor-

mal cruising speeds only go up to about 6 m, which is not enough to

rely on the roll-off-the-crest manoeuvre as the main energy source.

Storm-petrels use flapping flight for cruising, far more than the larger

species, but they also use their own unique soaring method for picking

up food from the surface (Figure 10.14). The bird glides head to wind

with its body clear of the surface, but with its webbed feet in the water,

acting as a sea-anchor. The aerodynamic drag of the wings pushes the

bird backwards, so that its feet move slowly backwards through the

water, creating forward-directed hydrodynamic drag. When this builds

up enough to balance the aerodynamic drag of the wings, the bird

hangs suspended, with its beak at a convenient height above the sur-

face to pick up small food items.
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INFORMATION SYSTEMS FOR
FLYING ANIMALS
Vertebrate senses are not necessarily reliable when contact with the earth’s surface
is lost, especially for monitoring orientation. Gyro instruments overcome this prob
lem for pilots, but nothing equivalent is known in birds. Some sense organs probably
provide information specific to flight, notably the middle ear as a variometer sense,
and the nostrils of Procellariiform birds as an airspeed sense. Visual observation of
the sun may be used for position finding, but no sense is known that could provide
a route weather forecast for a long migratory flight.

Although birds have basically the same set of sense organs as other ter-

restrial vertebrates (eye, ear, nose etc.), the transition to flight changes

the meaning of some of the information that comes in from those

organs. Flight differs from other kinds of locomotion in that the weight

is supported by an aerodynamic lift force, rather than by reaction from

the ground, or by hydrostatic forces in water. In this situation, the inner

ear no longer reliably indicates which direction is ‘‘up’’. Animals that

evolve the power of flight have to adapt to this, as do trainee pilots.
305
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In flight, the eye takes over from the inner ear as the primary organ for

spatial orientation. Pilots also have to learn to use their eyes for an

‘‘instrument scan’’, which means monitoring several streams of infor-

mation about measurements for which human senses are not suitable,

by reading cockpit instruments that present the information in visual

form. Some of these flight-specific kinds of information are thought

to be available to birds, through adaptations of existing sense organs,

but others apparently are not.

Our own suite of sense organs is basically the same as that of birds,

and my starting assumption in this chapter is that birds do not have

any magic senses. If no physical basis is known, or plausibly postu-

lated, whereby a bird could acquire information of a particular kind,

using the senses that we know it has, then the default assumption is

that birds do not have access to that information, until experiments

prove that they do. For example, it would appear that birds do not have

sense organs of any kind that could substitute for gyroscopic instru-

ments. According to pilot experience, that would imply that controlled

flight in cloud, with no visual references, would not be a practical

proposition for birds. On the other hand, the sense organs of birds

are not necessarily restricted to detecting the same information for

which we ourselves use the homologous organs. Some familiar sense

organs, especially the middle ear and the nasal organ, can easily be

adapted for new functions that are only relevant to a flying animal

(Figures 11.1 and 11.2).
BOX 11.1 The labyrinth and accelerometer sense.

The labyrinth of the inner ear is an ancient sense organ found in all verte-
brates living and fossil, even Agnathan fishes. It is a system of chambers
and canals, filled with endolymph, which is a watery fluid, essentially the
same as blood plasma. It is enclosed in a ventral bony box, the tympanic
bulla, at the rear end of the skull, below the brain case and behind the
jaw hinge. Figure 11.1 is a diagram of a typical bird inner ear (Pumphrey
1961). Within it are several different sensors, which between them provide
acceleration measurement and hearing. All of these functions involve ‘‘hair
cells’’, so called because each such cell has a projecting flagellum which
responds to mechanical stimulation. When the flagellum is bent in a partic-
ular direction, the electrical potential across the cell membrane is reduced
(depolarised), and this in turn stimulates a connected nerve cell terminal
to generate a stream of electrical spikes (all-or-nothing impulses). The hair
cell is a transducer which encodes deflection of its flagellum into the time
interval between successive impulses in the output nerve fibre. The animal’s
brain sees streams of impulses coming in at different frequencies along dif-
ferent sensory nerves, and interprets these in terms of the magnitude of the
signal to which each sensor responds.
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FIGURE 11.1 Diagram of a Bullfinch’s labyrinth based on Pumphrey (1961). See
Box11.1.

Maculae—linear accelerometers
The three maculae (utriculus, sacculus and lagena) are inter-connected
chambers within the labyrinth. Each contains an otolith made of a crystal-
line substance much denser than the endolymph, which is attached to the
wall of the chamber by a gelatinous layer containing the flagella of an array
of hair cells. In the orientation shown in Figure 11.2A, upward acceleration
of the whole organ causes the heavy otolith to be left behind, so bending the
flagella downwards. The three maculae are oriented approximately at right
angles to each other, and between them register linear acceleration in three
dimensions. When the animal stops accelerating and moves at a steady
speed, the otolith returns to the neutral position, that is, it does not register
velocity, only acceleration. In a gravity field, an organ of this type indicates
the direction of gravity if the animal is restrained from falling, by being sup-
ported by a solid or liquid surface. In flight, additional information is
needed (from the eyes) to discriminate between the gravity field and the
effects of acceleration relative to the earth’s surface.

Semicircular canals—angular accelerometers
The three semicircular canals are also oriented at right angles to each other,
and each consists of an endolymph-filled loop of tube, which widens into a
bulb at one point Figure 11.2B. The bulb contains a ‘‘cupula’’, which is a
gelatinous projection that blocks the channel. The flagella of a group of hair
cells are embedded in the cupula. If the organ is subjected to an angular
acceleration in the direction shown, the endolymph inside it is left behind,
and bends the cupula, resulting in a signal in the sensory nerve fibres. When
the acceleration stops, the cupula returns to the neutral position. The organ
does not register angular velocity (still less angular position), and cannot be
used for orientation relative to the earth’s surface.
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FIGURE 11.2 (A) A macula (otolith organ) is a chamber filled with endolymph (grey),
containing a dense, crystalline otolith (black) supported on a gelatinous layer (red),
into which the flagella of an array of hair cells penetrate. The otolith bends the fla
gella in the direction of the resultant of gravity and any linear acceleration that the
organ may be subjected to. Three such organs, oriented mutually at right angles,
can determine the magnitude of any linear acceleration, and its three dimensional
direction, but cannot distinguish the effects of acceleration from those of gravity.
(B) A semicircular canal is a loop of tube filled with endolymph (grey), with a bulb
in which the channel is blocked by a cupula (enlarged below) which is a flap of elas
tic material enclosing the flagella of a group of hair cells. Angular acceleration in the
direction shown leaves the endolymph behind so that it deflects the cupula and stimu
lates the nerve fibres. The organ registers starting and stopping accelerations, for
example when the bird rolls to initiate a turn, but does not register steady rotation
or angular position. The three semicircular canals together register the magnitude
and three dimensional direction of any angular acceleration.

The cochlea and hearing
The cochlea detects airborne sound, although it is filled with the same
endolymph as the rest of the labyrinth. Sound is transmitted from the ear-
drum through a bony rod (the columella auris) and passes into the endo-
lymph through a flexible membrane (the oval window) at one end of the
cochlea. The area of the oval window is less than that of the eardrum by a
factor of about 20–25, which increases the pressure of the sound waves by
the same factor, allowing them to penetrate into the endolymph. The sound
waves pass through the basilar membrane, which divides the cochlea longi-
tudinally, and the pressure is relieved at a second flexible membrane, the
round window. The basilar membrane contains a complex array of hair
cells, which act as a sound detector and frequency analyser. Hearing as such
does not have any special significance for flying animals, but the middle ear,
which is the air-filled cavity around the columella auris is believed to be the
basis of a variometer sense (Box 11.2).
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11.1 SENSES

11.1.1 THE ACCELERATION SENSE AND SPATIAL ORIENTATION

The labyrinth of the inner ear is a six-channel accelerometer, and is

basically the same in all vertebrates (Box 11.1). The three maculae are

linear accelerometers, aligned in different directions relative to the

skull, roughly at right angles to one another, while the three semicircu-

lar canals are angular accelerometers, again arranged so that they mea-

sure angular accelerations in three different planes, relative to the

head. Spatial orientation is a matter of linear and angular position,

not acceleration—so how does an accelerometer array come to be

regarded as an organ for monitoring spatial orientation?

A linear accelerometer that is stationary on the earth’s surface indi-

cates a steady acceleration of 1g upwards. If you turn it upside down

it indicates minus 1g. If you drop it, it indicates zero while it is falling

freely, followed by a large positive reading for a short time, as its down-

ward (negative) velocity returns to zero on hitting the ground. If it is

not broken, the reading then returns to þ1g and stays there. This is

how the maculae of the inner ear come to serve as indicators of the

direction we know as ‘‘up’’. A linear accelerometer indicates a steady

acceleration, if it is restrained from accelerating in a gravitational field.

If it is allowed to fall freely, the acceleration reading drops to zero,

although we perceive a freely falling object as accelerating downwards,

relative to the earth’s surface. This is at the heart of General Relativity. It is

not possible to determine from an accelerometer reading whether the

measured acceleration is ‘‘real’’, or due to a gravitational field, or a com-

bination of both, because that depends onwhat the ‘‘real’’ acceleration is

measured relative to.

In our earthbound lives, we perceive ‘‘real’’ acceleration relative to

the earth’s surface, and if our inner ears register a steady 1g, we con-

clude that we are stationary, and that we know which way is ‘‘up’’. A

pilot in flight normally uses his eyes to determine where the earth’s sur-

face is, by locating the horizon. When the aircraft enters cloud, his

acceleration sense continues to work exactly as before, but it quickly

becomes apparent that it does not reliably indicate the direction of

‘‘up’’ as it does on the ground. Many an inexperienced glider pilot

has tumbled out of the bottom of an innocuous cumulus cloud to find

the familiar hills and fields of home tilted at an absurd angle, or even

inverted above his head. Thus we learn to ignore our so-called ‘‘sense

of balance’’ when flying. When the ground is hidden by cloud, other

sensors are required to determine which way is ‘‘up’’, and these are
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unfortunately not included in the basic sensory outfit that we (or birds)

inherited from our reptilian ancestors. Gyroscopic instruments solve

the problem for aviators, providing (in the simplest case) ameasurement

of angular velocity, which a pilot can use for orientation in cloud. Actu-

ally there is a biological sense organ that detects angular velocity, based

on an oscillating structure rather than a continuously rotating rotor as in

a gyro, in the halteres of Dipteran flies (Pringle 1948). This principle has

been adapted for control purposes in flying model helicopters, but no

analogous sense organ is known in vertebrates. Failing the discovery of

such an organ, we have to assume that sustained, controlled flight in

cloud is not possible for birds.

In flight, the pilot’s maculae register the resultant of gravity and any

acceleration in the pitch plane, that is, in the dorso-ventral direction,

relative to the aircraft. Side-to-side accelerations are normally of minor

importance or interest, because neither birds nor aircraft have any

structures than can produce a large sideways aerodynamic force. Fore-

and-aft accelerations are only noticeable in aircraft with very powerful

engines or very effective airbrakes. Only lift from the wings can generate

a lift force that is large enough to produce a substantial acceleration, and

this force is directed in the dorsal direction (not necessarily upwards rel-

ative to the ground), causing the flight path to curve dorsally. The dor-

sally directed acceleration is perceived as an increase of gravity, and

indicates the magnitude of the lift force on the wings, but not its orien-

tation relative to the earth’s surface. Turning is achieved by banking the

wings, and the semicircular canals register the transient angular accel-

erations when initiating and stopping a roll. They do not indicate con-

tinuous rotation (angular velocity), or the angle to which the wings

have been banked, and therefore do not provide sufficient information

for manoe uvring in fligh t (C hapter 9 ). Standard gyro instru ments, whi ch

are found in all but the most basic aircraft instrument panels, provide

the pilot with information on angular velocity and angular position, rel-

ative to the horizon, but so far as is known, neither human nor avian

senses are capable of doing this.
11.1.2 HEARING AND THE VARIOMETER SENSE

The cochlea is another part of the endolymph-filled inner ear, which

acts as a sound detector and frequency analyser in birds, as in mam-

mals. The bird cochlea is straight, and shorter than the coiled cochlea

of mammals, although it seems to be just as effective. It is obvious from

the elaborate songs of birds that they must have sound analysis cap-

abilities to match. Some owls can use sound to locate prey in total
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darkness, or through a layer of snow. These species have asymmetrical

skulls, which results in the direction of maximum sensitivity to high-

frequency sounds being different in the right and left ears, both horizon-

tally and vertically, so enabling the owl to pinpoint the direction from

which the sound comes by rotating its head (Norberg 1968).

The middle ear is the air-filled cavity between the eardrum and the

inner ear, and the chain of three auditory ossicles within it, whose

function is to act as a transformer that enables airborne sound waves

impinging on the eardrum to move the endolymph in the cochlea

(Box 11.2). However, the middle ear is one of those organs that is
BOX 11.2 The middle ear as a variometer sense.

Figure 11.3 is a diagram of the middle ear, which is basically the same in
birds as in reptiles and amphibians. Its function is to act as a transformer
that matches the low acoustic impedance of air to the much higher acoustic
impedance of the endolymph. The energy of sound waves in air results from
small fluctuations of pressure, accompanied by rather large movements
of the air molecules to and fro, as the pressure fluctuates. If these small
pressure fluctuations impinge directly on a water surface, the water
hardly moves at all (being much denser than air) and most of the energy is
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FIGURE 11.3 Diagram of a bird’s middle ear, based on Pumphrey (1961). The mid
dle ear cavity is the space between the eardrum and the oval window, which are
connected by the columella auris. It contains air, whose pressure equalises with that
of the mouth cavity through the Eustachian tube. Distortion of the eardrum measures
the rate of change of the ambient air pressure, which can itself be used as a measure
of vertical velocity in the atmosphere. Themiddle ear can readily be adapted to serve as
a variometer, but not as an altimeter.
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reflected back off the surface into the air. To transmit the sound energy into
the endolymph, the force collected over a large area (the eardrum) is con-
centrated on to a smaller area (the oval window) so increasing the pressure
and producing movement in the fluid. The eardrum has to have air at the
same mean pressure on both sides of it, but to make it vibrate, the fluctuat-
ing sound pressure has to act only on the outside, not on the inside. This is
achieved by connecting the inside of the eardrum to the air in the mouth
cavity through the Eustachian tube, which is a narrow channel that allows
the average air pressure to equalise on both sides of the eardrum, while
greatly attenuating the fluctuating sound pressure.
A variometer is an essential instrument for soaring over land. Its function

is to register the rate of change of atmospheric pressure, which is readily
interpreted by a soaring pilot or bird as an indication of vertical velocity.
Glider variometers consist of an insulated or temperature-controlled cavity,
connected to a source of static pressure through a thin channel, with a
sensor that measures the rate of flow of air through the channel, into or
out of the cavity. It is not known whether soaring birds have a sense organ
that measures the rate of air flow through the Eustachian tube into or out
of the middle ear cavity, but we are all aware of pressure on human ear-
drums induced by rapid climbs or descents. The human middle ear is a lit-
tle more elaborate than that of birds, but works in essentially the same
way. It gives a crude indication of rate of climb or descent despite not
being adapted for that function, and would only require a more sensitive
sense organ to detect distortion of the eardrum to modify it into a
soaring-grade variometer.
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pre-adapted for a function that is only significant for a flying animal,

the measurement of rate of change of air pressure. We are all aware

of popping in the ears that accompanies rapid climbs and descents,

and this is due to changes of air pressure. As we descend a steep hill,

the air pressure on the outside of the eardrum increases immediately,

but that on the inside has to equalise through the narrow eustachian

tube, which takes a little time. While the pressure is changing, there

is a pressure difference across the eardrum, which distorts it. The

amount of the distortion can readily be measured by mechanorecep-

tors, and gives an indication of the rate of change of pressure, which

can be used in turn as an indication of rate of change of height. An

instrument that measures the rate of flow of air through a narrow

channel into or out of a reservoir is called a variometer in gliders,

and it is the primary instrument of the soaring pilot. In powered air-

craft, an instrument with the same function is known as a ‘‘vertical

speed indicator’’. Only minor modification of the human middle ear

would be needed to convert it into a variometer sense, and it is gener-

ally assumed that the middle ears of soaring birds provide this sense.
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Many birds, including vultures and swifts, are extremely good at locat-

ing areas of lift (rising air), and seem to be able to do this without any

nearby visual references from the ground or clouds, from which they

could judge their rate of climb.

The variometer should not be confused with an altimeter. These are

different functions, provided by different instruments in aircraft instru-

ment panels. The most common type of altimeter used in aircraft is

actually an aneroid barometer, measuring the absolute value of the

air pressure, relative to a vacuum inside a sealed aneroid capsule. This

pressure is then referred to a datum level, at which the pressure is

known. This instrument is considered so essential that it is legally

required in most countries, even for the most minimal aircraft. How-

ever, birds are not known to have an air pressure sense that could serve

as a altimeter. The observation that pigeons can detect changes of air

pressure is evidence for a variometer sense, not for an altimeter sense,

as has been erroneously claimed in the literature.
11.1.3 A HYPOTHETICAL AIRSPEED SENSE

All pilots have to learn to be aware of their airspeed at all times, and

this is something for which visual clues are not only insufficient, but

also dangerously misleading. The visual impression of the landscape

speeding past is due to the ground speed, which is the vector sum of

the airspeed and the wind speed, whereas the forces and control

moments available from the wings depend on the airspeed alone. Air-

speed is measured from the dynamic pressure, which is the difference

between pitot pressure, measured in a forward-pointing open tube,

and static pressure, taken from a hole in the aircraft’s skin, at a point

where the pressure can be assumed to be the same as the ambient

pressure in the surrounding air (Box 11.3). A ‘‘pitot tube’’ pointing for-

wards can be found on nearly every aircraft, while the static pressure

source may be combined with it in a pitot-static assembly as in

Figure 11.4B, or derived from a hole or slit somewhere on the surface.

The airspeed indicator is a differential pressure gauge connected

between the pitot and static pressure sources.

Most birds do not have an obvious pitot tube, and presumably make

do with the sound of the air flowing past their ears, and the feel of the

relative wind on their faces, as hang glider pilots traditionally do. The

Procellariiformes, comprising the albatrosses, petrels and storm pet-

rels, are a conspicuous exception, whose prominent, forward-facing

tubular nostrils gave them the alternative name ‘‘Tubinares’’

(Figure 11.5). The large nasal sense organ in these birds, and the size



BOX 11.3 The nostrils of Procellariiformes as an airspeed sense.

Variable definitions for this box
P Dynamic pressure
ppt Pitot pressure
pst Static pressure
Ve Equivalent airspeed
Vt True airspeed
r Air density
r0 Air density at mean sea level in the International Standard Atmosphere

Airspeed measurement
The airspeed indicator is an essential instrument in all aircraft, although it
would be more accurate to describe the usual form of this instrument as a
‘‘dynamic pressure indicator’’. It measures the difference between pitot pres-
sure, which is the pressure in a blind tube pointing into the relative wind,
and static pressure, which is the local ambient air pressure, as it would be
measured with a stationary barometer. Figure 11.4B shows a common
arrangement in which the pitot pressure (ppt) from a central pitot tube is
connected to the inside of an aneroid capsule, while the static pressure
(pst) comes from a ring of slits in a concentric outer tube, and is connected
to the instrument casing surrounding the capsule. The capsule expands
according to the dynamic pressure (p) where

p ¼ ppt pst ð1Þ

The dynamic pressure is itself related to the true airspeed (Vt) by the
equation

p ¼ ½rV 2
t ; ð2Þ

where r is the air density. The capsule drives a pointer as it expands, against
a scale which is calibrated to read the airspeed obtained by inverting
Equation (2):

Vt ¼ tð2p=rÞ ð3Þ
To make the instrument read the true airspeed at any height, r would

have to be set to the local air density, but this is somewhat inconvenient,
and it is actually not what pilots want to know. Instead a fixed value of
the air density is used so that the instrument can be calibrated once and
for all. By convention, this value is r0, the air density at mean sea level in
the International Standard Atmosphere, whose value is r0 ¼ 1.226 kg m�3

(Chapter 2). The instrument measures the dynamic pressure, but interprets
this to read the airspeed that would correspond to the measured dynamic
pressure, if the air densitywere equal tor0. This is called the equivalent airspeed
(Ve) and is given by

Ve ¼ tð2p=r0Þ ð4Þ
The equivalent (not the true) airspeed determines the magnitude of

the aerodynamic forces available to support and manoeuvre the aircraft.
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BOX 11.3 Continued.

For example, a fixed-wing aircraft stalls at the same equivalent airspeed at
any height, whereas the true airspeed at which it stalls is higher at higher
altitudes than at sea level. Likewise, speeds that maximise particular aspects
of performance, such as rate of climb, occur at fixed values of the equivalent
airspeed, but not of the true airspeed.
It may be noted that there is also another type of airspeed indicator, in

which the rate of rotation of a small turbine is used to measure the airspeed.
Instruments of this type do not depend on the dynamic pressure, and mea-
sure the true (not indicated) airspeed (Chapter 14). Turbine airspeed indica-
tors are used in aircraft such as hang gliders and paragliders, whose flying
speeds are so low that the dynamic pressure is difficult to measure. They
are not known in any flying animal.

A pitot-static system in Procellariiform birds
Albatrosses and their smaller relatives the petrels and shearwaters have a
soaring method that depends on detecting discontinuities in the wind
speed, as the air flows over the waves at sea (Chapter 10). They use this to
boost their airspeed, and hence replenish their kinetic energy at intervals
of a few tens of seconds, and it seems not unlikely that a fast and accurate
airspeed sense would be needed to make this possible. A distinguishing fea-
ture of the group, which gives them their alternative name ‘‘Tubinares’’, is
that the nostrils are forward-pointing tubes, which are unlike those of any
other group of birds. The nostrils of petrels (Figure 11.5) look very like pitot
tubes and Mangold (1946) proposed that the beaks of these birds contain a
sense organ that measures airspeed. Figure 11.4A is based on his account,
and shows a diagrammatic transverse section through the upper part of
the beak of a fulmar (Fulmarus glacialis), a medium-sized petrel whose
beak is similar to that of the Giant Petrel in Figure 11.5B. Mangold describes
a flexible pocket on either side of the nasal septum, the inside of which is
connected to pitot pressure via the nostrils, while the surrounding cavity
is connected to static pressure via the mouth cavity. This requires only some
mechanoreceptors to measure the expansion of the pocket, to make it
directly analogous to the aneroid capsule of a standard airspeed indicator
as shown in Figure 11.4B. Mangold also examined some land-soaring birds
including the American Turkey Vulture (Cathartes aura) but did not find a
similar arrangement in their nasal organs. Albatrosses (Figure 11.5A) differ
from petrels in having a deep knife-shaped bill, with separate nostrils open-
ing as forward-pointing scoops on either side. This arrangement could serve
to detect side-slip, that is, a transverse component in the relative airflow.
Avoiding side-slip is an important element in minimising losses against drag
in any phase of flight, but perhaps especially in gust soaring.
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of the associated area of the brain, have always puzzled anatomists, as

some species (especially storm petrels) have a sense of smell, whereas

others that have been tested apparently do not. Mangold (1946) identi-

fied an expandable pocket on either side of the nasal septum of petrels,
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FIGURE 11.4 (A) Diagrammatic transverse section of the central part of a Fulmar’s beak,
passing through the second of the three nasal chambers (based on Mangold 1946). The
inside of the expandable capsule on each side of the nasal septum is connected to pitot
pressure from the forward pointing nostrils (similar to those of the Giant Petrel in
Figure 11.5B), while the cavity outside the capsule is connected to static pressure from
the mouth cavity. The scrolls are not sensory, but concerned with adjusting the tempera
ture and humidity of the air as the bird breathes in and out, like the turbinal bones of
mammals. (B) Combined pitot static tube as commonly used in aircraft for airspeed mea
surement. The expandable aneroid capsule registers the difference between the pitot
pressure coming from the central tube, and the static pressure coming from slits in the wall
of the concentric outer tube.
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which appears to be connected to pitot pressure from the nostrils on

the inside, and to static pressure via the mouth cavity on the outside,

and proposed that this is a sense organ that measures airspeed, in

the same way as the aneroid capsule of a conventional airspeed indica-

tor. This arrangement is only known to occur in Procellariiform birds,

which use a special form of gust-soaring that depends on exploiting dis-

continuities in the wind speed caused by separation of the atmospheric

bound ar y layer from the surfac e of wa ves ( Chapte r 10 , Sect ion 10.2.2 ).

Wherever thewind is sufficient to curl the crests of thewaves, tube-nosed

birds can replenish their kinetic energy in the lee of everywave, anunlim-

ited and ubiquitous energy source which is, however, only available to



FIGURE 11.5 (A) Wandering albatross (Diomedea exulans) showing separate forward
pointing tubular nostrils on each side of the bill, typical of albatrosses (Diomedeidae).
(B) Northern Giant Petrel (Macronectes halli) showing combined tubular nostrils on top
of the bill, typical of petrels (Procellariidae). Photos by C.J. Pennycuick.
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birds with the sensitive airspeed sense required to exploit it. Other sea-

birds in the orders Pelecaniformes and Charadriiformes, which do not

have the tubular nostrils, fly in very different styles, and areobliged to for-

age much closer to their nests than the tube-nosed birds.

As to the olfactory function of the nasal organ, storm-petrels are

famous for detecting animal oil and homing upwind to the source,

while turkey vultures can detect carrion by smell, although other New

World (and also Old World) vultures apparently cannot. The kiwi is also

known for its sense of smell, but that is hardly a flight adaptation. An

acute sense of smell is generally regarded as unusual in birds, whereas

a well-developed nasal organ is not. That may be because olfaction is

not the only function of this organ (Figure 11.6).

11.1.4 VISION

Nearly all birds are highly visual animals, relying on their eyes as their

primary source of sensory information. The eyes are commonly so

large that they almost touch in the middle of the skull (Figure 11.6B),

and may occupy more space in the skull than the brain. The left and

right eyeballs are separated only by a thin bony septum in the midline.

The eyes’ optical axes are directed to the sides and obliquely forwards,

more so in some birds (owls, raptors, swallows) than in others

(waders). The image is formed on the retina by four optical elements,

the cornea, the aqueous humour, the lens and vitreous humour. The

interface between the air and the curved, outer surface of the cornea
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FIGURE 11.6 (A) Diagram of a bird’s eye based on Slonaker (1918) and Pumphrey
(1948). The eye is typically not spherical but dish shaped, so that it has limited freedom
to move its socket, and cannot roll like mammal eyes. The cornea is the main refracting
surface, and the sclera is reinforced by scleral ossicles to provide attachments for the mus
cles of the ciliary body, which distort the lens for focusing. The pecten is a structure which
varies greatly in form in different birds, and is attached to the blind spot where the optic
nerve enters. It is unique to birds, and its function is thought to be nutritive, maintaining
the composition of the vitreous humour. The two foveas are pits in the retina associated
with a high density of cones. (B) Diagrammatic horizontal section through the head of
a Swallow, based on Slonaker (1918). The central foveas provide acute vision obliquely
forwards and to the sides, the shape of the retina allows sharply focused and fine grained
vision to be maintained over a wider angle than is possible in the spherical eyes of mam
mals, with less emphasis on pointing the fovea directly at an object of interest. The tem
poral foveas give a fine grained, binocular image on both eyes of objects ahead of,
and below the bill.
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is the main refractive surface. The lens is an elastic body whose shape

can be altered by the muscles of the ciliary body, so allowing the focal

length of the whole array to be adjusted for accommodation (focusing).

Rather than being spherical, bird eyes have a dish-shaped retina, and

consequently cannot roll around in their sockets to the same extent as

mammal eyes. A bird rotates its head to look at something, in situa-

tions where a mammal would roll the eye in its socket. The exact direc-

tion in which the eye ‘‘looks’’ is less important in a bird than in a

mammal, because the retina is fine grained, and in focus, over a wider

area than a mammal retina. Many birds have a linear area of enhanced

vision, which crosses the retina horizontally, and registers the horizon

when the head is held in the normal flight position. Detailed vision

along the horizon is readily understood in connection with the eye’s

function as the primary reference for spatial orientation in flight, and

it may also have further implications in connection with navigation

(below). Bird retinas typically have two foveas (pits), one central
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(centred on the eye’s optical axis) and one temporal (Figure 11.6A). The

central fovea provides a small area of especially acute vision to the side,

while the temporal fovea is at the back of the eye and has the same for-

ward field of view in both eyes, providing binocular vision directly

ahead, and just below the bill. In waders the eyes are directly lateral,

and because of the tapering shape of the head, both eyes can be seen

from in front of the bird, and also from behind. This works in either

direction. The curlew with its bill probing deep in the mud can still

see the gyr falcon approaching it from behind.

The optic nerves of birds ‘‘decussate’’ fully, that is all of the nerve

fibres coming in from the left eye cross over to the right side of the

brain and vice versa, whereas in mammals decussation is only partial,

with some optic nerve fibres going to their own side of the brain and

some to the opposite side. This may be due to different methods of ste-

reoscopic vision. We converge our eyes to examine nearby objects, and

judge distance from the amount of convergence needed to centre the

same part of the image on the foveas of both eyes. Birds, with their

dish-shaped retinas, cannot generally converge their eyes to the same

degree as mammals, and are presumably obliged to judge distance by

observing the discrepancy in the position of the images of the same

object on the two retinas. This method is easily applied to a pair of dig-

ital cameras, and may be associated with the total decussation of the

optic nerve fibres.
11.1.5 ECHOLOCATION

Unlike the other senses, echolocation is an ‘‘active’’ sense, in which the

animal illuminates its surroundings, not with light but with sound.

A few fruit bats (Megachiroptera) and some cave-nesting birds (swift-

lets) supplement their vision with limited forms of echolocation which

are adequate for avoiding obstacles in deep caves, beyond the reach of

daylight, but bats of the Sub-Order Microchiroptera, which includes

most bat species, have more elaborate echolocation systems that make

them wholly independent of ambient light. They emit very loud sounds

at frequencies that are above the upper limit of human hearing, mostly

in the range 25–100 kHz. The short wavelengths of these ultrasonic

sounds allow insectivorous bats to detect and identify flying insects,

and to pursue and catch them in flight. For example common Pipis-

trelles use frequencies around 50–60 kHz corresponding (at sea level)

to wavelengths around 6–7 mm, and are able to detect insects of that

size or larger. Bats that use higher frequencies (shorter wavelengths)
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can detect smaller insects, or features of large insects that serve for

identification. Deriving directional information from echolocation

requires that either the sound transmitter or the detector has to be

directional. Many bat species have ‘‘nose-leaves’’ whose function is to

concentrate sound emitted from the nostrils into a narrow beam, and

such bats have relatively small external ears, whereas long-eared bats

emit sound over a wider arc through their mouths, and detect the

direction from which the echoes come with their large, mobile ears.

Insectivorous bats can generally avoid obstacles and hunt when

blindfolded, but on the other hand they do have functional eyes, which

presumably have been retained for some reason throughout their evo-

lution. Many bat species migrate over distances up to a few hundred

kilometres, and some forage a few kilometres from their roosts. These

are short distances by avian standards, but long enough to make navi-

gation difficult by echolocation alone, as this is an inherently short-

range sense. Fruit bats, which have large eyes and no echolocation,

find their way around visually, and it is possible that all bats use their

eyes for orientation on the scale of the landscape, as opposed to their

immediate surroundings.
11.2 ORIENTATION AND NAVIGATION

11.2.1 THE COMPASS SENSE

The sun compass is the best known special sense of birds. It refers to the

ability tomaintain a compass direction by reference to the sun’s azimuth,

which is its direction, conventionally measured clockwise from north, as

projected on the horizontal plane at the observer’s position. This requires

a time sense, to compensate for the sun’s apparent movement across the

sky, due to the earth’s rotation. The classical demonstrations that birds

possess a sun compass (Kramer 1952) depend on ‘‘clock-shifting’’ birds

by keeping them under artificial lighting, which is switched on and off

ona24-hour cycle, butphase shifted fromthe local cycleof day andnight,

for example by 6 hours forward or back. Birds that have been trained to

select a particular direction, or are attempting to migrate, duly select a

direction that is shifted by 90�, but if they cannot see the sun, then their

orientation is random.

This observation spawned an industry in which homing pigeons or

wild-caught birds are tested under different experimental conditions.

The measure of a bird’s response is a direction, which may be the van-

ishing bearing of a homing pigeon as seen from the release point, or

the direction in which a wild migrant tries to escape from an
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orientation cage. These directions usually show a large amount of scat-

ter, and in the case of orientation cages are usually only recorded as the

choice of one out of eight 45� sectors. Samples of such directions are

analysed by circular statistics, with the objective of identifying the

mean direction of a sample, and determining whether it differs signifi-

cantly from random, or from a reference direction, or from the mean

direction of another sample. Another industry has developed around

the magnetic sense of birds, also based entirely on statistical analysis

of the directions selected by animals, in a magnetic field manipulated

by the experimenter. In this case, there is not even a plausible physical

hypothesis as to how the magnetic field might be detected. There is no

information on the precision with which a heading can be maintained,

either by using the sun, or by a magnetic sense.
11.2.2 PRECISION OF ORIENTATION

Statistical experiments detect whether the bird reacts to the experi-

mental treatment, but shed little light on whether its compass sense,

whether optical or magnetic, is of any practical use for navigation. That

depends on the degree of precision with which a heading can be main-

tained, a topic which is never discussed in the orientation literature.

Any competent private pilot can hold a magnetic compass heading

within 5�, while a commercial pilot who deviates by a couple of degrees

from an airway can expect some pointed comments from air traffic

control. A compass that only has a significant tendency to point to

the right hemisphere would not be considered a practical navigational

instrument, and that is all that the biological literature on the sun and

magnetic compasses tells us about their performance.

Despite that, people use the sun for rough orientation, consciously

or not. It works best for an observer near the north or south pole, dur-

ing the six months when the sun is visible, as the sun moves almost

horizontally all the way around the sky, at a steady 15� per hour. In

the tropics, the sun indicates east in the morning, and west in the after-

noon, but it is unusable in the middle of the day, because its azimuth

becomes hard to determine when the sun is almost overhead. In the

middle latitudes, the sun’s azimuth changes slowly in the morning

and afternoon, and faster in the middle of the day, and it can be used

to determine a rough general direction, but not to steer an accurate

heading. In the northern hemisphere (or more accurately, in latitudes

north of the sun’s current declination) the sun moves clockwise around

the sky, whereas for an observer south of the sun, it moves anti-

clockwise, which presumably calls for some re-programming in the
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case of trans-tropical migrants. The polarisation of blue sky can be

used to infer where the sun is, even when the sun itself is obscured

by cloud. Some historians believe that viking navigators used polarising

crystals for this purpose, and it is possible that some birds may be able

to do the same thing.

Sky polarisation patterns are more visible in the ultraviolet, to which

many birds are sensitive, than at wavelengths visible to the human eye.

The compass principle also works under the night sky, by monitoring

recognisable patterns of stars rather than a single object. Many bird

species normally migrate at night, and the results of planetarium

experiments suggest that night migrants observe the whole star field,

or whatever part of it can be seen through gaps in the clouds, so as

to identify the point in the sky about which it appears to rotate. This

then becomes the reference for geographical north or south

(Figure 11.7).
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FIGURE 11.7 Track of a single foraging expedition by a female Wandering Albatross
(Diomedea exulans) nesting on Bird Island, at the western end of South Georgia, and
feeding off the coast of Uruguay, recorded by the Argos satellite system, from Prince
et al. (1992). The bird covered a distance of 6479 km in 8.2 days, of which 2 days were
spent in the feeding area at the north western extremity of the track.
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11.2.3 NAVIGATION BEYOND THE HORIZON

A sun or magnetic compass is a sense like any other, that responds to

local stimuli that the animal can perceive directly. A compass is neces-

sary for navigation but not sufficient in itself, because long-distance

navigation also requires information that is beyond the range of direct

perception. Satellite tracking of albatrosses nesting on small islands

has shown that they forage over vast areas of open ocean, and return

direct to the nesting island. The track of an 8-day foraging trip by a

Wandering Albatross from Bird Island, South Georgia shown in

Figure 11.7 is from Prince et al. (1992), and shows the bird first flying

north, and then curving round to the west as it approaches its feeding

area off the coast of Uruguay. There is a suggestion that it might have

been ‘‘running down the latitude’’ to its destination, a technique that

was used by the captains of sailing ships, in the period when they could

determine their latitude from observations of the sun, but did not have

chronometers that enabled them to determine longitude. However,

when it had finished feeding, the albatross flew an almost straight

track, apart from a few minor zigs and zags, all the way back to Bird

Island, a distance of about 2200 km. Although South Georgia was a

small target at this distance, there is no sign of any search pattern to

locate it. A straight track when returning to the nesting island was

usual in other tracks from the same albatross and others, and there

was not usually any indication that the albatross needed to run down

a latitude on either the outward or return journey. In the outward track

of Figure 11.7, it could equally well have been searching the ocean to

the east for possible feeding opportunities. Albatrosses and other birds

that have been tracked in this way seem to know the direction of the

destination, and can steer a course straight to it from hundreds of kilo-

metres away, deviating only to take advantage of favourable winds.

Two methods have been proposed for position finding, that would

work anywhere on the earth’s surface, and do not depend on a knowl-

edge of geographical features, which, of course, change over geological

time. Inertial navigation was used by ships and trans-oceanic airliners

until the introduction of the satellite-based Global Positioning System,

and remains essential for spacecraft navigation and for submarines.

It requires an array of linear and angular accelerometers, and could, in

principle, be undertaken by the standard vertebrate labyrinth (Box 11.1).

As noted above, a linear accelerometer, such as an otolith organ, does

not indicate position, but if the position and velocity are initialised at a

starting time (before take-off, say), then the velocity at some later time

can be found by integrating the accelerometer reading with respect to
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time, and the position can be found by integrating the velocity. Likewise,

directioncanbemonitoredbydouble integrationof theoutput of anangu-

lar accelerometer, such as a semicircular canal. The precision require-

ments for the accelerometers are very high (Britting 1971), and it seems

unlikely thatbiological sensorscouldperformto the level required,but this

is a topic that remains open to experimental investigation. The practical

difficultiescanbesimplifiedbystabilising theplatformonwhichtheaccel-

erometers aremounted (thebird’s head) in suchaway that it behaves likea

pendulumwith a period of 84minutes, because the bob of such a pendu-

lum would be at the centre of the earth, so that the platform remains par-

allel to the earth’s surface, irrespective of any horizontal accelerations to

which it is subjected. If a bio-rhythm with an 84-minute period were

detected in birds, this would be a clue suggesting that inertial navigation

may after all be used.However, the observation thatWhooper Swans (Cyg-

nus cygnus) migrating between Scotland and Iceland stop on the water

when visibility is poor, but keep going over land regardless of the visibility

(Pennycuick et al. 1999) suggests that they need a visual horizon over the

sea, but not over land. This would not be expected if they had an

84-minute pendulum,whichwould, in effect, provide anartificial horizon.

The principle of celestial navigation is to observe the angular dis-

tance above the horizon of the sun or a star (its altitude), then take

account of the earth’s known rotation relative to the fixed stars, to get

the observer’s position relative to the earth’s surface. Viking navigators

a millenium ago could hold a constant latitude by observing the sun

accurately enough to cross westwards from Norway to Iceland, and

later direct to Greenland. Conveniently for them, this method is easiest

near mid-summer, when the sun’s declination changes only slowly, but

not so easy for birds that migrate in spring and autumn. Determining

longitude requires an accurate time reference, and remained an intrac-

table problem for navigators until the balance-wheel chronometer was

invented in the eighteenth century. Any comprehensive hypothesis

about long-distance celestial navigation in animals implies that they

can be assumed to have a time sense whose precision is of the order

of a minute or two per day, or better. This remains a moot point despite

the massive literature on biorhythms, because the precision of time-

keeping has never interested experimenters to the same degree as the

biochemical mechanisms involved.

A bird that has a sufficiently precise time sense could in principle

determine the direction to a destination from simultaneous measure-

ments of the sun’s altitude and rate-of-change of altitude, as outlined

in Box 11.4. This method requires the bird to be able to determine

the difference between the sun’s observed altitude above the horizon,



BOX 11.4 Sun Navigation.

Variable definitions for this box
A Sun’s angular altitude
B Crossing angle between observer-sun line and equinoctial
D Sun’s declination
H Hour angle between sun’s and observer’s longitude
L Observer’s latitude
a Rate of change of sun’s altitude with respect to hour angle

Terminology
Sun and star navigation, as developed for the use of mariners over the past
several centuries, depends on an ancient fiction, the celestial sphere
(Figure 11.8), which greatly simplifies thinking about the movements of
celestial bodies. It is an imaginary sphere that is concentric with the earth,
and its radius is unspecified but much larger than that of the earth. The
stars are fixed to it, and the sun moves all the way around it once per year,
following a path through the constellations called the ecliptic. Points and
lines on the earth’s surface can be projected on the celestial sphere by rays
shining from the earth’s centre. The celestial north and south poles are pro-
jected from the earth’s poles by extending the earth’s axis of rotation until it
meets the celestial sphere. The celestial sphere rotates about the earth
(or vice versa if you prefer) once per sidereal day (23.934 hours) whereas
the sun lags behind by one revolution per year, and takes exactly 24 hours
per revolution, on average over a whole year. The equinoctial is the projec-
tion of the earth’s equator on the celestial sphere. It is a great circle, meaning
one that it cuts the sphere exactly in half. The meridians are also great cir-
cles, which pass through both poles, and cross the equinoctial and equator
at right angles. The axis of rotation lies in the plane of any meridian, and is
perpendicular to the plane of the equator and the equinoctial.
Spherical trigonometry is entirely about angles, which are of two types.

One type corresponds to what we normally think of as the distance between
two points on the earth’s surface, except that it is the angle that the two
points subtend at the earth’s centre. For example the distance from any
point on the equator to the North Pole is 90�, in other words the radius of
the equator (or any great circle) is 90�. Circles whose radius is less than
90� are called small circles. An angle measured north or south from the
equator marks out a small circle on the earth’s surface, parallel to the equa-
tor, whose radius is 90-L degrees, where L is the latitude. Likewise, a celes-
tial object’s declination is its angular distance north or south of the
equinoctial. The other type of angle is measured on the surface of the
sphere, where two great circles cross. For example, the angle measured at
the North Pole between any meridian and an arbitrarily chosen zero merid-
ian is called longitude on the earth’s surface, and right ascension on the
celestial sphere. By convention zero longitude is the meridian that passes
through Greenwich, and zero right ascension is the celestial meridian
through the First Point of Aries. A celestial object also has a longitude
on the earth’s surface, but this continually changes as the earth rotates,
whereas its right ascension is fixed on the celestial sphere.
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FIGURE 11.8 The observer’s and the sun’s positions plotted on the celestial sphere.

Figure 11.8 shows a celestial object, the sun, whose declination is D, and
an observer at a latitude L on the earth’s surface, whose position is projected
on the celestial sphere. The longitudes of the observer and of the sun are
not shown, but the difference between them is H, the hour angle, measured
where the two meridians cross at the North Pole. H can be measured either
in degrees or in hours, as the earth rotates at 15� per hour. The sun’s altitude
(A) is its angular distance above the horizon, as seen by the observer. The
horizon (not shown) is a great circle 90� from the zenith, which is the point
on the celestial sphere directly above the observer, and therefore the angular
distance between the sun and the zenith is 90-A degrees. The basic theo-
rems of spherical trigonometry consist of relationships between the six
angles that make up a triangle formed on the surface of a sphere by the
intersections of three great circles. These angles are the three corners, as in
a plane triangle, and the three sides, which are also angles (above). Applying
these theorems to the four spherical triangles that can be seen in Figure 11.8
results in the following relationship between the sun’s altitude (A), the sun’s
declination (D), the observer’s latitude (L) and the hour angle (H) between
the observer’s longitude and that of the sun:

sinA ¼ cosHcosLcosDþsinLsinD ð1Þ

Position lines from the sun’s altitude
Figure 11.9 represents the earth seen fromapoint directly above theNorthPole
using a stereographic projection, which represents any circle (great or small)
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either as a circle, or as a straight line if it is seen exactly edge-on, as the
meridians of longitude are in this view. The sun is shown at a declination of
23.45�N, its furthest north position at the northern summer solstice. The termi-
nator, where the sun’s altitude is zero, divides the day side of the earth from the
night side, and is a great circle, centred under the sun, with a radius of 90�. It
reaches 23.45� beyond the North Pole at this season, so that the arctic regions
(above 66.55� latitude) are in continuous daylight. The thick circles with the
sun (red) at their centre, in the lower left quadrant of the diagram, are lines of
equal sun altitude. The radius of each of these small circles is 90-A degrees,
where A is the altitude. Conversely, if the navigator observes that the sun’s alti-
tude is A, and knows where on the earth the sun was overhead at the date and
time of the observation, he can draw a circle on the chart with a radius of 90-
A degrees centred on the sun’s position, knowing that his own position at the
same time was somewhere on that line.

Position lines from the rate of change of the sun’s altitude
Just as the small circles of latitude (thin lines centred on the North Pole) are
intersected everywhere at right angles by the great circles of longitude radiating
from the pole, so the small circles of equal sun altitude are intersected every-
where at right angles by another set of great circles, along each ofwhich the rate
of change of the sun’s altitude is constant. These are shown in Figure 11.9 as
thick lines radiating from the sun’s position. Returning to Figure. 11.8, the rate
of change (a) of the altitude (A) with respect to the hour angle (H) is:

a ¼ dA=dH ¼ cosB ð2Þ
where B is the angle between the equinoctial and the line joining the obser-
ver’s position to that of the sun. An observer standing on the equator, at the
time of the spring or autumn equinox sees the sun rise above the eastern
horizon and climb up to the zenith at a constant rate of a ¼ 1, and then
continue down to the western horizon at a constant rate of a ¼ 1, meaning
that the altitude changes by 1� for each degree change of the hour angle.
These are the maximum and minimum values of the rate of change.
On the summer solstice chart of Figure 11.9 the maximum rate is 0.917
along the thick dashed line. The pattern is repeated as a mirror image in
the bottom right quadrant (but not shown in the figure), with the same
values of the altitude, but negative values of the rate of change. The entire
pattern rotates clockwise with respect to the stationary earth below. An
observer at 40� latitude, say, sees the sun rise above the eastern horizon at
a rate of about 0.65, which increases slowly to about 0.77 by 0900 or so,
and then declines ever more rapidly to zero at noon. The altitude is
then at its highest, which is 73.45�. The moment of zero rate of change is
traditionally observed by navigators to determine the time of local noon
(and hence the longitude) while the altitude at that moment directly gives
the latitude, the sun’s declination being known. After local noon, the rate
of change of altitude becomes negative, as the altitude decreases back to
zero, in a mirror-image of its ascent during the morning.
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FIGURE 11.9 The earth seen from above the North Pole, plotted on a stereographic
projection. The sun’s declination is 23.45� N at the northern summer solstice. The
family of sun centred equal altitude circles are plotted in the lower left quadrant, as
are the family of great circles of equal rate of change of altitude. After Pennycuick
(1960).

Since the hour angle (H ) changes at a steady rate with respect to time (t), the
rate of change of altitude with respect to hour angle is a constant multiple of
the rate of change with respect to time, that is,.

dA=dH ¼ a ¼ ðdA=dtÞ=ðdH=dtÞ ð3Þ
where dA/dt is measured, and dH/dt is 15� per hour. Together with Equation
(2), this converts an observation of dA/dt into a position line that cuts the line
from the sun’s altitude (Sumner circle) at right angles. This is a practical
method of position finding that could plausibly be implemented using a bird’s
eye as the observing instrument (Pennycuick 1960). It requires the bird to
make a simultaneous measurement of the sun’s altitude and the rate of
change of altitude. The same method was proposed independently for use
by surveyors by Hervieu (1960), whose account includes corrections to the
rate of change of altitude for the annual motion of the sun around the sky.

Precision of position finding
The precision of position finding is the relationship between the probable error
of the original celestial observation, and the resulting distance error on the
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ground,which is different for the twoobservations required, altitudeand rate of
change of altitude. The precision of the line from the sun’s altitude is the same
as the precision with which the altitude is observed, that is. an error of 1 arc
minute in the observed altitude results in an error of 1 arc minute in position
(i.e. 1 nauticalmile or 1.85 km) in a direction perpendicular to the line. An error
in themeasured rate of change of altitude, however, causes an error of position
that depends on the spacing between neighbouring lines. Where the lines are
closely spaced,near the sunandnearnoon, a given change in themeasurement
corresponds to a small distance on the ground, and the precision of position
finding is good, but where the lines are widely spaced, at low latitudes early
and late in the day, a small error in the observation corresponds to a larger error
on the ground.More explicitly, a small error (Da) in themeasured rate of change
of altitude results in a position error (DS) given by

DS ¼ 3440QDa ð4Þ
where the factor 3440 converts DS from radians to arc minutes (nautical
miles), and the factor Q is:

Q ¼ cosA=
tðcos2D a2Þ ð5Þ

Lines for three values of Q, 0.5, 1 and 2, are shown in the lower right quad-
rant of Figure 11.9. The lowest values of Q (highest precision) are found near
the sun’s position and near the noon meridian, while the precision becomes
poor out on the fringes, where the altitude is low and cos A is high. As an
example, if Q ¼ 2, a precision of about 12 nautical miles would require
the bird to detect a discrepancy in the rate of change of altitude of about
1.5 arc seconds per minute. Nearer the sun, the same error of observation
would lead to a lower position error in proportion to the local value of Q.
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and the altitude where it would be, if the bird had already arrived at its

destination. The response required is simple—if the sun is too low in

the sky, fly towards it, and vice versa. A short-term time sense to mea-

sure the rate of change of the sun’s altitude would provide a second,

independent measurement that can be translated into a set of position

lines that cross the first set (from the altitude) at right angles. If the rate

of change is too high, the appropriate response is to deviate left if flying

up-sun, and right if flying down-sun, and vice versa. A good view of the

sun is needed for a few minutes, not necessarily at noon. If this sounds

challenging in cloudy parts of the ocean, it should be remembered that

‘‘sun sights’’ (although not exactly this method) were the mainstay of

marine navigation for centuries, and were the key to the successful

outcome of a number of epic voyages in small boats under appalling

conditions. Thus Frank Worsley (to name only one of the most famous)

navigated the disintegrating lifeboat James Caird from Elephant Island

to South Georgia in April 1916, across 800 nautical miles of mountainous
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seas, with only occasional glimpses of the sun, and thereby saved the

stranded crew of Shackleton’s ship Endurance from certain death.

11.2.4 NAVIGATION BY COMMITTEE

No goose, crane or stork willingly flies alone. Each bird in a migrating

flock will modify its own preferred heading and speed as necessary,

to avoid getting separated from the flock. As a result, the direction in

which the flock flies is some kind of statistical average of the directions

that would be selected by the individuals in it. Not all migrants fly in

flocks, but in those that do, this type of committee navigation may

compensate to some degree for the shortcomings of their individual

compasses, and estimates of the required direction. There is evidently

a random element in the navigation of some gregarious migrants, as

in the flock of Cattle Egrets (Bubulcus ibis) that left southern Europe

or North Africa in about 1930, and accidentally discovered Brazil, so

initiating the invasion by that species of the Americas (Figure 11.10).

Some soaring birds also use formations as a means of locating ther-

mals (Pennycuick 1972). Figure 11.10 shows a small flock of migrating

cranes gliding along in ‘‘vee’’ formation. If the birds in any part of the

line start to rise relative to the others, the flock will quickly converge

on those that are climbing fastest, until (if the rate of climb is good)

the whole flock is circling together around the core of the thermal.

Storks fly along in a cluster without organising themselves into lines,

and spread out laterally so as to search a wide swathe of air for ther-

mals. Raptors, including vultures, will join other birds or gliders that

are circling in a thermal, but appear to search for thermals individually,

reacting to clouds or ground features as glider pilots do.

11.2.5 WEATHER INFORMATION

Modern pilots rely heavily on weather briefings, based on information

that comes from a world-wide network of surface observers and orbit-

ing satellites, but migrating birds have no such information. Several

statistical studies have shown that migrating birds of various kinds pre-

fer fine weather with a following wind when they make the decision to

depart, but this only shows that they respond to the conditions that

they can see when they depart, not that they are aware of future condi-

tions, out of sight over the horizon ahead. It was apparent from the

same study of Whooper Swans mentioned above (Pennycuick et al.

1999) that the swans had no information about the weather ahead

when they departed from the south-east coast of Iceland, or from the

Western Isles of Scotland, across the 800 km of open sea that separates



FIGURE 11.10 A flock of cranes (Grus grus) migrating northwards over southern Sweden
in spring. In between thermals, the cranes spread out in echelon or vee formation, which
increases the chance of finding another thermal. If one part of the line starts to rise, the
others quickly converge on those individuals that are climbing fastest. Once centred in
the thermal, the flock concentrates in a tight formation on one side of the circle, all cir
cling in the same direction. White pelicans behave in a similar way, but storks circle in
both directions in thermals, and form a cluster rather than a line between thermals, spread
ing out to the sides to increase the chance of finding thermals (see also Chapter 10
Figure 10.10). Photo by C.J. Pennycuick.
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these coasts. The swans would not delay their departure because of a

front or impending contrary gale along the route, so long as conditions

were benign at departure. On several occasions the swans got into seri-

ous difficulties during the crossing, due to bad weather which had

been correctly forecast by the meteorologist on the project (Tom Brad-

bury), but which they evidently failed to anticipate. As to the flights of

extreme long-distance migrants such as the Alaskan Bar-tailed Godwit,

which apparently takes a week or so to fly non-stop across the equator,

direct from Alaska to New Zeal and (Ch apter 8 ), there is no way that

even modern aviation weather services could forecast conditions over

such a vast distance, so far into the future. The implication is that all

migrants must depart with fuel reserves sufficient to cope with weather

emergencies that are statistically likely to occur, and indeed the fuel

reserves estimated by Pennycuick and Battley (2003) were much higher

than the levels required for aircraft by aviation regulations.
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WATER BIRDS
Some birds (cormorants) use their feet to swim under water, but this is inefficient.
Others use a flapping motion with the wings for propulsion under water, and this
works best with very small wings (penguins). Wing swimmers that also fly have
wings of reduced size, which increases their speed and wingbeat frequency, makes
slow flight for landing difficult or impossible, and renders them incapable of flap
gliding. There are no bats that swim, for reasons that appear to apply equally to
pterosaurs.

Here on earth, we are accustomed to two very distinct modes of

locomotion in fluids, flight and swimming. The distinction results from

a characteristic of our planet, which has extensive fluid environments

of two types, air and water. Where air and water meet, the interface is

so well defined that ‘‘sea level’’ is used as a datum for the radius of

the planet. At the interface, the density of the air just above is about

800 times less than that of the water just below. Above the surface,

the air density dec lines stro ngly with increasing height ( Chapter 2),

while below it the water density is almost constant, increasing only

slightly down into the ocean depths. One can imagine planets with

fluid environments that vary over a wide range of densities, or even
333
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have a gaseous atmosphere that shades imperceptibly into a liquid

ocean without an identifiable surface, but on earth there are no inter-

mediates between flight and swimming. A swimming animal’s density

differs only slightly (if at all) from that of the water, and consequently

all, or nearly all of the energy that it expends is used directly in

overcoming drag. A flying animal, on the other hand, gets negligible sup-

port from hydrostatic forces, and its energy requirements (Chapter 3)

are dominated by the need to overcome drag, at the same time as

supporting its weight in air, which is much less dense than itself.

Gravity rules in air, but is difficult even to measure in water.

Just as different birds are adapted to live in every possible terrestrial

habitat from tropical forests to arctic tundra, so other birds live in every

aquatic habitat from inland streams and lakes to the open ocean. The

limits to their aquatic adaptations are that all birds (like marine mam-

mals) are confined to depths from which they can return to the surface

to breathe, and that no bird has escaped from the need to nest on a solid

surface (ice in the case of Emperor Penguins). In the latter respect

penguins, the most aquatic of birds, are equivalent to fur seals and sea

lions, but are not so fully independent of the land as whales and dol-

phins. The ocean surface, the interface between water and air, is the

habitat of the most prolific and wide-ranging order of seabirds, the pet-

rels and albatrosses (Procellariiformes), while three other orders, the

Pelecaniformes (pelicans, cormorants, boobies, tropicbirds, frigatebirds),

Anseriformes (swans, geese, ducks) and Charadriiformes (gulls, terns,

auks) dominate particular parts of either the ocean or freshwater

surface. Most of these birds can fly, walk and swim with varying degrees

of proficiency, a degree of locomotor versatility that is shared by water

beetles, but otherwise unmatched elsewhere in the Animal Kingdom.

One order of birds, the Sphenisciformes (penguins) has become so

specialised for swimming that none of its members can now fly, and a

few species of auks, cormorants and ducks have also taken this route.

Several birds, including ospreys, frigatebirds and skimmers, get their

food from the water without actually entering it, and there are also bats

that snatch fish from the water while flying just above the surface. How-

ever, there are no bats that swim, perhaps because a membrane wing

would be unmanageable in water, whether used for propulsion or not.

12.1 WATERPROOFING AND THERMAL INSULATION

The initial evolution of the bird body plan added the power of flight to

a bipedal dinosaur-like animal, with little or no loss of its ability to walk

and run. This versatility is due to the use of stiff flight feathers to carry
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the bending and torsional loads in flight, so that the leg is not part

of the wing structure as it is in bats (Chapters 5–6). The contour feathers

that cover the outer surface of a bird’s body are mechanically similar to

flight feathers, and also serve as thermal insulation by trapping air in

the layer of down feathers under them. It seems that this arrangement

also works in water, with almost no modification apart from the appli-

cation of waterproofing compounds, whereas most marine mammals

are insulated by a blubber layer, which would not be practical in a

flying animal.

12.2 MECHANICS OF SWIMMING

12.2.1 DRAG-BASED FOOT SWIMMING

Birds like ducks and gulls hardly differ from ordinary terrestrial birds,

except in their waterproof outer layer of feathers. They walk on land

like other birds, and float rather high in the water, owing to the buoy-

ancy of a thick air layer trapped below the contour feathers. They

propel themselves on the surface by a fore-and-aft movement of their

webbed feet, spreading the toes as the foot swings back, and furling

them as it swings forward (Figure 12.1A). The propulsive force comes

from the drag of the foot as it moves backwards, relative to the water.
D
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FIGURE 12.1 Two birds swimming on the surface, as seen by a diver looking upwards
from below. (A) In gulls, ducks etc., the propulsive force is the drag of the spread webbed
foot, as it swings backwards relative to the body (dashed arrow). The water flows forwards
relative to the foot, producing a forward drag force (D). The foot is furled on the return
stroke (right), so that it creates much less drag as it swings forwards. (B) In divers (loons)
the leg articulation is modified so that the foot sweeps obliquely backwards, and towards
the centre line (dashed arrow). The propulsive force is the reaction (R) which is the resultant
of the lift (L) perpendicular to the local water flow and the drag (D) in line with it.
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The forward speed of the body through the water can be no faster than

the backward speed of the foot relative to the body, and work is done

directly against drag, which is not an energetically efficient arrange-

ment. On the other hand ducks stand, walk and run on land as well

as other birds. Diving ducks use essentially the same foot motion when

swimming under water, and so do some pelecaniform birds that forage

under water, especially cormorants and anhingas.

12.2.2 LIFT-BASED FOOT SWIMMING

Divers or loons (Gaviidae) avoid leaving the water except when they

have to climb on to their nests, which are invariably at the water’s edge.

They are unable to stand, and use their legs on land to push themselves

along on their bellies. This is because the legs are set far back, flattened,

and articulated so that their natural motion is from side to side rather

than fore-and-aft. In the water, the tarsus and foot move in a direction

that is oblique to the direction of swimming, so that the forward force

is not pure drag as in a duck, but the resultant of a drag force parallel

to the local water flow relative to the foot, and a lift force perpendicular

to that direction (Figure 12.1B). This type of motion allows the body to

move faster through the water than the foot moves relative to the body,

and uses lift as a component of the force that balances the body drag,

which is more energetically efficient than using foot drag alone. The

penalty is lack of agility on land, and consequent restriction of nest sites

to locations that predators such as foxes cannot easily reach.

12.2.3 WING SWIMMING

A far more efficient method of propulsion is wing swimming, in which

the wing is rotated in the dorso-ventral plane, to produce a lift force

directed forwards (Figure 12.2). Auks and diving petrels swim under

water with their wings in this way, using their feet only to swim on the

surface. The difficulty with this is that to produce comparable forces

with the same wing in both air and water, the velocity required is smaller

in water than air, by a factor similar to the square root of the ratio of the

densities of water and air, that is about 28. To look at it another way, a

wing that works for flying is far too big to work properly in water. Alba-

trosses and boobies do open their wings under water, but only to a small

extent that allows a limited amount of steering. In auks and diving pet-

rels, the wings are reduced, so that they can operate under water as pro-

pulsive hydrofoils, but they also operate in air as wings. The small wings

of auks force them to fly faster than other birds of similar mass, and to

beat their wings in air at a higher frequency than birds that do not swim
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FIGURE 12.2 An auk such as a guillemot, totally submerged, and swimming with its
wings. During the power stroke, the wings are partially flexed, and rotate about the
shoulder joint towards the ventral side of the body. The bird moves forwards at a
speed V, so that the relative water flow over the head is of the same magnitude as V,
but opposite in direction. Over the wing, the relative water flow has an additional com
ponent, due to downward rotation of the wing about the shoulder joint. This component
is small near the body, and progressively larger at more distal points along the wing. The
resultant water flow (Vrel) over the outer part of the wing is faster, and angled strongly
upwards, as compared to the relative flow over the head. The lift force on the wing is per
pendicular to the local relative water flow, and is therefore angled forwards on the outer
part of the wing. Its horizontal component is the propulsive thrust force (T ). The muscles
work against the drag force (D), which is parallel to the local flow, and much smaller than
the lift. The feet of auks (and penguins) are furled back during wing swimming. They are
not involved in propulsion, but serve for convective heat disposal.
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with their wings. Auks flap their wings at a much lower frequency in

water than in air, which causes problems in matching the flight muscles

to the wings (Chapter 7, Box 7.1). They also flex the elbow and wrist

joints, which reduces the wing area, but makes the wings a less-than-

ideal zigzag shape. By reducing the wings further and abandoning flight,

penguins avoid the need for these compromises.

The primary morphological difference between an auk and a gull of

the same mass is that both the wing span and the wing area are smaller

in the auk (Figure 12.3). The aspect ratio, which expresses the shape of

the win g (C hapter 1, Box 1.3 ) is much the same in birds that use their

wings for swimming and those that use them only to fly. Even penguins

have similar aspect ratios to medium-sized petrels (Table 12.1). The

consequences for flight performance of reducing the wing, without

changing its shape, are outlined in Box 12.1. They are that an auk has

to fly faster than a gull of the same mass, requires more power from

its flight muscles, and has to beat its wings at a higher frequency.

Another direct result of wing reduction considered in Box 12.1 is that

an auk can flap, and it can glide, but it cannot flap-glide, because its

minimum gliding speed is faster than its minimum power speed in

flapping flight.



BOX 12.1 Effects of reducing wing size.

Wing swimming is barely practical for typical seabirds like petrels, gannets
and gulls, because their wings are far too large to operate in water in theman-
ner of penguinwings. Some seabirds, especially auks (Alcidae) and diving pet-
rels (Pelecanoididae) have reduced their wings to a size where they work
satisfactorily for propulsion in water, which results in fast flight with a high
wingbeat frequency. The wings of wing swimmers are not greatly different
in shape (aspect ratio) from those of seabirds of similar mass that do not
use wing swimming, but they are a lot smaller. Table 12.1 shows the aspect
ratios of some seabirds, with those that use wing swimming in bold type.
The Common Diving Petrel’s position at the bottom of the table (aspect ratio
7.41) might suggest wing swimming leads to a reduction of aspect ratio, but
this is also by far the smallest species in the table. Flying birds also have smal-
ler aspect ratios at smaller sizes (Chapter 13). The ultimate wing swimmer, a
Gentoo Penguin, has the same aspect ratio as a Fulmar (10.7).
The effects of this type of wing reduction on flight performance can

be understood by considering the two hypothetical birds shown in
Figure 12.3, whose bodies have the same size and shape in both A and B.
However, B has only 60% of A’s wing span, although the wing shape (defined
by the aspect ratio) is the same in both. This is a fair approximation to the
modification needed to change from a bird shaped like a gull to a typical
flying wing swimmer like a guillemot. We can use some equations that
have been introduced earlier in the book to see the general nature of the
performance implications (Pennycuick 1987b).

A

B

FIGURE 12.3 Birds such as auks that are specialised for wing swimming under water,
but also able to fly (B), differ from other flying birds (A) in that the wing span and area
are reduced relative to the size of the body, but the aspect ratio is little changed.
The same trend leads to flightlessness when carried to extremes, as in penguins and
the Great Auk.

338 MODELLING THE FLYING BIRD



BOX 12.1 Continued.

TABLE 12.1 Aspect ratios of some seabirds.

Wing swimmers are in heavy type

Eudyptes chr ysolophus 10.7
Fulmarus glacialis 10.7
Sula sula 10.5
Sterna fuscata 10.4
Alca torda 9.44
Larus ridibundus 9.4
Uria aalge 9.34
Pachyptila desolata 8.62
Fratercula arctica 8.21
Pelecanoides urinatrix 7.41

Variable definitions for this box
B Wing span
CDb Body drag coefficient
CLmax Maximum lift coefficient in gliding
f Wingbeat frequency
g Acceleration due to gravity
k Induced power factor
m All-up mass
Pam Absolute minimum power required at Vmp

Pav Power available from the flight muscles
Preq Power required to fly at V mp

Ra Aspect ratio
Sw Wing area
Sb Body cross-sectional area
Vmp Minimum power speed in flapping
Vs Stalling speed in gliding
r Air density

Effect on flight speed
The speed at which birds normally fly around can be seen as a multiple
(usually only a little greater than 1) of the minimum power speed (Vmp),
which is given in Equation (1) of Box 3.4 as

Vmp ¼ ð0:807k1=4m
1=2

g
1=2Þ

ðr1=2B1=2
S
1=4
b C

1=4
Db Þ

ð1Þ

The comparison in Figure 12.3 refers to two birds of the samemass (m) with
the same body frontal area (Sb) and drag coefficient (CDb), flying in the
same gravity (g) and air density (r) with the same induced power factor (k).
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The only variable in Equation (1) that changes is the wing span (B). As ever y-
thing else in Equation (1) is constant, the minimum power speed varies
inversely with the square root of the wingspan, and that is all there is to it:

Vmp / B� 1= 2 ð2Þ
No special obser vations are needed to see that guillemots and razorbills
hurtle around the sea cliffs, much faster than gulls.

What about the wing area? The area differs between Figure 12.3A and B in
proportion to the square of the span, but this does not affect the speed.
The wing area does not appear in Equation (1). The apparently common
sense notion that wing area affects the speed of flight is true in the case of
fixed wings, and applies to gliding birds (Chapter 10), but it does not apply
if the wings are moved relative to the body, as they are in helicopters, and in
flapping bird flight. Biological authors who discuss flapping-flight perfor-
mance in terms of wing loading (mass or weight per unit wing area) have
failed to notice that this is a fixed-wing notion, which is not transferable
to flapping flight. The reasons for this are explained in Chapters 3 and 4.

Effect on power required to fly at Vmp

The ‘‘absolute minimum’’ power (Pam ) is given in Equation (2) of Box 3.4 as

Pam ¼
ð1: 05k 3= 4 m3 = 2 g 3 =2 S 

1 =4
b C 

1 =4
Db Þ

ðr 1 =2 B 3 =2 Þ ð3Þ

This is the sum of induced and parasite powers at Vmp. The profile power
has to be added to get the minimum power, and the aspect ratio (and indi-
rectly the wing area) is involved in calculating this. However, as noted
above, birds that use wing swimming are distinguished from those that do
not by a major difference in wingspan, but little if any difference in aspect
ratio. Using the same reasoning as above, one can say that the main effect
of reducing the wing span, keeping everything else including the aspect
ratio constant, is that the power required to fly varies inversely with the
3/2 power of the wingspan:

Pam / B�3=2 ð4Þ
As the wing span shrinks, the power required to fly at Vmp increases

strongly. Whether or not this makes it difficult for wing swimmers to fly
depends on how this effect on the power required to fly compares with
any effect that shrinking the wings may have on the power available from
the flight muscles.

Effect on power available from the flight muscles
The performance of the flight muscles, considered as engines, is analysed in
Chapter 7 along the lines that the maximum amount of work that can be
done in each contraction, by a given mass of muscle, is essentially fixed
by the properties of the sliding filament mechanism. The maximum power,
averaged over many contraction cycles, is this amount of work, multiplied
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BOX 12.1 Continued.

by the contraction frequency. As the flight muscles drive the wings directly
in a bird, their contraction frequency has to be the same as the wingbeat
frequency, which is itself determined by the properties of the wings and
the flight environment. According to Equation (1) of Box 7.3, the wingbeat
frequency (f ) in cruising flight is:

f / m3 =8 g 1= 2 B �23 =24 S �1 =3
w r�3=8 ð5Þ

Unlike Equations (1) and (3), Equation (5) involves both the wingspan (B)
and the wing area (Sw). However, in the comparison of Figure 12.3, the
aspect ratio (Ra) is assumed to be constant, where

Ra ¼ B2

Sw
ð6Þ

In other words, constant Ra implies that

Sw / B2 ð7Þ
Proportionality 5 says that f / Sw

�1/3, which can be converted to f / B�2/3

with the aid of Proportionality 7. Thus, if m, g and r are assumed to be
constant, Proportionality 5 can be reduced to:

f / B�23=24B�2=3 ¼ B�13=8 ð8Þ
As the wing span is reduced, the wingbeat frequency increases dramati-

cally, giving auks their characteristic ‘‘whirring’’ flight. If the flight muscle
mass remains constant, the power available from the flight muscles (Pav)
will increase by the same amount:

Pav / B�13=8 ð9Þ
whereas the power required (Preq) can be assumed to vary in the same

way as the absolute minimum power, according to Proportionality 4:

Preq / B�3=2 ¼ B�12=8 ð10Þ
The negative exponents are somewhat confusing, but can be understood

from Figure 12.4, where it is assumed that there is some value of the wing
span (vertical dashed line) at which the power available from the muscles
is equal to that required to fly at Vmp. If the wing span is now reduced
(moving left on the diagram), the power required to fly increases, along
the line whose slope is –3/2, while the power available from the muscles
increases along the slightly steeper line whose slope is 13/8, because that
is the slope for the wingbeat frequency, which determines the power avail-
able. Although the power required to fly increases as the wing span
decreases, the power available from the muscles increases slightly more,
because of the increase in wingbeat frequency. Shortening the wings does
not in itself prevent the muscles from meeting the power requirements,
nor does the requirement for the power available to match the power
required impose a limit on the amount of wing reduction that is possible.
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FIGURE 12.4 Wing reduction as in Figure 12.3 leads to an increase in the power
required to fly in proportion to the 3/2 power of the wing span, whereas the wing
beat frequency increases at the slightly steeper slope of 13/8. The power available
from a fixed mass of muscle should be proportional to the wingbeat frequency, and
thus able to deliver the higher power required to fly, even in penguins.

Effect on minimum gliding speed
Auks may not usually be thought of as gliding birds, but they do glide, and
they can soar in the slope-lift along sea cliffs, in the same way as fulmars,
gannets and other more typical gliding birds. The difference is that they
require a stronger wind than other birds before they can do this. The mini-
mum speed at which any bird can glide (the stalling speed Vs) is given in
Chapter 10 Box 10.1 as

Vs ¼ 2mg

ðrSwCLmaxÞ
� �1=2

ð11Þ

where CLmax is the maximum lift coefficient. This is a fixed-wing equation,
and it says that, other things being equal, the stalling speed is inversely
proportional to the square root of the wing area (Sw).

Vs / S�1=2
w ð12Þ

If the aspect ratio is held constant while the wings are reduced, Propor-
tionality 7 converts this to:

Vs / B�1 ð13Þ
This is also true for other characteristic gliding speeds, that is, the speeds

for minimum sink and best glide ratio. The slope of Proportionality 13 is
twice that of Proportionality 2, which describes the effect of shrinking the
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BOX 12.1 Continued.

wings on the minimum power speed. Reducing the wing span increases
gliding speeds twice as steeply as speeds in flapping (Figure 12.5).

The result of this is that although auks can glide (very fast), and also
flap, they cannot flap-glide. A bird like a fulmar flying at Vmp while it is flap-
ping is going faster than its stalling speed. If it stops flapping, it can carry on
gliding horizontally, slowing down below Vmp until it reaches Vs, when it has
to resume flapping or start losing height. A guillemot’s Vmp is faster than
that of a fulmar, but not as fast as its own stalling speed in gliding. The guil-
lemot has to speed up well above Vmp before it can glide, and this makes
flap-gliding impracticable.

Min power speed
slope −1/2

Stalling speed
slope −1

Log wing span

Lo
g 

sp
ee

d

FIGURE 12.5 Wing reduction as in Figure 12.3 leads to an increase in the minimum
power speed (Vmp) in proportion to the 1/2 power of the wing span, while gliding
speeds increase in proportion to the 1 power of the wing span. Wing swimmers (left
side of diagram) can glide, but they cannot flap glide, because the stalling speed in
gliding is higher than Vmp when flapping.
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12.3 MORPHOLOGICAL TRENDS IN WATERBIRDS

12.3.1 THE NOTION OF THE ‘‘STANDARD SEABIRD’’

Of the four families making up the Order Procellariiformes, one (the

diving petrels) consists of wing swimmers which are convergent on

the smaller species of auks, while the other three (storm-petrels, petrels

and albatrosses) form a remarkably homogeneous sequence, ranging

from tiny storm-petrels whose mass is less than 30 g to the largest alba-

trosses at over 9 kg. All of them are strictly pelagic, foraging at sea and

coming ashore only to breed, and they all have many characteristics in

common, which are not shared by other groups of seabirds. The
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morphological characteristics of the main procellariiform sequence

(e xcluding diving petrels) are descri bed in Chap ter 13 . The ‘‘standard sea-

bird’’ is a hypothetical species, whose mass, wingspan and wing area are

at the mid-point of the sequence. It is close to a White-chinned Petrel

(Procellaria aequinoctialis), which is shown in silhouette in Figure 12.6,

enclosed in a ring. Other seabirds can be derived from this starting point

by changing the wing measurements. For example, adapting the stan-

dard seabird for wing swimming results in reduced wing span, with little

or no change of aspect ratio (above), leading to auks and eventually to

penguins. Modifications in other directions from the standard seabird

follow from other adaptive requirements, but before considering some

of these, I will first look at extreme wing reduction for wing swimming,
More span
same aspect ratio

Less span
same aspect ratio

Less span
same area

More area
less aspect ratio

A

B

C

D

E

F

FIGURE 12.6 The silhouette in the ring (A) is a White chinned Petrel (Procellaria aequi
noctialis) which is close to the ‘‘standard seabird’’ derived from the mid point of the
procellariiform sequence (see Chapter 13 ). All of the six silhouettes in the figure have
been scaled so that the bodies appear the same size. The differences between them
reflect changes in the wings relative to the body. In a Razorbill (C), which flies but is
specialised for wing swimming, the wings are reduced, with little or no change of aspect
ratio. The same trend is continued to an extreme degree in the Gentoo Penguin (D),
which swims in a similar manner but is flightless. The Magnificent Frigatebird (B) has
increased wing span and area, also with little change of aspect ratio, which adapts it
for soaring in weak, narrow thermals over the trade wind zones of the oceans. The friga
tebird’s large scapular feathers and long tail make its body look bigger in the silhouette
than it really is. The Brown Pelican (E) and Blue eyed shag (F) have lower aspect ratios
than the standard seabird, and different planforms that are associated with less fully
pelagic lifestyles than those of those of A D. After Pennycuick (1987a).
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which leads to flightlessness, as it is not entirely clear from the

arguments presented so far why penguins cannot fly.

12.3.2 WHY ARE PENGUINS UNABLE TO FLY?

Penguins are thought to be descended from flying birds related to

petrels, and it is possible that they first became flightless as a result

of selection pressure for large size. Modern penguins range in body

mass from about 1–30 kg, overlapping the upper end of the mass range

of flying birds, but extending well above it. The Razorbill (Alca torda) is

an auk with a body mass around 0.62 kg, which swims with its wings

under water, and flies fast in air. Its extinct congener the Great Auk

(Alca impennis) looked quite similar, but was much bigger, and flight-

less. Its locomotion in water was penguin like, and its wings were

reduced to a similar degree to those of penguins. Its mass (around

5 kg) was well above that of the heaviest flying auks (about 1.5 kg),

but well below the limi t for flying birds (a bout 16 kg— see Chapte r 7,

Box 7.4). This sugge sts that the upper limit of mass for fly ing wi ng

swimmers may be below the limit for birds in general, with no limits

on wing morphology. However, the argument in Box 12.1 indicates that

although reducing the wing span increases the power required to fly, it

also increases the wingbeat frequency by a slightly larger amount, and

with it the power available from a fixed mass of muscle. If this is cor-

rect, then wing reduction should not in itself make a flying penguin

impossible, or even call for any allometric adjustment of muscle mass.

There is a Gentoo Penguin (Eudyptes chrysolophus) in Flight’s Wings

Database. Its mass is 4.80 kg, its wing span is 0.510 m (a bit less than a

Knot) and its aspect ratio is 10.7. The reader can verify that the power

curve calculation says that its Vmp for sea-level air density would be

33.4 m s 1, with a wingbeat frequency of 34.5 Hz (like a hummingbird).

Giving it the default flight muscle fraction of 0.17, the specific work

would be 32.6 J kg 1, similar to that of large birds like swans when

flying at Vmp. These numbers do not in themselves exclude the possibility

that the penguin could fly, although it might need a steep toboggan run

to take off, and would certainly have trouble using its hummingbird-like

flight muscles for swimming.

It is possible that the flightlessness of penguins is due to a physiolog-

ical rather than a mechanical limitation, but this takes the discussion

outside the Flight programme’s scope. Wing swimmers like guillemots,

that are able to fly, do so in order to travel back and forth between their

nests and their foraging areas at sea, and also to move around the

ocean outside the breeding season, and they have to be able to fly
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aerobically to meet these requirements. Flight says that the penguin

would need nearly 5 times as much chemical power than a 5 kg

Bewick’s Swan to fly at Vmp, and if it were to do that aerobically,

presumably its heart and lungs would have to be a lot bigger as well,

perhaps too big to fit in its body. Sadly, there is no quantitative theory

that says how big the heart and lungs have to be, or how much power

they require for themselves, to support a given level of aerobic power

in the flight muscles. Hill (1950) proposed a way in which such a theory

could be developed, but there are difficulties with following this up,

ou tlined in Ch apter 13 .

12.3.3 WING ENLARGEMENT IN FRIGATEBIRDS

Frigatebirds have aspect ratios around 12, similar to or slightly higher

than those of medium-sized petrels, but both their wing spans and

wing areas are considerably larger than those of procellariiform birds

of similar mass (Figure 12.6B). Considered as a deviation from the pro-

cellariiform standard, this is the opposite of the wing reduction seen in

wing swimmers. The long wings of frigatebirds enable them to glide

very slowly, and to turn in circles of small radius. This is an adaptation

to circling in the small, weak thermals that occur over the trade-wind

zo nes of the ocea ns (Ch apter 10 ). Unlike most wa ter birds, frigate birds

do not have waterproof plumage, and they are unable to swim or even

to alight on the water. As they disperse all over the tropical oceans, this

must imply that they soar continuously in trade-wind thermals, day

and night, for months at a time (Pennycuick 1983). They are incredibly

agile in the air, and feed by snatching such creatures as hatchling

turtles from the water surface, or flying fish from just above it. They

are also well known for kleptoparasitism, which means intercepting

other seabirds such as boobies as they return to their breeding colo-

nies, forcing them to disgorge whatever food they are carrying, and

catching it before it hits the surface. This is, of course, only a local

and seasonal food source for them.

12.3.4 REDUCED ASPECT RATIO IN FOOT SWIMMERS

Cormorants (Figure 12.6F) and anhingas forage under water by foot

swimming with their wings furled, but the legs are not modified for

sideways motion as in divers. These birds can stand and walk on land,

and they also perch on branches, and even on wires. They are less

buoyant than other water birds, and float lower in the water, often with

only the neck and head above the surface, apparently because their

plumage is wettable. They are often seen standing on rocks or trees
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after a dive, holding out their wings to dry. Apart from the famous

flightless cormorant of the Galapagos Islands, which has reduced

wings, typical cormorants have wings that are shorter than those of a

procellariiform bird of the same mass, but with aspect ratios of 7–8,

that is, with reduced span but no reduction of wing area. Both cormor-

ants and anhingas are capable of soaring in thermals over land, and

some cormorant species migrate in flocks, flapping or flap-gliding in

formation, somewhat like geese. Their wings do not seem to be directly

influenced by the needs of locomotion in water, except that they may be

an encumbrance under water, and are therefore no bigger than necessary

when it comes to moving around in search of foraging opportunities.

The same could be said of pelicans (Figure 12.6E), which have some-

what more span than procellariiform birds of the same mass, and lower

aspect ratios, with broad, slotted wing tips reminiscent of those of

storks and vultures. White pelicans feed while swimming on the

surface, by dipping their heads and filling their gular pouches with

water, often forming groups which do this in synchrony. They make

lengthy overland migrations by thermal soaring in flocks. American

brown pelicans are coastal birds that feed by plunge diving. Their large

wings allow them to levitate repeatedly a metre or two above the

surface, and then plunge on a fish, which is drawn into the gular pouch

as it inflates into a water-filled balloon.

12.4 OTHER AQUATIC ADAPTATIONS

12.4.1 TAKE-OFF FROM A WATER SURFACE

The objective of take-off is to accelerate until the bird has sufficient air-

speed to fly, and, if that is achieved at a speed below the minimum

power speed (Vmp), to continue accelerating at least up to Vmp. This

requires more effort in large birds than in small ones, and especially

in birds with reduced wings, because both large size and wing reduc-

tion increase Vmp. Most waterbirds use their legs to run over the water

surface, especially when taking off from sheltered water or in a light

wind. The backward motion of the webbed feet, relative to the water,

provides a forward and upward force which helps the flapping wings

to accelerate the body to flying speed, and also makes the acceleration

easier by raising the body above the surface, so reducing the drag

caused by creating a bow wave. The skittering run over the water is

often prolonged in swans and auks, and is followed by a period of

almost level flight as the bird lifts its feet out of the water, and con-

tinues accelerating up to Vmp. When a flock of swans is taking off, some
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from a pond and others from a nearby grassy sward, those taking off

from water need a longer take-off run than those taking off from solid

ground.

Any bird takes off more easily in a wind than in calm air, because the

objective of the take-off run is to acquire airspeed. If a bird takes off

against the wind, its airspeed is already equal to the wind speed before

it even starts to move, relative to the water. Petrels and albatrosses

(excluding diving petrels) have sufficiently large wings to glide at

speeds that are often lower than the wind speed over the open ocean.

Their normal method of take-off is to face into wind and simply spread

their wings, allowing the wind to lift them off the windward slope of a

wave with little or no exertion on their part.

12.4.2 LANDING ON A WATER SURFACE

Just as a water bird cannot acquire speed at take-off by dropping, as

la nd birds often do (Chap ter 9), so con versely a bird cannot get ri d of

excess speed by pulling up before a water landing. However, some

residual speed is acceptable when landing on water, for example divers

simply slide on to the surface, with their feet trailing behind. Ducks

and geese can usually drop lightly on to their feet on land, especially

if there is some wind, but in water landings they prefer to come in with

some residual ground speed, deploying their large webbed feet below

the body and pointing forwards, where they act as water-skis. Gannets

and boobies, which plunge dive at a steep angle when feeding, often do

the same thing slowly when they land on the water, submerging briefly

as they touch down head first. Petrels and albatrosses simply glide into

wind until the speed relative to the water drops to zero, and then settle

on to the surface.

12.4.3 VISION UNDER WATER

In the eye if a bird that operates only in air, the curved outer surface of

the cornea is the main image-forming element, and the lens serves

m ainly for focusing (Ch apter 11 ). Wh en the eye is imme rsed in water,

the cornea ceases to operate as a refracting surface, because its

refractive index is close to that of water. Human eyes likewise will not

provide a focused image under water for this reason. Divers have to

wear a mask with a flat glass face plate, and an air space behind it in

which the eyes can operate normally. In his classic book The Vertebrate

Eye, Walls (1942) describes three ways in which different aquatic birds

have solved this problem. Cormorants have unusually large ciliary

muscles, and an unusually compliant lens, and simply distort the lens
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by a massive amount, sufficient to allow it to form a focused image

either in air or in water. In auks, the nictitating membrane or ‘‘third

eyelid’’, which sweeps from front to back across the eye in all birds to

clean it, is kept closed under water, as it contains a supplementary lens

which allows the eye to focus in water. Kingfishers, which need to keep

the image of a fish in focus as they plunge from air into water, do this

by passing the image from the central fovea, which focuses in air, to

the temporal fovea, which focuses in water because of the unusual

elongated shape of the eye.

12.4.4 HEAT DISPOSAL IN WATER

The legs of penguins are used for swimming in a duck-like fashion only

on the surface. When the penguin is submerged and swimming with its

wings, the feet trail behind, and dispose of waste heat through their

large surface. Convective heat disposal is far more effective in water

than in air, and is controlled by retia mirabilia, which are counter-

current heat exchangers, situated at the base of the leg, inside the

insulating layer of feathers. If heat needs to be conserved, the outgoing

blood in the artery passes heat directly into the incoming blood in the

vein, so cooling the blood before it leaves the thermally insulated inte-

rior of the body, but when excess heat has to be disposed of, the blood

passes out by a different route, so that it is cooled by the water flowing

past the foot.
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ALLOMETRY
There is a statistical trend for larger birds to have higher aspect ratios than smaller
ones, although the wing area varies as expected with the mass. This chapter uses
original measurements (not trawled from the literature) of 220 bird species from
the Wings Database of the Flight programme, and a subset of 44 species for which
there are data on flight muscle mass, to make allometric plots of variables calculated
by the programme. These include the minimum power speed, wingbeat frequency,
specific work in the muscles and many others.

Allometry is the study of differences in shape between different

animals (like birds) that are all built on the same plan. This commonly

takes the form of looking for deviations from a null hypothesis, which

postulates that all animals in a particular set or taxon are ‘‘geometri-

cally similar’’. If a miniature aircraft model is described as a ‘‘1/72 scale

model’’ of a real aircraft, this means that it is geometrically similar to

the original, and that every linear measurement on the model, such

as the wingspan, the length of the fuselage and so on, is exactly 1/72

of the corresponding measurement on the original aircraft. If that is

so, then it follows that the ratio of any area on the model to the

corresponding area on the original is (1/72)2, and the ratio of any pair

of corresponding volumes is (1/72)3. With such models, that is as far as
351
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it goes, but the same idea can be carried further with additional

assumptions. For example in the case of birds of different sizes, it

may reasonably be assumed that the density of a bird is constant,

and therefore that the mass of any bird is directly proportional to its

volume. In that case, the null hypothesis states that for geometrically

similar birds, any area ‘‘varies with’’ or ‘‘scales with’’ the length squared,

while any volume (and also any mass) scales with the length cubed.

The conventional shorthand for this is the proportionality sign ‘‘/’’.

For the basic geometrical relationships, we can write:

Area / Length2

Volume / Length3

These can be read ‘‘Area varies with length-squared’’ and ‘‘Volume

varies with length-cubed’’. With the additional assumption of constant

density, we can also write:

Mass / Length3

Since mass is the easiest variable to measure, these statements are

usually turned around, to express the way in which different types of

measurements are expected to vary (or ‘‘scale’’) with the mass, under

the assumptions of geometrical similarity and constant density. Any

length is expected to scale with the one-third power of themass, any area

with the two-thirds power, and any volume directly with the mass, thus:

Length / Mass1=3

Area / Mass2=3; and

Volume / Mass

Deviations from the expected relationships indicate ‘‘allometry’’ as

opposed to ‘‘isometry’’.
TABLE 13.1 Species codes for the birds in Figure 13.1.

Code Scientific name English name

WAN Diomedea exulans Wandering Albatross
BBA Diomedea melanophris Black-browed Albatross
GHA Diomedea chrysostoma Grey-headed Albatross
STY Phoebetria palpebrata Light-mantled Sooty Albatross
MAC Macronectes giganteus/ M. halli Giant petrel
WCP Procellaria aequinoctialis White-chinned Petrel
CAP Daption capensis Cape Pigeon
PRN Pachyptila desolata Dove Prion
WIL Oceanites oceanicus Wilson’s Storm-petrel
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FIGURE 13.1 Silhouettes of nine procellariiform species from Bird Island, South Georgia,
with measurements from Pennycuick (1982). The three letter species codes are identified
in Table 13.1.
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13.1 ALLOMETRY OF MORPHOLOGICAL VARIABLES

13.1.1 ALLOMETRY IN A SMALL SAMPLE OF CLOSELY

RELATED BIRDS

Figure 13.1 shows a set of silhouettes made from wing tracings of nine

bird species belonging to the Order Procellariiformes that nest on Bird

Island, South Georgia (Pennycuick 1982). These are all pelagic birds
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that feed at sea on fish, squid, krill or zooplankton, and come to land

only to nest. In the left-hand column, the size of each silhouette is pro-

portional to the bird’s actual size, while in the next column the smaller

species have been enlarged by different amounts, so that all the silhou-

ettes have the same wing span on the page. This group covers a wider

range of body mass than any other order of birds (over 300:1). If they

were all geometrically similar, then one would expect that the wing

span (a length) would vary with the one-third power of the mass, and

the wing area (an area) with the two-thirds power of the mass. The

aspect ratio, being the dimensionless ratio of two lengths, would be

independent of the mass. In the terms introduced above, the expected

relationships are that

Wing span / Mass1=3

Wing area / Mass2=3; and

Aspect ratio / Mass0

To test whether the data do in fact vary in these ways, the numbers

listed in Figure 13.1 have been plotted in Figures 13.2–13.4 on

double-logarithmic graphs. The principle behind this is explained in

Box 13.1, and it is more than just a device for spreading the smaller

data points apart, and squashing the larger ones together (although it

does that). If the birds are indeed geometrically similar, and one plots

the logarithm of the wing span against the logarithm of the mass, then

the result will be a straight line, with a slope of one third. It is unneces-

sarily obscure to look up the logarithms and plot them on the graph, as
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FIGURE 13.2 Allometric plot of wing span (Y ) versus mass (X ) for the birds in
Figure 13.1. The logarithmic scales are the same on both axes in this graph (and in all
the allometric graphs in this chapter), meaning that a factor of 10 is represented by the
same distance in both the X and Y directions. Expected slope 0.333. Reduced major axis
slope 0.379. N 9 (number of points). r 0.991 (correlation coefficient).
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some authors do. A better way is to label the axes with the original

mass and wing span numbers, but to position these logarithmically

along the axes. This means that any fixed distance along the X scale

represents a fixed ratio between the numbers at its ends, not a fixed

difference as on a linear scale. For example, the distance from 0.1 to

1 kg along the mass (X ) scale in Figures 13.2–13.4 is the same as that

from 1 to 10 kg. If the scales are the same on both the X and Y axes, that

is if a given distance represents the same ratio on both scales, then the

slopes of lines can be measured directly on the page. If the wing span

does indeed vary with the one-third power of the mass, then the fitted

line will go up one centimetre for every three centimetres along the

body mass axis. If the slope differs from that, there is an allometric

relationship between wing span and mass.



BOX 13.1 Double-logarithmic plots.

Although every biology textbook is full of graphs showing the logarithms of
physical measurements such as mass, one should be aware that a logarithm
is a transformation that can be applied only to a pure number, not to a
physical measurement. However, if we plot the ratio of a bird’s mass to a
‘‘reference mass’’, which happens to be exactly 1 kg, the numbers stay the
same as before but are detached from their physical dimensions, thus allay-
ing any scruples we might have about plotting ‘‘log wing span’’ against ‘‘log
mass’’. The logarithms themselves are not shown on the axes of the graphs
in this book. The original numbers are shown, but the scales are distorted
so that a fixed distance along the scale represents a constant multiple, not
a constant difference as in an ordinary linear graph.

Variable definitions for this box
a Intercept of fitted line with Y axis
b Slope of fitted line
blr Slope of linear regression line
brma Slope of reduced-major-axis line
N Number of data points
r Correlation coefficient
X X value of data point
Xmean Mean value of X for all data points
x Deviation X Xmean for a particular data point
Y Y value of data point
Ymean Mean value of Y for all data points
y Deviation Y Ymean for a particular data point

If you fit a straight line through the logarithms of an original set of points
(X, Y ), either by eye or by calculation, this implies that the line expresses a
functional relationship between X and Y. For instance, suppose the result of
a regression calculation on the logarithms of the original X and Y numbers is

logðY Þ ¼ logðaÞ þ b logðXÞ; ð1Þ

where a and b are constants. This represents a straight line, whose slope is b,
while log(a) is the intercept of the line on the Y axis. Reverting to the original
numbers, the same equation can also be written

Y ¼ aXb: ð2Þ

In this form, the Equation (2) says that Y is proportional to X raised to the
power of b, while Equation (1) says that b, being the slope of the line, can be
read directly off the graph. All the graphs in this chapter have been drawn
with equal scales on the two axes, meaning that an increment of 1 in log(X)
is represented by the same distance as an increment of 1 in log(Y ). In terms of
the original variables, a factor of 10 on the X axis is represented by the same
distance as a factor of 10 on the Y axis. This sometimes results in graphs of
letter box or chimney shape, but it also means that the exponent b is the
same as the gradient of the line, as it is drawn on the page. With practice,
exponents can be judged quite accurately by eye from these graphs.
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BOX 13.1 Continued.

Linear versus reduced-major-axis regressions
The familiar linear regression is based on the assumption that the X variable
is determined without error, while the Y variable, whose value is subject to
error, is a function of the X variable. It is commonly used in situations where
one variable (X ) is clearly independent, and the other (Y ) is dependent on
it, for example time might be the independent variable (X ), while Y is the
height of a growing plant, which is measured at fixed time intervals. The
linear regression calculation (below) is inherently asymmetrical, and results
in a different line, depending which variable is defined as X, and which as Y,
unless all the points happen to fall exactly on a straight line. At the other
extreme, if the points are completely random (zero correlation coefficient)
the slope is zero, meaning that the line is parallel to the X axis. In this case,
if the variables are switched so that the X axis becomes the Y axis and vice
versa, the new line is parallel to the new X axis, perpendicular to its previous
orientation.
This is not satisfactory if there is no reason to select either variable as

independent, for example where wing span is to be plotted against wing
area, which could equally well be done either way round. This is the usual
situation in allometry, and the usual solution is to calculate a ‘‘reduced-
major-axis’’ line, which passes through the mean values of X and Y, as in a
linear regression, but whose slope is calculated differently, in such a way
that the same line results (relative to the data points) whichever variable
is chosen to be X. If the data are completely random, the slope is 45�,
whichever way round the data are plotted.

Fitting a straight line
The algorithm for fitting a straight line through a given set of data points
proceeds in two stages, first the accumulation of sums, and then the calcu-
lation of the constants a and b that determine the offset and slope of the
line. If a double-logarithmic line is to be fitted (either linear regression or
reduced-major-axis) the first operation when each data point is entered is
to transform the original values of X and Y into their logarithms. From this
point on, the symbols X and Y refer to the logarithms, not to the original
numbers. The first stage is to accumulate the following six sums, where
X and Y refer to the logarithmically transformed input numbers:P

X: The sum of the values of X for all the data points.P
X2: The sum of the squares of the X values.P
Y: The sum of the values of Y for all the data points.P
Y 2: The sum of the squares of the Y values.P
XY: The sum of the products X times Y for all the data points.

N: The number of data points.

All six of these sums are set to zero before commencing the accumulation.
The sums are then incremented, one data point at a time, as follows:X

X :¼
X

X þ X

X
X2 :¼

X
X2 þ X2
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X
Y :¼

X
Y þ Y

X
Y 2 :¼

X
Y 2 þ Y 2

X
XY :¼

X
XY þ XY

N :¼ N þ 1

These are assignment statements, not equations. The ‘‘:¼’’ sign can be
read as ‘‘becomes’’. For example the value of

P
X is set to zero before accu-

mulation begins and then, as each data point is entered, the new value ofP
X becomes the existing value, plus the value of X for the current data

point. Having finished accumulating the sums, the mean values of the
transformed X and Y can be calculated from the equations:

Xmean ¼
P

X

N
; and ð3Þ

Ymean ¼
P

Y

N
: ð4Þ

The deviations (x and y) of each data point from the means are:

x ¼ X Xmean; and ð5Þ
y ¼ Y Ymean ð6Þ

The sums of the squares and product of these deviations are required for
the fitted line, and these can be found directly from the accumulated sums,
without first calculating the means:

X
x2 ¼

X
X2 ðPXÞ2

N

" #
ð7Þ

X
y2 ¼

X
Y 2 ðPY Þ2

N

" #
ð8Þ

X
xy ¼

X
XY

ðPX
P

Y Þ
N

� �
ð9Þ

It should be noted that Equations 7 to 9 each find the difference between
two numbers, which are often rather long and nearly the same, differing
only in the last few decimal places. It is advisable to use double-precision
numbers when accumulating the five sums that appear on the right-hand
sides of these three equations.
The slope for the required type of line can now be found, either blr for a
linear regression line, or brma for a reduced-major-axis line:

blr ¼
P

xyP
x2

; or ð10Þ
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brma ¼
P

y2P
x2

� �s
ð11Þ

If X and Y are interchanged, the slope of the reduced-major-axis line from
Equation (11) is simply the reciprocal of its former value. That is not the
case for the slope of the linear regression line, because Equation (10) will
have a different sum of squares of deviations in its denominator, if the
variables are interchanged. Whichever version of the slope (b) is used, the
Y-intercept (a) is

a ¼ Ymean bXmean; ð12Þ

and the correlation coefficient (r) is:

r ¼
P

xyq
ðPy2

P
x2Þ : ð13Þ
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The straight lines in Figures 13.2–13.4 are calculated reduced-major-

axis (rma) lines, not linear regression lines (see Box 13.1). The advantage

of the rma line is that it gives the same line (relative to the data points),

regardless of whether wing span is plotted against mass, or mass against

wing span, whereas a linear regression does not, in general, do this. The

rma calculation (but not the linear regression) changes the slope of the

line to its reciprocal if the axes are transposed. If the slope of wing span

versus mass is one third, then the slope of mass versus wing span will

be three. Figure 13.2 is a log-log plot of wing span versus mass for the

nine birds in Figure 13.1, with a fitted rma line, whose calculated slope

is 0.379, a little more than the expected slope of one third (dashed line).

Likewise, Figure 13.3 is a log-log plot of wing area versus mass for the

same birds, and the slope of the rma line is 0.638, a little less than the

expected slope of two thirds. Can these small differences in slope be

significant, with only nine data points?

A plot of the aspect ratio (span-squared/area) against the mass con-

tains no further information, as we may anticipate from the first two

graphs that its slope will be (2 � 0.379) � 0.638 ¼ 0.120. The slope actu-

ally comes out to be 0.123 (Figure 13.4). Not only does this slope differ

more obviously from the expected slope (zero), but the three points at

the left end of the graph are all below the expected line, whereas the

cluster of points at the right end are all above it. To see what this
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deviation from the expected slope means in terms of wing morphology,

we have to go back to the second column of silhouettes in Figure 13.1.

The aspect ratio in the last column decreases from 15 to 8, as the birds

in the first column get smaller. Inspection of the second column of sil-

houettes certainly does not suggest that the aspect ratio is independent

of the mass. The shapes change progressively from the slender-winged

albatrosses at the top to the storm-petrel at the bottom, which has little

more than half their aspect ratio. All nine species are closely related in

a taxonomic sense, but despite this the storm-petrel looks in silhouette

more like a crow than an albatross.
13.1.2 FIDUCIAL LIMITS FOR SLOPES OF FITTED LINES

Anyone with a statistical outlook, including most biologists, will want a

test to determine whether the slope of a fitted regression or reduced-

major-axis line is significantly different from an expected value. The

linear regression calculation is based on minimising the sum of the

squares of the deviations of the data points in the Y direction, above

and below the line, and straightforward formulae, based on this sum

of squares, are given in statistical textbooks (e.g. Bailey 1995) to esti-

mate the standard error of the slope of a linear regression line. In the

case of the reduced-major-axis line, it is the deviations perpendicular

to the line that are of interest, not those in the Y direction, and these

are not so easy to calculate. Also the effect of the logarithmic transfor-

mation of the data points is far from clear, as it may weight the devia-

tions at one end of the line relative to those at the other, so biasing the

uncertainty of the slope. Rayner (1985) goes into these difficulties, and

provides ways of estimating the standard errors of the slopes of differ-

ent types of lines. It is possible to derive fiducial limits from Rayner’s

formulae, but the validity of these depends on assumptions about the

distributions of the deviations, which are unfortunately impossible to

verify. Therefore I do not give fiducial limits for slopes in this book.

My graphs are annotated with the constants that define the fitted line,

the number of data points, and the correlation coefficient, and that is

as far as I go. The correlation coefficient can be used as evidence that

a trend is present, but not to test whether the slope differs from an

expected value. There is evidence (above) that the slope of the

reduced-major axis line of aspect ratio versus mass is significantly

different from zero, but it does not come from statistical tests on the

slopes of the three lines in Figures 13.2–13.4.
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13.1.3 MEASUREMENTS FROM A LARGER DATA SET

The nine species in Figures 13.1–13.4 are a small but homogeneous data

set, in that they are closely related species with similar ecology, and all

were measured in the same locality (Bird Island, South Georgia) by the

same observer (myself). Other much larger databases have been com-

piled by trawling published data from the literature, but these are of lim-

ited use because many of the original field observers had their own

definitions for ‘‘wing span’’ and ‘‘wing area’’, and some neglected alto-

gether to say what they meant by these terms, or how themeasurements

were made. The best known database of this type is by Greenewalt

(1962), whowas frank and explicit about the shortcomings of his sources.

As in other more recent compilations that are based on literature trawl-

ing rather than original observation, the data suffer from the limitation

that their quality and homogeneity have not been, and cannot be

checked, however impressive the number of species that are included.

In the following pages, a number of allometric plots are presented

that include 220 bird species from the ‘‘Wings’’ database which comes

with the Flight programme. The wing measurements in this database

are not based on literature trawling, but were made either by myself

or by others personally known to me, using the wing measurement

procedu res des cribed in Ch apter 1 . Body masses are also ta ken from

the database where birds were weighed in good condition, but in some

cases where the wings were measured on birds that were found dead,

masses have been taken instead from Dunning (1993) who has trawled

a large number of mass measurements from the field ecology litera-

ture. Body masses vary far more than wing measurements within most

bird species, but most field observers can at least be relied on to mean

more or less the same thing by ‘‘mass’’ when they weigh a bird. Some of

the following allometric plots are restricted to a subset of 44 species for

which measurements of flight muscle mass are available, and these are

all my own measurements.

13.1.4 ALLOMETRY OF MORPHOLOGICAL VARIABLES FROM

THE WINGS DATABASE

Figures 13.5–13.7 are similar to Figures 13.2–13.4, but show 220 bird

species from the Wings Database. These represent 18 orders, which

are identified by different point styles, according to the key in

Table 13.2. In Figure 13.5, the wing span has been plotted (as Y) against

the body mass (as X), as in Figure 13.2. The slope of the reduced-
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FIGURE 13.5 Allometric plot of wingspan (Y ) versus mass (X ) for 220 bird species from the
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major-axis line is almost the same as the slope of Figure 13.2, 0.377 as

opposed to 0.379 (expected 0.333) despite the much greater diversity of

this data set. This graph differs from the small procellariiform data set

in that, although the overall allometric trend is the same, there is more

scatter above and below the line, caused by variations of span in birds

of similar mass, but belonging to different orders, and adapted for dif-

ferent flight requirements. The lower correlation coefficient (0.968

instead of 0.991) reflects this.

In Figure 13.6 the slope of the rma line for wing area versus mass is

0.694, marginally above the expected slope of two-thirds, unlike the
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FIGURE 13.7 Allometric plot of aspect ratio (Y ) versusmass (X) for 220 bird species from the
Wings Database. Expected slope 0. Reduced major axis slope 0.136.N 220. r 0.612.

TABLE 13.2 Key to orders

þ Anseriformes Ducks Geese Swans
� Caprimulgiformes Nightjars
□ Charadriiformes Gulls Terns Skuas Waders Auks Sheathbills
“ Ciconiiformes Storks Herons Ibises
e Columbiformes Pigeons
q Coraciiformes Kingfishers
w Cuculiformes Cuckoos
r Falconiformes Falcons Hawks Eagles Vultures

(Old and New World)
○ Galliformes Game birds
3Gaviiformes Divers (loons)
D Gruiformes Bustards Cranes Limpkin
▲ Passeriformes Songbirds Crows
▽ Pelecaniformes Pelicans, Cormorants Anhingas Frigatebirds
▼ Phoenicopteriformes Flamingos

Piciformes Woodpeckers Flickers
Podicipediformes Grebes
Procellariiformes Petrels Albatrosses
Strigiformes Owls
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procellariiform series of Figure 13.3, in which the slope is slightly below

two-thirds. The slope of both lines is close to isometric. When wing

area is combined with wing span, whose slope is higher than expected,

the slope of the line for aspect ratio (Figure 13.7) is 0.136 (expected to

be zero). The left-hand end of the line is weighed down by a cluster of

solid triangles, which represent small songbirds with short, stubby

wings. It seems that only small birds have aspect ratios of 5 or below,

hence the slope of the line.

One might imagine that the flight muscle fraction would be higher in

bigger birds, b ecause of the scale effects d esc ribed in Chapter 7 Box 7.4,

which cause the power required to fly to increase more steeply than the

power available from the muscles. However, Figure 13.8 does not show

any such trend. Instead it shows a weak negative slope, albeit with a lot of



0.01 0.1 1 10

0.1

Body mass (kg)

F
lig

ht
 m

us
cl

e 
fr

ac
tio

n
0.2
0.3
0.4
0.5

0.5

FIGURE 13.8 Allometric plot of flight muscle fraction (Y ) versus mass (X ) for the 44 bird
species in the Wings Database for which flight muscle mass is recorded. Expected
slope 0. Reduced major axis slope 0.133. N 44. r 0.196.

364 MODELLING THE FLYING BIRD
scatter and a low correlation coefficient. This has to imply that large birds

operate their muscles at a higher specific work than small ones (below).

13.2 ALLOMETRY OF CALCULATED VARIABLES

The primary variables recorded in the Wings Database are the mass,

wing span, wing area and (in some cases) flight muscle mass of indi-

vidual birds. The means of these for each species are the variables

which have been examined for allometric trends in Figures 13.5–13.8.

One of the variables which has already been discussed, the aspect ratio

(Figure 13.7) is actually a secondary variable, derived from the primary

measurements of wing span and wing area. Its allometry results from

the allometry of the primary variables from which it is calculated.

The Flight programme’s output lists estimates of many other secondary

variables, such as the minimum power speed, the wingbeat frequency

and so on, whose values follow directly from the bird’s mass, wing span

and wing area, provided that all other variables are set to their

default values. The remaining allometric graphs in this chapter were

constructed by first running a power curve calculation for each of the

220 species in the database, and then going through the Excel output

files and picking off the mass of each species, and the value of some

variable to be plotted. If this procedure reveals an allometric trend in

a secondary variable, it must be due to allometry in the primary data,

because the mass, wing span and wing area are the only information

that the Flight programme has about any species. Other variables that

would affect the result are set to fixed values for all species, specifically

the air density (set to 1.23 kg m–3 for sea level in the International

Standard Atmosphere) and the acceleration due to gravity (set to

9.81 m s–2). The expected slopes of the lines for different secondary

variables (Box 13.2) are calculated on the assumption, which may be



BOX 13.2 Expected slopes of log-log lines.

The expected slopes of the reduced-major-axis (rma), double-logarithmic
lines for different variables as functions of body mass, are based on the
assumption of isometric scaling, specifically that wing span scales with
the one-third power of the mass, and wing area with the two-thirds power
of the mass. External variables like gravity and the air density scale with
the zero power of the mass, that is they are regarded as constants that are
not affected by the mass.

Variables for this box with their expected scaling exponents
B / m1/3 Wing span
CDb / m0 Body drag coefficient
cm / m1/3 Wing mean chord
fred / m0 Reduced frequency
g / m0 Acceleration due to gravity
k / m0 Induced power factor
m All-up mass
mmusc / m Flight muscle mass
Nmech / m0 Effective lift:drag ratio based on mechanical power
S / m2/3 Wing area
Sb / m2/3 Body frontal area
Pam / m7/6 Absolute minimum power
Pmech Mechanical power output of the flight muscles
qm / m1/3 Specific work in the flight muscles
Re / m1/2 Reynolds number of wing
V Airspeed
Vmp / m1/6 Minimum power speed
r / m0 Air density
z / m0 Mitochondria fraction in the flight muscles
n / m0 Kinematic viscosity of air

Minimum power speed
The formula for the minimum power speed (Vmp ) is given in Chapter 3, as
Equation (1) of Box 3.4.

Vmp ¼ 0:807k1=4m1=2g1=2r�1=2B�1=2S
�1=4
b C

�1=4
Db : ð1Þ

There are six variables on the right-hand side of Equation (1) (in addition
to the mass itself), two of which, the wing span B and the body frontal area
Sb, would vary under isometric scaling with the one-third and two-thirds
powers of the mass respectively, as indicated in the table of variables above.
The numerical constant is, of course, independent of the mass. The air den-
sity (r) and the acceleration due to gravity (g), are set to constant, sea-level
values for all species, and are therefore independent of the mass as far as
the rma line is concerned. Likewise, the induced power factor (k) and the
body drag coefficient (CDb) are set to constant values for this calculation,
and are therefore proportional to m0. We can now turn Equation (1) into a
proportionality (ignoring the numerical constant), and substitute the power
of m with which each variable is assumed to vary:
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Vmp / ðm0Þ1=4m1=2ðm0Þ1=2ðm0Þ�1=2ðm1=3Þ�1=2ðm2=3Þ�1=4ðm0Þ�1=4;
¼ m1=2m�1=6m�1=6 ¼ m1=6:

ð2Þ

One-sixth is approximately 0.167, and that is the expected slope of the
rma line for minimum power speed versus mass.

Minimum mechanical power
The absolute minimum power (Pam ) is given in Chapter 3 as Equation (2) of
Box 3.4:

Pam ¼ 1:05k3=4m3=2g3=2S
�1=4
b C

�1=4
Db r�1=2B�3=2: ð3Þ

The minimum power is the total mechanical power required to fly at Vmp,
and this is obtained by adding the profile power to Pam. This depends on the
aspect ratio, but as isometric birds all have the same aspect ratio, the slope
of the expected line can be found in the same way as for the minimum
power speed:

Pam / ðm0Þ3=4m3=2ðm0Þ3=2ðm2=3Þ1=4ðm0Þ1=4ðm0Þ�1=2ðm1=3Þ�3=2Þ
¼ m3=2m1=6m�1=2

¼ m7=6:

ð4Þ

Seven sixths is approximately 1.17. If the slope were 1, this wouldmean that
theminimumpower required to fly is proportional to themass of the bird, and
therefore also (in geometrically similar birds) to themass of flightmuscle that
provides the power. A slope greater than 1means that each gramofmuscle has
to produce more power in a larger bird than in a smaller one.

Effective lift:drag ratio
This is defined in Equation (3) of Box 3.4:

Nmech ¼ mgV

Pmech
: ð5Þ

If all the birds fly at Vmp (or at some other characteristic speed such as the
maximum range speed Vmr), then Proportionality 2 shows that the speed is
expected to vary with the one-sixth power of the mass, and Proportionality 4
that the mechanical power is expected to vary with the seven-sixths power
of the mass. Nmech, the effective lift:drag ratio based on mechanical power,
should therefore vary as:

Nmech / mm0m1=6m�7=6

¼ m0:
ð6Þ

Wingbeat frequency at Vmp

The wingbeat frequency when cruising at Vmp is discussed in Chapter 7, and
calculated from Equation (3) of Box 7.3:

f ¼ m3=8g1=2B�23=24S�1=3r�3=8 ð7Þ
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Substituting as before, we get:

f / m3=8ðm0Þ1=2ðm1=3Þ�23=24ðm2=3Þ�1=3ðm0Þ�3=8

¼ m3=8m�23=72m�2=9

¼ m�1=6:

ð8Þ

Bigger birds flap their wings at lower frequencies than smaller ones. This
is not the slope expected for an individual bird, when its mass increases due
to laying down fat, without any change to its wing measurements.
Equation (7) might suggest that the slope in that case would be 3/8,
but actually it is 1/2. The 3/8 exponent of mass in Equation (7) includes
1/8 for the wing’s moment of inertia, which does not change when the bird
takes on ballast (Pennycuick 1996).

Specific work in the flight muscles
Neglecting complications due to mitochondria in the flight muscles, the
specific work (qm) in the flight muscles, that is the work done in one
contraction by unit mass of muscle, is given in Chapter 7, Box 7.5 as:

qm ¼ Pmech

ðmmuscf Þ ; ð9Þ

where Pmech is mechanical power output, mmusc is the mass of the flight
muscles, and f is the wingbeat frequency. Substituting the exponents
calculated above for Pmech and f,

qm / m7=6

ðmm�1=6Þ
¼ m1=3:

ð10Þ

Reduced frequency
Reduced frequency ( fred) is a dimensionless number that describes the
geometry of the wingbeat in a way that is related to the type of airflow to
be expected around the wing (Chapter 4, Box 4.3). It is defined as:

fred ¼ pfcm
V

; ð11Þ

where f is the wingbeat frequency, cm is the mean chord of the wing, and V is
the airspeed. Substituting as usual:

fred / ðm�1=6m1=3Þ
m1=6

¼ m0:

ð12Þ

Reduced frequency is expected to be independent of body mass.

Wing Reynolds Number
The Reynolds number (Re) is another dimensionless number, indicating the
scale of the flow, and the relative importance of inertial and viscous forces
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BOX 13.2 Continued.

(Chapter 3, Box 3.6). It has to be defined in terms of a specified linear
measurement, which by aeronautical convention is the mean chord (cm)
of the wing:

Re ¼ Vcm
n

; ð13Þ

where n is the kinematic viscosity of the air. In terms of the body mass:

Re / m1=6m1=3

m0

= m1=2:

ð14Þ

The wing Reynolds Number of birds cruising at Vmp is expected to vary
with the square root of the mass.
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regarded as a null hypothesis, that all the birds in the database are

geometrically similar.

13.2.1 MINIMUM POWER SPEED

The expected slope for the minimum power speed (Vmp) is one-sixth

(0.167), and the actual slope (Figure 13.9) is marginally less (0.153).

The calculated and expected lines are so close together on the graph

that the difference is difficult to see. It is due to the higher-than-

expected slope of wingspan versus mass (Figure 13.5), with a minor

contribution from the slope of wing area versus mass (Figure 13.6)

which is also slightly higher than expected.
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FIGURE 13.9 Allometric plot of minimum power speed (Y ), computed by the Flight
programme, versus mass (X ) for 220 bird species from the Wings Database. Expected
slope 0.167. Reduced major axis slope 0.153. N 220. r 0.947.
13.2.2 MINIMUM MECHANICAL POWER

Vmp is the speed at which the least power is required to fly horizontally

(by definition), and so the power required to fly at Vmp is the minimum

that will suffice for level flight. A slope of 1 would imply that this power
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FIGURE 13.10 Allometric plot of minimum mechanical power (Y ), computed by the
Flight programme, versus mass (X ) for 220 bird species from the Wings Database.
Expected slope 1.17. Reduced major axis slope 1.07. N 220. r 0.986.
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is proportional to the mass, but because of the expected positive slope

of Vmp (above), the expected slope for the power is 7/6 (1.17). The com-

puted slope (Figure 13.10) is less than this (1.07), because of the increa-

sing wing span trend, but it is still greater than 1, meaning that the

power required from each gram of muscle is higher in larger birds than

in smaller ones.
13.2.3 MAXIMUM EFFECTIVE LIFT:DRAG RATIO

The effective lift:drag ratio at any given speed is the weight times the

speed, divided by the power. It directly determines the distance flown

per unit mass of fuel consumed (and hence the range), and it reaches

its maximum value (by definition) at the maximum-range speed Vmr.

Other things being equal, geometrically similar birds should all have

the same maximum effective L/D, that is the expected slope for the

rma line in Figure 13.11 is zero, but the computed line deviates strongly

above this, with a slope of 0.175. The main cluster of points for small

passerines starts at around 7, and there are plenty of points above 20

for medium-sized or larger birds. As these are computed (not measured)

values, the trend is entirely due to the allometry of wing span and wing

area, and not to differences of Reynolds number, although those might

be expected to accentuate the trend.
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FIGURE 13.11 Allometric plot of effective lift:drag ratio (Y ) at Vmr, computed by the
Flight programme, versus mass (X ) for 220 bird species from the Wings Database.
Expected slope 0. Reduced major axis slope 0.175. N 220. r 0.766.
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13.2.4 WINGBEAT FREQUENCY

Wingbeat frequency declines as mass increases, and determines the

power available from unit mass of flight muscle. The expected slope

is minus one-sixth (–0.167), but the computed slope in Figure 13.12 is

steeper than this (–0.256). This means that the power available from

each gram of muscle is less in larger birds than in smaller ones. The

discrepancy between power available and power required is the basis

of the scal ing argu ment in Ch apter 7 , Box 7.4. Allome tr y of the wings

does not get rid of the problem. There is still an upper limit to the size

and mass of birds that are able to fly horizontally.
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FIGURE 13.12 Allometric plot of cruising wingbeat frequency (Y ), computed by the
Flight programme, versus mass (X ) for 220 bird species from the Wings Database.
Expected slope 0.167. Reduced major axis slope 0.256. N 220. r 0.820.
13.2.5 SPECIFIC WORK IN THE FLIGHT MUSCLES

Flight calculates the power required to fly at Vmp, and divides it by the

wingbeat frequency to get the work done in each contraction. Then it

divides by the flight muscle mass to get the specific work, which is

the work done by unit mass of muscle in each contraction. The rma

line can be computed for the subset of 44 species for which
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FIGURE 13.13 Allometric plot of specific work in the flight muscles (Y ) at Vmp, computed
by the Flight programme, versus mass (X ) for the 44 bird species in the Wings Database
for which flight muscle mass is recorded. Expected slope 0.333. Reduced major axis
slope 0.356. N 44. r 0.924.
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measurements of muscle mass are included in the database

(Figure 13.13). The slope of the line (0.356) is close to the expected

value (0.333). This gives another view of the reason why there is an

upper limit to the mass of birds that are capable of level flight. Accord-

ing to the argum ent in Chapter 7, the uppe r lim it to the spec ific wor k when

the muscles are generating maximum power is 0.3 times the isometric

stress (560 kN m–2), times the active strain (0.26), divided by the density

of muscle (1060 kgm–3). This works out to 41 J/kg of muscle, which is only

marginally above the amount that the largest birds in Figure 13.13 (swans)

need for level flight atVmp. Theestimate for the isometric stressusedhere is

higher thanmost estimates derived from experiments on isolatedmuscles,

and it comes from the observation that Whooper Swans can in fact fly

horizontally ( Chapter 7, s ection 7.3.7).
13.2.6 REDUCED FREQUENCY

This is a dimensionless number that basically represents the distance

that the wing tip moves up and down for each unit of distance moved

horizontally. If the wing tips move up and down very steeply (high

wingbeat frequency, low speed) the sharp transitions between upstroke

and downstroke tend to produce unsteady aerodynamic effects,

whereas if the motion is mostly horizontal, with not too much

up-and-down movement, the flow can be considered ‘‘quasi-steady’’,

which makes it more amenable to calculation. As a rough rule of

thumb, the flow can be considered quasi-steady if the reduced

frequency is below about 0.2. The scatter in Figure 13.14 extends from

about 0.1 to 0.25, with a computed slope near –0.1. The expected slope

for geometrically similar birds is zero.



0.01 0.1 1 10

0.1

Body mass (kg)

R
ed

uc
ed

 fr
eq

ue
nc

y
0.2
0.3

0.005

FIGURE 13.14 Allometric plot of reduced frequency (Y ) at Vmp, computed by the Flight
programme, versus mass (X ) for 220 bird species from the Wings Database. Expected
slope 0. Reduced major axis slope 0.0991. N 220. r 0.617.
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13.2.7 WING REYNOLDS NUMBER

Reynolds number is another dimensionless number, which describes

the scale of the flow. It is often seen as expressing the relative impor-

tance of inertial forces, as compared to those due to viscosity. The

Reynolds numbers of bird wings (based on the mean chord) run from

about 10,000 to 500,000 when flying at Vmp, increasing with mass at

an expected slope of 0.5. The computed slope in Figure 13.15 is slightly

less (0.449). Experience with model aircraft, which occupy essentially

the same range of Reynolds number as birds, indicates that problems

are to be expected in keeping the boundary layer attached to curved

surfaces. However, feathered surfaces seem to be remarkably resistant

to separation of the boundary layer, for reasons which are not

und erstood (C hapter 3 , Box 3.6).
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FIGURE 13.15 Allometric plot of wing Reynolds number (Y ) at Vmp, computed by the
Flight programme, versus mass (X ) for 220 bird species from the Wings Database.
Expected slope 0.5. Reduced major axis slope 0.449. N 220. r 0.977.
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13.2.8 RATIO OF MINIMUM CHEMICAL POWER TO BASAL

METABOLIC RATE

The chemical power is the chemical cost of generating the mechanical

power, with an added allowance for the basal metabolic rate (BMR).

The BMR varies empirically with the 0.75 power of the mass, whereas

the mechanical power varies with about the 1.07 power of the mass

(above). The chemical power is not therefore expected to show a

straight-line relationship with the mass on a double-logarithmic plot.

That would not deter a physiologist from creating such a plot, but it

does mean that there is no basis for expecting any particular value

for the slope of the line, still less for the slope of a line in which the

ratio of the chemical power to the BMR is plotted against the mass.

Nevertheless, many physiologists attach great importance to this ratio,

to the extent that when they measure a chemical power, they often

express it as a multiple of BMR, and suppress the original observations

of power. The implication seems to be that the ratio of the chemical

power in flight (or ‘‘flight metabolism’’) to the BMR is expected to be

the same for any bird, regardless of its wing measurements, or the air

density, or even the strength of gravity. This nonsensical expectation

is depicted in Figure 13.16, along with a log-log plot of Flight’s estimate

of the ratio of minimum chemical power to BMR. This ratio increases

from less than 3 in some small passerines up to about 50 in some large

birds. The reason for the strong positive trend is obvious from the dif-

ference in the slopes of the two main components of the ratio (above).

Neither the mechanical nor the chemical power required in flight have

any direct connection with the BMR, which is a separate component of
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FIGURE 13.16 Allometric plot of the ratio of minimum chemical power to the basal
metabolic rate (Y ), computed by the Flight programme, versus mass (X ) for 220 bird
species from the Wings Database. Expected slope 0. Reduced major axis slope 0.378.
N 220. r 0.916.



TABLE 13.3 Regression coefficients from Kirkpatrick (1994).

Birds Bats
Expected
exponent

Wing area 0.134 B1.78 0.124 B1.83 2
Wing moment of

inertia
9.23 � 10–4 B5.08 1.02 � 10–3 B5.11 5

Humerus 2nd
moment area

6.02 � 10–11B4.19 2.68 � 10–11B4.42 4

Kirkpatrick (1990) also gives the following reduced major axis regression for the mass of
one wing of a bird (mw) versus the body mass (mb):

mW 9:74� 10�2m1:10
b :

Note that in this context mb includes the mass of the wings.
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chemical power that is required for reasons that are poorly known,

but unconnected with flight. The practice of expressing the chemical

power as a multiple of BMR obscures the actual values of the measured

power, which could be compared with predicted values from Flight, and

used to test the hypotheses that underlie the programme. The ratio of

power to BMR cannot be used for this.

13.3 VARIATIONS ON ALLOMETRY

13.3.1 CHOICE OF INDEPENDENT VARIABLE

Allometric graphs are most commonly drawn with the body mass as

the independent variable, but actually any variable can be used in this

role. For example, Kirkpatrick (1990, 1994) published a set of allometric

equations covering structural measurements of a variety of birds and

bats, in which he used the wing span as the independent variable.

Three of the most useful of these (given in Table 13.3) can be used to

predict the wing area, wing moment of inertia, and second moment

of area of the humerus (just distal to the pectoralis insertion) of birds

and bats. There is some information about the meaning of these quan-

tities in Chap ter 5, Box 5.1, in connect ion with the strength of the wing

structure. They were used by Kirkpatrick to estimate ‘‘safety factors’’,

meaning the margin of strength over the maximum loads expected to

be applied to the wing.

13.3.2 ALLOMETRY OF PHYSIOLOGICAL VARIABLES

There are oblique inferences in various chapters of this book about

physiological limitations on flight performance, for example it seems

that swans and other large birds have trouble in sustaining aerobic
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flight, even at the minimum power speed, even though their flight

muscles are equal to the mechanical challenge. To be quantitative

about this, one would need to know what mass of heart and lungs is

needed to sustain a given level of mechanical power in the muscles,

how much power the heart and lungs themselves require to pump air

and blood at the necessary rates, and how all these quantities would

be expected to scale with the body mass in geometrically similar birds.

There is insufficient theoretical basis to attempt this at present. How-

ever, in one of many famous papers, A.V. Hill (1950) outlined a way

in which this connection might be made.

Hill’s paper was mostly about running and swimming animals, and

he began with some generalisations about running and jumping. Geo-

metrically similar animals all run at the same top speed (he claimed)

because the stride length increases with the size of the animal, but

the stepping frequency decreases with the same slope. Likewise, simi-

lar animals all reach the same height in a standing jump, because the

work needed to jump to a given height is proportional to the mass,

and so is the work done by the jumping muscles in one contraction.

Although somewhat counter-intuitive, these ‘‘laws’’ are by no means

wide of the mark (Pennycuick 1975b). When it comes to aerobically

sustained power, Hill reasoned that the heart has to pump blood at a

volume rate that is proportional to the rate at which the muscles

require oxygen, and hence to the power. He proposed that stepping

frequency varies inversely with the leg length (or with the minus

one-third power of the mass) but that the work done in each contrac-

tion of the muscles is directly proportional to the mass. The total power

thus varies with the two-thirds power of the mass, as does the cross-

sectional area of the aorta. In that case, the speed at which the blood

flows along the aorta is independent of the mass, and the time for a

hormone signal to be carried from one end of the animal to the other

is directly proportional to the length.

This line of argument would have to be modified for birds, as it has

been seen in this chapter that the wingbeat frequency varies with the

minus one-sixth power of the mass (not minus one-third), and the spe-

cific work is not constant as Hill assumed, but increases with the

one-third power of the mass. The volume rate of flow of blood, and

the power output of the heart (pressure increase times rate of flow),

would have to increase at least in proportion to the mass, although the

heart’s own contraction frequency decreases with the mass at an

unknown slope. One aspect of Hill’s argument deals with the rate at

which oxygen is absorbed in the lung, whose surface area is assumed

to vary with the two-thirds power of the mass. However, if birds’ lungs
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behave as fractal surfaces, as suggested in Chapter 7, Box 7.7, then the

absorptive surface would not exactly have any such property as ‘‘area’’,

and determining its scaling properties would be a major challenge in

itself. Half a century on, Hill’s paper still gives only a tantalising glimpse

of the laws that govern physiological limitations on performance.
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WIND TUNNEL EXPERIMENTS WITH
BIRDS AND BATS
The basic principles of wind tunnel design are introduced in this chapter, with exam
ples of different tunnel types that have been used for bird flight experiments. The
functions of the main wind tunnel components are explained, with methods for mea
suring wind speed and turbulence. Types of measurements that can be made on
birds and bats are covered, with precautions that need to be observed, including
the recent introduction of methods for observing vortex wakes.

It is in the nature of flying birds that they do not stay still to be

observed. However, motion is relative, and it is possible for the bird

to stay still relative to the observer, while still flying normally, if the

air moves. This may happen naturally where the wind blows against

a cliff, or it can be made to happen artificially in a wind tunnel. A wind

tunnel is a device that produces a stream of air that flows past the

observer at a known speed and in a controlled manner. It is an essen-

tial tool in aeronautical research, because a model that remains sta-

tionary, with the air moving past it, is physically identical to the same
377
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model moving through still air, but much more convenient for observa-

tion and measurement.

14.1 WIND TUNNEL BASICS

14.1.1 REQUIRED ATTRIBUTES FOR A WIND TUNNEL

The air flow in the test section of a wind tunnel, where the bird flies, must

satisfy the followingbasic requirements, ifmeasurementsmade in the tun-

nel are to have some relevance to the bird’s performance in the open air.

(1) The experimenter must have access to the bird while experiments

are in progress.

(2) The tunnel must be capable of maintaining a steady wind speed,

which is constant over the whole cross section of the test section,

and can be accurately set and measured by the experimenter.

(3) The direction of flow must be constant throughout the test section,

and parallel to the centreline.

(4) The level of small-scale turbulence in the test section must be low.

(5) Finally, the facility to tilt the tunnel so as to simulate climb and

descent is so useful that it should be considered an essential

requirement.

There is a large volume of published literature, especially in flight

physiology, about experiments in wind tunnels that do not satisfy any

of the above requirements. Before pointing out the advantages and

shortcomings of particular wind tunnel layouts, I shall first mention a

couple of principles that apply to all wind tunnels, and then outline

the functions of the major components (the fan, settling section, con-

traction and test section) that are found in all but the most primitive

wind tunnels. More detailed information can be found in textbooks

on low-speed wind tunnel engineering such as Pankhurst and Holder

(1965) and Rae and Pope (1984).

14.1.2 BASIC FLOW PRINCIPLES

Birds fly at low airspeeds, at which air can be considered to be an

incompressible fluid. This means that if air flows along a tube whose

cross section varies in area, the airspeed varies in inverse proportion

to the cross-sectional area of the tube. Where the tube gets narrower,

the flow speeds up, and where the tube widens, it slows down. This

in turn leads to changes in pressure. Everyone seems to be aware of

Bernoulli’s Principle, which says that the pressure decreases when the

speed increases, and vice versa. At places where the tunnel gets wider,
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the air slows down and its pressure increases, and conversely when the

tunnel gets narrower, the air speeds up and its pressure drops. Energy

is continuously dissipated by the motion of the air along the tunnel,

and is replaced by a motor driving a fan, which is a device that abruptly

increases the pressure of the air flowing through it.

14.2 WIND TUNNEL LAYOUTS

14.2.1 OPEN-CIRCUIT SUCTION TUNNELS

In its simplest form, a suction tunnel (Figure 14.1) consists of a con-

traction whose inlet is open to the ambient air, and a downstream

fan that draws air through the contraction and the test section, and

then discharges it back into the surroundings. This layout is easy and

cheap to construct, and is often recommended by engineers as a

minimum-cost solution that is capable of excellent performance. So

it is, if the test section is carefully sealed. As Figure 14.1 shows, the pres-

sure in the test section has to be below ambient in a suction tunnel,

and consequently air rushes in through any opened panels or poorly

sealed holes in the test section. Because it is impossible in practice to

do an experiment on a live bird that is completely isolated in a sealed

chamber, experimenters carry on anyway, oblivious to the invisible
1 mContraction
Test section Motor/fan

0
Ambient
pressure

Suction

FIGURE 14.1 An open circuit suction tunnel, as commonly used for physiological experi
ments. The air is at ambient pressure at the inlet to the contraction, and at the outlet from
the fan. The fan’s function is to maintain a step increase of pressure as the air flows
through it, so the pressure has to be below ambient (grey) everywhere between the inlet
and the fan. Air is sucked into the test section through the contraction, but also through
any gaps, leaks and holes in the walls of the test section itself. This arrangement works
as intended, but only if the test section is carefully sealed. This is practicable with engi
neering experiments, but usually not with birds, as access to the test section is needed
for the experimenter. From Pennycuick et al. (1997).



380 MODELLING THE FLYING BIRD
mayhem caused by open panels and leaks. Suction tunnels can serve as

‘‘aerial treadmills’’ for exercising birds, but quantitative results from

such devices should not be taken at face value, however many decimal

digits are shown in the results.

14.2.2 OPEN-CIRCUIT BLOWER TUNNELS

The shortcomings inherent in the suction arrangement can be avoided

by putting the fan at the upstream end of the tunnel, and having the

test section in the open air, just outside the outlet of the contraction.

This gives unobstructed access to the bird, but requires flow condition-

ing to straighten the flow, and smooth out the disturbance introduced

by the fan. The author’s solution for a tilting wind tunnel in a confined

space (Figure 14.2) worked quite well, but the turbulence level left

something to be desired, as there was too little space to smooth out

the disturbance caused by the fan. In principle, the flow in a tunnel

of this type can be made as straight and smooth as required, by having

a large contraction ratio and many screens in the settling section, but

this results in a big machine. The pressure in any open-circuit tunnel

is equal to ambient at both the inlet and the outlet, but in contrast to

the situation in a suction tunnel, the pressure internally is higher than

ambient in a blower tunnel, and returns to ambient at the outlet of the

contraction, which is also the beginning of the test section.
1 m

Fan

Stator blades
Honeycomb

Screen

Contraction

0
Ambient
pressure

Pressure

FIGURE 14.2 The pressure in an open circuit blower tunnel is above ambient (red) every
where between the fan and the outlet of the contraction. The test section is at ambient
pressure, in the open air, outside the end of the contraction. The quality of the flow can
be improved with a larger contraction ratio, and a settling section with several screens,
but this results in a large machine (after Pennycuick 1968a).
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14.2.3 CLOSED-CIRCUIT TUNNELS: THE LUND WIND TUNNEL

The Lund wind tunnel was commissioned in 1994, and was the first tun-

nel to be built specifically for bird flight experiments that also conforms

to modern engineering standards of performance (Figure 14.3). It is a

conventional low-turbulence closed-circuit wind tunnel, with two spe-

cial features that are not usually found in engineering wind tunnels.

The first is that the whole machine is mounted on a frame that can be

tilted by a screw jack at one end. Climbing or descending flight can be

simulated by tilting the tunnel to maximum angles of 6� (climb) or

8� (descent). The second is that there is a 50-cm gap at the downstream

end of the test section, where the pressure in the tunnel equalises with

that of the surrounding air. Everywhere else in the circuit, the internal

pressure is higher than ambient (Figure 14.4). This feature allows experi-

menters free access to the test section without disturbing the flow, an

essential characteristic that is not shared by suction tunnels (above).

Another tunnel was later built at Andechs, Germany to essentially the

same design as the Lund tunnel, by the same contractors (Rollab AB of

Solna, Sweden), but the air in the Andechs tunnel circulates horizontally,

rather than in the ‘‘up-and-over’’ configuration shown in Figure 14.3.

The performance is assumed to be similar, but the Andechs tunnel

cannot be tilted, and is therefore limited to horizontal flight.
50 10 m

Screens
Honeycomb

Wide-angle diffuser

Main diffuser

Motor/fan

Contraction Test section

Tilt
screw

Corner vanes

Screens First diffuser

FIGURE 14.3 The Lund wind tunnel is a conventional low turbulence, recirculating tunnel,
modified for use with birds by making the downstream part of the test section open to the
surrounding air (see Figure 14.4), and also by mounting the whole machine on a tilting
frame. This tunnel has a contraction ratio of 12.25, with a 4 m wide settling section, con
taining a honeycomb and five screens (after Pennycuick et al. 1997).
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FIGURE 14.4 The Lund wind tunnel (not to scale) is here straightened out, starting and
ending at the gap in the test section, where the pressure equilibrates with the surrounding
air. The pressure is above ambient (red) everywhere else in the circuit, increasing gradu
ally as the cross section diverges in the diffusers, and abruptly as the air passes through
the fan. There is a pressure drop through the honeycomb, and at each screen, followed
by a smooth drop back to ambient pressure as the air accelerates in the contraction.

382 MODELLING THE FLYING BIRD
14.3 WIND TUNNEL COMPONENTS
AND THEIR FUNCTIONS

14.3.1 DIFFUSERS, CORNERS AND FAN

If we follow the air around a circuit of the Lund wind tunnel, after

leaving the test section, it enters the first diffuser, which diverges at a

shallow angle, decreasing the wind speed and increasing the pressure.

The speed then remains constant round the first two corners, which

deflect the air flow through 180�, and deliver it to the fan on the lower

level. The fan is a commercial ventilating fan, driven by a 3-phase AC

motor, which is itself driven by a sine-wave generator whose frequency

can be continuously varied over a wide range. The wind speed does not

change as the air passes through the fan, but the pressure increases.

After passing through the fan, the air enters the main diffuser on the

lower level, which is the structural backbone of the tunnel. Its function

is to decrease the wind speed and increase the pressure, converting

most of the air’s excess kinetic energy into pressure energy. The two

‘‘wide corners’’ turn the air flow back to its original direction on the

upper level, using arrays of curved vanes that change the flow direction

in the same way as wings. The wide-angle diffuser expands the cross

section to 13.7 m2 at the entry to the settling section. The air at this

point contains turbulence, its speed may be uneven, and there may
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be swirl left over from the fan, meaning that parts of the flow may be

moving at an angle to the tunnel axis. The function of the settling

section, which follows, is to remove any such irregularities.

14.3.2 THE SETTLING SECTION

As the settling section is the widest part of the tunnel, the speed is lowest

there. It is lower than that in the test section by a factor of 12.25, which is

the area ratio between the inlet and outlet of the contraction. When the

speed in the test section is around 12 m s 1, as it often is when birds are

flying there, the speed through the settling section is only about 1 m s 1,

which would be barely perceptible to an observer inside. The settling

section contains a honeycomb and five screens, which are placed there

because the low airspeed minimises the power that is required to force

the air through them. The honeycomb, which comes first, is made of

thin sheet metal, and consists of an array of narrow, parallel channels,

filling the entire cross section of the tunnel. Its function is to ensure that

when the air emerges from the honeycomb, all of it is moving parallel to

the axis of the tunnel. Five screens follow, each woven from fine stainless

steel wire. Each screen presents some resistance to the flow, so that a

pressure drop forms across it. If the speed is higher in one part of the

cross section than in another, then the pressure drop across the screen

is also higher where the flow is faster, and this produces lateral pressure

gradients that tend to even out variations of speed. The screens also

break up any vortices that may be present into smaller vortices, which

decay more quickly, so that they have time to die out altogether before

they reach the test section. The wires of the screens would themselves

create small-scale turbulence, but this does not happen if the Reynolds

number, based on the diameter of the wires, is less than 40. In the Lund

wind tunnel, the Reynolds number of the wires is below this limit when

the airspeed in the test section is in the range commonly used for

experiments with birds. The screens break up turbulence that was

already in the flow, but do not create any new turbulence of their own.

14.3.3 THE CONTRACTION AND TEST SECTION

The cross-sectional area decreases in the contraction by a factor of

12.25, and the wind speed increases by the same factor by the time

the air is delivered to the inlet of the test section. The contraction itself

produces a major reduction of any turbulence that may still be present

at the outlet of the settling section, since small fluctuations of speed

are carried along unchanged as the air speeds up, and become a smaller

percentage of the (increasing) wind speed.
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The test section is octagonal, 1.20 m wide and 1.08 m high. This is big

enough to accommodate birds with wing spans up to 80 cm, on the basis

that the bird’s wing span shouldnot exceed two-thirds of the tunnelwidth.

The test section is enclosed by acrylic walls for the first 1.2 m of its length,

then there is a 50-cm gap before the air enters the bellmouth of the first,

short diffuser (above) leading to the first corner. The function of the gap

is to equalise the pressure in the test section with the ambient pressure

outside the tunnel, so that experimenters can get at the bird without dis-

turbing the flow. As the wind speed is highest in the test section, the air

pressure is lowest there. The pressure is above ambient everywhere else

in the circuit, and air rushes out if inspection panels are opened when

the tunnel is running (Figure 14.4). Tests with a pitot-static probe (Box

14.1) showed that the wind speed in the test section was within �1.3% of

themeanvalueover almost thewhole of the cross section,while the turbu-

lence was so low that it was difficult to detect it with a hot-wire anemom-

eter (Box 14.2). The root-mean-square value of velocity variations due to

turbulence was no higher than 0.04% of the wind speed in the closed part

of the test section, and nomore than 0.06% in the gap. Both the closed and

open parts of the test section can be used for experiments.
BOX 14.1 Instruments for measuring wind speed.

The purpose of a wind tunnel is to observe birds flying under known condi-
tions, and the wind speed is the first of those conditions that needs to be
measured. Several different methods of wind speed measurement are in
common use, based on different physical principles, and each suited to dif-
ferent types of measurements.

Variable definitions for this box
Cd1 Drag coefficient of retreating anemometer cup
Cd2 Drag coefficient of advancing anemometer cup
hr Roughness height
kd Drag constant for anemometer cups
q Dynamic pressure
Ve Equivalent wind speed
Vh1 Wind speed at height h1

Vh2 Wind speed at height h2

Vr Wind speed due to rotation
Vt True wind speed
r Air density
r0 Sea level air density in the International Standard Atmosphere
s Density ratio

Dynamic pressure and equivalent wind speed
Apitot-static probe is a standard piece of wind-tunnel equipmentwhichmea-
sures the dynamic pressure,meaning the pressure difference between an open
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FIGURE 14.5 (A) A pitot static probe connected to a tilting manometer measures
dynamic pressure, but may be calibrated to read airspeed on the basis that the air
density is equal to the sea level density in the International Standard Atmosphere.
The instrument then reads Equivalent airspeed, which is less than the True airspeed
if the air density is below the sea level value (as it usually is). (B) In a whirling cup ane
mometer, the rotation rate depends on the drag coefficient of the cup being higher
when the open end faces the relative wind than when the closed end faces the wind.
The instrument reads the True airspeed, independently of the air density, so long as
the aerodynamic force is large enough to overwhelm the friction in the bearings.

tube pointing into the wind, and a hole or slit in a surface that is parallel to
the air flow (Figure 14.5A). Such probes that are intended for measuring the
wind speed in low-speed wind tunnels are commonly supplied with a spe-
cial manometer, in which the tube can be tilted so as to increase its sensitiv-
ity. Such manometers, or their electronic equivalents, may be calibrated
directly in metres per second for wind speed, but this can be misunder-
stood. The true wind speed (Vt) is the speed at which smoke particles are
carried along, and it is related to the dynamic pressure (q) by:

q ¼ ½rV 2
t ð1Þ

where r is the air density. Conversely, if the dynamic pressure has been
measured, and the wind speed is required, it is:

Vt ¼ q 2q

r

� �
ð2Þ

14 Wind Tunnel Experiments with Birds and Bats 385



BOX 14.1 Continued.

The air density must be known before the true wind speed can be found
from the dynamic pressure. Obviously its value is not known when a
manometer is permanently calibrated in terms of wind speed. To do a per-
manent calibration, a fixed value must be assumed for the air density, and
by convention, the value used is r0, the air density at sea level in the Inter-
national Standard Atmosphere, which is 1.226 kg m�3. In the wind tunnel,
the dynamic pressure (not the wind speed) is actually measured, and the
manometer reads the equivalent wind speed (Ve), defined as:

Ve ¼ q 2q

r0

� �
ð3Þ

Only if the ambient air density happens to be equal to r0 will the instru-
ment indicate the true wind speed directly. If the true wind speed is
required, then the actual air density must be measured, and the ‘‘density
ratio’’ (s) found as:

s ¼ r
r0

ð4Þ

From Equations (2) and (3), the conversion factor from equivalent to true
wind speed is ‘‘root sigma’’ (

q
s).

Vt ¼ Veq
s

� �
ð5Þ

Air density varies from day to day at any particular location, and also
decreases with altitude. Only a barometer and a thermometer are required
to measure it, (Chapter 2, Box 2.3), and one might suppose that ever y exper-
imenter would take such an elementary precaution. However, there are
numerous examples in the physiological literature of wind tunnel experi-
ments at locations well above sea level, in which ‘‘wind speed’’ was given
without specifying the type of instrument used to measure it, or mentioning
the air density. This is not a trivial adjustment. For example, at a location
2000 m above sea level, root sigma would be about 0.91 in the Standard
Atmosphere, but may vary up and down, depending on the weather
conditions.
The instrumentation built into the Lund wind tunnel displays equivalent
wind speed, because a bird’s minimum power speed (Vmp), which is the
benchmark speed for flight performance (Chapter 3) occurs at a fixed equiv-
alent speed rather than a fixed true speed. Root sigma is also displayed,
together with the prevailing air density, so that the true wind speed can be
calculated if required. The airspeed used in the displays and output
from Flight is the true airspeed, and this needs to be borne in mind when
using Flight as a source of predictions, against which wind tunnel measure-
ments are to be compared. The difference will be substantial at higher
locations.

Whirling cup and turbine anemometers
At an equivalent wind speed of 8 m s�1 or less, the dynamic pressure, at
around 4 mm of water or below, is so low as to be difficult to measure.
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For such low speeds, other methods of measurement may be more satisfac-
tory. The whirling-cup anemometer, commonly used on weather stations, is
a familiar device that will measure wind speed over a wide range, down to a
very low minimum. The sensor (Figure 14.5B) consists of several identical
cups (at least 3), mounted on arms that project from a central hub. The
measured variable is the rotation rate of the shaft, on which the hub is
mounted. The device depends on the drag coefficient of the cup being
higher when the open end faces the wind than when the closed end is into
wind. The rotation rate remains constant when the drag force (not the drag
coefficient) is the same whether the cup is pointing into wind or downwind.
To simplify the matter a little, we can assume that a cup whose open end
faces the wind has a drag coefficient Cd1, and moves downwind at a speed
Vr, which is directly proportional to the rotation rate, so that its true
airspeed is Vt Vr, where Vt is the true wind speed. On the other side
of the circle, the drag coefficient (Cd2) is lower, but the airspeed is higher
(Vt þ Vr). As the drag is the same in both directions,

1

2
r Vt Vrð Þ2Cd1 ¼ 1

2
r Vt þ Vrð Þ2Cd2 ð6Þ

or:

Vt Vrð Þ
Vt þ Vrð Þ ¼

q Cd2

Cd1

� �
ð7Þ

We can simplify this by introducing a constant kd, where

kd ¼ q Cd2

Cd1

� �
ð8Þ

kd is a ‘‘drag constant’’ (less than 1) that depends only on the shape and
arrangement of the cups. Equation (7) can then be rearranged as:

Vt ¼ Vr

1þ kdð Þ= 1 kdð Þ½ � ð9Þ

Equation (9) shows that for a given set of cups, whose drag characteristics
are expressed by the constant kd, the rotation rate is proportional to the true
wind speed (Vt), and that the air density is not involved. Provided that the
friction in the shaft is negligible in comparison with the drag of the cups,
a whirling-cup anemometer measures the true wind speed, not the equiva-
lent wind speed. This needs to be kept in mind when using an instrument of
this type to measure wind speed in the field, and especially when calibrating
it in a wind tunnel, where the displayed wind is usually equivalent, not
true wind speed. In that case, either the anemometer reading needs to be
converted to equivalent wind speed, or else the indicated wind speed
needs to be converted to true, before they can be compared [Equation (5)
above].
Turbine anemometers work with a small, freely rotating turbine, whose

rotation rate is measured by a magnetic or optical sensor. Here too the
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rotation rate indicates the true airspeed, provided that the friction in
the bearings is negligible compared with the aerodynamic force on the
turbine blades. The rotation rate adjusts itself until the lift force on the
blades (perpendicular to the air flow) is zero. Being more compact
than the whirling-cup type, turbine anemometers are used for airspeed
measurement in very slow aircraft, especially hang gliders and paragliders,
and they can also be used to measure very low wind speeds in the field
or in a wind tunnel. Some small hand-held anemometers are of this
type, and measure true wind speed. However, others that work by deflecting
a vane against a spring, or lifting a disc in a diverging channel, depend
on dynamic pressure, and these instruments measure equivalent wind
speed.

Thermistor anemometers
Hot wire anemometers are better suited to measuring turbulence than
absolute wind speed, and are normally used for that purpose (Box 14.2).
However, the same principle is used in some small hand-held anemometers
whose sensor element is a thermistor bead at the end of a probe. A therm-
istor (thermally sensitive resistor) is a device whose resistance varies
strongly with temperature. If a thermistor bead is heated, then the rate at
which heat is convected away by the air can be used as a measure of air-
speed, in much the same way as in a hot-wire anemometer. Thermistor
anemometers are popular for measuring very low wind speeds in and
around vegetation, but whether they measure true or equivalent airspeed,
or something else altogether, is something that would need to be deter-
mined by experiment.

Height correction for a field anemometer
A portable anemometer mast typically supports the head at some modest
height like 3 m, which is usually lower than the flying heights of most of
the birds that are tracked. If the wind is blowing over a reasonably flat
ground or water surface, the lowest layer of air is retarded by friction with
the surface, and the wind speed increases with height, according to a loga-
rithmic relationship. If the wind is measured at a height h1 above the sur-
face, and the bird flies at a measured height h2, then the measured wind
speed (Vh1) at the anemometer head can be corrected to the wind speed
at the bird’s flying height (Vh2) by the formula:

Vh2 ¼ Vh1
ln h2=hrð Þ
ln h1=hrð Þ

� �
ð10Þ

where hr is a ‘‘roughness length’’ whose value varies from 10–4 m for a glassy-
smooth surface to 10–2 m for a very rough surface. hr is not very critical, and a
value of 10–3 m will serve for medium-rough surfaces.
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BOX 14.2 Measuring turbulence.

Variable definitions for this box

CD Drag coefficient of test sphere
D Drag of test sphere
kt Turbulence factor
r Radius of test sphere
Re Reynolds number
Recrit Critical Reynolds number for a sphere in a given wind tunnel
Reref Critical Reynolds number for a sphere in free air
T Turbulence—rms fluctuations as percentage of wind speed
V True airspeed
Dp Pressure drop across a turbulence sphere
r Air density
n Air kinematic viscosity

The term ‘‘turbulence’’, when applied to the air flow in an empty wind tunnel
test section, refers to small (millimetre-scale) fluctuations of the wind speed,
expressed as deviations from themean speed. This is conventionally expressed
as the root-mean-square (rms) deviation, over a short period of observation,
from themean speed in two directions, parallel to the tunnel axis, and perpen-
dicular to it. A practical criterion for a ‘‘low-turbulence’’ wind tunnel is that the
rmsvalueof thefluctuationsparallel to the tunnel axis is below0.1%of thewind
speed. Themeasured value in the Lundwind tunnel (around 0.05%)was so low
that the measuring equipment had difficulty in detecting it (Pennycuick et al.
1997). This is a closed-circuit wind tunnel with a contraction ratio of 12.25,
and five screens in the settling section (Figure 14.3). Open-circuit suction tun-
nels of the type shown in Figure 14.1, with contraction ratios of 4 or so, and
fewer screens (if any) have turbulence levels at least an order of magnitude
higher, and often more. There are two commonly used methods of measuring
turbulence, one direct and one indirect.

Direct measurement of turbulence
Hot-wire anemometers are commercially available that are capable of the
very fast response needed to measure small-scale turbulence directly (Bruun
1995). The sensing device consists of a fine platinumwire which is heated to a
temperature far above the air temperature by an electric current (Figure 14.6).
The resistance of the wire increases with increasing temperature. The control
circuitry continuously monitors the resistance of the wire from the voltage
across it and the current through it, and adjusts the current so as to hold the
resistance (and hence the temperature) constant at some preset value. Heat
is convected away from the wire by the air flow at a rate that depends on the
airspeed, and the current needed to maintain the set temperature is a mea-
sure of the airspeed. Small fluctuations in the airspeed can bemeasured at fre-
quencies of several kilohertz. A hot-wire anemometer is not the instrument of
choice for absolute measurements of either True or Equivalent airspeed (Box
14.1), but it readily provides the ratio of speed fluctuations to themean speed,
as needed for turbulence measurements.Its main limitation is that the sensor
elements are delicate, expensive and easily broken.
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FIGURE 14.6 Two types of hot wire anemometer sensors made by Dantec Dynamics
A/S. The tip of the probe is encased in a 5 mm diameter tube, which is itself mounted
in a 20 cm long holder, pointing into wind. Tapered metal prongs are held in a
ceramic matrix, and support the anemometer wires at their tips. Dantec Type
55P01 (above) has a single wire of 5 mm diameter, copper and gold plated at each
end, while Dantec Type 55P61 (below), is a double sensor with two crossed wires,
also of 5 mm diameter, that is able to measure wind speed fluctuations simultaneously
in two directions mutually at right angles.

Wind
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FIGURE 14.7 A turbulence sphere: an external manometer reads the pressure differ
ence between hole (A) at the upwind stagnation point of the sphere, and the ring of
holes (B) in the wake, around the support sting. The drag coefficient of the sphere can
be determined from this pressure difference.

The turbulence sphere
The level of small-scale turbulence can also be measured indirectly by
observing the drag coefficient of a sphere (Rae and Pope 1984). An accu-
rately machined, polished metal sphere is supported at the middle of its
downwind side by a sting. If the tunnel is equipped with a drag balance,
the sting can be mounted on this to give a direct measurement of the drag
(D), otherwise an equivalent measurement can be obtained from pressure
measurements from holes on the surface of the sphere (Figure 14.7 and
below). If the drag is measured, the drag coefficient (CD) is:

CD ¼ 2D

rV 2pr2ð Þ ð1Þ
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where r is the air density, r is the radius of the sphere, and hence pr2 is its
cross-sectional area. The value of CD depends on the position where the
boundary layer separates from the surface of the sphere on the downwind
side, and this is itself a function of the Reynolds number (Re), defined as:

Re ¼ 2rV

v
ð2Þ

where n is the kinematic viscosity of the air (Chapter 2, Box 2.2), and the
reference length 2r is the diameter of the sphere. At low Reynolds numbers,
the boundary layer is laminar and readily separates from the surface after
passing the widest point, resulting in a wide wake and a high drag coeffi-
cient. As the Reynolds number is increased, at some point the boundary
layer becomes turbulent, and it then remains attached further round on to
the downwind side of the sphere. The wake becomes narrower, and the drag
coefficient decreases. The curve of drag coefficient versus Reynolds number
dips, and the ‘‘critical’’ value of the Reynolds number (Recrit) is defined by
convention as the value at which the drag coefficient passes downwards
through 0.3 (Figure 14.8). The observed value of Recrit can be used as a
measure of the turbulence level in the wind tunnel. The higher the level of
turbulence, the lower the value of Recrit. The ‘‘reference’’ value of the critical
Reynolds number (Reref) is 385,000, because this value is obtained if the
sphere is mounted on an aircraft, in free air where there is no turbulence
on a scale small enough to affect the boundary layer around the sphere.
In a wind tunnel, where there is small-scale turbulence, Recrit is less than
Reref, and the more turbulence there is in the air (in terms of percentage
of the wind speed), the lower is Recrit. Rae and Pope use a ‘‘turbulence fac-
tor’’ (kt) which is greater than 1, to define the turbulence level of a particular
wind tunnel, where

kt ¼ Reref
Recrit

ð3Þ

and they show a graph relating this to the turbulence level (T ) expressed as
a percentage of the wind speed, as above. The lower part of their graph is an
approximately straight line:

T ¼ 1:25 kt 1ð Þ ð4Þ
If the turbulence factor is 1, meaning that Recrit ¼ Reref, then there is zero
turbulence, while if kt ¼ 2, then T ¼ 1.25%, an unacceptably high value.
Equation (4) apparently holds up to about kt ¼ 2.5.

Turbulence factor from pressure measurements
Since the drag of a sphere is caused by the pressure difference between the
upwind and downwind sides, the drag coefficient can be estimated by mea-
suring this difference, using a suitably instrumented ‘‘turbulence sphere’’ as
shown in Figure 14.7. The sphere has a single hole (A) in the middle of the
upwind side, and a ring of interconnected holes (B) on the downwind side,
surrounding the support sting. The tubes are brought out through the support
sting, and connected to a manometer outside the tunnel, which registers the
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FIGURE 14.8 (A) At low Reynolds numbers the air flow around a sphere (coming from
the left), separates from the surface soon after the widest point, where the pressure is
minimal. The pressure (p, graph at top) drops as the air accelerates around the sphere,
until it reaches the widest point (vertical dashed line). Beyond the minimum pressure
point, pressure increases causing a pressure gradient against the wind (curved arrow),
which causes the air near the surface of the sphere to reverse direction, and undercut
the flow. The boundary layer separates from the surface, leaving a wide, disorganised
wake on the downwind side. The drag on the sphere is mostly due to the pressure dif
ference between the upwind and downwind sides. (B) At high Reynolds numbers a thin
layer of turbulence forms on the surface, and this helps to keep the boundary layer
attached to the surface despite an adverse pressure gradient. The disorganised wake
becomes narrower, and the drag coefficient decreases. (C) The formation of the turbu
lent boundary layer, and resultant narrowing of the wake, results in a dip in the drag coef
ficient, when plotted against Reynolds number (below). The ‘‘critical’’ Reynolds number
(Recrit) is defined by convention as the Reynolds number at which the drag coefficient is
0.3. In turbulence free air, this occurs at Re 385,000, but small scale turbulence in
the air stream triggers the transition at a lower Reynolds number. A measurement of Recrit
can be used to estimate the turbulence level (Box 14.2).

pressure difference (Dp) between holes A and B. This is compared with the
dynamic pressure (q), defined as:

q ¼ 1

2
rV 2 ð5Þ

where r is the air density and V is the true airspeed. According to Rae and
Pope (1984), the drag coefficient is 0.30, and Re [from Equation (2)] is equal
to Recrit, when the ratio Dp/q is equal to 1.220.
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Turbulence measured by PIV
The recent application of particle imaging velocimetry (PIV) to the study of
the wakes of birds flying in the Lund wind tunnel (Spedding et al. 2003a,b)
has been outlined in Chapter 4, and this technique can also be used to mea-
sure both the airspeed and the turbulence level in the air stream itself.
Rather than generating a single number to summarise the turbulence level
in the air stream, as a turbulence sphere does, the Lund PIV installation
can produce a map of turbulence intensity in its plane of observation. The
method was used to assess the effect of a net, which could be installed
across the upstream end of the test section during the initial flights of
untrained birds, to prevent them from entering the contraction. This was
a piece of fishing net of 29 � 29 mm mesh, made from 0.15 mm diameter
nylon thread. The PIV system produced an image of the air in a rectangular
virtual frame about 180 mm high, whose plane was vertical and aligned with
the tunnel axis, and positioned about 1 m downwind of the net, a short dis-
tance upwind of the gap between the test section and the first diffuser. The
image was a two-dimensional colour-coded map of turbulence intensity in
the image plane. It showed almost no turbulence over most of the frame,
with sharp horizontal lines of intense turbulence, regularly spaced vertically,
corresponding to the individual threads of the net. Such an image could
only have been obtained in a tunnel that was initially almost free of turbu-
lence, and it raises a question that could only be investigated in a tunnel of
this quality: what is the effect of turbulence in the air stream on the perfor-
mance of a free-flying bird in gliding or flapping flight? A single vertical wire
upstream of the bird could be used to inject a known level of turbulence at
a known location on the wing. This might lead to some insights into the
behaviour of the boundary layer on a feathered wing.
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14.3.4 EFFECT OF TUNNEL WALLS ON MEASUREMENTS

There is an extensive literature on the effects of wind tunnel bound-

aries on the air flow around and forces exerted on a model mounted

on a balance. Numerous specific cases are reviewed at length by both

Pankhurst and Holder (1965) and Rae and Pope (1984), but the conclu-

sions are not readily adapted to predict the effects on the performance

of a free-flying bird in flapping flight. In a closed test section, the wall is

a boundary across which the velocity of the flow is zero, whereas in an

open test section there is still a boundary, but it is defined by zero pres-

sure gradient across it, rather than zero flow velocity. It seems from

Pankhurst and Holder’s account that many of the known effects are

of equal magnitudes in closed and open test sections, but of opposite

sign. Thus the lift coefficient of a model wing is enhanced in a closed

test section, as compared to its free-air value, but reduced by a similar

amount in an open test section. This raises the possibility that if the
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same experiment were to be carried out in the closed part of the Lund

tunnel’s test section, and then repeated in the open part, then the

mean of the two sets of performance measurements would be near

the free-air value. Where this is not practical, tunnel wall effects can

be kept small by restricting experiments to birds whose wing span is

no more that two-thirds the width of the test section.

14.3.5 WHY DOES TURBULENCE MATTER?

The effect of small-scale turbulence on aircraftmodels is that it stimulates

the formation of turbulence in the boundary layer, that is the layer of air

immediately adjacent to the solid surface, where the shear is strong, and

the effects of air viscosity are felt. In general, the lifting properties of a

wing depend on the boundary layer remaining attached to a curved

surface, and these properties break down if the boundary layer separates

from the surface. Turbulence in the boundary layer makes it less prone to

separation. In the case of a sphere, this effect can be used to measure the

turbulence level in the air stream. Thismethod ofmeasuring turbulence is

described in Box 14.2, and gives some insight into related effects that

occur on wings (Schmitz 1960). The feathered surfaces of the wings and

bodies of birds seem to be more resistant to boundary-layer separation

than those of inert models, and even those of frozen birds, but it is far

from clear how this is achieved. Nothing is known about the effect of

turbulence in the air stream on the performance of birds’ wings, but these

effects could be important. They can only be studied in an air stream that

contains a very low level of turbulence.

14.4 BIRDS IN WIND TUNNELS

14.4.1 TRAINING AND CONDITIONING

Regardless of the type of measurement, the hypothesis to account for it

will include assumptions about what the bird is doing. If the hypothesis

comes from a power curve calculated by the Flight program, the

assumption is that the bird is flying steadily along at a constant airspeed.

Although a wide range of birds will fly in a wind tunnel with almost no

training, most tend towander about in the test section, both horizontally

and vertically, and to speed up and slow down. Often this behaviour is

quite extreme, involving a spurt of activity that takes the bird to the

upstream end of the test section, near the roof, after which it coasts back

to the downstream end, near the floor, and then repeats the cycle. In

general, less energy is consumed by flying steadily at a constant speed,

than by maintaining the same average speed, while performing cyclic
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or irregular manoeuvres. This is not something for which a ‘‘correction’’

can be applied. If the objective of the experiment depends onmeasuring

power, then the bird has to be trained to fly steadily, and maintain its

position in the middle of the test section, otherwise the result will be

biased upwards by an amount that is unknown, but may be large.

If a small increase in the bird’s mass during the experiment can be

accepted, then food rewards are a simple and effective method of con-

ditioning (Box 14.3), in which the feeder itself acts as the position ref-

erence. As this has to be upwind of the bird’s position, it needs to be

streamlined, and positioned where its wake will not impinge on the

bird’s wings. It is easier to train a bird to fly steadily for few seconds

than for a few hours, and consequently satisfactory results are more

easily obtained from mechanical measurements, based on short video

sequences, than from physiological methods that require the bird to fly

steadily for hours. Perceiving the necessity of this Rothe and Nachtigall

(1987) went to the trouble of selectively breeding a strain of pigeon

that naturally flew steadily for hours on end. Other physiologists have
BOX 14.3 Training birds to fly in a wind tunnel.

Flying steadily in a wind tunnel is an easy task for a bird, provided that the
test section is big enough, the air is smooth, and the wind speed is within
the bird’s comfortable range, not too fast, and no slower than the bird’s min-
imum power speed. The first step before beginning training is to weigh the
bird, and measure its wing span and wing area, following the procedures in
Chapter 1, Box 1.3, and then run a power cur ve calculation in the Flight pro-
gram, the output of which will include an estimate of the bird’s minimum
power speed (Vmp). Some experimenters think initially that reducing the
wind speed will make it easier for the bird to fly, but this is not necessarily
so. It is easier for a bird to fly a little faster than Vmp than a little slower. A
wind speed below Vmp not only makes flight more strenuous (i.e., requires
more power from the bird) but also introduces control difficulties
(Chapter 9). The wind speed should be set to about 1.1 Vmp to start training,
and increased rather than reduced if the bird appears to be having difficulty
in flying steadily. If the wind tunnel can be tilted to give a downhill gradient
of about 1 in 20, this reduces the power required, while still being in a
regime (above Vmp ) where speed control is stable (Chapter 9).
The bird needs to be accustomed to the wind tunnel surroundings, and to
have a regular routine, in which events happen predictably at the same time
each day. If the bird is already tame enough to fly to the experimenter’s
hand for food when training begins, then a couple of weeks of daily training
will usually suffice to train it to fly steadily. The best strategy is to start with
several birds, and then concentrate on one or two that respond best to
training. If the bird eats something that can be dispensed remotely in small
amounts, then food reward is the easiest method of conditioning. Pigeons,
for example, eat dry seeds, and are especially fond of rice grains, and small,
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FIGURE 14.9 A feeder used to train pigeons to fly in the blower wind tunnel shown in
Figure 14.2. The experimenter rolled dried peas down the tube, and the pigeon
retrieved them from the spoon on the end. The tube was encased in a streamlined
fairing to minimise its wake. After Pennycuick (1968a).

dried peas. An early conditioning apparatus for pigeons (Pennycuick 1968a)
is shown in Figure 14.9. It consisted of a brass tube, passing diagonally
downwards from the upper edge to the centre of the outlet of the blower
wind tunnel shown in Figure 14.2. A spoon was soldered to the end of the
tube, and the experimenter rolled peas down the tube, so that they
appeared in the spoon. For the first few days of training, the pigeon stood
on a perch, where it could easily reach the spoon, and got its entire daily
food ration in this manner. Next, the same procedure was followed with
the wind turned on. Then the perch was moved downwards and back, so
that the pigeon had to use its wings to reach the spoon. Eventually, the
pigeon let go of the perch, and found that it could still reach the spoon
while flying, and after that the perch was removed and forgotten. The tube
was surrounded by a streamline fairing to keep its wake as narrow as possi-
ble, and the diagonal position was designed to keep this wake clear of the
pigeon’s wings (as well as making peas roll down the tube). A variant of this
method, shown in Chapter 6, Figure 6.5, was used in the same wind tunnel
to train a fruit-bat whose preferred food was banana. This was supplied
through a plastic tube which came up diagonally from below. Training
was somewhat more complicated in this case, as the bat’s resting position
was to hang from its feet below the perch, rather than to stand on it (Penny-
cuick 1971). The bat had to be trained first to climb over the perch and sus-
pend its weight from its wings, before training could be continued (for
4 months) to the point where it let go of the perch and flew free.

It may be noted that neither pigeons nor fruit-bats normally feed in flight,
but both learned to do this without difficulty. Probably just about any flying
animal will do this, if a feeder can be designed that supplies food to the
head without generating a wake that impinges on the wings. A streamlined
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tube that comes vertically up from below, on the tunnel centre line, is prob-
ably the best option. It is then up to the experimenter’s ingenuity to devise a
remotely operated food dispenser that can be mounted on the top of the
tube, and cannot be used by the bird as a perch. There are some birds
(swifts) that only feed in flight. In this case a vertical tube, ending at the
centre of the upstream end of the test section, could be connected to a
chamber containing a swarm of flying insects, which would be carried up
the tube by a gentle current of air.
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usually accepted the erratic behaviour of their birds as ‘‘normal’’, which

it may be. Accountable it is not.

14.4.2 WIND TUNNEL MEASUREMENTS ON BIRDS

The types of measurements that can be made on birds in wind tunnels

are mostly different from those that engineers make, because it is not

practical to use balances to measure aerodynamic forces on birds

(below). Measurements on birds flying in wind tunnels fall into three

general categories, physiological measurements on the bird, mechani-

cal measurements on the bird, and measurements on the wake. What-

ever the type of measurement, the objective should be to compare the

results with the predictions of a hypothesis. Flight can be used as a

source of predictions of power (mechanical or chemical) as a function

of speed in flapping flight, and of glide ratio as a function of speed in

gliding flight. If a discrepancy between an observed and a predicted

quantity proves to be resolvable, by adjusting the values of variables

such as drag coefficients or conversion efficiencies in the Flight Setup

screens, this can be used as a means of improving the default values

of quantities that are difficult to measure.

14.4.3 MEASUREMENTS OF CHEMICAL POWER

Among early wind tunnel experiments on birds were those of Tucker

(1968b) andRothe et al. (1987)whomeasured the rate atwhichflying bud-

gerigars and pigeons consumed oxygen, using a face mask connected by

tubes to a respirometer outside the test section. A measurement of this

type gives an estimate of the total rate at which the animal consumes fuel

energy, not only for the mechanical requirements of flight, but also for

overheads such as basal metabolism, and the power requirements of the

heart and lungs. It is difficult to separate these components. Also the drag

of themask and the tube is liable to affect themechanical power required

by the bird, and this in turn affects the chemical power. Themask changes
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the shape of the front end of the body, and may cause flow separation

further downstream, which would result in a large drag increase, even if

the drag of the mask itself is counterbalanced. The measurements them-

selves are not easy to interpret, since the conversion from volume of

oxygen to fuel energy consumeddepends on the type of fuel substrate that

is being oxidised. It appears that birds use some carbohydrate as fuel

initially, and change progressively to consuming only fat, over the first

minutes or hours of flight. Consequently, steady flight has to be main-

tained for hours to allow the bird to settle into a ‘‘physiological steady

state’’, in which the fuel can be identified.

The doubly-labelled water (DLW) method estimates the total amount

of carbon dioxide that an animal has produced, in the interval between

two blood samples. This can also be used to estimate the chemical

energy consumed in the period, if the fuel substrate can be identified.

The animal is first injected with a quantity of water, in which some of

the hydrogen atoms have been replaced by deuterium (2H), and some

of the oxygen atoms by the heavy isotope 18O. These are stable isotopes,

which are not hazardous in any way, and are chemically identical with

the common isotopes 1H and 16O. Following the injection of the iso-

topes, both oxygen and hydrogen are lost as the bird respires, but the

labelled oxygen declines faster because oxygen is lost in both water

and carbon dioxide, whereas hydrogen is lost only in water. On taking

another blood sample after an interval, the amount of carbon dioxide

that the animal has produced and lost in the interval can be deduced

from the difference in the rate of loss of the two isotopes. Measurement

of the isotope abundances requires a mass spectrometer, and in most

cases this means that the samples have to be sent to a remote laboratory

for analysis. The technique suffers from the same drawback as respi-

rometry as a method of measuring chemical power in the wind tunnel,

that the bird has to fly steadily and continuously for several hours.

14.4.4 MEASUREMENTS OF FORCE AND WORK

The most common use of wind tunnels in aeronautics is to test small-

scale models, that will later be scaled up to full-sized aircraft. This

involves mounting the model on a array of balances which, in its most

basic form, measures the lift and drag forces on the model, and also

its pitching moment, that is the tendency to rotate nose-up or nose-

down. This approach has been tried with dead, frozen birds, or parts

of birds such as dried wings, but the results are invariably disappointing.

As noted in Box 3.2, it is not even possible to get a meaningful drag mea-

surement from a frozen bird body in this way, because the boundary
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layer will not stay attached to the surface. The same thing happens with

isolated wings, which are in any case far too complicated to be set up in

a way that simulates a posture used in any identifiable phase of flight.

Only the bird knows how to set its wings to achieve a particular result,

and consequently wind tunnels intended for experiments on birds have

to be designed so that a live bird can be trained to maintain a steady

position while flying in the tunnel, without any direct physical restraint.

The basis of mechanical measurements on a free-flying bird begins

with ste ady fligh t in equil ibrium, which only trul y occurs in a glidin g

bird, flying in a tilted air stream. A glide polar (gliding performance

curve) can be measured by determining the minimum angle of tilt at

which the bird can gl ide, over a rang e of diffe rent speed s ( Chapte r 10 ).

This is possible because the bird’s weight in gliding equilibrium is bal-

anced by the resultant of lift and drag, allowing the drag, in effect, to be

measured from the tilt angle. In horizontal flapping flight, there are cyclic

accelerations at the wingbeat frequency and out-of-balance compo-

nents of force can be measured by observing the accelerations that they

cause. This can be combined with observations of wing motions to esti-

mate the work done by the flight muscles in each wingbeat cycle, and

hence the mechanical power. A tilting wind tunnel can also be used in

flapping-flight experiments to increase or decrease themechanical power

by small amounts, and this can be related to other measurements such

as the wingbeat frequency. The observation (from tilting the tunnel) that

thewingbeat frequency varies directly with the power allows thewingbeat

frequency to be used in turn to identify the minimum power speed in

horizontal flight (Pennycuick et al. 1996a).

14.4.5 MEASUREMENTS OF MECHANICAL POWER

An early attempt at directly measuring the mechanical power output of

the pectoralis muscle (Biewener et al. 1992) was based on measuring

the force applied by the muscle at its attachment to the humerus,

and the distance through which the muscle shortened at each wing-

beat, multiplying these together to get the cycle work, and multiplying

by the win gbeat frequency to get the power ( Chapte r 7 ). A resistance

straingauge was surgically implanted on the upper surface of the del-

toid crest of the humerus, to measure the distortion of the crest caused

by the downward pull of the muscle, so converting the deltoid crest, in

effect, into a spring balance. Shortening of the muscle was estimated

from the rotation of the humerus, and examination of superficial fibres

of the pectoralis. The work done by the muscle was then estimated by

multiplying the supposedly point force by the distance through which
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some point in the muscle shortened. This is not an ideal way of looking

at it, since the pectoralis has a long insertion along the deltoid crest,

whose distal end has about twice the moment arm of the proximal

end. It would have been better to find the work by the more usual

method, as the product of the moment and the rotation angle. The

technique was invasive, and suffered from the unavoidable shortcom-

ings that wet bone, being a visco-elastic material, is hardly the material

of choice for a spring balance to measure an oscillating force, that

implanting the straingauge involved surgery, and that reading its out-

put required a trailing wire to equipment outside the tunnel. The mea-

surements of work and power are at best proportional to the actual

values. These experimenters were, however, the first to identify the

mechanical power, as opposed to the rate of consumption of fuel

energy, as a quantity to be measured in wind tunnel experiments.

The video method of measuring mechanical power does not require

any surgery or data wires (Box 14.4). This method has only been tried

once, on a swallow flying in the Lund wind tunnel, and the practical

implementation left some room for improvement in this case also.

The work done by the pectoralis muscle in the interval between suc-

cessive video frames was calculated by measuring the rotation of the

humerus from a video camera that viewed the bird from behind, and
BOX 14.4 Measuring mechanical power from video.

The video method of measuring mechanical power requires synchronised
sequences from two digital video cameras, while the bird flies steadily for
several wingbeats (Pennycuick et al. 2000). One camera views the bird hori-
zontally from the side, and measures the vertical motion of the body at each
wingbeat. The other camera is placed downstream of the bird in the tunnel.
It views the bird from behind, and measures the angular motion of the
humerus.

Variable definitions for this box

A Moment arm of lift force about shoulder joint
Ai Moment arm of strip i
a Upward acceleration of body, from video
CL Lift coefficient of wing
g Acceleration due to gravity
Fu Vertical component of force exerted by humerus on one shoulder joint
L Lift force on one wing
M Moment exerted by pectoralis about shoulder joint
mb Mass of the body, excluding the wings
P Mechanical power
Q Work done during downstroke
Si Area of strip i
Vi Local relative air velocity at strip i
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DQ Work done in interval between successive video frames
D’ Humerus rotation in interval between successive video frames
’ Humerus rotation angle above horizontal
o Angular velocity of wing
r Air density
t Wingbeat period

Work increments
Mechanical power is the average rate at which work is done by the pector-
alis muscles of both sides, that is, the work done in one wingbeat (the cycle
work) multiplied by the wingbeat frequency. The work is assumed to be
done during the downstroke, defined as the period during which the
humerus rotates downwards in each interval between one video frame
and the next. During each frame interval, the work done (DQ) by the pector-
alis muscle of one side is obtained by estimating the moment (M) that the
muscle exerts about the shoulder joint, and multiplying this by the angle
(D’) through which the humerus rotates in the interval:

DQ ¼ MD’ ð1Þ
Both M and ’ are reckoned as negative downwards, making the work done
positive. The increment of rotation (D’) is measured directly from the rear-
view camera, but estimating the moment (M) requires information from
both cameras.

Forces and moments
In Figure 14.10A one wing is shown rotating downwards, and exerting a lift
force (L), which is perpendicular to the local relative air flow (by definition),
and also tilted inwards towards the body. The inward, horizontal compo-
nent is balanced by the mirror-image inward force from the other wing,
but the upward component (Fu) is applied to the body at the shoulder joint.
The combined force (2Fu) on both shoulder joints can be found by measur-
ing the upward acceleration of the body from the side-view camera. The
mass of the body without the wings (mb) can be estimated from a published
regression by Kirkpatrick (1990), which is given in Chapter 13, Table 13.3.
The upward force on one shoulder joint is then:

Fu ¼ mb aþ gð Þ½ �
2

ð2Þ

where a is the measured upward acceleration, and g is the acceleration due
to gravity. From Figure 14.10A, the lift force (L) is:

L ¼ Fu

cos’
ð3Þ

where ’ is the rotation angle of the humerus, measured from the horizontal
position.
Figure 14.10A shows that it is still necessary to estimate the moment arm

(A), meaning the distance between the centre of lift and the shoulder joint,
before the moment (M) itself can be found, since
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FIGURE 14.10 (A) During the downstroke, the lift on the wing can be considered to
be a single force acting in a direction perpendicular to the axis of the wing and to the
local relative air flow, at a moment arm A about the shoulder joint. The magnitude of
the upward force Fu on the shoulder joint is estimated by measuring the upward accel
eration of the body. (B) A wing tracing is ruled into strips, and the moment contributed
by strip i is assumed to be proportional to its area (Si), its moment arm (Ai) and the
square of the local relative air velocity (Box 14.4). The sum of the moments for all
the strips is divided by the sum of the areas to get the mean moment arm (after Penny
cuick et al. 2000).

M ¼ LA ð4Þ
The moment arm is found from a tracing of one wing, fully spread, with the
position of the centre of rotation of the shoulder joint marked
(Figure 14.10B) The tracing is ruled into a number of chordwise strips, for
each of which the area and the moment arm is measured. Figure 14.10B
shows the area (Si) and the moment arm (Ai) of strip number i. The assump-
tion is that each strip contributes a force proportional to its area, and to the
square of the local relative airspeed (Vi), which is the resultant of the for-
ward speed (V) and the upward relative air velocity due to the downward
rotation of the wing. For strip i:

Vi ¼ q
V 2 þ A2

i o
2

� � ð5Þ
where o is the angular velocity of the wing. The mean moment arm (A) for
the whole wing can be found by summing the moments for all the strips,
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and dividing by the sum of the lift contributions for all the strips. Actually,
this does not require the actual magnitudes of the forces to be calculated:

A ¼
P

SiAiV
2
i

� �
P

SiV 2
i

� � ð6Þ

The moment (M) can now be found from Equation (4). If it is assumed that
the lift coefficient (CL) is the same for all strips, then its value can be found as:

CL ¼ 2L

r
P

SiV 2
i

� �� 	 ð7Þ

where r is the air density.

Power
The power is found by summing the increments of work (DQ) from
Equation (1) for all time intervals during the downstroke. This gives the
work (Q) done during the downstroke:

Q ¼ SDQ ð8Þ
The wing beat period (t) is the time interval between successive frames
when the stroke angle changes from negative to positive, that is, when the
humerus passes upwards through the horizontal position. The power (P)
for the individual wingbeat cycle is the work done during the downstroke,
divided by the wingbeat period:

P ¼ Q

t
ð9Þ

In steady flight (not sustained for long in these experiments), the power
should be the same in each wingbeat. In that case the average power over
a series of wingbeats can be estimated by summing the work done in a
series of wingbeats, and dividing by the sum of the wingbeat periods.
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multiplying this by the moment exerted by the pectoralis muscle about

the shoulder joint. The moment was deduced by first measuring the

upward force on the shoulder joints, from the acceleration of the body

as observed from a side-looking video camera, and then taking account

of the geometry of the wing, and its rotation angle. The vertical accel-

erations were derived from the measured pixel position of a white spot

painted on the side the head, which might under-estimate the vertical

movements if the bird were to stabilise its head position. Actually wind

tunnel birds usually allow the head to oscillate up and down with the

body, except when contemplating landing, but it would be better to

get the vertical position from a spot in the middle of the bird’s back,

viewed three dimensionally with a pair of cameras above the bird.
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The same method, applied to spots on the upper surface of the wing

above the ends of the humerus, would give a better estimate of humerus

rotation, which is difficult to measure accurately in the pictures from

the rear-view camera.

The measurements (Figure 14.11) showed the measured acceleration

oscillating between about �0.7g and þ2g meaning that the apparent

gra vity perceived by the bird oscillat ed between þ 0.3g and þ 3g, seven

tim es per second (se e Chap ter 9 ). T his somewh at rigorous regime

would probably be much the same for any bird or ornithopter in steady
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FIGURE 14.11 Results for a series of seven wingbeats in a swallow flying in the Lund
wind tunnel. (A) Each wingbeat begins and ends at the point where the humerus passes
upwards through the horizontal position. (B) The moment applied by the pectoralis mus
cle to the humerus is reckoned negative downwards, and reaches a negative peak during
each downstroke. It is always below zero, meaning that the wing is never completely
unloaded, even during the upstroke. (C) The downward moment during each downstroke
produces an upward acceleration of the body. When the acceleration is zero, the bird
feels 1g, as on the ground, while a measured acceleration of 1g corresponds to free
fall, when the bird feels weightless. The acceleration varies over a range of more than
2.5g at each cycle, at a wingbeat frequency around 7 Hz (after Pennycuick et al. 2000).
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flapping flight, except that the frequency would be lower in the larger

sizes. It reflects the fact that the wing has to be partially or fully

unloaded during the upstroke, allowing the body to accelerate down-

wards. The apparent gravity therefore has to be more than þ1g during

the downstroke, so as to maintain the þ1g average required for level

flight. The observed moment was always negative (directed down-

wards) but its magnitude dropped almost to zero during the upstroke.

The power estimates varied with speed much as expected, but were

approximately double the estimates from Flight. This was attributed

to the fact that the swallow had not been trained to fly steadily in the

tunnel, so that measurements could only be obtained when it hap-

pened to stay in the camera’s field of view for a few wingbeats. Despite

its shortcomings, the experiment showed that it is possible to get a

measurement of mechanical power from a video sequence lasting only

a second or two, without needing surgery, or any direct physical

contact with the bird. This is wholly impractical in measurements of

chemical power.
14.4.6 MEASUREMENTS OF CONVERSION EFFICIENCY

The conversion efficiency of the flight muscles is the ratio of their

mechanical power output to the rate at which these muscles consume

chemical energy (not to the total chemical power). Despite a copious

literature on this subject, only two valid measurements of conversion

efficiency in flying birds have ever been published, both by members

of the same research group, using the same tilting wind tunnel, and

measuring chemical power via the rate of oxygen consumption (Tucker

1972; Bernstein et al. 1973). Although the absolute magnitude of the

mechanical power was not measured, a known increment of mechani-

cal power could be imposed on the bird, by tilting the tunnel by a small

amount. For example, if chemical power is measured initially with the

tunnel horizontal, and then again with the tunnel tilted so as to force

the bird to climb at, say, 0.1 m s 1, then the mechanical power needed

to overcome drag should be the same as before, plus an increment

equal to the bird’s weight, multiplied by 0.1 m s 1. Dividing this

mechanical power increment by the observed increment of chemical

power gives the efficiency, without needing to know the absolute values

of either the mechanical or the chemical power. Despite some scatter in

the efficiency estimates, both experiments gave mean values of 0.23 for

the efficiency, which is why this is the default value used in Flight. This

value is about as expected from the thermodynamics underlying energy
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conversion, and from classical studies of the energetics of locomotion

in mammals (Chapter 7).

Numerous authors have measured chemical power in wind tunnel

experiments, but mechanical power has been measured only once

(above), and that was in a purely mechanical experiment that did not

involvemeasuring chemical power. To get an estimate of efficiency, both

chemical and mechanical power (or increments thereof) have to be

measured in the same experiment. It is not valid to estimate the conver-

sion efficiency, as some authors have done, by comparing a measure-

ment of chemical power with a calculated value for mechanical power.

In the first place, this overlooks the fact that the chemical power includes

other components of chemical energy expenditure, in addition to that

due to the mechanical power. Secondly, it neglects anything in the con-

ditions of the experiment that may bias the power, such as shortcomings

of the wind tunnel, or erratic behaviour of the bird. If the power is biased

upwards, this affects the measured chemical power, but not the calcu-

lated mechanical power, and therefore leads to an erroneously low

estimate for the efficiency, even if due allowance is made for basal

metabolism and other metabolic overheads.

14.4.7 OBSERVING VORTEX WAKES

The structure of the ‘‘footprints’’ that a bird leaves in the air, in the form

of its vortex wake, is of great interest for the light that it sheds on the

aerodynamics of flapping flight, and also as a way to measure the

amount of power that the bird is exerting to supports its weight and

overcome drag. Being invisible, the wake has to be ‘‘visualised’’ in some

way before it can be studied. The first quantitative wake studies were

actually not made in a wind tunnel, but on birds flying through still

air that had been seeded with tiny soap bubbles filled with helium. If

their buoyancy matches that of the surrounding air, the bubbles are

not left behind by accelerating air, and can be photographed with mul-

tiple flash exposures to measure the local speed and direction of the

flow as the air circulates around the vortices in the wake. In this way,

Spedding (1986) demonstrated discrete vortex rings in the wake of a

jackdaw flying very slowly between two perches a short distance apart,

and also measured their momentum and energy. A kestrel flying at a

higher speed showed a different type of wake, with continuous wing-

tip vortices that undulated up and down, and also moved closer

together during the upstroke, and further apart during the downstroke

(Spedding 1987b). What happens at intermediate speeds remained

unknown for another 20 years, despite extensive speculation. A notion
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arose at this time that birds have discrete ‘‘gaits’’ associated with differ-

ent wake types, analogous to the walk, trot and canter of a horse, but

this idea eventu ally proved to be erron eous (Chap ter 4).

A clearer picture of the structure of bird wakes began to emerge from

the application of particle imaging velocimetry (PIV) to the wake of a

thrush nightingale flying in the Lund wind tunnel (Spedding et al.

2003b; Rosén et al. 2004). In this technique, the wake is visualised by

seeding the air with a thin fog of liquid droplets. As the air flows past

the bird, a regularly flashing laser illuminates the fog particles in a thin

vertical sheet, which is aligned with the air flow, and photographed

with a digital video camera at the side of the tunnel, with its axis per-

pendicular to the light sheet. Software that compares the pattern of

fog particles in two successive frames can determine the average air

velocity in the plane of the light sheet, and can also map local varia-

tions in the speed and direction of the flow in this plane. A three-

dimensional picture of the wake structure was assembled by combin-

ing such maps from observations in which the position of the light

sheet varied from the bird’s centre line to beyond the wing tip.
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THEORY AS THE BASIS FOR OBSERVATION
This chapter is an attempt to show how the theory outlined in this book provides
a backbone that links together a wide diversity of field and laboratory observations,
including satellite tracking of migrants, measurements of air speeds, wingbeat fre
quencies, body drag coefficients and so on. Measurements of one kind affect the inter
pretations of others, and the Flight program has to reconcile them all. The program
can be used as an aid in deciding what to measure in a new project.

Many biologists see data gathering as just a matter of collecting a lot of

numbers, and doing statistics, but there is more to it. Theory provides a

skeleton, to which observations can be attached, making them into a

unified model. This chapter is about one thread out of many that can

be followed through the apparently heterogeneous collection of topics

discussed earlier in this book to show how observations can be used to

calibrate theory, how theory can be used to identify what observations

are needed, and how measurements should be made. Statistical meth-

ods reveal patterns in sets of numbers, but say nothing about what the

numbers mean, whereas in the physical approach adopted in this

book, the meaning of the numbers has to be clear and explicit before

they are measured. For example, one of the commonest types of field
409Modelling the Flying Bird
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observation on bird flight is the measurement of flight speeds of wild

birds, but what is ‘‘speed’’ exactly?

15.1 FLIGHT SPEED MEASUREMENTS

15.1.1 THE TRIANGLE OF VELOCITIES

Several methods have been used to observe the speeds at which wild

birds fly, including ground-based optical measurements, tracking radar,

and satellite tracking. Whatever the method, the primary field observa-

tion is a ground speed vector, that is a measurement of the distance

and direction that the bird moves in a measured time, relative to the

earth’s surface. This vector consists of two numbers, the ground speed

and the track. The ground speed is a True as opposed to an Equivalent

speed (more below on this vital distinction) and the track is the direction

in which the bird moves across the map, measured clockwise from

true North. To make comparisons with predictions from the Flight

programme (or actually for just about any purpose), the airspeed rather

than the ground speed is required. The airspeed is one component of

the airspeed vector, the other being the heading, which is the direction

in which the bird is steering (not necessarily the same as the direction

in which it is moving). To get an estimated airspeed vector, a measured

wind speed vector (wind speed and wind direction) has to be vectorially

subtracted from the measured ground speed vector. This amounts to

solving a triangle of velocities (Figure 15.1A) for each and every speed

observation. The Visual Basic functions given in Box 15.1 will solve this

triangle, but care is needed because of conflicting conventions for

measuring angles (Figure 15.1B). Also, the heading and track are the

directions towards which the bird is pointing and moving respectively,

whereas the wind direction is the direction from which the wind is

blowing. This is confusing, but there is a lot of history behind it. It was

the north wind that carried the pharaohs up the Nile, southwards

against the current, and so on down the millennia and around the world.

15.1.2 METHODS OF MEASURING THE GROUND

SPEED VECTOR

15.1.2.1 Ornithodolite

An ornithodolite is an optical instrument that the observer aligns by

hand on a flying bird. When the observer presses a button, the instru-

ment makes three simultaneous measurements, the distance to the

bird, the azimuth angle (direction relative to north), and the angular



G
ro

un
d 

sp
ee

d 
ve

ct
or

Air speed vector

Heading
qa= 069�

Track
qg= 038�

Wind
direction

Va

Vg Vw

W
ind vector

qw= 148�

N

N

N

0�360�

(N)

(W) 270�

180�
(S)

90� (E)
0�

360�

MathematicsNavigation

90�

180�

270�

A

B

qwqg

qa

FIGURE 15.1 (A) An example triangle of velocities. Note that the wind direction is by
convention the direction from which the wind blows, whereas the bird’s heading and
track are the directions towards which the bird points and moves, respectively. The wind
direction here is south east, meaning that the wind vector carries the bird towards the
north west, adding to the north easterly motion due to its airspeed vector. Addition of
the wind and airspeed vectors results in the ground speed vector. Usually, the ground
speed vector is measured, and the airspeed vector is found by subtracting the measured
wind speed vector from it. (B) Mathematical and navigation conventions measure angles
in opposite directions, from different starting points.
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altitude (angle above the horizon), and records these, together with the

time from the first observation. With a sequence of two or more such

three-dimensional positions, the ground distance (both horizontal

and vertical) and the track direction can be calculated between each

position and the previous one, and divided by the time interval to get

the horizontal and vertical components of the bird’s ground speed.

The original ornithodolite (Figure 15.2) used a 25-cm coincidence

rangefinder to measure distance, and home-made 8-bit optical angular

encoders to measure the two angles. It worked at distances out to

about 100 m, and was first used to collect speed measurements of

southern seabirds, both from observing positions on land and also

from a moving ship (Pennycuick 1982).



BOX 15.1 The triangle of velocities.

The triangle of velocities that relates a bird’s ground speed vector to its
airspeed vector and the wind speed vector is shown in Figure 15.1A. The
usual problem in field studies is to solve the triangle for the airspeed vector
corresponding to a measured ground speed vector and wind speed vector.
The solution would be straightforward, were it not for difficulties caused
by conventions for measuring angles (below, and Figure 15.1B). If the
following functions are entered into a Standard Module in Visual Basic, they
can be added to any project that involves finding an airspeed vector from
ground speed and wind vectors. It is prudent to test these functions thor-
oughly with input involving track directions around the compass, and winds
from around the compass, to make sure that bird and wind directions are
the right way round.

Initialising Pi
Note that Pi is not built in to Visual Basic, and has to be declared. The best
place to declare it is at the head of a Standard Module:

Option Explicit
Public Pi as Double

Its value must be assigned before any procedures that use Pi are called,
for example in a Form Load procedure. The following is an easy way to do
this:

Private Sub Form Load()
Pi ¼ 4 * Atn(1)
..
..
End Sub

The remaining procedures in this box will solve the triangle of velocities
according to the conventions that are usual in navigation, with angles in
degrees.

Trigonometric functions in degrees
The following six functions save the hassle of converting angles from
degrees to radians and back again, in any project that involves trigonometry.

Public Function DegArccos(X As Double) As Double
’Arc Cosine in degrees
DegArccos ¼ 180 * (-Atn(X / Sqr(-X * X þ 1)) þ (Pi / 2)) / Pi
End Function

Public Function DegArcsin(X As Double) As Double
0Arc sine in degrees
DegArcsin ¼ 180 * Atn(X / Sqr(-X * X þ 1)) / Pi
End Function

Public Function DegArctan(X As Double) As Double
0Arc tan in degrees
DegArctan ¼ 180 * Atn(X) / Pi
End Function
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Public Function DegCos(X As Double) As Double
0Cosine of an angle in degrees
DegCos ¼ Cos(X * Pi / 180)
End Function

Public Function DegSin(X As Double) As Double
0Sine of an angle in degrees
DegSin ¼ Sin(X * Pi / 180)
End Function

Public Function DegTan(X As Double) As Double
0Tangent of an angle in degrees
DegTan ¼ Tan(X * Pi / 180)
End Function

Vector addition and subtraction
There is no difficulty in principle in adding two vectors, or subtracting one
from another. Each of the input vectors is first converted from polar coordi-
nates (magnitude and angle) into Cartesian coordinates (X and Y ). The two
X-components are added (or subtracted as required), and likewise the two
Y-components. Finally, the resulting X and Y are converted back into polar
coordinates, and that is the answer. The problem in navigation is that angles
are conventionally defined in a way that differs from the mathematical
convention (Figure 15.1B). Navigation angles start at zero (north) and
increase clockwise to 360� (also north), whereas zero is east in the mathe-
matical convention, and angles increase anti-clockwise from there to 360�.
Computer languages normally follow the mathematical convention. More
confusion comes from the convention that a bird’s heading and track are
the directions towards which it points and moves, whereas the wind direc-
tion is the direction from which the wind blows. The wind vector in
Figure 15.1A is drawn in the direction towards which the air is moving, so
that the motion caused by the wind carrying the bird along is added
to the airspeed vector, to get the ground speed vector. However, the wind
direction is shown 180� from this, because that is the convention.
The following two functions take care of converting navigational vectors
between polar and Cartesian coordinates, and the next one finds the air-
speed if the ground speed and wind are given. Angles are in degrees.

Public Sub PolarToCart(R As Double, Theta As Double,
dX As Double, dY As Double)

’Transform a vector from polar coordinates (R, Theta) to Cartesian (dX, dY)
dX ¼ R * DegSin(Theta)
dY ¼ R * DegCos(Theta)
End Sub

Public Sub CartToPolar(dX As Double, dY As Double,
R As Double, Theta As Double)

’Transform a vector from Cartesian coordinates (dX, dY) to polar (R, Theta)
Dim dD As Double
If dY < 0 Then
dD ¼ 180
GoTo Skip1
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ElseIf dX < 0 Then
dD ¼ 360
GoTo Skip1

Else
dD ¼ 0

End If
Skip1:
If dY ¼ 0 Then
Theta ¼ dD þ 90
GoTo Skip2

Else
Theta ¼ dD þ DegArctan(dX / dY)

End If
Skip2:
R ¼ Sqr((dX * dX) þ (dY * dY))
End Sub

Public Sub VgToVa(Vg As Double, Trk As Double,
Vw As Double, WindDir As Double,
Va As Double, Hdg As Double)

’Find air speed vector from ground speed and wind vectors
’Vg is the bird’s ground speed
’Trk (track) is the direction TOWARDS which the bird is moving
’Vw is the True wind speed
’WindDir is the direction FROM which the wind is blowing
’Va is the bird’s True air speed
’Hdg (heading) is the direction TOWARDS which the bird is pointing

Dim Xg As Double 0X component of ground speed vector
Dim Yg As Double 0Y component of ground speed vector
Dim Xw As Double 0X component of wind vector
Dim Yw As Double 0Y component of wind vector
Dim Xa As Double 0X component of air speed vector
Dim Ya As Double 0Y component of air speed vector

Call PolarToCart(Vg, Trk, Xg, Yg)
Call PolarToCart(Vw, WindDir, Xw, Yw)
Xa ¼ Xg þ Xw
Ya ¼ Yg þ Yw
Call CartToPolar(Xa, Ya, Va, Hdg)
End Sub
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In a later study (Pennycuick 2001), this same instrument was used to

track small birds, but was complemented for larger species by a Leica

Vector, which is a pair of 7 � 42 binoculars (excellent for bird watching),

with built-in angular encoders formeasuring azimuth and altitude, and a

laser rangefinder that projects a narrow infrared beam through the



FIGURE 15.2 The author tracking albatrosses and petrels with the original ornithodolite at
Bird Island, SouthGeorgia in January 1980. The observer looks through the rangefinder eye
piece (upper right) while steering the instrument with the handle at right to keep it aligned on
the bird, and rotating the handle at left to set the rangefinder. Pressing the white button (by
right thumb) captured an observation of the bird’s azimuth, angular altitude and range,
together with the time. The large dial by the observer’s right hand is a display of wind speed
and direction, coming from a yacht anemometer head, mounted on a mast a few metres
away. Data on species and wind were entered with the keyboard and the whole record
was recorded on a cassette tape recorder (nearest camera). Photo by J.P. Croxall.
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binoculars. This instrument works at ranges out to 600 m or more for

medium-sized birds, such as gulls and buzzards (2 km for swans), and

only needs a computer interface to make it into an ornithodolite. When

used in the same project, the Vector and the ornithodolite were both

interfaced to the same computer, which produced data files in a com-

mon format from either source. The Vector has the advantage that it will

not produce any output unless it is accurately aligned on the bird, and the

disadvantages that it is difficult to get rangefinder returns from small

or dark-coloured birds, and all too easy to get spurious returns from

background objects, including clouds.
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15.1.2.2 Tracking radar

The principle of tracking radar is the same as that of the ornithodolite,

in that the output consists of timed observations of azimuth, angular

altitude and range, but the range is measured by timing the echoes

from pulses of centimetre-wavelength radio waves, focused into a

narrow beam by a parabolic antenna. Once a target is acquired, the

antenna is steered automatically to maximise the strength of the

echoes. The azimuth and altitude measurements are obtained from

the steering mechanism, and are recorded, together with the range, at

regular time intervals. Mobile tracking radars are used at weather

stations to track balloons, in order to measure winds aloft, and have

been acquired by a number of ornithologists, and used to track migrat-

ing birds. Individual large birds, or flocks of large or small birds, can be

tracked by this method out to distances of 20 km or so. The method

works in daylight or at night, and is unaffected by poor visibility, but

the consequence of this, and of its long range, is that it is seldom pos-

sible to be sure of the target’s identity. This means that comparison

with a predicted speed is only feasible in circumstances where the

target can be visually identified, or is identifiable for some special

reason from its radar signature.

15.1.3 MEASURING THE WIND VECTOR

To get the bird’s airspeed and heading from its ground speed and track,

an estimate is required of the wind speed and direction in the immedi-

ate vicinity of the bird. In the case of short-range ornithodolite obser-

vations, a whirling-cup anemometer is usually mounted on a mast in

an exposed position near the ornithodolite, together with a vane to

measure the wind direction. This type of anemometer measures true

(not equivalent) wind speed, and as the wind speed is slowed down by

friction with the ground, the anemometer reading needs to be corrected

for the bird’s measured flying height. (see Chapter 14, Box 14.1). The

anemometer can be interfaced to the computer that is controlling

the ornithodolite, so that the wind speed and direction are either

recorded directly or entered by hand, immediately after each observa-

tion of ground speed. Anemometer readings can be influenced by

objects or terrain upwind, and the best anemometer site is on a sea or

lake shore, with an onshore breeze. A poorly chosen site results in erratic

fluctuations of both wind speed and direction, indicating large-scale

turbulence. This also affects the birds, and reduces the reliability of

measurements.
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Because of the ornithodolite’s inherently short range, the wind speed

can be observed close to the bird, both in space and time. It is more

difficult to observe the wind near to a bird that is observed by tracking

radar, as the bird can be kilometres from the observer’s position, both

horizontally and vertically. The usual solution is to release a helium-

filled balloon from time to time, and track it as it rises, so recording a

vertical profile of wind speed and direction. This method also mea-

sures the true wind speed. Owing to the time required for a balloon

ascent, it is not feasible to make this type of wind measurement imme-

diately after each speed observation, and it is normally done at

intervals of a few hours. The observer has to assume, in effect, that

the wind speed and direction at any particular height changes slowly

and linearly with time, which is difficult to verify. Balloon ascents pro-

duce reasonably consistent wind measurements so long as the wind is

blowing over level terrain, but are useless among mountains, because

of the large variations of wind speed and direction, both horizontal

and vertical, as the wind finds its way through valleys and around hills.

15.1.4 Vmp AS A BENCHMARK SPEED

Having measured a sample of airspeeds, what do you do with them?

You need a benchmark to measure them against, and the most useful

one is the minimum power speed (Vmp — Chapte r 3 ). Birds like swans,

which only have just enough muscle power to fly horizontally, are

confined to speeds from just below Vmp to just above, but as noted in

Section 3.3, speeds below Vmp are unstable, and difficult for the bird

to maintain steadily, whereas speeds above Vmp are stable. It seems

to be a valid generalisation (Pennycuick 2001) that birds generally fly

about at speeds near or slightly above Vmp, except when under pressure

to maximise their range on long migratory flights, in which case higher

speed s are need ed (C hapter 8 ).

The Flight programme will generate an estimate of Vmp for any bird,

but it requires the bird’s mass, wing span and wing area (or aspect

ratio) as input. These measurements are easy to make on a wind tunnel

bird (Ch apter 1, Box 1.4), but the field obser ver cannot m easure indi -

vidual birds, and has to rely on mean measurements from a sample

of birds of the same species, which have been caught and measured.

Flight’s Power Curve calculation will generate a graph showing Vmp

with uncertainty estimates, if guesses are supplied for the uncertainty

of the different variables involved in calculating it (Box 15.2). This is

not a statistical calculation, but an idea of the uncertainty of wing mea-

surements can be obtained from the standard deviations of reasonably



BOX 15.2 Uncertainty estimates for Vmp.

Variable definitions for this box
B Wing span
CDb Body drag coefficient
g Acceleration due to gravity
k Induced power factor
Sb Body frontal area
Vmp Minimum power speed
r Air density

The estimates of Vmp in the Flight programme are found from the stepwise
computation of mechanical power (Chapter 3), or analytically by differentiat-
ing the expression for the mechanical power of an ideal bird (Equation 1 of
Box 3.3) and setting the slope to zero. The numerical result is the same in
either case. The analytical version is:

Vmp ¼ 0:807k1=4m1=2g1=2r�1=2B�1=2S
�1=4
b C

�1=4
Db : ð1Þ

As the Vmp estimates are not derived from any kind of regression, it is not
possible to assign confidence limits to them by statistical methods. Instead,
Vmp itself is calculated as a function which can be differentiated with respect
to each of seven independent variables in turn. The partial differentials are:

@Vmp=@k ¼ 0:202 k
-3=4

m
1=2

g
1=2 r-1=2 B

-1=2
S
-1=4
b C

-1=4
Db : ð2Þ

@Vmp=@m ¼ 0:404 k1=4 m-1=2 g1=2 r-1=2 B-1=2 S
-1=4
b C

-1=4
Db : ð3Þ

@Vmp=@g ¼ 0:404 k1=4 m1=2 g-1=2 r-1=2 B-1=2 S
-1=4
b C

-1=4
Db : ð4Þ

@Vmp=@r ¼ -0:404 k1=4 m1=2 g1=2 r-3=2 B-1=2 S
-1=4
b C

-1=4
Db : ð5Þ

@Vmp=@B ¼ -0:404 k1=4 m1=2 g1=2 r-1=2 B-3=2 S
-1=4
b C

-1=4
Db : ð6Þ

@Vmp=@Sb ¼ -0:202 k1=4 m1=2 g1=2 r-1=2 B-1=2 S
-5=4
b C

-1=4
Db : ð7Þ

@Vmp=@CDb ¼ -0:202 k1=4 m1=2 g1=2 r-1=2 B-1=2 S
-1=4
b C

-5=4
Db : ð8Þ

If each of the seven independent variables is subject to an error Dk, Dm,
and so on, each of which is known, and may be positive or negative, then
the resulting error in Vmp is the sum of the errors contributed by each of
the independent variables:

DVmp ¼ Dkð@Vmp=@kÞ þ Dmð@Vmp=@mÞ þ . . .þ DCDbð@Vmp=@CDbÞ: ð9Þ
However, if the known errors are replaced by uncertainties, whose magni-

tude can be estimated, but which are independent of each other, and may
be positive or negative, then the uncertainty of Vmp is the square root of
the sum of the squares of the contributions from each of the variables:

DV 2
mp ¼ ½Dkð@Vmp=@kÞ�2 þ ½Dmð@Vmp=@mÞ�2 þ . . .þ ½DCDbð@Vmp=@CDbÞ�2:

ð10Þ
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Power curve uncertainty in Flight
The ‘‘Draw graph’’ option of the Flight’s power curve calculation displays
graphs of mechanical and chemical power on the screen, with Vmp marked.
If you click the button for ‘‘Plot Uncertainty Bands’’ it comes up with a form
on which you can set the uncertainties of the seven independent variables,
on a proportional basis, that is, if you enter 0.05 for the wing span this
means that you believe the entered value within �5%. Actually there is an
eighth variable in the list, the wing area, which is included because it has
a small effect on the uncertainty of the power, although it has no effect on
that of Vmp because it does not appear in Equation (1) above. Two preset
lists of defaults are provided, one for a wind tunnel bird which has been
individually measured, the other for wild birds, where you have to rely on
means of samples. These lists are editable. When you have set the values,
the programme will add uncertainty bands to the graph, above and below
the mechanical power curve, and on either side of Vmp, and it also shows
the magnitude of the uncertainty of Vmp directly in metres per second.
If you set all the uncertainties to zero, then of course the uncertainty of

Vmp is also zero, but this is not as pointless as it sounds, because you can
then set each of the seven variables in turn to a fixed uncertainty of, say,
10%, and see the differing effects of each variable on Vmp. The result is that
a 10% uncertainty in any one of four variables (mass, wing span, gravity and
air density) results in a 5% uncertainty in Vmp, while the same 10% uncer-
tainty in the other three (body frontal area, body drag coefficient, and
induced power factor) leads to a 2.5% uncertainty in Vmp. The effect on
the power curve is more interesting, as some variables have much the same
effect at any speed, while others have a strong effect at low speeds, but little
or none at high speeds, and others again are the other way round. The wing
span has a much bigger effect than any other variable at any speed. Moral:
always measure the wing span very carefully. More information about the
uncertainty calculation, and the thinking behind it, can be found in Flight’s
online manual, and in Spedding and Pennycuick (2001).
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homogeneous samples, which are typically 3% of the mean for wing

spans, 6% for wing areas, and 12% for masses.

The estimate of Vmp also depends on the values of two environmental

varia bles, the acce leration due to gravity and the air density (Ch apter 2).

A standard value of 9.81 m s 2 for gravity is sufficiently accurate for most

purposes, anywhere a bird is likely to go, but the air density is another

matter, as it varies strongly with height. In a tracking-radar sample of

airspeeds, each bird observed will typically be flying at a different

height, and therefore in air of a different density. Even if all birds in a

sample of an identifiable species are assumed to have the same
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morphology, each individual will have a different Vmp, corresponding to

the air density at its flying height. It is not appropriate to use a fixeddefault

value for the air density, as variations of air density are large, and cannot be

neglected. The observer should always measure the air temperature and

the barometric pressure at the observing site, whether in the field or in

the laboratory.Theairdensitycanbe foundfromthis information, andcor-

rected as necessary for any measured difference between the bird’s flying

height and the observer’s position (Chapter 2, Box 2.3).

15.1.5 TRUE VERSUS EQUIVALENT AIRSPEEDS

Having got an estimate of the air density for each observation of

airspeed, there are two options for pooling the data. One can express

the observed True airspeed (Vobs) for each observation as the ratio

Vobs/Vmp, where the minimum power speed (Vmp) is also a True air-

speed, calculated separately for each observation, using the estimated

air density for that particular observation. Alternatively, the more usual

procedure is to calculate a single value of Vmp as an Equivalent rather

than a True airspeed, by using the sea-level value of the air density

from the International Standard Atmosphere. In this case, the observed

speeds have to be converted individually from True to Equivalent

airspeeds. In other words, speed observations have to be reduced

to sea level (Box 15.3) before they can be pooled or compared with

other data. An estimate of the local ambient air density is required to

reduce each individual observation of airspeed. The best idea is to

estimate the air density at the bird’s flying height in the programme

that records the data from the ornithodolite or tracking radar, and

record it as part of the field data, rather than doing this retrospectively

as an afterthought. It is not valid to pool measurements of True airspeed

from birds that were flying at a variety of different heights. This is a

fundamental point, which has escaped some radar observers.
BOX 15.3 Reducing observations to sea level.

For some reason many physiologists seem to have difficulty in grasping the
fact that more speed and power are needed to fly at high altitudes than
lower down, because the air is less dense up there. This cannot be neglected
when comparing field observations of birds that are flying at different
heights, or laboratory observations made at wind tunnel sites at different
elevations above sea level, or even in the same wind tunnel on days with dif-
ferent weather. This is an everyday problem in aeronautical wind tunnels
and flight testing, and the standard solution is to ‘‘reduce’’ all observations
to sea level in the International Standard Atmosphere, before comparisons
are attempted.
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Variable definitions for this box
fe Equivalent wingbeat frequency
ft True wingbeat frequency
Pe Equivalent power
Pt True power
q Dynamic pressure
Vt True airspeed
Ve Equivalent airspeed
r Air density
r0 Sea level air density in International Standard Atmosphere
s Density ratio

Dynamic pressure
The first building block for calculating aerodynamic force, work and power
is the dynamic pressure (q), which is the excess pressure (above the ambient
atmospheric pressure), measured in an open-ended tube pointing into the
incident airflow (Chapter 14, Figure 14.5 A). It is

q ¼ ½rV 2
t ; ð1Þ

where r (Greek rho) is the air density, and Vt is the ‘‘True’’ airspeed (as distinct
from the ‘‘Equivalent’’ airspeed—below). Those aerodynamic forces that are
due to the air’s inertia (as opposed to those that are due to its viscosity) are
directly related to the dynamic pressure. The lift force onawing is due to the dif-
ference inpressure between the lower andupper surfaces, and thatpressure dif-
ference is proportional to the dynamic pressure. The lift is therefore
proportional to the air density, and to the square of the speed, other things (like
the angle of attack) being equal. Alternatively, if the lift has to equal the bird’s
weight, then the speed required to do that, other things being equal, is inversely
proportional to the square root of the air density. At higher altitudes, where the
air density is less, the bird has to fly faster to maintain constant aerodynamic
forces. Since power is drag times speed, it also has to expend more power, in
direct proportion to the increased speed.

Equivalent airspeed
A value must be assigned to the air density before a power curve like that of
Figure 3.5 in Chapter 3 can be calculated. The power cur ve always has a
minimum, which occurs at the minimum power speed (Vmp). If the bird’s
weight is held constant (i.e. both its mass and the acceleration due to gravity
are constant), but the air density is varied, Vmp will change in inverse pro-
portion to the square root of the air density. The reader can easily verify this
by selecting one of the ‘‘Preset Birds’’ in Flight, and running the power curve
calculation several times, changing the altitude between runs. When you
change the altitude on the Setup screen, and press TAB, the programme
recalculates the air density and displays it. Vmp increases as you climb.
This is not what appears to happen if you have an aeroplane, and check

some characteristic speed (like the stalling speed) at different heights. The
plane always stalls at the same indicated speed, as shown by the airspeed
indicator on the instrument panel, regardless of height. That is because
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the airspeed indicator is actually a pressure sensor, which measures the
dynamic pressure from a forward-pointing pitot tube. In order to calibrate
the instrument in terms of speed (Equation, 1), a value has to be assumed
for the air density, and by convention this value is chosen as 1.226 kg m�3,
which is the air density at sea level in the International Standard Atmo-
sphere (Chapter 2, Box 2.2). The instrument measures the dynamic pressure,
and displays the Equivalent airspeed (Ve), which is defined as the airspeed
that would correspond to the measured dynamic pressure, at sea level in
the International Standard Atmosphere. For a bird, so long as its weight does
not change, Vmp occurs at a constant value of the Equivalent airspeed at any
height. In terms of True airspeed, as measured in tracking observations, Vmp

increases at higher altitudes.

Reducing measurements of speed and power to sea level
Bird ‘‘flight speeds’’measured in the field from aircraft, by radar or by optical
tracking from the ground are True airspeeds. Two birds of the same species
that are flying at the same True airspeed are not necessarily flying at the
same point on the power curve, because if the heights are different, then
the air density will also be different. The same problem applies to aircraft
flight testing, and the conventional solution is to ‘‘reduce’’ all the observa-
tions to sea level in the International Standard Atmosphere, where the air
density (r0) is:

r0 ¼ 1:226 kg m�3: ð2Þ
In the case of airspeeds, this means converting the original measurements

from True to Equivalent airspeed. This can be done if the local air density (r)
can be estimated for each individual observation, to give the ‘‘density ratio’’
(s) which is:

s ¼ r
r0

; ð3Þ

Multiplication by s
p

converts the observed True airspeed ðVtÞ into the

Equivalent airspeed ðVeÞ:
Ve ¼ Vt s

p
: ð4Þ

Equivalent airspeeds observed at different heights can all be plotted
together on the same graph, but True airspeeds cannot. To get Flight to cal-
culate a power curve using Equivalent airspeed on the X-axis, just set the
altitude to zero (sea level).
Likewise, measurements of True power (Pt), whether mechanical or chem-

ical, can be reduced to sea level by calculating an Equivalent power (Pe), in
the same way as in Equation (4) above, because the dependence of power on
air density is the same as that for speed:

Pe ¼ Pt s
p

; ð5Þ
where s is the density ratio as before. Other variables do not necessarily
depend in the same way on air density, and appropriate formulae have to
be used to reduce each variable to sea level, according to its expected

422 MODELLING THE FLYING BIRD



BOX 15.3 Continued.

dependence on air density. For example, the wingbeat frequency in cruising
flight varies inversely with the 3/8 power of the air density ( Equation 2 of
Box 7.3). Thus, if the true wingbeat frequency ( ft) of a migrant were to be
recorded by an accelerometer logger that also records the altitude, the raw
observations would need to be reduced to sea level to give the equivalent
wingbeat frequency ( fe) as:

fe ¼ fts3=8: ð6Þ
The equivalent wingbeat frequency could be used as a remote fuel gauge

to estimate the fat mass remaining (Section 15.3.3).
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15.1.6 VALIDITY OF Vmp ESTIMATES

If a bird’s minimum power speed is to be used as a benchmark, against

which observed flight speeds are to be measured, then some evidence

is needed that the estimates of Vmp are accurate. The traditional way in

which biologists approach such a question would be to measure a

bird’s chemical power, by some physiological method such as oxygen

consumption, while it is flying horizontally at different steady speeds

in a wind tunnel, and then find the minimum in the curve of power

versus speed. Numerous authors have indeed done experiments of that

kind, but their approach invariably was to collect measurements of

speed and oxygen consumption and do statistical analyses, without

any underlying theory. Against such a background, no purpose is seen

to be served by carefully measuring the bird’s wing span, still less the

air density, and these basic measurements are seldom if ever to be

found in physiological papers.

Box 15.4 (Figures 15.3–15.6) outlines an experiment which is in many

ways the antithesis of the statistical approach that is usual in biology.

Vmp was determined for two different birds as they flew in a wind

tunnel, without making any measurements of power. Instead, it was

established by tilting the tunnel that each bird’s wingbeat frequency

changed by a small amount in the same direction as the mechanical

power, up when the power increased, and down when it decreased.

In level flight, this was sufficient to determine the speed at which the

wingbeat frequency, and hence also the power, passed through a mini-

mum, even though the variation in wingbeat frequency was very small.

The estimate of Vmp so determined turned out to be considerably faster

than that predicted by Fl ight (f rom Equ ation 2 of Box 3.3) in both birds,

in fact neither bird would fly as slowly as the predicted Vmp.



BOX 15.4 Resolution of the body drag anomaly.

A long-standing anomaly in direct drag-balance measurements of the drag
of frozen bird bodies was resolved by measuring the wingbeat frequencies
of two birds flying in the Lund wind tunnel (Pennycuick et al. 1996a),
without making any direct measurements of drag. Instead, wingbeat fre-
quency measurements provided estimates of each bird’s minimum power
speed (Vmp), which did not agree with Vmp estimates from Flight. The dis-
crepancy was resolved by adjusting the value of the body drag coefficient
(CDb) used by Flight to calculate Vmp. This has repercussions for any calcu-
lations that involve body drag, such as the speed and range of long-distance
migrants.

Variable definitions for this box
B Wingspan
CDb Body drag coefficient
g Acceleration due to gravity
k Induced power factor
m All-up body mass
Vmp Minimum power speed
Sb Body frontal area
r Air density

The observations
Figure 15.3 shows measurements of the wingbeat frequency of a Teal
(Anas crecca), flying steadily in the Lund wind tunnel, while the experi-
menter varied the tilt angle of the tunnel from 1� climb to 6� descent.
If the tunnel is tilted to simulate a climb, the effect is to increase the
mechanical power required from the muscles, by an amount equal to the
bird’s weight, multiplied by the rate of climb (vertical component of veloc-
ity). The mechanical power needed to overcome drag in level flight was
not measured, but is unlikely to change much if the tunnel is tilted by a
small amount. It is certainly not likely to decrease in a climb. Thus
Figure 15.3 can be understood as showing that if the total power required
from the muscles increases, then so does the wingbeat frequency, and vice
versa. The changes in frequency are small but consistent.
Figure 15.4 shows the wingbeat frequency of the same Teal in level flight,

over a range of airspeeds from 10 to 16 m s�1. The changes in frequency
were again very small (about 3%), but consistent. The graph shows a well-
defined ‘‘minimum frequency speed’’ at 12.5 m s�1. This is also an estimate
of the Teal’s minimum power speed (Vmp), since Figure 15.3 shows that wing-
beat frequency varies in the same direction as power (above). Figure 15.5
shows the same curve as that of Figure 15.4 plotted on a scale which goes
down to zero. The fitted line looks almost horizontal, and the standard
error bars (although plotted) are smaller than the point symbols. On the
same graph is a similar curve for a smaller bird, a Thrush Nightingale, which
was tested in the same project, and showed a minimum wingbeat frequency
at 8.55 m s�1.
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BOX 15.4 Continued.

The discrepancy
When Flight calculated power curves for the two birds, the estimates for Vmp

were much lower than the experimental values, 8.18 m s�1 for the Teal and
5.84 m s�1 for the Thrush Nightingale. While the Thrush Nightingale would
fly at its supposed minimum power speed, albeit with difficulty and in a
pronounced nose-up attitude, the Teal would not fly at all below 10 m s�1.
Flight had underestimated Vmp. According to the theor y in Chapter 3,
Box 3.4, which underlies these estimates, Vmp is determined by seven vari-
ables, the induced power factor (k), the bird’s all-up mass (m), the accelera-
tion due to gravity (g), the air density (r), the wing span (B), the body frontal
area (Sb) and the body drag coefficient (CDb):

Vmp ¼ ð0:807k1=4
m

1=2
g
1=2Þ

ðr1=2B1=2
S
1=4
b C

1=4
Db Þ:

ð1Þ

Three of these (m, B and r) were measured, g was set to 9.81 m s�2

(see Chapter 2, Box 2.1), and Sb was calculated from the mass (Chapter 3,
Box 3.2). That leaves k and CDb as possible sources for the discrepancy.
The default value of k was 1.2, meaning that the induced power is assumed
to be 20% higher for a bird’s flapping wings than it would be for an ideal
actuator disc (k ¼ 1). A higher value of k would increase the estimate of
Vmp, but not enough. Even wholly unimaginable values (up to 3) are not
sufficient to increase the Vmp values up to the experimental values. The
default value of k is, in any case, more likely to be too high than too low.
Figure 15.6 shows the effect on the estimate of Vmp of varying k from
1.0 to 2.2, and CDb from 0.04 to 0.40.
Although there are, at first sight, seven candidate variables, it is clear from

Figure 15.6 that actually the choice comes down to CDb, the body drag coeffi-
cient. The discrepancymeans that the default values ofCDb, used in the calcu-
lation, were too high. These values came from a number of apparently careful
experiments (Tucker 1973; Prior 1984; Pennycuick et al. 1988), based on
mounting frozen bird bodies, whose wings had been removed, on a drag bal-
ance in awind tunnel. This results indrag coefficients that areusually between
0.25 and 0.4, with the lower values in larger birds. The original default formula
in Flight generated a drag coefficient in this range from the estimated Rey-
nolds number of the body in cruising flight. Such high drag coefficients are
characteristic of ‘‘bluff bodies’’, that is shapes that areblunt at the downstream
end, rather than tapering to a point, so that the boundary layer separates from
the surface somewhere past the widest point, leaving a wide, turbulent wake.
Frozen bird bodies visibly generate such a wake, indicated by the feathers at
the rear end of the body, which lift away from the body and flutter. This is
not seen in living birdsflying in thewind tunnel, or in birds like geese or swans,
filmed in free flight at close range from an ultralight aircraft.

Resolution of the discrepancy
To resolve the discrepancy shown in Figure 15.5, CDb was reduced for each
bird until the predicted Vmp coincided with the experimental value. This
required a value of CDb � 0.08 in both the Teal and Thrush Nightingale.
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BOX 15.4 Continued.

It was expected that the value of CDb would be higher in the smaller bird,
because of the lower Reynolds number at which it flies, but in fact no differ-
ence was observed. Following this experiment, the default value of CDb for
any bird was reduced in Flight to a round value of 0.10.

The conclusion
The high drag coefficients measured on frozen bird bodies were always seen
as anomalous, because bird bodies are faired by their feathered covering in
such a way that they appear to taper smoothly to a point at the rear end.
This would be biologically meaningless, unless the flow remained attached
to the tapering shape. The downward revision of the default body drag coef-
ficient is in effect a hypothesis that the feathered body of a living bird
behaves like a streamlined body, with a narrow wake, not like a bluff body.
The conclusion is that drag coefficients cannot be measured on dead bird
bodies. The boundary layer separates from a frozen body, but does not do
this on a living one, for reasons not yet understood. The resolution of this
anomaly also resolved other anomalies in which the body drag coefficient
is involved, especially the range of certain ultra long-distance migrants, dis-
cussed in Chapter 8, Box 8.2. These birds would be able to fly the distances
that field observers say they do, if their body drag coefficients are around
0.01, but not if they are in the range 0.25–0.40, as was earlier (wrongly)
assumed on the basis of drag measurements on frozen bodies.
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This was a major discrepancy, although the theory behind the

equation for Vmp is simple, and based on principles that have been

exhaustively tested in aircraft. It remained possible that a wrong

assumed value for one of the seven variables in the equation was the

source of the trouble, rather than an error in the theory itself. Five of

these variables had beenmeasured (the bird’s mass, wing span and wing

area, the air density and the strength of gravity), and one of the remaining

two (induced power factor) was not capable of resolving the discrepancy

even if increased to impossibly high values. The error was traced to an

erroneously high value that had been assumed for the remaining vari-

able, the drag coefficient of the bird’s body. This is an instructive story

in itself, as the erroneous default values came from drag measurements

made directly on frozen bird bodies in different wind tunnels, by several

different and independent authors. It has always been recognised that

these measurements seemed to be improbably high, and the reason

appears to be that the air flow separates from a frozen bird body much

more readily that it does from the same body when alive—an empirical

observation, demonstrated by a statistics-free experiment! The solution

was to change the default value of this drag coefficient to 0.10, which is

far below any value that has been measured on a frozen bird body, but

still on the high side for an artificial streamlined body. This number
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FIGURE 15.3 Wingbeat frequency of a Teal (Anas crecca) flying steadily in the Lund
wind tunnel at an equivalent airspeed of 13.7 m s�1 (open circles) or 15.8 m s�1 (solid
circles), at different tunnel tilt angles from 1� (climb) to þ6� (descent). Zero tilt is level
flight. Each point represents the mean of 5 stroboscope observations, and the vertical
bars are �1 standard error. The correlation coefficient is 0.946 for 15 points. After
Pennycuick et al. (1996a).
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FIGURE 15.4 Wingbeat frequency of the Teal in the Lund wind tunnel as a function of
equivalent airspeed. Each point is the mean of 5 stroboscope observations, with bars
for �1 standard error. Note the suppressed zero on this graph. The variation of wingbeat
frequency with speed is small in relation to the mean frequency, but so also is the stan
dard error of the individual points. The fitted line is a generic bird power curve,
f 5.95 þ 21.1/V 0.000293V 3, where f is the frequency and V is the speed. After
Pennycuick et al. (1996a).
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FIGURE 15.5 The same data for the Teal as in Figure 15.4 (circles), compared with
similar data for a Thrush Nightingale Luscinia luscinia (squares). When the Y scale is
extended to include zero, both curves appear almost straight and horizontal, but the error
bars are now so small that they are hidden by the point symbols. In fact both lines are
curved, with well defined minima, as in Figure 15.4. F tests on both curves showed that
the variance from the fitted curve is significantly less than from a horizontal line at the
mean frequency (P << 0.01), that is, that the curvature is real. The vertical dashed lines
to the left of each curve mark the minimum power speed (Vmp) as calculated by Flight
using the original high default values of the body drag coefficient derived from wind tun
nel measurements of the drag of frozen bodies. Lowering the assumed drag coefficients
to values near 0.08 increased the estimated values of Vmp, so that both coincided with
the minima of the curves as marked. After Pennycuick et al. (1996a).
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means that the drag of a bird’s body is now assumed to be the same as

that of a flat plate that stops the flow completely, over an area that is

10% of the frontal area of the bird’s body. It brought the Vmp estimates

for both of the wind tunnel birds close to the measured values.

15.2 WIND TUNNEL RESULTS RELATED
TO FIELD STUDIES

15.2.1 BODY DRAG COEFFICIENT AND MIGRATION

PERFORMANCE

The body drag coefficient in wind tunnel studies is the same one that is

used in Flight’s migration simulation, to estimate the work needed to
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implied by Figure 15.1 . Revision of k does not resolve the discrepancy shown in
Figure 15.3, but downward revision of CDb to around 0.08 resolves it in both cases. After
Pennycuick et al. (1996a).
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propel the body through each kilometre of air, and hence the amount

of fuel needed to supply the work. This is not the whole of the work

done in migration, but it is a large fraction of it, and this component

of the work is directly proportional to the body drag coefficient. The

distances flown by ultra-long distance migrants, and the amounts of

fuel that they require are constrained by the body drag coefficient.

Some field data on two such migrants, a Great Knot migrating from

Australia to China, and an Alaskan Bar-tailed Godwit flying non-stop

from Alaska to New Zealand, are compared with Flight’s simulations

in Chap ter 8 , Box 8.2. One of many points that emerge from these

simulations is that neither bird would have been able to fly the
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distances that field observers say they do, if their body drag coefficients

were 0.25 or above, as was formerly believed from measurements on

frozen birds’ bodies, but that both could reach their known destina-

tions with adequate fuel reserves, if the new default value of 0.1 is

assumed (Pennycuick and Battley 2003).

15.2.2 GROUND TRACKS FROM SATELLITE TRACKING

Satellite tracking of birds and other animals has become a standard

technique in recent years, thanks to the commercial availability of

transmitters that can be attached to a bird and tracked by the popular

Argos system, and the decreasing size and weight of the transmitters

continues to extend this technique to ever smaller birds. Most obser-

vers simply track where the animal goes, and where it spends time,

which is sufficient to provide a goldmine of data for conservation

purposes. However, much more can be learned without a great deal

of additional effort, including some details that relate directly to the

predictions of the Flight programme. Figure 15.7 shows one of four

Whooper Swans, a male known from his leg ring as AJU, that were

caught and tagged at the Wildfowl and Wetlands trust reserve at Caer-

laverock, Scotland, and tracked on their spring migration to Iceland

(Pennycuick et al. 1996b). The transmitter is held in place by an elastic

belt made of neoprene tape (as used for repairing wetsuits), which

retains a constant tension while the swan’s body diameter expands

and contracts, as it builds up fuel and then consumes it when it

migrates. The transmitter is positioned behind the wings, where the

belt doe s not interf ere with the patagi al memb rane s (Ch apter 5 ), and

where the wings completely cover the box when the swan is on the sur-

face. The curved wire apparently sticking out of the swan’s back is the

antenna, and the straight probe ahead of it is an air temperature sensor,

which was discontinued from later transmitters. Shortly after this pic-

ture was taken, the swan was seen dipping his beak in the water and

preening the antenna, but not attempting to pull the transmitter off.

During the study period, the swan’s position was located within a kilo-

metre or two by the Argos system, whenever a satellite passed close

enough to pick up the transmissions.

Average ground speed vectors can be obtained directly from the

Argos data from the distance, direction and time between successive

fixes, but getting wind speed vectors to go with them is more difficult.

In this particular project, a meteorologist (Tom Bradbury) was able to

interpolate wind vectors for the time and place of each individual

Argos fix, because the swans were migrating, mostly very low, across



FIGURE 15.7 Whooper Swan AJU at Caerlaverock in March 1995, shortly after being
fitted with a PTT 100 transmitter made by Microwave Telemetry Inc. The transmitter is
held in place by an elastic belt made of neoprene tape, which passes twice round the
body, with both loops behind the wings. This keeps the belt clear of the patagial mem
branes, and positions the transmitter where it is completely covered by the wings when
the swan is on the surface. The telemetered temperature inside the box then indicates
whether the swan is flying or not. The forward probe is an air temperature sensor, and
the curved wire is the antenna. Photo by C.J. Pennycuick.
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a part of the North Atlantic for which detailed broadcast synoptic charts

were available. Airspeeds were concentrated between 20 and 22 m s 1,

and as wing measurements were obtained for individual swans when

they were caught in the winter, these could be compared with Vmp

estimates, which were 18–20 m s 1, depending on the size of the swan.

These are retrospective estimates, based on a body drag coefficient

which was revised down to 0.1 subsequently to this project (Box 15.4).

Less than 5% of airspeed estimates exceeded 22 m s 1, and the highest

was 27 m s 1. The maximum range speed at around 32 m s 1 was

clearly far beyond these swans’ reach, even after their fat reserves

were depleted.

15.2.3 CONTRARY WINDS AND NAVIGATION

AJU’s track when he migrated to Iceland is shown in Figure 15.8. After

departing from Caerlaverock, he flew half way across from the Outer

Hebrides to Iceland in fine weather, but was then forced down at about

61�N 11�Wby poor visibility, low cloud and rain, associated with a warm

front. He stayed on the water for about 30 hours. When the front eventu-

ally cleared, a west-south-westerly gale was blowing at about 19 m s 1,

whichwas near AJU’sminimumpower speed (about 20 m s 1). The swan
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to the Icelandic coast near Höfn. After Pennycuick et al. (1996b).
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kept going, but could not make progress against the wind on his original

north-westerly track.Hewas forced far to the north, between the east end

of Iceland and the Faroe Islands. When the gale eventually slackened,

AJU did not go directly in to the Icelandic coast (which was not far away

by then), but cut back south-west to his original track, before turning

north-west and making his landfall in the usual place for incoming

whoopers, in themiddle of the south-eastern coast. Another northbound

male (JAP)was forced out to thewest by a northerly gale, and appeared in

danger of missing Iceland altogether. Instead, he reached the southern

tip of Iceland by increasing his airspeed to 27 m s 1 for 3 hours, the high-

est airspeed seen during the project. Both tracks (Figure 15.9) give a

strong impression (without actually proving it) that the swans were
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FIGURE 15.9 Four northbound Whooper Swan tracks, including AJU’s track shown in
Figure 15.8 (open circles). Another swan (JAP solid circles) was caught by a northerly
gale during the sea crossing, and forced far to the west of the direct track. He reached
the south coast of Iceland by increasing his airspeed to 27 m s�1 and maintaining this
for three hours the highest airspeed observed during the project. After Pennycuick
et al. (1999).
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aware of their position, relative to the required track, throughout the

crossing, andwere able to take appropriate corrective actionwhen forced

off course. The tracks of two other northbound swans that did not

encounter contrary gales are also shown in Figure 15.9, and these were

able to maintain a straight track for Iceland over the whole of the

800 km sea crossing.

15.2.4 FLYING HEIGHT

The transmitters fitted to the whoopers also included barometric pres-

sure sensors, which can be used as altimeters if the surface pressure is

known, as it was from the meteorological analysis. Figure 15.10 shows
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the flying heights recorded for the four northbound tracks in

Figure 15.9. The swans sometimes climbed a few hundred metres

above sea level (ASL) in fine weather when forced to do so by terrain,

but mostly flew just above the surface, stopping from time to time on

the water. Southbound tracks from the same project showed some

flying heights up to nearly 2000 m, by swans that gained height in order

to cross high ground in Iceland, and then stayed up there over the sea.

The info rmation on one of ou r whoo pers ( JAP) in Chap ter 7 (Box 7.2

and Table 7.2) makes it clear that his capacity for climbing was mar-

ginal even at sea level. This applies to all whoopers, because of their

large size, and to a lesser extent to the similar but smaller Bewick’s

Swan.

Where does this leave the well-known ‘‘fact’’, found in every book

except this one, that whoopers climb into the lower stratosphere when

migrating? This story actually refers to a single observation by an air

traffic controller in 1967, published at second hand 11 years later by

Stewart (1978). The controller asked a pilot to investigate an anoma-

lous radar echo, and was informed that it was flock of swans at a height

of 8200 m. The air density at that height would be approximately half

that at sea level. According to Flight, an average whooper’s minimum

power speed would be 20.9 m s 1 at sea level and 32.4 m s 1 (1.5 times

as much) at 8200 m, and the mechanical power needed to fly at that

speed would increase by the same factor from 187 W to 290 W. This

would present some problems to a bird that is marginally able to main-

tain height at sea level (above) even if it had a way to get up to 8200 m.
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Elkins (1979) added some meteorological information, including an air

temperature estimate of �48 �C, and commented ‘‘It seems incredible

that sustained flight can occur under such physiologically rigorous

environmental conditions’’. Indeed.

15.2.5 MINIMUM CRUISING SPEED

The pr inciple of the m inimum power speed, introd uced in Ch apter 3 ,

implies that if a bird cannot fly much faster than Vmp, then it cannot

fly much slower either. This came to light in a tracking project on

Bewick’s Swans, which was actually designed for broadcasting pur-

poses, and did not have such detailed weather information as the

earlier whooper project. The swans were fitted with transmitters in

their breeding area near the mouth of the Pechora River, on the north

coast of Russia, and tracked as they flew south-west in autumn to

their first prolonged stop at Lake Peipus on the Estonian border. At

first sight it appeared that the swans made several stops along the

first part of the route, as far as Archangel, and then flew direct to Lake

Peipus without stopping. However, the ground speeds were unexpect-

edly low, and the synoptic weather gave no indication that this was

due to headwinds. The calculated Vmp for the swans was around

18 m s 1, but most airspeed estimates between Argos fixes were well

below this, slower than a Bewick’s Swan can fly. The terrain is more

or less flat, with masses of streams and lakes, and the conclusion is

that the swans made frequent short stops, as whoopers do during

their sea crossing. The most likely explanation is that these large birds

are on the edge of oxygen debt during level cruising flight at Vmp, and

cannot fly for very long periods without stopping to recover. Difficulty

in providing the mechanical power required to fly is expected from

gene ral scali ng consi derati ons ( Chapter 7, Box 7.4), but the capac ity

to meet the resulting oxygen requirements depends on the capacity

of the heart and lungs, not on that of the muscles, and is not some-

thing that can be predicted from mechanical considerations (see also

Sections 7.4.4. and 12.3.2).
15.3 WINGBEAT FREQUENCY

The frequency with which a bird beats its wings in cruising flight deter-

mines the amount of power that it can get out of its flight muscles, and

hence is of cent ral importa nce to cal culating perform ance (C hapter 7).

Measurements of a migrant’s wingbeat frequency during a long flight

could be used (in principle) to monitor its fat reserves.
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15.3.1 FIELD OBSERVATIONS OF WINGBEAT FREQUENCY

A way of predicting a bird’s wingbeat frequency in cruising flight, based

on phys ics (no t on a regression), is given in Ch apter 7, Box 7.3, and

Figure 15.11 is a field test of this prediction, in 16 species of birds

observed during the autumn migration season at Falsterbo, Sweden.

It shows a relative wingbeat frequency, which is the ratio of the

observed wingbeat frequency ( fobs) to the reference wingbeat fre-

quency ( fref ), as calcu lated by Fligh t from Equ ation 3 in Box 7.3. The

relative wingbeat frequency is between 0.81 and 1.05 in all species

except the chaffinch, in which it is 1.69. The chaffinches were all

bounding, spending an average of 35% of their time flapping, that is,

their power fraction (q) averaged 0.35. The mechanical effect of this

is to increase gravity from its value (g) in continuous flapping to g/q.

According to the formula, the wingbeat frequency should vary inversely

with the square root of the power factor, and
p

(1/0.35) is 1.69, as

obs er ved ( Chapte r 9, Figure 9.3). Figure 15.1 2 shows the mean air-

speeds of the same 16 species in relation to their calculated minimum

power speeds. The two passerine species appear to have been flying
ƒobs/ƒref 0.5 1.0 1.5 2.0 2.5

Fringilla coelebs
Sturnus vulgaris
Milvus milvus
Ardea cinerea
Buteo buteo
Cygnus olor
Somateria mollissima
Phalacrocorax carbo
Anas penelope
Larus marinus
Larus argentatus
Larus canus
Columba palumbus
Larus ridibundus
Accipiter nisus
Corvus corone

FIGURE 15.11 Wingbeat frequencies of 16 species of birds observed at Falsterbo,
Sweden during the autumn migration season, measured from video, and expressed as
the ratio of the observed frequency to the calculated reference frequency. Frequencies
in intermittent flight styles were measured within a period of flapping, not averaged over
flapping and non flapping phases. Circles indicate species that flew by bounding, at
least some of the time, crosses those that flew by steady flapping flight, and squares those
that flew by flap gliding. After Pennycuick (2001).
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Fringilla coelebs
Sturnus vulgaris
Somateria mollissima
Larus canus
Columba palumbus
Anas penelope
Larus ridibundus
Larus marinus
Larus argentatus
Ardea cinerea
Phalacrocorax carbo
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Accipiter nisus
Cygnus olor
Buteo buteo
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FIGURE 15.12 Airspeeds of the same species as in Figure 15.11, expressed as the ratio of
mean observed airspeed to calculated minimum power speed (not adjusted for bounding).
Horizontal bars are �1 standard deviation. Symbols as in Figure 15.11. After Pennycuick
(2001).
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anoma lously fast, but thi s discrepancy also disappea rs when the effect

of bound ing on Vmp is taken into account (Ch apter 9 , Figure 9.2). The

effect of the pa sserine flig ht sty le on gra vity is not at al l obvious, and

since obs er v ers cannot manip ulate the earth’s gra vity field , there is no

way that these effects cou ld have been detected by simpl y app lying

statist ics to obs er ved wingbea t freque ncie s, witho ut a physica l theo r y.

15.3.2 METHODS OF MEASURING WINGBEAT FREQUENCIES

Although wingbeat frequencies in large birds can be measured with a stop-

watch, most people cannot count wingbeats above 4 Hz, which unfortu-

nately excludes most birds. The advent of affordable video camcorders

has partially resolved this difficulty, and this is the most commonly used

method, but analysis of the video recordings is somewhat laborious and

time consuming. A stroboscope gives instant results, and can be made

from a liquid crystal shutter, which is a panel than can be made opaque

or transparent in response to an electrical signal. Such panels can be

obtained in the form of a pair of spectacles with two shutters that can be

driven independently. The device is intended for 3D computer displays,

which show the left-eye and right-eye views alternately, while the com-

puter opens each shutter during the period when the appropriate picture

is on the screen. If both shutters are driven together, the device can be used

as a stroboscope. A design for such a device can be found [http://books.

http://books.elsevier.com/companions/9780123742995
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elsevier.com/companions/9780123742995]. This is a quick and accurate

method for a bird flying steadily in awind tunnel under good illumination,

but difficult to use in the field.

Accelerometer logging is a method with great potential for studies of

long -dista nce migration. It was note d in Chapter 14 that the accelerat ion

felt by a bird in horizontal flight varies between about zero and þ2g, in

each wingbeat cycle (Figure 14.11). This is independent of the size or

mass of the bird, being simply the result of the wings being loaded and

unloaded once per cycle. Miniature accelerometer modules are readily

available nowadays, which could be mounted in a data logger attached

to a bird’s back, and used to measure wingbeat frequency in the field.

The detector circuit would need to count the number of wingbeats in a

measured time interval, counting one wingbeat each time the measured

acceleration increases throughþ1.5g and then decreases through 0.5g.

15.3.3 WINGBEAT FREQUENCY AS A REMOTE FUEL GAUGE

One of the theoretical predictions that was confirmed in the wind tun-

nel experiments mentioned above (Pennycuick et al. 1996a) was that as

the mass of an individual bird increases or decreases, due to feeding or

the consumption of fuel, the wingbeat frequency varies with the square

root of the mass (Figure 15.13). Thus, if the bird’s wingbeat frequency

were to be monitored at regular intervals during a long migratory flight,

using a recoverable logger or data transmission via satellite, this could

be used to monitor its declining mass, as a function of both time and

distance. Mass loss does not equate directly to fuel consumed, but it

can be used to estimate fuel consumption, by using the migration sim-

ulat ion in the Fligh t progr amme, as exp lained in Ch apter 8, Box 8.4.

This would amount to a fuel gauge, which could be read remotely by

the satellite observer. Figure 15.14 is a graph taken from a run of a

Flight’s migration simulation with the same input data as the one that

generated Table 8.3, except that the altitude was set to zero instead of

2000 m, meaning that the air density was set to the sea-level value in

the International Standard Atmosphere. The graph is a plot of the fla-

mingo’s remaining fat mass (starting at Cell I30 in Table 8.3) against

the equivalent wingbeat frequency (starting at Cell E57). If the flamingo

were carrying a transmitter that recorded GPS positions including

height, and also wingbeat counts from an accelerometer, then the

observer would first reduce the observed true wingbeat frequency to

the equivalent wingbeat frequency at sea level (Box 15.3), and then

read the flamingo’s remaining fat mass from the sea-level graph of

Figure 15.14.

http://books.elsevier.com/companions/9780123742995
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FIGURE 15.13 Variation of wingbeat frequency with body mass in individual birds in
level flight. The points for the Thrush Nightingale are means of 5 stroboscope observa
tions with standard error bars, taken during prolonged flights for physiological investiga
tions, while those for the Teal are single stroboscope observations. The expected slope
is 0.5. After Pennycuick et al. (1996a).
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15.4 THE THEORETICAL BACKBONE

This chapter may seem something of a miscellany, with speeds

measured in the field, wingbeat frequencies in the wind tunnel, satel-

lite tracks, and the body composition of long-distance migrants. The

point of the chapter is that all these are linked. Numbers like the body

drag coefficient run through them all. A revised value from a wind tun-

nel experiment calls for a reappraisal of field data on migrants. Speeds

measured in the wind tunnel are linked to those observed in the field,

but the connection is not apparent until the effect of air density is
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FIGURE 15.14 The wingbeat frequency fuel gauge applied to the Lesser Flamingo fea
tured in the Flight migration simulation of Chapter 8. Table 8.3 includes estimates of both
the wingbeat frequency and the amount of fat remaining, here plotted so that the fat can
be read from the graph if the wingbeat frequency is measured. If a migrating flamingo’s
wingbeat frequency could be monitored in flight by a GPS logger, the amount of fat
remaining could be read from the graph at points in the flight. To make a direct compari
son with the observed (true) wingbeat frequency, the programme would have to be run
separately for each observation, with the air density corresponding to the observed flying
height. The X axis of this graph is the equivalent wingbeat frequency, found by setting the
air density to the sea level value. To use it, observed wingbeat frequencies would have to
be reduced to sea level before comparing them with the graph, as explained in Box 15.3.
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understood and taken into account. Even the effect of varying gravity

on wingbeat frequency can be observed from video of small birds in

bounding flight, although no experimenter is likely to be able to

manipulate gravity in the foreseeable future. The theory outlined in

the early chapters of this book is the backbone that ties together

heights, speeds, rates of fuel consumption, wingbeat frequencies, and

much more that can be observed and measured and predicted by the

Flight programme. If a number measured by one method cannot be

reconciled with another measured in some other way, that is a discrep-

ancy that has to be resolved. The resolution takes the form of a revised

default value for some variable, or possibly a change in the structure of

the theory itself.

The reason that all of this looks rather strange to many ornithologists

is that biological observations are traditionally made in isolation, with-

out a theoretical backbone. Measurements of the rate of oxygen con-

sumption of a particular bird in a particular wind tunnel refer only to

that bird under those conditions, however elaborate the statistical
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analysis. The purpose of having a theory, like the one embodied in the

Flight program, is that observations on one species can be added to a

model that applies to any species, under a range of conditions. The

hope (perhaps forlorn) behind this book is that physiologists and field

ecologists will acquire the habit of recording essential information

such as wing spans and air densities, and will then use the Flight

programme to incorporate their findings into the communal pool of

information.
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EVOLUTION OF FLIGHT
Flight requires structures (wings) that develop much more lift than drag, and are able
to resist bending and torsional loads. The ancestors of birds, bats and pterosaurs are
assumed to have taken parallel routes from a parachuting precursor (creating drag
only) to a patagial gliding stage corresponding to the level of modern flying
squirrels, and then to have found different ways to get past the ‘‘squirrel barrier’’.
The evolution of flight feathers was not a simple step, and their presence in Archae
opteryx puts the origin of flying birds back into the Triassic.

Soon after Darwin (1859) published his theory of evolution by natural

selection, critics started pointing out that flying animals, and especially

birds, are awkward to explain. The wings of birds have properties that

are not found in the limbs of any animal that does not fly, and have

no function except in the context of flight. Natural selection can

improve the performance of existing wings, however rudimentary, but

how did the very first flying animal originate from an ancestor that

had no wings at all, or any other adaptations for flight? The principles

of flight were not understood in Darwin’s time, but now they give us a

basis for understanding the selection pressures needed to bring about

the origin of flight, and to drive its further evolution in birds, bats
443
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and pterosaurs. This is why these origin problems are addressed in the

last chapter of this book, rather than at the beginning. I follow Heil-

mann (1926) in suggesting that birds (and other flying vertebrates) ori-

ginated from arboreal gliders, but differ about the stages that led to

powered flight, and the nature of the selection pressures that forced

progressive change at each stage.

16.1 EVOLUTION IN ENGINEERING
AND IN NATURE

16.1.1 THREE FUNDAMENTAL OBSTACLES

As the early history of aeronautics shows, the problem of level, powered

flight was a tough nut for engineers to crack, although the engineer is (in

principle anyway) free from the constraints of organic evolution. Theory

is the DNA of engineering, and the theory of flying machines evolved

slowly through the nineteenth century, by its own form of natural selec-

tion. Ideas survived if they led to machines that worked, while those that

did not were doomed to extinction. Themany false starts and blind alleys

by which this body of theory developed have been documented in

fascinating detail by a modern aeronautical engineer (Anderson 1997).

The success of Orville and Wilbur Wright in building and flying the first

powered aircraft in 1903 is a historical marker, at the point where aero-

nautical theory reached a threshold level of coherence. The Wright Flyer

was the first working flyingmachine that natural selection couldmodify,

and from that point on, the further development of practical aircraft was

rapid and diverse. It was not always clear to the pioneers themselves

what needed to be done in order to make progress, but with hindsight

the difficulties that they faced, and eventually overcame, can be resolved

into three distinct obstacles, which apply equally to the evolution of

flying animals. These were:

(1) The ability to control spatial orientation while being free to move

and rotate in three dimensions, without contact with the ground.

(2) The development of a shape that gives a sufficiently high lift:drag

ratio, embodied in a structure that is able to withstand the loads

imposed by flight.

(3) The development of a source of power that can be used to overcome

aerodynamic drag.

A line of animals that do not fly must overcome these same three

hurdles, in that order, to reach the animal equivalent of the Wright

Flyer, and it must do so despite constraints that do not apply to
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engineers. An engineer can design a wing directly from theory, without

necessarily having an existing structure to modify, but animal evolu-

tion is constrained by two very restrictive rules. In the first place,

any structure with new properties must be developed by modifying

some structure which the animal already has, for example a wing with

a substantial lift:drag ratio was developed, in at least three cases, by

modifying legs that were not exposed to a relative airflow, and had no

such property as a lift:drag ratio, zero or not. Secondly, any such change

must proceed by infinitely small steps, each of which makes the struc-

ture more effective at whatever it currently does. The challenge to the

evolutionary biologist is to show how wings could have evolved from

the limbs of a non-flying precursor, without violating these rules. The

rest of this chapter is about hypothetical paths by which the three known

groups of flying vertebrates, birds, pterosaurs and bats, could have

evolved from their presumed non-flying ancestors.

16.1.2 SPATIAL ORIENTATION AND ATTITUDE CONTROL

Control in fligh t begin s wi th attitud e relative to the horizon ( Chapte r 9 ,

Box 9.2). The two basic flight controls produce angular accelerations in

roll, which means tilting the wings to one side or the other relative to

the horizon, and pitch, which means tilting the nose up or down, also

relative to the horizon. The third axis is yaw, meaning swinging the

nose to one side or the other, but this is of secondary importance in

flight, and some aircraft, notably hang gliders, do not even have a

yaw control (rudder). The Wright brothers thought carefully about

controlling roll and pitch, and tested and improved their system in a

series of gliders. The control forces only existed when a relative wind

was blowing past the glider, as it would in flight, but as the Wrights’

glider did not fly yet, they had to get the relative wind by doing their

initial experiments on windy coastal dunes in North Carolina.

Likewise, a system of roll and pitch control can only arise from

scratch in an animal that is routinely exposed to a relative wind, while

not being restrained from rotating in roll and pitch by contact with the

ground. Arboreal animals are natural candidates, because falling out of

trees is a hazard inherent in their lifestyle, and this immediately results

in a relative wind. When an animal falls, it accelerates downwards, so

acquiring an upward relative air flow that in turn produces an aerody-

namic force and (possibly) also a moment that produces an angular

acceleration around some axis. The squirrel or monkey does not, of

course, instantly mutate into a flying animal. Its problem is to mini-

mise the risk of injury when it strikes the ground, and there are two
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aspects to this that can be addressed by continuous small modifica-

tions, as required by natural selection. The first is to set the limbs

and tail in positions that rotate the body automatically until its ventral

side faces the relative wind. Books on skydiving explain how this is

done with a human body, and the same principle also works with other

vertebrates. The second is the principle of the aviator’s emergency

parachute, which is a shape with enough area and a high enough drag

coefficient to hold the terminal velocity to a level that is survivable on

impact (Box 16.1).
BOX 16.1 Wing loading and parachute loading.

Wing loading is usually defined as the ratio of the all-up weight to the wing
area, and it is directly related to the range of speeds over which a glider or
gliding animal can fly, and to the radius when gliding in circles (Chapter 10,
Box 10.2). This is a fixed-wing concept that does not have any simple or
direct relationship to performance in flapping flight, but it does apply to
both parachutes and fixed wings, including gliding wings.

Variable definitions for this box
CD Drag coefficient
CLmax Maximum lift coefficient of a glider
D Drag
g Acceleration due to gravity
m Animal’s all-up mass
Vs Glider’s stalling speed
Vt True airspeed
Vterm Terminal velocity
S Area of wing or parachute
W Area loading of wing or parachute
r Air density

Terminal velocity of a parachute
A parachute is a device that generates a sufficient amount of drag to limit its
terminal velocity to below some maximum acceptable value. For example
aviators’ emergency parachutes hold the descent speed to a value that gives
the user a good chance of surviving the impact with the ground. Likewise,
an ordinary squirrel falling out of a tree spreads its legs and tail to make a
rudimentary parachute (Figure 16.1A). As it falls, its true airspeed (Vt)
increases and the drag (D) builds up with the square of the speed:

D ¼ ½rV 2
t SCD; ð1Þ

where r is the air density, S is the area of the parachute, and CD is its drag
coefficient. A value of CD ¼ 1 means that the parachute reduces the relative
air flow to zero (i.e. stops the air) over the whole of the cross section that it
presents to the incident airflow, and practical parachutes actually do have
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drag coefficients close to 1.When the falling squirrel’s drag is equal and oppo-
site to its weight, the speed stabilises at the terminal velocity (Vterm), which is

Vterm ¼ 2mgð Þ
rSCDð Þ

� �
;

s
ð2Þ

where m is the mass and g is the acceleration due to gravity. If we define the
area loading (W) as the ratio of the weight to the parachute area,

W ¼ mg

S
; ð3Þ

then Equation (2) can be expressed as

Vterm ¼ 2Wð Þ
rCDð Þ

� �
;

s
ð4Þ

in other words, the terminal velocity is proportional to the square root of
the area loading. Likewise the expression for the minimum (stalling) speed
(Vs ) in gliding flight, given in Chapter 10, Box 10.1 can be expressed as

Vs ¼ 2Wð Þ
rCLmaxð Þ

� �
;

s
ð5Þ

where W is the ratio of the weight to the wing area, i.e. the wing loading.
The difference is that in this case the weight is supported mostly by a lift
force coming from a wing, rather than by a drag force coming from a para-
chute. If the lift coefficient is set to its maximum value (CLmax), the stalling
speed is proportional to the square root of the wing loading.

Significance of area loading
The area loading determines the minimum speed of a fixed wing or para-
chute, regardless of whether the weight is supported by almost pure lift,
as in an efficient glider, or by almost pure drag, as in an emergency para-
chute, or by the resultant of lift and drag. The measure of a wing’s efficiency
is its lift:drag ratio, and the wing loading says nothing about this. Those who
believe that a low wing loading is the key to gliding performance should visit
a gliding competition, and ask the pilots why they ballast their gliders with
vast quantities of water before they take off (or read Chapter 10, Section
10.2.1.5).
It should be obvious that one cannot work out a helicopter’s minimum
speed from its wing loading. When the helicopter is hovering its airspeed
is zero, but the relative airspeed over the blades is not zero, because the
blades are rotating relative to the fuselage. A helicopter blade has a maxi-
mum lift coefficient like any other wing, but the minimum speed at which
it will support the weight is not the speed of the helicopter as a whole. It
is the resultant of the helicopter’s speed and the local relative airspeed
due to the blades’ rotation, which is different at each point along the blade.
The same is true of the flapping wings of a bird. Generalisations that involve
wing loading are fixed-wing concepts that apply to gliding birds, but not to
helicopters, or to flapping flight. This has not deterred some biological
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authors from transferring such notions to flapping birds or bats, especially
in relation to turning radius, which is, of course, not limited by wing loading
in flapping flight.

Scaling of wing loading
In geometrically similar animals or aircraft, the weight varies with the cube
of the length, while the wing area varies with the square. Scaling an aircraft
or animal up isometrically to a larger size results in an increase in wing
loading in proportion to the length, or to the one-third power of the mass.
In the case of a patagial glider, the bigger the animal, the higher its wing
loading, and the faster it has to fly. The hypothetical bird precursor shown
in Figure 16.2D is shown with a smaller wing area but higher aspect ratio
than the pterosaur precursor of Figure 16.2C, because the membrane is
attached posteriorly to the side of the body instead of the legs. If both ani-
mals were of similar size, this would result in the bird precursor having a
better glide ratio than the pterosaur precursor, but gliding faster—perhaps
too fast. We know that modern flying squirrels, whose general shape is sim-
ilar to that proposed for the pterosaur precursor, work up to a mass over
1 kg, but the proposed bird precursor might have to be smaller, to keep
the gliding speed down to a manageable value.
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16.1.3 FROM PARACHUTE TO WING

Bailing out of a stricken aircraft, or falling out of a tree, is not exactly

flying in itself. Emergency parachutes and falling squirrels do nothing

more than maintain a stable attitude relative to the horizon, and a

low enough terminal velocity to minimise the risk of injury. The

parachutes used by skydivers and paratroopers differ in that they have

a limited amount of roll and pitch control, sufficient to execute a con-

trolled spiral, and are able to check their descent speed momentarily

before touchdown. This greatly improves their ability to land into wind,

on a chosen spot, and to soften the impact. The essential difference is

that the aerodynamic force developed by a simple emergency parachute

is pure drag, in line with the relative air flow, whereas that developed by a

steerable parachute has a component (lift) that is perpendicular to the

relative air flow. Beyond the steerable parachute comes the paraglider,

which has a flexible canopy like a parachute but a higher aspect ratio,

that is, the canopy extends out to the sides. The lift can be asmuch as five

times the drag in a paraglider, which is enough to soar on slopes and in

thermals, and even to fly level with a minimal back-pack engine.

The limbs of monkeys, and also those of squirrels, are rounded in

cross-sectional shape, and generate drag when held out in a jump.

The limbs themselves do not provide a starting point from which
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natural selection could modify them into a shape that would develop

some lift. However, there is such a starting point in animals that

develop a patagial membrane along each side of the body, stretched

between the front and back legs. Initially, a narrow patagium serves

to increase the animal’s cross-sectional area as it falls, increasing its

parachute area, and reducing its terminal velocity. As the membrane

becomes wider, it bulges upwards as the squirrel falls, and this fortu-

itously changes its shape into a thin, curved sheet, which develops a

small amount of lift, in addition to a massive amount of drag. A flying

squirrel’s patagial membrane not only slows it down, but also deflects

the flight path so that it is no longer vertical, as in a steerable

parachute. This is the crucial feature that can be further improved by

natural selection (Figure 16.1).
Relative air flow

Drag

Relative air flow

Drag

Lift

Resultant force

A B

FIGURE 16.1 (A) When a squirrel falls out of a tree, the legs, being bluff bodies in cross
section, generate turbulent wakes (grey), and the body and tail do likewise. These wakes
result in a high drag coefficient, which limits the terminal velocity, and the energy that has
to be dissipated when the animal strikes the ground. (B) A patagium spread between the
front and back legs increases the cross sectional area of the falling animal, and further
reduces its vertical velocity. Fortuitously, the patagium bulges upwards in response to
air pressure, and is deformed into a rudimentary aerofoil shape, which develops some lift
in addition to the drag. Instead of falling vertically, the animal now glides on a gradient
that is equal to the ratio of lift to drag.
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By providing a non-zero glide ratio, the flexible patagium starts the

process by which the glide ratio can be further increased through natural

selection. No amount of running on the ground, seizing prey with the

arms, or jumping about in trees will start a monkey’s or dinosaur’s arms

on the path towards becoming wings, because they do not have a glide

ratio to start with, that natural selection can improve. A thin, flexible

patagiummust be added before that process can begin. It is my conten-

tion in this book that all flying vertebrates, including birds, started from

arboreal ancestors that were patagial gliders. The initial stage of this

hypothetical evolutionary path can be seen in modern flying squirrels,

colugos and possums. Beyond this level, different lines of arboreal

gliding animals followed different paths that led to birds, bats and ptero-

saurs, each of which groups evolved its own characteristic type of wing.

16.1.4 RAISING THE LIFT:DRAG RATIO TO THE

SQUIRREL BARRIER

Patagial gliding is an adaptation that seems to arise easily in small

arboreal animals. Nowak (1991) lists 13 genera and 34 living species

of flying squirrels, plus four species of marsupial gliding possums,

and two of colugos (whose affinities are uncertain). These animals

are very similar anatomically to their non-gliding relatives, but usually

differ in being nocturnal, whereas non-flying squirrels and possums

are mostly diurnal. The patagium is useful to animals that need to

travel distances of tens of metres when they jump from tree to tree,

whereas those that live in thicker vegetation, or at lesser heights, no

doubt find a patagium more of an encumbrance than an advantage.

Flying squirrels have enough roll control to steer the glide path towards

a chosen tree, and enough pitch control to flare and land head-up on a

vertical tree trunk. They move about in the forest by alternately

running vertically up a tree trunk, and then gliding to another tree,

descending typically with a glide ratio no greater than 3, meaning that

the squirrel glides up to 3 metres horizontally for each metre of height

lost. Most of the time and energy required for this type of travel is

expended in the vertical climbs. There is selection pressure to flatten

the glides, since this allows the animal to travel further for a given

expenditure of both time and energy. Flattening the glides is the same

as increasing the ratio of lift to drag, and this in turn translates into

pressure to lengthen the wings, increasing the wing span and the

aspect ratio (not the wing area). Flattening the glides has nothing to

do with wing loading, which determines the speed at which the animal

glides, not the angle of descent (Box 16.1).
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The wing membrane in a flying squirrel stretches to the wrist, so the

wingspan can be increased initially by lengthening the arms. There is

usually a cartilaginous spur that increases the span a little by holding

the tip of the patagium out from the wrist or elbow. There is limited

scope for lengthening the arm bones, because this hinders the typical

motion by which squirrels climb tree trunks. They do this by alternately

pulling up with the arms, at the same time hunching the back and pull-

ing the hind legs up between the body and the tree, and then pushing

up with the hind legs, to get a new grip, higher up, with the front claws.

For this to work, the limbs cannot be too long, otherwise the front and

back limbs interfere with each other. Flying squirrels, and gliding arbo-

real mammals of other kinds, do have noticeably elongated front legs,

compared with animals without patagial membranes, but the selection

pressure to flatten the glides fails at the point when the limbs cannot

be any longer, without impairing the squirrel’s ability to climb up trees.

This is the squirrel barrier. It limits a flying squirrel’s aspect ratio to a

value well below 2, which is enough for a simple gliding wing that

speeds up travel through the forest, but not enough to make level flight

a practical possibility.

16.2 PAST THE SQUIRREL BARRIER

Three vertebrate groups, the birds, bats and pterosaurs, most probably

started as arboreal gliding animals, which may have paused in their

evolution at the squirrel barrier, but found different ways around it.

Once past the barrier, each of these groups evolved wings with aspect

ratios of 6 and beyond, thus opening the way to level flight. Lengthen-

ing the wings beyond the nearly-square shape typical of flying squirrels

requires one or more spars to carry the bending and torsional loads, as

the centre of lift of each wing is moved outwards from the body

(Ch apter 5). The sele ction pressure that drive s the ear ly stages of this

process is derived strictly from the flattening of the glides that results

from increasing the aspect ratio of the wings. There is no question of

adding power to an animal shaped like a flying squirrel, because the

muscles that depress the front limbs are adapted for climbing trees,

not for flapping flight. A squirrel’s arm muscles are in the wrong place,

and not big enough to flap its inefficient wings. The hypothetical pre-

cursor for each group of flying animals has to be a patagial glider that

glides from tree to tree, resembling a flying squirrel in its general body

form, but differing in some minor and fortuitous anatomical feature

that gives natural selection a way to increase its aspect ratio in

response to selection pressure for flatter glides.
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16.2.1 PTEROSAUR ORIGIN

The pterosaur route for lengthening the wing seems to be the simplest.

We may imagine the pterosaur progenitor as a small, arboreal, Triassic

archosaur, looking and behaving much like a flying squirrel, with a

patagium attached to the outer edge of its hand only, not enclosing

the fingers (Figure 16.2C). On reaching the squirrel barrier, this crea-

ture continued to increase its aspect ratio, but not by lengthening the

humerus and radio-ulna. Instead, it lengthened the last finger, which

was actually Digit 4 according to palaeontologists. The four phalanges

of this ‘‘wing finger’’ became the spar, carrying all of the bending load

developed by the outer part of the wing membrane, and transmitting it

to the outer end of the metacarpus. Being able to flex back at the meta-

carpal joint, the wing finger could be laid parallel to the metacarpus, so

keeping it out of the way during quadrupedal locomotion, either on

the ground or on the vertical surface of a tree trunk. Further increase

of the wing span was effected simply by lengthening the phalanges of

the wing finger, and thickening them to carry the increased bending

load, which was developed by a flexible patagial membrane that

stretched between the wing finger and the hind leg. Once the wing

was long enough to flatten the glide further by absorbing a small

amount of muscle power, the animal would have had a second way

to respond to selection pressure for flatter glides, by modifying the

axial musculature so as to depress the humerus, supplying some work

in the process. This does not prevent the original lengthening process

from continuing without interruption, all the way to an animal that

was capable of horizontal, powered flight, as in the fully developed

rhamphorhynch wing shown in Figure 6.10.

16.2.2 BAT ORIGIN

Only one difference, trivial in itself, is needed to make a flying squirrel

into a bat precursor. Instead of ending at the wrist, the membrane needs

to enclose all the fingers, as shown in Figure 16.2B. An arrangement very

close to this occurs in the living colugos (Cynocephalus spp.). Here again,

the initial selection pressure is to increase the aspect ratio so as to

lengthen the glides, and this can be done without impairing climbing

ability by lengthening the fingers.Once thewing is long enough for incip-

ient flapping to bepossible, there is no obstacle to continued lengthening

of the wing, together with modification of the axial musculature to pro-

vide an (initially small) amount of power by flapping. This leads directly

to the bat wing, which first appeared in Eocene times, apparently fully

evolved, and more or less as illustrated in Figures 6.3–6.5.
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FIGURE 16.2 (A) Flying squirrel, in which the main patagium is stretched between the
front and back legs, but does not enclose the fingers or toes. A cartilaginous spur
increases the span (only a little) by holding the wing tip further out. (B) Hypothetical
bat precursor, which differs from a flying squirrel in having all five fingers enclosed in
the membrane. Further evolution is based on lengthening all the Digits 2 5. (C) Hypo
thetical pterosaur precursor, with three free fingers. The patagium extends beyond the
wrist by being attached to the posterior side of the last finger (Digit 4). Further evolu
tion is based on lengthening this finger only. (D) Hypothetical bird precursor resem
bles bat precursor in having the fingers enclosed in the membrane, but the
patagium is attached posteriorly to the side of the body, and not to the hind legs.
This results in a wing of smaller area, but higher aspect ratio.
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16.3 EVOLUTION OF THE BIRD WING

It is easy to see how either a bat or a pterosaur could evolve from a

patagial glider similar to a flying squirrel, but the bird wing is different,

in that it does not depend on tensioning a flexible membrane. The

bending and torsional moments due to the aerodynamic force on the

wing are carried by the radiating, stiff shafts of the flight feathers,

and tran smitted thro ugh thei r bases to the win g bones (Chapte r 5 ).

Mechanically, this is entirely different from a patagial wing, and it

depends on the evolution, starting from scratch after the patagial

gliding stage, of an entirely new set of structures, the flight feathers.

This must have taken a lot longer than the changes of shape needed

to change a patagial precursor into a bat or a pterosaur, because flight

feathers are not simple structures. Even if the precursor of Archaeop-

teryx had a body covering of proto-feathers, the subsequent develop-

ment would not be much quicker, because flight feathers (only) have

the complex structure needed to collect up moments and deliver them

to the base of the shaft (Figure 5.6). Contour feathers and down feath-

ers may have originated by simplifying flight feathers, but the reverse

process would be no quicker than starting from simple reptilian scales.

16.3.1 HYPOTHETICAL PATAGIAL PRECURSOR TO

ARCHAEOPTERYX

I propose that in the early stages of their evolution, the ancestors of

birds were arboreal gliders that resembled the ancestors of bats and

pterosaurs, but differed from them in that the patagium was attached

posteriorly to the sides of the body, but not to the legs. My hypothesis

(Pennycuick 1986) is that the bird wing developed in two stages from a

gliding precursor like the one shown in Figure 16.2D. In the first (hypo-

thetical) stage, the purely patagial wing developed into a form like that

of Figure 16.3, which has some features in common with bat wings,

and others that are seen either in modern birds or in the Upper Jurassic

Archaeopteryx fossils. The second stage was the development of flight

feathers, which were already present in Archaeopteryx, although the

modern system that transfers forces and moments from the bases of

the feather shafts to the wing skeleton was not.

The main features of the hypothetical patagial glider of Figure 16.3

can still be seen, albeit much modified, in the modern bird wing, which

has a patagium that joins the side of the body to the elbow joint, and

continues as a narrow strip along the posterior side of the ulna, and

of the reduced hand skeleton. The mechanical arrangement in modern



FIGURE 16.3 Hypothetical patagial precursor to Archaeopteryx, following lengthening
of the fingers, but before the development of flight feathers. The three long fingers (still
seen in Archaeopteryx) support a patagial wing, with digits 1 and 2 forming a Norberg
panel as in bats ( Chapter 6 ). The skin of the patagium is assumed to be covered with
smooth, lizard like scales, the precursors of the flight feathers of Archaeopteryx.
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birds is exp lained in Ch apter 5 , and illust rated in Figu re 5.10. The

follicles of the scapular feathers, which provide the innermost part of

the lifting surface between the body and the elbow, are embedded in

the inner patagium, with no close mechanical connection to the

humerus. Distal to the elbow, the follicles of the secondary flight feath-

ers, which are embedded in the post-patagial strip, are hinged to the

posterior side of the ulna, and connected together by the post-patagial

tendon that controls their spreading and depression when the wing is

extended. The follicles of the primary feathers are more robustly bound

to the reduced metacarpals and phalanges, in a way that transmits the

larger moments developed by the primaries to the bones.

The Archaeopteryx fossils show a set of 9 primary and 14 secondary

flight feathers that look very like those of modern birds (Swinton

1960) but the hand skeleton is not modified to accept concentrated

bending loads from the primaries. It consists of three long and slender

fingers, with curved claws at their tips. These are usually reconstructed

as climbing fingers unconnected with the lifting surface, but they look

too long and thin for that. They look much more like the fingers of bats,

and we may note that Digit 2 of the wings of fruit bats also carries a

claw, although it is not used for climbing. I propose that the fingers

of Archaeopteryx supported a patagium somewhat like that of a bat,



A

B

C

FIGURE 16.4 Three stages in the evolution of the bird wing. (A) Hypothetical Archaeop
teryx precursor. The patagial wing of Figure 16.3 has been enlarged and lengthened by
a single row of large scales, which overlap the posterior and outer edge of the mem
brane. The anterior edge of each scale is held in a follicle in the patagium. (B) Archaeop
teryx. The skeleton is the same as in A, but the border scales have become feathers by
developing a stiffening rhachis, with vanes on either side of it. The base of the rhachis
is held in a follicle, which is bound into the patagium, as in the scapular feathers of
modern birds. (C) Modern bird. The post patagium is reduced to an inner portion support
ing the scapular feathers (not shown), and a narrow border along the posterior side of
the ulna and manus, holding the follicles of the flight feathers, and the tendon that
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with the primary and secondary feather shafts embedded in it, in the

same way that the scapular feather shafts are still embedded in the

wing-root patagium next to the body in modern birds. Figure 16.3

represents a hypothetical stage of evolution after the patagial glider

of Figure 16.2D had extended its wing span by lengthening the three

fingers that were enclosed in the membrane, but before the develop-

ment of feathers. The animal is shown with a small, bat-like wing that

is complete with a Norberg panel (allowing the fingers to be more slen-

der than a pterosaur’s wing finger) and with a membrane that extends

to the sides of the body, but not to the legs.

Such a wing would have less area but a higher aspect ratio than a bat or

pterosaur precursor of similar size, at a similar stage of evolution. For a

given mass, the animal would glide faster, but at a flatter angle (higher

glide ratio). Since the gliding speed increaseswith thewing loading, which

itself increases with the size of the animal, such a wing would most likely

evolve in a small animal, keeping gliding speeds down. There is a func-

tional resemblance to the tiny Draco gliding lizards of south-east Asia,

whosewings are supported by extended ribs that can be folded back along

the sides of the body. TheDracowing is an odditywith no potential for fur-

ther evolution, but it works well enough to show that a big patagium is not

the only possible way to make a gliding wing.

16.3.2 EVOLUTION OF FEATHERS

In the mod ern bird wing, as describe d in Chapter 5 , the bendin g and

torsional moments developed by the outer and posterior parts of the

wing surface are collected by a distributed spar consisting of the radiat-

ing shafts of the flight feathers. Everyone seems to agree that feathers

originated from reptilian scales, but how exactly did the intricate and

complex structure of the flight feathers (Figure 5.6) develop from

simple scales? One may imagine the patagium of the creature in

Figure 16.3 as resembling the skin of modern lizards, covered with thin

scales made of keratin, anchored in follicles at their forward edges.

My hypothesis for the next stage of bird evolution, from the patagial

glider of Figure 16.3 to the feathered wing of Archaeopteryx, is illustrated

in Figure 16.4A and B, leading on to the modern bird arrangement in
connects them together (see also Figure 5.10). The diameter and curvature of the ulna
have increased. Digit 1, which formerly supported the leading edge of the patagium
and the outermost primary feather, becomes the alula, while Digits 2 and 3 are reduced
and thickened, their fused metacarpals forming a robust unit to which the primary follicles
are bound. This reinforced connection between the primary feather shafts and the skele
ton allows the wing to be longer, and its aspect ratio to be increased.
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Figure 16.4C. In Figure 16.4 A, the patagial glider has extended its wing

span without much change of aspect ratio, by enlarging the row of

border scales along the trailing and outer edge of the patagium. In the

Archaeopteryx stage of Figure 16.4B the bat-like wing skeleton is still

there, supporting the enlarged border scales, but these have now evolved

into flight feathers, whose follicles are embedded in the membrane, like

those of the scapular feathers of modern birds, but not yet connected to

the arm skeleton.

One of the most startling features of Archaeopteryx is that the flight

feather impressions look very similar to those of modern birds, even

though the skeleton is reptilian and lacks the most characteristic bird

features. Flight feathers are not variants of thermal insulating material,

but structures that have evolved over a long period, enabling the span

and aspect ratio of the wings to be progressively increased as they

developed. The structure of a flight feather (Figure 5.6) is dedicated

wholly to withstanding the bending and torsional moments caused

by aerodynamic forces, and delivering these moments through the

follicle to the wing skeleton. Figure 16.5 shows some hypothetical

stages of evolution that must have preceded Archaeopteryx. Simple

scales projecting past the edge of the patagium, as shown in

Figure 16.5A would have to be thick and unduly heavy to resist the ten-

dency of the air pressure to bend them upwards. A stiffening ridge

along the axis of the feather (Figure 16.5B) would help to resist this,

and would form the precursor of the tubular feather shaft, which resists
A

B

C

FIGURE 16.5 Three stages in the evolution of flight feathers from simple scales. (A) A sim
ple scale attached at its anterior end to the patagium (pink) tends to bend upwards in
response to air pressure. (B) A longitudinal stiffening ridge resists upward bending,
and eventually becomes the hollow rhachis of Figure 5.6. The vanes still tend to curl
upwards at the edges. (C) Stiffening ridges in the vanes resist the curling tendency. The
ridges eventually separate to become the barbs, and are held together in modern birds
(and possibly in Archaeopteryx) by a system of interlocking hooks, the barbules and
barbicels. The base of the feather is bound to the patagium through its follicle.
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both bending and torsion, but does not prevent the vanes from curling

up at the edges. An array of parallel ridges or corrugations as in

Figure 16.5C would stiffen the vanes, forming the precursors of the

barbs of modern flight feathers, which eventually (possibly before

Archaeopteryx) separated to form a porous vane, held together by the

matching hooks of the barbules and barbicels.

16.3.3 MODIFICATIONS TO THE WING SKELETON

The forearm skeleton of Archaeopteryx differs from the straight radio-

ulna of bats in that the radius and ulna are separate, and the ulna

shows the beginnings of the forward curvature that is so characteristic

of modern birds, and is not seen in bats or pterosaurs. This implies

(Ch apter 5 ) that the seconda r y follicl es were already joined togeth er

by a post-patagial tendon that controlled the fanwise spreading and

depression of the feather shafts as the elbow and wrist joints were

extended. The outermost three primaries were short, and the hand

skeleton was not yet modified to support the bases of long wing-tip

primaries. My reconstruction (Figure 16.4B) shows the most anterior

primary attached to Digit 1 (the thumb), which itself combines with

Digit 2 to form the Norberg panel. In modern birds (Figure 16.4C),

the stiffening action of the panel is taken over by the fused metacarpals

of Digits 2 and 3, while Digit 1, still with its feather attached, becomes

the alula. The more robust support provided by the metacarpal unit

allows the wing-tip primaries to be longer, and the aspect ratio to be

higher.
16.4 ADDING AN ENGINE

In all flying animals that are capable of horizontal flight, insects

included, the work needed to overcome drag comes from muscles that

flap the wings. Flapping is not the only way to add power to a glider,

and indeed this solution has not found favour with aeronautical engi-

neers. Ornithopters (aircraft that flap their wings) have achieved very

little success, despite extensive experimentation. The realisation that

lift and propulsion are two different functions, and that it is easier from

an engineering point of view to separate them, was one of several

major insights that contributed to the Wright brothers’ achievement

of powered flight. Their ‘‘Flyer’’ and most of its successors used a wing

that supported the weight but did no work, and a separate, engine-

driven propeller to provide a thrust force that was much less than the

weight, and did work against drag. Flying animals use their wings for
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both functions, and suf fer from severe size restrictions (Chapte r 7 Box

7.4), due to the fact that the power output of the flight muscles

depends on their contraction frequency, which has to be the same as

the wingbeat frequency. This restriction can be evaded to some degree

in man-powered aircraft by using a geared drive, so allowing the pilot’s

muscles to contract at a frequency that is independent of the propeller

revolution rate (or the flapping frequency in an ornithopter), but no

such system is known in animals.

The addition of power to a gliding wing is the last stage of the evolu-

tion of level flight, since the animal must have wings that work, before

it can flap them. In birds and bats, the main engine for powered flight

is the pectoralis muscle, which rotates the humerus ventrally about the

shoulder joint, and the same was true of pterosaurs, to judge by their

skeletons. Birds differ from the other two groups in that the pectoralis

muscles of the two sides originate on opposite sides of a prominent

bony keel projecting from the sternum. Obviously, this is not a neces-

sary adaptation for flight, as neither bats nor pterosaurs exhibit any

such structure. In bats, the left and right pectoralis muscles pull against

one another in the ventral mid line, and no doubt the same was true in

pterosaurs. The keel is a structure that resists compression of the

pectoralis muscles against the sternum, and performs a function

associated with evaporative cooling, that is necessary in birds, but

not in bats, and presumably not in ptero saurs ( Chapter 5, Section

5.4.2). The pectoralis muscle becomes an engine (however inefficient)

when some fraction (however small) of the work done in rotating the

humerus downwards is transferred to the air, in a way that replaces

energy that has been lost in overcoming drag. Once that happens, acci-

dentally or otherwise, a gliding animal can flatten its glide angle (just

a little) by muscular exertion. That in turn creates selection pressure

to get a flatter glide for less power, a process that can continue in

infinitesimal steps until the flight path is horizontal, and beyond.

16.5 SIZE RESTRICTIONS

Just as the Wright brothers achieved level flight by adding an engine to

a glider that had already been extensively tested, so the transition to

powered flight in an animal involves adding muscle power (in infinitely

small steps) to a precursor that can already glide. The flatter the angle

at which the gliding precursor can descend, the less power is required

to raise the flight path to the horizontal, and because of the scaling

relationship discusse d in Chapte r 7 Box 7.4, thi s thresho ld is more

easily reached in a small animal than in a large one. The first animal



16 Evolution of Flight 461
in any particular line to attain a positive ‘‘power margin’’, meaning that

the muscle power available from the muscles exceeded that required

for level flight, would most probably have had a body mass in the range

10–100 g (Pennycuick 1986). In the earlier gliding stage, the need to

keep gliding speeds down also favours small animals, as gliding speed

depends on wing loading, which in turn depends on size (above).

16.6 TIME SCALE OF EVOLUTION

A flying animal does not necessarily take long to evolve, in terms of the

geological time scale, especially in an ecological vacuum. Bats are not

among the mammals that are known from Mesozoic times, yet fossil

bats such as Palaeochiropteryx appeared in the Eocene, having appar-

ently completed the transition from non-flying animal to almost-

modern bat during the Palaeocene period, when life appeared to be

suspended after the demise of the dinosaurs and many other groups

of animals. During the great Eocene radiation that followed, identifi-

able members of most modern orders of mammals appeared, includ-

ing bats. Both pterosaurs and birds started much earlier, some time

after the earlier and bigger extinction event that ended the Permian

period. The first known pterosaur is Eudimorphodon from the upper

Triassic, and it was already typical of the long-tailed pterosaurs that

continued to flourish until the upper Jurassic. Its gliding precursors

are unknown, but they must have started on the road to evolving flight

in the middle or early Triassic.

Birds are different, because their evolution involved more than

increasing the span of a patagial gliding wing. The evolution of flight

feathers, as opposed to contour feathers or down feathers, and their

mechanical integration with the arm skeleton, was an entirely new,

and very complex development. The Solnhofen Archaeopteryx speci-

mens are the earliest fossils with flight feathers, and this is only known

because they were preserved in a fine-grained lithographic limestone

in which detailed impressions of the feathers were recorded. Were it

not for that fortunate chance, there would be little if anything to

distinguish their skeletons from those of small, saurischian dinosaurs.

Whether or not Archaeopteryx actually was a saurischian dinosaur, as

opposed to a close relative, is taxonomic hair-splitting that need not

concern us. Archaeopteryx lacked most of the skeletal features that dis-

tinguish birds from dinosaurs, but it had flight feathers, which are not

only the key structural feature that defines the bird wing, but also com-

plex structures that must have taken tens of millions of years to evolve

from ordinary reptilian scales. They could not have evolved in any
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animal but one that was already capable of gliding flight. That means

that the patagial precursor of Archaeopteryx (upper Jurassic) must have

been at least an early Jurassic, or more likely a Triassic animal, indistin-

guishable in its skeleton from other small, bipedal dinosaurs.

There has been much interest in recent years in the Jehol fauna from

the Liaoning province of China, which includes an array of small dino-

saurs that are clearly related to Archaeopteryx (Milner 2002). Some of

these have structures that can be interpreted as feathers, but not flight

feathers like those of Archaeopteryx or modern birds. The Liaoning

formation is of lower Cretaceous age, around twenty million years

younger than the upper Jurassic Solnhofen limestone. Interesting

though the Liaoning fossils are, they do not shed a great deal of light

on the development of flight in birds, as the key innovation (flight

feathers) was already present in the earlier Archaeopteryx fossils.
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Lindström, Å., and Piersma, T. (1993). Mass changes in migrating birds: The evidence

for fat and protein storage re examined. Ibis 135:70 78.

Mandelbrot, B.B. (1982). The Fractal Geometry of Nature. New York: Freeman.

Mangold, O. (1946). Die nase der segelnden Vögel ein Organ des Strömungssinnes?
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A

Acceleration:

along flight path, 256–258

and gravity, 309–310

due to flapping, 245–246

linear, 255

transverse

to flight path, 258–260

Acceleration sense and spatial

orientation, 309–310

Actin, 164–166

Actuator disc versus lifting-line

theory, 96

Aerobic flight, adaptations for,

194–200

Aerobic muscle:

colour of, 200

mitochondria fraction, 197, 226

operating frequency, 196

performance and

temperature, 198

specific power of, 197

vertebrate versus insect, 198–199

Aerofoil, 85

properties, 69–75

Air density:

effect on speed and power, 66–68

entering into Flight programme,

29, 31

measuring, 28–30

Air sacs of birds, 200–202

heat disposal from, 202
Airspeed sense, procellariiform

nostrils as, 313–317

Aircraft, observing soaring

birds from, 292–296

Airframe mass and fraction, 7

Airspeed:

control in migration, 226–227

observed in field, 437

true and equivalent, 66–68, 384–386,

410, 420–423

vector, 410

Alaskan Bar-tailed Godwit,

213–215, 233, 331, 430

Albatross:

real, 298

theoretical, 297

Allometric relationships,

testing for, 354

Allometry, defined, 352

Altimeter, 313

Altitude, entering into Flight

programme, 29–30

Anemometer:

height correction for, 388

hot wire, 389

thermistor, 388

turbine, 387–388

whirling cup, 386–387

Angular acceleration:

about pitch axis, 254

about roll axis, 254

about yaw axis, 255
471
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Archaeopteryx:

patagial precursor, 454–455

wing skeleton of, 459

patagium supporting flight

feathers, 456

transition to modern bird, 456

Area of retina, 318

Argos satellite tracking system, 431

Aspect ratio, 9, 105

allometry in birds, 363
in Procellariiformes, 355

effect on induced drag, 73

of sea birds, 339

of soaring birds, 134

Atmosphere:

earth’s, 24–27

International Standard, 24–27

Attitude control, origin of, 445–446

Axial skeleton of birds, 130–132

B

Basal metabolism, 241–243

not related to chemical power, 373

in Flight programme, 242

Bat, 136–149

echolocation in, 319–320

foot and leg, 143
modification for wing

support, 141

rotation at thigh joint, 141

gliding, 142

stereo photos, 142

origin from gliding precursor, 452

respiration in, 148

thermoregulation in, 148

trained to fly in wind tunnel, 396

wing, 138–139

camber control, 144

contour maps, 145–147

mechanics of, 137–141

need to tension membrane, 141

plagiopatagial muscles, 144

tension path, 140

membrane related to

skeleton, 138
Beam equation, 111

bending, 108

stiffness, 110

Bending moment, 107

Bernoulli, Daniel, 80

Bernoulli’s principle, 378

Bird:

flapping flight in, 128–129

humerus, 121

origin from gliding precursor, 452

training to fly in wind

tunnel, 394–397

ulna, 123

wakes, schematic, 94

wind tunnel measurements on,

397–407

wing, 125
bending moment, 122–123

folding, 121

patagial origin of, 454

skeleton, 121–123
Black Vulture (American), circling

radius, 294

Black-browed Albatross, circling

envelope, 290

Body drag anomaly, 50

resolution of, 424–429

Body drag coefficient, 50–52

andmigration performance, 429–430

Body mass:

all-up, 6

empty, 6

entering into Flight programme, 7

fractions, 5

‘‘lean’’, 5

subdivision of, 5–7

Body shape, significance of, 69

Bound vortex, 84

on a wing, 85

Boundary layer, 88

ocean, 298

Bounding, 246

height changes in, 250–251

power requirements in, 248–250

power requirements in, 252–253
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wingbeat frequency in, 250–251

Bow-tie fallacy, 100

Breathing, bird versus bat, 204

Breguet, Louis-Charles, 210

Breguet’s range equation, 209–213

Brown Pelican, circling radius, 294

C

Calculated variables, allometry of,

364–374

Centre of lift, spanwise, 113

Characteristic speeds:

and vortex wakes, 100–101

in flapping flight, 63–66

Chemical power:

measuring in wind tunnel, 397–398

as multiple of basal

metabolic rate, 373

Circling envelope, 289

Circulation, 81, 85

Circulatory system, 206–207

Cochlea, 308

Coefficients of lift and drag, 72

Colugo, 450

Common Crane migration, 331

in thermals, 296

Concertina wing motion, 92

Contraction in wind tunnel, 383

Control axes, 256

Convection, atmospheric, 31

Conversion efficiency, 60

measuring in wind tunnel, 405–406

Cooling, evaporative versus

convective, 205–206

Constant circulation wake, 121

Corner in wind tunnel, 382

Crop mass, 6

Cycle work, 168

D

d’Alembert, Jean le Rond, 80

Diffuser in wind tunnel, 382

Dimensions, 18–20

Double logarithmic plots:

expected slopes of, 365–368
interpretation of, 356

Downwash, 39

Draco, 457

Drag, 40–41

induced, 45

profile, 57

Dynamic pressure, 313, 384–386

in airspeed measurement, 314

E

Earth’s atmosphere:

composition of, 32

in former times, 32–36

mass of, 32

Effective lift:drag ratio,

allometry of, 369

Elastic modulus, 108

Energy height, 227–238, 281

and Breguet’s equation, 229

and condition, 233–238

and fat fraction, 229

estimating from body mass,

232–238

for fat and protein combined,

229–231

for potential and kinetic energy, 231

kinetic, 281

potential, 281

regaining during stopovers, 230

Energy rates of climb and sink,

238–239

Euler, Leonhard, 80

Euler buckling, 107

Evolution of flight:

obstacles to, 444

time scale of, 461–462

Eye of birds, 318

F

Fan, in wind tunnel, 382

Fat fraction, 6, 210

estimating from body mass,

236–238

Fat mass, 6

Fixed wing, three-dimensional, 88–91
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Flap-gliding, 246–248

power requirements in, 251–252

Flight, aerobic, 163

Flight computer model, 2

describing bird in, 5

designing observations with, 16

internet sources, 3

Flight controls, 253

Flight envelope, 260–262

Flight environment, 14

Flight feathers:

antiquity of, 457–458

evolution of, 457–458

mechanics of, 123–124

Flight in a circle, 262–267

wing loading and, 266

with fixed wing, 265

Flight muscle fraction, 6

allometry of, 364

and rate of climb, 189

Flight muscle mass, 6

Flight styles, intermittent, 246–253

Foot swimmers, reduced

aspect ratio in, 336–347

Foot swimming:

drag based, 335

lift based, 336

Force, measuring in wind tunnel,

398–399, 401

Fovea of retina, 318

Frames of reference, 253–256

Frigatebirds, wing enlargement in, 346

Fuel fraction, 210

Fuels for muscles, 164

G

g, maximum, 260–262

g, pulling, 258–260

Gaits, non-existence of

in flight, 92–93

Gas exchange in lungs, bird

versus bat, 203

Geometrically similar animals, 351

Glide polar, 272–279

computing, 274–278
Glide ratio, 272

Gliding, adaptations for

in birds, 133–134

Gliding equilibrium, 274

Gravity, 22

acceleration due to, 22

earth’s surface, 22–23

Helmert’s equation, 22–23

in bounding flight, 24

in former times, 23, 32–36

variation with height, 22–23

variation with latitude, 22–23

weight and, 22

Great Knot, 213–215, 430

migration simulation, 216–224
airspeed control, 219

all-up mass, 222

basal metabolism, 223

chemical power, 223

climb and descent, 219

effective lift:drag ratio, 220

energy height, 220

flight muscle fraction, 222

Flight programme output,

216–217

mitochondria fraction, 222

muscle burn, 219

specific power, 222

specific work, 218
Ground speed, 410

Ground speed vector, 410

measuring, 410

H

Hair cells, 306–308
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